
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0078507 A1

US 20040078507A1

Bogin et al. (43) Pub. Date: Apr. 22, 2004

(54) MANAGING BUSTRANSACTION (52) U.S. Cl. .. 710/310
DEPENDENCES

(76) Inventors: Zohar Bogin, Folsom, CA (US);
Serafin E. Garcia, Folsom, CA (US) (57) ABSTRACT

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD, SEVENTH A combination of techniques to prevent deadlockS and
FLOOR livelocks in a computer System having a dispatcher and
LOS ANGELES, CA 90025 (US) multiple downstream command queues. In one embodiment,

a broadcast transaction that requires simultaneously avail
(21) Appl. No.: 10/674,316 able Space in all the affected downstream command queues
(22) Filed: Sep. 29, 2003 becomes a delayed transaction, So that the command queues

s a 19 are reserved and other transactions are retried until the

Related U.S. Application Data broadcast transaction is completed. In another embodiment,
a bail-out timer is used to defer a transaction if the trans

(62) Division of application No. 09/659,108, filed on Sep. action does not complete within a predetermined time. In yet
11, 2000, now Pat. No. 6,694,390. another embodiment, a locked transaction that potentially

addresses memory Space controlled by a programmable
Publication Classification attribute map is handled as a delayed transaction if there is

less than a predetermined amount of downstream buffer
(51) Int. Cl." ... G06F 13/36 Space available for the transaction.

O GRAPHICS
CONTR

30
111

REQUEST
DECODER

O TO
PERPHERAL MEMORY
BUS CONTR CONTR

Patent Application Publication Apr. 22, 2004 Sheet 1 of 6 US 2004/0078507 A1

CPU1 CPU2

21

13 23 25 14

GRAPHICS MEMORY
CONTR CONTR

I/O CONTROLLER

15
LAN IDE PERPHERAL

BUS CONTR

PC

Fig. 1 Prior Art

Patent Application Publication Apr. 22, 2004 Sheet 2 of 6 US 2004/0078507 A1

21 - 10

Y
11

REQUEST
DECODER

11

DISPATCHER

- 130 140- 150 H
F -

- -
Fl - - - -
Fl

--

23 24 25

TO TO
TogRECs PERPHERAL MEMORY

BUS CONTR CONTR

Fig. 2 Prior Art

Patent Application Publication Apr. 22, 2004 Sheet 3 of 6 US 2004/0078507 A1

21

3O
111 4

REOUEST
DECODER

DISPATCHER

Full . Fu

-
130 140 150 -
-
-

-
- -

.

23 24 25 ar

TO TO
TogRFCs PERPHERAL MEMORY

BUS CONTR CONTR

Fig. 3

Patent Application Publication Apr. 22, 2004 Sheet 4 of 6 US 2004/0078507 A1

400 —
Receive broadcast

transaction

Any full
Command
queues?

Dispatch
broadcast
transaction

Another
request Handle
in OOP other

transactions
normally

Issue delayed
transaction
response

Issue retry
response to

other
transactions

Fig. 4

Receive reattempt
of broadcast
transaction

Patent Application Publication Apr. 22, 2004 Sheet 5 of 6 US 2004/0078507 A1

500

Receive
deferrable
transaction

510

Timer
expired?

Response
received?

550
Issue deferred
response to
requestor

560

Continue
normally Fig. 5

Patent Application Publication Apr. 22, 2004 Sheet 6 of 6 US 2004/0078507 A1

600
Receive locked

request to
potential
PAM space

Write data
buffer space
available?

Command
buffer space
available?

630

Dispatch
transaction

SSue
delayed

transaction
response

650

Continue
normally Fig. 6

US 2004/0078507 A1

MANAGING BUSTRANSACTION DEPENDENCES

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The invention pertains generally to computer sys
tems. In particular, it pertains to avoiding deadlocks and
livelocks in the dispatching and execution of bus transac
tions.

0003 2. Description of the Related Art
0004. In a continuing attempt to increase performance,
many computer Systems Send bus transactions to a central
ized input/output (I/O) controller, which uses multiple
queues to dispatch each transaction to one of Several differ
ent interfaces in the System, and which coordinates execu
tion of various Stages of the transaction.
0005 FIG. 1 shows a portion of a conventional computer
System containing Such a centralized I/O controller 10,
which controls the transfer of commands and data between
processors 11, 12, graphics controller 13, memory controller
14, and peripheral bus controller 15. Each is connected to
I/O controller 10 over a separate interface 21, 23, 24 and 25,
respectively, each of which may be a bus.

0006 FIG. 2 shows a more detailed view of I/O control
ler 10. A request from one of the CPU's 11, 12 to initiate a
transaction is decoded by request decoder 111, which loads
the request into In-Order Queue (IOO) 112. IOO 112 keeps
the various phases of multiple transactions executing in the
correct order, So that a given phase of a Subsequent trans
action will not be executed before the same phase of a
preceding transaction. This is done by placing the request for
the transaction into dispatch queue 113 and response queue
115, and for memory requests, into Snoop queue 117 and
Snoop response queue 119. Although shown and discussed
as four separate queues, these may actually be a Single queue
with four Separate pointers indicating which location is
considered to be the exit of the queue for each function.
0007 When an indicator exits dispatch queue 113, it
triggerS dispatcher 114 to Send the transaction to the correct
interface 23, 24 or 25, through the associated command
queue 130, 140, or 150, which queues up the transaction
before it is presented to the respective interface. The trans
actions are "drained' from the command queues as the
transactions are Serviced by the receiving circuitry. When
the target device responds, that response clears the associ
ated request from the exit of response queue 115. If the
request is to a memory System with cache, a Snoop function
and its response are also processed through queues 117, 119.
Thus a transaction is completed only when the relevant
request has been cleared from all queues in IOO 112.
0008 Memory transactions through queue 150 are typi
cally guaranteed to complete within a specified time, and
occupy processor buS 21 until the transaction is complete.
However, transactions through downstream queues 130 and
140 (“downstream transactions”) have no guaranteed
completion time, and time to complete can vary greatly.
Since a target device may not always be ready to accept a
command, alternative responses are available to prevent this
condition from clogging up the queues. A retry response is
a response from the I/O controller to the requestor that tells
the requester to abort the request and try again later. This

Apr. 22, 2004

response clears that particular request from all queues in
IOO 112. When the request is retried at a later time, it enters
IOO 112 as a new request. A delayed transaction response
includes a retry response, but the I/O controller 10 and the
target interface also commit resources to the eventual retry,
thus blocking those resources from other transactions and
potentially forcing those other transactions to be reat
tempted. Only one transaction may be delayed at a time. A
deferred response does not require a reattempt by the
initiator-the I/O controller notifies the initiator that the
target device will provide the requested data when it is ready,
and the I/O controller will pass the data on to the initiator
using a special transaction called a deferred reply. Although
the transaction is complete when the request is deferred, the
operation continues until the deferred reply, and various
resources may remain committed until the deferred reply. In
all these cases, the request is cleared from the queues in IOO
112 when the retry/delay/defer status is created by the
response from the I/O controller to the requester. A request
can be initially assigned an identifier, So that if it is reat
tempted with the same identifier, all affected devices can
correlate the reattempt with the original request.
0009. The interactive nature of the various queues and
asSociated resources can cause both deadlocks and livelockS
to occur, based on conflicting resource dependencies. AS
applied to the queue Structure, a deadlock occurs when the
output of two or more queues cannot be cleared because the
data to initiate a clearing action in each is blocked within the
other queue. A livelock occurs when a requested transaction
cannot make progress in one queue because it depends on
another queue which, although moving, is always full and
thereby repeatedly forcing Some type of reattempt. In brief,
a livelock creates an ongoing bottleneck in the System,
which may eventually go away in normal operation after an
unacceptably long time, while a deadlock causes a blockage
in the System that will not go away without Some type of
overt corrective action.

0010 Some deadlocks and livelocks are generic to a
System and can be avoided through proper overall System
design. Others are only Seen during Specific, unusual cir
cumstances and must be addressed with a customized Solu
tion on a case-by-case basis.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIG. 1 shows a system of the prior art.
0012 FIG. 2 shows an I/O controller of the prior art.
0013 FIG. 3 shows an I/O controller of the invention.
0014) FIG. 4 shows a flow chart for handling a broadcast
transactOn.

0.015 FIG. 5 shows a flow chart for using a bail-out
timer.

0016 FIG. 6 shows a flow chart for handling a locked
request to PAM space.

DETAILED DESCRIPTION OF THE
INVENTION

0017. One or more embodiments of the invention are
directed to avoiding various types of deadlock/livelock
Situations through the use of delayed or deferred transac
tions. These embodiments are explained in more detail
below.

US 2004/0078507 A1

0.018 End-of-Interrupt Broadcast Command

0019. A broadcast command is a command that is rec
ognized by all (or at least many) of the devices that receive
it. A broadcast command allows a general-purpose com
mand to be sent to all relevant devices without having to
maintain a list of those devices, and without having to Send
individually-addressed messages to each device on the list.
A broadcast command typically contains a destination
address that is recognized by all intended target devices.
Since a broadcast command may be seen and used by many
devices, it is generally not feasible for the Sender to deter
mine if all relevant devices have responded, and in Some
embodiments no response at all is required.

0020. An End-of-Interrupt command is a broadcast com
mand that indicates the CPU has completed processing of an
interrupt. It can be broadcast to all buses where an interrupt
controller (i.e., a device that can generate an interrupt) might
be attached. For proper execution, Space for this command
must be simultaneously available in all downstream com
mand queues 130, 140 when the command is dispatched. If
one or more downstream command queues is full or other
wise unavailable, it may not be feasible for the IOO to hold
this command while waiting for the downstream command
queues to drain, Since the IOO itself may contain the request,
or be blocking the CPU or upstream processor bus request,
needed to initiate draining of the blocked downstream
command queue, thus creating a deadlock. On the other
hand, forcing a retry of the EOI command can create a
livelock because other competing commands, Such as those
not requiring multiple simultaneous queue Space availabil
ity, can repeatedly refill the downstream command queues
before the EOI is reattempted.

0021 FIGS. 3 and 4 illustrate one embodiment of the
invention, which uses the delayed transaction mechanism to
guarantee available resources for the EOI request. AS shown
in FIG.3, each of queues 130, 140 provide an indicator back
to dispatcher 114 when they are full so that dispatcher 114
will not dispatch a transaction into a queue that has no place
to put it. If one or more downstream command queues is full,
dispatcher 114 can hold the EOI transaction while waiting
for the queues to drain, provided no other commands are
pending. However, if any other CPU request is received, I/O
controller 10 can use its internal logic to terminate the
transaction by Sending a delayed transaction response back
to the requestor. A delayed transaction response is essen
tially a retry response, except the necessary resources are
reserved for the eventual retry attempt. In this case, down
Stream command queue Space is reserved. Therefore, other
requests requiring one of the downstream command queues
can themselves be directed to retry as long as the delayed
transaction is pending. This prevents other requests from
repeatedly filling the downstream command queues, and
allows these queues to drain. In this case, other requests
also includes other EOI commands, which can be differen
tiated from the subject EOI command by their transaction
identifiers.

0022. Eventually, the subject EOI command will be reat
tempted while Space is simultaneously available in all the
downstream command queues. The EOI command can then
execute Successfully. Once it does, the delayed operation is
complete and the other devices will no longer be forced to
retry.

Apr. 22, 2004

0023 FIG. 4 shows a procedure that can be followed by
this process. At Step 400, a broadcast transaction is initiated
by loading it into IOO 112. When it reaches the exit of
dispatch queue 113, dispatcher 114 determines at step 410 if
any of the downstream command queues 130, 140 are full.
If none are full, i.e., if there is space in all downstream
command queues hold a transaction, the broadcast transac
tion is dispatched to the downstream command queues at
Step 420, and any Subsequent transactions are also handled
normally at step 430. However, if step 410 determines that
at least one of the downstream command queues is full, the
IOO is checked at step 440 to see if any other requests are
pending. If not, the system loops through steps 410 and 440
while waiting for the command queues to drain So the
broadcast transaction can be dispatched. If another request is
detected in the IOO, either before or during this looping
operation, a delayed transaction response is issued to the
requestor at Step 450. The downstream command queues are
now reserved for the eventual reattempt of the broadcast
transaction, and any other transactions that Subsequently
reach dispatcher 114 and require one of the downstream
command queues 130, 140 can be given a retry response at
step 460 to prevent them from filling up the command
queues. At Step 470, the broadcast transaction is eventually
retried. AS before, if all command queues have Space, the
retried broadcast transaction is dispatched and any Subse
quent transactions are then handled normally. If at least one
of the downstream command queues is still full, the delayed
transaction cycle repeats until all queues have Space to
accept the broadcast command.
0024 Deferrable Transaction Bail-Out Timer
0025. A deadlock can also occur when the IOO depth is
configured to 1 (meaning each of queues 113, 115, 117 and
119 can only contain one entry-in certain Situations this is
desirable), and a non-postable downstream transactions
completion is blocked by a downstream agent's need to
acceSS main memory via processor buS 21. A non-postable
transaction is a transaction that must wait for a response, So
IOO 112 must wait for a response before permitting any
other transactions to proceed. The non-postable transaction
cannot be deferred because the I/O controller's conventional
defer policy requires that another request be present in the
IOO before it defers the current request at the outlet of the
dispatch queue. Since another request cannot arrive when
the IOO is set to 1, this condition for deferral will never be
true.

0026. The invention can use a timer to handle this situ
ation. Timer 315 in FIG. 3 starts counting whenever a
deferrable request is dispatched. Deferrable transactions can
include, for example, non-locked CPU-to-peripheral reads
and CPU-to-peripheral I/O type writes. If the transaction is
completed (i.e., the response is received from the destination
device) before the timer expires, the timer can be disabled,
as it is no longer needed. However, if the timer expires
before a response is received from the destination device, the
transaction can be unconditionally deferred, thus “bailing
out' of the original transaction. The expiration time on the
timer can be programmable, and the timer may be enabled
and disabled via configuration programming. This approach
has the advantage of initiating the deferred State only if it is
potentially needed to resolve a deadlock or livelock. If the
transaction executes in a reasonable time, the timer never
expires and the transaction is never deferred. Since deferral

US 2004/0078507 A1

creates delays in execution, this proceSS avoids unnecessary
delayS. On the other hand, if the transaction does not execute
in a reasonable time, then a deadlock or livelock Situation is
likely, and the deferral acts to break the deadlock/livelock.
While the above description assumes an IOO depth of 1, the
bail-out timer can also be used when the IOO depth is
greater than 1 for the purpose of avoiding other deadlock or
livelock conditions.

0027 FIG. 5 shows a procedure that can be followed by
this process. When a deferrable transaction is dispatched at
step 500, the bail-out timer is started at step 510. The system
will then loop through steps 520 and 530 while waiting for
a response to be received or the timer to expire. If a response
is received at step 520 before the timer expires, the timer is
Stopped at Step 550 and processing continues normally at
step 560. However, it the timer expires at step 530 before the
response is received, a deferred response is issued to the
requestor at Step 540, whereupon the timer is stopped and
processing continues normally for a deferred transaction.

0028 Delayed Transaction of Initial Locked Reads due to
Write Data buffer Unavailability

0029. A “locked” command is one that locks up the
required resources, making them unavailable to other trans
actions, until a given Sequence of commands completes. For
example, a locked request from a CPU to a peripheral
controller might lock up processor buS 21, peripheral down
stream command queue 150, peripheral bus 25, and the
peripheral controller, thus preventing other devices from
using those resources until the locked command has com
pleted and the resources are unlocked. In a conventional
System, an initial locked read is converted to a delayed
transaction upon the arrival of any upstream request, or
when a deferred transaction is outstanding, or when down
Stream command queue Space is unavailable. This prevents
known deadlock conditions due to resource conflicts. How
ever, it does not address a Situation in which a locked
Sequence addresses the region of memory controlled by the
programmable attribute map (PAM), in which a read and a
write may be directed to two different command queues. A
PAM defines a section of address space in which a read and
a write to two interfaces are both executed with a single
atomic instruction. At least one of these interfaces is the
memory interface, but the other can be one of the down
Stream command queues. Under these conditions, if an
initial locked read is addressed to PAM-controlled memory,
it is possible that the corresponding locked write will be
directed towards a downstream interface without available
command or data queue Space. Due to known dependency
rules, this downstream command queue Should remain
unblocked and eventually drain to make room for the write
request. This, however, can take a significant amount of
time, all the while blocking other unrelated memory-bound
transactions on the processor bus, thereby hurting overall
System performance.

0.030. In one embodiment, logic determines if sufficient
downstream write data buffer Space and Sufficient down
Stream command buffer Space is available for the locked
write that is associated with an initial locked memory-bound
read transaction that is potentially within programmable
attribute map Space. In one embodiment, two chunks of
write data buffer space and two slots of command buffer
Space is considered Sufficient. If both conditions are met, the

Apr. 22, 2004

read request can be accepted. Otherwise, the read transaction
can become a delayed transaction. The delayed transaction
can reserve the downstream queue So that it will drain to
make room for the write transaction when it is reattempted.
0031. In one embodiment, potential PAM space rather
than actual PAM space is detected. Since PAM space can be
Segmented into multiple disjointed areas, a Single address
Space that encompasses all the possible PAM Spaces Sim
plifies the detection process, with minimal penalty for occa
Sionally creating a delayed transaction when the target
address was not within actual PAM space.
0032 FIG. 6 shows a procedure that can be followed by
this process. At step 600, a locked request to potential PAM
space is initiated. Step 610 checks to see if sufficient write
data buffer space is available, while step 620 checks to see
if sufficient command buffer space is available. If both are
sufficient, the locked transaction is dispatched at step 630,
and Subsequent processing continues normally. However, if
there is insufficient write data buffer space or insufficient
command buffer Space available for the locked request, a
delayed transaction response is issued at Step 640. At Step
650, processing then continues normally for a delayed
transaction.

0033. The embodiments involving broadcast commands,
a bail-out timer, and locked reads to PAM space can be
implemented individually or in any combination.
0034. The invention can be implemented in circuitry or as
a method. The invention can also include instructions Stored
on a machine-readable medium, which can be read and
executed by at least one machine to perform the functions
described herein. A machine-readable medium includes any
mechanism for Storing or transmitting information in a form
readable by a machine (e.g., a computer, State machine or
programmable logic). For example, a machine-readable
medium can include read only memory (ROM); random
access memory (RAM), magnetic disk Storage media; Opti
cal Storage media; flash memory devices, electrical, optical,
acoustical or other forms of propagated Signals (e.g., carrier
waves, infrared signals, digital signals, etc.), and others.
0035. The foregoing description is intended to be illus
trative and not limiting. Variations will occur to those of skill
in the art. Those variations are intended to be included in the
invention, which is limited only by the Spirit and Scope of the
appended claims.

We claim:
1. A method, comprising:
receiving a broadcast transaction from a requestor in a

computer System;

determining if a command queue is full;
dispatching the broadcast transaction to the command

queue if the command queue is not full; and
issuing a delay transaction response to the requestor if the
command queue is full.

2. The method of claim 1, wherein the broadcast trans
action is an End-of-Interrupt transaction.

3. The method of claim 1, further comprising:
forcing other transactions to retry if the delay transaction

response was issued;

US 2004/0078507 A1

receiving a retry of the broadcast transaction from the
requestor if the delay transaction response was issued;
and

dispatching the retried broadcast command to the com
mand queue if the command queue is not full.

4. An apparatus, comprising:

a command queue coupled to a detector to detect if the
command queue is full;

a command dispatcher coupled to the command queue
and the detector, the command dispatcher including:

logic to dispatch a broadcast command from a
requestor to the command queue if the command
queue is not full; and

logic to respond to the requestor with a delay transac
tion response if the command queue is full.

5. The apparatus of claim 4, wherein the broadcast com
mand is an End-of-Interrupt transaction.

6. The apparatus of claim 4, further including logic to
force a retry of Subsequent commands until a retried broad
cast command has been dispatched to the command queue.

7. A machine-readable medium having Stored thereon
instructions, which when executed by at least one machine
cause Said at least one machine to perform:

receiving a broadcast transaction from a requestor in a
computer System;

determining if a command queue is full;

dispatching the broadcast transaction to the command
queue if the command queue is not full; and

issuing a delay transaction response to the requester if the
command queue is full.

8. The medium of claim 7, wherein the broadcast trans
action is an End-of-Interrupt transaction.

9. The medium of claim 7, further comprising:

forcing other transactions to retry if the delay transaction
response was issued;

receiving a retry of the broadcast transaction from the
requestor if the delay transaction response was issued;
and

dispatching the retried broadcast command to the com
mand queue if the command queue is not full.

10. A method, comprising:

dispatching a buS transaction from a requestor to a device;

Starting a timer;

determining if the timer expires before the device
responds to the dispatched bus transaction; and

issuing a deferred transaction response to the requestor if
the timer expires.

11. The method of claim 10, wherein starting occurs only
if an in-order-queue has a depth of 1.

12. The method of claim 10, wherein issuing includes
issuing an unconditionally deferred transaction.

Apr. 22, 2004

13. An apparatus, comprising:
a command dispatcher coupled to a command queue;
a detector coupled to the command dispatcher to detect if

a command dispatched to the command queue by the
command dispatcher has been responded to;

a timer coupled to the detector; and
logic coupled to the timer to issue a deferred response to

the requestor if the timer expires before the command
has been responded to.

14. The apparatus of claim 13, wherein the logic includes
logic to issue the deferred response if an in-order-queue has
a depth of 1.

15. The apparatus of claim 13, wherein the timer is a
programmable timer.

16. A machine-readable medium having Stored thereon
instructions, which when executed by at least one machine
cause Said at least one machine to perform:

receiving a buS transaction from a requestor to a device;
Starting a timer;
determining if the timer expires before the device

responds to the dispatched bus transaction; and
issuing a deferred transaction response to the requestor if

the timer expires.
17. The medium of claim 16, wherein starting occurs only

if an in-order-queue has a depth of 1.
18. The medium of claim 16, wherein issuing includes

issuing an unconditionally deferred transaction.
19. A method, comprising,
determining if write data buffer Space and command

buffer Space are available for an initial locked memory
read transaction that is potentially within program
mable attribute map Space;

dispatching the read transaction if the write data buffer
Space and command buffer Space are available; and

issuing a delayed transaction response if the write data
buffer Space and command buffer Space are not avail
able.

20. The method of claim 19, wherein determining
includes determining if the write data buffer Space and
command buffer Space are available in a downstream queue.

21. The method of claim 20, wherein dispatching includes
dispatching to the downstream queue.

22. An apparatus, comprising:
a command dispatcher coupled to a destination queue,
a detector coupled to the destination queue to detect if the

write data buffer Space and command buffer Space are
available for use by an initial locked memory read
transaction that is potentially within programmable
attribute map Space;

logic coupled to the command dispatcher to dispatch the
read transaction if the write data buffer space and
command buffer Space are available; and

logic coupled to the command dispatcher to convert the
transaction to a delayed transaction if the write data
buffer Space and command buffer Space are not avail
able.

US 2004/0078507 A1

23. The apparatus of claim 22, wherein the destination
queue is a downstream queue.

24. The apparatus of claim 22, wherein the command
dispatcher includes an in-order queue.

25. A machine-readable medium having Stored thereon
instructions, which when executed by at least one machine
cause Said at least one machine to perform:

determining if write data buffer Space and command
buffer Space are available for an initial locked memory
read transaction that is potentially within program
mable attribute map Space;

dispatching the read transaction if the write data buffer
Space and command buffer Space are available; and

issuing a delayed transaction response if the write data
buffer Space and command buffer Space are not avail
able.

26. The medium of claim 25, wherein determining
includes determining if the write data buffer Space and
command buffer Space are available in a downstream queue.

27. The medium of claim 26, wherein dispatching
includes dispatching to the downstream queue.

28. A System, comprising:
a command dispatcher coupled to a command queue;
broadcast command control logic having:

a first detector coupled to the command queue and the
command dispatcher to detect if the command queue
is full;

first logic coupled to the first detector to dispatch a
broadcast command from the command dispatcher to
the command queue if the command queue is not
full; and

Apr. 22, 2004

Second logic coupled to the first detector to respond to
the requestor with a first delayed transaction
response if the command queue is full;

dispatch timer logic having:
a Second detector coupled to the command dispatcher

to detect if a first command dispatched to the com
mand queue by the command dispatcher has been
responded to;

a timer coupled to the Second detector; and
third logic coupled to the timer to issue a deferred

response to the requestor if the timer expires before
the first command has been responded to; and

lock read control logic having:
a third detector coupled to the command queue to

detect if write data buffer space and command buffer
Space are available for use by an initial locked
memory read transaction that is potentially within
programmable attribute map space;

fourth logic coupled to the command dispatcher to
dispatch the read transaction if the write data buffer
Space and command buffer Space are available; and

fifth logic coupled to the command dispatcher to issue
a Second delayed transaction response to the
requestor if the write data buffer Space and command
buffer Space are not available.

29. The system of claim 28, wherein the broadcast com
mand is an End-of-Interrupt transaction.

30. The system of claim 28, wherein the timer is a
programmable timer.

