

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : H01B 11/18, 3/44		A1	(11) International Publication Number: WO 98/01870 (43) International Publication Date: 15 January 1998 (15.01.98)
(21) International Application Number: PCT/FI97/00428 (22) International Filing Date: 1 July 1997 (01.07.97) (30) Priority Data: 962715 1 July 1996 (01.07.96) FI		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(71) Applicant (for all designated States except US): NK CABLES LTD. [FI/FI]; Kimmeltie 1, FIN-02110 Espoo (FI). (72) Inventors; and (75) Inventors/Applicants (for US only): TUUNANEN, Vesa [FI/FI]; Jäkäläntie 17 B, FIN-00940 Helsinki (FI). MAR-TINSSON, Hans-Bertil [SE/SE]; Ekbacken 9, S-472 95 Varekil (SE).		Published <i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i> <i>In English translation (filed in Finnish).</i>	
(74) Agents: LAINE, Seppo et al.; Seppo Laine Oy, Lönnrotinkatu 19 A, FIN-00120 Helsinki (FI).			

(54) Title: COAXIAL HIGH-FREQUENCY CABLE AND DIELECTRIC MATERIAL THEREOF

(57) Abstract

The invention relates to a coaxial high-frequency cable comprising an inner conductor (1), a dielectric material (3) formed about said inner conductor (1), and an outer conductor (4) formed about said dielectric material (3). According to the invention, said dielectric material (3) is made from an expanded polymer blend compounded from two α -olefin polymers of different densities, whereby the polymer of the higher density forms the matrix of the polymer blend.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Coaxial high-frequency cable and dielectric material thereof

The present invention relates to a coaxial high-frequency cable according to the preambles of claims 1 and 12.

5

The invention also concerns a dielectric material according to the preamble of claim 13 for use in a cable.

The invention can be utilized in the transfer of a radio-frequency signal, whether digital or analog, when the signal transfer system requires a low attenuation over the transmission path. Typically, such an application is in the high-power transmission from the power amplifier stage of a radio transmitter to the radiating antenna element proper or connection of a receiving antenna to the input stage of a radio receiver, or a combination of similar signal paths. An example of such an application is found at the base stations of cellular phone networks. Another application is in the radio-shadow areas of said cellular phone systems such as tunnels, cellars, etc., where this type of cable can be used as the radiating element when provided with a perforated leaky outer conductor. Also in cable-TV networks in which the transmitted signal conveys both analog and digital television pictures, the cable according to the invention is useful, as well as on the subscriber lines of modern telephone systems (access networks) which use a coaxial cable as the transmission medium in the transfer of wideband information. Furthermore, the invention is useful in symmetrical cabling of a wideband data network. The benefits of the invention are the higher the wider the required transmission bandwidth, typically ranging from a few megahertz to a few gigahertz.

Cable structures of both coaxial and symmetrical construction suitable for high-frequency transmission have been made in the art with a polymer dielectric as soon as polyolefin polymers of suitable qualities appeared on the market in the 1940's. In order to achieve a low permittivity (ϵ_r) and

dissipation factor ($\tan \delta$), a countless number of polymer-air dielectric material combinations have been tested over times in order to maximize the fraction of air in the dielectric with the goal of minimizing the attenuation constant of the 5 cable without compromising the mechanical handling properties of the cable. As rule of thumb, the mechanical bending endurance, compression resistance and other durability-related properties are deteriorated when the volume of the solid dielectric material is reduced and replaced by a gaseous 10 medium, whereby the attenuation and dissipation factor of the cable are decreased. A good compromise has been found in an expanded polymer dielectric, conventionally polyethylene, which is formed by foaming from an initially solid polymer dielectric material in an extruder during the cable 15 insulation process.

In early attempts, the foaming step was implemented by compounding the polymer raw material with a specific chemical foaming agent which was capable of blowing closed cells of 20 desired size in the polymer dielectric. A problem of this approach is that the polymer dielectric material traps residues of the foaming agent that deteriorate the dissipation factor and attenuation at the upper end of the frequency range. Partially with the goal to overcome this 25 drawback, physical foaming methods were developed based on injecting into the extrusion process some inert gas, originally fluorocarbon gas but later nitrogen or carbon dioxide, in order to blow the gas-filled expanded cells. Practical experience has, however, shown that both of these 30 prior-art foaming methods will at some state reach certain ultimate limits of attenuation and dissipation factor that cannot be exceeded, because the foaming ratio cannot be passed further due to the deterioration of mechanical properties and because the basic qualities of available 35 polymer grades, which determine the achievable electrical properties, are already maximally exploited.

It is an object of the present invention to overcome the drawbacks of the above-described technique and to provide an entirely novel type of coaxial high-frequency cable and its dielectric material.

5

The goal of the invention is achieved by making the dielectric of the coaxial cable from a material which consists of a polymer blend of two α -olefin polymers of different densities.

10

Such a dielectric material is previously known from US Patent Specification No. 4,202,086 which states that the dielectric material may comprise some polyolefinic blend, advantageously a HDPE/LDPE blend with a HDPE content of 20 to 80 %.

15

The disadvantages of the known solution lie, among other things, in its low foaming degree (about 70 %), the relatively high loss factor, and the shrinkage proneness of the product, this being related to poor foam structure.

20

In the present invention it has surprisingly been found that by bringing the blend of two polyolefins of different densities, i.e., low-density polyethylene and medium-density polyethylene, to a high foaming degree by physical foaming, a dielectric material is obtained with a small dissipation factor and low relative permittivity.

A high foaming degree (exceeding 75 %, preferably about 77 to 85 %), is advantageously obtained by using a blend composition having a good melt strength.

More specifically, the cable according to the invention is characterized by what is stated in the characterizing parts of claims 1 and 12.

35

The dielectric material according to the invention is characterized by what is stated in the characterizing part of claim 13.

5 According to a preferred embodiment of the invention, a dielectric material is used containing medium-density polyethylene (MDPE) and low-density polyethylene (LDPE), whereby the amount of MDPE is at least half of the weight of the polymer blend. The MDPE thus forms the matrix of the 10 polymer blend. A small dissipation factor and relative permittivity presuppose polyethylenes which are as pure as possible, wherefore such a polymer blend only contains a small amount of admixture, such as a plastics stabilizing agent, at the most, in addition to the medium-density 15 polyethylene and the low-density polyethylene. Catalyst residues must be avoided.

It has been found in connection with the invention that by blending a low-density polyethylene with a medium-density 20 polyethylene a material is obtained having the high melt strength required by the invention, which material can then be foamed to have a high foaming degree.

As an example of an advantageous dielectric material a foamed 25 polymer blend may be cited containing 1 to 50 % by weight of a LD polyethylene and 50 to 99 % of a medium-density polyethylene, whereby the blend has a density of 0.931 - 0.939, a melt flow rate (MFR) of about 1.5 - 4.5 and a loss factor (when unfoamed) of smaller than or equal to 30 0.0002 rad at 1 GHz.

Advantageously, the density of the polymer or plastics blend contained in the dielectric material is about 0.931 to 0.939, its melt flow rate (MFR is about 1.5 to 4.5, and its 35 antioxidant content is less than 800 ppm. Advantageously, the polymer blend contains about 20 - 40 wt.-% of LD polyethylene, about 80 - 60 wt.-% of MD polyethylene and

about 10 - 800 ppm stabilizer (in regard to the weight of the major components). This type of composition has excellent dielectric properties: its dissipation factor when unfoamed is smaller than 0.0002 within the frequency range 100 to 3000
5 MHz.

Most advantageously, the dielectric material contains a small amount (less than 1000 ppm) of a nucleating agent, which may possibly be included in the polyolefin component, e.g., the
10 high-density polyethylene, serving to disperse the polyethylene component homogeneously into the polymer blend. The amount of this polyolefin component is typically less than 20 wt.-% in the blend.

15 Between the dielectric material of the coaxial high-frequency cable, which is blended from two polyolefin grades of different densities, and the conductors of said cable, are adapted two additional layers serving for improved adherence and protection, respectively, with a thickness in the range
20 1 - 500 μm , advantageously 10 - 100 μm . Most appropriately, between the dielectric and the inner conductor is adapted an adherence-improving layer made from the same polymer blend as is used in the dielectric. However, the adherence layer is herein made from unexpanded polymer blend. The two additional
25 layers give protection to the dielectric material during the cable manufacturing process. The homogeneous polyolefin layer coextruded on top of the foam layer protects the expanded structure against mechanical strain and moisture.

30 The invention offers significant benefits.

The foamed dielectric material according to the invention has two important advantages in coaxial cables:

35 1. Lower loss in the polymer dielectric, which means a smaller longitudinal attenuation of the cable.

2. Higher foaming ratio, which means a higher characteristic impedance and lower attenuation of the cable.

5 The expanded dielectric material according to the invention has a polymer dielectric dissipation factor of about 55×10^{-6} rad at about 80 % degree of foaming. Earlier known polymer blends have had a dissipation factor of about 80×10^{-6} rad. Such a loss reduction means an about 0.5 dB (15 %) lower cable attenuation at, e.g., 1800 MHz.

10 Due to the improved melt strength, it has been possible to increase the degree of foaming from the conventional level of below 75 % to about 82 % and even beyond that.

15

The impact of the new qualities on the attenuation of the cable will be evident from an example to be described later, in which example the cable attenuation characteristics of the dielectric material according to the invention as a function 20 of frequency are compared to those achievable by a prior-art material.

25 In the following the invention will be examined in greater detail with the help of exemplifying embodiments illustrated in the appended drawings in which

Figure 1 shows a perspective view of a high-frequency cable according to the invention;

30 Figure 2 shows examples of alternative cable structures according to the invention;

Figure 3 shows a plot of the attenuation of a cable according 35 to the invention as compared to the attenuation of a prior-art cable; and

Figure 4 shows a plot of the electrical properties of cables made according to the invention and the prior art.

Referring to Fig. 1, a high-frequency cable comprises an 5 inner conductor 1 surrounded by a dielectric medium 3. Typically, the dielectric material contains cells 2 which improve its electrical properties. The dielectric 3 is enclosed by the outer conductor 4 which is further covered by a sheath 5.

10 Generally, the inner conductor 1 is a smooth copper wire. If a particularly high flexibility of the cable is required, the inner conductor 1 is made from a stranded, multi-wire conductor. If the cable dimensions are sufficiently large and 15 the transmission frequencies sufficiently high, savings in material costs can be attained by replacing the core of the inner solid-copper conductor with a cheaper material such as aluminium or by using a tubular copper conductor. These alternatives are made possible by the fact that at high 20 frequencies the so-called skin-effect forces the current to run along a very shallow depth of the conductor outer surface. If the smallest possible attenuation is desired, the conductivity of the inner conductor can be further improved by silver-plating the conductor.

25 At high frequencies, the attenuation of a coaxial cable can be written as follows:

$$\alpha = 9.95 \cdot 10^{-6} \sqrt{F} \sqrt{\epsilon_r} \frac{\frac{1}{a \sqrt{\sigma_a}} + \frac{1}{b \sqrt{\sigma_b}}}{\log \frac{b}{a}} + 9.10 \cdot 10^{-8} \sqrt{F} \cdot \epsilon_r \cdot \tan \delta$$

wherein

30 α = attenuation [dB/m]

f = frequency [Hz]
 ϵ_r = relative permittivity
 a = inner conductor radius [m]
 b = outer conductor radius [m]
5 σ_a = inner conductor conductivity [S/m]
 σ_b = outer conductor conductivity [S/m]
 $\tan \delta$ = dissipation factor.

It can be seen from the above-given formula of cable
10 attenuation that, besides the diameter ratio of the inner and
outer conductors of the cable, the factors determining the
attenuation of the cable include the conductivity of the
cable conductors, frequency, the relative permittivity and
dissipation factor of the dielectric. Herein, the governing
15 parameters are the cross-sectional dimensions of the cable,
wherein larger dimensions give lower attenuation, and the
effective permittivity and dissipation factor of the
dielectric structure, which must be as low as possible to
achieve a low-loss cable.

20 In order to retain the practical handling properties of
cables, the dimensions of cables can hardly be increased from
those currently employed; and when the operating frequencies
reach as high as several GHz, the upper frequency limit of
25 the cable due to the TEM mode is confronted quite soon.

While silver is a metal with superior conductivity properties
over those of copper, its price and processability form an
effective hindrance to its use.

30 Resultingly, the only feasible approach to the reduction of
attenuation in concurrent cables is to improve the dielectric
medium and its structure.

35 In Fig. 2 are shown a few examples of air-expanded polymer
dielectric structures. Today, the most common of these is the
structure of type E having its dielectric formed by expanded

polyethylene, in some cases complemented with outer layers of solid polymer to improve its mechanical qualities.

5 The outer conductor 4 is most generally a metal tube made from copper or aluminium, for instance. The metal tube 4 may be made hermetic by welding or be formed from a longitudinally running circularly shaped metal strip or an overlappingly obliquely wound metal foil. When a particularly high flexibility is required from the structure, the outer 10 conductor is made from thin braided or knitted copper wires. Cables intended for CATV or data transmission frequently use polymer-coated metal foil lap combined with such braiding or knitting.

15 If the outer conductor is made from a welded metal tube, it may be corrugated to improve the flexibility of the cable. In large-dimension cables, also the inner conductor can be corrugated.

20 Onto the outer conductor 4 of the coaxial structure is generally extruded an outer sheath 5 made conventionally from UV-stabilized polyethylene or PVC depending on the needs of the operating environment. Certain cable types intended for indoor installations are today provided with halogen-free 25 engineering polymers featuring flame retardancy and low smoke evolution.

30 The principal goal of research and development in the art of polymer dielectric blends is to achieve an expandable polymer blend with a low electrical dissipation factor combined with good melt strength. The target of a low dissipation factor is essentially connected with the technology used in the production of the polymer. Only a suitable reactor type and proper catalyst technique can assure a sufficiently impurity-35 free polymer quality for electrical use.

Both components of the novel expandable polymer blend are made in a low-pressure reactor.

Another important quality requested from a polymer dielectric blend is a high melt strength. In the foaming process, the melt strength of the polymer refers to self-strengthening property which is required when the polymer is subjected to intense stretching during the formation of a cell. This means that the polymer film undergoes greatest strengthening at the area of largest elongation. Such a property makes it possible to produce a cellular structure with a thin, polygonal cell wall. The planar cell wall structure and small-volume nodes at the corner points of the walls facilitate a high foaming ratio.

15

A degree of foaming of up to 70 % is easily achieved by means of a spherical cell structure. The novel polymer dielectric material makes it possible to achieve a degree of foaming of more than 75 %, preferably up to 82 % or even higher. The good melt strength qualities of the blend are obtained by mixing two polymer grades of low dissipation factor in a proper ratio with each other. In production, the extrusion temperature of optimum melt strength of the polymer blend must fall within the temperature control limits of the foaming extruder. The optimum melt temperature of the novel polymer blend is 170 °C ± 2 °C. This temperature is well compatible with current foaming extrusion technology.

The polymer dielectric blend according to the invention is a compounded polymer material (polymer blend) which consists of the blend of two α -olefin polymers of different densities. While both polyolefins can be included in equal amounts in the blend, advantageously, the polymer of higher density forms the matrix (continuous phase) of the polymer blend. The polyolefins can be selected from the groups of polyethylenes or polypropylenes. Most advantageously, the polymer blend is made from a low-density polyethylene (LDPE) and a medium-

density polyethylene (MDPE), particularly, linear medium-density polyethylene. The density of the low-density polyethylene used in the invention is typically about 0.910 - 0.930, advantageously about 0.920 - 0.928, and the medium-density polyethylene has a density of about 0.930 - 0.945, advantageously about 0.937 - 0.943. It has been found that through the modification of the mechanical and rheological qualities of the medium-density polyethylene, which forms the matrix of the blend, by blending it with a low-density polyethylene, a particularly suitable material with good melt strength and dielectric properties for use as the dielectric of cables can be achieved. As examples of LD polymers, the following may be cited: DFDA 1253 (Union Carbide), BPD 8063 and BPD 2007 (BP), LE 1169, LE 4004, LE 40227, LE 4510, and LE 4524-D (Borealis). As examples of medium-density polymers, then, the following may be cited: ME 1831, ME 1835, M1M 4034, and ME 6032. Advantageously, some (1 to 20 % by weight, preferably about 2 to 15 % by weight) high-density PE may further be admixed with the material. Examples of HDPE products include DGDA 6944 (Union Carbide), HE 1102 and HE 6930 (Borealis).

According to the invention, an LDPE grade is preferably used having an MFR of about 3.0 - 5.5, and an MDPE grade having an MFR of 2.0 to 5. The dissipation factor of the polyethylene grades when unexpanded within the frequency range 100 to 3000 MHz should preferably be smaller than 0.00025 rad and, correspondingly, 0.0002 rad.

Advantageously, the polymer blend contains about 1 - 50 wt.-% of LDPE, about 50 - 99 wt.-% of MDPE and maximally about 0.1 wt.-% (that is, 1000 ppm, compared to the weight of the other components) of plastic additives and admixtures known as such. Most appropriately, the polymer blend contains about 10 - 45 wt.-%, advantageously about 20 - 40 wt.-%, of LDPE, and about 85 - 55 wt.-%, advantageously about 80 - 60 wt.-%,

of MDPE, and less than 800 ppm (compared to the weight of the other components) of a stabilizer (an antioxidant).

As noted earlier, a polymer blend according to a particularly 5 preferred embodiment of the invention has a density of about 0.931 - 0.939, an MFR of about 1.5 - 4.5, a dissipation factor when unexpanded within the frequency range of 100 to 3000 MHz smaller than 0.0002, and an antioxidant content smaller than 800 ppm.

10

As will be evident from the example described below, these particularly good qualities are attained by using a polymer blend containing LDPE and MDPE in the weight ratio 1:1.5 - 1:4, e.g., in the ratio 1:3.

15

Conventionally, both LDPE and MDPE contain comonomers, such as higher α -olefins including propene, butene, 4-methylpentene, 1-hexene and/or 1-octene, or vinyl acetate. By varying the comonomer content, the qualities of polymers 20 such as crystallinity and strength can be modified.

Preferably, the polymer blend should be as free as possible from plastic additives and adjuvants which may impair the dielectric properties of the material. Particularly 25 detrimental herein are polar additives and impurities. Hence, the polymer blend according to the invention most appropriately contains only an antioxidant in an amount of about 50 - 1000 ppm, most advantageously 750 ppm at the most. Of the group of suitable stabilizers, tetrakis[methylene(3.5- 30 ditertiary butyl-4-hydroxy-hydrocinnamate)] methane may be mentioned.

The polymer is expanded in an extruder. High-pressure 35 nitrogen gas at a pressure of about 500 bar is injected into the extruder cylinder. The volume flow rate of the nitrogen gas is controlled by varying the pressure and the cross-sectional area of the extrusion nozzles. The gas first

dissolves into the molten polymer. When the polymer starts to flow out from the extruder die, the gas dissolved in the polymer melt is liberated thus effecting the foaming of the material.

5

In order to achieve a high degree of expansion, it is necessary to combine a properly formulated expandable polymer blend with an exactly controlled gas flow rate and an additive that sets the cell size to a desired volume during 10 foaming. One suitable additive acting as such a nucleating agent is azodicarbonamide. The parameters characterizing the use of this additive are as follows:

15

20

- a suitable particle size distribution in the range of about 5 - 15 μm ;
- a suitable decomposition temperature of about 200 °C;
- electrical purity (freedom from metallic compounds of polar nature) is required;
- a suitable amount for foaming is added of about 150 - 180 ppm; and
- the additive must be homogenously compounded in the polymer blend.

While the nucleating agent can be mixed directly as such into 25 the expandable polymer blend, it may also be precompounded with a polyolefin grade which is next compounded with the expandable dielectric material. An example of a suitable polyolefin is HDPE, for instance expandable polymer dielectric materials for high-frequency use. A correct 30 blending ratio with homogeneous compounding can be attained by blending this material in an amount of 1 - 20 %, advantageously about 2 - 15 %, with the expandable polymer dielectric material. The compounding step is effected by means of a mixing apparatus adapted above the inlet opening 35 to the hopper of the extruder. The nucleating agent can be added to the polyolefin in an amount of about 100 - 800 ppm, typically about 200 - 600 ppm.

When desired, between the expanded dielectric and the inner conductor can be formed a thin adherence layer which typically has a thickness of about 10 - 200 μm and consists of a polyolefin material. Particularly advantageously the 5 adherence layer is made from the same material as the polymer blend, whereby the polymer may be compounded with a small amount (0.01 - 0.5 %) of an adhesion-improving agent such as a functionalized polyethylene, for instance, a copolymer of ethylene and acrylic acid, if so desired. Similarly, between 10 the expanded dielectric and the outer conductor can be arranged a thin skin layer serving to prevent the puncture of the outermost cell layer and the subsequent penetration of water into the dielectric during the cable manufacturing process. The skin layer is comprised of LDPE, LLDPE, MDPE, 15 HDPE or PP, for instance. The thickness of the outermost skin layer is in the same order with that of the above-mentioned adherence layer.

20 The type of the exemplifying cable is RF 1 5/8 - 50 with the following characterizing dimensions:

Inner conductor	17.3 mm
Dielectric	42.5 mm
Outer conductor	46.5 mm
Sheath	50 mm

25

The dielectric is made from an expandable polymer blend having the following composition:

24 %	of a low-density PE (density 0.924, MFR 4.2)
30 76 %	of a linear, medium-density PE (density 0.940, MFR 3.5)
600 ppm	(as computed from the total amount of the LDPE and the MDPE listed above) of a stabilizer (an antioxidant).

35

The properties of this blend are a density of about 0.935, an MFR of about 3.0, and a dissipation factor when unexpanded

within the frequency range of 100 to 3000 MHz which is smaller than or equal to 0.0002.

5 Of the expanded dielectric, 90 % consists of the above-described blend and 10 % is of an HD polyethylene grade containing 400 ppm of azodicarbonamide as the nucleating agent.

10 Between the expanded dielectric and the inner conductor is adapted an about 50 μm adherence layer made from the same material as is used in the polymer blend, which contains a small amount of 0.2 ethylene acrylic acid. Correspondingly, between the expanded dielectric and the outer conductor is adapted a 50 μm skin layer made from LLDPE plastic.

15 20 For the comparative test (cf. area 15 of Fig. 4), a cable was made according to a conventional technique having its dielectric extruded from a blend of 90 % LD polyethylene and 10 % HD polyethylene. 150 ppm azodicarbonamide was used as the nucleating agent.

25 Referring to Fig. 3, therein are plotted comparative attenuation vs. frequency measurement results of a cable according to the invention and a cable according to the prior art. As is evident from the curves, e.g., at the frequency of a recently allotted frequency band (1800 MHz), the attenuation curve 12 of the prior-art cable is about 0.5 dB higher than the attenuation curve 13 of the cable according to the present invention. This corresponds to an about 15 % improvement in favour of the present invention. In other words, the cable according to the invention transmits 15 % more electrical power to the remote end such as a base station antenna than a conventional cable construction. Further, curve 10 shows the fraction of a prior-art 30 35 dielectric material in the cable overall attenuation and, respectively, curve 11 shows the fraction of a dielectric

material according to the invention in the cable overall attenuation.

5 In Fig. 4 are compared the electrical properties of different types of polymer dielectric blends. Area 14 represents the basic acceptable qualities required from a cable. The vertical axis represents the characteristic cable impedance and the horizontal axis the cable attenuation. The target impedance is 50 ohm with a permissible deviation range of 10 ± 1 ohm and the maximum permissible attenuation is 4 dB/100 m at 1800 MHz. Area 15 indicates the impedance and attenuation values achievable by conventional polymer dielectric blends which are only just within the permissible limits.

15 Correspondingly, the polymer blend according to the invention reaches the values indicated by area 16, wherein the average attenuation is about 0.5 dB lower than that of area 15. The polymer dielectric loss curves 17 and 18 represent the characteristic impedances of cables made from the expandable polymer dielectric material according to the invention at 20 different degrees of expansion and, correspondingly, the polymer dielectric loss curves 19 and 20 represent the characteristic impedances of cables made from the expandable polymer dielectric material of the prior art at different degrees of expansion.

25 The basic cable structure made according to the invention is a coaxial low-loss antenna feeder cable. Another application of the invention is a radiating cable for cellular telephone networks. This structure has a perforated outer conductor.

30 CATV cables used in cable television networks differ chiefly by their outer conductor of a simpler and lower cost structure, as well as by having different dimensions. The cables used in wideband access networks are similar in 35 structure to the cables of CATV networks.

Wideband cables of data transfer networks differ from the above-described types by having a twin-conductor structure.

Claims:

1. A coaxial high-frequency cable comprising
 - an inner conductor (1),
 - 5 - a dielectric material (3) formed about said inner conductor (1), and
 - an outer conductor (4) formed about said dielectric material (3),characterized in that
 - 10 - said dielectric material (3) is a blend of a low-density polyethylene and a medium-density polyethylene expanded by physical foaming to a high degree of expansion.
- 15 2. A cable as defined in claim 1, characterized in that the dissipation factor of the dielectric material within the frequency range from 100 to 3000 MHz is 55×10^{-6} rad at the most.
- 20 3. A cable as defined in claim 1 or 2, characterized in that said dielectric material has a degree of expansion of at least 75 %, preferably about 77 to 85 %.
- 25 4. A cable as defined in any of the claims 1 to 3, characterized in that the polymer having the higher density forms the matrix of the polymer blend.
- 30 5. A cable as defined in any of the claims 1 to 4, characterized in that the polymer blend has a density of 0.931 - 0.939, an MFR of 1.5 - 4.5 and a dissipation factor when unexpanded within the frequency range of 100 to 3000 MHz which is lower than or equal to 0.0002 rad.
- 35 6. A cable as defined in any of the foregoing claims, characterized in that said polymer blend

contains a nucleating agent in an amount of about 10 - 1000 ppm.

7. A cable as defined in any of the foregoing claims, characterized in that said polymer blend contains about 1 - 50 wt.-% of a low-density polyethylene and 50 - 99 wt.-% of a medium-density polyethylene and maximally about 0.1 wt.-% of a stabilizer.

8. A cable as defined in claim 7, characterized in that said polymer blend contains about 20 - 40 wt.-% of a low-density polyethylene and about 80 - 60 wt.-% of a medium-density polyethylene and maximally about 800 ppm of a stabilizer.

9. A cable as defined in any of the foregoing claims, characterized in that between the inner conductor and the dielectric is adapted an adherence layer containing the same polymer blend as the dielectric material.

10. A cable as defined in claim 9, characterized in that the thickness of said adherence layer is about 10 - 1000 μm , advantageously about 20 - 100 μm .

11. A cable according to any of the foregoing claims, characterized in that a homogeneous polyolefin layer is coextruded on the foam layer (3), the polyolefin layer protecting the foamed structure from mechanical strain and moisture.

12. A coaxial high-frequency cable, comprising
- an inner conductor (1),
- a dielectric material (3) formed about said inner conductor (1), and
- an outer conductor (4) formed about said dielectric material (3),
characterized in that

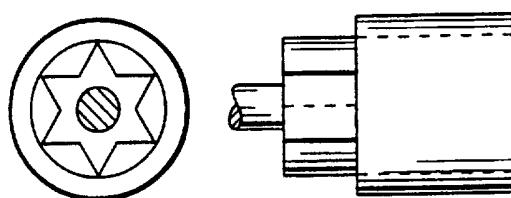
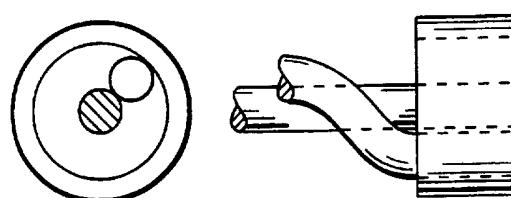
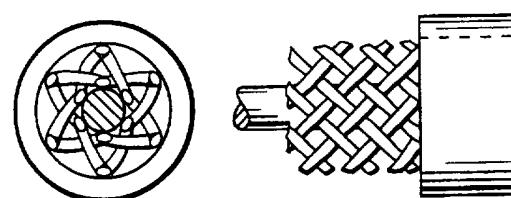
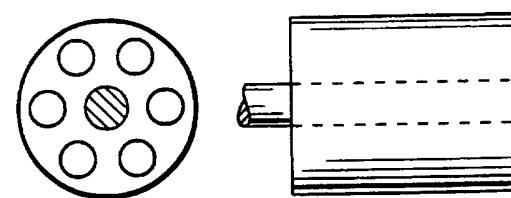
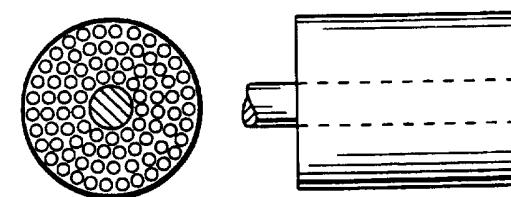
5 - the dielectric material (3) comprises an expanded polymer blend containing 1 to 50 wt-% of a low-density polyethylene and 50 to 99 wt-% of a medium-density polyethylene and has a density of 0.931 - 0.939, a melt index of 1.5 to 4.5 and a $\text{tg } \delta$ at 1 GHz of less than or equal to 0.0002 rad.

10 13. A cable dielectric material (3) made from an expandable polymer material, characterized in that said polymer material consists of a polymer blend compounded from two α -olefin polymers of different densities and having a density of 0.931 to 0.939, a melt index of 1.5 to 4.5 and a dissipation factor when unexpanded within the frequency range from 100 to 3000 MHz of less than or equal to 0.0002 rad.

15 14. A cable dielectric material according to claim 13, characterized in that the polymer of higher density forms the matrix of the polymer blend.

20 15. A cable dielectric material (3) as defined in claim 13 or 14, characterized in that said polymer blend contains about 1 - 50 wt.-% of a low-density polyethylene and 50 - 99 wt.-% of a medium-density polyethylene and maximally about 0.1 wt.-% of a stabilizer.

25 16. A cable dielectric material (3) as defined in claim 15, characterized in that said polymer blend contains about 20 - 40 wt.-% of a low-density polyethylene having a density of about 0.920 - 0.928, an MFR of 3.0 - 5.5 and a dissipation factor when unexpanded within the frequency range from 100 to 3000 MHz which is smaller than 0.00025 rad, and about 80 - 60 wt.-% of a medium-density polyethylene having a density of about 0.937 - 0.943, an MFR of 2.0 - 5.0 and a dissipation factor when unexpanded within the frequency range from 100 to 3000 MHz which is smaller than 0.0002 rad, and maximally about 800 ppm of an antioxidant.






17. A cable dielectric material (3) as defined in any of the claims 13 - 16, characterized in that said polymer blend contains 10 - 800 ppm of tetrakis[methylene(3.5-ditertiary butyl-4-hydroxyhydrocinnamate)] methane as a stabilizer.

18. A cable dielectric material as defined in any of the claims 13 - 16, characterized in that it contains 10 - 1000 ppm of a nucleating agent.

10 19. A cable dielectric material as defined in any of the claims 13 - 18, characterized in that said polymer blend contains 1 - 20 %, advantageously about 2 - 15 %, of a third polyolefin.

15

1/3

Fig. 1**A****B****C****D****E****Fig. 2**

2/3

ATTENUATION CHANGE IN CABLE TYPE RF 1 5/8

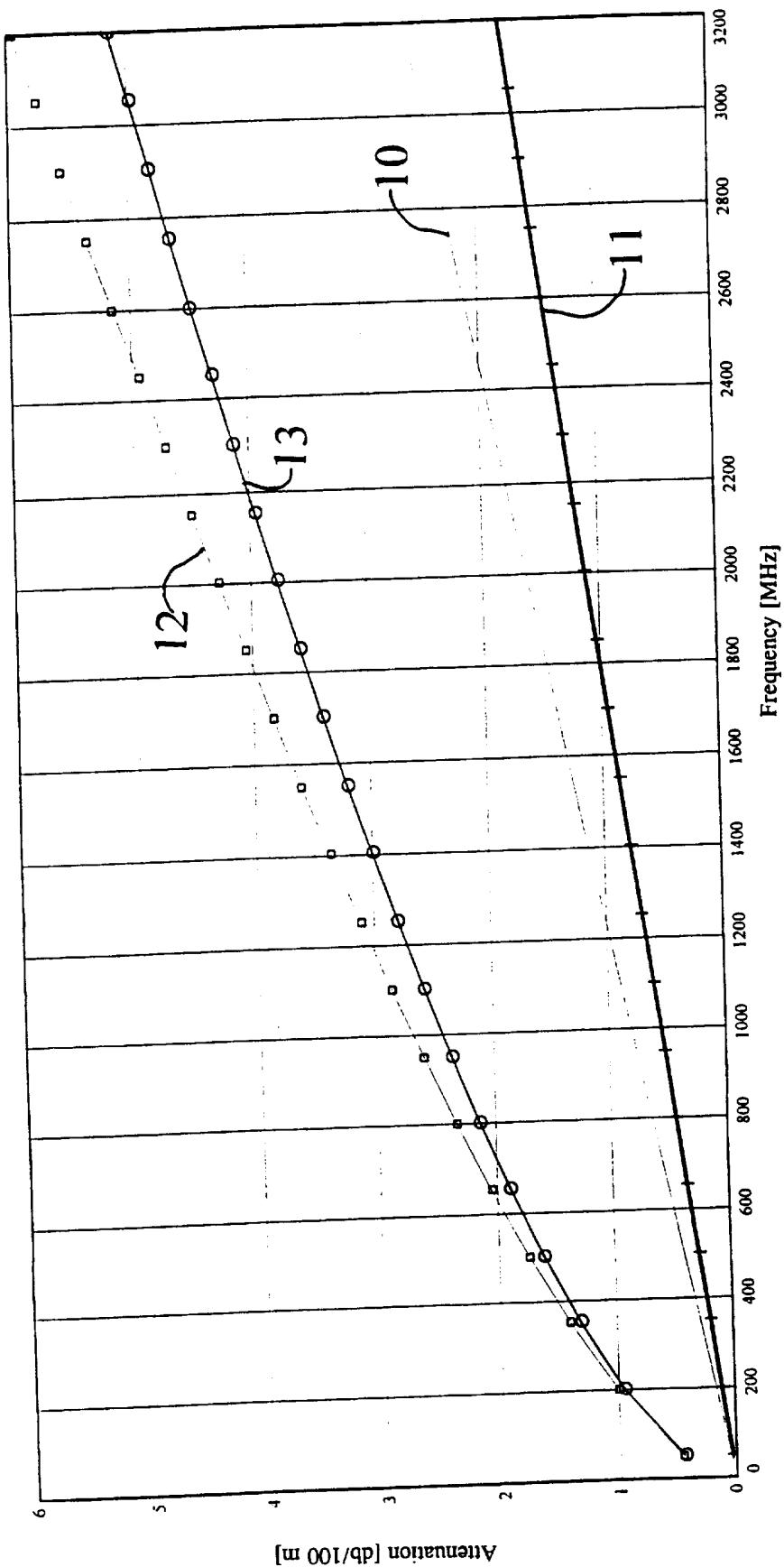


Fig. 3

3/3

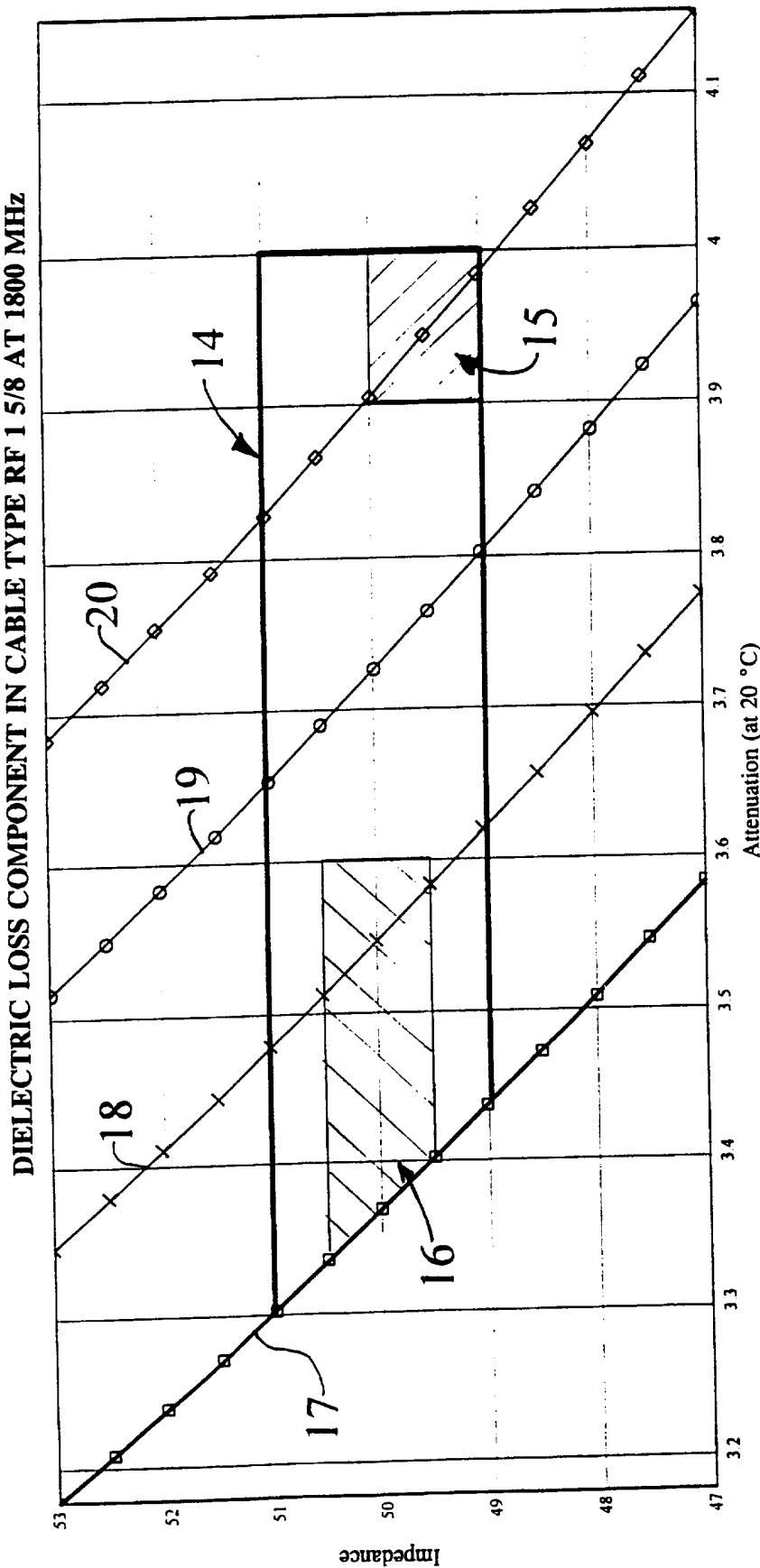


Fig. 4

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FI 97/00428

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: H01B 11/18, H01B 3/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: H01B, C08L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0611793 A2 (MITSUBISHI CABLE INDUSTRIES, LTD.), 24 August 1994 (24.08.94), abstract; page 3, line 7 - line 13; page 5, line 31 - page 6, line 4 --	1-3,6,16,18
X	US 4204086 A (FUMIO SUZUKI), 20 May 1980 (20.05.80), column 4, line 16 - line 40; column 5, line 42 - line 50; column 22, line 44 - line 56; claims 1-3, 12-14 -----	1,4

Further documents are listed in the continuation of Box C.

See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
11 December 1997

Date of mailing of the international search report
12-12-1997

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Sofia Nikolopoulou
Telephone No. +46 8 782 25 00

INTERNATIONAL SEARCH REPORT

04/11/97

International application No.
PCT/FI 97/00428

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0611793 A2	24/08/94	CN	1092436 A	21/09/94
		JP	2597299 B	02/04/97
		JP	6298981 A	25/10/94
		JP	7070348 A	14/03/95
		US	5574074 A	12/11/96
<hr/>				
US 4204086 A	20/05/80	JP	870769 C	20/07/77
		JP	49021100 A	25/02/74
		JP	51045959 B	06/12/76
		AU	6352273 A	12/06/75
		CA	1043972 A	12/12/78
		DE	2359876 A,B,C	25/07/74
		FR	2214162 A,B	09/08/74
		GB	1434775 A	05/05/76
		JP	1021372 C	25/11/80
		JP	50035684 A	04/04/75
		JP	55009769 B	12/03/80
<hr/>				