NEW EUROPEAN PATENT SPECIFICATION

(51) Int Cl.7: B29D 30/06, B29C 33/10

(45) Date of publication and mention of the opposition decision: 08.12.2004 Bulletin 2004/50

(45) Mention of the grant of the patent: 28.03.2001 Bulletin 2001/13

(21) Application number: 95201946.1

(22) Date of filing: 14.07.1995

(54) Ventless segmented tyre mould and method for vulcanizing tyres using such a mould
Entlüftungslose segmentierte Reifenform und ihre Verwendung zum Vulkanisieren von Reifen
Moule à secteurs sans moyens de dégazage et procédé de vulcanisation de pneus utilisant ce moule

(84) Designated Contracting States: DE ES FR GB IT

(43) Date of publication of application: 20.03.1996 Bulletin 1996/12

(73) Proprietor: THE GOODYEAR TIRE & RUBBER COMPANY
Akron, Ohio 44316-0001 (US)

(72) Inventors:
• Moris-Herbeuval, Véronique
 B-6700 Arlon (BE)
• Merx, Raymond
 L-6145 Junglinster (LU)
• Schmitt, Klaus
 D-54675 Biesdorf (DE)
• Dernbach, Helmut
 Cuyahoga Falls, OH 44223 (US)
• Miller, Craig David
 Norton, OH 44203 (US)
• Jacobs, Bernard Byron
 Akron, OH 44319 (US)

(74) Representative: Kutsch, Bernd
Goodyear S.A.
Patent Department
7750 Colmar-Berg (LU)

(56) References cited:
DE-A-1 919 884 FR-A-1 574 373

Printed by Jouve, 75001 PARIS (FR)
Description

[0001] This invention relates to molds for producing tires and methods associated therewith, and more particularly to tire mold having no vents.

[0002] Tires have long been manufactured by vulcanization within a tire mold. For example, in US-A-4 957 656 (GREENWOOD), a two-piece tire mold featuring various seals and pressurized compartments is disclosed. Further, in GB-B-630 231 (DUNLOP RUBBER CO., LTD.) another two-piece tire mold utilizing a vacuum is disclosed.

[0003] One form of tire mold which has gained popularity in recent years is the segmented tire mold, as opposed to a two-piece tire mold. Examples of segmented tire molds include US-A-3 779 677 and US-A-3 867 504 (GREENWOOD).

[0004] Typical tire molds have small holes or vents to allow air trapped within the mold to escape. When the tire is vulcanized and removed from the mold, rubber that has been vulcanized within the vents in the mold extends outwardly from the surface of the tire in the form of burrs or extensions. These burrs detract from the tire's appearance and may be shaved from the tire as a final step in the tire manufacturing process. While the rubber burrs were a necessary result of the tire manufacturing process, they were undesirable for several reasons. First, the extensions were a waste of rubber. Second, they created an undesirable source of scrap material which must be collected and properly disposed of. Third, the removal of the burrs required an extra step in the tire manufacturing process, thus raising the cost of manufacturing the tire due to the extra space, labor and equipment required. Fourth, the cost of the molds was increased and the cost of cleaning the vents is substantial. Tires may be less expensive and more attractive in appearance when such burrs are eliminated.

[0005] One way to eliminate such rubber burrs is to vulcanize the tire in a ventless mold. An example of a ventless segmented mold is shown and described in US-A-4 573 894 (BLAYNE et al).

[0006] US-A-4 573 894 describes an apparatus for providing a vacuum in a ventless segmented tire mold having an upper sidewall assembly and a lower sidewall assembly a plurality of radially moveable tread mold segments operable with said upper sidewall assembly and said lower sidewall assembly to define a tire mold cavity in the closed position of said tire mold (10), a conical actuating ring assembly surrounding said mold segments and slidably engageable with said mold segments to provide radial movement of said mold segments into engagement with said upper sidewall assembly and said lower sidewall assembly said apparatus comprising

(a) a first sealing means between said actuating ring assembly and said lower sidewall assembly; and
(b) a second sealing means between said actuating ring assembly and said upper sidewall assembly;
(c) said first sealing means and said second sealing means being operative to seal a space defined by said actuating ring assembly, said upper sidewall assembly, said lower sidewall assembly and an associated tire in said tire mold cavity said space being sealed while said tread mold segments are spaced from said associated tire; and,
(d) means for communicating said vacuum to said space for removing gases from said tire mold cavity upon closing of said mold.

[0008] The present invention is directed to ventless segmented tire molds and various methods of using them. The ventless segmented tire molds and methods embodying the invention are simple in design, effective in use, and adaptable for production of tires on a commercial scale.

SUMMARY OF THE INVENTION

[0009] In accordance with the present invention, there is provided an apparatus for providing a vacuum in a segmented tire mold as defined in the claims.

[0010] One advantage of the invention is the provision of a tire mold which does not require the shaving of burrs from a tire after it is removed from the mold, thereby saving a step in the manufacturing process and enabling the same quality of tire to be produced faster and more inexpensively.

[0011] Another advantage of the invention is the provision of a tire with an improved appearance.

DESCRIPTION OF THE DRAWINGS

[0012] The invention may take physical form in certain parts and arrangements of parts, preferred embodiments of which will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof and wherein:

[0013] Figure 1 is a cross-sectional view of one half of a ventless segmented tire mold according to the invention.

[0014] Figure 2 is a cross-sectional view taken along line 2-2 of Figure 1, illustrating one of the retainer tees.

[0015] Figures 3-6 are schematic cross-sectional views illustrating steps in a method of installing a tire mold according to the invention.

[0016] Figures 7-11 are cross-sectional views of a method of disassembling a tire mold according to the invention.

[0017] Figure 12 is a cross-sectional view of one half of a tire mold according to an alternate embodiment of the invention.

[0018] Figure 13 is a cross-sectional view of one half
of a tire mold according to another embodiment of the invention.

[0019] Figure 14 is a cross-sectional schematic view of a support rod for a tire mold made according to one embodiment of the invention.

[0020] Figure 15 is a cross-sectional view of one half of a tire mold made according to another embodiment of the invention.

[0021] Figure 16 is a cross-sectional view of one half of a tire mold shown in Figure 15 when the mold is closed.

[0022] Figure 17 is a cross-sectional view of one half of a tire mold according to the invention shown with mold beginning to close.

[0023] Figure 18 is a cross-sectional view of the embodiment of the invention shown in Figure 16, but shown with the mold air tight and vacuum activated.

[0024] Figure 19 is a cross-sectional view of one half of a tire mold as shown in Figures 16 and 17, but shown with the mold closed and the vacuum shut off.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0025] Referring now to the drawings where the showings are for purposes of illustrating a preferred embodiment of the invention only and not for purposes of limiting the same, Figure 1 is a cross-sectional view of a segmented tire mold 10 according to a preferred embodiment of the invention. Primary elements of the mold 10 include an upper sidewall mold assembly 12 and a lower sidewall mold assembly 14. In the embodiment shown in Figure 1, the upper sidewall mold assembly 12 includes an upper sidewall mold plate 52. The lower sidewall assembly 14 includes a lower sidewall mold plate 56. The mold 10 further includes a tread mold segment 16. In a segmented tire mold, a plurality of tread mold segments 16 are radially moveable to assemble or disassemble the segmented tire mold 10 about the unvulcanized green tire. The operation of segmented tire molds is well-known in the art and will not be discussed further here.

[0026] In the embodiment shown in Figure 1, one of the important elements of that design is the fact that the upper sidewall mold assembly 12 is comprised of only two members, an upper sidewall mold plate 52 and O-ring 36. The fact that the upper sidewall mold plate 52 is made of only one piece makes it impervious to air. Therefore, when coupled with O-ring 36, the upper sidewall mold plate 52 provides an air barrier which is important when a vacuum is to be drawn on a tire mold cavity 18.

[0027] The upper and lower sidewall mold assemblies 12, 14 respectively and tread mold segments 16 together define a tire mold cavity 18 within the tire mold 10. The tire segments 16 are moveable radially inwardly or outwardly along a sloped slide 22 in response to vertical movement by conical actuating ring 20. The actuating ring 20 is moveable in a generally axial direction relative to the tire within the tire mold 10, or vertically with reference to Figure 1.

[0028] With continuing reference to Figure 1, a first sealing means seals a gap between the actuating ring 20 and a lower mold member 24. In a preferred embodiment, the first sealing means includes an O-ring 30 and abutting bronze cylindrical surface 32 on the actuating ring 20. The abutting bronze surface 32 is affixed to the actuating ring and abuts the lower mold member.

[0029] A second sealing means seals a gap between the actuating ring 20 and the upper sidewall mold plate 52. In the embodiment shown in Figure 1, the second sealing means comprises the O-ring 36 which abuts radially inner cylindrical surface 38.

[0030] With continuing reference to Figure 1, the upper sidewall mold plate 52 has a radially outer cylindrical surface 42 which is in alignment with the radially inner cylindrical surface 38 of the actuating ring assembly 20. The inner cylindrical surface 38 may be of bronze or other suitable bearing material.

[0031] The O-ring 36 is disposed in a circumferential groove 48 in the outer cylindrical surface 42 of the upper sidewall mold plate 52 and is in sealing engagement with the inner cylindrical surface 38 of the actuating member 20 during the time the mold 10 is closed.

[0032] With reference to Figures 1 and 2, the tread mold segments 16 are connected to the upper sidewall mold plate 52 by pocket type slots 58 which are closed at the top in the upper sidewall mold plate 52 and retainer tee members 62 on the tread mold segments 16 for sliding engagement in the pocket type slots.

[0033] With reference to Figures 3-6, the assembly of a segmented tire mold 10 according to the invention is illustrated. With reference to Figure 3, the tread mold segments 16 are assembled into slide blocks and arranged on a table 80. The table 80 has a lubricated surface so that the segments 16 may be easily arranged in their appropriate positions. The retainer tee members 62 are inserted into the pocket type slots 58. The O-ring 36 is inserted into the circumferential groove 48 in the upper sidewall mold plate 52. The upper sidewall mold plate 52 is suspended in a raised position while the tread mold segments 16 and retainer tee members 62 are slid in place.

[0034] With reference to Figure 4, when all the tread mold segments 16 are in proper position in a tread segment and upper sidewall mold plate assembly 92, the upper sidewall mold plate 52 is clamped on the table 80 with a wooden clamp bar 90 by a clamping rod 93. In some applications clamping in not necessary where the weight of the parts is sufficient to keep them in place.

[0035] With reference to Figure 5, the actuating ring 20 is fitted with O-ring 30 and lowered over the assembly 92. Stop bolts 94 shown in Figure 6 are installed. Next, the wooden clamp 90 on the upper sidewall mold plate 52 is removed by removing the clamping rod 93.

[0036] With reference to Figure 6, the assembly 92
Another important difference is the one piece upper and lower sidewall mold plates 52, 56 of the mold 10 shown in Figure 1.

[0043] Another differences is that conventional tire molds are of multiple pieces, including not only upper and lower sidewall mold plates 52, 56 but also other multiple pieces which are bolted or otherwise connected together. Because the conventional mechanisms have a plurality of components, each of the interfaces between the components must be sealed in order to draw a proper vacuum. The integral, one-piece design of the upper and lower sidewall mold plates 52, 56 of the inventive mold 10, as illustrated in Figure 1, eliminates the need for many seals. Another difference is the pocket type slots 58 as utilized in Figure 1. With a pocket type slot 58, the mold is closed at the top and the O-ring 36 provides sealing. In a conventional mold open slots at the outside diameter receive retainer tee members 62.

[0044] With continuing reference to Figure 1, another important difference in the bottom sidewall mold plate 56 is the provision of a circular flange 72 at the outside diameter of the bottom sidewall mold ring 56, as well as O-ring 30. A conventional mold does not have these features. The actuating ring 20 in the inventive mold 10 includes a bronzed radially inner cylindrical surface 38 and a bronzed radially outer cylindrical surface 32 to minimize wear and to provide a closer fit with the mating surfaces. A standard mold does not have this features.

[0045] Despite these many differences, an important attribute of the inventive mold 10 shown in Figure 1 is that it accepts the same size tires as a standard mold, fits the same presses, and provides a superior tire product with no appreciable additional difficulty.

[0046] With reference to Figure 12, another embodiment of the invention is illustrated. Many of the elements of the embodiment shown in Figure 12 are similar or the same as elements shown of the embodiment shown in Figure 1. The tire mold 10 includes an upper sidewall mold assembly 12, a lower sidewall mold assembly 14 and tread mold segments 16. In this embodiment, the upper and lower sidewall mold assemblies 12, 14 are not a single piece, as in the embodiment shown in Figure 1, but instead are comprised of several pieces. The upper sidewall mold plate 52 abuts and cooperates with upper mold support member 54 while lower sidewall mold plate 56 abuts and cooperates with lower mold support member 24. An actuating ring 20 produces radial movement of the tread mold segments 16 as illustrated previously. The actuating ring 20 is connected to the tread mold segments 16 via retraction tee bolts 96. Retainer tee members 62 slide within pocket type slots 58.

[0047] The primary differences between this embodiment and that shown in Figure 1 concerns the sealing means. An upper sealing means 130 and a lower sealing means 132. The lower sealing means 132 includes a spring sealing ring 132 mounted on the actuating ring 20. The sealing ring 132 slides against a cylindrical shell
140 fixed on a bottom container plate 142. Four flat pins 146 are used to precenter the actuating ring 20. The flat pins 146 are spaced 90° part about the circumference of the mold 10 and are located in such a way as to best use the available space within the press (not shown). For example, the available space within the tire press is square-shaped while the mold 10 is round; therefore, the pins 146 are placed in the corners of the square-shaped press space. The advantage of this arrangement is that the diameters of the actuating ring 20 and the cylindrical shell 140 do not need to be precise. The upper sealing means 130 is a sealing bladder 154. Its operation will be discussed in more detail in the following.

[0048] With reference to Figure 13, an alternate design upper sealing means 130 includes a spring ring 158 which slides against the radially inner surface 44 of the actuating ring 20. The precentering of the upper mold member 52 is accomplished by a precentering ring 160 which is made of PTFE material or an equivalent.

[0049] In the embodiment shown in Figure 13, the retainer tee members 62 shown in Figure 1 is replaced by a link system between the slide blocks and the top mold container plate 52. This link system is known in the art and is disclosed in US-A-3 779 677 (Greenwood).

[0050] With reference to Figure 14, another feature of the embodiment shown in Figure 13 is described. In Figure 14, a mechanism to provide improved centering of the upper sidewall mold plate 52 with relation to the actuating ring 20 and lower mold support member 24 is illustrated. A centering rod 166 is mounted on top of an upper press platen 168. A sleeve 170 includes a flange 172 and an extension 176. Depending on the distance the top surface 178 of the extension extends above the top surface 182 of the top press platen support 184, the mold stroke, designated by line 188, is adjustable. When the press is fully closed, the bottom surface 190 of cap 192 abuts the top surface 178 of the extension 176.

[0051] The device shown in Figure 14 may not be necessary for operation of the tire mold 10 but can be used to limit the segment retraction and so replace the stop bolts used in other designs.

[0052] With reference to Figures 15-16, the timing of the application of vacuum according to one embodiment of the invention will be illustrated. With reference to Figure 15, the mold is air-tight so that the vacuum may be communicated to the mold cavity 18. The arrows indicate the flow of air being evacuated from the mold cavity 18 by the vacuum. The sequence of operations is as follows. The lower sidewall mold support member 24 is mounted on the press board (not shown) and is stationary. The upper mold support member 54 is fastened to the top beam (not shown) of the tire press (not shown) and carries the upper sidewall mold plate 52 and the tread mold segments 16.

[0053] As the press begins to close, the upper sidewall mold plate 52 lowers the actuating ring 20, causing the tread segments 16 to swing on links 192 and move radially inwardly. Therefore, the sequence of press closing begins with the top press beam being lowered. Next the actuating ring 20 is lowered. Then the upper sidewall mold plate 52 and tread mold segment 16 are lowered. This procedure must be done in such a way as to maintain a vacuum by maintaining a seal. With reference to Figure 16, the mold is shown in the closed position with the vacuum already drawn.

[0054] With reference to Figures 17-19, another embodiment of the invention is shown. As before, many of the components are similar to the components of the other embodiments shown in the other Figures. The tire mold 10 includes an upper sidewall mold plate 52, a lower sidewall mold plate 56, tread mold segments 16 and actuating ring 20. With reference to Figure 17, the upper sealing means 130 is a sealing bladder 154. The sealing means further includes O-rings 194,196. The lower sealing means includes O-rings 200 and 202. In Figure 17, when the actuating ring 20 moves radially upward, the tread mold segments 16 move radially outward. The seal is maintained by the bladder 154 stretching and reorienting.

[0055] With reference to Figure 18, the next step in the sequence is illustrated, wherein the actuating ring 20 moves downward, causing the tread mold segment 16 to move radially inward, and lessening the stretch on bladder 154. Vacuum is communicated by passageway 210 and the mold 10 is evacuated.

[0056] With reference to Figure 19, the mold 10 is shown in a closed position and the vacuum is shut off while the tire 214 is vulcanized.

[0057] While a certain representative embodiment and details have been shown for the purpose of illustrating the invention, it will be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the claims.

Claims

1. Apparatus for providing a vacuum in a ventless segmented tire mold (10) having an upper sidewall assembly (12) including an upper sidewall mold plate (52) and a lower sidewall assembly (14), a plurality of radially moveable tread mold segments (16) operable with said upper sidewall assembly (12) and said lower sidewall assembly (14) to define a tire mold cavity (18) in the closed position of said tire mold (10), a conical actuating ring assembly (20) including a conical ring surrounding said mold segments and slidably engagable with said mold segments (16) to provide radial movement of said mold segments into engagement with said upper sidewall assembly (12) and said lower sidewall assembly (14), said apparatus comprising

 (a) a first sealing means between said actuating
ring assembly (20) and said lower sidewall assembly (14);

(b) a second sealing means between said conical ring of said actuating ring assembly (20) and said upper sidewall mold plate (52) of said upper sidewall assembly (12) or between said conical ring and an upper mold support member (54) abutting said upper sidewall mold plate (52);

(c) said first sealing means and said second sealing means being operative to seal a space defined by said actuating ring assembly (20), said upper sidewall assembly (12), said lower sidewall assembly (14) and an associated tire in said tire mold cavity (18), said space being sealed while said tread mold segments are spaced from said associated tire; and,

(d) means for communicating said vacuum to said space for removing gases from said tire mold cavity (18) upon closing of said mold (10).

2. Apparatus in accordance with claim 1 characterized by said upper sidewall assembly (12) having a radially outer cylindrical surface (42) on one of said upper sidewall mold plate (52) and said upper mold support member (54), said conical ring of said actuating ring assembly (20) having a radially inner cylindrical surface (38) in alignment with said outer cylindrical surface (42) of said upper sidewall assembly (12) and said second sealing means being disposed between said outer cylindrical surface (42) of said upper sidewall assembly (12) and said inner cylindrical surface (38) of said conical ring of said actuating ring assembly (20).

3. Apparatus in accordance with claim 2 further characterized by said second sealing means comprising a bladder ring (154) having a radially inner edge fastened to said upper sidewall assembly (12) and a radially outer edge fastened to said conical ring of said actuating ring assembly (20).

6. Apparatus in accordance with claim 1 further characterized by said upper sidewall assembly (12) comprising an integral upper sidewall mold plate (52) and said second sealing means including an O-ring (36) on said upper sidewall mold plate.

Patentansprüche

1. Vorrichtung zum Erzeugen eines Vakuums in einer entlüftungslösen, segmentierten Reifenform (10) mit einer oberen Seitenwandanordnung (12), die eine obere Seitenwandformplatte (52) umfasst, und einer unteren Seitenwandanordnung (14), einer Vielzahl von radial bewegbaren Laufflächenformsegmenten (16), die mit der oberen Seitenwandanordnung (12) und der unteren Seitenwandanordnung (14) betrieben werden können, um einen Reifenformhohlraum (18) in der geschlossenen Stellung der Reifenform (10) zu definieren, einer konischen Betätigungsringsanordnung (20), die einen konischen Ring umfasst, der die Formsegmente umgibt und verschiebbar mit den Formsegmenten (16) in Eingriff treten kann, um eine radiale Bewegung der Formsegmente in Eingriff mit der oberen Seitenwandanordnung (12) und der unteren Seitenwandanordnung (14) zu schaffen, wobei die Vorrichtung umfaßt

(a) ein erstes Dichtungsmittel zwischen der Betätigungsringsanordnung (20) und der unteren Seitenwandanordnung (14);

(b) ein zweites Dichtungsmittel zwischen dem konischen Ring der Betätigungsringsanordnung (20) und der oberen Seitenwandformplatte (52) der oberen Seitenwandanordnung (12) oder zwischen dem konischen Ring und einem oberen Formträgerlement (54), das an der oberen Seitenwandformplatte (52) anschlägt,

(c) wobei das erste Dichtungsmittel und das zweite Dichtungsmittel dazu dienen, einen Raum abzudichten, der durch die Betätigungsringsanordnung (20), die obere Seitenwandanordnung (12), die untere Seitenwandanordnung (14) und einen zugehörigen Reifen in dem Reifenformhohlraum (18) definiert ist, wobei der Raum abgedichtet wird, während die Laufflächenformsegmente von dem zugehörigen Reifen beabstandet sind, und

(d) ein Mittel, um das Vakuum mit dem Raum in Verbindung zu bringen und somit Gase aus dem Reifenformhohlraum (18) beim Schließen
2. Vorrichtung nach Anspruch 1, **dadurch gekennzeichnet, daß** die obere Seitenwandanordnung (12) eine radial äußere zylindrische Fläche (42) an der oberen Seitenwandformplatte (52) oder dem oberen Formträgerelement (54) aufweist, wobei der konische Ring der Betätigungsringanordnung (20) eine radial innere zylindrische Fläche (38) aufweist, die mit der äußeren zylindrischen Fläche (42) der oberen Seitenwandanordnung (12) ausgerichtet ist, und das zweite Dichtungsmittel zwischen der äußeren zylindrischen Fläche (42) der oberen Seitenwandanordnung (12) und der inneren zylindrischen Fläche (38) des konischen Rings der Betätigungsringanordnung (20) angeordnet ist.

3. Vorrichtung nach Anspruch 2, ferner **dadurch gekennzeichnet, daß** das zweite Dichtungsmittel ein Dichtungselement umfaßt, das in einer Umfangsnut (48) in der äußeren zylindrischen Fläche (42) der oberen Seitenwandanordnung (12) zum abdichtenden Eingriff mit der inneren zylindrischen Fläche (38) des konischen Rings der Betätigungsringanordnung während des Schließen der Form angeordnet ist.

4. Vorrichtung nach Anspruch 2, wobei die Lauflächenformsegmente (16) mit der oberen Seitenwandanordnung (12) durch ein Trägermittel verbunden sind, das eine radiale Bewegung der Segmente in Ansprechen auf eine vertikale Bewegung der Betätigungsringanordnung (20) relativ zu den Segmenten gestattet, wodurch das Trägermittel von dem zweiten Dichtungsmittel überdeckt ist, um die Abgeschlossenheit des Raums zur Aufbringung von Vakuum aufrechtzuerhalten.

5. Vorrichtung nach Anspruch 4, ferner **dadurch gekennzeichnet, daß** das zweite Dichtungsmittel einen Balgring (154) umfaßt, der einen radial inneren Rand aufweist, der an der oberen Seitenwandanordnung (12) befestigt ist, sowie einen radial äußeren Rand, der an dem konischen Ring der Betätigungsringanordnung (20) befestigt ist.

6. Vorrichtung nach Anspruch 1, ferner **dadurch gekennzeichnet, daß** die obere Seitenwandanordnung (12) eine einstückig ausgebildete obere Seitenwandformplatte (52) umfaßt, und das zweite Dichtungsmittel einen O-Ring (36) an der oberen Seitenwandformplatte umfaßt.

Revendications

1. Appareil pour appliquer un vide dans un moule segmenté (10) pour bandage pneumatique exempt
d'event possédant un assemblage de flanc supérieur (12) englobant une plaque de moule de flanc supérieur (52) et un assemblage de flanc inférieur (14), plusieurs segments de moules de bande de roulement (16) mobiles en direction radiale et aptes à être entraînés avec ledit assemblage de flanc supérieur (12) et avec ledit assemblage de flanc inférieur (14) pour définir une cavité de moule (18) pour bandage pneumatique dans la position fermée dudit moule (10) pour bandage pneumatique, un assemblage d'anneau d'entraînement conique (20) entourant ledits segments de moule et apte à entrer en contact par glissement avec ledits segments de moule (16) pour amener via un mouvement radial lesdits segments de moule en contact avec ledit assemblage de flanc supérieur (12) et avec ledit assemblage de flanc inférieur (14), ledit appareil comprenant

(a) un premier moyen d'étanchéisation entre ledit assemblage d'anneau d'entraînement (20) et ledit assemblage de flanc inférieur (14);

(b) un second moyen d'étanchéisation entre ledit anneau conique dudit assemblage d'anneau d'entraînement (20) et ladite plaque de moule de flanc supérieur (52) dudit assemblage de flanc supérieur (12) ou entre ledit anneau conique et un élément de support de moule supérieur (54) venant buter contre ladite plaque de moule de flanc supérieur (52);

(c) ledit premier moyen d'étanchéisation et ledit second moyen d'étanchéisation étant opérationnels pour rendre étanche un espace défini par ledit assemblage d'anneau d'entraînement (20), par ledit assemblage de flanc supérieur (12), par ledit assemblage de flanc inférieur (14) et par un bandage pneumatique associé dans ladite cavité de moule (18) pour bandage pneumatique, ledit espace étant rendu étanche tandis que lesdits segments de moule de bande de roulement sont espacés dudit bandage pneumatique associé; et,

(d) des moyens pour établir une communication entre ledit vide et ledit espace pour dégazer ladite cavité de moule (18) pour bandage pneumatique lors de la fermeture dudit moule (10).

2. Appareil selon la revendication 1, **caractérisé par le fait que** ledit assemblage de flanc supérieur (12) possède une surface cylindrique externe (42) en direction radiale sur membre choisi parmi le groupe comprenant ladite plaque de moule de flanc supérieur (52) et ledit élément de support de moule supérieur (54), ledit anneau conique dudit assembla-
ge d’anneau d’entraînement (20) possède une surface cylindrique interne en direction radiale (38) en alignement avec ladite surface cylindrique externe (42) dudit assemblage de flanc supérieur (12), et ledit second moyen d’étanchéisation est disposé entre ladite surface cylindrique externe (42) dudit assemblage de flanc supérieur (12) et ladite surface cylindrique interne (38) dudit anneau conique dudit assemblage d’anneau d’entraînement (20).

3. Appareil selon la revendication 2, **caractérisé en outre par le fait que** ledit second moyen d’étanchéisation englobe un élément d’étanchéisation disposé dans une rainure circonférentielle (48) pratiquée dans ladite surface cylindrique externe (42) dudit assemblage de flanc supérieur (12) à des fins de mise en contact d’étanchéisation avec ladite surface cylindrique interne (38) dudit anneau conique dudit élément d’entraînement lors de la fermeture dudit moule.

4. Appareil selon la revendication 2, dans lequel lesdits segments de moule de bande de roulement (16) sont reliés audit assemblage de flanc supérieur (12) par des moyens de support permettant le mouvement radial desdits segments en réponse au mouvement vertical dudit assemblage d’anneau d’entraînement (20) par rapport auxdits segments, et **caractérisé par le fait que** lesdits moyens de support sont recouverts par ledit second moyen d’étanchéisation pour maintenir l’intégrité dudit espace pour l’application d’un vide.

5. Appareil selon la revendication 4, **caractérisé en outre par le fait que** ledit second moyen d’étanchéisation comprend une vessie annulaire (154) dont le bord interne en direction radiale est fixé audit assemblage de flanc supérieur (12) et dont le bord externe en direction radiale est fixé audit anneau conique dudit assemblage d’anneau d’entraînement (20).

6. Appareil selon la revendication 5, **caractérisé en outre par le fait que** ledit assemblage de flanc supérieur (12) comprend une plaque de moule de flanc supérieur solidaire (52) et ledit second moyen d’étanchéisation comprend un joint torique (36) sur ladite plaque de moule de flanc supérieur.