发明名称
从污泥中生产肥料的方法

摘要
一种从污泥中生产肥料的方法，在该方法中为实现卫生化用过热蒸汽加热污泥以破坏病原微生物。在该方法中，用具有200-600℃温度的过热蒸汽加热污泥至60-100℃的温度，以增加污泥中可溶性碳量，并通过使用在加热后仍保留在污泥中的非病原微生物重启污泥生物降解。
1. 一种从污泥中生产肥料的方法，在该方法中为实现卫生化用过热蒸汽加热污泥以破坏病原微生物，其特征在于

用具有200-600℃温度的过热蒸汽加热污泥至60-100℃的温度，所述过热蒸汽是水蒸汽和燃料的燃烧气体的气液混合物，以增加污泥中可溶性碳量，并通过使用在加热后仍保留在污泥中的非病原微生物重用污泥生物降解。

2. 根据权利要求1的方法，其特征在于加温污泥至60-90℃的温度。

3. 根据权利要求1或2的方法，其特征在于用过热蒸汽处理污泥20-60分钟。

4. 根据权利要求3的方法，其特征在于用过热蒸汽处理污泥20-30分钟。

5. 根据前述权利要求1-4任一项的方法，其特征在于在用过热蒸汽处理过程中监测并控制污泥水分，来防止污泥基本上干燥。

6. 根据权利要求5的方法，其特征在于在用过热蒸汽处理过程中监测并控制污泥水分来防止污泥基本上干燥，其方式为在处理中物质水分改变至多+/-2%。

7. 根据权利要求5或6的方法，其特征在于在产生过热蒸汽中改变要混合入燃烧气体中的水量的方式，在用过热蒸汽处理过程中控制污泥水分。

8. 根据前述权利要求1-7任一项的方法，其特征在于通过在用过热蒸汽处理过程中保持水分含量和/或温度，使污泥产生的含氮氢或其他氮化合物的蒸发降至最低。

9. 根据前述权利要求1-8任一项的方法，其特征在于用具有300-600℃温度的过热蒸汽加热污泥。

10. 根据权利要求9的方法，其特征在于用具有300-400℃温度的过热蒸汽加热污泥。

11. 根据前述权利要求1-10任一项的方法，其特征在于要被处理的污泥是下列污泥之一：城市污泥、农用污泥、污水污泥，即净水厂污泥。

12. 根据前述权利要求1-11任一项的方法，其特征在于用蒸汽处理装置进行用过热蒸汽处理污泥，该装置包含被布置以使用过热蒸汽且引入要被处理的物质的至少一个蒸汽处理装置。

13. 根据前述权利要求1-12任一项的方法，其特征在于用包含被布置以使用过热蒸汽的第一和第二蒸汽处理装置的蒸汽处理装置，并通过将在第一蒸汽处理装置中经处理的物质转移到第二蒸汽处理装置中来执行该方法。

14. 根据前述权利要求1-13任一项的方法，其特征在于在不加压的蒸汽处理装置中在标准大气压力下进行使用过热蒸汽的处理。

15. 根据前述权利要求1-14任一项的方法，其特征在于以连续式工艺而非封闭间歇式工艺进行使用过热蒸汽的处理。

16. 根据权利要求12的方法，其特征在于以连续式工艺在用过热蒸汽处理过程中将污泥引入处理，并将污泥从使用过热蒸汽的处理中移出。

17. 根据前述权利要求1-16任一项的方法，其特征在于在用过热蒸汽处理后在污泥生物降解过程中监测污泥生物降解的成熟度。

18. 根据权利要求17的方法，其特征在于通过测量污泥的气体排放监测污泥生物降解的成熟度。

19. 根据权利要求17的方法，其特征在于通过测量污泥的二氧化碳排放监测污泥生物降解的成熟度。
20. 根据权利要求 12 或 16 的方法，其特征在于污泥生物降解主要发生在除执行使用过热蒸汽加热污泥的蒸汽处理装置以外的别处。

21. 根据权利要求 20 的方法，其特征在于污泥生物降解发生在已从执行使用过热蒸汽处理的蒸汽处理装置中运输出的污泥所形成的堆或其他堆积物中。

22. 根据前述权利要求 1-21 任一项的方法，其特征在于生物降解的持续时间为 1-3 个月。
从污泥中生产肥料的方法

本申请是如下申请的分案，申请日：2008年4月18日，申请号：200880012497.1，发明名称：从污泥中生产肥料的方法。

技术领域
[0001] 本发明涉及一种从污泥中生产肥料的方法，在该方法中为实现卫生化用过热蒸汽加热污泥以破坏病原生物。

背景技术
[0002] 现有不同的供选方案用于处理污泥。例如，已知是厌氧处理的消化，以及是需氧处理的堆肥处理，即利用氧气的处理。此外，也已知热处理，换言之通过加热进行的处理。
[0003] 关于通过加热进行的处理，已知例如直接用热空气干燥污泥，但该技术缺点在于需要大量的能量并且由于干燥引起在物质中形成粉尘。关于利用加热的方法，也已知使用热水的污泥处理，但该方法的一个问题在于在该方法中所用的水必须净化，这就产生了费用。此外，关于通过加热进行的处理，已知使用普通水蒸汽的方法，但根据申请人的观察，在净化效率和热经济性方面它们并不完全令人满意。
[0005] 与本发明的领域有关的是，由出版物EP101784中已知一种使用过热蒸汽用于从树皮和污泥中制造肥料的方法。在该出版物所披露的该方法中，通过使用具有140-600℃温度的过热蒸汽将污泥加热至120-140℃的温度。然而，该方法没有给出关于最终产品的肥料特性的最佳结果，并且由于特别是要被处理的物质被加热至高温，因此也没有给出该方法热经济性的最佳结果。

发明内容
[0006] 本发明的一个目的是以使涉及现有技术的问题得以解决的方式执行方法。使用根据本发明的方法实现了这一目的，该方法特征在于用具有200-600℃温度的过热蒸汽加热污泥至60-100℃的温度，以激活污泥中可溶性碳量的增加并通过使用在加温后仍保留在污泥中的非病原微生物重启污泥生物降解。
[0007] 本发明的优选的实施方案描述于从属权利要求中。
[0008] 本发明是基于在仍使用具有足够高温的过热蒸汽时不将要被处理的污泥加热至太高温度的想法的。
[0009] 根据本发明的方法提供了几个优点。本发明以依然足够的成本效率的方式得以获得涉及热经济性的高质量的肥料。本发明的优选的实施方案和其他更详细的实施方案强化
了本发明的优点。具体而言，控制水分条件强化了本发明的优点。

附图说明
[0011] 参见附图，结合优选的实施方案，本发明现有将得到更详细的描述，其中
图 1 显示了在该方法中使用的用于使用过热蒸汽处理的装置的一个实施方案；
图 2 从相反方向显示了图 1 中图解说明的装置；
图 3 显示了在该方法中使用的用于使用过热蒸汽处理的装置的一个实施方案的示意图；
图 4 显示了可溶性有机碳的量；
图 5 显示了可溶性氮的量。

具体实施方式
[0012] 参见附图，该方法可使用例如图 1-3 中所示类型的装置。在一个优选的实施方案中，根据图 1-2 所示的装置是一个为框架 10 所支撑的可移动装置，并包含具有轮胎 13-16 的轮轴 11 和 12。以及托架底座 17 和适合于牵引车的联接点 19。
[0013] 关于图 3，应指出矩形仅作为示意旨在图解说明过热蒸汽，以及圆圈仅作为示意旨在图解说明要被处理的物质，如所提及的，该物质为污泥，具体是一种或多种下列物质：城市污泥、农用污泥、污水污泥，即净水厂污泥。污泥，例如从市政或其他地区污水净化厂得到的污泥是已生物降解的污泥，即一旦被堆肥就可在本发明生产肥料的方法中用作起始物质。
[0014] 为接受要被处理的物质，即污泥，该装置包含受料斗 30，污泥可例如用戽斗装载机或其他输送工具例如输送机或传送通道输入。在污泥接受装置 30，例如受料斗 30 的后面，换言之例如在料斗 30 下面，该装置包含被布置以将物质输送入第一蒸汽处理装置 40 中的传送输送带 32。
[0015] 为产生过热蒸汽，该装置包含过热蒸汽发生装置 50，其例如通过分配线路 51 产生用于第一蒸汽处理装置 40 的过热蒸汽。相应地，该装置可例如包含第二蒸汽处理装置 60，过热蒸汽发生装置 50 被布置以通过分配线路 61 提供用于其的过热蒸汽。通过一个或多个输送装置 71，72 或类似的输送装置将在第一蒸汽处理装置 40 中经处理的污泥转移到第二蒸汽处理装置 60 中。在附图的实例中，输送装置 71 是例如戽斗式带式输送机，以及输送装置 72 是螺旋式输送装置。
[0016] 为完成独立的受料斗 30 和另一独立的接收装置 30 两者都不是必需的，因为物质可被例如直接送达或通过输送机送入蒸汽处理装置 40 或滚筒式样旋转的蒸汽处理装置 60 中。
[0017] 关于过热蒸汽发生装置 50，应指出其中其是一种由水蒸气和燃料的燃烧气体产生气体混合物的装置。燃烧产生燃烧气体的燃料可以是例如轻燃料油。

[0018] 至于外形尺寸，应指出图 1-2 中所示的装置的长度为例如约 20 米，与此同时，第二蒸汽处理装置 60 例如滚筒 60 的直径为例如约 1 米。用于使用过热蒸汽处理的装置的负荷为几千千克 / 小时。

[0019] 本发明涉及一种从污泥中产生热能的方法，在该方法中为实现卫生化用过热蒸汽加热污泥以破坏病原生物。在该方法中，用具有 200–600°C 温度的过热蒸汽加热污泥至 60–100°C 的温度，以激活污泥中可溶性碳量的增加并可通过使用在加热后仍保留在污泥中的非病原微生物重启污泥生物降解。

[0020] 在该污泥处理中，用于加热的过热蒸汽的温度为 200–600°C。根据申请人的观察，从总体上考虑该方法可行性，最终产品（肥料）的特性以及该方法的热经济性，300–600°C 以及特别是 300–400°C 的温度范围是尤其适合的。

[0021] 在附图的实例中，在第一蒸汽处理装置 40 和第二蒸汽处理装置 60 中均使用过热蒸汽。

[0022] 在附图的实例中，存在两个使用过热蒸汽的蒸汽处理装置，即装置 40 和 60，但本发明并不局限于给定数量的蒸汽处理装置。如果根据附图所示的实施方案，使用两个蒸汽处理装置，则这两个装置优选是不同类型的，例如以这样一种方式，即它们中的一个是可旋转的滚筒的形式存在。在附图的实例中，后者，即第二蒸汽处理装置 60 是象这样的可旋转的滚筒，即例如通过电机 65 自滚筒外缘的接触面 66 旋转。滚筒 60（即第二蒸汽处理装置 60）的旋转电机 65 的力通过例如齿轮系统 67 和轴 68 被传输到滚筒。

[0023] 在鉴于要被净化即卫生化的污泥物质的密度，蒸汽不会太容易地即太快地穿过该物质，即放热的意思上，其中通过重力或装置的一部分压缩物质，以至其变得更密实的附图标记 40 所指出的料斗型或类似的蒸汽处理装置是有益的。

[0024] 在使要被净化即卫生化的污泥物质得以与过热蒸汽有效地相互作用的意义上，通过可旋转的滚筒 60 实现的蒸汽处理装置 60 是有益的。换言之，在可被称为蒸汽帘或蒸汽隧道滚筒中的，物质相互碰撞。

[0025] 如果该装置仅具有一个蒸汽处理装置，换言之，如果污泥仅穿过一个蒸汽处理装置，优选的实施方案明确包含滚筒 60，如所提及的，其是旋转的。

[0026] 在一个优选的实施方案中，加热污泥至 60–90°C 的温度。优选地，该方法是这样的一种方法，即用过热蒸汽处理污泥 20–60 分钟，最优选 20–30 分钟。

[0027] 在用过热蒸汽处理过程中，监测并控制污泥水分以防止污泥基本上干燥。该方法优选以这样一种方式进行，即在用过热蒸汽处理过程中，以在处理中水分改变至多 +/−2% 来防止污泥基本上干燥的这样一种方式监测并控制污泥水分。

[0028] 在用过热蒸汽进行蒸汽处理中，控制污泥水分的一个目的是期望防止污泥干燥至这样一个程度，即其在蒸汽处理后的后一阶段，例如当在生物降解阶段时露天堆积，或在更后面的阶段，例如当运输或包装肥料即该方法的最终产品时，会成为粉尘。

[0029] 在用过热蒸汽进行蒸汽处理中，控制条件的另一原因是期望改善最终产品即肥料的养分特性。因此，在一个优选的实施方案中，该方法是这样一种方法，即在用过热蒸汽处理的过程中通过保持水分含量和 / 或温度，使污泥所产生含氮氨或其他氮化合物的蒸发降
至最低。将水分调节至足够高的水平，并将温度调节至足够低的水平。由于氨是一种施肥土壤能够利用的重要养分，因此该特征改善了最终产品中肥料的养分特性。

[0030] 在一个优选的实施方案中，该方法是这样一种方法，即在用过热蒸汽处理的过程中，以在产生过热蒸汽后改变要混合入热燃烧气体中的水量的这样一种方式控制污泥水分。

[0031] 关于滚筒式蒸汽处理装置 60，应当指出将蒸汽流，以在蒸汽进口侧正蒸汽通过分配线路 61 或类似的结构送入滚筒 60 中，以及蒸汽排出滚筒进入例如沉降室 80 或类似的合适的结构的这样一种方式，布置在基本上穿过整个滚筒的滚筒纵向。

[0032] 将在滚筒 60 中经处理的污泥移出滚筒 60，并可将该经处理的物质置于地面上，例如在滚筒附近起堆。或者，可将经处理的污泥放在别处，在这种情况下将从滚筒 60 的输出侧获得的经处理的物质送至输送机 90，再例如通过卡车或其他运输工具运至更加远离蒸汽处理装置的地方。

[0033] 因此，在一个优选的实施方案中，该方法是这样一种方法，即重新生物降解至少主要发生在除执行使用过热蒸汽加热污泥的蒸汽处理装置以外的别处。在一个优选的实施方案中，污泥生物降解发生在已从执行使用过热蒸汽处理的蒸汽处理装置中运输出的污泥所形成的堆或其他堆积物，即在这样的堆或其他堆积物中进行污泥生物降解。

[0034] 为了了解何时肥料能备好直接使用或用于包装，例如该方法优选是这样一种方法，即通过测量污泥的气体排放监测污泥生物降解的成熟度。在一个优选的实施方案中，测量二氧化碳排放，以及优选地，在二氧化碳排放中二氧化碳产生的最大速率小于 2mg/g/天。在一次实验中，在蒸汽处理和生物降解后，在最终状态中测量到 1.3mg/g/天的二氧化碳产生率。

[0035] 在一个优选的实施方案中，生物降解的持续时间为 1-3 个月。根据申请人的观察，考虑到肥料的成熟度和有效性，其产生了良好的平衡。

[0036] 回到蒸汽处理滚筒 60 的末端，即出口结构，应当指出例如在沉降室 80 中，该装置包含过滤器 85，例如格栅型滤网，用于阻止气流中的颗粒通过。根据控制器 100 的位置，带有废热的进射蒸汽流可选择如这样地通过放出槽 110 离开装置或其可以在燃烧具有有害气味的气体的后燃室 120 中燃烧的这样一种方式通过放出槽 130 排放。通过鼓风机 111 和 131 可有助于蒸汽流的排放。

[0037] 在一个优选的实施方案中，在不加压的蒸汽处理装置中在标准大气压力下进行加热卫生化。以开放的、或连续式工艺而非封闭间歇式工艺进行的卫生化的方法也得到了改善。因此，该方法是这样一种方法，即在连续式工艺中，污泥在处理过程中得到卫生化，以及经卫生化的生物体从该卫生化处理过程中排出。

[0038] 因此，从第二蒸汽处理装置 60 即滚筒 60 中，蒸汽被排放到沉降室 80 中。相应地，参见图 1-2，例如通过传输通道 88，也从第一蒸汽处理装置 40 中，蒸汽被排放到沉降室 80 中。

[0039] 应当指出，并不存在主动将污泥，特别是城市污泥、农用污泥或污水污泥，即净水厂污泥加热至与过热蒸汽所具有的温度一样高的温度，因为主要目的在于杀死有害物质中病原生物，同时有氧保存有利于生物降解和肥料的生物体。在用过热蒸汽进行卫生化处理中，将要被净化的物质加热至 60-100℃的温度，该温度足够高至杀死病原生物，但又足够低至防止要被净化的物质的灭菌。温度太高，处理时间太长，会导致该物质被灭菌，即使太高的温
度仅仅是一瞬间或持续稍短的一段时间，则未必会导致灭菌。

[0040] 旨在卫生化中杀死的生物体包括肠细菌、沙门氏菌、大肠型细菌、植物病原体、杂草等。在该方法中要保留在经处理的即卫生化的物质中的生物体是该物质天然的、无害的，即非病原的微生物。

[0041] 该该方法本质上是一种通过利用过热蒸汽产生的卫生化加热以激活细胞的生物降解，从而利用过热蒸汽从已经历了一次生物降解的污泥中产生肥料的微生物方法。

[0042] 例如，根据本发明方法的实验已产生了下列观察结果。

[0043] 在实验安排 1 中，取决于条件（温度、转速、滚筒在纵向上的倾斜角度），检测到用过热蒸汽进行热处理的负荷为50–180tn/h（吨，即 1000 千克 / 小时），能量消耗为 193MJ/tn（兆焦耳 / 吨，即 1000 千克）。通过比较，老方法即用热空气干燥污泥的负荷为50–100tn/h，虽然该负荷的上限值（100tn/h）刚刚超过使用本发明方法所获得的上限值（180tn/h）的一半，但能量消耗高几乎 10 倍，以及更进一步地，显著的差别是在常规于空气干燥对于肥料有用的养分的损失相当大。

[0044] 在实验安排 2 中，用过热蒸汽处理的对象是已堆肥一年的污泥。在处理前肠细菌（其是病原体的一部分）的数量为120000cfu/g（菌落形成单位 / g），但在处理后该数量则低于 10cfu/g，换言之低于测量精度，即低于检出限，而立法最大值允许为 1000cfu/g。同样，梭菌细菌的数量可降低到小于之前值一半的值，换言之处理前的数量为 56000cfu/g，而处理后的数量则为 2700cfu/g。在用过热蒸汽处理后，让泥暗静置例如 24 小时，梭菌数量被降低至最初比例的 10%。由于梭菌是一种形成孢子的细菌，因此其能忍受更强的加热处理。

[0045] 因此，所述处理不会对污泥灭菌，而对其卫生化。要被破坏的具体对象是肠来源的可能的病原体，即沙门氏菌和大肠杆菌，它们属于肠细菌群。

[0046] 在实验安排 3 中，用过热蒸汽进行处理的对象是未经处理的，即从污水净化厂获得的未经处理的厌氧污泥。在处理前肠细菌（其是病原体的一部分）的数量为 12000cfu/g（菌落形成单位 / g），而在用过热蒸汽处理后，该数量低于 10cfu/g，换言之低于测量精度，即低于检出限，而立法最大值允许为 1000cfu/g。

[0047] 在实验安排 3 中，同样大肠杆菌含量明显减少。在处理前大肠杆菌含量为 170000cfu/g（菌落形成单位 / g），而在处理后该数量低于 10cfu/g，换言之低于测量精度，即低于检出限，而立法最大值允许为 1000cfu/g。在实验安排 2 中，同样在实验安排 3 中，梭菌含量被降低至小于肠细菌含量。在处理前，梭菌数量为 7100cfu/g，而在处理后为 1500cfu/g，换言之该数量降低至最初比例的 20%，即约 1/5。然而，即使在用过热蒸汽处理后，让污泥静置在 24 小时，梭菌含量亦降低至最初比例的 10%，即 1/10。

[0048] 关于实验安排 2（使用业已堆肥的污泥），测定与污泥的物理和化学特性相关的下列变量。

[0049] 表 1：
### 表 2

<table>
<thead>
<tr>
<th>变量</th>
<th>处理前</th>
<th>处理后</th>
</tr>
</thead>
<tbody>
<tr>
<td>干物质含量% (TS)</td>
<td>57</td>
<td>62</td>
</tr>
<tr>
<td>电导率 (ms/m)</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>PH</td>
<td>7.1</td>
<td>7.4</td>
</tr>
<tr>
<td>可溶性 NH₄-N，即铵态氨的量</td>
<td>493</td>
<td>417</td>
</tr>
</tbody>
</table>

[0051] 关于实验安排 3（未经处理的原需氧污泥），测定与污泥的物理和化学特性相关的下列变量。

[0052] 表 2：

<table>
<thead>
<tr>
<th>变量</th>
<th>处理前</th>
<th>处理后</th>
</tr>
</thead>
<tbody>
<tr>
<td>干物质含量% (TS)</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>电导率 (ms/m)</td>
<td>220</td>
<td>240</td>
</tr>
<tr>
<td>PH</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>可溶性 NH₄-N，即铵态氨的量</td>
<td>3816</td>
<td>3990</td>
</tr>
</tbody>
</table>

[0053] 图 4 显示了可溶性有机碳的量。在图 4 的左半部中，起始物质是污泥堆肥，而在图 4 的右侧中，起始物质是混合的马粪，即马粪与污泥堆肥的混合物。图 4 底部的指示表示如下：

起始：取自未经处理的物质的样品
第一次处理：在第一次蒸汽处理后的取样
第二次处理：在第二次蒸汽处理后的取样
第三次处理：在第三次蒸汽处理后的取样
1 小时：在处理一次后 1 小时进行已处理物质的取样
24 小时：在处理一次后 24 小时进行已处理物质的取样

[0054] 在图 4 和图 5 中，污泥被加热至约 80°C。关于图 4 的读数，在每次处理中都出现了碳增溶。换言之，蒸汽处理并在破坏生物学结构例如污泥絮凝物以及也可能的物质中的细胞后让物质释放。例如，注意到在污泥堆肥的情况下，在第一次蒸汽处理后，可溶性有机碳的量从 714mg/kg 增加到 2009mg/kg，即几乎 3 倍。碳增溶有助于重启生物降解，即堆肥；作为重启生物降解的结果，由于生物降解发热，因此在蒸汽处理后物质的冷却较缓慢。在污泥堆肥的情况下，测定仅蒸汽处理一次的物质并让其静置 24 小时，可溶性碳的量从 714mg/kg 的最初值增加到 1108mg/kg 的值，即最初的至少 1.5 倍。

[0055] 也检测到碳氢化合物增加，如图 4 所示其是碳增溶的结果。例如，注意到在污泥堆肥的情况下，在第一次蒸汽处理后，碳氢化合物的量从 30mg/kg 的值增加到 98mg/kg 的
值，即增加至3倍多。随着第二次蒸汽处理，该值高达398mg/kg，即达到最初情况的约13倍。
在污泥堆肥的情况下，测定仅蒸汽处理一次的物质并让其静置24小时，碳氢化合物的量
从30mg/kg的最初值增加到260mg/kg的值，即为最初值的几乎9倍。
[0056] 考虑到主要营养成分，以下研究可溶性氨。参见图5，在每次处理中均达到了氨增加。
这是与可溶性氨增加相类似的现象。当生物结构被破坏，就释放了细胞内含氨蛋白质。
图5底部的条的条目的如上图4上下文中所指出的。例如，在污泥堆肥的情况下，在第
一次蒸汽处理后，可溶性氨的量从578mg/kg的值增加到719mg/kg的值，换言之增加了近25%。
随着第二次蒸汽处理，该值高达837mg/kg，换言之增加了超过50%。在污泥堆肥的情
况下，测定仅蒸汽处理一次的物质并让其静置24小时，可溶性氨的量从578mg/kg的最初值增
加到785mg/kg的值，换言之增加了超过35%。
[0057] 关于另一可溶性主要营养，即铵态氨，其量上观察到的增加了。例如，在马粪堆肥
的情况下，在第一次蒸汽处理后，铵态氨的量从147mg/kg的值增加到227mg/kg的值，换言之
增加了至少50%。
[0058] 还有另一种主要营养即磷的量也增加了。磷的增加与生物结构被破坏时细胞内
含磷核酸释放的事实相关。例如，在污泥堆肥的情况下，在第一次蒸汽处理后，磷的量从
103mg/kg的值增加到191mg/kg的值，换言之增加了超过85%。随着第二次蒸汽处理，该值
高达250mg/kg，换言之与最初情况相比增加了超过142%。在污泥堆肥的情况下，测定仅蒸
汽处理一次的物质并让其静置24小时，可溶性磷的量从103mg/kg的最初值增加到186mg/kg
的值，换言之增加了超过80%。
[0059] 以下涉及可溶性微量元素。就微量元素例如铜、锰、镁和钙也检测到了微量养分增
溶。例如，在污泥堆肥的情况下，在第一次蒸汽处理后，可溶性钙的量从105mg/kg的值增
加到238mg/kg的值，换言之增加了超过125%。在污泥堆肥的情况下，测定仅蒸汽处理一次
的物质并让其静置24小时，可溶性钙的量从105mg/kg的最初值增加到了364mg/kg的值，换
言之增加为约3.5倍。
[0060] 参见上述所有内容，所获得的产品非常适合作为肥料。
[0061] 关于实验安排2-3，通过在干燥前后称重测定固体物质含量。通过用水提取样品，
用电导测量提取物的电导率，从而测定电导率，即可溶性离子含量总和。相应地，通过用水
提取样品，并用pH计测量提取物的pH，从而测定pH。参见图4-5，根据NMKL144:00标准测
定肠细菌含量。根据NMKL125:96标准测定大肠杆菌（Escherichia coli）含量（E.Coli）。
根据NMKL56:95标准测定梭菌含量。
[0062] 通过本发明，肥料符合使用适当类型的污泥处理所提供的污泥条例（Fertilizer
Act）（2007）的要求。
[0063] 因此，本发明涉及用过热蒸汽进行的所谓的非生物可利用碳的增溶。在蒸汽处理
过程中，非生物可利用碳，例如脂肪酸，由正常的无法提取的形式改变为可溶解的形式，可
为微生物所再次利用。
[0064] 通过该方法，脂肪酸、各种甾醇类和其他细胞组分得以溶解。在污泥中这些组分在
正常情况下是非生物可利用的。增溶的程度甚至超过了5g/kg（每公斤的干物质）。该现象
表现为厌氧污泥中可提取的有机化合物（脂肪酸、各种甾醇类和其他细胞组分）的增加，例
如，见表3。
表 3：

<table>
<thead>
<tr>
<th>可提取的有机混合物的含量 (mg/kg)</th>
<th>增加 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>未经处理的厌氧原污泥 :30</td>
<td>0</td>
</tr>
<tr>
<td>在处理后 1 分钟经处理的污泥 :98</td>
<td>326</td>
</tr>
<tr>
<td>在处理后 60 分钟经处理的污泥 :515</td>
<td>1716</td>
</tr>
</tbody>
</table>

表 4：

<table>
<thead>
<tr>
<th>可提取的有机混合物的含量 (mg/kg)</th>
<th>增加 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>未经处理的马粪 :262</td>
<td>0</td>
</tr>
<tr>
<td>在处理后 1 分钟经处理的马粪 :397</td>
<td>151</td>
</tr>
<tr>
<td>在处理后 60 分钟经处理的马粪 :721</td>
<td>275</td>
</tr>
</tbody>
</table>

对于 DOC（溶解有机碳），该完全相同的现象可见表 5 和 6。

表 5：

<table>
<thead>
<tr>
<th>DOC (mg/kg)</th>
<th>增加 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>未经处理的厌氧原污泥 :45</td>
<td>0</td>
</tr>
<tr>
<td>在处理后 1 分钟经处理的污泥 :124</td>
<td>275</td>
</tr>
</tbody>
</table>

表 6：

<table>
<thead>
<tr>
<th>DOC (mg/kg)</th>
<th>增加 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>未经处理的马粪 :12</td>
<td>0</td>
</tr>
<tr>
<td>在处理后 1 分钟经处理的马粪 :94</td>
<td>783</td>
</tr>
</tbody>
</table>

因此，本发明涉及一种从已生物降解一次的污泥中生产肥料的方法。该方法包括用过热蒸汽加热生物降解的污泥，然后增加可溶性碳的量，之后启动生物降解。尽管根据所述附图的实例已描述了本发明，很显然本发明并不受限于此，可在权利要求的范围内以多种方式进行改变。
图 3
图 4
图 5