
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0223224A1

Carpentier et al.

US 20050223224A1

(43) Pub. Date: Oct. 6, 2005

(54)

(75)

(73)

(21)

(22)

(63)

(51)
(52)

SYSTEMAND METHOD FOR SECURE
STORAGE, TRANSFER AND RETRIEVAL OF
CONTENT ADDRESSABLE INFORMATION

Inventors: Paul R. Carpentier, Boechout (BE);
Jan F. Van Riel, Geel (BE); Tom
Teugels, Schoten (BE)

Correspondence Address:
WOLF GREENFIELD & SACKS, PC
FEDERAL RESERVE PLAZA
600 ATLANTIC AVENUE
BOSTON, MA 02210-2211 (US)

Assignee: EMC Corporation, Hopkinton, MA

Appl. No.: 11/139,378

Filed: May 27, 2005

Related U.S. Application Data

Continuation of application No. 09/391,360, filed on
Sep. 7, 1999.

Publication Classification

Int. Cl. .. H04L 9/00
U.S. Cl. .. 713/165

(57) ABSTRACT

An algorithm (such as the MD5 hash function) is applied to
a file to produce an intrinsic unique identifier (IUI) for the
file (or message digest). The file is encrypted using its IUI
as the key for the encryption algorithm. An algorithm is then
applied to the encrypted file to produce an IUI for the
encrypted file. The encrypted file is safely Stored or trans
ferred within a network and is uniquely identifiable by its
IUI. The encrypted file is decrypted using the IUI of the
plaintext file as the key. The IUI serves as both a key to
decrypt the file and also as Verification that the integrity of
the plaintext file has not been compromised. IUIs for any
number of Such encrypted files may be assembled into a
descriptor file that includes meta data for each file, the IUI
of the plaintext file and the IUI of the encrypted file. An
algorithm is applied to the descriptor file to produce an IUI
for the descriptor file. The plaintext descriptor file is then
encrypted using the descriptor file IUI as a key for the
encryption algorithm. An algorithm is applied to the
encrypted descriptor file to produce an IUI for the encrypted
descriptor file. The IUI of the encrypted descriptor file is a
location-independent identifier to locate the encrypted
descriptor file. A flattened descriptor file includes the IUIs of
encrypted data files and the IUI of the encrypted descriptor
file. An algorithm is applied to the flattened descriptor file to
produce its own IUI.

Patent Application Publication Oct. 6, 2005 Sheet 1 of 17 US 2005/0223224 A1

File A File C

MD5 A 20 MD5 B 22 MD5 C N-24

Descriptor File 30
Meta Data 32

3 34

File Meta Data 20

File Meta Data 22

File Meta Data 24

? Descriptor File MD5 40

10

FIG. 1
(Prior Art)

Patent Application Publication Oct. 6, 2005 Sheet 2 of 17 US 2005/0223224 A1

102

Algorithm
- - plaintext MD5

104

106 plainex MD5 0

Encrypted
File Algorithm -

— - encrypted MD5
112

114

FIG 2

Patent Application Publication Oct. 6, 2005 Sheet 3 of 17 US 2005/0223224 A1

130

Descriptor File

File Meta Data 134
Algorithm

132 plaintext MD5 106)
136

114 encrypted MD5

138

Encrypted Descriptor File
Algorithm
— - Master MD5

144
146

FIG. 3

Patent Application Publication Oct. 6, 2005 Sheet 4 of 17 US 2005/0223224A1

202 Encrypt Descriptor File
Using Key Ul 230 Select Files

Generate intrinsic
Unique lodentifier (IU)

for Each Fie

Generate U for
206 Encrypted Descriptor File 234

(Master U)

- m - - - - - - - - - - - Convert Master U and 238
Compress Each File 1N- 210 Key IU to ASCII Format .

-

Encrypt Each File 214 Store Files 242
Using its Ul

Generate UI for. Each Return Master IUI and 246 Encrypted File 8 Key IU to Originator

Create a Descriptor
File 222

Generate U for
Descriptor File 226

(Key Ul)

FG. 4

Patent Application Publication Oct. 6, 2005 Sheets of 17 US 2005/0223224A1

Descriptor File Meta Data 302

312 314

310-I. Folder Name O.S Attributes

322

326 plaintext MD5 encrypted MD5 3

330

28

Creation Date O.S. Attributes 332

40

Folder Name 342

O O O O

O

? Descriptor File Example

FIG. 5

Patent Application Publication Oct. 6, 2005 Sheet 6 of 17 US 2005/0223224 A1

<?xml version= '1. O' 2>
<! DOCTYPE ecml SYSTEM "http://www.waveresearch.be/dtd/ecml.dtd">
<ecml version="2.0" compatibleversion="2.0">

<eclipdescription>
<meta name=" type" value="Dell" />
<meta name="name" value="Encrypted Network Package" />
<meta name="comment" value=" this is a comment"/>
<meta name="author name" value="Abraham Felsenstein" />
<meta name="author. email" value="syncromedia(aping.be" />
<meta name="encoding" value="StandardCrypt" />
<neta name="compatible type" value="Standard" />
<neta name="numfiles" value="4"/>
<meta name="numfolders" value="1" />
<meta name=" to tasize" value="901.1"/>
<meta name=" creation date" value="1999. 07 - 22 11:25: 44

GMT+02: O O" / >
<meta name= "author . organization" value="" />
<keyword name="Contract ID" value="0005" namespace="dell" />
<keyword name="Contract Name" value="Sales 005"

namespace="dell" / >
<keyword name="Contract. Destination" value="John Doe"

namespace="dell" />
</eclipdescription> <!---->
<eclipContents>
<hfml>

<folder name="net" win attributes. readonly="false"
winattributes.hidden-- "false" winattributes.system="false"
winattributes: archive="false" winattributes. temp="false">

<file name="FtpClient. class" size="3648"
Ind5="FVHLQCT1TFJ 62x4ULSLQF94 ILRP"
decoded. mc 5="3SBUVEESBOAVLXBO 61DOE518E7G" decoded. size="7064"
whenmodified="1999. O6 14 13:20: 50 GMT + 02: O O"
when created="1999. Of 22 11:03:31 GMT+ 02: O O" -.
winattributes. readoniy - "false" winattributes. hidden="false"
winattributes. System="false" Winattributes. archive="true"
winattributes. temp="false"/>

<file name="FtpInputStream. class" size="560"
md5="CSVINULL4RDSQx 447 NTIAT4BQGB"
decoded. Imdb="A5UUO28DBF7V9xDGOD31VMOH24E" decoded. Size="978"
whenmodified="1999. O6 14 13:20: 50 GMT+02 : 00"
when created="1999. O7 - 22 11 : 03:31 GMT+02 : 00"
winattributes. readonly = "false" winattributes. hiddens: "false"
winattributes. System= "false" winattributes. archive="true"
winattributes. temp= "false"/> <file name="FtpLoginexception. class" size="320"
Ind5="2KCDL66E173xOMFO9ROETHH1"
decoded.md5="C1KHALJ3VDILOxF8QJ3 PDPLJTUL" decoded. size="491."
whenmodified="1999. 06.1. A 13:20: 50 GMT+02: O O"
when Created="1999. 07 - 22 11 : 03:32 GMT+02: O O"
winattributes. readonly= "false" winattributes. hidden="false"
winattributes. system="false" win attributes.archive="true"
winattributes. temp= "false" / > <file name="FtpProtocol Exception. class" size="320"
md5="ARC34P9F68KA9XAAECG9O3LOK42"
decoded. Ind5="9UA8J446KVO97x39EMOCJHDU5KI" decoded. Size="478"
whenmodified-c" 1999. O6 - 14 13:20: 50 GMT+02 : 00"
when Created="1999. O7. 22 11 : 03:32 GMT+02 : 00"
Winattributes. readonly "false" winattributes. hidden="false"
Winattributes. system= "false" winattributes.archive="true."
winattributes temp= "false"/>

</folder > < --net. -->
</hfinil) <!---->

</eclipcontents> <! ---->
</ecml> <! ----> FIG. 6A

DeSCriptor File Example

Patent Application Publication Oct. 6, 2005 Sheet 7 of 17 US 2005/0223224 A1

<?xml version= "l. O' 2>
<! DOCTYPE ecInl SYSTEM "http://www.waveresearch.be/ dtd/ecml. dtd">
<ecml version="2.0" compatibleversion="2.0">

<eclipdescription>
<neta name=" type" value="Dell" />
<meta name="name" value="Encrypted Network Package" />
<meta name="comment" value="this is a comment"/>
<meta name= "author. name" value="Abraham Felsenstein" />
<meta name="author. email" value="syncromedia(aping...be"/>
<meta name="encoding" value="StandardCrypt" />
<meta name="compatibletype" value="Standard" />
<meta name="numfiles" value="4"/>
<meta name="numfolders" value="1" />
<meta name= "total size" value="9011"/>
<meta name="Creation. date" value="1999. O7. 22 11:25:44

GMT+02 : 00" />
<meta name="author. organization" value="" />
<keyword name="Contract ID" value="0005" namespace="dell"/>.

</eclipdescription> <!---->
<eclipcontents>

<keyfile md5="82F04VM1 EQJSDx1UJAG9v3TT57E" size="896"
whenmodified="1999. O7. 22 11:25:44 GMT--O2 : 00" />

<file md 5="FVHLQCT1TFJ62x4ULSLQF94ILRP" size="3648"
whenmodified="1999.06.14 13:20:50 GMT+O2: O O" />

<file md5="CSVINULL4RDSOx447NTI4T4BQGB" size="560"
whenmodified="1999. O6.14 13:20:50 GMT+02 : 00"/>

<file md5="2IIKCDL66E173xOMFO9ROE7IHH1" size="320"
whenmodified="1999. O6. 14 13:20: 50 GMT+02 : 00" />

<file md5="ARC34 P9F68KA9XA4ECG903LOK42" size="320"
whenmodified="1999. O6. 14 13:20: 50 GMT+02: O O" />

</eclipcontents> <! ---->
<ecliporigin clipboxid="040-762-05-413-6338" clipboxcount="9"

seatid="C7 ccTb12-bcdf-11d2-b045-004.00569.895e">
</ecliporigina<!---->
<eclipsignature digest = "gli WJo2zuq BcRTgTrHD4Kg==
/> -

</ecml> <! ---->

FIG.6B
Flattened Descriptor File Example

Patent Application Publication Oct. 6, 2005 Sheet 8 of 17 US 2005/0223224 A1

402

410 Descriptor File
414

File Name File Meta Data N- 412
420?; encrypted MD5. Alojorithm plaintextMD5 encrypted MD5 416 9 Key MD5
FileName File Meta Data)

430 plaintext MD5 encrypted MD5 422 404
FileName File Meta Data 406

plaintext MD5 encrypted MD5 432

440

406

452

Aldorit
Encrypted Descriptor File sm. Master MD5

454
456

460

Flattened Descriptor File
Master MD5 456

470 encrypted MD5-N-416 e. User MD5

464
encrypted MD5 Nu 422 462

encrypted MD5 432
FIG. 7

Patent Application Publication Oct. 6, 2005 Sheet 9 of 17

502 Select Files

Generate intrinsic
Unique laentifier (UI)

for Each Fie
506

- - - - - - -

Compress Each File N-510
- - - r a

Encrypt Each File
Using its UI

Generate UI for Each
Encrypted File

Create a Descriptor
File

Generate U for

514

518

522

Descriptor File
(Key IUl)

526

FIG.

Encrypt Descriptor File
Using Key Ul

Generate UI for
Encrypted Descriptor File

(Master IUI)

Create Flattened
Descriptor File

Generate U for
Flattened Descriptor File

(User IUI)

Convert User IUI and
Key IU to ASCIl Format

Return User Ul and Key
UI to Originator

US 2005/0223224 A1

530

534

538

542

544

548

552

Patent Application Publication Oct. 6, 2005 Sheet 10 of 17 US 2005/0223224A1

602 Receive Master Ul Decrypt Encrypted File
SE Plaintext IU 654

Look, File sentified 606 y Master Ul Verify Plaintext File is
(FIG. 11) Authentic 658

Receive EnC Ped Not Verified
Descriptor File 610 urporting to Correspond Error Handler 662
to Master UI

Verified
Calculate U of Update File Request list Nu. 666

614 Received Eted Descriptor File

Receive Key Verified Verify Descriptor File is 670
U Authentic

626

Build Piety Structure Based on
information in
Descriptor File

Decrypt
Encrypted
Descriptor

File

indicate All Files Received 674

Populate Directory
Structure with Files

Look For Encrypted
Files Listed in Descriptor

File (FIG. 11)
Verify

Plaintext
Descriptor File verified
is Authentic 68

Not
Verified

Error Handler
Receive an Encrypted

File

Verify Encrypted File is
Authentic 650

FG 9

Patent Application Publication Oct. 6, 2005 Sheet 11 of 17 US 2005/0223224 A1

(stan) 742
Receive
Potential V

Receive User IU 702 Encrypted Verify Received File 746
Descriptor File ls Authentic

Look For Fie Look For File
ldentified by User Ul 706 ldentified By Receive Key Ul 750

(FIG. 11) Master U

738
Receive Potential Decrypt Encrypted 754

Flattened Descriptor 71 O Descriptor File
File -

Verify Epist -
Veri ived Fi Descriptor File is 760 ery Sly Fleu714 Authentic

Build Directory
Structure Based on 764 Look For Encrypted

Files in Flattened
Descriptor File 718 Descriptor File

(FIG. 11)
Yes 734

Decrypt Encrypted
Receive an Encrypted No. 1All Files Files Using Plaintext 768

File Received Uls

Verify Plaintext Files 772
Verify Encrypted File Are Authentic

is Authentic

Populate Directory
Structure with Files 776 Update File Request

List

FIG 10

Patent Application Publication Oct. 6, 2005 Sheet 12 of 17 US 2005/0223224 A1

Obtain File
Start

Error Handler 824

ldentify IU of Desired Not Found
File 802

Found Look For File on 822
FTP Servers

804
Look for File Locally Not Found
in Cache Using U Look for File on

Mounted Volumes 820
on File Servers

Not Found
Not Found

Look for File in Local Look for File On
Conventional Storage Pre-configured 818

or Well-known
Not Found Servers

Broadcast File
Location Request on

Peers on LAN Not Found

Found

Request Download Using 810
File Request

Receive File Data 812
Packet

Store File Segment
Data Complete

Patent Application Publication Oct. 6, 2005 Sheet 13 of 17 US 2005/0223224 A1

Secure Storage Example

Bank Terminal

Secure
Banking Application

Master MD5

Intrinsic
Unique
identifier

Generation

Customer
Signature Card ->

File

Encrypted
Card File 910

Public
Storage

916

F.G. 12

900

914 /

Master MD5

908

Patent Application Publication Oct. 6, 2005 Sheet 14 of 17 US 2005/0223224 A1

926

Key MD5

Master MD5

E-Mail

Intrinsic
Unique
Identifier

Generation

930

929 SSL

Authenticate
User MD5 Key MD5 information

Authentication Database

Encrypted
File

Public Storage 933

User MD5

Authenticate
information

923
F.G. 13

Access Control Example

Patent Application Publication Oct. 6, 2005 Sheet 15 of 17 US 2005/0223224 A1

Software Company

Software
File:S 942 /

intrinsic
Unique
identifier

Generation User MD5

Escrow Agent' Encrypted
Files 956

Software User

954

Encrypted
File:S

946

FG, 14
Escrow Example

Patent Application Publication Oct. 6, 2005 Sheet 16 of 17 US 2005/0223224 A1

User User
Computer Computer 972

970 LAN

960
Server

Y Computer
974.

968

Server
Computer 966

964 LAN

User - User User
Computer Computer Computer

962

F.G. 15

Patent Application Publication Oct. 6, 2005 Sheet 17 of 17 US 2005/0223224 A1

- 1000

e

1 OO6

1 OO y
1014

1022 1024
REMOVABLE

PROCESSOR(S) MEMORY FIXED DISK DISK

920

1010 1012 1040

NEWORK
INTERFACE

DISPLAY MOUSE SPEAKERS

F.G. 17

US 2005/0223224 A1

SYSTEMAND METHOD FOR SECURE STORAGE,
TRANSFER AND RETRIEVAL OF CONTENT

ADDRESSABLE INFORMATION

0001. This application is related to U.S. patent applica
tion Ser. Nos. 091236,366 and 09/235,146 filed Jan. 21,
1999, which are hereby incorporated by reference.

FIELD OF THE INVENTION

0002 The present invention relates generally to the
Secure Storage, transfer and retrieval of information using a
computer. More Specifically, the present invention relates to
a technique for identifying information using an intrinsic
unique identifier and for Securely storing, transferring and
retrieving that information using related techniques.

BACKGROUND OF THE INVENTION

0003 Digital information (such as a computer file) must
often be identified to be in a particular state, denoted by the
Status of the information as of Some event or time. Digital
information is highly Subject to change, normal attempts to
improve the content, inadvertent commands or actions
which change the content, or tampering by others are
difficult to detect.

0004 Another problematic attribute of digital informa
tion is that copies may exist which are identical in content
but differ in the meta data that the computer System uses to
describe the digital information. Such meta data includes the
date/time recorded for the creation or last modification of the
file and the file name. The meta data may imply that
otherwise identical copies of digital information are different
when in fact they are not. Such confusion makes it difficult
to avoid unnecessary duplication of content on a Single
computer or on a collection of computers on a network. The
inability of systems to reliably distinguish different versions
of files with the same identifier or to recognize identical files
with different identifiers wastes network resources and cre
ates confusion when files are transferred between users of a
network.

0005 Further, data on computer systems can generally
only be accessed through identifiers which to a greater or
lesser extent include information about the location of the
file in the Storage of the computer. For example, files within
a Sub-directory are at risk if Someone changes the Sub
directory name. If changed, the path to a file becomes
invalid, and all of the stored or remembered names of files
become invalid as well.

0006 Finally, it is inconvenient for computer users to
identify collections of Specific versions of digital files. It
would be desirable for users to refer to collections of specific
copies or versions of digital files without creating a new
entity which incorporates copies of the files into a new form.
Many mechanisms have been created to combine Such
copies into what are commonly called archive files. Such
Solutions create additional copies which are often prolifer
ated to many Systems. The difficulty is that digital copies of
many of the files in an archive are already present on the
Systems to which they are copied, which is wasteful and
potentially confusing.
0007 One result is that duplicate copies of digital files
are frequently stored on computer storage devices (at
expense to the owner of the System) or transferred via

Oct. 6, 2005

telecommunications devices (at further expense to the Sys
tem owner and the telecommunications provider). This
duplication Strains limited resources and causes needleSS
confusion on local networks and on collections of Systems
connected by telecommunication networks.
0008 To address various of these problems, unique solu
tions have been presented in U.S. patent application Ser.
Nos. 09/236,366 and 09/235,146, filed Jan. 21, 1999 in the
name of Carpentier et al. In one embodiment of these
inventions, a technique as shown in FIG. 1 is used. FIG. 1
illustrates a technique by which any number of files are
uniquely represented by an identifier for later retrieval. AS
shown in FIG. 1, the cryptographic hash function known as
the MD5 algorithm (as one example) is applied to the
contents of file A to produce a unique identifier 20 for that
file which is referred to as MD5 A. The algorithm is also
applied to files B and C to produce unique identifiers 22 and
24. Next, a descriptor file 30 is created that includes meta
data 32 that describes high level information concerning the
files (Such as the folders in which they are enclosed, time
Stamps, size, etc.) and information for each file. In one
embodiment, the information for each file includes the file
name 34, file meta data 36 (Such as time Stamp, size, etc.)
and the recently calculated MD520 for the file. As shown,
such information may be included for each of the other files.
Next, the MD5 algorithm may be applied to descriptor file
30 to produce a unique identifier 40 for descriptor file 30.

0009 AS described in the above patent applications, the
unique identifier 40 for descriptor file 30 can be used to
provide many advantages. For example, identifier 40 can be
used to uniquely identify descriptor file 30, and in turn the
identifiers 20-24 can then be used to uniquely identify files
A, B and C. Accordingly, files A, B and C may be stored
once anywhere on a network and may be eventually located,
retrieved and identified using identifier 40 and descriptor file
30.

0010 Although the above techniques have many advan
tages, and are extremely useful in certain applications, there
is nonetheless room for improvement in the area of infor
mation management. AS alluded to above, managing front
office files and web-based information is a big problem with
today's workers. Because data is referred to by breakable
URLS and path names, the disadvantages are huge: data can
be modified, corrupted, misplaced, and unreachable. As a
result, valuable information is lost to an enterprise or its
integrity becomes Suspect.

0011 More specifically, data protection relies on an
extensive organization and expensive specialists to manage,
backup and archive digital information. Locating and
retrieving the right information from its exact location can
be time consuming if not impossible because the informa
tion may be dispersed acroSS Various hard disks, file Servers,
and the Internet in duplicated forms and with a variety of
hard-coded file names. Furthermore, sharing Such informa
tion internally and externally can Seriously degrade network
performance, not to mention putting Sensitive information at
risk. Electronic mail attachments can be too large or take too
long to transfer. A download from an FTP server or a web
Site may have to be started all over again if interrupted. The
Same exact download performed by a large number of users
in one site can Slow down the whole network. In addition,
files are continually being modified, deleted, moved or

US 2005/0223224 A1

misplaced, meaning that there is no certainty in the location
of a file or in its data integrity. Thus, it is no Surprise that
workers themselves become responsible for managing their
own data and Saving versions of documents. Such efforts are
extremely time consuming and may not always work.

0012 Although the embodiments described in the above
applications may address Some of these problems, there are
further issues that remain to be addressed. For example, if
unique identifier 40 is either intercepted or otherwise
obtained by an unscrupulous individual, that individual may
then be able to retrieve descriptor file 30 which would then
allow the individual to locate and retrieve files A, B and C.
If these files contain Sensitive or Secret company informa
tion, there would then be a problem. In other words, the
advantage provided by identifier 40 in that it can be used to
uniquely locate a group of files can also be turned to a
disadvantage if the wrong party obtains identifier 40 and
gains access to Sensitive information contained in the files.
Furthermore, even though files A, B and C may be stored
anywhere on a network in a location-independent manner, a
Secret file might Still be Stolen, viewed, and/or printed if it
is not Secured appropriately.

0013 Thus, workers are called upon to secure their own
data files. For example, a file may be Stored in a computer
in a physically Secure location (Such as in a locked room
with only electronic access), the file may be electronically
locked using a password or other operating System function,
the file may be encoded, or Some other Security technique
may be used. Thus, it is no Surprise that workers themselves
become responsible for managing the Security of their own
data, encrypting files, password-protecting files, hiding files
and finally saving versions of files where they believe they
are Safe and can be located later. Placing the burden upon the
worker to implement Security for a particular file and then
maintain that security over the life of the file is extremely
onerous, expensive, and may not be foolproof.
0.014. Accordingly, a technique is desired that would
provide efficient and near foolproof Security for digital
information and/or its respective unique identifiers. In par
ticular, it would be desirable to have Such a technique that
works well with the embodiments described in the above
patent applications, Such a technique would provide a user
with the assurance that not only can a file be uniquely
identified, but also that the file can be kept secure from
prying eyes and its integrity can be guaranteed.

SUMMARY OF THE INVENTION

0.015. In a first embodiment of the invention, an algo
rithm is applied to a file to produce an intrinsic unique
identifier (IUI) for the file. To provide security for the file,
the file is then encrypted using the recently produced IUI as
a key for the encryption algorithm. The file may also be
compressed in addition to being encrypted. An algorithm is
then applied to the encrypted file to produce an IUI for the
encrypted file. Thus, the encrypted file may be Safely Stored
or transferred within a network and is uniquely identifiable
by its IUI. An authorized party who obtains the encrypted
file may then decrypt the encrypted file using the IUI of the
plaintext file if he or she has access to this key. Using the IUI
of the file to also serve as a key to encrypt the file provides
many advantages. For example, a single identifier (in this
case the IUI) serves as both a key to decrypt the file and also

Oct. 6, 2005

as Verification that the integrity of the plaintext file has not
been compromised. Further advantages and Specific appli
cations of this technique are presented below. In one specific
embodiment, the MD5 algorithm is used to generate the IUI
for the plaintext file. The resulting MD5 (the result of the
hash function) may then be used to verify that the plaintext
file has not changed.

0016. In a further addition to this first embodiment, IUIs
for any number of Such encrypted files may be assembled
into a descriptor file. In one specific implementation, the
descriptor file includes meta data for each file (such as the
file name), the IUI of the plaintext file and the IUI of the
encrypted file. An algorithm is applied to the descriptor file
to produce an IUI for the descriptor file. The plaintext
descriptor file is then encrypted using the descriptor file IUI
as a key for the encryption algorithm. The result produces an
encrypted descriptor file. An algorithm is then applied to the
encrypted descriptor file to produce an IUI for the encrypted
descriptor file. The encrypted files and the encrypted
descriptor file may then be safely stored or transferred
within a network. The IUI of the encrypted descriptor file is
used as a location-independent identifier to locate the
encrypted descriptor file.

0017 Thus, an interested party is able to locate and
retrieve the encrypted descriptor file using its IUI. The party
would not, however, be able to decrypt the encrypted
descriptor file unless it is also provided with the IUI of the
descriptor file which has been used as an encryption key.
Thus, this key may be withheld from a party until such a
party is authorized to gain access to information included
within the files. Once the party obtains the IUI of the
descriptor file, it may then decrypt the encrypted descriptor
file to obtain the plaintext descriptor file. Using the IUIs of
the encrypted and plaintext files included in the descriptor
file, the party may then locate the encrypted data files and
decrypt them. In an alternate implementation, the IUIS of the
encrypted data files may be located outside of the descriptor
file and may be provided to the interested party So that the
party may retrieve the encrypted data files. In this Scenario,
the IUI of the encrypted data files may or may not be present
within the descriptor file.

0018. In a second embodiment of the invention a flat
tened descriptor file may also be produced. A descriptor file,
its IUI, an encrypted descriptor file and its IUI may be
produced as described in the first embodiment. Additionally,
a flattened descriptor file is created based upon the descrip
tor file. The flattened descriptor file includes the IUIs of the
encrypted data files and the IUI of the encrypted descriptor
file. An algorithm is then applied to the flattened descriptor
file to produce its own IUI. The IUI of the flattened descrip
tor file may then be used as a unique identifier to indirectly
reference all of the data files listed within the descriptor file.
Using the IUI of the flattened descriptor file, an interested
party may retrieve the flattened descriptor file (in plaintext).
Using the IUIs it contains the party may then obtain not only
the encrypted data files but also the encrypted descriptor file.

0019. At this point, however, even though the party has
the encrypted data files, it does not have access to these files.
At a Suitable time, the party may then be Supplied with the
IUI of the descriptor file which serves as a key to decrypt the
encrypted descriptor file. Once decrypted, the party may
then use the descriptor file as described in the first embodi

US 2005/0223224 A1

ment to retrieve and decrypt the data files. Advantageously,
two items are necessary for retrieval and decryption of the
data files: the IUI of the flattened descriptor file which
allows retrieval of the encrypted data files; and the IUI of the
plaintext descriptor file which allows decryption of the
encrypted descriptor file. Thus, one or both may be withheld
from a party to prevent its access to the data files, while
allowing the party to physically obtain the encrypted files.
Furthermore, a party able to retrieve the encrypted data files
is guaranteed that the files have not been changed from the
time their IUIs have been calculated, but is unable to decrypt
these files unless it receives the Second item.

0020. Through use of the present invention, each file to
be Stored or transferred need only be encrypted once using
one key, and only the encrypted version of the file need be
manipulated. There is no need to use different keys for
different users. Further, should the same file exist in two
different locations on a computer or within a network, use of
the present invention produces an encrypted file for each that
is the same automatically. Thus, only this single encrypted
file need be stored and/or transferred. Such benefits accrue
automatically due to the nature of the present invention. The
encrypted form of each file can be Stored or transmitted
anywhere within a computer network without the need for
firewalls, acceSS control, Virtual private networks, or Secure
Session protocols. Further, by using the intrinsic unique
identifier to Serve as the encryption key for the file as well,
this single identifier not only Serves to authenticate the file
but also to verify the integrity of the file.
0021. The present invention in its many embodiments
provides a variety of advantages in numerous applications
which will be discussed below.

BRIEF DESCRIPTION OF THE DRAWINGS

0022. The invention, together with further advantages
thereof, may best be understood by reference to the follow
ing description taken in conjunction with the accompanying
drawings in which:
0023 FIG. 1 illustrates a prior art technique by which
any number of files are uniquely represented by an identifier
for later retrieval.

0024 FIG. 2 illustrates a technique by which a file may
be encrypted according to one embodiment of the invention.
0.025 FIG. 3 illustrates a technique by which a descriptor

file is created and encrypted according to one embodiment
of the invention.

0.026 FIG. 4 is a flow diagram describing how an intrin
sic unique identifier (IUI) may be created for a group of files.
0027 FIG. 5 illustrates symbolically one example of a
descriptor file.

0028 FIG. 6A illustrates an example of an implementa
tion of a descriptor file written using a modified version of
XML

0029 FIG. 6B illustrates a modified or “flattened”
descriptor file Suitable for use in the Second embodiment.
0030 FIG. 7 illustrates a technique for generating intrin
sic unique identifiers (IUIs) according to a Second embodi
ment of the invention.

Oct. 6, 2005

0031 FIG. 8 is a flow diagram describing a technique for
creating a number of intrinsic unique identifiers representing
a collection of files according to a Second embodiment of the
invention.

0032 FIG. 9 is a flow diagram describing how files
identified in FIGS. 2 and 3 may be retrieved.
0033 FIG. 10 is a flow diagram describing retrieval of
files uniquely identified using the embodiment of FIG. 7.
0034 FIG. 11 is a flow diagram describing how a file
may be looked for and obtained in accordance with an
embodiment of the present invention.
0035 FIG. 12 is a block diagram illustrating a use of the
invention in the area of Secure Storage.
0036 FIG. 13 is a block diagram illustrating use of an
embodiment of the invention in the area of access control.

0037 FIG. 14 is a block diagram illustrating use of an
embodiment of the invention for eScrow purposes.
0038 FIG. 15 is a block diagram illustrating a computer
network environment Suitable for use with an embodiment
of the invention.

0039 FIGS. 16 and 17 show one possible form of a
computer System.

DETAILED DESCRIPTION OF THE
INVENTION

0040. The present invention is applicable to a wide
variety of digital information. AS used herein, digital infor
mation may refer to a computer file, a group of files, a group
of file identifiers, or other collections of data or database
information. Such other collections of data include docu
ments, Selected frames or clips from digital audio or video
Streams, Streams from message records or files, of log entries
from audits or Status logs of Systems. Database information
might include Selected database records from a relational,
hierarchic, network or other format database. Indeed, digital
information may include any String of binary digits used
wholly or in part by Some application or device. In one
embodiment, the present invention manipulates digital infor
mation as binary large objects, or BLOBS (a bit Sequence).
0041. The following discussion illustrates embodiments
of the invention using the example of typical computer files
for ease of understanding. It should be pointed out, however,
that embodiments of the invention are well-suited for use
with any of the beforementioned digital information.
0042. As discussed above, it would be desirable to
address Security issues relating to computer files and to the
intrinsic unique identifiers (IUIs) of the data files and of a
descriptor file. AS pointed out, it is possible for a data file to
be obtained by unauthorized parties or for an IUI of a
descriptor file to be intercepted. Although it may appear that
Standard encryption techniques may address these problems,
there are drawbacks associated with conventional uses of
these Standard techniques.
0043. For example, it can prove burdensome to store or
Send a file to numerous people using public key cryptogra
phy. In order to Send a single file to fifty people using public
key cryptography, one would first have to obtain the public
key from each of the fifty people. Then, fifty copies of the

US 2005/0223224 A1

file would have to be made, and each file encrypted with a
different one of the fifty keys. Fifty different encrypted files
would then be created which are sent out or stored for later
retrieval. The problem is that the single file that was started
with has now become fifty different files each of which must
be managed and transported Separately. Calculation of an
identifier for each of the fifty encrypted files would then
produce fifty different identifiers each of which must be
managed and transported. It would be most desirable to have
a single copy of the plaintext file and a single copy of the
encrypted file for use by an authorized entity to cut down on
the proliferation of files copies.
0044) Use of conventional symmetric cryptography also
has drawbacks. Using the above example of a Single file to
be distributed to fifty people, one might choose to use a
different random key to encrypt the file fifty times. Again,
fifty different encrypted files must be generated and each of
the random keys must also Somehow be transmitted to each
person. Further, consider the situation in which fifty different
files are to Sent to one perSon. If only a single key is used to
encrypt all of the files, then it would become much easier to
hack the key and determine its value by an unscrupulous
third party. Further, if each file is encrypted with a different
key, then each of these keys must Somehow be transmitted
to the perSon and managed in a Secure fashion.
0.045 Finally, a typical prior art use of either asymmetric
or Symmetric cryptography to encrypt a file might provide a
file that is encrypted, but the keys used do not provide
assurance that the file has not Somehow been tampered with
in either its plaintext or encrypted form. Also, a file that has
been tampered with might not be able to be decrypted. It
would be most desirable if a single key could be used to not
only encrypt a file but to also insure the integrity of its
contents. Further, it would be desirable to store and/or
transmit the key or keys for a given Set of files in a Secure
manner. Accordingly, the present invention realizes a tech
nique for addressing the above issues.

FIRST EMBODIMENT

0.046 FIG. 2 illustrates a technique by which a file may
be encrypted according to one embodiment of the invention.
FIG. 3 illustrates a technique by which a descriptor file is
created and encrypted according to one embodiment of the
invention. FIG. 4 is a flow diagram describing how an
intrinsic unique identifier (IUI) may be created for a group
of files. FIG. 4 will be explained with reference to FIGS. 2
and 3. In step 202 a group of files (or one file) is selected
and its corresponding file data and any meta data is col
lected. AS mentioned above, the files Selected may be
computer files or any of the digital information previously
described. The files Selected may include a descriptor file,
any type of encrypted or compressed file or files that
themselves contain intrinsic unique identifiers. File 102 is an
example of one of the files selected and will be used to
illustrate this embodiment. Other selected files or informa
tion are preferably treated in a similar fashion as file 102.

0047. In step 206 an intrinsic unique identifier (IUI) is
generated for each file. Algorithm 104 is applied to file 102
to produce IUI 106. The algorithm may be applied to the
complete file or to any portion of the file. Algorithm 104 is
preferably any algorithm that can generate a reliably unique
identifier for the file based upon the file contents. As such,

Oct. 6, 2005

the IUI generated is repeatable in that application of the
algorithm again to the file will produce the same IUI. The
term “intrinsic' is used to indicate that the IUI is based at
least in part (or in whole) upon the contents of the file.
Algorithm 104 may be any of a wide variety of algorithms.
By way of example, algorithm 104 may be a hash function
such as the MD5 algorithm or SHA-1 that produce a
message digest, or may be an error detection algorithm Such
as employed in cyclic redundancy checking (CRC).
0048 Preferably, an algorithm should consistently pro
duce the same binary number for any Specific instance of
digital information and Such a binary number should be
practically proven to be unique with a reasonably high
probability for the class of digital information being iden
tified. Use of Such an algorithm over two binary Sequences
that result in the same binary number can prove that the two
binary Sequences are the Same. Conversely, use of the
algorithm over two binary Sequences that result in different
binary numbers can prove that the binary Sequences are
different. Such an algorithm simplifies the identification of
copies of a particular portion of digital information (Such as
a computer file). The result of Such an algorithm is referred
to herein as an intrinsic unique identifier (IUI). Other
algorithms may be used to generate an intrinsic unique
identifier as long as the probability of generating identical
identifiers from different files is below a threshold that is
defined as acceptable.
0049. In a preferred embodiment of the invention, the
algorithm used is the MD5 algorithm and produces a 128-bit
message digest referred to herein as simply the “MD5.” In
this case, algorithm 104 generates plaintext MD5 106.
Plaintext MD5 106 is an intrinsic unique identifier for file
102 and uniquely identifies file 102 based upon it contents.
Should file 102 be changed a newly calculated MD5 would
not match the MD5 calculated for the previous version of the
file.

0050. In step 210 an optional compression step may be
performed. In a preferred embodiment, each file is also
compressed. Any of a wide variety of compression algo
rithms may be used; the LZW algorithm is preferable,
although other algorithms associated with formats Such as
GZIP and CAB may be used. Compression may also be
performed after encryption although it is preferable to
perform compression first, or to perform both together.
Alternatively, it is possible to perform the compression Step
and not the encryption Step.
0051. In step 214 each file is encrypted using its recently
generated MD5 as the key for the encryption algorithm. For
example, file 102 is encrypted using encryption algorithm
108 with the key being plaintext MD5 106 to produce an
encrypted file 110. Any of a wide variety of deciphers may
be used as the encryption algorithm. By way of example, the
“Two Fish' algorithm works well, although other algorithms
Such as block and Stream cipher may also be used.
0.052 The use of plaintext MD5 106 to encrypt file 102
provides advantages. The Single key used to encrypt and
decrypt file 102 can also be used to verify the integrity of the
file because the key happens to be plaintext MD5 106 that
has been generated using the MD5 algorithm. Because it is
an intrinsic unique identifier it may also be used to Verify
that the contents of file 102 have not changed.
0053. Now that encrypted file 110 has been created it may
be stored and/or transferred within a computer network in a

US 2005/0223224 A1

Secure manner. In Step 218 an intrinsic unique identifier is
generated for file 110 using algorithm 112. In this example,
algorithm 112 is the MD5 algorithm and the result is
encrypted MD5 114. Preferably, algorithm 112 is the same
as algorithm 104. It is possible, however, that the two
algorithms may be different; for example, by convention it
may be agreed that plaintext files use a particular algorithm
while encrypted files use a different algorithm to generate
their intrinsic unique identifiers.

0054. At this point, a secure and sufficient technique for
Storing, locating and retrieving file 102 has been described.
Encrypted file 110 may now be stored within a computer
network instead of storing the plaintext file 102. By provid
ing a user with encrypted MD5 114, the user will be able to
locate and retrieve file 110. The integrity of file 110 can be
guaranteed by recalculating the MD5 of the file and com
paring it to MD5 114. The key 106 to encryption algorithm
108 may be held by the originating party and only released
to a user when it is desired that the user has access to file 110.
Once the key 106 is given to someone that has retrieved file
110, the file may be decrypted to produce plaintext file 102.
Thus, two pieces of information are necessary for a user to
have access to file 102: encrypted MD5 114 and plaintext
MD5 106. A user that is provided with encrypted file 110 is
also guaranteed that the original plaintext file has not been
changed.

0055. In step 222 a descriptor file is created that repre
sents all of the files that have been selected. FIGS. 5 and 6
provide greater detail of how a descriptor file may appear.
Descriptor file 130 may include a variety of information and
may take many forms. In this example, for each of these files
Selected and previously encrypted, it includes a file name
132, file meta data 134, plaintext MD5 106 and encrypted
MD5 114. In other embodiments the encrypted MD5 for
each file may also be located elsewhere to assist in locating
the encrypted files and may or may not also appear in file
130. A descriptor file 130 includes the plaintext MD5 for
each file, once descriptor file 130 has been obtained it may
be used to decode the encrypted files to obtain the original
plaintext files.

0056. In step 226 an intrinsic unique identifier is gener
ated for descriptor file 130. In a preferred embodiment,
algorithm 136 is the MD5 algorithm which is used to create
MD5 138 which is preferred to as the “key MD5.” In step
230 descriptor file 130 is encrypted using key MD5 138 as
the key to encryption algorithm 140 to produce encrypted
descriptor file 142. Preferably encryption algorithm 140 is
the Two Fish algorithm. File 130 may also be compressed in
a similar way as discussed in step 210. MD5138 is referred
to as the “key MD5 because it provides the key for
decrypting file 142.

0057. In step 234 an intrinsic unique identifier for file 142
is generated using algorithm 144. Preferably, the MD5
algorithm is used to produce master MD5 146. Preferably,
algorithms 136 and 144 are the same algorithms although
they may be different, and may be different from algorithms
104 and 112. By convention, it may be agreed upon before
hand to use different algorithms in different places. Also,
meta data 134 may also indicate which algorithms are to be
used with the plaintext and encrypted files. By the same
token, metadata for file 130 may be included therewithin to

Oct. 6, 2005

indicate algorithm 136. At this point, the selected files have
been uniquely identified using either master MD5146 or key
MD5 138.

0058 Step 238 is an optional step in which the master
MD5 and the key MD5 are encoded. Because a resultant
MD5 is a 128-bit number, it may be desirable to encode this
number in a more manageable form for human use. The
resultant number may be encoded in any of a variety of
forms including decimal, hexadecimal or binary. Preferably,
the number is converted to a base 36 number mapped to the
Set of twenty-six alphabetic and numeric characters in the
base ASCII character Set. This mapping is referred to as
“ASCII Armoring” and is commonly used to render binary
information in a limited character Set for transmission over
protocols that require content to be constrained to alphanu
meric coding. In a preferred embodiment, a flag character is
included at a predetermined position within the resulting
String bringing the total length of the String to 27 characters.
This flag character could also provide information Such as
algorithm to use, type of file, etc.
0059) The result is a 27-character ASCII string of digits
and upper case letters. Such a format provides a compact
form that may more easily be written down by a perSon
and/or manipulated by a computer, and is also in a form that
is easily accommodated by many Software programs. In
addition, this particular representation of an intrinsic unique
identifier has the advantage of being more easily retrieved
by data query, coded into Software application file requests,
referenced by a content or asset management System,
requested in an object browser, electronically copied and
pasted from one document to another, Sent via electronic
mail, etc.
0060 Master MD5 146 may also be associated with a file
locator to assist with finding file 142. Although the invention
Works without an additional file locator, one may be used.
An example of a file locator is a URL, an IP address, or a
path name.
0061. In step 242 the encrypted files that have been
created may be Stored. The files created may be Stored in any
Suitable location Such as on the user's computer, at a remote
Server, in an archive, at the Site of a future user, or other. In
fact, the files created need not be Stored together, but may be
stored in different locations. Preferably, the files that are
Stored for future reference by a user include the encrypted
files (such as file 110) and the encrypted descriptor file 142.
Preferable, the plaintext files (such as file 102) and the
plaintext descriptor file 130 need not be stored in an acces
sible location due to security. The files may be destroyed or
kept by the originator in a Secure location. Because the
plaintext files can be created from the encrypted files using
the appropriate key, it is not necessary to have the plaintext
files easily available.
0062). In step 246 the master MD5 146 and the key MD5
138 are returned to the originator for future reference. At this
point, both the master MD5 and the key MD5 would be
needed by a party who wishes to access the encrypted files.
For example, should the originator wish an interested party
to have access to the encrypted files at Some point, he may
provide that party with the master MD5. Using master MD5
that party could obtain encrypted descriptor file 142 but
would have no way of decrypting it. Only when the party is
provided with key MD5 from the originator, can that party

US 2005/0223224 A1

decrypt file 142 and obtain not only the encrypted MD5s (to
locate each encrypted file) but also the plaintext MD5 for
each file (which would allow that party to decrypt the
encrypted file and Verify that the original file has not
changed). Alternatively, an interested party may be provided
with the encrypted MD5s in addition to the master MD5
which would allow that party to retrieve the encrypted files
but not decrypt them. Once the key MD5 was provided, the
party could decrypt the descriptor file, obtain the keys for the
data files, and decrypt them. In an alternative embodiment,
the user may be supplied with MD5s for the encrypted data
files but is not supplied with the master MD5 or the key
MD5 until a later time. Alternatively, the user may be
supplied with the key MD5 initially and the master MD5
later. Such embodiments have a variety of applications
which are discussed below.

DESCRIPTOR FILE EXAMPLES

0063 FIG. 5 illustrates symbolically one example of a
descriptor file 300. In general, a descriptor file includes the
plaintext MD5 for each of the encrypted data files. Thus,
once the descriptor file is obtained and decrypted, the user
may then decrypt the encrypted data files using the plaintext
MD5 for each file as a key in the decryption algorithm. Other
information may optionally be included within the descrip
tor file to assist with locating an encrypted data file, recon
Structing its directory environment, and/or administrating a
Scheme for generating revenue for the use of Such a tech
nique. Further, a descriptor file may be implemented in any
of a wide variety of modeling languages; examples are given
in FIG. 6A.

0064. In one specific embodiment, descriptor file 300
includes meta data 302 that describes options regarding the
descriptor file and information concerning its use and con
tents. By way of example, meta data 302 includes the type
of the descriptor file, a name for the descriptor file, a creation
date, comments, the number of data files that it represents,
the number of directory folders it represents, the total size of
all of the files combined that it represents and other infor
mation Such as author, keywords, etc.
0065. A user-supplied name may be assigned when the
descriptor file is created and is used as a mnemonic aid by
the user to identify a folder (for example) from which files
represented by the descriptor file have originated. In another
embodiment of the invention, the name of the folder itself is
Suggested automatically as a mnemonic aid. This name can
be associated with the master MD5 created for the descriptor
file to enable a user to more easily identify the general
contents of a descriptor file. For example, when retrieving
data using a particular master MD5 this name may be
included to assist the user. The creation date indicates when
the descriptor file was created and is useful for keeping track
of Versions. Comments may be inserted into the descriptor
file for any purpose by the user. The number of files
represented, number of folders and total size is useful for
progreSS Status during downloading.

0.066 A descriptor file may include any number of rep
resented files and optionally may include the folders in
which the files originally resided. Any number of folders and
any hierarchy may be represented in the descriptor file. By
way of example, included is a folder name 310, its time
Stamp 312 and operating System attributes 314. Time Stamp

Oct. 6, 2005

312 indicates when the folder was last modified. Attributes
314 indicate operating specific attributes for the folder such
as whether the folder is read-only, whether it should be
hidden, and its type Such as System, archive or temporary.
0067. Any number of files may be indicated as being
originally found within folder 310, such as the files identi
fied by file name 320 and file name 340. A wide variety of
meta data may be present that provides information regard
ing the file identified by file name 320. Included is a time
Stamp 322 indicating when the file was last changed, a size
324, the plaintext MD5 326, the encrypted MD5 328, a
creation date of the file 330, and any number of operating
specific attributes 322. These attributes may include the read
or write Status of the file, the file type, its creator, etc. By
including the encrypted MD5 328 for the file, the file
becomes content addressable using the encrypted MD5 as a
location-independent file name. Plaintext MD5326 can then
be used to decrypt the retrieved encrypted file. Other file
names and associated meta data may also be indicated as
being included in folder 310. Any number of folders and
their included files (indicated by 324 and 344) may also be
included. A hierarchy of folders may exist in which one
folder and its files are present within another folder.
0068 Administrative data 346 may also be included
within the descriptor file 300 to assist in generating revenue
from use of the technique, tracking the Software which
embodies the technique, etc. By way of example, data 346
includes an identifier indicating on which machine the
Software was originally installed. In one embodiment of the
invention, Software which embodies the invention is either
Sold, licensed, or provided free to users. Included along with
the software is a so-called “token box” that represents the
number of times that a user may create a descriptor file and
generate a master MD5 for a collection of files. Included
within data 346 would then be a token box identifier and a
token box count. The box identifier uniquely identifies the
particular box that was provided along with Software to a
user. The box count indicates the number of times that a user
may generate a descriptor file and its corresponding master
MD5. For example, a user may pay for (or receive free)
Software embodying the invention that has a box count of
1000. The Software keeps track of this box count variable
and decrements it each time the user creates an encrypted
descriptor file and its associated master MD5. The box
identifier and the current box count are then included within
data 346. The box identifier may by useful to indicate that
only certain types of descriptor files may be generated.
Preferable, it is unique for a given copy of Software provided
to a customer and is similar to a Serial number. The box
count included within the descriptor file is useful for track
ing token boxes that have been “hacked' into to circumvent
paying.

0069. Also included within data 346 may be a digest of
the complete descriptor file. For example, the digest may be
created by performing a hash function upon the descriptor
file and then encrypting the hash produced with a Secret key
known only to the manufacturer of the Software. Asymmet
ric or Symmetric cryptography may be used. By including
this digest within (or at the end) of the descriptor file, the
manufacturer of the Software can prove whether or not the
descriptor file and/or its associated master MD5 was created
by the manufacturer because only the manufacturer can
calculate this unique digest. Thus, the manufacturer can

US 2005/0223224 A1

determine if another entity created the descriptor file and/or
its master MD5. This information may be useful in deter
mining whether to process a request for a retrieval of files,
for requesting payment from an entity, or for legal protection
of a particular implementation.
0070 The type of a descriptor file indicates one of a
variety of types of the file and its associated master MD5. In
general, a particular type provides different meta data and
different behavior for different classes of descriptor files. For
example, certain types of descriptor files may include certain
meta data that are not present within other types and may
cause a Software agent or an operating System to initiate
various actions that are different from other types. A wide
variety of types may be defined for descriptor files. By way
of example, these types include the following. A Standard
type may automatically place retrieved files back into a
default folder on the desktop of the user's computer when
the files are retrieved using embodiments of the present
invention. In other Scenarios, however, it may be desirable
to retrieve a file and place it in a particular location within
a computer or elsewhere. An extended type of descriptor file
allows the descriptor file to include meta data for each file
name or folder indicating to where within a computer and/or
its operating System the file shall be placed when it is
received. For example, for performing Software replacement
or upgrades, meta data included within the descriptor file for
each file may indicate that a particular file should replace a
file within the operating System of the computer. Thus, when
the present invention is used to retrieve a file, a Software
agent may automatically place the retrieved file in the
location indicated by the meta data.
0071. Because automatic replacement or placement of
operating System or application Software files may be Sen
Sitive and require permission, a certificate may be included
along with the descriptor file for this type. In this Scenario
a user of a descriptor file first approves of a given creator of
the files that are to be retrieved. The Software agent that
implements the present invention then keeps track of a list
of creators that are approved by the user. The user and the
creator then agree upon a digital certificate that authenticates
the creator to the user. Creation and use of digital certificates
are well-known in the art and any of a variety may be used.
In this situation, included within meta data 302 is a certifi
cate from the creator that guarantees the authenticity of the
files indicated within the descriptor file. Once the software
agent has decrypted the descriptor file, it retrieves the
certificate of the creator and verifies that it does in fact
authenticate that particular creator. The Software agent then
compares that creator to the list of approved creators, and if
there is a match, the indicated files in the descriptor file are
retrieved, decrypted and installed on the user's computer
where indicated.

0.072 Another type of descriptor file is a trial type. When
using this type of descriptor file, an advertisement appears
on the user Screen whenever a descriptor file is created and
a master MD5 generated. In return for viewing the adver
tisement, the box count for that particular user is not
decremented. The data representing the advertisement may
be stored within the Software agent that embodies the
present invention, or may also be included within the
descriptor file.
0073. Another type of descriptor file is a service type.
This descriptor file includes meta data that identifies a

Oct. 6, 2005

Software plug-in in any Suitable fashion. By way of example,
the plug-in may be identified using an intrinsic unique
identifier (IUI) according to any embodiment of the present
invention or may be identified by using a file name, location,
etc. When files are retrieved by the Software agent by using
the descriptor file, the Software plug-in is identified, located
and automatically installed upon the user's computer. For
example, the plug-in may be a Java file to load or XML
configuration files.
0074. Descriptor files may also be customized by a user.
For example, a user may create a custoni type of descriptor
file that automatically adds particular meta data and behav
ior to the file when it is created. Custom descriptor files may
also be created for each company to whom Software
embodying the present invention is to be provided. For
example, any relevant information may automatically be
added to the descriptor file when created or the user may be
prompted to add information that is relevant to the type of
descriptor file and its contents. Automatic behavior may be
added to a custom descriptor file that performs certain
actions when a descriptor file is used to retrieve files. For
examples, codes within the descriptor files may automati
cally Send electronic mail. Other actions that may occur
include publication on web sites.
0075 FIG. 6A illustrates an example of an implementa
tion of a descriptor file written using an application of XML.
The extensible mark up language (XML) is preferred
although other mechanisms. Such as initialization ("...ini”
files) may be used. The particular descriptor file shown uses
a so-called “hyperfile” modeling language (HFML) based on
XML to describe the structure of the directories containing
files as well as the files themselves. An HFML is described
in the U.S. provisional patent application No. 60/072,316,
filed Jan. 23, 1998. In general, it should be noted that
implementation of the invention is not restricted to a
descriptor file written in any particular syntax. The HFML in
the preferred embodiment is used because it is readily parsed
and can be used to generate a tree-structured directory of the
files and keys.
0076) The descriptor file of FIG. 6A includes two MD5s
for each file. The MD5 termed “decoded.md5” corresponds
to plaintext MD5 106 of FIG. 2 (for example), and repre
Sents an intrinsic unique identifier for a plaintext file. The
MD5 termed simply “md5” corresponds to encrypted MD5
114 of FIG. 2, and represents an intrinsic unique identifier
for the encrypted plaintext file. The descriptor file of FIG.
6A includes no administrative data, although it may.
0.077 FIG. 6B illustrates a modified or “flattened”
descriptor file suitable for use in the second embodiment. In
the second embodiment (described in FIGS. 7 and 8),
descriptor file 402 may be implemented as in FIG. 6A, and
flattened descriptor file 460 may be implemented as in FIG.
6B. Note that the file of FIG. 6B includes the MD5 of the
encrypted descriptor file of FIG. 6A (termed the “keyfile
mds”), and includes the MD5s for the encrypted plaintext
files, but not the MD5s for the plaintext files. FIG. 6B also
includes administrative data (“eclipcontents”) Such as a box
identifier, a box count, a Seat identifier, and a digest.

SECOND EMBODIMENT

0078. The first embodiment has described the technique
by which a master MD5 and a key MD5 are provided to a

US 2005/0223224 A1

user who wishes to locate and access a collection of
encrypted files. Because the master MD5 only allows access
to encrypted descriptor file 142, it would be difficult for a
user to locate and retrieve the encrypted data files because
the descriptor file is encrypted. It is not until the user is also
provided with the key MD5 that the user is able to decrypt
the descriptor file and obtain the MD5s, allowing it to locate
the encrypted data files. In various situations it may be
desirable to allow a user to not only obtain the encrypted
descriptor file at first, but also to allow the user to locate and
obtain the encrypted data files without allowing those files to
be encrypted. For example, this is useful when administrat
ing pool Servers, load balancing, caching, mirroring, and in
other applications Such as eScrowing.
007.9 FIGS. 7 and 8 describe an embodiment by which
the user is not only allowed access to the encrypted descrip
tor file, but also obtains the means to locate the encrypted
data files. FIG. 7 illustrates a technique for generating
intrinsic unique identifiers (IUIs) according to a second
embodiment of the invention. FIG. 8 is a flow diagram
describing a technique for creating a number of intrinsic
unique identifiers representing a collection of files according
to a Second embodiment of the invention.

0080. In steps 502-518 a collection of files are selected,
MD5S are generated and the files are encrypted in a similar
fashion as described in steps 202-218 (not shown in FIG. 7).
In step 522 descriptor file 402 is created. Descriptor file 402
includes representative metadata for any number of files and
may also include other information Such as is shown in
FIGS. 5 and 6A. Included are a file name 410 representing
a first file, its associated file metadata 412, its plaintext MD5
414 generated from the plaintext file and an encrypted MD5
416 that is generated from the encrypted file. File name 420
and file name 430 represent second and third files, respec
tively, and each have their associated meta data, plaintext
MD5 and encrypted MD5.
0081. In step 526 algorithm 404 is used to generate key
MD5 406 for descriptor file 402. In step 530 descriptor file
402 is encrypted using key MD5 406 as the key to encryp
tion algorithm 440 to produce encrypted descriptor file 452.
MD5 406 is referred to as “key MD538 because it provides
the key for decrypting file 452. In step 534 master MD5 456
for file 452 is generated using algorithm 454. Preferably,
algorithms 404 and 454 are the same algorithms although
they may be different, and may be different from algorithms
used with the data files.

0082) At this point master MD5 456 may be provided to
a user to allow the user to locate and obtain encrypted
descriptor file 452. The user, however, would be unable to
locate the encrypted data files. It is conceivable that the
originator may simply provide the encrypted data files to the
user or may provide file locators for them or may even
provide their encrypted MD5s in any fashion. In a preferred
embodiment, however, the encrypted MD5s for the
encrypted data files are provided in another modified
descriptor file.

0083) In step 538 flattened descriptor file 460 is created
based in part upon the information in descriptor file 402.
Included within the flattened descriptor file 406 are the
encrypted MD5s 416,422 and 432 that provide intrinsic
unique identifiers to locate the encrypted files represented by
file names 410, 420 and 430 in descriptor file 402. File 460

Oct. 6, 2005

may be created by duplicating file 402, removing certain
information and adding other information. For example,
master MD5-456 is also added to file 460 to allow a user to
access file 452. Meta data 470 associated with the file 460
may also be added. This meta data may be the same
descriptor file meta data as found in file 402, may be a subset
of that data, or may be different meta data or may not appear
at all. For example, meta data 470 includes publicly search
able items but not private data.
0084. The flattened descriptor file may take a wide vari
ety of other forms. For example, other types of file locators
may be included instead of the MD5s to provide access to
the encrypted files or to the plaintext data files. Also, master
MD5 456 is optional, and file meta data may also be
included for each file.

0085. In step 542 algorithm 462 is applied to file 460 to
create a user MD5 464 that is an intrinsic unique identifier
for file 460. Preferable, algorithm 462 is the MD5 algorithm.
In step 544 the user MD5 464 and key MD5 406 are
preferably converted to ASCII format in a similar fashion as
described in step 238 to provide identifiers that are more
manageable by a user. Because master MD5 456 is not
handled directly by a user in this embodiment, it is optional
whether to encode this identifier in file 460.

0086). In step 548 the relevant files are stored for later
acceSS by a user. The files to be Stored include the encrypted
data files, encrypted descriptor file 452 and non-encrypted
flattened descriptor file 460. These files may be stored in any
Suitable computing device or computer network and may be
distributed in different locations. In one embodiment, the
files are Stored in what is termed a file “pool'. In general, a
file pool refers to a collection of distributed Storage devices
that store files only being identified by their MD5s (or other
IUIs).
0087. In step 552 the user MD5 464 and the key MD5
406 are returned to the originator for possible distribution to
a requesting user. In this fashion, access to the encrypted
data files and eventually to the plaintext files are provided
simply via two identifiers, namely, user MD5 464 and key
MD5 460. For example, using user MD5 464, the user can
access and read file 460 which provides access to the
encrypted data files and to the encrypted descriptor file (via
the master MD5). Once the user is also supplied with key
MD5406, the user may decrypt the encrypted descriptor file,
obtain the plaintext MD5s, and decrypt each of the
encrypted data files.

FILE RETRIEVAL EMBODIMENTS

0088 At this point in time, the originator of the data files
has generated key MD5 138 and master MD5 146 and has
Securely Stored the encrypted files on a computer or on a
distributed computer network. An interested party Such as a
user or Software program may perform the following Steps
to retrieve the files.

0089. In step 602 the user receives the master IUI (in this
example master MD5) which is the identifier uniquely
representing the files to be retrieved. In step 606 the user
looks for the file identified by master MD5 146. The file may
be searched for and obtained in a wide variety of ways. By
way of example, the user looks for the file on a local
computer or throughout a distributed computer network.

US 2005/0223224 A1

Preferably, the file is initially identified by matching master
MD5 146 with the MD5 of a particular file found. In a
preferred embodiment of the invention, step 606 may be
implemented as described in FIG. 11. In step 610 an
encrypted descriptor file 142 that purports to correspond to
master MD5 146 is received. Once received, the user may
assume that the descriptor file is authentic by virtue of the
search performed in step 606. It may be preferable, however,
to verify that the received file is the correct file by first
calculating the MD5 of the received encrypted descriptor file
in step 614.
0090. In step 618 the received file is verified as being
authentic by comparing master MD5 146 with the MD5 just
calculated from the received file. If the MD5s do not match,
then control returns to step 606 to look for another file. If the
MD5s match, then the file is authentic and the process may
continue. Steps 614 and 618 are optional steps.
0.091 By virtue of possessing encrypted descriptor file
142, at this point the user is effectively guaranteed that all
data files that have been encrypted and identified in the
plaintext descriptor file are effectively Sealed and have not
changed. For example, should an unscrupulous party attempt
to modify one of the data files, the MD5s of the plaintext file
and of the encrypted file would not match with MD5106 and
114 in the plaintext descriptor file. In this way, the holder of
the encrypted descriptor file can be assured that once the
descriptor file is decrypted that it will be able to verifiably
identify the original data files that have been identified in the
descriptor file. In this way, encrypted descriptor file 142
Serves as a type of eScrow of the original data files. AS Such,
key MD5138 may be delivered to the user concurrently with
master MD5 146, sometime shortly there after, or at some
later time when the originator wishes the user to have acceSS
to the original data files.
0092. Therefore, at some appropriate time, in step 622 the
user receives the key IUI (in this case key MD5 138) and
may begin to obtain the original files. In Step 626 the user
uses key 138 to decrypt descriptor file 142 and obtain
plaintext descriptor file 130. Although optional at this point,
in step 630 the user may wish to verify that plaintext
descriptor file 130 is also authentic. For example, the user
may recalculate the MD5 for file 130 and compare it to key
138. Such a check verifies that a bogus descriptor file 130
has not been substituted for the correct descriptor file and
then encrypted using key 138. Additionally, a digest may be
recalculated for file 130 and compared to a previously
calculated digest already present in file 130. For example, as
pointed out in FIG. 5, administrative data 346 may include
a unique digest that has been calculated by the true creator
of descriptor file 130. If, for some reason the MD5s to not
match or the digest is incorrect, the in Step 634 an error
handler is invoked to produce a Suitable error message and
a Suitable action.

0093. In step 638 the directory structure (if any)
described in descriptor file 130 is rebuilt using the informa
tion contained in the descriptor file. For example, a directory
structure Such as is shown in FIGS. 5 or 6A or some other
structure may be built. A hierarchy of folders may be
created, folder and directory attributes may be assigned and
individual file attributes may be identified for assigning to
particular files once these files are retrieved.
0094. Because descriptor file 130 lists the encrypted
MD5 114 of each file identified, the user may now look for

Oct. 6, 2005

each of the encrypted files using these MD5s. Step 642 may
be performed in any Suitable fashion, for example, may be
performed as described in step 606 and in FIG. 11 by which
a file is identified having a particular IUI.
0095. In step 646 a file is received that purports to
correspond to encrypted MD5 114. Although the user may
assume that this retrieved file is authentic, it is preferable in
step 650 that the retrieved file is verified. By recalculating
the MD5 of encrypted file 110 (for example) this recalcu
lated MD5 maybe compared to encrypted MD5114 to verify
that the file identified in descriptor file 130 is in fact the file
that has just been retrieved. If the file is not verified then step
642 may be implemented again to find the correct file.
0096 Assuming the file has been verified, in step 654
encrypted file 110 is decrypted using plaintext MD5 106 to
obtain the original plaintext file 102. In this embodiment of
the invention, plaintext MD5 106 is also present within
descriptor file 130 along with encrypted MD5 114. In other
alternative embodiments, it is conceivable that plaintext
MD5106 need not be present within file 130 but is delivered
to the user in another Suitable fashion. The user may now
assume that file 102 is the original file that has been sealed
earlier. In an alternative embodiment, the user may also
verify the authenticity of file 102 by recalculating its MD5
and comparing this recalculated MD5 with plaintext MD5
106. Such a check verifies that an unscrupulous party has not
substituted a bogus file for original file 102 and then
encrypted the bogus file using the MD5 of the original file.
If the file is not verified, then a Suitable error handler 662 is
invoked.

0097. If verified, in step 666 a file request list is updated
to indicate that file 102 has been accurately been obtained.
If not all files identified in descriptor file 130 have been
received, then control returns to Step 646 to receive another
file. If all files have been received, in step 674 an indication
is provided to the user that all files identified in descriptor
file 130 have been successfully retrieved. In this fashion, a
user provided with master MD5 146 and key MD5 138 is
provided the means to obtain the originally encrypted and
identified files, and is guaranteed that the original files have
not been altered Since they were encrypted.
0.098 FIG. 10 is a flow diagram describing retrieval of
files uniquely identified using the embodiment of FIG. 7.
Through the use of user MD5 464 and key MD5 406 a user
may later locate and retrieve the plaintext versions of the
files identified in descriptor file 402. Through the use of this
embodiment a user is allowed to retrieve not only the
encrypted descriptor file, but also the encrypted data files to
retain in his possession. This may be advantageous in certain
Situations Such as Software eScrow and pool management
where a user wishes to keep in his possession the actual
encrypted data files. The files cannot be decrypted, however,
until key 406 is also supplied to the user.
0099 Steps 702-710 may be performed in a similar
fashion as in steps 602-610. In step 710, however, the file
received is potentially the plaintext flattened descriptor file
460. In step 714 the user may further verify that the received
flattened descriptor file is authentic by recalculating a digest
for the file and comparing it to the digest included within
administrative data 346 of file 460 (if present).
0100 Now that the user has obtained the plaintext flat
tened descriptor file, in steps 718 and 722 the user may look

US 2005/0223224 A1

for and retrieve those encrypted data files that are identified
by their corresponding MD5s (for example 416, 422 and
432) included in file 460. These files may be identified and
retrieved in any Suitable manner and are preferably retrieved
using the techniques described in steps 642, 646 and in FIG.
11.

0101. In step 726 a received encrypted file is verified as
being authentic by comparing its newly calculated MD5
with the MD5 from file 460 that has been used to retrieve it.
If not authentic, control returns to step 722 to wait for
another file. Once verified, in step 730 a file request list is
updated to indicate that one of the encrypted data files has
been successfully received. If, in step 734 not all files have
been received, then control returns to step 722 to wait for
another file.

0102) In step 738 master MD5 456 is extracted from file
460. By using master MD5 456 present within flattened
descriptor file 460, the user may now locate and retrieve
encrypted descriptor file 452. Once the user is supplied with
key MD5 406 from the originating party (once certain
conditions are met, for example), the user will be able to
eventually retrieve the original data files. For example, Steps
738-764 may be performed as described in steps 606-638
above. Note that in step 750 the key MD5 is not supplied
unless the originator wishes the user to have access to the
original files.

0103 Because the user has already retrieved the
encrypted data files, once the directory structure has been
built the user may decrypt the encrypted files in step 768
using the plaintext MD5s that are found in descriptor file
402. In an alternative embodiment, the plaintext MD5s need
not be included the file 402, but may be supplied to the user
in some other fashion. In step 772 the plaintext files may be
verified as described in step 658. Finally, in step 776 the
directory Structure may be populated with the plaintext files
to restore them to their proper place. Additionally, any file
meta data included in descriptor file 402 may also be applied
to each file.

0104 Thus, through this embodiment a user to able to
retrieve the encrypted descriptor file and all encrypted data
files using user MD5 464. The user is unable to decrypt the
data files until key MD5 406 is supplied.
0105 FIG. 11 is a flow diagram describing how a file
may be looked for and obtained in accordance with an
embodiment of the present invention. The procedure of FIG.
11 may be used to implement steps 606, 642, 706, 718 and
738 of FIGS. 9 and 10 in a preferred embodiment of the
invention.

0106 In a preferred embodiment, a file (for example) is
received in portions or Segments. In other embodiments,
files may be received whole or in a manner Specified by any
file transfer protocol. A file request list includes all of the
files that are being requested until those files are received in
their entirety. It is also possible that a file Segment request
list would be implemented that would include individual
Segments being requested. For example, individual Seg
ments of files may be requested when data or a code patch
for a Software application is required, or when Specific
entries for a database are obtained by a Store or query result.
An importer program manages the transfer of files to the
recipient and determines when the files are.

Oct. 6, 2005

0107. In one embodiment, the importer has a specific
hierarchy of locations in a computer System (or on a net
work) in which it looks for the files listed in a descriptor file.
Thus, the importer may be implemented using a chained
system which looks for files in different places. Thus, files
are Searched for first in the most convenient location and
then in progressively leSS convenient locations. This
“assembly line' is configurable in kind and quantity of
importers and may automatically and dynamically change to
optimize economy, Security or performance. Because the
MD5s serve as content-based file names that enable the
content of files to be verified once the files are recovered, it
is possible to allow files to be recovered from arbitrary
locations where they may be found without regard to check
ing the contents of the file using Some Sort of check Sum.
0108). In step 802 the intrinsic unique identifier (IUI) of
the file desired to be obtained is identified. This IUI may be
any suitable identifier such as an MD5 that uniquely iden
tifies a data file, a descriptor file, any encrypted file, or other
digital information. In the following steps, the IUI may be
matched with a particular file using any of a variety of
techniques. In a preferred embodiment, files are Stored along
with their file name which is the IUI of the file. In other
words, the encoded 27-bit alphanumeric MD5 of the file is
also used as its file name. In this embodiment, the file System
of a computer is used to help match the IUI with a particular
file. In other embodiments, a database may use an IUI as a
look up (or data base key) into the database to find the
location of the file that is identified by the IUI. The database
may contain a pointer to the file or the actual contents of the
file if the file is a file object in an object-oriented database.
Other techniques may be used to associate an IUI with a file
in a Storage device to facilitate matching a received IUI with
a particular file on the Storage device. For example, an IUI
may also be associated with a file as a file attribute. It is also
possible to recalculate an IUI for a found file and then
compare it to an identified IUI to determine if the file is the
correct file to retrieve. Other techniques include object
database Storage.
0109. In step 804 an importer program looks for the
desired file using its IUI in a local cache on the computer. In
a preferred embodiment of the invention, this cache is a pool
of files into which files have been stored previously, for
example in steps 242 and 548. Advantageously, this pool of
files stores the IUI of a file as its file name for efficient
retrieval. The cache may be implemented on a local disk,
within RAM, or on another local device. Preferably, the pool
cache is organized as a hierarchy of folders wherein the
included files use their IUI as their file names. The pool
cache preferably uses key/value lookup where an IUI is the
key and the value is the bit sequence to be retrieved. If the
file is found it is retrieved and the procedure ends.
0.110) If the file is not found locally in a pool cache, in
step 806 the importer looks for the file in local conventional
Storage. For example, of the file is not included in pool cache
where the IUI is the file name, it is possible that the file is
still stored locally and its IUI is associated with the file in
Some other manner. For example, the IUI may be a file
attribute of a file and all files on local conventional Storage
(Such as memory, disk, tape) may be Scanned to Search for
a file attribute that matches the identified IUI. As a last
result, brute force method, local Storage may be Scanned to
determine the contents of all files present and an IUI may be

US 2005/0223224 A1

recalculated for all of these files. The identified IUI from
Step 802 may then be compared against each of these newly
calculated IUIs to determine the correct file to be retrieved.
If the file is found it is retrieved and the procedure ends.
0111. If the file is not found in conventional storage, in
step 808 a file location request is broadcast to peer comput
erS on a local area network. A file request list that includes
the IUI of the file and its sequence numbers may also be
created. Preferably, the identified IUI is broadcast to all
computers on the network that implement a pool cache.
These computers may then determine if the desired file is
present within their pool by examining the broadcast IUI.
Additionally, it is possible for a peer computers to examine
its local conventional Storage using the techniques described
above. If the file is found, the computer having the file
returns a location indicator to the requesting computer
indicating the network location of the desired file.
0112) In step 810 the original computer establishes a
one-to-one link with the computer that contains the desired
file and requests a download of the file using a file request.
In this embodiment, the file is downloaded segment by
Segment, although it is possible that the file may be down
loaded all at once. In Step 812 the originating computer
receives a file data packet containing Segment data for the
desired file. The sequence number of the received file data
packet is checked against the file request list to determine if
the packet received is for a file that is desired. Suitable
examples of a file request and file data packet are shown in
the above referenced application Ser. Nos. 09/236,366 and
09/235,146.
0113) If the data packet is needed for the current desired

file, then in step 814 the segment data from the file data
packet is Stored as part of the desired file and the file request
list is updated to indicate that this particular Segment has
been received. Step 818 checks whether the file is complete
and all Segments have been received. If So, the file has been
fully retrieved and the procedure ends. If not, then the
originating computer waits to receive another downloaded
file data packet in step 812.
0114) If, in step 808 the desired file was not found, then
in step 818 the importer sends a request for the file to any
pre-configured or well-known Servers that implement a pool
cache. For example, an importer may be pre-configured to
connect to certain Servers using an IP address if that Server
is known to implement a pool cache. By passing the IUI of
the desired file to the particular Server, the Server may
determine if the file is present within the pool cache by
examining the file names of its files. Other addressing
techniques may be used to form a connection with one of
these servers. If the file is found it is retrieved and the
procedure ends.
0115) In step 808 these peer computers may be dedicated
pool cache Servers that are dedicated to collecting and
storing files that are identified by their IUI. In this fashion,
broadcasting to these pool Servers is efficient in that there is
a high likelihood that one of the servers has the desired file
in its cache. The broadcast may also reach certain Software
agents located on the computers whose primary function is
to generate the unique identifierS Such as is described in
FIGS. 4 and 8. These software agents may also store the
files and their associated IUIs in a pool cache of their own
or in local conventional Storage.

Oct. 6, 2005

0116. If the file is not found in step 818 then in step 820
the importer looks for the desired file on any mounted
Volumes of file Servers attached to the local area network. In
this situation, the file Servers identified may not necessarily
implement a pool cache in a Standard format, but nonethe
leSS may store the desired file on a mounted Volume Such as
in RAM, on disk, etc. The identified IUI may be used to find
the desired file using any of the techniques discussed in Step
802. If the file is found it is retrieved and the procedure ends.
If the file is not found, then in step 822 the importer looks
for the desired file on any suitable FTP server using a URL,
for example. In this situation the FTP servers may be
accessed over the Internet using a URL and are passed the
IUI of the desired file. As the servers may not implement a
pool cache in a Standard format, any of the techniques
described in step 802 may be used to find the desired file on
the FTP server. If the file is found it is retrieved and the
procedure ends.

0.117) If the file is not found, other techniques may be
used Such as making a request over a GSM telephone and
retrieval via Satellite, using a web search engine to find the
file associated with an IUI etc. An error handler may be
invoked in Step 824 to return a Suitable error message if
necessary. Thus, the procedure of FIG. 11 describes a
technique by wish a desired file is Searched for in an efficient
manner using its IUI. Local and likely places for the file are
Searched first while the remote and less likely places are
Searched later.

EXAMPLES OF USE

0118. The various embodiments described herein are
Suitable for use in a wide range of technical and business
applications. For example, the invention is useful in the
Secure Storage of documents, in acceSS control, in eScrow of
documents, for encryption issues, and in reliably proving
creation of documents. The following examples may be
implemented using any of the embodiments described
herein, for example the embodiment of FIG. 2, the embodi
ment of FIG. 3 or the embodiment of FIG. 7.

0119 For any application, meta data 470 of flattened
descriptor file 460 may be used to help an interested party
Search for and find content of interest. For example, consider
a book whose chapters are encrypted and distributed on the
Internet using an embodiment of the present invention. Meta
data 470 may include keywords that help to describe the
book, and locations where user MD5 may be found and
payment made to receive key MD5. Thus, as the flattened
descriptor file is not encrypted, an interested party can
perform a Search on the Internet for a book using author,
Subject or title keywords; if these keywords are present in
meta data 470, then the party may retrieve the flattened
descriptor file and eventually retrieve the book using
embodiments described herein.

0120 In the area of the secure storage, it is often desir
able to be able to Store documents in a public location that
may be easily accessed by certain entities but not allow the
documents to be opened or read except by authorized
parties. FIG. 12 is a block diagram illustrating a use of the
invention in the Secure Storage area. In this example, a bank
desires to digitize a customer's Signature card and have it
available for its distributed terminals to access and verify.
One difficulty is that the card must be kept secure and not

US 2005/0223224 A1

released to outside parties. The digital signature card file 902
is processed using an embodiment of the present invention
904 to produce a key MD5906 and a master MD5908. As
part of the process an encrypted version of the card file 910
is also produced. When implemented using the embodiment
of FIG. 2, key 906 corresponds to MD5106 and master 908
corresponds to MD5 114. In the embodiment of FIG. 3, the
card file may be combined with other file and/or bank or card
meta data to produce a descriptor file which then yields key
906 and master 908. Key 906 and master 908 are then stored
Securely within a banking application 912 resident upon a
bank terminal 914. Terminal 914 may be in communication
with a bank mainframe that had originally calculated the
MD5s and downloaded them to the terminal. In this
example, Security for this master and the key are the
responsibility of the banking application.
0121 The encrypted card file 910 may then be transferred
over the Internet or Some other data link to non-Secure public
storage 916. Because file 910 is encrypted, an outside party
cannot read it even though it is Stored in public Storage.
When application 112 has a need for a particular card file, it
may then use key 906 and master 908 to retrieve the
encrypted file from public storage 916 and decrypt it. Such
a Scenario is possible with multiple customer files and/or
other types of documents. Other Secure Storage applications
may be found in areas Such as insurance and health.
0.122 FIG. 13 is a block diagram illustrating use of an
embodiment of the invention in the area of acceSS control.
Often an entity produces documents or information that it
wishes to provide to an authorized user, but only upon
authentication of that user. Further, an entity may not wish
to perform the authentication itself, but may wish another to
perform the authentication. In this example, originator 921
has produced a file 922 that it wishes user 923 to have access
to, but only if user 923 can authenticate itself, or if a certain
time has passed, or if other conditions are met. Using a
suitable embodiment of the invention 924, file 922 is pro
cessed to produce an encrypted version 925, a key MD5 926
and a user MD5 927. If utilizing the embodiments shown in
FIG. 2 or FIG. 3, user MD5 927 would correspond to
encrypted MD5 114 or master MD5 146, respectively.
Originator 921 is then free to transfer the encrypted file to
public storage 928, to keep it itself, or even to deliver it to
user 923. Because the file is encrypted the user may not
access it.

0123) Next, user MD5 is delivered to the user via email
929, another data link, a telephone, or any other physical
exchange medium. By possession of user MD5, user 923
may locate and retrieve the encrypted file but will not be able
to decrypt it. Concurrently or thereafter, the two MD5s are
transmitted to an authentication database 931 in a Secure
manner. For example, an Internet connection 930 using SSL
may be used. A Secure connection is preferred, as possession
of both MD5s would allow any party to read the encrypted
file. Database 93.1 may be present upon any suitable authen
tication Server that acts an authenticating agent for originator
921. For example, the server may be an LDAP server and
protocol 930 and 935 may be secure LDAP protocols. Both
MD5s are stored in a record 932 of the database along with
authentication information 933. Information 933 is any
suitable information suitable for authenticating user 923,
Such as a password. The authentication Server also contains
any of a wide variety of authenticating mechanisms for

Oct. 6, 2005

authenticating outside parties. Such authentication mecha
nisms are well known in the art.

0.124. In order to access the encrypted file, user 923
delivers via a data link 934 both the user MD5 and the user's
authentication information. The user MD5serves as a record
locator within the database to locate the correct key and
authentication information. The authentication Server next
authenticates the user by comparing the authentication infor
mation or by performing Some other well-known process. If
authentic, the key MD5 is then delivered via a data link 935
back to user 923. Preferably, link 935 is a secure link such
a an SSL protocol that protects the key. Once user 923 is in
possession of key MD5, it may now decrypt the encrypted
file directly, or by way of decrypting an encrypted descriptor
file.

0.125. In this example, originator 92.1 may decide to
revoke the user's privilege to view the file at any time by
Simply communicating with the authentication Server. The
server would then be directed to always to decline authen
tication for the user. Alternatively, record 932 may be
asSociated with any number of users that might be authen
ticated to download key MD5.
0.126 In another area of access control, files embodying
music may be delivered to a user over the Internet who is not
allowed to access the files until he or she has paid. Using the
embodiment of FIG. 3, for example, the encrypted files may
be delivered with a master MD5, or with the encrypted
descriptor file 142 itself. Once the user completes a credit
card payment over the Internet, the issuing entity delivers
key MD5 138 to the user which allows the user to decrypt
the descriptor file. Once decrypted, the user has access to the
plaintext MD5s which allows the user to decrypt the music
files. Alternatively, the encrypted music files are not deliv
ered to the user, but are located and retrieved by the user
using the encrypted MD5 114 included in the descriptor file.
Other examples in the area of access control in which this
embodiment may be useful are publishing on the Internet.
0127 FIG. 14 is a block diagram illustrating use of an
embodiment of the invention for eScrow purposes. A wide
variety of information may be put into escrow Such as
experimental records, legal documents, government records,
etc. In this example, Software company 942 produces a
Software program in the form of a software file 944 which
is used by a software user 946. For any of a number of
reasons, both parties have agreed that the Software files will
put in to escrow for later access by the user if needed. The
company, however, does not wish anyone to have access to
the files unless the proper conditions are met. Accordingly,
an embodiment of the invention 948 processes files 944 to
produces encrypted files 950, a key MD5 952 and a user
MD5954. User MD5 is then provided to the software user.
In the embodiment of FIG. 7, files 950 may be retrieved by
the user using a flattened descriptor file, or the file may
Simply be delivered to the user from the Software company.
In the embodiment of FIG. 3, user MD5 corresponds to
master MD5 146 and the encrypted files may be stored in a
public location held by escrow agent 956, or may be even by
delivered from the company to the user.
0128. Key MD5 952 is delivered to escrow agent 956
who retains it until a condition previously agreed upon by
the company and the user is met. Upon Satisfaction of the
condition, key 952 is delivered 958 to the user using any

US 2005/0223224 A1

Suitable means. Once in possession of the key, the user may
decrypt an encrypted descriptor file to obtain the plaintext
MD5s which will allow the user to decrypt and read the files
950. Thus, software escrow is made simpler.
0129. In another example of escrow, a pharmaceutical
company is in the process of getting a drug approved and is
generating Voluminous evidence and clinical data that it may
need to provide to the FDA. The company may wish to
Speed up the approval process and insure that its massive
amounts of data cannot be altered over time. The FDA, in a
Similar fashion, desires an assurance that Such clinical data
if held in eScrow does not change over time. Using an
embodiment of the present invention, a single MD5 (or other
type of identifier) can represent an enormous amount of data
and insure to the FDA that the documents originally used to
create the MD5 have not changed since that time.
0.130. In this example, the company regularly generates a
user MD5 and a key MD5 based upon any number of data
files that the government may need to access. The user MD5
is then delivered to the FDA, at the same time the data files
may be held by an eScrow agent, put into public Storage, or
even delivered to the government. Because the company
may wish to limit access to the data files should the approval
proceSS be abandoned, the files have previously been
encrypted using an embodiment of the invention. Advanta
geously, should the company forgo the approval process, it
may choose not to deliver the key MD5 to the FDA and as
such the FDA (or anyone else) would be unable to decrypt
the descriptor file.
0131. At the end of the approval process, the company
delivers the key MD5 to the FDA who may then use it in
conjunction with the user MD5 to decrypt the data files and
View them. The company is protected against anyone View
ing their files prematurely. The FDA is protected against the
data being changed in the meantime, because the user MD5
and the key MD5 guarantee that the files eventually
decrypted are the ones that were originally used to create the
user MD5 and they key MD5.
0132) The present invention may also be used in situa
tions where the government or other entity is concerned
about an entity using encryption that is unbreakable. For
national Security reasons, the government may wish at Some
point to decrypt private party communications. In this
example, the private party agrees to encrypt their commu
nications using an embodiment of the present invention in
which a key MD5 and a master MD5 (or a user MD5) are
generated. The files that have been encrypted by the private
party are delivered to public Storage or to a government
Server for Safekeeping. Based upon accepted legal principles
and an agreement between the private party and the gov
ernment, the key MD5 and the master MD5 are delivered to
a Suitable government agency for Safekeeping. If at Some
future time it is legally determined that the communications
of the private party must be decrypted, the government
agency may release both the key MD5 and the master MD5
to an appropriate legal entity who would then be able to not
only locate and access the files but to decrypt them. Further,
due to the nature of the present invention, both parties are
Virtually assured that the files eventually decrypted are the
original files making up the Secret communications of the
private party.
0.133 Embodiments of the present invention may also be
used to prove the existence of records on a particular date.

Oct. 6, 2005

For example, consider an individual inventor who is work
ing diligently to perfect an invention. His records include
digital text files, digital drawings, and/or handwritten docu
ments which may be digitized. On a particular date, the
inventor uses an embodiment of the invention to create a key
MD5 and a master MD5 (or a user MD5) for all of his
records in the form of computer files. The single MD5 is
then delivered to the Patent Office. The Patent Office logs the
MD5 as being received on a certain date and keeps it for
safekeeping. Both the master MD5 and the key MD5 remain
with the individual inventor. The actual digital files
(encrypted) may be kept by the inventor, placed in public
Storage, or even delivered to the government.

0.134 Should the inventor wish to abandon his invention
and not disclose it, he simply need not provide the key MD5
to the Patent Office and the files would not be able to be
decrypted. If the inventor desires to prove a date of concep
tion some time later, the key MD5 is delivered to the Patent
Office which then has the capability to locate and decrypt the
inventor's original documents. By virtue of the original
master MD5 being logged on particular date, it may be
reliably be proven that the original documents that are
eventually decrypted using the master MD5 and the key
MD5 where in fact in existence on that earlier date.

0135) In another example on how the present invention
may be used to prove the existence of records on a particular
date, consider a Notary Public with access to the Internet. A
party who desires proof of the existence of a document on
a particular date uses an embodiment of the invention to
generate a unique MD5 for that document. For example, the
embodiments of FIG. 2, FIG. 3 or FIG.7 may be used, in
which case the user generates MD5114, master MD5146 or
user MD5 464. The user sends the MD5 (preferably
encoded) to the Notary via electronic mail or some other
suitable method on a particular date. The Notary receives the
MD5, logs it, and notarizes it as being received on a
particular date. At a later point in time, the corresponding
key MD5 may be provided by the user to reliably prove that
the document identified by the original MD5 was in exist
ence on the date that the Notary received the original MD5.

0136. A generated intrinsic unique identifier (IUI), such
as an alphanumeric encoded MD5, may be embedded in,
transported, or attached to a wide variety of physical objects.
For example, either MD5 may be received embedded in an
electronic mail message to specify a set of files. Alterna
tively, the MD5s may be generated automatically by a
network device performing the backup of the files and
directories specified. The MD5s may be produced by a
busineSS application, thus Sealing the relevant digital infor
mation relating to a particular transaction. In addition, MD5S
may be generated for other reasons by any user, network
node, application or hardware device that needs to uniquely
specify a file or group of files for some purpose. Such MD5s
may be embedded in and readily accessed from database
applications, legacy applications running on mainframes,
text retrieval applications, web sites, etc.

0137) Further, an IUI (such as an alphanumeric encoded
MD5) might be placed into digital content to identify that
content, authorize its use, address further information, etc.
For example, a music file such as the MP3 format might mix
in, “splice,” or use a watermark to embed an IUI into the

US 2005/0223224 A1

actual music file. Such an IUI might also be embedded into
genetic material to reference further information about that
genetic material.
0138 An IUI might be attached physically to a physical
object to provide a reference for extensive information about
that object. For example, a bar code representing an IUI
might be present on a home appliance and represent a user's
manual. Or, the alphanumeric representation of an IUI may
be present on an object; a user might then type the IUI into
a computer to receive files over the Internet about that
object.
0.139. An IUI might be present within memory of a
computing device to reference much more extensive pro
gramming or data for that device. For example, consider a
typical Smart card with a memory capacity of 2K bytes. This
limited memory Space is used for Small programs and data.
When inserted into a Smart card terminal, Such as an ATM,
connections are made with other computing devices to
execute the limited program and data Stored on the Smart
card. To expand the uSable program size, or the number of
programs executable on a Smart card, an IUI is embedded in
memory of the Smart card. The IUI uniquely identifies
additional programs or data that can be loaded onto the Smart
card, or executed by the terminal or Smart card. The same
would work with other portable devices such as mobile
telephones, personal digital assistants, etc.

COMPUTER SYSTEM EMBODIMENT

0140 FIG. 15 is a block diagram illustrating a computer
network environment Suitable for use with an embodiment
of the invention. User computer 962 connected to LAN 964
along with other computers access Internet 968 via a server
computer 966. Connected thereto is another server computer
974 attached to LAN 970 that includes user computer 972.
AS embodied in a Software program, agent Software residing
upon either computer 962 or 972 is arranged to implement
the flows for FIGS. 4 and 8 and produce encrypted files,
descriptor files and the intrinsic unique identifiers. The files
and identifier may then be held locally or distributed
throughout the network in any Suitable fashion.
0141 When implementing the flows of FIGS. 9 or 10,
computer 972 includes agent software that identifies an
intrinsic unique identifier and begins to look for it. If not
found locally, the request for a file or files is handled by
server computer 974 that implements server Software. Such
server software may implement the flows of FIG. 9 and 10
and portions of FIG. 11 to look for, retrieve, decrypt and
deliver the requested files to computer 972. In an alternative
embodiment, the functions implemented by the agent Soft
ware and the Server Software need not be separated, but may
be embodied within a single Software program that is present
on one computer or any number of computers.
0142 FIGS. 16 and 17 illustrate a computer system 1000
Suitable for implementing any of the computers mentioned
herein. FIG. 16 shows one possible physical form of the
computer System. Of course, the computer System may have
many physical forms ranging from an integrated circuit, a
printed circuit board and a Small handheld device up to a
huge Super computer. Computer system 1000 includes a
monitor 1002, a display 1004, a housing 1006, a disk drive
1008, a keyboard 1010 and a mouse 1012. Disk 1014 is a
computer-readable medium used to transfer data to and from
computer system 1000.

Oct. 6, 2005

0.143 FIG. 17 is an example of a block diagram for
computer system 1000. Attached to system bus 1020 are a
wide variety of subsystems. Processor(s) 1022 (also referred
to as central processing units, or CPUs) are coupled to
storage devices including memory 1024. Memory 1024
includes random access memory (RAM) and read-only
memory (ROM). As is well known in the art, ROM acts to
transfer data and instructions uni-directionally to the CPU
and RAM is used typically to transfer data and instructions
in a bi-directional manner. Both of these types of memories
may include any Suitable of the computer-readable media
described below. A fixed disk 1026 is also coupled bi
directionally to CPU 1022; it provides additional data stor
age capacity and may also include any of the computer
readable media described below. Fixed disk 1026 may be
used to Store programs, data and the like and is typically a
Secondary Storage medium (Such as a hard disk) that is
slower than primary Storage. It will be appreciated that the
information retained within fixed disk 1026, may, in appro
priate cases, be incorporated in Standard fashion as virtual
memory in memory 1024. Removable disk 1014 may take
the form of any of the computer-readable media described
below.

0144) CPU 1022 is also coupled to a variety of input/
output devices such as display 1004, keyboard 1010, mouse
1012 and speakers 1030. In general, an input/output device
maybe any of Video displays, track balls, mice, keyboards,
microphones, touch-Sensitive displays, transducer card read
erS, magnetic or paper tape readers, tablets, Styluses, Voice
or handwriting recognizers, biometrics readers, or other
computers. CPU 1022 optionally may be coupled to another
computer or telecommunications network using network
interface 1040. With Such a network interface, it is contem
plated that the CPU might receive information from the
network, or might output information to the network in the
course of performing the above-described method StepS.
Furthermore, method embodiments of the present invention
may execute solely upon CPU 1022 or may execute over a
network Such as the Internet in conjunction with a remote
CPU that shares a portion of the processing.
0145. In addition, embodiments of the present invention
further relate to computer Storage products with a computer
readable medium that have computer code thereon for
performing various computer-implemented operations. The
media and computer code may be those Specially designed
and constructed for the purposes of the present invention, or
they may be of the kind well known and available to those
having skill in the computer Software arts. Examples of
computer-readable media include, but are not limited to:
magnetic media Such as hard disks, floppy disks, and mag
netic tape, optical media Such as CD-ROMs and holographic
devices, magneto-optical media Such as floptical disks, and
hardware devices that are Specially configured to Store and
execute program code, Such as application-Specific inte
grated circuits (ASICs), programmable logic devices (PLDs)
and ROM and RAM devices. Examples of computer code
include machine code, Such as produced by a compiler, and
files containing higher level code that are executed by a
computer using an interpreter.

0146 Although the foregoing invention has been
described in Some detail for purposes of clarity of under
Standing, it will be apparent that certain changes and modi
fications may be practiced within the Scope of the appended

US 2005/0223224 A1

claims. For example, in the embodiment of FIG. 7, the key
identifier could be provided first to a user, and then the
master identifier later, instead of the other way around.
Therefore, the described embodiments should be taken as
illustrative and not restrictive, and the invention should not
be limited to the details given herein but should be defined
by the following claims and their full Scope of equivalents.

1. A method comprising:
generating a first unique identifier for a binary asset, Said

first unique identifier being computed from at least a
portion of the contents of Said binary asset and uniquely
identifying Said binary asset; and

encrypting Said binary asset using Said first unique iden
tifier as a key, Said encrypting resulting in an encrypted
version of Said binary asset.

2. A method as recited in claim 1 further comprising:
generating a Second unique identifier for Said encrypted

version of Said binary asset, Said Second unique iden
tifier being computed from at least a portion of Said
encrypted version of Said binary asset and uniquely
identifying Said encrypted version of Said binary asset;
and

providing Said Second unique identifier for the retrieval of
Said encrypted version of Said binary asset, whereby
Said Second unique identifier may be used to locate said
encrypted version.

3. (canceled)
4. A method comprising:

generating a first file identifier for a file, Said first file
identifier being computed from at least a portion of Said
file and uniquely identifying Said file;

encrypting Said file using Said first file identifier as a key,
Said encrypting producing an encrypted file;

generating a Second file identifier for Said encrypted file,
Said Second file identifier being computed from at least
a portion of Said encrypted file and uniquely identifying
Said encrypted file, and

providing Said first file identifier and Said Second file
identifier for the retrieval of said file, whereby said
Second file identifier may be used to locate Said
encrypted file, and Said first file identifier may be used
to decrypt Said encrypted file to produce Said file.

5. A method as recited in claim 4 wherein the act of
generating the first file identifier further comprises generat
ing the first file identifier using a first hash function and the
act of generating the Second file identifier further comprises
generating the first file identifier using a Second hash func
tion.

6. A method as recited in claim 4 further comprising:
compressing Said file in conjunction with Said encrypting.
7. (canceled)
8. A method of uniquely and Securely identifying a group

of binary assets, each binary asset representing digital infor
mation, Said method comprising:

computing an intrinsic unique identifier (IUI) for each of
Said binary assets,

Oct. 6, 2005

encrypting each of Said binary assets using the IUI of each
asset as its key to produce an encrypted version of each
of Said binary assets,

computing an IUI of each of Said encrypted versions,
creating a file that includes Said IUIS of Said binary assets

and Said IUIs of Said encrypted versions,
computing a key IUI for Said file;
encrypting Said file using Said key IUI to produce an

encrypted file, and
computing a master IUI for Said encrypted file, whereby

Said key IUI and Said master IUI uniquely represent
Said binary assets and may be used to locate Said assets.

9. A method as recited in claim 8 wherein said intrinsic
unique identifiers are computed from a portion of the asset
or file for which they are computed, and uniquely identify
the asset or file for which they are computed.

10. A method as recited in claim 9 wherein each IUI is
calculated using a hash function.

11. A method as recited in claim 8 further comprising,
compressing each of Said binary assets.
12. A method as recited in claim 8 further comprising:
creating a flattened file that includes said IUIs of said

encrypted versions of Said binary assets and Said master
IUI; and

computing a user IUI of Said flattened file, whereby a user
provided with said user IUI may retrieve said flattened
file and thereby retrieve Said encrypted versions of Said
binary assets and retrieve Said encrypted file.

13. A descriptor file data structure that reliably identifies
a plurality of files, Said data structure comprising:

a file name for each of Said files,
meta data for each file indicating attributes of each file;
a first intrinsic unique identifier (IUI) for each of said

files, each IUI being calculated from the contents of its
corresponding file and uniquely identifying its corre
sponding file, and

a Second IUI associated with each of Said files, each
Second IUI being calculated from an encrypted version
of its associated file, each file being encrypted using its
asSociated first IUI as a key,

wherein Said Second IUIs may be used to locate Said
encrypted versions of Said files, and Said first IUIS may
be used to decrypt Said encrypted versions to obtain the
non-encrypted versions of Said files.

14. A descriptor file as recited in claim 13 wherein said
descriptor file is encrypted using its own IUI as a key, Said
IUI of said descriptor file being calculated from the content
of Said descriptor file and uniquely identifying Said descrip
tor file.

15. A method of uniquely and Securely identifying a group
of files, Said method comprising:

creating a key file that includes a plurality of crypto
graphic keys, each key being associated with one of
Said group of files,

computing a unique identifier for Said key file, Said key
file identifier being calculated from a portion of the
contents of Said key file;

US 2005/0223224 A1

encrypting Said key file using Said key file identifier to
produce an encrypted key file;

computing a unique identifier for Said encrypted key file,
Said encrypted key file identifier be calculated from a
portion of the contents of Said encrypted key file;

creating a flattened file that includes Said encrypted key
file identifier and unique identifiers for encrypted ver
Sion of Said files, each unique identifier of one of Said
encrypted files being calculated from the contents of its
asSociated encrypted file, each encrypted file having
been encrypted using its associated key to encrypted
the plaintext version of the file; and

computing a user unique identifier for Said flattened file,
Said user unique identifier be calculated from a portion
of the contents of said flattened file, whereby a user
provided with Said user unique identifier may retrieve
Said flattened file and Said encrypted versions of Said
files, and when provided with said key file identifier
Said user may decrypt said encrypted files.

16. A method as recited in claim 15 wherein each of said
keys is a unique identifier for its associated file and is
calculated from a portion of the contents of its associated
file.

17. A method as recited in claim 15 wherein said key file
includes meta data for each of Said files along with its
asSociated key.

18. A method of reliably retrieving a secure file, said
method comprising:

receiving an intrinsic unique identifier for an encrypted
version of said file;

retrieving Said encrypted version of Said file using Said
IUI of said encrypted versions;

receiving an IUI for the non-encrypted version of Said file;
and

decrypting Said encrypted version of Said file using Said
IUI of Said non-encrypted version as a key to obtain the
non-encrypted version of said file, whereby said IUI of
Said encrypted version and Said IUI of Said non
encrypted version provide access to the contents of Said
file.

19. A method as recited in claim 18 further comprising:
decompressing Said encrypting version of Said file in

conjunction with Said decrypting.
20. A method as recited in claim 18 wherein said intrinsic

unique identifiers for Said encrypted version and Said non
encrypted version are respectively calculated from the con
tents of Said encrypted version and Said non-encrypted
version.

21. A method of obtaining a data file that has been
Securely Stored, Said method comprising:

receiving a master identifier that uniquely identifies an
encrypted file;

retrieving Said encrypted file using Said master identifier;
receiving a key identifier that uniquely identifies the

non-encrypted version of Said encrypted file;
decrypting Said encrypted file using Said key identifier to

obtain Said non-encrypted version, Said non-encrypted

16
Oct. 6, 2005

Version including a data file identifier that uniquely
identifies a data file and an encrypted version of Said
data file;

retrieving Said encrypted version of Said data file using
Said encrypted identifier; and

decrypting Said encrypted data file using Said data file
identifier as a decryption key, whereby Said non-en
crypted version of Said data file is obtained.

22. A method as recited in claim 21 wherein Said non
encrypted file includes meta data for Said data file and Said
method further comprises:

building a portion of a directory Structure using Said meta
data.

23. A method as recited in claim 21 wherein Said non
encrypted file includes a plurality of data file identifiers that
each uniquely identifies a data file, and a plurality of
encrypted identifiers that each uniquely identifies an
encrypted version of one of Said data files, Said method
further comprising:

retrieving Said encrypted versions of Said data files using
Said encrypted identifiers, and

decrypting Said encrypted data files using Said data file
identifiers as decryption keys.

24. A method as recited in claim 21 further comprising:
calculating a new key identifier for Said non-encrypted

file; and
comparing Said new key identifier to Said key identifier to

authenticate Said non-encrypted file.
25. A method as recited in claim 21 further comprising:
calculating a new data file identifier for Said data file, and
comparing Said new data file identifier to Said data file

identifier to authenticate Said data file.
26. A method of obtaining a data file that has been

Securely Stored, Said method comprising:

receiving a user identifier that uniquely identifies a non
encrypted first file, Said non-encrypted first file includ
ing a unique identifier identifying an encrypted version
of Said data file and a master identifier that uniquely
identifies an encrypted version of a descriptor file,

retrieving Said non-encrypted first file using Said user
identifier;

retrieving Said encrypted descriptor file using Said master
identifier;

retrieving Said encrypted data file using Said unique
identifier for Said encrypted version of Said data file;

receiving a key identifier that uniquely identifies the
non-encrypted version of Said encrypted descriptor file;

decrypting Said encrypted descriptor fie using Said key
identifier to obtain Said non-encrypted version of Said
descriptor file, Said non-encrypted version including a
data file identifier that uniquely identifies said data file;
and

decrypting Said encrypted data file using Said data file
identifier as a decryption key, whereby Said non-en
crypted version of Said data file is obtained.

US 2005/0223224 A1

27. A method as recited in claim 26 wherein sad non
encrypted descriptor file includes meta data for Said data file
and Said method further comprises:

building a portion of a directory Structure for Said data file
using Said meta data.

28. A method as recited in claim 26 wherein said non
encrypted first file includes a plurality of encrypted identi
fiers that each uniquely identifies an encrypted version of
one of a plurality of data files, and wherein Said descriptor
file includes a plurality of a data file identifiers that each
uniquely identifies one of Said data files, said method further
comprising:

retrieving Said encrypted versions of Said data files using
Said encrypted identifiers, and

decrypting Said encrypted data files using Said data file
identifiers as decryption keys.

29. A method as recited in claim 26 further comprising:
calculating a new key identifier for Said non-encrypted

descriptor file; and

Oct. 6, 2005

comparing Said new key identifier to Said key identifier to
authenticate Said non-encrypted descriptor file.

30. A method as recited in claim 26 further comprising:

calculating a new data file identifier for Said data file, and

comparing Said new data file identifier to Said data file
identifier to authenticate Said data file.

31. The method of claim 1, further comprising an act of:

decrypting Said encrypted version of Said binary asset
using Said first unique identifier to generate a decrypted
Version of Said binary asset.

32. The method of claim 31, further comprising an act of:

Verifying the integrity of Said decrypted version of Said
binary asset using Said first unique identifier.

33. The method of claim 5, wherein the first hash function
and the Second hash function are a same hash function.

