(12) STANDARD PATENT

(11) Application No. AU 2016334041 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title

Combination therapy for the treatment of cancer

(51) International Patent Classification(s)

 C07K 16/18 (2006.01)
 A61K 39/395 (2006.01)

 A61K 31/785 (2006.01)
 C07K 16/28 (2006.01)

 A61K 35/04 (2006.01)
 C08F 128/04 (2006.01)

(21) Application No: **2016334041** (22) Date of Filing: **2016.10.06**

(87) WIPO No: WO17/062619

(30) Priority Data

(31) Number (32) Date (33) Country 62/239,020 2015.10.08 US

(43) Publication Date: 2017.04.13(44) Accepted Journal Date: 2023.02.09

(71) Applicant(s)

MacroGenics, Inc.

(72) Inventor(s)

Vasselli, James; Wigginton, Jon Marc; Bonvini, Ezio; Koenig, Scott

(74) Agent / Attorney

Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art

WO 2015/095404 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2017/062619 A3

(43) International Publication Date 13 April 2017 (13.04.2017)

(51) International Patent Classification: **A61K 39/395** (2006.01) C07K 16/18 (2006.01) A61K 35/04 (2006.01) C07K 16/28 (2006.01)

(21) International Application Number:

PCT/US2016/055750

(22) International Filing Date:

6 October 2016 (06.10.2016)

(25) Filing Language:

(26) Publication Language:

English

(30) Priority Data:

62/239,020 8 October 2015 (08.10.2015) US

- (71) Applicant: MACROGENICS, INC. [US/US]; 9704 Medical Center Drive, Rockville, MD 20850 (US).
- (72) Inventors: VASSELLI, James; 9704 Medical Center Drive, Rockville, MD 20850 (US). WIGGINTON, Jon, Marc; 9704 Medical Center Drive, Rockville, MD 20850 (US). BONVINI, Ezio; 11136 Powder Horn Drive, Potomac, MD 20854 (US). KOENIG, Scott; 10901 Ralston Road, Rockville, MD 20852 (US).
- Agents: AUERBACH, Jeffrey, I. et al.; AuerbachSchrot LLC, 2200 Research Blvd., Suite 560, Rockville, MD 20850 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available); ARIPO (BW. GH. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))
- (88) Date of publication of the international search report: 18 May 2017

(54) Title: COMBINATION THERAPY FOR THE TREATMENT OF CANCER

(57) Abstract: The present invention is directed to a combination therapy involving the administration of a first molecule that specifically binds to human B7-H3 and a second molecule that that specifically binds to human PD-1 to a subject for the treatment of cancer and/or inflammation. The invention also concerns pharmaceutical compositions that comprise a first molecule that specific ally binds to human B7-H3 and a second molecule that specifically binds to human PD-1 that are capable of mediating, and more preferably enhancing, the activation of the immune system against cancer cells that are associated with any of a variety of human cancers. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases in recipient sub-

Title of the Invention:

Combination Therapy for the Treatment of Cancer

Cross-Reference to Related Applications:

[0001] This application claims priority to U.S. Patent Appln. Serial No. 62/239,020 (filed October 8, 2015; pending), which application is herein incorporated by reference in its entirety.

Reference to Sequence Listing:

[0002] This application includes one or more Sequence Listings pursuant to 37 C.F.R. 1.821 et seq., which are disclosed in computer-readable media (file name: 1301_129PCT_ST25.txt, created on September 24, 2016, and having a size of 89,867 bytes), which file is herein incorporated by reference in its entirety.

Field of the Invention:

[0003] The present invention is directed to a combination therapy involving the administration of a first molecule that specifically binds to human B7-H3 and a second molecule that that specifically binds to human PD-1 to a subject for the treatment of cancer and/or inflammation. The invention also concerns pharmaceutical compositions that comprise a first molecule that specifically binds to human B7-H3 and a second molecule that specifically binds to human PD-1 that are capable of mediating, and more preferably enhancing, the activation of the immune system against cancer cells that are associated with any of a variety of human cancers. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases in recipient subjects.

Background of the Invention:

[0004] The growth and metastasis of tumors depends to a large extent on their capacity to evade host immune surveillance and overcome host defenses. Most tumors express antigens that can be recognized to a variable extent by the host immune system, but in many cases, an inadequate immune response is elicited because of the ineffective activation of effector T cells (Khawli, L.A. et al. (2008) "Cytokine, Chemokine, and Co-Stimulatory Fusion Proteins for the Immunotherapy of Solid Tumors," Exper. Pharmacol. 181:291-328).

A. B7 Superfamily and B7-H3

[0005] B7 family members are immunoglobulin superfamily members with an immunoglobulin-V-like and an immunoglobulin-C-like domain (*e.g.*, IgV–IgC) (Sharpe, A.H. *et al.* (2002) "*The B7-CD28 Superfamily*," Nature Rev. Immunol. 2:116-126). The IgV and IgC domains of B7-family members are each encoded by single exons, with additional exons encoding leader sequences, transmembrane and cytoplasmic domains. The cytoplasmic domains are short, ranging in length from 19 to 62 amino acid residues and can be encoded by multiple exons (Collins, M. *et al.* (2005) "*The B7 Family Of Immune-Regulatory Ligands*," Genome Biol. 6:223.1-223.7). Members of the B7 family are predicted to form back-to-back, non-covalent homodimers at the cell surface, and such dimers have been found with respect to B7-1 (CD80) and B7-2 (CD86). B7-1 (CD80) and B7-2 (CD86) exhibit dual specificity for the stimulatory CD28 receptor and the inhibitory CTLA-4 (CD152) receptor (Sharpe, A.H. *et al.* (2002) "*The B7-CD28 Superfamily*," Nature Rev. Immunol. 2:116-126).

[0006] B7-H3 is unique in that the major human form contains two extracellular tandem IgV-IgC domains (i.e., IgV-IgC-IgV-IgC) (Collins, M. et al. (2005) "The B7 Family Of Immune-Regulatory Ligands," Genome Biol. 6:223.1-223.7). Although initially thought to comprise only 2 Ig domains (IgV-IgC) (Chapoval, A. et al. (2001) "B7-H3: A Costimulatory Molecule For T Cell Activation and IFN-y Production," Nature Immunol. 2:269–274; Sun, M. et al. (2002) "Characterization of Mouse and Human B7-H3 Genes," J. Immunol. 168:6294-6297) a four immunoglobulin extracellular domain variant ("4Ig-B7-H3") has been identified and found to be the more common human form of the protein (Sharpe, A.H. et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2:116-126). However, the natural murine form (2Ig) and the human 4Ig form exhibit similar function (Hofmeyer, K. et al. (2008) "The Contrasting Role Of B7-H3," Proc. Natl. Acad. Sci. (U.S.A.) 105(30):10277-10278). The 4Ig-B7-H3 molecule inhibits the natural killer cell-mediated lysis of cancer cells (Castriconi, R. et al. "Identification Of 4Ig-B7-H3 As A Neuroblastoma-Associated Molecule That Exerts A Protective Role From An NK Cell-Mediated Lysis," Proc. Natl. Acad. Sci. (U.S.A.) 101(34): 12640-12645). The human B7-H3 (2Ig form) has been found to promote T-cell activation and IFN-γ production by binding to a putative receptor on activated T cells (Chapoval, A. et al. (2001) "B7-H3: A Costimulatory Molecule For T Cell Activation and IFN-y Production," Nature Immunol. 2:269–274; Xu, H. et al. (2009) "MicroRNA miR-29 Modulates Expression of Immunoinhibitory Molecule B7-H3: Potential Implications for Immune Based Therapy of Human Solid Tumors," Cancer Res. 69(15):5275-6281). Both B7-H4 and B7-H1 are potent

inhibitors of immune function when expressed on tumor cells (Flies, D.B. *et al.* (2007) "*The New B7s: Playing a Pivotal Role in Tumor Immunity*," J. Immunother. 30(3):251-260).

The mode of action of B7-H3 is complex, as the protein mediates both T cell costimulation and co-inhibition (Hofmeyer, K. et al. (2008) "The Contrasting Role Of B7-H3," Proc. Natl. Acad. Sci. (U.S.A.) 105(30):10277-10278; Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17(4):288-298; Subudhi, S.K. et al. (2005) "The Balance Of Immune Responses: Costimulation Verse Coinhibition," J. Mol. Med. 83:193-202). B7-H3 binds to (TREM)-like transcript 2 (TLT-2) and co-stimulates T cell activation, but also binds to as yet unidentified receptor(s) to mediate co-inhibition of T cells. In addition, B7-H3, through interactions with unknown receptor(s) is an inhibitor for natural killer cells and osteoblastic cells (Hofmeyer, K. et al. (2008) "The Contrasting Role Of B7-H3," Proc. Natl. Acad. Sci. (U.S.A.) 105(30):10277-10278). The inhibition may operate through interactions with members of the major signaling pathways through which T cell receptor (TCR) regulates gene transcription (e.g., NFTA, NF-κB, or AP-1 factors).

[8000] B7-H3 co-stimulates CD4+ and CD8+ T-cell proliferation. B7-H3 also stimulates IFN-y production and CD8+ lytic activity (Chapoval, A. et al. (2001) "B7-H3: A Costimulatory Molecule For T Cell Activation and IFN-y Production," Nature Immunol. 2:269–274; Sharpe, A.H. et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2:116-126). However, the protein also possibly acts through NFAT (nuclear factor for activated T cells), NF-kB (nuclear factor kappa B), and AP-1 (Activator Protein-1) factors to inhibit T-cell activation (Yi. K.H. et al. (2009) "Fine Tuning The Immune Response Through B7-H3 And B7-H4," Immunol. Rev. 229:145-151). B7-H3 is also believed to inhibit Th1, Th2, or Th17 in vivo (Prasad, D.V. et al. (2004) "Murine B7–H3 Is A Negative Regulator Of T Cells," J. Immunol. 173:2500-2506; Fukushima, A. et al. (2007) "B7-H3 Regulates The Development Of Experimental Allergic Conjunctivitis In Mice," Immunol. Lett. 113:52-57; Yi. K.H. et al. (2009) "Fine Tuning The Immune Response Through B7-H3 And B7-H4," Immunol. Rev. 229:145-151). Several independent studies have shown that human malignant tumor cells exhibit a marked increase in expression of B7-H3 protein and that this increased expression was associated with increased disease severity (Zang, X. et al. (2007) "The B7 Family And Cancer Therapy: Costimulation And Coinhibition," Clin. Cancer Res. 13:5271-5279), suggesting that B7-H3 is exploited by

tumors as an immune evasion pathway (Hofmeyer, K. et al. (2008) "The Contrasting Role Of B7-H3," Proc. Natl. Acad. Sci. (U.S.A.) 105(30):10277-10278).

[0009] Molecules that block the ability of a B7 molecule to bind to a T-cell receptor (e.g., CD28) inhibit the immune system and have been proposed as treatments for autoimmune disease (Linsley, P.S. et al. (2009) "The Clinical Utility Of Inhibiting CD28-Mediated Co-Stimulation," Immunolog. Rev. 229:307-321). Neuroblastoma cells expressing 4Ig-B7-H3 treated with anti-4Ig-B7-H3 antibodies were more susceptible to NK cells. However, it is unclear whether this activity can be attributed to only antibodies against the 4Ig-B7-H3 form because all reported antibodies raised against the 4Ig-B7-H3 also bound the two Ig-like form of B7H3 (Steinberger, P. et al. (2004) "Molecular Characterization of Human 4Ig-B7-H3, a Member of the B7 Family with Four Ig-Like Domains," J. Immunol. 172(4): 2352-2359 and Castriconi et al. (2004) "Identification Of 4Ig-B7-H3 As A Neuroblastoma-Associated Molecule That Exerts A Protective Role From An NK Cell-Mediated Lysis," Proc. Natl. Acad. Sci. (U.S.A.) 101(34):12640-12645).

[0010] B7-H3 is not expressed on resting B or T cells, monocytes, or dendritic cells, but it is induced on dendritic cells by IFN-y and on monocytes by GM-CSF (Sharpe, A.H. et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2:116-126). The receptor(s) that bind B7-H3 have not been fully characterized. Early work suggested one such receptor would need to be rapidly and transiently up-regulated on T cells after activation (Loke, P. et al. (2004) "Emerging Mechanisms Of Immune Regulation: The Extended B7 Family And Regulatory T Cells." Arthritis Res. Ther. 6:208-214). Recently, the (TREM)-like transcript 2 (TLT-2, or TREML2) receptor (King, R.G. et al. (2006) "Trem-Like Transcript 2 Is Expressed On Cells Of The Myeloid/Granuloid And B Lymphoid Lineage And Is Up-Regulated In Response To Inflammation," J. Immunol. 176:6012-6021; Klesney-Tait, J. et al. (2006) "The TREM Receptor Family And Signal Integration," Nat. Immunol. 7:1266–1273; Yi. K.H. et al. (2009) "Fine Tuning The Immune Response Through B7-H3 And B7-H4," Immunol. Rev. 229:145-151), which is expressed on myeloid cells has been shown to be capable of binding B7-H3, and of thereby co-stimulating the activation of CD8+ T cells in particular (Zang, X. et al. (2003) "B7x: A Widely Expressed B7 Family Member That Inhibits T Cell Activation," Proc. Natl. Acad. Sci. (U.S.A.) 100:10388–10392; Hashiguchi, M. et al. (2008) "Triggering Receptor Expressed On Myeloid Cell-Like Transcript 2 (TLT-2) Is A Counter-Receptor For B7–H3 And Enhances T Cell Responses," Proc. Natl. Acad. Sci. (U.S.A.) 105(30):10495-10500; Hofmeyer,

K. et al. (2008) "The Contrasting Role Of B7-H3," Proc. Natl. Acad. Sci. (U.S.A.) 105(30):10277-10278).

[0011] In addition to its expression on neuroblastoma cells, human B7-H3 is overexpressed in a wide range of cancers and cultured cancer stem-like cells. In particular, B7-H3 is broadly overexpressed on many malignant neoplasms including: SCCHN, where the level is directly proportional to the development of distal metastases and decreased survival (Katayama, A., et al. (2011) "Expression of B7-H3 in hypopharyngeal squamous cell carcinoma as a predictive indicator for tumor metastasis and prognosis," Int J Oncol 38:1219-26); bladder cancer (Boorjian, S.A., et al. (2008) "T Cell Coregulatory Molecule Expression in Urothelial Cell Carcinoma: Clinicopathologic Correlations and Association with Survival," Clin Cancer Res 14:4800-7); prostate cancer, where expression of B7-H3 is associated with metastatic behavior and poor outcome (Chavin, G., et al. (2009) "Expression of immunosuppresive B7-H3 ligand by hormone-treated prostate cancer tumors and metastases'," Clin Cancer Res 15:2174-80; Zang, X., et al. (2007) "B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome," Proc Natl Acad Sci U S A 104:19458-63); renal cell carcinoma, where B7-H3 is broadly expressed in tumor vasculature (Crispen, P.L., et al. (2008) "Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell Carcinoma," Clin Cancer Res 14:5150-7); ovarian cancer (Zang, X., et al. (2010) "Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas," Mod Pathol 2010 May 21); colorectal cancer (Sun, J., et al. (2010) "Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma," Cancer Immunol Immunother, Mar 24); gastric cancer (Wu, C.P., et al. (2006) "Relationship between costimulatory molecule B7-H3 expression and gastric carcinoma histology and prognosis," World J Gastroenterol 12:457-9); non-small cell lung cancer, where higher levels on the primary tumor are associated with a higher likelihood of metastatic disease (Sun, Y., et al. (2006) "B7-H3 and B7-H4 expression in non-small-cell lung cancer," Lung Cancer 53:143-51); glioblastoma (Modak, S., et al. (2001) "Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors," Cancer Res 61:4048-54); melanoma, where higher levels are associated with higher tumor stage and shorter survival (Tekle, C., et al. (2012) "B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasisassociated genes," Int J Cancer 130:2282-90; Wang, L., et al. (2013) "B7-H3 mediated tumor immunology: Friend or foe?," Int J Cancer Sep 7); and certain small round blue cell tumors of

childhood including neuroblastoma and rhabdomyosarcoma (Gregorio, A., et al. (2008) "Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule," Histopathology 53:73-80).

B. PD-1

[0012] Programmed Death-1 ("PD-1") is an approximately 31 kD type I membrane protein member of the extended CD28/CTLA4 family of T-cell regulators that broadly negatively regulates immune responses (Ishida, Y. et al. (1992) "Induced Expression Of PD-1, A Novel Member Of The Immunoglobulin Gene Superfamily, Upon Programmed Cell Death," EMBO J. 11:3887-3895; United States Patent Application Publication No. 2007/0202100; 2008/0311117; 2009/00110667; United States Patents Nos. 6,808,710; 7,101,550; 7,488,802; 7,635,757; 7,722,868; PCT Publication No. WO 01/14557).

[0013] PD-1 is expressed on activated T-cells, B-cells, and monocytes (Agata, Y. et al. (1996) "Expression Of The PD-1 Antigen On The Surface Of Stimulated Mouse T And B Lymphocytes," Int. Immunol. 8(5):765-772; Yamazaki, T. et al. (2002) "Expression Of Programmed Death 1 Ligands By Murine T-Cells And APC," J. Immunol. 169:5538-5545) and at low levels in natural killer (NK) T-cells (Nishimura, H. et al. (2000) "Facilitation Of Beta Selection And Modification Of Positive Selection In The Thymus Of PD-1-Deficient Mice," J. Exp. Med. 191:891-898; Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17(4):288-298).

[0014] The extracellular region of PD-1 consists of a single immunoglobulin (Ig)V domain with 23% identity to the equivalent domain in CTLA4 (Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17(4):288-298). The extracellular IgV domain is followed by a transmembrane region and an intracellular tail. The intracellular tail contains two phosphorylation sites located in an immunoreceptor tyrosine-based inhibitory motif and an immunoreceptor tyrosine-based switch motif, which suggests that PD-1 negatively regulates TCR signals (Ishida, Y. et al. (1992) "Induced Expression Of PD-1, A Novel Member Of The Immunoglobulin Gene Superfamily, Upon Programmed Cell Death," EMBO J. 11:3887-3895; Blank, C. et al. (2006) "Contribution Of The PD-L1/PD-1 Pathway To T-Cell Exhaustion: An Update On Implications For Chronic Infections And Tumor Evasion Cancer," Immunol. Immunother. 56(5):739-745).

[0015] PD-1 mediates its inhibition of the immune system by binding to PD-L1 and PD-L2 (Flies, D.B. *et al.* (2007) "*The New B7s: Playing a Pivotal Role in Tumor Immunity*," J. Immunother. 30(3):251-260; United States Patents Nos. 6,803,192; 7,794,710; United States Patent Application Publication Nos. 2005/0059051; 2009/0055944; 2009/0274666; 2009/0313687; PCT Publication Nos. WO 01/39722; WO 02/086083).

[0016] PD-L1 and PD-L2 are broadly expressed on the surfaces of human and murine tissues, such as heart, placenta, muscle, fetal liver, spleen, lymph nodes, and thymus as well as murine liver, lung, kidney, islets cells of the pancreas and small intestine (Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17(4):288-298). In humans, PD-L1 protein expression has been found in human endothelial cells (Chen, Y. et al. (2005) "Expression of B7-H1 in Inflammatory Renal Tubular Epithelial Cells," Nephron. Exp. Nephrol. 102:e81-e92; de Haij, S. et al. (2005) "Renal Tubular Epithelial Cells Modulate T-Cell Responses Via ICOS-L And B7-H1" Kidney Int. 68:2091-2102; Mazanet, M.M. et al. (2002) "B7-H1 Is Expressed By Human Endothelial Cells And Suppresses T-Cell Cytokine Synthesis," J. Immunol. 169:3581-3588), myocardium (Brown, J.A. et al. (2003) "Blockade Of Programmed Death-1 Ligands On Dendritic Cells Enhances And Cytokine Production," J. T-Cell Activation Immunol. 170:1257-1266), syncyciotrophoblasts (Petroff, M.G. et al. (2002) "B7 Family Molecules: Novel Immunomodulators At The Maternal-Fetal Interface," Placenta 23:S95-S101). The molecules are also expressed by resident macrophages of some tissues, by macrophages that have been activated with interferon (IFN)-γ or tumor necrosis factor (TNF)-α (Latchman, Y. et al. (2001) "PD-L2 Is A Second Ligand For PD-1 And Inhibits T-Cell Activation," Nat. Immunol 2:261-268), and in tumors (Dong, H. (2003) "B7-H1 Pathway And Its Role In The Evasion Of Tumor Immunity," J. Mol. Med. 81:281-287).

[0017] The interaction between PD-L1 and PD-1 has been found to provide a crucial negative costimulatory signal to T- and B-cells (Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17(4):288-298) and functions as a cell death inducer (Ishida, Y. et al. (1992) "Induced Expression Of PD-1, A Novel Member Of The Immunoglobulin Gene Superfamily, Upon Programmed Cell Death," EMBO J. 11:3887-3895; Subudhi, S.K. et al. (2005) "The Balance Of Immune Responses: Costimulation Verse Coinhibition," J. Molec. Med. 83:193-202). More specifically, interaction between low concentrations of the PD-1 receptor and the PD-L1 ligand has been found to result in the

transmission of an inhibitory signal that strongly inhibits the proliferation of antigen-specific CD8+ T-cells; at higher concentrations the interactions with PD-1 do not inhibit T-cell proliferation but markedly reduce the production of multiple cytokines (Sharpe, A.H. *et al.* (2002) "*The B7-CD28 Superfamily*," Nature Rev. Immunol. 2:116-126). T-cell proliferation and cytokine production by both resting and previously activated CD4 and CD8 T-cells, and even naive T-cells from umbilical-cord blood, have been found to be inhibited by soluble PD-L1-Fc fusion proteins (Freeman, G.J. *et al.* (2000) "*Engagement Of The PD-1 Immunoinhibitory Receptor By A Novel B7 Family Member Leads To Negative Regulation Of Lymphocyte Activation*," J. Exp. Med. 192:1-9; Latchman, Y. *et al.* (2001) "*PD-L2 Is A Second Ligand For PD-1 And Inhibits T-Cell Activation*," Nature Immunol. 2:261-268; Carter, L. *et al.* (2002) "*PD-1:PD-L Inhibitory Pathway Affects Both CD4(+) and CD8(+) T-cells And Is Overcome By IL-2*," Eur. J. Immunol. 32(3):634-643; Sharpe, A.H. *et al.* (2002) "*The B7-CD28 Superfamily*," Nature Rev. Immunol. 2:116-126).

The role of PD-L1 and PD-1 in inhibiting T-cell activation and proliferation has [0018]suggested that these biomolecules might serve as therapeutic targets for treatments of inflammation and cancer. Thus, the use of anti-PD-1 antibodies to treat infections and tumors and up-modulate an adaptive immune response has been proposed (see, United States Patent Application Publication Nos. 2010/0040614; 2010/0028330; 2004/0241745; 2008/0311117; 2009/0217401; United States Patents Nos. 7,521,051; 7,563,869; 7,595,048; PCT Publications Nos. WO 2004/056875; WO 2008/083174). Antibodies capable of specifically binding to PD-1 have been reported by Agata, T. et al. (1996) "Expression Of The PD-1 Antigen On The Surface Of Stimulated Mouse T And B Lymphocytes," Int. Immunol. 8(5):765-772; and Berger, R. et al. (2008) "Phase I Safety And Pharmacokinetic Study Of CT-011, A Humanized Antibody Interacting With PD-1, In Patients With Advanced Hematologic Malignancies," Clin. Cancer Res. 14(10):3044-3051 (see, also, United States Patent Nos. 8,008,449 and 8,552,154; US Patent Publication Nos. 2007/0166281; 2012/0114648; 2012/0114649; 2013/0017199; 2013/0230514 and 2014/0044738; and PCT Patent Publication Nos. WO 2003/099196; WO 2004/004771; WO 2004/056875; WO 2004/072286; WO 2006/121168; WO 2007/005874; WO 2008/083174; WO 2009/014708; WO 2009/073533; WO 2012/135408, WO 2012/145549; and WO 2013/014668).

C. B7-H3-Expressing Cancers

[0019] Overexpression of B7-H3 occurs in a wide range of cancers and cultured cancer stem-like cells. As stated above, the overexpression of B7-H3 is strongly associated with increased disease recurrence and a poor prognosis. However, B7-H3 is a potential target for anti-B7-H3 drugs, including monoclonal antibodies that target the extracellular domain of the receptor. Antibodies and other molecules that specifically bind to B7-H3 have been described (see, United States Patent No. 8,802,091, 7,527,969; 7,368,554; 7,358,354; and 7,279,567; United States Patent Application Publications Nos. US 20090087416; US 20090022747; US 20090018315; US2008116219; US20080081346; US 20050202536; US20030103963; US20020168762; PCT Publications Nos. WO 2011/109400; WO 2008/116219; WO 2006/016276; WO 2004/093894; WO 04/001381; WO 2002/32375; WO 2002/10187 and WO 2001/094413; EP 1292619B; Modak, S. et al. (March 1999) "Disialoganglioside GD2 And Antigen 8H9: Potential Targets For Antibody-Based Immunotherapy Against Desmoplastic Small Round Cell Tumor (DSRCT) And Rhabdomyosarcoma (RMS)," Proceedings Of The American Association For Cancer Research Annual Meeting, Vol. 40:474 (90th Annual Meeting Of The American Association For Cancer Research; Philadelphia, Pennsylvania, US; April 10-14, 1999; Modak, S. et al. (March 2000) "Radioimmunotargeting To Human Rhabdomyosarcoma Using Monoclonal Antibody 8H9," Proc. Am. Assoc. Cancer Res.41:724; Modak, S. et al. (2001) "Monoclonal Antibody 8H9 Targets A Novel Cell Surface Antigen Expressed By A Wide Spectrum Of Human Solid Tumors," Cancer Res. 61(10):4048-4054; Steinberger, P. et al. (2004) "Molecular Characterization of Human 4Ig-B7-H3, a Member of the B7 Family with Four Ig-Like Domains," J. Immunol. 172(4):2352-2359; Xu, H. et al. (2009) "MicroRNA miR-29 Modulates Expression of Immunoinhibitory Molecule B7-H3: Potential Implications for Immune Based Therapy of Human Solid Tumors," Cancer Res. 69(15):5275-6281).

[0020] Despite these advances, a need remains for improved therapies for treating cancers expressing B7-H3 and of facilitating or mediating an immune response against such cancers. Although the adaptive immune system can be a potent defense mechanism against cancer and disease, it is often hampered by immune suppressive mechanisms in the tumor microenvironment, such as the expression of co-inhibitory molecules. Furthermore, co-inhibitory molecules expressed by tumor cells, immune cells, and stromal cells in the tumor milieu can dominantly attenuate T-cell responses against cancer cells. Thus, there exists a further need for novel combinations and treatment regimens that specifically recognize targets

on the surface of cancer cells, and which can thereby mediate T-cell activation, simulation of an immune response and killing of cancer cells that express B7-H3. A desirable outcome of embodiments of this invention is to identify such compositions and treatment regimens.

[0020a] The reference to any prior art in this specification is not, and should not be taken as an acknowledgement or any form of suggestion that the prior art forms part of the common general knowledge.

Summary of the Invention:

[0021] The present invention is directed to combination therapy involving the administration of a first molecule that specifically binds to human B7-H3 (*i.e.*, a B7-H3-binding molecule) and a second molecule that that specifically binds to human PD-1 (*i.e.*, a PD-1-binding molecule) to a subject for the treatment of cancer and inflammation. The invention also concerns pharmaceutical compositions that comprise a first molecule that specifically binds to human B7-H3 and a second molecule that specifically binds to human PD-1 that are capable of mediating, and more preferably enhancing, the activation of the immune system against cancer cells that are associated with a variety of human cancers. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases.

[0021a] According to one aspect, the present invention provides a method of treating cancer, comprising administering to a subject in need thereof:

- (a) an anti-B7-H3 antibody or an antigen-binding fragment thereof that specifically binds to B7-H3expressed on the surface of a cancer cell, and
- (b) an anti-PD-1 antibody or an antigen-binding fragment thereof that specifically binds to PD-1;

wherein:

- (i) said anti-B7-H3 antibody or antigen-binding fragment thereof comprises:
 - (a) an antibody light chain variable (VL) domain that comprises the three complementarity determining regions (CDRs) of the light chain variable domain of anti-B7-H3 antibody BRCA84D:

CDR_L1: residues 24-34 of **SEQ ID NO:19**;

CDR_L2: residues 50-56 of **SEQ ID NO:19**; and

CDR_L3: residues 89-97 of **SEQ ID NO:19**;

and

(b) an antibody heavy chain variable (VH) domain that comprises the three CDRs of the heavy chain variable domain of anti-B7-H3 antibody BRCA84D:

CDR_H1: residues 31-35 of **SEQ ID NO:20**;

CDR_H2: residues 50-66 of **SEQ ID NO:20**; and

CDR_H3: residues 99-111 of **SEQ ID NO:20**;

and

- (ii) said anti-PD-1 antibody or antigen-binding fragment thereof comprises:
 - (a) (1) a VL domain that comprises the three CDRs of the VL domain of anti-PD-1 antibody nivolumab:

CDR_L1: residues 24-34 of **SEQ ID NO:43**;

CDR_L2: residues 50-56 of **SEQ ID NO:43**; and

CDR_L3: residues 89-97 of **SEQ ID NO:43**;

and

(2) a VH domain that comprises the three CDRs of the VH domain of anti-PD-1 antibody nivolumab:

CDR_H1: residues 31-35 of **SEQ ID NO:42**;

CDR_H2: residues 50-66 of **SEQ ID NO:42**; and

CDR_H3: residues 99-102 of **SEQ ID NO:42**;

or

(b) (1) a VL domain that comprises the three CDRs of the VL domain of anti-PD-1 antibody pembrolizumab:

CDR_L1: residues 24-38 of **SEQ ID NO:45**;

CDR_L2: residues 54-60 of **SEQ ID NO:45**; and

CDR_L3: residues 93-101 of **SEQ ID NO:45**;

and

(2) a VH domain that comprises the three CDRs of the VH domain of anti-PD-1 antibody pembrolizumab:

CDR_H1: residues 31-35 of **SEQ ID NO:44**;

CDR_H2: residues 50-66 of **SEQ ID NO:44**; and

CDR_H3: residues 99-109 of **SEQ ID NO:44**;

or

(c) (1) a VL domain that comprises the three CDRs of the VL domain of anti-PD-1 antibody pidilizumab:

CDR_L1: residues 24-33 of **SEQ ID NO:49**;

CDR_L2: residues 49-55 of **SEQ ID NO:49**; and

CDR_L3: residues 88-96 of **SEQ ID NO:49**;

and

(2) a VH domain that comprises the three CDRs of the VH domain of anti-PD-1 antibody pidilizumab:

CDR_H1: residues 31-35 of **SEQ ID NO:48**;

CDR_H2: residues 50-66 of **SEQ ID NO:48**; and

CDR_H3: residues 99-106 of **SEQ ID NO:48**;

or

(d) (1) a VL domain that comprises the three CDRs of the VL domain of anti-PD-1 antibody PD-1 mAb 6-ISQ:

CDR_L1: residues 24-38 of **SEQ ID NO:58**;

CDR_L2: residues 54-60 of **SEQ ID NO:58**; and

CDR_L3: residues 93-101 of **SEQ ID NO:58**;

and

- (2) the VH domain of anti-PD-1 antibody PD-1 mAb 6-ISQ (residues 1-119 of **SEQ ID NO:59**);
- (iii) (a) said cancer is a B7-H3-expressing cancer;
 - (b) said anti-B7-H3 antibody or antigen-binding fragment thereof is administered at a dosage of about 1-15 mg/kg body weight; and
 - (c) said anti-PD-1 antibody or antigen-binding fragment thereof is administered at:
 - (1) a fixed dosage of between 50 mg and 500 mg every two or three weeks, or
- (2) a dosage of 1-10 mg/kg body weight every two or three weeks.[0022] In detail, the invention provides a method of treating a cancer comprising administering to a subject in need thereof, a molecule that specifically binds to B7-H3, and a molecule that specifically binds to PD-1.

- [0023] The invention particularly concerns embodiments of such methods, wherein the molecule that specifically binds to B7-H3 is an anti-B7-H3 antibody or antigen-binding fragment thereof, and the molecule that specifically binds to PD-1 is an anti-PD-1 antibody, or an antigen-binding fragment thereof.
- [0024] The invention particularly concerns the embodiment of such methods wherein the anti-B7-H3 antibody, or antigen-binding fragment thereof:
 - (a) competes for B7-H3 binding with BRCA84D, BRCA69D, PRCA157, or with an anti-B7-H3 antibody selected from **Table 5**; or
 - (b) has the three heavy chain CDRs and the three light chain CDRs of BRCA84D, hBRCA84D (1.1), hBRCA84D (2.2), hBRCA84D-2, hBRCA69D (1.1), hBRCA (2.2), or the three heavy chain CDRs and the three light chain CDRs of an anti-B7-H3 selected from **Table 5**; or
 - (c) has the heavy chain variable domain and the light chain variable domain of BRCA84D, hBRCA84D (1.1), hBRCA84D (2.2), hBRCA84D-2, hBRCA69D (1.1), hBRCA (2.2), or the heavy chain variable domain

and the light chain variable domain of an anti-B7-H3 selected from **Table 5**.

[0025] The invention particularly concerns the embodiment of such methods wherein the anti-PD-1 antibody, or antigen-binding fragment thereof:

- (a) competes for PD-1 binding with nivolumab, pembrolizumab, pidilizumab, PD-1 mAb 3, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, or with an anti-PD-1 antibody selected from **Table 6**; or
- (b) has the three heavy chain CDRs and the three light chain CDRs of nivolumab, pembrolizumab, pidilizumab, PD-1 mAb 3, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb7, PD-1 mAb 8, or the three heavy chain CDRs and the three light chain CDRs of an anti-PD-1 antibody selected from Table 6; or
- (c) has the heavy chain variable domain and the light chain variable domain of nivolumab, pembrolizumab, pidilizumab, PD-1 mAb 3, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb7, PD-1 mAb 8, or the heavy chain variable domain and the light chain variable domain of an anti-PD-1 antibody selected from **Table 6**.

[0026] The invention further concerns embodiments of such methods wherein the anti-B7-H3 antibody, or antigen-binding fragment thereof, comprises an Fc Domain, and/or the anti-PD-1 antibody, or antigen-binding fragment thereof, comprises an Fc Domain. The invention further concerns the embodiments of such methods wherein the anti-B7-H3 antibody or antigen-binding fragment thereof, comprises a variant Fc Domain having one, two, three, four, five or more modifications in the Fc Domain that enhances ADCC. The invention further concerns the embodiments of such methods wherein the Fc Domain modifications that enhance(s) ADCC comprise any one, any two, any three, any four, or all five of the substitutions L235V, F243L, R292P, Y300L and P396L. The invention further concerns the embodiments of such methods wherein the anti-PD-1 antibody or antigen-binding fragment thereof, comprises: (a) a variant Fc Domain having at least one modification in the Fc Domain that reduces or abolishes ADCC activity; or (b) an IgG4 Fc Domain. The invention further concerns the embodiments of such methods wherein the Fc Domain modifications that reduce or abolish ADCC comprise the substitution of L234A; L235A; or L234A and L235A, preferably of an IgG1 Fc Domain.

[0027] The invention further concerns embodiments of such methods, wherein the anti-B7-H3 antibody is hBRCA84D-2 and the anti-PD-1 antibody is nivolumab, pembrolizumab, pidilizumab, or PD-1 mAb 6-ISQ. The invention further concerns embodiments of such methods, wherein the anti-B7-H3 antibody is hBRCA84D-2 and the anti-PD-1 antibody, or antigen-binding fragment thereof comprises the VH and VL of nivolumab, pembrolizumab, pidilizumab, PD-1 mAb 3, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, or an anti-PD-1 antibody selected from **Table 6**.

The invention additionally concerns embodiments of such methods wherein the [0028]molecule that specifically binds to B7-H3 (particularly an anti-B7-H3 antibody) is administered at a dosage of 1-15 mg/kg body weight every week and the molecule that specifically binds to PD-1 (particularly an anti-PD-1 antibody) is administered at a fixed dosage of 200 mg every three weeks. The invention also concerns embodiments of such methods wherein the molecule that specifically binds to B7-H3 (particularly an anti-B7-H3 antibody) is administered at a dosage of 1-15 mg/kg body weight every week and the molecule that specifically binds to PD-1 (particularly an anti-PD-1 antibody) is administered at a dosage of 1-10 mg/kg body weight every two or three weeks. The invention further concerns embodiments of such methods wherein the molecule that specifically binds to B7-H3 (particularly an anti-B7-H3 antibody) is administered at a dosage of selected from 1 mg/kg, 3 mg/kg, 10 mg/kg and 15 mg/kg body weight every week and the molecule that specifically binds to PD-1 (particularly an anti-PD-1 antibody) is administered at a fixed dosage of 200 mg every three weeks. The invention further concerns embodiments of such methods wherein the molecule that specifically binds to B7-H3 (particularly an anti-B7-H3 antibody) is administered at a dosage of selected from 1 mg/kg, 3 mg/kg, 10 mg/kg and 15 mg/kg body weight every week and the molecule that specifically binds to PD-1 (particularly an anti-PD-1 antibody) is administered at a dosage of selected from 1 mg/kg, 2 mg/kg, 3 mg/kg and 10 mg/kg body weight every two or three weeks. The invention particularly concerns embodiments of such methods wherein the molecule that specifically binds to B7-H3 (particularly an anti-B7-H3 antibody) is administered at a dosage of selected from 3 mg/kg, 10 mg/kg and 15 mg/kg body weight every week and the molecule that specifically binds to PD-1 (particularly an anti-PD-1 antibody) is administered at a dosage of 2 mg/kg body weight every three weeks. The invention particularly concerns embodiments of such methods wherein the molecule that specifically binds to B7-H3 (particularly an anti-B7-H3 antibody) is administered at a dosage of selected from 3 mg/kg, 10 mg/kg and 15 mg/kg body weight every week and the molecule that specifically binds to PD-1 (particularly an anti-

PD-1 antibody) is administered at a dosage of 3 mg/kg body weight every two weeks. The invention further concerns embodiments of such methods wherein the molecule that specifically binds to B7-H3 (particularly an anti-B7-H3 antibody) and the molecule that specifically binds to PD-1 (particularly an anti-PD-1 antibody) are administered by IV infusion. The invention also concerns embodiments of such methods wherein every two or three weeks the molecule that specifically binds to B7-H3 (particularly an anti-B7-H3 antibody) and the molecule that specifically binds to PD-1 (particularly an anti-PD-1 antibody) are administered with a 48-hour period.

[0029] The invention particularly concerns embodiments of such methods wherein the cancer is a cancer in which B7-H3 is expressed. Invention further concerns embodiments of such methods wherein the cancer is a squamous cell cancer of the head and neck (SCCHN), a bladder cancer, a breast cancer, a colorectal cancer, a gastric cancer, a glioblastoma, a kidney cancer, a lung cancer, a melanoma, an ovarian cancer, a pancreatic cancer, a pharyngeal cancer, a prostate cancer, a renal cell carcinoma, a small round blue cell tumor, a neuroblastoma, or a rhabdomyosarcoma, in which B7-H3 is expressed.

[0030] The invention additionally concerns embodiments of such methods further comprising the step of administering a third therapeutic agent, particularly wherein the third therapeutic agent is an anti-angiogenic agent, an anti-neoplastic agent, a chemotherapeutic agent, or a cytotoxic agent

Detailed Description of the Invention:

[0031] The present invention is directed to a combination therapy involving the administration of a first molecule that specifically binds to human B7-H3 and a second molecule that that specifically binds to human PD-1 to a subject for the treatment of cancer and/or inflammation. The invention also concerns pharmaceutical compositions that comprise a first molecule that specifically binds to human B7-H3 and a second molecule that specifically binds to human PD-1 that are capable of mediating, and more preferably enhancing, the activation of the immune system against cancer cells that are associated with any of a variety of human cancers. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases in recipient subjects.

A. Antibodies

1. Antibodies

[0032] "Antibodies" are immunoglobulin molecules capable of immunospecific binding to a target, such as a carbohydrate, polynucleotide, lipid, polypeptide, etc., (an "antigen") through at least one epitope recognition site, located in the Variable Domain of the immunoglobulin molecule. Thus, whereas the target molecule is an "antigen", the portion of the antigen that is recognized by an antibody and to which the antibody binds is an "epitope." As used herein, the term "antibody" encompasses not only intact polyclonal or monoclonal antibodies, camelized antibodies, single-chain antibodies, and anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id and anti-anti-Id antibodies to antibodies of the invention), but also mutants thereof, naturally occurring variants, fusion proteins comprising an epitope binding site of the required immunospecificity, humanized antibodies, and chimeric antibodies, and any other modified configuration of the immunoglobulin molecule that comprises an antigen recognition site of the required immunospecificity. As used herein, an "antigen-binding fragment" of an antibody is an immunoglobulin whose amino acid sequence comprises at least one epitope-binding site of an antibody specific for such antigen. As used herein, the term encompasses fragments (e.g., Fab, Fab', F(ab')₂ Fv), disulfide-linked bispecific Fvs (sdFv), and single-chain molecules (e.g., scFv). In particular, antibodies include immunoglobulin molecules and immunologically active fragments of immunoglobulin molecules, i.e., molecules that contain an epitope-binding site. Immunoglobulin molecules can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass.

[0033] Natural antibodies (such as IgG antibodies) are composed of two **Light Chains** complexed with two **Heavy Chains**. Each Light Chain contains a Variable Light Chain (**VL**) Domain and a Constant Light Chain (**CL**) Domain. Each heavy chain contains a Variable Heavy Chain (**VH**) Domain, three Heavy Chain Constant Domains (**CH1**, **CH2** and **CH3**), and a Hinge Domain, which is located between the **CH1** and **CH2** Domains. The basic structural unit of naturally occurring immunoglobulins (*e.g.*, IgG) is thus a tetramer having two light chains and two heavy chains, usually expressed as a glycoprotein of about 150,000 Da. The amino-terminal portion of each polypeptide chain includes its Variable ("**V**") Domain, which is of about 100 to 110 or more amino acids, and is primarily responsible for antigen recognition. The carboxy-terminal portion of each polypeptide chain defines the chain's Constant ("**C**")

Domain. Thus, the structure of the light chains of an IgG molecule (in the N-terminal to C-terminal direction) is: **VL-CL**, and the structure of the IgG heavy chains (in the N-terminals to C-terminal direction) is: **VH-CH1-Hinge-CH2-CH3**.

[0034] The ability of an intact, unmodified antibody (e.g., an IgG antibody) to bind an epitope of an antigen depends upon the presence of Variable Domains on the immunoglobulin light and heavy chains (i.e., the VL Domain and VH Domain, respectively). Interaction of an antibody Light Chain and an antibody heavy chain and, in particular, interaction of its VL and VH Domains forms one of the epitope-binding sites of the antibody. The Variable Domains of an IgG molecule consist of the complementarity determining regions (CDR), which contain the residues in contact with epitope, and non-CDR segments, referred to as framework segments (FR), which in general maintain the structure and determine the positioning of the CDR loops so as to permit such contacting (although certain framework residues may also contact antigen). Thus, the VL Domains have the structure (in the N-terminal to C-terminal direction): FR_L1-CDR_L1-FR_L2-CDR_L2-FR_L3-CDR_L3-FR_L4, and the VH Domains have the structure (in the N-terminal to C-terminal direction): FR_H1-CDR_H1-FR_H2-CDR_H2-FR_H3-CDR_H3-FR_H4. Polypeptides that are (or may serve as) the first, second and third CDR of an antibody Light Chain are herein respectively designated CDR_L1 Domain, CDR_L2 Domain, and CDR_L3 Domain. Similarly, polypeptides that are (or may serve as) the first, second and third CDR of an antibody heavy chain are herein respectively designated CDR_H1 Domain, CDR_H2 Domain, and CDR_H3 Domain. Thus, the terms CDR_L1 Domain, CDR_L2 Domain, CDRL3 Domain, CDRH1 Domain, CDRH2 Domain, and CDRH3 Domain are directed to polypeptides that when incorporated into a protein cause that protein to be able to bind to a specific epitope regardless of whether such protein is an antibody having light and heavy chains or a single-chain binding molecule (e.g., an scFv, a BiTe, etc.), or is another type of protein. In contrast to such antibodies, the scFv construct comprises a VL and VH Domain of an antibody contained in a single polypeptide chain wherein the Domains are separated by a flexible linker of sufficient length to allow self-assembly of the two Domains into a functional epitope-binding site. Where self-assembly of the VL and VH Domains is rendered impossible due to a linker of insufficient length (less than about 12 amino acid residues), two of the scFv constructs may interact with one another other to form a bivalent molecule in which the VL of one chain associates with the VH of the other (reviewed in Marvin et al. (2005) "Recombinant Approaches To IgG-Like Bispecific Antibodies," Acta Pharmacol. Sin. 26:649-658).

[0035] In addition to their known uses in diagnostics, antibodies have been shown to be useful as therapeutic agents. The last few decades have seen a revival of interest in the therapeutic potential of antibodies, and antibodies have become one of the leading classes of biotechnology-derived drugs (Chan, C.E. *et al.* (2009) "*The Use Of Antibodies In The Treatment Of Infectious Diseases*," Singapore Med. J. 50(7):663-666). Nearly 200 antibody-based drugs have been approved for use or are under development.

[0036] The term "monoclonal antibody" refers to a homogeneous antibody population wherein the monoclonal antibody is comprised of amino acids (naturally occurring and nonnaturally occurring) that are involved in the selective binding of an antigen. Monoclonal antibodies are highly specific, being directed against a single epitope (or antigenic site). The term "monoclonal antibody" encompasses not only an intact monoclonal antibody and a fulllength monoclonal antibody, but also a fragment thereof (such as an Fab, Fab', F(ab')₂ Fv), single-chain (scFv), a mutant thereof, a fusion protein comprising an antibody portion, a humanized monoclonal antibody, a chimeric monoclonal antibody, and any other modified configuration of an immunoglobulin molecule that comprises an antigen recognition site of the required immunospecificity and the ability to bind to an epitope. It is not intended to be limited as regards to the source of the antibody or the manner in which it is made (e.g., by hybridoma, phage selection, recombinant expression, transgenic animals, etc.). The term includes whole immunoglobulins as well as the fragments etc. described above under the definition of "antibody." Methods of making monoclonal antibodies are known in the art. One method which may be employed is the method of Kohler, G. et al. (1975) "Continuous Cultures Of Fused Cells Secreting Antibody Of Predefined Specificity," Nature 256:495-497 or a modification thereof. Typically, monoclonal antibodies are developed in mice, rats or rabbits. The antibodies are produced by immunizing an animal with an immunogenic amount of cells, cell extracts, or protein preparations that contain the desired epitope. The immunogen can be, but is not limited to, primary cells, cultured cell lines, cancerous cells, proteins, peptides, nucleic acids, or tissue. Cells used for immunization may be cultured for a period of time (e.g., at least 24 hours) prior to their use as an immunogen. Cells may be used as immunogens by themselves or in combination with a non-denaturing adjuvant, such as Ribi (see, e.g., Jennings, V.M. (1995) "Review of Selected Adjuvants Used in Antibody Production," ILAR J. 37(3):119-125).

[0037] In general, cells should be kept intact and preferably viable when used as immunogens. Intact cells may allow antigens to be better detected than ruptured cells by the immunized animal. Use of denaturing or harsh adjuvants, e.g., Freund's adjuvant, may rupture cells and therefore is discouraged. The immunogen may be administered multiple times at periodic intervals such as, bi weekly, or weekly, or may be administered in such a way as to maintain viability in the animal (e.g., in a tissue recombinant). Alternatively, existing monoclonal antibodies and any other equivalent antibodies that are immunospecific for a desired pathogenic epitope can be sequenced and produced recombinantly by any means known in the art. In one embodiment, such an antibody is sequenced and the polynucleotide sequence is then cloned into a vector for expression or propagation. The sequence encoding the antibody of interest may be maintained in a vector in a host cell and the host cell can then be expanded and frozen for future use. The polynucleotide sequence of such antibodies may be used for genetic manipulation to generate a chimeric antibody, a humanized antibody, or a caninized antibody, or to improve the affinity, or other characteristics of the antibody. The term "humanized" antibody refer to a chimeric molecule, generally prepared using recombinant techniques, having an antigen-binding site derived from an immunoglobulin from a non-human species and the remaining immunoglobulin structure of the molecule based upon the structure and /or sequence of a human immunoglobulin. The polynucleotide sequence of the variable domains of such antibodies may be used for genetic manipulation to generate such derivatives and to improve the affinity, or other characteristics of such antibodies. The general principle in humanizing an antibody involves retaining the basic sequence of the antigenbinding portion of the antibody, while swapping the non-human remainder of the antibody with human antibody sequences. There are four general steps to humanize a monoclonal antibody. These are: (1) determining the nucleotide and predicted amino acid sequence of the starting antibody light and heavy variable Domains (2) designing the humanized antibody or caninized antibody, i.e., deciding which antibody framework region to use during the humanizing or canonizing process (3) the actual humanizing or caninizing methodologies/techniques and (4) the transfection and expression of the humanized antibody. See, for example, U.S. Patents Nos. 4,816,567; 5,807,715; 5,866,692; and 6,331,415.

[0038] The epitope-binding site of such antibodies may comprise either complete Variable Domains fused onto Constant Domains or only the complementarity determining regions (CDRs) grafted onto appropriate framework regions in the Variable Domains. Antigen-binding sites may be wild-type or modified by one or more amino acid substitutions. This eliminates

the constant region as an immunogen in human individuals, but the possibility of an immune response to the foreign variable region remains (LoBuglio, A.F. et al. (1989) "Mouse/Human Chimeric Monoclonal Antibody In Man: Kinetics And Immune Response," Proc. Natl. Acad. Sci. (U.S.A.) 86:4220-4224). Another approach focuses not only on providing human-derived constant regions, but modifying the variable regions as well so as to reshape them as closely as possible to human form. It is known that the variable regions of both heavy and light chains contain three complementarity determining regions (CDRs) which vary in response to the antigens in question and determine binding capability, flanked by four framework regions (FRs) which are relatively conserved in a given species and which putatively provide a scaffolding for the CDRs. When non-human antibodies are prepared with respect to a particular antigen, the variable regions can be "reshaped" or "humanized" by grafting CDRs derived from non-human antibody on the FRs present in the human antibody to be modified. Application of this approach to various antibodies has been reported by Sato, K. et al. (1993) Cancer Res 53:851-856. Riechmann, L. et al. (1988) "Reshaping Human Antibodies for Therapy," Nature 332:323-327; Verhoeyen, M. et al. (1988) "Reshaping Human Antibodies: Grafting An Antilysozyme Activity," Science 239:1534-1536; Kettleborough, C. A. et al. (1991) "Humanization Of A Mouse Monoclonal Antibody By CDR-Grafting: The Importance Of Framework Residues On Loop Conformation," Protein Engineering 4:773-3783; Maeda, H. et al. (1991) "Construction Of Reshaped Human Antibodies With HIV-Neutralizing Activity," Human Antibodies Hybridoma 2:124-134; Gorman, S. D. et al. (1991) "Reshaping A Therapeutic CD4 Antibody," Proc. Natl. Acad. Sci. (U.S.A.) 88:4181-4185; Tempest, P.R. et al. (1991) "Reshaping A Human Monoclonal Antibody To Inhibit Human Respiratory Syncytial Virus Infection in vivo," Bio/Technology 9:266-271; Co, M. S. et al. (1991) "Humanized Antibodies For Antiviral Therapy," Proc. Natl. Acad. Sci. (U.S.A.) 88:2869-2873; Carter, P. et al. (1992) "Humanization Of An Anti-p185her2 Antibody For Human Cancer Therapy," Proc. Natl. Acad. Sci. (U.S.A.) 89:4285-4289; and Co, M.S. et al. (1992) "Chimeric And Humanized Antibodies With Specificity For The CD33 Antigen," J. Immunol. 148:1149-1154. In some embodiments, humanized antibodies preserve all CDR sequences (for example, a humanized mouse antibody which contains all six CDRs from the mouse antibodies). embodiments, humanized antibodies have one or more CDRs (one, two, three, four, five, or six) which differ in sequence relative to the original antibody.

[0039] A number of "humanized" antibody molecules comprising an antigen-binding site derived from a non-human immunoglobulin have been described, including chimeric

antibodies having rodent or modified rodent V regions and their associated complementarity determining regions (CDRs) fused to human constant domains (see, for example, Winter et al. (1991) "Man-made Antibodies," Nature 349:293-299; Lobuglio et al. (1989) "Mouse/Human Chimeric Monoclonal Antibody In Man: Kinetics And Immune Response," Proc. Natl. Acad. Sci. (U.S.A.) 86:4220-4224 (1989), Shaw et al. (1987) "Characterization Of A Mouse/Human Chimeric Monoclonal Antibody (17-1A) To A Colon Cancer Tumor-Associated Antigen," J. Immunol. 138:4534-4538, and Brown et al. (1987) "Tumor-Specific Genetically Engineered Murine/Human Chimeric Monoclonal Antibody," Cancer Res. 47:3577-3583). Other references describe rodent CDRs grafted into a human supporting framework region (FR) prior to fusion with an appropriate human antibody constant domain (see, for example, Riechmann, L. et al. (1988) "Reshaping Human Antibodies for Therapy," Nature 332:323-327; Verhoeyen, M. et al. (1988) "Reshaping Human Antibodies: Grafting An Antilysozyme Activity," Science 239:1534-1536; and Jones et al. (1986) "Replacing The Complementarity-Determining Regions In A Human Antibody With Those From A Mouse," Nature 321:522-525). Another reference describes rodent CDRs supported by recombinantly veneered rodent framework regions. See, for example, European Patent Publication No. 519,596. These "humanized" molecules are designed to minimize unwanted immunological response toward rodent antihuman antibody molecules, which limits the duration and effectiveness of therapeutic applications of those moieties in human recipients. Other methods of humanizing antibodies that may also be utilized are disclosed by Daugherty et al. (1991) "Polymerase Chain Reaction Facilitates The Cloning, CDR-Grafting, And Rapid Expression Of A Murine Monoclonal Antibody Directed Against The CD18 Component Of Leukocyte Integrins," Nucl. Acids Res. 19:2471-2476 and in U.S. Patents Nos. 6,180,377; 6,054,297; 5,997,867; and 5,866,692.

2. Bi-Specific Antibodies

[0040] Natural antibodies are capable of binding to only one epitope species (*i.e.*, they are "mono-specific"), although they may be able to bind multiple copies of that species (*i.e.*, they may exhibit bi-valency or multi-valency). The functionality of antibodies can be enhanced by generating multispecific antibody-based molecules that can simultaneously bind two separate and distinct antigens (or different epitopes of the same antigen) and/or by generating antibody-based molecule having higher valency (*i.e.*, more than two binding sites) for the same epitope and/or antigen.

[0041]A wide variety of recombinant bi-specific and tri-specific antibody formats have been developed (see, e.g., United States Patent No. 8,277,806; 6,994,853; 6,551,592 and 6,171,586; United States Patent Publication No. 2010-0291112 and 2008-0057054; and PCT Publication Nos. WO 2013/070565, WO 2012/156430, WO 2012/009544, WO 2009/132876, WO 2009/018386, WO 2008/003116, WO 2008/003103, WO 2007/146968, WO 2006/072152, WO 2002/020039, WO 2000/018806; WO 1999/042597, WO 1998/006749 and WO 1998/003670), most of which use linker peptides either to fuse the antibody core (IgA, IgD, IgE, IgG or IgM) to a further epitope-binding site (e.g., scFv, VL VH, etc.) to, or within, the antibody core, or to fuse multiple epitope-binding site (e.g. two Fab fragments or scFv) to each other. Alternative formats use linker peptides to fuse an epitope-binding site (e.g., an scFv, VL, VH, etc.) to a dimerization domain such as the CH2-CH3 Domain or alternative polypeptides (WO 2005/070966, WO 2006/107786A WO 2006/107617A, WO 2007/046893). PCT Publications Nos. WO 2013/174873, WO 2011/133886 and WO 2010/136172 teach trispecific antibodies in which the CL and CH1 Domains are switched from their respective natural positions and the VL and VH Domains have been diversified (WO 2008/027236; WO 2010/108127) to allow them to bind to more than one antigen. PCT Publications Nos. WO 2013/163427 and WO 2013/119903 disclose modifying the CH2 Domain to contain a fusion protein adduct comprising a binding domain. PCT Publications Nos. WO 2010/028797, WO2010028796 and WO 2010/028795 disclose recombinant antibodies whose Fc Domains have been replaced with additional VL and VH Domains, so as to form tri-valent binding molecules. PCT Publications No. WO 2013/006544 discloses multi-valent Fab molecules that are synthesized as a single polypeptide chain and then subjected to proteolysis to yield heterodimeric structures. PCT Publications Nos. WO 2014/022540, WO 2013/003652, WO 2012/162583, WO 2012/156430, WO 2011/086091, WO 2007/075270, WO 1998/002463, WO 1992/022583 and WO 1991/003493 disclose adding additional Binding Domains or functional groups to an antibody or an antibody portion (e.g., adding additional VL and VH Domains to the antibody's light and heavy chains, or adding a heterologous fusion protein or chaining multiple Fab Domains to one another). United States Patent No. 7,695,936 and Patent Publication 2007/ 0196363 concern bi-specific antibodies that are formed from the heavy chains of two antibodies, one of which possess a protuberance engineered into its heavy chain and the second of which possess a complementary cavity engineered into its heavy chain. The presence of such complementary "knobs" and "holes" is taught to preferentially form bispecific hetero-antibodies (having one heavy chain of each such antibody) relative to monospecific homo-antibodies that contain two heavy chains of the same antibody.

3. **Preferred Fc Domains**

[0042] The CH2 and CH3 Domains of the two heavy chains interact to form the Fc Domain, which is a domain that is recognized by cellular Fc Receptors (FcyRs). As used herein, the term "Fc Domain" is used to define a C-terminal region of an IgG heavy chain. The amino acid sequence of the CH2-CH3 domain of an exemplary human IgG1 is (SEQ ID **NO:1**):

231 2	240	250	260	270	280	
APELLGGE	PSV	FLFPPKPKDT	LMISRTPEVT	CVVVDVSHED	PEVKFNWYVD	
2	290	300	310	320	330	
GVEVHNAK	KTK	PREEQYNSTY	RVVSVLTVLH	QDWLNGKEYK	CKVSNKALPA	
3	340	350	360	370	380	
PIEKTISK	KAK	GQPREPQVYT	LPPSREEMTK	NQVSLTCLVK	GFYPSDIAVE	
3	390	400	410	420	430	
WESNGQPE	ENN	YKTTPPVLDS	DGSFFLYSKL	TVDKSRWQQG	NVFSCSVMHE	
4	440	447				
ALHNHYTÇ	QKS	LSLSPG X				
as numbered by the FII index as set forth in Kahat, wherein X is a lygine (K) or is absent						

as numbered by the EU index as set forth in Kabat, wherein **X** is a lysine (K) or is absent.

The amino acid sequence of the CH2-CH3 Domain of an exemplary human IgG2 [0043] is (**SEQ ID NO:2**):

231 240	250	260	270	280
APPVA-GPSV	FLFPPKPKDT	LMISRTPEVT	CVVVDVSHED	PEVQFNWYVD
290	300	310	320	330
GVEVHNAKTK	PREEQFNSTF	RVVSVLTVVH	QDWLNGKEYK	CKVSNKGLPA
340	350	360	370	380
PIEKTISKTK	GQPREPQVYT	LPPSREEMTK	NQVSLTCLVK	GFYPSDISVE
390	400	410	420	430
WESNGQPENN	YKTTPPMLDS	DGSFFLYSKL	TVDKSRWQQG	NVFSCSVMHE
440	447			
ALHNHYTQKS	LSLSPG x			

as numbered by the EU index as set forth in Kabat, wherein, X is a lysine (K) or is absent.

The amino acid sequence of the CH2-CH3 Domain of an exemplary human IgG3 [0044] is (**SEQ ID NO:3**):

231 240	250	260	270	280
APELLGGPSV	FLFPPKPKDT	LMISRTPEVT	CVVVDVSHED	PEVQFKWYVD
290	300	310	320	330
GVEVHNAKTK	PREEQYNSTF	RVVSVLTVLH	QDWLNGKEYK	CKVSNKALPA
340	350	360	370	380
PIEKTISKTK	GQPREPQVYT	LPPSREEMTK	NQVSLTCLVK	GFYPSDIAVE
390	400	410	420	430
WESSGQPENN	YNTTPPMLDS	DGSFFLYSKL	TVDKSRWQQG	NIFSCSVMHE
440	447			
ALHNRFTQKS	LSLSPG X			

as numbered by the EU index as set forth in Kabat, wherein, X is a lysine (K) or is absent.

[0045] The amino acid sequence of the CH2-CH3 Domain of an exemplary human IgG4 is (SEQ ID NO:4):

231 240	250	260	270	280
APEFLGGPSV	FLFPPKPKDT	LMISRTPEVT	CVVVDVSQED	PEVQFNWYVD
290	300	310	320	330
GVEVHNAKTK	PREEQFNSTY	RVVSVLTVLH	QDWLNGKEYK	CKVSNKGLPS
340	350	360	370	380
SIEKTISKAK	GQPREPQVYT	LPPSQEEMTK	NQVSLTCLVK	GFYPSDIAVE
390	400	410	420	430
WESNGQPENN	YKTTPPVLDS	DGSFFLYSRL	TVDKSRWQEG	NVFSCSVMHE
440	447			
ALHNHYTQKS	LSLSLG x			

as numbered by the EU index as set forth in Kabat, wherein, **X** is a lysine (K) or is absent.

[0046] Throughout the present specification, the numbering of the residues in the constant region of an IgG heavy chain is that of the EU index as in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, NH1, MD (1991), expressly incorporated herein by references. The "EU index as in Kabat" refers to the numbering of the human IgG1 EU antibody. Amino acids from the variable regions of the mature heavy and light chains of immunoglobulins are designated by the position of an amino acid in the chain. Kabat described numerous amino acid sequences for antibodies, identified an amino acid consensus sequence for each subgroup, and assigned a residue number to each amino acid. Kabat's numbering scheme is extendible to antibodies not included in his compendium by aligning the antibody in question with one of the consensus sequences in Kabat by reference to conserved amino acids. This method for assigning residue numbers has become standard in the field and readily identifies amino acids at equivalent positions in different antibodies, including chimeric or humanized variants. For example, an amino acid at position 50 of a human antibody light chain occupies the equivalent position to an amino acid at position 50 of a mouse antibody light chain.

[0047] Although boundaries may vary slightly, the CH2 domain of a human IgG Fc Domain usually extends from amino acids 231 to amino acid 341 of a human IgG according to the EU numbering system of Kabat. The CH3 domain of a human IgG usually extends from amino acids 342 to 447 according to the EU numbering system of Kabat. The "hinge region" or "hinge domain" is generally defined as stretching from Glu216 to Pro230 of human IgG1.

[0048] Polymorphisms have been observed at a number of different positions within antibody constant regions (e.g., Fc positions, including but not limited to positions 270, 272, 312, 315, 356, and 358 as numbered by the EU index as set forth in Kabat), and thus slight

differences between the presented sequence and sequences in the prior art can exist. Polymorphic forms of human immunoglobulins have been well-characterized. At present, 18 Gm allotypes are known: G1m (1, 2, 3, 17) or G1m (a, x, f, z), G2m (23) or G2m (n), G3m (5, 6, 10, 11, 13, 14, 15, 16, 21, 24, 26, 27, 28) or G3m (b1, c3, b3, b0, b3, b4, s, t, g1, c5, u, v, g5) (Lefranc, et al., The human IgG subclasses: molecular analysis of structure, function and regulation. Pergamon, Oxford, pp. 43-78 (1990); Lefranc, G. et al., 1979, Hum. Genet.: 50, 199-211). It is specifically contemplated that the antibodies useful in the methods of the present invention may incorporate any allotype, isoallotype, or haplotype of any immunoglobulin gene, and are not limited to the allotype, isoallotype or haplotype of the sequences provided herein. Furthermore, in some expression systems the C-terminal amino acid residue (bolded above) of the CH3 Domain may be post-translationally removed. Accordingly, the C-terminal residue of the CH3 Domain is an optional amino acid residue in the B7-H3-binding molecules and PD-1binding molecules provided herein. Specifically encompassed by the instant invention are such binding molecules lacking the C-terminal residue of the CH3 Domain. Also specifically encompassed by the instant invention are such binding molecules comprising the C-terminal lysine residue of the CH3 Domain.

[0049] When present, the CH1 Domain and/or hinge region may be of any isotype (e.g., IgG1, IgG2, IgG3, or IgG4), but is preferably of the same isotype as the desired Fc Domain.

[0050] The amino acid sequence of an exemplary human IgG1 CH1 Domain is (SEQ ID NO:8):

ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKRV

[0051] The amino acid sequence of an exemplary human IgG2 CH1 Domain is (SEQ ID NO:60):

ASTKGPSVFP LAPCSRSTSE STAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSNFGTQT YTCNVDHKPS NTKVDKTV

[0052] The amino acid sequence of an exemplary human IgG4 CH1 Domain is (SEQ ID NO:61):

ASTKGPSVFP LAPCSRSTSE STAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTKT YTCNVDHKPS NTKVDKRV

[0053] The amino acid sequence of an IgG4 CH1 Domain and Stabilized Hinge (SEQ ID NO:16) is shown below.

ASTKGPSVFP LAPCSRSTSE STAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTKT YTCNVDHKPS NTKVDKRVES KYGPPCPPCP

[0054] The amino acid sequence of an exemplary human IgG1 hinge region is (SEQ ID NO:10): EPKSCDKTHTCPPCP

[0055] The amino acid sequence of an exemplary human IgG2 hinge region is (SEQ ID NO:62):

ERKCCVECPPERKCCVECPPCP

[0056] The amino acid sequence of an exemplary human IgG4 hinge region is (SEQ ID NO:11): ESKYGPPCPSCP

[0057] Activating and inhibitory signals are transduced through the Fc gamma Receptors (FcyRs) following their ligation to an Fc Domain. These diametrically opposing functions result from structural differences among the different receptor isoforms. Two distinct domains within the cytoplasmic signaling domains of the receptor called immunoreceptor tyrosinebased activation motifs (ITAMs) or immunoreceptor tyrosine-based inhibitory motifs (ITIMS) account for the different responses. The recruitment of different cytoplasmic enzymes to these structures dictates the outcome of the FcyR-mediated cellular responses. ITAM-containing FcγR complexes include FcγRI, FcγRIIA, FcγRIIIA, whereas ITIM-containing complexes only include FcyRIIB. Human neutrophils express the FcyRIIA gene. FcyRIIA clustering via immune complexes or specific antibody cross-linking serves to aggregate ITAMs along with receptor-associated kinases which facilitate ITAM phosphorylation. ITAM phosphorylation serves as a docking site for Syk kinase, activation of which results in activation of downstream substrates (e.g., PI₃K). Cellular activation leads to release of proinflammatory mediators. The FcγRIIB gene is expressed on B lymphocytes; its extracellular domain is 96% identical to FcyRIIA and binds IgG complexes in an indistinguishable manner. The presence of an ITIM in the cytoplasmic domain of FcyRIIB defines this inhibitory subclass of FcyR. Recently the molecular basis of this inhibition was established. When co-ligated along with an activating FcyR, the ITIM in FcyRIIB becomes phosphorylated and attracts the SH2 domain of the inositol polyphosphate 5'-phosphatase (SHIP), which hydrolyzes phosphoinositol messengers released as a consequence of ITAM-containing FcyR-mediated tyrosine kinase activation,

consequently preventing the influx of intracellular Ca⁺⁺. Thus cross-linking of Fc γ RIIB dampens the activating response to Fc γ R ligation and inhibits cellular responsiveness. B cell activation, B cell proliferation and antibody secretion is thus aborted. In addition, interaction with the neonatal Fc Receptor (FcRn) mediates the recycling of IgG molecules from the endosome to the cell surface and release into the blood.

[0058] Modification of the Fc Domain normally leads to an altered phenotype, for example altered serum half-life, altered stability, altered susceptibility to cellular enzymes or altered effector function. It may be desirable to modify the Fc Domain of the B7-H3-binding molecules and/or PD-1-binding molecules (*e.g.*, anti-B7-H3 and anti-PD-1 antibodies) for use in the methods of the present invention with respect to effector function, so as to enhance the effectiveness of the antibody in treating cancer, for example. Reduction or elimination of effector function is desirable in certain cases, for example in the case of antibodies whose mechanism of action involves blocking or antagonism, but not killing of the cells bearing a target antigen. Increased effector function is generally desirable when directed to undesirable cells, such as tumor and foreign cells, where the FcγRs are expressed at low levels, for example, tumor-specific B cells with low levels of FcγRIIB (*e.g.*, non-Hodgkin's lymphoma, CLL, and Burkitt's lymphoma).

[0059] The Fc Domain of the B7-H3-binding molecules and/or PD-1-binding molecules (e.g., anti-B7-H3 and anti-PD-1 antibodies) for use in the methods of the present invention may be either a complete Fc Domain (e.g., a complete IgG Fc Domain) or only a fragment of a complete Fc Domain. Thus, the Fc Domain of the molecules useful in the methods of the present invention that contain such a domain may include some or all of the CH2 Domain and/or some or all of the CH3 Domain of a complete Fc Domain, or may comprise a variant CH2 and/or a variant CH3 sequence (that may include, for example, one or more insertions and/or one or more deletions with respect to the CH2 or CH3 domains of a complete Fc Domain). Such Fc Domains may comprise non-Fc polypeptide portions, or may comprise portions of non-naturally complete Fc Domains, or may comprise non-naturally occurring orientations of CH2 and/or CH3 domains (such as, for example, two CH2 domains or two CH3 Domains, or in the N-terminal to C-terminal direction, a CH3 Domain linked to a CH2 Domain, Although the Fc Domain of the B7-H3-binding molecules and/or PD-1-binding molecules may possess the ability to bind to one or more Fc receptors (e.g., $Fc\gamma R(s)$), more preferably such Fc Domain will cause altered binding to FcyRIA (CD64), FcyRIIA (CD32A),

FcγRIIB (CD32B), FcγRIIIA (CD16a) or FcγRIIIB (CD16b) (relative to the binding exhibited by a wild-type Fc Domain) or will substantially eliminate the ability of such Fc Domain to bind to one or more FcγR (*e.g.*, inhibitory receptor(s)).

[0060] In certain embodiments the molecules for use in the methods of the present invention may comprise a variant Fc Domain having altered affinities for an activating and/or inhibitory Fcγ receptor. In one embodiment, the molecules comprise a variant Fc Domain that has increased affinity for FcγRIIB and decreased affinity for FcγRIIA and/or FcγRIIA, relative to a comparable molecule with a wild-type Fc Domain. In another embodiment, the molecules for use in the methods of the present invention comprise a variant Fc Domain that has decreased affinity for FcγRIIB and increased affinity for FcγRIIA and/or FcγRIIA, relative to a comparable molecule with a wild-type Fc Domain. In yet another embodiment, molecules for use in the methods of the present invention comprise a variant Fc Domain that has decreased affinity for FcγRIIB and decreased affinity for FcγRIIIA and/or FcγRIIIA, relative to a comparable molecule with a wild-type Fc Domain. In still another embodiment, the molecules for use in the methods of the present invention comprise a variant Fc Domain that has unchanged affinity for FcγRIIB and decreased (or increased) affinity for FcγRIIIA and/or FcγRIIIA and/or FcγRIIIA, relative to a comparable molecule with a wild-type Fc Domain.

[0061] In certain embodiments, the molecules for use in the methods of the present invention comprise a variant Fc Domain having an altered affinity for FcγRIIIA and/or FcγRIIA such that the immunoglobulin has an enhanced effector function. Non-limiting examples of effector cell functions include antibody dependent cell mediated cytotoxicity, antibody dependent phagocytosis, phagocytosis, opsonization, opsonophagocytosis, cell binding, rosetting, C1q binding, and complement dependent cell mediated cytotoxicity.

[0062] Variant Fc Domains are well known in the art, and any known variant Fc Domain may be used in the present invention to confer or modify the effector function exhibited by a molecule comprising an Fc Domain (or portion thereof) as functionally assayed, *e.g.*, in an NK dependent or macrophage dependent assay. For example, Fc Domain variants identified as altering effector function are disclosed in PCT Publications No. WO 04/063351; WO 06/088494; WO 07/024249; WO 06/113665; WO 07/021841; WO 07/106707; and WO 2008/140603, and any suitable variant disclosed therein may be used in the present molecules.

[0063] Table 4 lists exemplary single, double, triple, quadruple and quintuple Fc Domain mutations.

	Table 4					
Variations of Preferred Activating Fc Domains						
Single-Site Variation						
F243L	R292G	D270E	R292P			
Y300L	P396L					
Double-Site Variation	ons					
F243L and R292P	F243L and Y300L	F243L and P396L	R292P and Y300L			
D270E and P396L	R292P and V305I	P396L and Q419H	P247L and N421K			
R292P and P396L	Y300L and P396L	R255L and P396L	R292P and P305I			
K392T and P396L						
Triple-Site Variatio	ns					
F243L, P247L and N	421K	P247L, D270E and N	V421K			
F243L, R292P and Y	300L	R255L, D270E and P396L				
F243L, R292P and V	305I	D270E, G316D and R416G				
F243L, R292P and P2	396L	D270E, K392T and I	P396L			
F243L, Y300L and P	396L	D270E, P396L and C) 419H			
V284M, R292L and I	K370N	R292P, Y300L and F	396L			
Quadruple-Site Var	iations					
L234F, F243L, R292	P and Y300L	F243L, P247L, D270	E and N421K			
L234F, F243L, R292	P and Y300L	F243L, R255L, D270	E and P396L			
L235I, F243L, R292I	and Y300L	F243L, D270E, G310	6D and R416G			
L235Q, F243L, R292	P and Y300L	F243L, D270E, K392T and P396L				
P247L, D270E, Y300	L and N421K	F243L, R292P, Y300L, and P396L				
R255L, D270E, R292	2G and P396L	F243L, R292P, V305I and P396L				
R255L, D270E, Y300	OL and P396L	F243L, D270E, P396L and Q419H				
D270E, G316D, P396	6L and R416G					
Quintuple-Site Variations						
L235V, F243L, R292	P, Y300L and P396L	F243L, R292P, V305	5I, Y300L and P396L			
L235P, F243L, R292	P, Y300L and P396L					

[0064] Particularly preferred variants include one or more modifications selected from groups A-AI:

A	228E, 228K, 228Y or 228G;
В	230A, 230E, 230Y or 230G;
C	231E, 231K, 231Y, 231P or 231G;
D	232E, 232K, 232Y, 232G;
Е	233D;
F	234I or 234F;
G	235D, 235Q, 235P, 235I or 235V;
Н	239D, 239E, 239N or 239Q;
I	240A, 240I, 240M or 240T;
J	243R, 243, 243Y, 243L, 243Q, 243W, 243H or 243I;
K	244H;
L	245A;
M	247G, 247V or 247L;

N	262A, 262E, 262I, 262T, 262E or 262F;
О	263A, 263I, 263M or 263T;
P	264F, 264E, 264R, 264I, 264A, 264T or 264W;
Q	265F, 265Y, 265H, 265I, 265L, 265T, 265V, 265N or 265Q;
R	266A, 266I, 266M or 266T;
S	271D, 271E, 271N, 271Q, 271K, 271R, 271S, 271T, 271H, 271A, 271V,
	271L, 271I, 271F, 271M, 271Y, 271W or 271G;
T	273I;
U	275L or 275W;
V	281D, 281K, 281Y or 281P;
W	284E, 284N, 284T, 284L, 284Y or 284M;
Х	291D, 291E, 291Q, 291T, 291H, 291I or 291G;
Y	299A, 299D, 299E, 299F, 299G, 299H, 299I, 299K, 299L, 299M, 299N,
	299P, 299Q, 299R, 299S, 299V, 299W or 299Y;
Z	302I;
AA	304D, 304N, 304T, 304H or 304L
AB	305I;
AC	313F;
AD	323I;
AE	325A, 325D, 325E, 325G, 325H, 325I, 325L, 325K, 325R, 325S, 325F,
	325M, 325T, 325V, 325Y, 325W or 325P;
AF	328D, 328Q, 328K, 328R, 328S, 328T, 328V, 328I, 328Y, 328W, 328P,
	328G, 328A, 328E, 328F, 328H, 328M or 328N;
AG	330L, 330Y, 330I or 330V;
AH	332A, 332D, 332E, 332H, 332N, 332Q, 332T, 332K, 332R, 332S, 332V,
	332L, 332F, 332M, 332W, 332P, 332G or 332Y; and
AI	336E, 336K or 336Y

[0065] Still more particularly preferred variants include one or more modifications selected from Groups 1-105:

Group	Variant	Group	Variant
1	A330L / I332E	54	S239D / D265L / N297D / I332E
2	D265F / N297E / I332E	55	S239D / D265T / N297D / I332E
3	D265Y / N297D / I332E	56	S239D / D265V / N297D / I332E
4	D265Y / N297D / T299L / I332E	57	S239D / D265Y / N297D / I332E
5	F241E / F243Q / V262T / V264F	58	S239D / I332D
6	F241E / F243Q / V262T / V264E /	59	S239D / I332E
	I332E		
7	F241E / F243R / V262E / V264R	60	S239D / I332E / A330I
8	F241E / F243R / V262E / V264R /	61	S239D / I332N
	I332E		
9	F241E / F243Y / V262T / V264R	62	S239D / I332Q
10	F241E / F243Y / V262T / V264R /	63	S239D / N297D / I332E
	I332E		
11	F241L / F243L / V262I / V264I	64	S239D / N297D / I332E / A330Y
12	F241L / V262I	65	S239D / N297D / I332E / A330Y
			/ F241S / F243H / V262T /
			V264T

13	Group	Variant	Group	Variant
1332E	13	F241R / F243Q / V262T / V264R	66	S239D / N297D / I332E / K326E
15	14	F241R / F243Q / V262T / V264R /	67	S239D / N297D / I332E / L235D
V264A		I332E		
16	15	F241W / F243W / V262A /	68	S239D / S298A / I332E
17		V264A		
N297D / I332E	16	F241Y / F243Y / V262T / V264T	69	S239D / V264I / A330L / I332E
18	17	F241Y / F243Y / V262T / V264T /	70	S239D / V264I / I332E
19		N297D / I332E		
20 L328D / I332E 73 S239E / D265Q 21 L328E / I332E 74 S239E / I332D 22 L328H / I332E 75 S239E / I332D 23 L328I / I332E 76 S239E / I332Q 24 L328M / I332E 78 S239E / N297D / I332E 25 L328N / I332E 79 S239E / V264I / A330Y / I332E 26 L328V / I332E 80 S239E / V264I / S298A / A330Y / I332E 27 L328T / I332E 80 S239E / V264I / S298A / A330Y / I332E 28 L328V / I332E 81 S239E / V264I / S298A / A330Y / I332E 29 N297D / A330Y / I332E 82 S239N / A330L / I332E 30 N297D / I332E 83 S239N / A330Y / I332E 31 N297D / I332E 83 S239N / I332D 32 N297D / T299L / I332E 86 S239N / I332D 33 N297D / T299I / I332E 86 S239N / I332Q 34 N297D / T299I / I332E 88 S239N / I332D 35 N297D / T299V / I332E 89 <td>18</td> <td>F243L / V262I / V264W</td> <td>71</td> <td>S239D / V264I / S298A / I332E</td>	18	F243L / V262I / V264W	71	S239D / V264I / S298A / I332E
21 L328E / I332E 74 S239E / I332D 22 L328H / I332E 75 S239E / I332B 24 L328M / I332E 76 S239E / I332Q 24 L328M / I332E 77 S239E / I332Q 25 L328N / I332E 78 S239E / N297D / I332E 26 L328Q / I332E 79 S239E / V264I / A330Y / I332E 27 L328T / I332E 80 S239E / V264I / S298A / A330Y / I332E 28 L328V / I332E 81 S239E / V264I / S298A / A330Y / I332E 29 N297D / A330Y / I332E 82 S239N / A330Y / I332E 30 N297D / I332E / S239D / A330L 84 S239N / I332D 31 N297D / I332E / S239D / A330L 84 S239N / I332D 32 N297D / T299F / I332E 85 S239N / I332D 33 N297D / T299F / I332E 86 S239N / I332Q 34 N297D / T299I / I332E 88 S239N / I332D 35 N297D / T299L / I332E 89 S239Q / I332D 36 N297D / T299L / I332E <	19	P243L / V264I	72	S239E / D265N
22 L328H/I332E 75 S239E/I332N 23 L328I/I332E 76 S239E/I332N 24 L328M/I332E 77 S239E/I332N 25 L328N/I332E 78 S239E/N297D/I332E 26 L328Q/I332E 79 S239E/V264I/I332E 27 L328T/I332E 80 S239E/V264I/I332E 28 L328V/I332E 81 S239E/V264I/S298A/A330Y/I332E 29 N297D/A330Y/I332E 82 S239N/A330L/I332E 30 N297D/I332E/S239D/A330L 84 S239N/I332D 31 N297D/I332E/S239D/A330L 84 S239N/I332D 32 N297D/S298A/A330Y/I332E 85 S239N/I332D 33 N297D/T299F/I332E 86 S239N/I332D 34 N297D/T299F/I332E 86 S239N/I332D 35 N297D/T299L/I332E 88 S239N/I332D 36 N297D/T299L/I332E 89 S239Q/I332D 37 N297D/T299V/I332E 89 S239Q/I332D 36 N297B/I332E	20	L328D / I332E	73	S239E / D265Q
23 L328I / I332E 76 S239E / I332N 24 L328M / I332E 77 S239E / I332Q 25 L328V / I332E 78 S239E / V264I / A330Y / I332E 26 L328Q / I332E 79 S239E / V264I / I332E 27 L328T / I332E 80 S239E / V264I / I332E 28 L328V / I332E 81 S239E / V264I / S298A / A330Y 29 N297D / A330Y / I332E 82 S239N / A330L / I332E 30 N297D / I332E 83 S239N / A330Y / I332E 31 N297D / S298A / A330Y / I 332E 85 S239N / I332D 32 N297D / T299L / I332E 86 S239N / I332D 34 N297D / T299F / I332E / N297D / T299L / I332E 86 S239N / I332Q 35 N297D / T299L / I332E 88 S239N / I332D 36 N297D / T299L / I332E 88 S239N / I332D 37 N297D / T299V / I332E 88 S239Q / I332D 38 N297E / I332E 90 S239Q / I332D 39 N297S / I332E 91 </td <td>21</td> <td>L328E / I332E</td> <td>74</td> <td>S239E / I332D</td>	21	L328E / I332E	74	S239E / I332D
24 L328M / I332E 77 S239E / I332Q 25 L328N / I332E 78 S239E / N297D / I332E 26 L328Q / I332E 79 S239E / V264I / A330Y / I332E 27 L328T / I332E 80 S239E / V264I / S298A / A330Y / I332E 28 L328V / I332E 81 S239E / V264I / S298A / A330Y / I332E 29 N297D / A330Y / I332E 82 S239N / A330L / I332E 30 N297D / I332E / S239D / A330L 84 S239N / A330Y / I332E 31 N297D / S298A / A330Y / I 332E 85 S239N / I332E 32 N297D / T299L / I332E 86 S239N / I332D 34 N297D / T299L / I332E 86 S239N / I332Q 35 N297D / T299L / I332E 88 S239N / I332D 36 N297D / T299L / I332E 88 S239D / I332D 37 N297D / T299V / I332E 89 S239Q / I332D 38 N297S / I332E 90 S239Q / I332D 39 N297S / I332E 91 S239Q / I332D 40 P230A / E233D / I33	22	L328H / I332E	75	S239E / I332E
25 L328N / I332E 78 \$239E / N297D / I332E 26 L328Q / I332E 79 \$239E / V264I / A330Y / I332 E 27 L328T / I332E 80 \$239E / V264I / I332 E 28 L328V / I332E 81 \$239E / V264I / S298A / A330Y / I332E 29 N297D / A330Y / I332E 82 \$239N / A330L / I332E 30 N297D / I332E 83 \$239N / A330Y / I332E 31 N297D / I332E / \$239D / A330L 84 \$239N / I332D 32 N297D / S298A / A330Y / I332E 85 \$239N / I332D 33 N297D / T299F / I332E 86 \$239N / I332N 34 N297D / T299F / I332E 86 \$239N / I332Q 35 N297D / T299F / I332E 88 \$239N / I332D 36 N297D / T299V / I332E 89 \$239Q / I332D 37 N297D / T299V / I332E 89 \$239Q / I332D 38 N297E / I332E 90 \$239Q / I332D 39 N297S / I332E 91 \$239Q / I332Q 40 P230A / E33D / I332E	23	L328I / I332E	76	S239E / I332N
26	24	L328M / I332E	77	S239E / I332Q
27	25	L328N / I332E	78	S239E / N297D / I332E
28 L328V / I332E 81 \$239E / \$V264I / \$S298A / A330Y / I332E 29 \$N297D / A330Y / I332E 82 \$S239N / A330L / I332E 30 \$N297D / I332E 83 \$S239N / A330Y / I332E 31 \$N297D / I332E / \$S239D / A330L 84 \$S239N / I332D 32 \$N297D / S298A / A330Y / I 332E 85 \$S239N / I332E 33 \$N297D / T299L / I332E 86 \$S239N / I332N 34 \$N297D / T299F / I332E N297D / 87 \$S239N / I332Q 35 \$N297D / T299I / I332E 88 \$S239N / I332E 36 \$N297D / T299L / I332E 89 \$S239Q / I332D 37 \$N297D / T299V / I332E 90 \$S239Q / I332D 38 \$N297E / I332E 91 \$S239Q / I332D 39 \$N297S / I332E 91 \$S239Q / I332D 40 \$P230A / E233D / I332E 92 \$S239Q / I332Q 40 \$P230A / E233D / I332E 92 \$S239Q / I332Q 41 \$P244H / P245A / P247V 94 \$S298A / I332E 92 42 \$S239D / A330Y / I332E / K326E 95 \$V264E / N297D / I332E 92 43 \$S239D / A330Y / I332E / K326E 97 \$V264I / A330L / I332E 92 44 \$S239D	26	L328Q / I332E	79	S239E / V264I / A330Y / I332 E
	27	L328T / I332E	80	S239E / V264I / I332 E
29 N297D / A330Y / I332E 82 \$239N / A330L / I332E 30 N297D / I332E 83 \$239N / A330Y / I332E 31 N297D / I332E / \$239D / A330L 84 \$239N / I332D 32 N297D / \$298A / A330Y / I 332E 85 \$239N / I332E 33 N297D / T299L / I332E 86 \$239N / I332N 34 N297D / T299F / I332E / N297D / T299H / I332E 87 \$239N / I332D 35 N297D / T299L / I332E 88 \$239Q / I332D 36 N297D / T299V / I332E 89 \$239Q / I332D 37 N297D / T299V / I332E 90 \$239Q / I332D 38 N297E / I332E 91 \$239Q / I332D 39 N297S / I332E 91 \$239Q / I332D 40 P230A / E233D / I332E 92 \$239Q / I332D 41 P244H / P245A / P247V 94 \$298A / I332E 42 \$239D / A330V / I332E 95 \$264E / N297D / I332E 43 \$239D / A330V / I332E / K326E 97 \$264I / A330V / I332E 44 \$239D / A330V / I332E / K326T 98 \$264I / A330V / I332E 45 <td>28</td> <td>L328V / I332E</td> <td>81</td> <td>S239E / V264I / S298A / A330Y</td>	28	L328V / I332E	81	S239E / V264I / S298A / A330Y
30				/ I332E
31 N297D / I332E / S239D / A330L 84 S239N / I332D 32 N297D / S298A / A330Y / I 332E 85 S239N / I332E 33 N297D / T299L / I332E 86 S239N / I332N 34 N297D / T299F / I332E / N297D / T299H / I332E 87 S239N / I332Q 35 N297D / T299L / I332E 88 S239N / I332D 36 N297D / T299V / I332E 89 S239Q / I332D 37 N297D / T299V / I332E 90 S239Q / I332D 38 N297E / I332E 91 S239Q / I332D 39 N297S / I332E 92 S239Q / I332Q 40 P230A / E233D / I332E 93 S239Q / V264I / I332E 41 P244H / P245A / P247V 94 S298A / I332E 42 S239D / A330L / I332E 95 V264E / N297D / I332E 43 S239D / A330Y / I332E / K326E 97 V264I / A330L / I332E 44 S239D / A330Y / I332E / K326T 98 V264I / A330Y / I332E 45 S239D / A330Y / I332E / L234I 99 V264I / S298A / I332E 46 S239D / A330Y / I332E / L234I 99 V264I / S298A / I332E	29	N297D / A330Y / I332E	82	S239N / A330L / I332E
32 N297D / S298A / A330Y / I 332E 85 S239N / I 332E 33 N297D / T299L / I 332E 86 S239N / I 332N 34 N297D / T299F / I 332E / N297D / R7299H / I 332E 87 S239N / I 332Q 35 N297D / T299L / I 332E 88 S239N / I 332E 36 N297D / T299V / I 332E 89 S239Q / I 332D 37 N297D / T299V / I 332E 90 S239Q / I 332D 38 N297E / I 332E 91 S239Q / I 332Q 40 P230A / E233D / I 332E 92 S239Q / I 332Q 40 P230A / E233D / I 332E 93 S239Q / V264I / I 332E 41 P244H / P245A / P247V 94 S298A / I 332E 42 S239D / A330Y / I 332E 95 V264E / N297D / I 332E 43 S239D / A330Y / I 332E / K326E 97 V264I / A330Y / I 332E 44 S239D / A330Y / I 332E / K326T 98 V264I / A330Y / I 332E 45 S239D / A330Y / I 332E / L234I 99 V264I / S298A / I 332E 47 S239D / A330Y / I 332E / V264T 100 Y296D / N297D / I 332E 48 S239D / A330Y / I 332E / V264T	30	N297D / I332E	83	S239N / A330Y / I332E
33 N297D / T299L / I332E 86 \$239N / I332N 34 N297D / T299F / I332E / N297D / T299H / I332E 87 \$239N / I332Q 35 N297D / T299L / I332E 88 \$239N / I332E 36 N297D / T299V / I332E 89 \$239Q / I332D 37 N297D / T299V / I332E 90 \$239Q / I332E 38 N297E / I332E 91 \$239Q / I332N 39 N297S / I332E 92 \$239Q / I332N 40 P230A / E233D / I332E 93 \$239Q / V264I / I332E 41 P244H / P245A / P247V 94 \$298A / I332E 42 \$239D / A330L / I332E 95 \$V264E / N297D / I332E 43 \$239D / A330Y / I332E / K326E 97 \$V264I / A330L / I332E 44 \$239D / A330Y / I332E / K326T 98 \$V264I / I332E 45 \$239D / A330Y / I332E / L234I 99 \$V264I / S298A / I332E 47 \$239D / A330Y / I332E / V264T 100 \$Y296D / N297D / I332E 48 \$239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 \$Y296N / N297D	31	N297D / I332E / S239D / A330L	84	S239N / I332D
34 N297D / T299F / I332E / N297D / T299H / I332E 87 S239N / I332Q 35 N297D / T299I / I332E 88 S239N IS298A / I332E 36 N297D / T299V / I332E 89 S239Q / I332D 37 N297D / T299V / I332E 90 S239Q / I332E 38 N297E / I332E 91 S239Q / I332N 39 N297S / I332E 92 S239Q / I332Q 40 P230A / E233D / I332E 93 S239Q / V264I / I332E 41 P244H / P245A / P247V 94 S298A / I332E 42 S239D / A330L / I332E 95 V264E / N297D / I332E 43 S239D / A330Y / I332E / K326E 97 V264I / A330L / I332E 44 S239D / A330Y / I332E / K326T 98 V264I / I332E 45 S239D / A330Y / I332E / L234I 99 V264I / S298A / I332E 46 S239D / A330Y / I332E / L235D 100 Y296D / N297D / I332E 48 S239D / A330Y / I332E / V264T 102 Y296H / N297D / I332E 50 S239D / A330Y / I332E / V266I 103 Y296N / N297D / I332E 51 S239D / D265F / N297D / I332E 104	32	N297D / S298A / A330Y / I 332E	85	S239N / I332E
T299H / I332E 88 \$239N1\$298A / I332E 36 \$N297D / T299L / I332E 89 \$239Q / I332D 37 \$N297D / T299V / I332E 90 \$239Q / I332E 38 \$N297E / I332E 91 \$239Q / I332N 39 \$N297S / I332E 92 \$239Q / I332Q 40 \$P230A / E233D / I332E 93 \$239Q / V264I / I332E 41 \$P244H / P245A / P247V 94 \$298A / I332E 42 \$239D / A330L / I332E 95 \$V264E / N297D / I332E 43 \$239D / A330Y / I332E 96 \$V264I / A330L / I332E 44 \$239D / A330Y / I332E / K326E 97 \$V264I / A330Y / I332E 45 \$239D / A330Y / I332E / K326T 98 \$V264I / I332E 46 \$239D / A330Y / I332E / L234I 99 \$V264I / S298A / I332E 47 \$239D / A330Y / I332E / V240I 101 \$Y296D / N297D / I332E 48 \$239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 \$Y296N / N297D / I332E 51 \$239D / D265F / N297D / I332E 104 \$Y296T / N297D / I332E <td>33</td> <td>N297D / T299L / I332E</td> <td>86</td> <td>S239N / I332N</td>	33	N297D / T299L / I332E	86	S239N / I332N
35 N297D / T299I / I332E 88 S239N1S298A / I332E 36 N297D / T299V / I332E 89 S239Q / I332D 37 N297D / T299V / I332E 90 S239Q / I332E 38 N297E / I332E 91 S239Q / I332N 39 N297S / I332E 92 S239Q / I332Q 40 P230A / E233D / I332E 93 S239Q / V264I / I332E 41 P244H / P245A / P247V 94 S298A / I332E 42 S239D / A330L / I332E 95 V264E / N297D / I332E 43 S239D / A330Y / I332E 96 V264I / A330L / I332E 44 S239D / A330Y / I332E / K326E 97 V264I / A330Y / I332E 45 S239D / A330Y / I332E / K326T 98 V264I / I332E 46 S239D / A330Y / I332E / L234I 99 V264I / S298A / I332E 47 S239D / A330Y / I332E / V240I 101 Y296E / N297D / I332E 48 S239D / A330Y / I332E / V264T 102 Y296H / N297D / I332E 50 S239D / A330Y / I332E / V266I 103 Y296H / N297D / I332E 51 S239D / D265F / N297D / I332E 104 Y296Q / N297I	34	N297D / T299F / I332E / N297D /	87	S239N / I332Q
36 N297D / T299L / I332E 89 \$239Q / I332D 37 N297D / T299V / I332E 90 \$239Q / I332E 38 N297E / I332E 91 \$239Q / I332N 39 N297S / I332E 92 \$239Q / I332Q 40 P230A / E233D / I332E 93 \$239Q / V264I / I332E 41 P244H / P245A / P247V 94 \$298A / I332E 42 \$239D / A330L / I332E 95 \$V264E / N297D / I332E 43 \$239D / A330Y / I332E 96 \$V264I / A330L / I332E 44 \$239D / A330Y / I332E / K326E 97 \$V264I / A330Y / I332E 45 \$239D / A330Y / I332E / K326T 98 \$V264I / B298A / I332E 46 \$239D / A330Y / I332E / L234I 99 \$V264I / \$298A / I332E 47 \$239D / A330Y / I332E / L235D 100 \$Y296D / N297D / I332E 48 \$239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 \$Y296N / N297D / I332E 51 \$239D / D265F / N297D / I332E 104 \$Y296Q / N297I / I332E 52 \$239D / D265H / N297D / I332E 105<		T299H / I332E		·
37 N297D / T299V / I332E 90 S239Q / I332E 38 N297E / I332E 91 S239Q / I332N 39 N297S / I332E 92 S239Q / I332Q 40 P230A / E233D / I332E 93 S239Q / V264I / I332E 41 P244H / P245A / P247V 94 S298A / I332E 42 S239D / A330L / I332E 95 V264E / N297D / I332E 43 S239D / A330Y / I332E / K326E 97 V264I / A330Y / I332E 44 S239D / A330Y / I332E / K326T 98 V264I / I332E 45 S239D / A330Y / I332E / L234I 99 V264I / S298A / I332E 46 S239D / A330Y / I332E / L235D 100 Y296D / N297D / I332E 48 S239D / A330Y / I332E / V264T 101 Y296E / N297D / I332E 49 S239D / A330Y / I332E / V266I 103 Y296H / N297D / I332E 50 S239D / A330Y / I332E / V266I 103 Y296N / N297D / I332E 51 S239D / D265F / N297D / I332E 104 Y296Q / N297I / I332E 52 S239D / D265H / N297D / I332E 105 Y296T / N297D / I332E	35	N297D / T299I / I332E	88	S239N1S298A / I332E
38 N297E / I332E 91 \$239Q / I332N 39 N297S / I332E 92 \$239Q / I332Q 40 P230A / E233D / I332E 93 \$239Q / V264I / I332E 41 P244H / P245A / P247V 94 \$298A / I332E 42 \$239D / A330L / I332E 95 \$V264E / N297D / I332E 43 \$239D / A330Y / I332E / K326E 97 \$V264I / A330L / I332E 44 \$239D / A330Y / I332E / K326T 98 \$V264I / I332E 45 \$239D / A330Y / I332E / K326T 98 \$V264I / I332E 46 \$239D / A330Y / I332E / L234I 99 \$V264I / S298A / I332E 47 \$239D / A330Y / I332E / L235D 100 \$Y296D / N297D / I332E 48 \$239D / A330Y / I332E / V240I 101 \$Y296E / N297D / I332E 49 \$239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 \$Y296N / N297D / I332E 51 \$239D / D265F / N297D / I332E 104 \$Y296Q / N297I / I332E 52 \$239D / D265H / N297D / I332E 105 \$Y296T / N297D / I332E	36	N297D / T299L / I332E	89	S239Q / I332D
39 N297S / I332E 92 \$239Q / I332Q 40 P230A / E233D / I332E 93 \$239Q / V264I / I332E 41 P244H / P245A / P247V 94 \$298A / I332E 42 \$239D / A330L / I332E 95 V264E / N297D / I332E 43 \$239D / A330Y / I332E / K326E 97 V264I / A330L / I332E 44 \$239D / A330Y / I332E / K326T 98 V264I / I332E 45 \$239D / A330Y / I332E / K326T 98 V264I / S298A / I332E 46 \$239D / A330Y / I332E / L234I 99 V264I / S298A / I332E 47 \$239D / A330Y / I332E / V240I 100 Y296D / N297D / I332E 48 \$239D / A330Y / I332E / V264T 102 Y296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 Y296N / N297D / I332E 51 \$239D / D265F / N297D / I332E 104 Y296Q / N297I / I332E 52 \$239D / D265H / N297D / I332E 105 Y296T / N297D / I332E	37	N297D / T299V / I332E	90	S239Q / I332E
40 P230A / E233D / I332E 93 S239Q / V264I / I332E 41 P244H / P245A / P247V 94 S298A / I332E 42 S239D / A330L / I332E 95 V264E / N297D / I332E 43 S239D / A330Y / I332E / K326E 96 V264I / A330L / I332E 44 S239D / A330Y / I332E / K326E 97 V264I / A330Y / I332E 45 S239D / A330Y / I332E / K326T 98 V264I / I332E 46 S239D / A330Y / I332E / L234I 99 V264I / S298A / I332E 47 S239D / A330Y / I332E / L235D 100 Y296D / N297D / I332E 48 S239D / A330Y / I332E / V240I 101 Y296E / N297D / I332E 49 S239D / A330Y / I332E / V264T 102 Y296H / N297D / I332E 50 S239D / A330Y / I332E / V266I 103 Y296N / N297D / I332E 51 S239D / D265F / N297D / I332E 104 Y296Q / N297I / I332E 52 S239D / D265H / N297D / I332E 105 Y296T / N297D / I332E	38	N297E / I332E	91	S239Q / I332N
41 P244H / P245A / P247V 94 \$298A / \$1332E 42 \$239D / A330L / \$1332E 95 \$V264E / N297D / \$1332E 43 \$239D / A330Y / \$1332E / \$K326E 97 \$V264I / A330L / \$1332E 44 \$239D / A330Y / \$1332E / \$K326E 97 \$V264I / A330Y / \$1332E 45 \$239D / A330Y / \$1332E / \$K326T 98 \$V264I / \$1332E 46 \$239D / A330Y / \$1332E / \$L234I 99 \$V264I / \$298A / \$1332E 47 \$239D / A330Y / \$1332E / \$L235D 100 \$Y296D / \$N297D / \$1332E 48 \$239D / A330Y / \$1332E / \$V264T 101 \$Y296E / \$N297D / \$1332E 49 \$239D / A330Y / \$1332E / \$V264T 102 \$Y296H / \$N297D / \$1332E 50 \$239D / A330Y / \$1332E / \$V266I 103 \$Y296N / \$N297D / \$1332E 51 \$239D / D265F / \$N297D / \$1332E 104 \$Y296Q / \$N297I / \$1332E 52 \$239D / D265H / \$N297D / \$1332E 105 \$Y296T / \$N297D / \$1332E	39	N297S / I332E	92	S239Q / I332Q
42 \$239D / A330L / I332E 95 \$V264E / N297D / I332E 43 \$239D / A330Y / I332E 96 \$V264I / A330L / I332E 44 \$239D / A330Y / I332E / K326E 97 \$V264I / A330Y / I332E 45 \$239D / A330Y / I332E / K326T 98 \$V264I / I332E 46 \$239D / A330Y / I332E / L234I 99 \$V264I / S298A / I332E 47 \$239D / A330Y / I332E / L235D 100 \$Y296D / N297D / I332E 48 \$239D / A330Y / I332E / V240I 101 \$Y296E / N297D / I332E 49 \$239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 \$Y296N / N297D / I332E 51 \$239D / D265F / N297D / I332E 104 \$Y296Q / N297I / I332E 52 \$239D / D265H / N297D / I332E 105 \$Y296T / N297D / I332E	40	P230A / E233D / I332E	93	S239Q / V264I / I332E
43 \$239D / A330Y / I332E 96 \$V264I / A330L / I332E 44 \$239D / A330Y / I332E / K326E 97 \$V264I / A330Y / I332E 45 \$239D / A330Y / I332E / K326T 98 \$V264I / I332E 46 \$239D / A330Y / I332E / L234I 99 \$V264I / \$298A / I332E 47 \$239D / A330Y / I332E / L235D 100 \$Y296D / N297D / I332E 48 \$239D / A330Y / I332E / V240I 101 \$Y296E / N297D / I332E 49 \$239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 \$Y296N / N297D / I332E 51 \$239D / D265F / N297D / I332E 104 \$Y296Q / N297I / I332E 52 \$239D / D265H / N297D / I332E 105 \$Y296T / N297D / I332E	41	P244H / P245A / P247V	94	S298A / I332E
44 \$239D / A330Y / I332E / K326E 97 \$V264I / A330Y / I332E 45 \$239D / A330Y / I332E / K326T 98 \$V264I / I332E 46 \$239D / A330Y / I332E / L234I 99 \$V264I / \$298A / I332E 47 \$239D / A330Y / I332E / L235D 100 \$V296D / N297D / I332E 48 \$239D / A330Y / I332E / V240I 101 \$V296E / N297D / I332E 49 \$239D / A330Y / I332E / V264T 102 \$V296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 \$V296N / N297D / I332E 51 \$239D / D265F / N297D / I332E 104 \$V296Q / N297I / I332E 52 \$239D / D265H / N297D / I332E 105 \$V296T / N297D / I332E	42	S239D / A330L / I332E	95	V264E / N297D / I332E
45 \$239D / A330Y / I332E / K326T 98 \$V264I / I332E 46 \$239D / A330Y / I332E / L234I 99 \$V264I / \$298A / I332E 47 \$239D / A330Y / I332E / L235D 100 \$V296D / N297D / I332E 48 \$239D / A330Y / I332E / V240I 101 \$V296E / N297D / I332E 49 \$239D / A330Y / I332E / V264T 102 \$V296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 \$V296N / N297D / I332E 51 \$239D / D265F / N297D / I332E 104 \$V296Q / N297I / I332E 52 \$239D / D265H / N297D / I332E 105 \$V296T / N297D / I332E	43	S239D / A330Y / I332E	96	V264I / A330L / I332E
46 \$239D / A330Y / I332E / L234I 99 \$V264I / \$298A / I332E 47 \$239D / A330Y / I332E / L235D 100 \$Y296D / N297D / I332E 48 \$S239D / A330Y / I332E / V240I 101 \$Y296E / N297D / I332E 49 \$S239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$S239D / A330Y / I332E / V266I 103 \$Y296N / N297D / I332E 51 \$S239D / D265F / N297D / I332E 104 \$Y296Q / N297I / I332E 52 \$S239D / D265H / N297D / I332E 105 \$Y296T / N297D / I332E	44	S239D / A330Y / I332E / K326E	97	V264I / A330Y / I332E
47 \$239D / A330Y / I332E / L235D 100 \$Y296D / N297D / I332E 48 \$239D / A330Y / I332E / V240I 101 \$Y296E / N297D / I332E 49 \$239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$S239D / A330Y / I332E / V266I 103 \$Y296N / N297D / I332E 51 \$S239D / D265F / N297D / I332E 104 \$Y296Q / N297I / I332E 52 \$S239D / D265H / N297D / I332E 105 \$Y296T / N297D / I332E	45		98	V264I / I332E
47 \$239D / A330Y / I332E / L235D 100 \$Y296D / N297D / I332E 48 \$239D / A330Y / I332E / V240I 101 \$Y296E / N297D / I332E 49 \$239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$S239D / A330Y / I332E / V266I 103 \$Y296N / N297D / I332E 51 \$S239D / D265F / N297D / I332E 104 \$Y296Q / N297I / I332E 52 \$S239D / D265H / N297D / I332E 105 \$Y296T / N297D / I332E	46	S239D / A330Y / I332E / L234I	99	V264I / S298A / I332E
49 \$239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 \$Y296N / N297D / I332E 51 \$S239D / D265F / N297D / I332E 104 \$Y296Q / N297I / I332E 52 \$S239D / D265H / N297D / I332E 105 \$Y296T / N297D / I332E	47	S239D / A330Y / I332E / L235D	100	Y296D / N297D / I332E
49 \$239D / A330Y / I332E / V264T 102 \$Y296H / N297D / I332E 50 \$239D / A330Y / I332E / V266I 103 \$Y296N / N297D / I332E 51 \$S239D / D265F / N297D / I332E 104 \$Y296Q / N297I / I332E 52 \$S239D / D265H / N297D / I332E 105 \$Y296T / N297D / I332E	48			
50 S239D / A330Y / I332E / V266I 103 Y296N / N297D / I332E 51 S239D / D265F / N297D / I332E 104 Y296Q / N297I / I332E 52 S239D / D265H / N297D / I332E 105 Y296T / N297D / I332E	49	S239D / A330Y / I332E / V264T	102	Y296H / N297D / I332E
51 S239D / D265F / N297D / I332E 104 Y296Q / N297I / I332E 52 S239D / D265H / N297D / I332E 105 Y296T / N297D / I332E	50			
52 S239D / D265H / N297D / I332E 105 Y296T / N297D / I332E				
				`

[0066] In particularly preferred embodiments, the invention encompasses B7-H3-binding molecules that comprise a variant Fc Domain wherein the variant confers or has an increased ADCC activity and/or an increased binding to FcγRIIIA (CD16A), and may also have a reduced binding to FcγRIIB (CD32B). Exemplary variants of human IgG1 Fc Domains with increased binding to CD16A and which may additionally have reduced binding to CD32B contain L235V, F243L, R292P, Y300L, V305I or P296L substitutions. Preferred B7-H3-binding molecules include variant IgG1 Fc Domains that include any 1, 2, 3, 4, 5, or 6 of the substitutions: L235V, F243L, R292P, Y300L, V305I and P396L. These amino acid substitutions may be present in a human IgG1 Fc Domain in any combination.

[0067] In one embodiment, a B7-H3-binding molecule will comprise a variant Fc Domain having at least one modification in the Fc Domain. In certain embodiments, the variant Fc Domain comprises at least one substitution selected from the group consisting of L235V, F243L, R292P, Y300L, V305I, and P396L.

[0068] In a specific embodiment, the variant Fc Domain comprises:

- (A) at least one substitution selected from the group consisting of F243L, R292P, Y300L, V305I, and P396L;
- (B) at least two substitutions selected from the group consisting of:
 - (1) F243L and P396L;
 - (2) F243L and R292P; and
 - (3) R292P and V305I;
- (C) at least three substitutions selected from the group consisting of:
 - (1) F243L, R292P and Y300L;
 - (2) F243L, R292P and V305I;
 - (3) F243L, R292P and P396L; and
 - (4) R292P, V305I and P396L;
- (D) at least four substitutions selected from the group consisting of:
 - (1) F243L, R292P, Y300L and P396L; and
 - (2) F243L, R292P, V305I and P396L; or
- (E) at least the five substitutions selected from the group consisting of:
 - (1) F243L, R292P, Y300L, V305I and P396L; and
 - (2) L235V, F243L, R292P, Y300L and P396L.

[0069] In another specific embodiment, the variant Fc Domain comprises substitutions of:

- (A) F243L, R292P, and Y300L;
- (B) L235V, F243L, R292P, Y300L, and P396L; or
- (C) F243L, R292P, Y300L, V305I, and P396L.

[0070] In certain embodiments the PD-1-binding molecule comprises a variant Fc Domain wherein the variant confers or has decreased (or substantially no) binding to FcγRIIIA (CD16a), relative to the binding exhibited by the wild-type Fc Domain (SEQ ID NO:1)).

[0071] Exemplary variants of human IgG1 Fc Domains with reduced binding to FcγRs contain L234A, L235A, D265A, N297A or N297Q, substitutions. Preferred PD-1-binding molecules include variant IgG1 Fc Domains that include any 1, 2, 3, 4, or all 5, of the substitutions: L234A, L235A, D265A, N297A, and N297Q. These amino acid substitutions may be present in a human IgG1 Fc Domain in any combination.

[0072] In one embodiment, a PD-1-binding molecule will comprise a variant Fc Domain having at least one modification in the Fc Domain. In certain embodiments, the variant Fc Domain comprises at least one substitution selected from the group consisting of L234A, L235A, D265A, and N297Q. Since the L234A, L235A, D265A, N297A, and N297Q substitutions abolish effector function, in circumstances in which effector function is desired, these substitutions would preferably not be employed.

[0073] In a specific embodiment, the variant Fc Domain comprises substitutions of:

- (A) L234A, L235A;
- (B) D265A;
- (D) N297A; or
- (C) N297Q.

[0074] A preferred IgG1 sequence for the CH2 and CH3 Domains of the PD-1 binding molecules for use in the methods of the invention will have the L234A/L235A substitutions (SEQ ID NO:5):

```
APEAAGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGX
```

wherein, X is a lysine (K) or is absent.

[0075] In particularly preferred embodiments, the CH2-CH3 Domain of an Fc Domain-containing PD-1-binding molecule for use in the methods of the present invention may be one that inherently exhibits decreased (or substantially no) binding to FcγRIIIA (CD16a) and/or reduced effector function (relative to the binding exhibited by the wild-type IgG1 Fc Domain (SEQ ID NO:1)). For example, the CH2-CH3 Domain of an Fc Domain-containing PD-1-binding molecule for use in the methods of the present invention may be an IgG2 Fc Domain or an IgG4 Fc Domain.

In a preferred embodiment, a PD-1-binding molecule for use in the methods of the present invention comprises an IgG4 Fc Domain. Where an IgG4 Fc Domain in utilized the instant invention also encompasses the introduction of a stabilizing hinge mutation such as S228P (e.g., ESKYGPPCPPCP (SEQ ID NO:12)), as numbered by the EU index as set forth in Kabat (Lu et al., (2008) "The Effect Of A Point Mutation On The Stability Of Igg4 As Monitored By Analytical Ultracentrifugation," J. Pharm. Sci. 97:960-969) to reduce the incidence of strand exchange. Other stabilizing mutations known in the art may be introduced into an IgG4 Fc Domain (Peters, P et al., (2012) "Engineering an Improved IgG4 Molecule with Reduced Disulfide Bond Heterogeneity and Increased Fab Domain Thermal Stability," J. Biol. Chem., 287:24525-24533; PCT Patent Publication No: WO 2008/145142). Additionally, as noted above, when present, the CH1 Domain and/or hinge is preferably of the same isotype as the desired Fc Domain. Accordingly, in such embodiments a PD-1-binding molecule (e.g. antibody) will comprise an IgG4 CH1 (see, e.g., SEQ ID NO:9), a stabilized IgG4 hinge (see, e.g., SEQ ID NO:12), and IgG4 CH2-CH3 Domains (see, e.g., SEQ ID NO:4),

[0077] The serum half-life of proteins comprising Fc Domains may be increased by increasing the binding affinity of the Fc Domain for FcRn. The term "half-life" as used herein means a pharmacokinetic property of a molecule that is a measure of the mean survival time of the molecules following their administration. Half-life can be expressed as the time required to eliminate fifty percent (50%) of a known quantity of the molecule from the subject's body (e.g., human patient or other mammal) or from or a specific compartment thereof, for example, as measured in serum, *i.e.*, circulating half-life, or in other tissues. In general, an increase in half-life for an administered molecule results in an increase in that molecule's mean residence time (MRT) in circulation.

[0078] In some embodiments, the B7-H3-binding molecules and/or PD-1-binding molecules for use in the methods of the present invention comprise a variant Fc Domain,

wherein the variant Fc Domain comprises at least one amino acid modification relative to a wild-type Fc Domain, such that the molecule has an increased half-life (relative to that of a wild-type Fc Domain).

[0079]In some embodiments, the B7-H3-binding molecules and/or PD-1-binding molecules for use in the methods of the present invention comprise a variant Fc Domain, wherein the variant Fc Domain comprises a half-live extending amino acid substitution at one or more positions selected from the group consisting of 238, 250, 252, 254, 256, 257, 256, 265, 272, 286, 288, 303, 305, 307, 308, 309, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424, 428, 433, 434, 435, and 436. Numerous specific mutations capable of increasing the half-life of an Fc Domain-containing molecule are known in the art and include, for example M252Y, S254T, T256E, and combinations thereof. For example, see the mutations described in U.S. Patent Nos. 6,277,375, 7,083,784; 7,217,797, 8,088,376; U.S. Publication Nos. 2002/0147311; 2007/0148164; and International Publication Nos. WO 98/23289; WO 2009/058492; and WO 2010/033279, which are herein incorporated by reference in their entireties. Fc Domain-containing molecules with enhanced half-life also include those with substitutions at two or more of Fc Domain residues 250, 252, 254, 256, 257, 288, 307, 308, 309, 311, 378, 428, 433, 434, 435, and 436. In particular, two or more substitutions selected from: T250Q, M252Y, S254T, T256E, K288D, T307Q, V308P, A378V, M428L, N434A, H435K, Y436I.

[0080] In a specific embodiment, the variant Fc Domain comprises substitutions of:

- (A) M252Y, S254T and T256E;
- (B) M252Y and S254T;
- (C) M252Y and T256E;
- (D) T250Q and M428L;
- (E) T307Q and N434A;
- (F) A378V and N434A;
- (G) N434A and Y436I;
- (H) V308P and N434A; or
- (I) K288D and H435K.

[0081] The instant invention further encompasses variant Fc Domains comprising:

- (A) one or more mutations which alter effector function and/or FcγR; and
- (B) one or more mutations which extend serum half-life.

[0082] The two CH2 and/or two CH3 Domains of the CH2-CH3 Domains of two interacting Fc Domain-containing polypeptide chains of an B7-H3-binding molecules and/or PD-1-binding molecule for use in the methods of the present invention need not be identical in sequence, and advantageously are modified to foster complexing between the two polypeptide chains (see, for example: WO 98/50431; WO2007/110205; WO2011/143545; WO 2012/058768; WO 2013/06867). For example, an amino acid substitution (preferably a substitution with an amino acid comprising a bulky side group forming a "knob", e.g., tryptophan) can be introduced into the CH2 or CH3 Domain such that steric interference will prevent interaction with a similarly mutated domain and will obligate the mutated domain to pair with a domain into which a complementary, or accommodating mutation has been engineered, i.e., "the hole" (e.g., a substitution with glycine). Such sets of mutations can be engineered into any of the polypeptides of the Fc Domain-containing B7-H3-binding molecules and/or PD-1-binding molecules of the present invention. Methods of protein engineering to favor heterodimerization over homodimerization are well-known in the art, in particular with respect to the engineering of immunoglobulin-like molecules, and are encompassed herein (see e.g., Ridgway et al. (1996) "Knobs-Into-Holes' Engineering Of Antibody CH3 Domains For Heavy Chain Heterodimerization," Protein Engr. 9:617-621, Atwell et al. (1997) "Stable Heterodimers From Remodeling The Domain Interface Of A Homodimer Using A Phage Display Library, "J. Mol. Biol. 270: 26-35, and Xie et al. (2005) "A New Format Of Bi-specific Antibody: Highly Efficient Heterodimerization, Expression And Tumor Cell Lysis," J. Immunol. Methods 296:95-101; each of which is hereby incorporated herein by reference in its entirety). Preferably the "knob" is engineered into the CH2-CH3 Domains of one polypeptide chain and the "hole" is engineered into the CH2-CH3 Domains of the other CH2-CH3-containing polypeptide chain. Thus, the "knob" will help in preventing the first polypeptide chain from homodimerizing via its CH2 and/or CH3 Domains. The CH2-CH3 "hole-bearing" polypeptide chain will heterodimerize with the CH2-CH3 "knob-bearing" polypeptide chain, and will also homodimerize with itself. A preferred knob is created by modifying a native IgG Fc Domain to contain the modification T366W. A preferred hole is created by modifying a native IgG Fc Domain to contain the modification T366S, L368A and Y407V. To aid in purifying the "hole-bearing" polypeptide chain homodimer from the preferred heterodimer molecule, the protein A binding site of the CH2 and CH3 Domains of the "hole-bearing" Fc Domain is preferably mutated by amino acid substitution at position 435 (H435R). Thus, the "hole-bearing" Fc Domain homodimer will not bind to protein A, whereas an Fc Domain-containing B7-H3-binding molecule and/or PD-1-binding molecule for use in

the methods of the present invention will retain its ability to bind protein A via the protein A binding site on the first polypeptide chain.

[0083] A preferred "knob-bearing" sequence for an Fc Domain-containing B7-H3-binding molecule and/or PD-1 binding molecule has the sequence (SEQ ID NO:6):

```
APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSL\mathbf{w}C\mathbf{L}VK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSR\mathbf{w}QQG NVFSCSVMHE ALHN\mathbf{H}YTQKS LSLSPG\mathbf{X} wherein, \mathbf{X} is a lysine (K) or is absent.
```

[0084] A preferred "hole-bearing" sequence for an Fc Domain-containing B7-H3-binding molecule and/or PD-1 binding molecule has the sequence (SEQ ID NO:7):

```
APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSL\mathbf{S}C\mathbf{A}VK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFL\mathbf{V}SKL TVDKSRWQQG NVFSCSVMHE ALHN\mathbf{R}YTQKS LSLSPG\mathbf{X} wherein, \mathbf{X} is a lysine (K) or is absent.
```

[0085] The invention also encompasses such CH2-CH3 Domains, which comprise additional substitutions which modify effector function and/or F γ R binding activity of the Fc Domain as provided above. The invention also encompasses such CH2-CH3 Domains, which further comprise one or more half-live extending amino acid substitutions. In particular, the invention encompasses such hole-bearing and such knob-bearing CH2-CH3 Domains which further comprise the M252Y/S254T/T256E substitutions.

B. B7-H3-Binding Molecules

Molecules that specifically bind B7-H3 encompassed by the invention include anti-B7-H3 antibodies capable of binding to a continuous or discontinuous (*e.g.*, conformational) portion (epitope) of human B7-H3, and molecules comprising the epitope-binding site of such antibodies. The B7-H3-binding molecules used in the methods and compositions of the present invention will preferably also exhibit the ability to bind to the B7-H3 molecules of one or more non-human species, especially, murine, rodent, canine, and primate species. Antibodies that are specific for B7-H3 are known (see, *e.g.*, United States Patent Nos. 7,527,969; 7,666,424; 7,718,774; 7,737,258; 7,740,845; 8,148,154; 8,216,570; 8,414,892; 8,501,471; 8,779,098; 8,802,091; 9,062,110; US Patent Publication Nos. 2013/0078234; 2010/0143245; and PCT Patent Publications WO 2004/001381; WO 2008/066691; WO 2008/116219; WO

2011/109400; WO 2012/147713, and **Table 5**). Additional desired antibodies may be made by isolating antibody-secreting hybridomas elicited using B7-H3 expressing cells; B7-H3 or a peptide fragment thereof.

[0087] Human B7-H3 exists as a "2Ig" form and as a "4Ig" form. The amino acid sequence of the "2Ig" form of human B7-H3 (including a 29 amino acid residue signal sequence, shown underlined) is (SEQ ID NO:17):

```
MLRRRGSPGM GVHVGAALGA LWFCLTGALE VQVPEDPVVA LVGTDATLCC SFSPEPGFSL AQLNLIWQLT DTKQLVHSFA EGQDQGSAYA NRTALFPDLL AQGNASLRLQ RVRVADEGSF TCFVSIRDFG SAAVSLQVAA PYSKPSMTLE PNKDLRPGDT VTITCSSYRG YPEAEVFWQD GQGVPLTGNV TTSQMANEQG LFDVHSVLRV VLGANGTYSC LVRNPVLQQD AHGSVTITGQ PMTFPPEALW VTVGLSVCLI ALLVALAFVC WRKIKQSCEE ENAGAEDQDG EGEGSKTALQ PLKHSDSKED DGQEIA
```

[0088] The amino acid sequence of the "2Ig" form of human B7-H3 (SEQ ID NO:17) is completely embraced within the "4Ig" form of human B7-H3(SEQ ID NO:18, the 29 amino acid residue signal sequence, shown underlined):

```
MLRRRGSPGM GVHVGAALGA LWFCLTGALE VQVPEDPVVA LVGTDATLCC SFSPEPGFSL AQLNLIWQLT DTKQLVHSFA EGQDQGSAYA NRTALFPDLL AQGNASLRLQ RVRVADEGSF TCFVSIRDFG SAAVSLQVAA PYSKPSMTLE PNKDLRPGDT VTITCSSYQG YPEAEVFWQD GQGVPLTGNV TTSQMANEQG LFDVHSILRV VLGANGTYSC LVRNPVLQQD AHSSVTITPQ RSPTGAVEVQ VPEDPVVALV GTDATLRCSF SPEPGFSLAQ LNLIWQLTDT KQLVHSFTEG RDQGSAYANR TALFPDLLAQ GNASLRLQRV RVADEGSFTC FVSIRDFGSA AVSLQVAAPY SKPSMTLEPN KDLRPGDTVT ITCSSYRGYP EAEVFWQDGQ GVPLTGNVTT SQMANEQGLF DVHSVLRVVL GANGTYSCLV RNPVLQQDAH GSVTITGQPM TFPPEALWVT VGLSVCLIAL LVALAFVCWR KIKQSCEEEN AGAEDQDGEG EGSKTALQPL KHSDSKEDDG QEIA
```

[0089] Preferred anti-B7-H3-binding molecules possess the VL and/or VH Domains, of the anti-human B7-H3 monoclonal antibody "BRCA84D," "BRCA69D," "PRCA1," or any of the anti-B7-H3 antibodies provided in Table 5; and more preferably possess 1, 2 or all 3 of the CDR_Ls of the VL Region and/or 1, 2 or all 3 of the CDR_Hs of the VH Domain of such anti-B7-H3 monoclonal antibodies. Particularly preferred, are B7-H3-binding molecules which possess a humanized VH and/or VL Domain. Such preferred B7-H3-binding molecules include antibodies having variant Fc Domains, bispecific (or multispecific) antibodies, chimeric or humanized antibodies, *etc.*

1. BRCA84D

[0090] The amino acid sequence of the VL Domain of BRCA84D (SEQ ID NO:19) is shown below (CDR_L residues are shown underlined).

DIAMTQSQKF MSTSVGDRVS VTC**kasqnvd tnva**wyqqkp gqspkaliy**s Asyrys**gvpd rftgsgsgtd ftltinnvqs edlaeyfc**qq ynnypft**fgs Gtkleik

[0091] The amino acid sequence of the VH Domain of BRCA84D (SEQ ID NO:20) is shown below (CDR_H residues are shown underlined).

DVQLVESGGG LVQPGGSRKL SCAASGFTFS **SFGMH**WVRQA PEKGLEWVA**Y ISSDSSAIYY ADTVKG**RFTI SRDNPKNTLF LQMTSLRSED TAMYYCGR**GR ENIYYGSRLD Y**WGQGTTLTV SS

a. hBRCA84D

[0092] Six exemplary humanized VL Domains of BRCA84D designated herein as "hBRCA84D VL1," "hBRCA84D VL2," "hBRCA84D VL3," "hBRCA84D VL4," "hBRCA84D VL5," "hBRCA84D VL6," and four exemplary humanized VH Domains of BRCA84D designated herein as "hBRCA84D VH1," "hBRCA84D VH2," "hBRCA84D VH3," and "hBRCA84D VH4," are provided below. Any of the humanized VL Domains may be paired with any of the humanized VH Domains to generate a B7-H3 binding domain. Accordingly, any antibody comprising one of the humanized VL Domains paired with the humanized VH Domain is referred to generically as "hBRCA84D," and particular combinations of humanized VH/VL Domains are referred to by reference to the specific VH/VL Domains, for example a humanized antibody comprising hBRCA84D VH1 and hBRCA84D VL2 is specifically referred to as "hBRCA84D (1.2)."

[0093] The amino acid sequence of the VL Domain of hBRCA84D VL1 (SEQ ID NO:21) is shown below (CDR_L residues are shown underlined).

DIQLTQSPSF LSASVGDRVT ITC**KASQNVD TNVA**WYQQKP GKAPKLLIY**S ASYRYS**GVPS RFSGSGSGTD FTLTISSLQP EDFATYYC**QQ YNNYPFT**FGQ GTKLEIK

[0094] The amino acid sequence of the VL Domain of hBRCA84D VL2 (SEQ ID NO:22) is shown below (CDR_L residues are shown underlined).

DIQLTQSPSF LSASVGDRVT ITC<u>kasqnvd tnva</u>wyqqkp gkapkaliy<u>s</u> <u>asyrys</u>gvps rfsgsgsgtd ftltisslqp edfatyyc<u>qq</u> <u>ynnypft</u>fgq gtkleik

[0095] The amino acid sequence of the VL Domain of hBRCA84D VL3 (SEQ ID NO:23) is shown below (CDR_L residues are shown underlined).

```
DIQLTQSPSF LSASVGDRVS VTCkasqnvd tnvawyqqkp gkapklliys

asyrysgvps rfsgsgsgtd ftltisslqp edfatyycqq ynnypftfgq

Gtkleik
```

[0096] The amino acid sequence of the VL Domain of hBRCA84D VL4 (SEQ ID NO:24) is shown below (CDR_L residues are shown underlined).

```
DIQLTQSPSF LSASVGDRVT ITCkasqnvd tnvawyqqkp gqapklliys

asyrysgvps rfsgsgsgtd ftltisslqp edfatyycqq ynnypftfgq

Gtkleik
```

[0097] The amino acid sequence of the VL Domain of hBRCA84D VL5 (SEQ ID NO:25) is shown below (CDR_L residues are shown underlined).

```
DIQLTQSPSF LSASVGDRVT ITCkasqnvd tnvawyqqkp gqapkaliys

asyrysgvps rfsgsgsgtd ftltisslqp edfatyycqq ynnypftfgq

Gtkleik
```

[0098] The amino acid sequence of the VL Domain of hBRCA84D VL6 (SEQ ID NO:26) is shown below (CDR_L residues are shown underlined).

```
DIQLTQSPSF LSASVGDRVT ITCkasqnvd tnvawyqqkp gkapklliys

asyrysgvps rfsgsgsgtd ftltisslqp edfaeyycqq ynnypftfgq

Gtkleik
```

[0099] The amino acid sequence of the VH Domain of hBRCA84D VH1 (SEQ ID NO:27) is shown below (CDR_H residues are shown underlined).

```
EVQLVESGGG LVQPGGSLRL SCAASGFTFS SFGMHWVRQA PGKGLEWVAY
ISSDSSAIYY ADTVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCARGR
ENIYYGSRLD YWGQGTTVTV SS
```

[00100] The amino acid sequence of the VH Domain of hBRCA84D VH2 (SEQ ID NO:28) is shown below (CDR_H residues are shown underlined).

```
EVQLVESGGG LVQPGGSLRL SCAASGFTFS SFGMHWVRQA PGKGLEWVAY
ISSDSSAIYY ADTVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCGRGR
ENIYYGSRLD YWGQGTTVTV SS
```

[00101] The amino acid sequence of the VH Domain of hBRCA84D VH3 (SEQ ID NO:29) is shown below (CDR_H residues are shown underlined).

```
EVQLVESGGG LVQPGGSLRL SCAASGFTFS SFGMHWVRQA PGKGLEWVAY
ISSDSSAIYY ADTVKGRFTI SRDNAKNSLY LQMNSLRDED TAMYYCGRGR
ENIYYGSRLD YWGQGTTVTV SS
```

[00102] The amino acid sequence of the VH Domain of hBRCA84D VH4 (SEQ ID NO:30) is shown below (CDR_H residues are shown underlined).

```
EVQLVESGGG LVQPGGSLRL SCAASGFTFS SFGMHWVRQA PGKGLEWVAY

ISSDSSAIYY ADTVKGRFTI SRDNAKNSLY LQMNSLRSED TAVYYCARGR
ENIYYGSRLD YWGQGTTVTV SS
```

2. BRCA69D

[00103] The amino acid sequence of the VL Domain of BRCA69D (SEQ ID NO:31) is shown below (CDR_L residues are shown underlined).

```
DIQMTQTTSS LSASLGDRVT ISCrasqdis nylnwyqqkp dgtvklliyy
Tsrlhsgvps rfsgsgsgtd ysltidnleq ediatyfcqq gntlpptfgg
gtkleik
```

[00104] The amino acid sequence of the VH Domain of BRCA69D (SEQ ID NO:32) is shown below (CDR_H residues are shown underlined).

```
QVQLQQSGAE LARPGASVKL SCKASGYTFT SYWMQWVKQR PGQGLEWIGT

IYPGDGDTRY TQKFKGKATL TADKSSSTAY MQLSSLASED SAVYYCARRG

IPRLWYFDVW GAGTTVTVSS
```

a. hBRCA69D

[00105] Two exemplary humanized VL Domains of BRCA69D designated herein as "hBRCA69D VL1," and "hBRCA69D VL2," and two exemplary humanized VH Domains of BRCA69D designated herein as "hBRCA69D VH1," and "hBRCA69D VH2," are provided below. It will be noted that hBRCA69D VL2 includes amino acid substitutions in CDRL1 and CDRL2, and that hBRCA69D VH2 includes amino acid substitutions in CDRL2. Any of the humanized VL Domains may be paired with any of the humanized VH Domains to generate a B7-H3 binding domain. Accordingly, any antibody comprising one of the humanized VL Domains paired with the humanized VH Domain is referred to generically as "hBRCA69D," and particular combinations of humanized VH/VL Domains are referred to by reference to the specific VH/VL Domains, for example a humanized antibody comprising hBRCA69D VH1 and hBRCA69D VL2 is specifically referred to as "hBRCA69D (1.2)."

[00106] The amino acid sequence of the VL Domain of hBRCA69D VL1 (SEQ ID NO:33) is shown below (CDR_L residues are shown underlined).

```
DIQMTQSPSS LSASVGDRVT ITCrasqdis nylnwyqqkp gkapklliyy tsrlhsgvps rfsgsgsgtd ftltisslqp ediatyycqq gntlpptfgg gtkleik
```

[00107] The amino acid sequence of the VL Domain of hBRCA69D VL2 (SEQ ID NO:34) is shown below (CDR_L residues are shown underlined).

```
DIQMTQSPSS LSASVGDRVT ITCrasqsis sylnwyqqkp gkapklliyy tsrlqsgvps rfsgsgsgtd ftltisslqp ediatyycqq gntlpptfgg
```

[00108] The amino acid sequence of the VH Domain of hBRCA69D VH1 is (SEQ ID NO:35) (CDR_H residues are shown underlined):

```
QVQLVQSGAE VKKPGASVKV SCKASGYTFT SYWMQWVRQA PGQGLEWMGT

IYPGDGDTRY TQKFKGRVTI TADKSTSTAY MELSSLRSED TAVYYCARRG

IPRLWYFDVW GQGTTVTVSS
```

[00109] The amino acid sequence of the VH Domain of hBRCA69D VH2 is (SEQ ID NO:36) (CDR_H residues are shown underlined):

```
QVQLVQSGAE VKKPGASVKV SCKASGYTFT <u>SYWMQ</u>WVRQA PGQGLEWMG<u>T</u>

<u>IYPGGGDTRY</u> <u>TQKFQG</u>RVTI TADKSTSTAY MELSSLRSED TAVYYCAR<u>RG</u>

<u>IPRLWYFDV</u>W GQGTTVTVSS
```

3. PRCA157

[00110] The amino acid sequence of the VL Domain of PRCA157 (SEQ ID NO:37) is shown below (CDR_H residues are shown underlined).

```
DIQMTQSPAS LSVSVGETVT ITCrasesiy Sylawyqqkq Gkspqllvyn Tktlpegvps rfsgsgsgtq fslkinslqp edfgryycqh hygtppwtfg ggtnleik
```

[00111] The amino acid sequence of the VH Domain of PRCA157 (SEQ ID NO:38) is shown below (CDR_H residues are shown underlined).

```
EVQQVESGGD LVKPGGSLKL SCAASGFTFS SYGMSWVRQT PDKRLEWVAT
INSGGSNTYY PDSLKGRFTI SRDNAKNTLY LQMRSLKSED TAMYYCARHD
GGAMDYWGOG TSVTVSS
```

4. Additional anti-B7-H3 Antibodies

[00112] Additional anti-B7-H3 antibodies which may be utilized in the methods and compositions of the instant invention are provided in **Table 5**.

Table 5: Anti-B7-H3 Antibodies		
B7-H3 Antibodies	Reference	
LUCA1; BLA8; PA20; and SKIN2	US Patent No. 7,527,969; 8,779,098; and	
	PCT Patent Publication WO 2004/001381	
M30; cM30; M30-H1-L1; M30-H1-L2;	US Patent Publication 2013/0078234; and	
M30-H1-L3; M30-H1-L4; M30-H1-L5;	PCT Patent Publication WO 2012/147713	
M30-H1-L6; M30-H1-L7; M30-H4-L1;		
M30-H4-L2; M30-H4-L3; and M30-H4-L4		
8H9	US Patent No. 7,666,424; 7,737,258;	
	7,740,845; 8,148,154; 8,414,892; 8,501,471;	
	9,062,110; US Patent Publication	
	2010/0143245; and PCT Patent Publication	
	WO 2008/116219	

5. Exemplary Anti-B7-H3 Antibodies

[00113] In certain embodiments B7-H3 antibodies useful in the methods and compositions of the instant inventions comprise the VL and VH Domains of any of the antibodies provided above (e.g., hBRCA84D, hBRCA69D, PRCA157, or the VL and VH Domains of any of the anti-B7-H3 antibodies in **Table 5**), a kappa CL Domain, and a variant IgG1 Fc Domain having enhanced ADCC (relative to a wild-type Fc Domain). In one embodiment, the CH2-CH3 Domains comprise the L235V, F243L, R292P, Y300L and P396L substitutions (wherein the numbering is according to the EU index as in Kabat). Such antibodies will preferably comprise an IgG1 CH1 Domain and Hinge Domain.

[00114] The amino acid sequence of a kappa CL Domain (SEQ ID NO:13) is shown below.

RTVAAPSVFI FPPSDEQLKS GTASVVCLLN NFYPREAKVQ WKVDNALQSG NSQESVTEQD SKDSTYSLSS TLTLSKADYE KHKVYACEVT HQGLSSPVTK SFNRGEC

[00115] The amino acid sequence of an IgG1 CH1 Domain and Hinge (SEQ ID NO:14) is shown below.

ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKRVEP KSCDKTHTCP PCP

[00116] The amino acid sequence of IgG1 CH2-CH3 Domains comprising L235V, F243L, R292P, Y300L and P396L substitutions (SEQ ID NO:15) is shown below.

```
APELVGGPSV FLLPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PPEEQYNSTL RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPLVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK
```

[00117] An exemplary anti-B7-H3 antibody designated "hBRCA84D-2" comprises: a light chain having the VL Domain of BRCA84D VL2 (SEQ ID NO:22) and a kappa CL (SEQ ID NO:13); and a heavy chain having the VH Domain of BRCA84D VH2 (SEQ ID NO:28), an IgG1 CH1 Domain and Hinge (SEQ ID NO:14), and variant IgG CH2-CH3 Domains comprising L235V, F243L, R292P, Y300L and P396L substitutions (SEQ ID NO:15).

[00118] The amino acid sequence of the complete light chain of hBRCA84D-2 (SEQ ID NO:39) is shown below.

```
DIQLTQSPSF LSASVGDRVT ITCKASQNVD TNVAWYQQKP GKAPKALIYS ASYRYSGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQ YNNYPFTFGQ GTKLEIKRTV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC
```

[00119] The amino acid sequence of the complete heavy chain of hBRCA84D-2 (SEQ ID NO:40) is shown below.

```
EVQLVESGGG LVQPGGSLRL SCAASGFTFS SFGMHWVRQA PGKGLEWVAY ISSDSSAIYY ADTVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCGRGR ENIYYGSRLD YWGQGTTVTV SSASTKGPSV FPLAPSSKST SGGTAALGCL VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT QTYICNVNHK PSNTKVDKRV EPKSCDKTHT CPPCPAPELV GGPSVFLLPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPPEEQ YNSTLRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR EEMTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP LVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK
```

C. PD-1-Binding Molecules

[00120] Molecules that specifically bind PD-1 encompassed by the invention include anti-PD-1 antibodies capable of binding to a continuous or discontinuous (*e.g.*, conformational) portion (epitope) of human PD-1, and molecules comprising the epitope-binding site of such antibodies. The PD-1-binding molecules (*e.g.*, antibodies) used in the methods and compositions of the present invention will preferably also exhibit the ability to bind to the PD-1 molecules of one or more non-human species, especially, murine, rodent, canine, and primate

species. Antibodies that are specific for PD-1 are known (see, *e.g.*, United States Patent Application No. 62/198,867; United States Patents No. 5,952,136; 7,488,802; 7,521,051; 8,008,449; 8,088,905; 8,354,509; 8,552,154; 8,779,105; 8,900,587; 9,084,776; PCT Patent Publications WO 2004/056875; WO 2006/121168; WO 2008/156712; WO 2012/135408; WO 2012/145493; WO 2013/014668; WO 2014/179664; WO 2014/194302; and WO 2015/112800, and **Table 6**). Additional desired antibodies may be made by isolating antibody-secreting hybridomas elicited using PD-1 or a peptide fragment thereof.

[00121] Human PD-1 (including a 20 amino acid residue signal sequence (shown underlined) and the 268 amino acid residue mature protein) has the amino acid sequence (SEQ ID NO:41):

MQIPQAPWPVVWAVLQLGWRPGWFLDSPDRPWNPPTFSPALLVVTEGDNATFTCSFSNTSESFVLNWYRMSPSNQTDKLAAFPEDRSQPGQDCRFRVTQLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRPAGQFQTLVVGVVGGLLGSLVLLVWVLAVICSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPCVPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL

Preferred anti-PD-1-binding molecules (e.g., antibodies) useful in the methods and [00122] compositions of the instant invention possess the VL and/or VH Domains of the anti-human PD-1 monoclonal antibody "PD-1 mAb 1" (nivolumab, CAS Reg. No.:946414-94-4, also known as 5C4, BMS-936558, ONO-4538, MDX-1106, and marketed as OPDIVO® by Bristol-Myers Squibb); "PD-1 mAb 2" (pembrolizumab, (formerly known as lambrolizumab), CAS Reg. No.:1374853-91-4, also known as MK-3475, SCH-900475, and marketed as KEYTRUDA® by Merck); "PD-1 mAb 3" (EH12.2H7; Dana Farber), "PD-1 mAb 4" (pidilizumab, CAS Reg. No.: 1036730-42-3 also known as CT-011, CureTech,), or any of the anti-PD-1 antibodies in **Table 6**; and more preferably possess 1, 2 or all 3 of the CDR_Ls of the VL Region and/or 1, 2 or all 3 of the CDR_{HS} of the VH Domain of such anti-PD-1 monoclonal antibodies. Additional anti-PD-1 antibodies possessing unique binding characteristics useful in the methods and compositions of the instant inventions have recently been identified (see, United States Patent Application No. 62/198,867). Particularly, preferred are PD-1-binding molecules which possess a humanized VH and/or VL Domain of the anti-PD-1 antibody "PD-1 mAb 5" (hPD-1 mAb 2, MacroGenics); "PD-1 mAb 6" (hPD-1 mAb 7, MacroGenics); "PD-1 mAb 7" (hPD-1 mAb 9, MacroGenics); or "PD-1 mAb 8" (hPD-1 mAb 15, MacroGenics); and more preferably possess 1, 2 or all 3 of the CDR_Ls of the VL Region and/or 1, 2 or all 3 of the CDR_Hs of the VH Domain of such humanized anti-PD-1 monoclonal antibodies. Such

preferred anti-PD-1-binding molecules include antibodies having variant Fc Domains, bispecific (or multispecific) antibodies, chimeric or humanized antibodies, *etc*.

1. PD-1 mAb 1

[00123] The amino acid sequence of the VH Domain of PD-1 mAb 1 (SEQ ID NO:42) is shown below (CDR_H residues are shown underlined).

```
QVQLVESGGG VVQPGRSLRL DCKASGITFS MSGMHWVRQA PGKGLEWVAY
IWYDGSKRYY ADSVKGRFTI SRDNSKNTLF LQMNSLRAED TAVYYCATND
DYWGQGTLVT VSS
```

[00124] The amino acid sequence of the VL Domain of PD-1 mAb 1 (SEQ ID NO:43) is shown below (CDR_L residues are shown underlined),.

```
EIVLTQSPAT LSLSPGERAT LSC<u>rasqsvs</u> sylawyqqkp gqaprlliyd

asnratgipa rfsgsgsgtd ftltisslep edfavyycqq ssnwprtfgq

Gtkveik
```

2. PD-1 mAb 2

[00125] The amino acid sequence of the VH Domain of PD-1 mAb 2 (SEQ ID NO:44) is shown below (CDR_H residues are shown underlined).

```
QVQLVQSGVE VKKPGASVKV SCKASGYTFT <u>MYYMY</u>WVRQA PGQGLEWMG<u>G</u>

<u>Inpsnggtnf</u> <u>mekfkn</u>rvtl tidsstitay melkslqfdd tavyycar<u>rd</u>

<u>Yrfdmgfdy</u>w gqgttvtvss
```

[00126] The amino acid sequence of the VL Domain of PD-1 mAb 2 (SEQ ID NO:45) is shown below (CDR_L residues are shown underlined).

```
EIVLTQSPAT LSLSPGERAT LSCraskgvs tsgysylhwy qqkpgqaprl
Liylasyles gvparfsgsg sgtdftltis slepedfavy ycqhsrdlpl
Tfgggtkvei k
```

3. PD-1 mAb 3

[00127] The amino acid sequence of the VH Domain of PD-1 mAb 3 (SEQ ID NO:46) is shown below (CDR_H residues are shown underlined).

```
QVQLQQSGAE LAKPGASVQM SCKASGYSFT <u>SSWIH</u>WVKQR PGQGLEWIG<u>Y</u>

<u>IYPSTGFTEY</u> <u>NQKFKD</u>KATL TADKSSSTAY MQLSSLTSED SAVYYCA<u>RWR</u>

<u>DSSGYHAMDY</u> WGQGTSVTVSS
```

[00128] The amino acid sequence of the VL Domain of PD-1 mAb 3 (SEQ ID NO:47) is shown below (CDR_L residues are shown underlined).

```
DIVLTQSPAS LTVSLGQRAT ISCrasqsvs tsgysymhwy qqkpgqppkl
Likfgsnles giparfsgsg sgtdftlnih pveeedtaty ycqhsweipy
Tfgggtklei k
```

4. PD-1 mAb 4

[00129] The amino acid sequence of the VH Domain of PD-1 mAb 4 (SEQ ID NO:48) is shown below (CDR_H residues are shown underlined).

QVQLVQSGSE LKKPGASVKI SCKASGYTFT **NYGMN**WVRQA PGQGLQWMG**W**INTDSGESTY AEEFKGRFVF SLDTSVNTAY LQITSLTAED TGMYFCVR**VG**YDALDYWGQG TLVTVSS

[00130] The amino acid sequence of the VL Domain of PD-1 mAb 4 (SEQ ID NO:49) is shown below (CDR_L residues are shown underlined).

EIVLTQSPSS LSASVGDRVT ITC<u>SARSSVS</u> <u>YMH</u>WFQQKPG KAPKLWIY<u>RT</u> <u>SNLAS</u>GVPSR FSGSGSGTSY CLTINSLQPE DFATYYC<u>QQR</u> <u>SSFPLT</u>FGGG TKLEIK

5. PD-1 mAb 5

[00131] The amino acid sequence of the VH Domain of PD-1 mAb 5 (SEQ ID NO:50) is shown below (CDR_H residues are shown underlined).

EVQLVESGGG LVQPGGSLRL SCAASGFVFS **SFGMH**WVRQA PGKGLEWVA**Y ISSGSMSISY ADTVKG**RFTI SRDNAKNTLY LQMNSLRTED TALYYCAS**LS DYFDY**WGQGT TVTVSS

[00132] The amino acid sequence of the VL Domain of PD-1 mAb 5 (SEQ ID NO:51) is shown below (CDR_L residues are shown underlined).

DVVMTQSPLS LPVTLGQPAS ISC**rssqslv hstgntylh**w Ylqkpgqspq Lliy**rvsnrf s**gvpdrfsgs gsgtdftlki srveAedvgv yyc**sqtthvp wt**fgqgtkle ik

6. PD-1 mAb 6

[00133] The amino acid sequence of the VH Domain of PD-1 mAb 6 (SEQ ID NO:52) is shown below (CDR_H residues are shown underlined).

QVQLVQSGAE VKKPGASVKV SCKASGYSFT **SYWMN**WVRQA PGQGLEWXG**V**IHPSDSETWL DQKFKDRVTI TVDKSTSTAY MELSSLRSED TAVYYCAREH

YGTSPFAYWG QGTLVTVSS

wherein X is I or A

[00134] The amino acid sequence of the VL Domain of PD-1 mAb 6 (SEQ ID NO:53) is shown below (CDR_L residues are shown underlined).

EIVLTQSPAT LSLSPGERAT LSC<u>RAX1ESVD</u> <u>NYGMSFMN</u>WF QQKPGQPPKL LIH<u>AASNX2GS</u> GVPSRFSGSG SGTDFTLTIS SLEPEDFAVY FC<u>QQSKEVPY</u> <u>T</u>FGGGTKVEI K

wherein: X_1 is N or S and X_2 is Q or R; or X_1 is N and X_2 is Q; or X_1 is S and X_2 is Q; or X_1 is S and X_2 is R

[00135] In particular embodiments PD-1 mAb 6 comprises:

(a) **SEQ ID NO:52**, wherein X is I; and **SEQ ID NO:53**, wherein X₁ is N and X₂ is Q; or

(b) **SEQ ID NO:52**, wherein X is I; and **SEQ ID NO:53**, wherein X₁ is S and X₂ is Q.

7. **PD-1 mAb** 7

[00136] The amino acid sequence of the VH Domain of PD-1 mAb 7 (SEQ ID NO:54) is shown below (CDR_H residues are shown underlined).

EVQLVESGGG LX1RPGGSLKL SCAASGFTFS <u>SYLVX2</u>WVRQA PGKGLEWX3A<u>T</u> <u>ISGGGGNTYY</u> <u>SDSVKG</u>RFTI SRDNAKNSLY LQMNSX4RAED TATYYCAR<u>YG</u> <u>FDGAWFAY</u>WG QGTLVTVSS

wherein X_1 is V or A; X_2 is S or G; X_3 is V or T; X_4 is L or A; X_1 is V, X_2 is S, X_3 is V, and X_4 is L; or X_1 is A, X_2 is G, X_3 is T, and X_4 is A

[00137] The amino acid sequence of the VL Domain of PD-1 mAb 7 (SEQ ID NO:55) is shown below (CDR_L residues are shown underlined).

DIQMTQSPSS LSASVGDRVT ITC**raseniy <u>X1</u>yla**wyqqkp gkapklliy<u>x2</u> **aktlaa**gvps rfsgsgsgtd ftltisslqp edfatyyc**qh hyavpwt**fgq Gtkleik

wherein: X_1 is S or N and X_2 is N or D; or X_1 is S and X_2 is N; or X_1 is N and X_2 is D

[00138] In particular embodiments PD-1 mAb 7 comprises:

- (a) SEQ ID NO:54, wherein X₁ is V, X₂ is S, X₃ is V, and X₄ is L; and SEQ ID NO:55, wherein X₁ is S and X₂ is N; or
- (b) **SEQ ID NO:54**, wherein X₁ is A, X₂ is G, X₃ is T, and X₄ is A; and **SEQ ID NO:55**, wherein X₁ is N and X₂ is D.

8. PD-1 mAb 8

[00139] The amino acid sequence of the VH Domain of PD-1 mAb 8 (SEQ ID NO:56) is shown below (CDR_H residues are shown underlined).

EVQLVESGGG LVRPGGSLRL SCAASGFTFS SYLISWVRQA PGKGLEWVAA ISGGGADTYY ADSVKGRFTI SRDNAKNSLY LQMNSLRAED TATYYCARRG TYAMDYWGQG TLVTVSS

[00140] The amino acid sequence of the VL Domain of PD-1 mAb 8 (SEQ ID NO:57) is shown below (CDR_L residues are shown underlined).

DIQMTQSPSS LSASVGDRVT ITC**raseniy nyla**wyqqkp gkapklliy**d aktlaa**gvps rfsgsgsgtd ftltisslqp edfatyyc**qh hyavpwt**fgq Gtkleik

9. Additional Anti-PD-1 Antibodies

[00141] Additional anti-PD-1 antibodies which may be utilized in the methods and compositions of the instant invention are provided in **Table 6**.

Table 6: Additional Anti-PD-1 Antibodies		
PD-1 Antibodies	Reference	
PD1-17; PD1-28; PD1-33; PD1-35; and PD1-F2	US Patent No. 7,488,802; 7,521,051	
	8,088,905; and PCT Patent	
	Publication WO 2004/056875	
17D8; 2D3; 4H1; 5C4; 4A11; 7D3; and 5F4	US Patent No. 8,008,449;	
	8,779,105; 9,084,776; and PCT	
	Patent Publication WO	
	2006/121168	
hPD-1.08A; hPD-1.09A; 109A; K09A; 409A;	US Patent No. 8,354,509;	
h409A11; h409A16; h409A17; Codon optimized	8,900,587; 5,952,136; and PCT	
109A; and Codon optimized 409A	Patent Publication WO	
•	2008/156712	
1E3; 1E8; and 1H3	US Patent Publication	
	2014/0044738; and PCT Patent	
	Publication WO 2012/145493	
9A2; 10B11; 6E9; APE1922; APE1923; APE1924;	PCT Patent Publication WO	
APE1950; APE1963; and APE2058	2014/179664	
GA1; GA2; GB1; GB6; GH1; A2; C7; H7; SH-A4;	US Patent Publication	
SH-A9; RG1H10; RG1H11; RG2H7; RG2H10;	2014/0356363; and PCT Patent	
RG3E12; RG4A6; RG5D9; RG1H10-H2A-22-1S;	Publication WO 2014/194302	
RG1H10-H2A-27-2S; RG1H10-3C; RG1H10-16C;		
RG1H10-17C; RG1H10-19C; RG1H10-21C; and		
RG1H10-23C2		
H1M7789N; H1M7799N; H1M7800N;	US Patent Publication	
H2M7780N; H2M7788N; H2M7790N;	2015/0203579; and PCT Patent	
H2M7791N; H2M7794N; H2M7795N;	Publication WO 2015/112800	
H2M7796N; H2M7798N; H4H9019P;		
H4xH9034P2; H4xH9035P2; H4xH9037P2;		
H4xH9045P2; H4xH9048P2; H4H9057P2;		
H4H9068P2; H4xH9119P2; H4xH9120P2;		
H4Xh9128p2; H4Xh9135p2; H4Xh9145p2;		
H4Xh8992p; H4Xh8999p; and H4Xh9008p;		

Table 6: Additional Anti-PD-1 Antibodies		
PD-1 Antibodies	Reference	
PD-1 mAb 1; PD-1 mAb 2; hPD-1 mAb 2; PD-1	US Patent Application No.	
mAb 3; PD-1 mAb 4; PD-1 mAb 5; PD-1 mAb 6;	62/198,867	
PD-1 mAb 7; hPD-1 mAb 7; PD-1 mAb 8; PD-1		
mAb 9; hPD-1 mAb 9; PD-1 mAb 10; PD-1 mAb		
11; PD-1 mAb 12; PD-1 mAb 13; PD-1 mAb 14;		
PD-1 mAb 15; and hPD-1 mAb 15		

10. Exemplary PD-1 Antibodies

[00142] In certain embodiments PD-1 antibodies useful in the methods and compositions of the instant inventions comprise the VL and VH Domains of any of the antibodies provided above (e.g., PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, or any of the anti-PD-1 antibodies in **Table 6**), a kappa CL Domain, and an IgG4 Fc Domain, optionally lacking the C-terminal lysine residue. Such antibodies will preferably comprise an IgG4 CH1 Domain and a Hinge Domain, and more preferably comprise a stabilized IgG4 Hinge comprising an S228P substitution (wherein the numbering is according to the EU index as in Kabat).

[00143] The amino acid sequence of a kappa CL Domain (SEQ ID NO:13) has been presented above.

[00144] The amino acid sequence of an IgG4 CH1 Domain and Stabilized Hinge (SEQ ID NO:16) has been presented above.

[00145] The amino acid sequence of IgG4 CH2-CH3 Domains (SEQ ID NO:4) has been presented above.

[00146] An exemplary anti-PD-1 antibody designated "PD-1 mAb 6-ISQ" comprises: a light chain having the VL Domain of PD-1 mAb 6 (SEQ ID NO:53) wherein X₁ is S and X₂ is Q and a kappa CL (SEQ ID NO:13); and a heavy chain having the VH Domain of PD-1 mAb 6 (SEQ ID NO:52) wherein X₁ is I, an IgG4 CH1 Domain, a stabilized IgG 4 Hinge (SEQ ID NO:16), and IgG4 CH2-CH3 Domains (SEQ ID NO:4).

[00147] The amino acid sequence of the complete light chain of PD-1 mAb 6-ISQ (SEQ ID NO:58) is shown below.

```
EIVLTQSPAT LSLSPGERAT LSCRASESVD NYGMSFMNWF QQKPGQPPKL LIHAASNQGS GVPSRFSGSG SGTDFTLTIS SLEPEDFAVY FCQQSKEVPY TFGGGTKVEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV THQGLSSPVT KSFNRGEC
```

[00148] The amino acid sequence of the complete heavy chain of PD-1 mAb 6-ISQ (SEQ ID NO:59) is shown below.

```
QVQLVQSGAE VKKPGASVKV SCKASGYSFT SYWMNWVRQA PGQGLEWIGV IHPSDSETWL DQKFKDRVTI TVDKSTSTAY MELSSLRSED TAVYYCAREH YGTSPFAYWG QGTLVTVSSA STKGPSVFPL APCSRSTSES TAALGCLVKD YFPEPVTVSW NSGALTSGVH TFPAVLQSSG LYSLSSVVTV PSSSLGTKTY TCNVDHKPSN TKVDKRVESK YGPPCPPCPA PEFLGGPSVF LFPPKPKDTL MISRTPEVTC VVVDVSQEDP EVQFNWYVDG VEVHNAKTKP REEQFNSTYR VVSVLTVLHQ DWLNGKEYKC KVSNKGLPSS IEKTISKAKG QPREPQVYTL PPSQEEMTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY KTTPPVLDSD GSFFLYSRLT VDKSRWQEGN VFSCSVMHEA LHNHYTQKSL SLSLG
```

[00149] Another exemplary anti-PD-1 antibody is PD-1 mAb 1 (nivolumab), which is a human antibody comprising a light chain having a VL Domain (SEQ ID NO:43) and a kappa CL Domain (see for example, SEQ ID NO:13); and a heavy chain having a VH Domain (SEQ ID NO:42), an IgG4 CH1 Domain (see for example, SEQ ID NO:9), a stabilized IgG4 Hinge (see for example, SEQ ID NO:12), and IgG4 CH2-CH3 Domains (see for example, SEQ ID NO:4).

[00150] Another exemplary anti-PD-1 antibody is PD-1 mAb 2 (pembrolizumab), which is a humanized antibody comprising a light chain having a VL Domain (SEQ ID NO:45) and a kappa CL Domain (see for example, SEQ ID NO:13); and a heavy chain having a VH Domain (SEQ ID NO:44), an IgG4 CH1 Domain (see for example, SEQ ID NO:9), a stabilized IgG4 Hinge (see for example, SEQ ID NO:12), and IgG4 CH2-CH3 Domains (see for example, SEQ ID NO:4).

D. Methods of Production

[00151] B7-H3-binding molecules and PD-1-binding molecules encompassed by the present invention can be produced by methods known in the art, for example, synthetically or recombinantly (see, *e.g.*, Kelley, R. F. *et al.* (1990) In: GENETIC ENGINEERING PRINCIPLES AND METHODS, Setlow, J.K. Ed., Plenum Press, N.Y., vol. 12, pp 1-19; Stewart, J.M *et al.* (1984) SOLID PHASE PEPTIDE SYNTHESIS, Pierce Chemical Co., Rockford, IL; see also United States

Patents Nos. 4,105,603; 3,972,859; 3,842,067; and 3,862,925; Merrifield, B. (1986) "Solid Phase Synthesis," Science 232(4748):341-347; Houghten, R.A. (1985) "General Method For The Rapid Solid-Phase Synthesis Of Large Numbers Of Peptides: Specificity Of Antigen-Antibody Interaction At The Level Of Individual Amino Acids," Proc. Natl. Acad. Sci. (U.S.A.) 82(15):5131-5135; Ganesan, A. (2006) "Solid-Phase Synthesis In The Twenty-First Century," Mini Rev. Med. Chem. 6(1):3-10).

[00152] Alternatively, suitable B7-H3-binding molecules and/or PD-1-binding molecules having one or more of the CDRs of a desired anti-B7-H3 antibody and/or anti-PD-1 antibody may be obtained through the use of commercially available mice that have been engineered to express specific human immunoglobulin proteins. Transgenic animals that are designed to produce a more desirable (*e.g.*, fully human antibodies) or more robust immune response may also be used for generation of humanized or human antibodies. Examples of such technology are XENOMOUSETM (Abgenix, Inc., Fremont, CA) and HUMAB-MOUSE® and TC MOUSETM (both from Medarex, Inc., Princeton, NJ).

[00153] In a further alternative method, such binding molecules may be made recombinantly and expressed using any method known in the art. Antibodies may be made recombinantly by first isolating the antibodies made from host animals, obtaining the gene sequence, and using the gene sequence to express the antibody recombinantly in host cells (e.g., CHO cells). Another method that may be employed is to express the antibody sequence in plants (e.g., tobacco) or transgenic milk. Suitable methods for expressing antibodies recombinantly in plants or milk have been disclosed (see, for example, Peeters et al. (2001) "Production Of Antibodies And Antibody Fragments In Plants," Vaccine 19:2756; Lonberg, N. et al. (1995) "Human Antibodies From Transgenic Mice," Int. Rev. Immunol 13:65-93; and Pollock et al.(1999) "Transgenic Milk As A Method For The Production Of Recombinant Antibodies," J. Immunol Methods 231:147-157). Suitable methods for making derivatives of antibodies, e.g., humanized antibodies, bispecific antibodies, single-chain, etc. are known in the art. In another alternative, antibodies may be made recombinantly by phage display technology (see, for example, U.S. Patent Nos. 5,565,332; 5,580,717; 5,733,743; 6,265,150; and Winter, G. et al. (1994) "Making Antibodies By Phage Display Technology," Annu. Rev. Immunol. 12.433-455).

[00154] Vectors containing polynucleotides encoding polypeptides of interest can be introduced into the host cell by any of a number of appropriate means, including

electroporation, transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE- dextran, or other substances; microprojectile bombardment; lipofection; and infection (*e.g.*, where the vector is an infectious agent such as vaccinia virus). The choice of introducing vectors or polynucleotides will often depend on features of the host cell.

[00155] Any host cell capable of overexpressing heterologous DNAs can be used for the purpose of isolating the genes encoding the antibody, polypeptide or protein of interest. Non-limiting examples of suitable mammalian host cells include but are not limited to COS, HeLa, and CHO cells. Preferably, the host cells express the cDNAs at a level of about 5-fold higher, more preferably 10-fold higher, even more preferably 20-fold higher than that of the corresponding endogenous antibody or protein of interest, if present, in the host cells. Screening the host cells for immunospecific binding to a cDNA expressed target (*e.g.*, B7-H3 or PD-1) may be accomplished using an immunoassay or FACS. A cell overexpressing the antibody or protein of interest can be identified.

[00156] The invention includes polypeptides comprising an amino acid sequence (preferably the epitope binding domain) of an anti-B7-H3 antibody and/or anti-PD-1-antibody provided herein. The polypeptides of this invention can be made by procedures known in the art. The polypeptides can be produced by proteolytic or other degradation of antibodies, by recombinant methods (*i.e.*, single or fusion polypeptides) as described above or by chemical synthesis. Polypeptides, especially shorter polypeptides up to about 50 amino acids, are conveniently made by chemical synthesis.

[00157] The invention includes modifications of the polypeptides of any such B7-H3binding molecules and/or PD-1-binding molecules that do not significantly affect the properties of such molecules as well as variants that have enhanced or decreased activity. modification of polypeptides is a routine practice in the art and need not be described in detail herein. Examples of modified polypeptides include polypeptides with conservative substitutions of amino acid residues, one or more deletions or additions of amino acids which do not significantly deleteriously change the functional activity, or use of chemical analogs. Amino acid residues which can be conservatively substituted for one another include but are glycine/alanine; serine/threonine; not limited to: valine/isoleucine/leucine; asparagine/glutamine; aspartic acid/glutamic acid; lysine/arginine; and phenylalanine/tyrosine. These polypeptides also include glycosylated and non-glycosylated polypeptides, as well as polypeptides with other post-translational modifications, such as, for example, glycosylation

with different sugars, acetylation, and phosphorylation. Preferably, the amino acid substitutions would be conservative, *i.e.*, the substituted amino acid would possess similar chemical properties as that of the original amino acid. Such conservative substitutions are known in the art, and examples have been provided above. Amino acid modifications can range from changing or modifying one or more amino acids to complete redesign of a region, such as the Variable Domain. Changes in the Variable Domain can alter binding affinity and/or immunospecificity. Other methods of modification include using coupling techniques known in the art, including, but not limited to, enzymatic means, oxidative substitution and chelation. Modifications can be used, for example, for attachment of labels for immunoassay, such as the attachment of radioactive moieties for radioimmunoassay. Modified polypeptides are made using established procedures in the art and can be screened using standard assays known in the art.

[00158] The invention encompasses fusion proteins comprising one or more of the antibodies of this invention. In one embodiment, a fusion polypeptide is provided that comprises a light chain, a heavy chain or both a light and heavy chain. In another embodiment, the fusion polypeptide contains a heterologous immunoglobulin constant region. In another embodiment, the fusion polypeptide contains a VL Domain and a VH Domain of an antibody provided herein or produced from a publicly-deposited hybridoma. For purposes of this invention, an antibody fusion protein contains one or more epitope-binding sites that immunospecifically bind to B7-H3 and/or PD-1, and one or more polypeptide domains that immunospecifically bind to another amino acid sequence to which it is not attached in the native molecule, for example, a heterologous sequence or a homologous sequence from another region.

E. Pharmaceutical Compositions

[00159] The present invention encompasses compositions comprising a B7-H3-binding molecule, a PD-1-binding molecule, or a combination of such molecules. The compositions of the invention include bulk drug compositions useful in the manufacture of pharmaceutical compositions (*e.g.*, impure or non-sterile compositions) and pharmaceutical compositions (*i.e.*, compositions that are suitable for administration to a subject or patient) which can be used in the preparation of unit dosage forms. Such compositions comprise a B7-H3-binding molecule, a PD-1-binding molecule, or a combination of such molecules and a pharmaceutically acceptable carrier. Preferably, compositions of the invention comprise a B7-H3-binding

molecule, a PD-1-binding molecule, or a combination of such molecules, and a pharmaceutically acceptable carrier. In a preferred aspect, such compositions are substantially purified (*i.e.*, substantially free from substances that limit its effect or produce undesired side effects).

[00160] Where more than one therapeutic agent is to be administered the agents may be formulated together in the same formulation or may be formulated into separate compositions. Accordingly, in some embodiments, the B7-H3-binding molecule and the PD-1-binding molecule are formulated together in the same pharmaceutical composition. In alternative embodiments, the molecules are formulated in separate pharmaceutical compositions.

[00161] Various formulations of a B7-H3-binding molecule, a PD-1-binding molecule, or a combination of such molecules, may be used for administration. In addition to the pharmacologically active agent(s), the compositions of the present invention may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries that are well known in the art and are relatively inert substances that facilitate administration of a pharmacologically effective substance or which facilitate processing of the active compounds into preparations that can be used pharmaceutically for delivery to the site of action. For example, an excipient can give form or consistency, or act as a diluent. Suitable excipients include but are not limited to stabilizing agents, wetting and emulsifying agents, salts for varying osmolarity, encapsulating agents, buffers, and skin penetration enhancers.

[00162] In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant (e.g., Freund's adjuvant (complete and incomplete), excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Aqueous carriers, such as saline solutions, aqueous dextrose and glycerol solutions are preferred when the pharmaceutical composition is administered intravenously. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain a minor amount of a wetting

or emulsifying agent, or a pH buffering agent. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.

[00163] Generally, the ingredients of compositions of the invention are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed using an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

[00164] The compositions of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include, but are not limited to those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, *etc.*, and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, *etc.*

[00165] Preferably, the therapeutic agent (*i.e.*, a B7-H3-binding molecule, a PD-1-binding molecule, or a combination of such molecules) is supplied as a dry sterile lyophilized powder in a hermetically sealed container such as an ampoule or sachette indicating the quantity of the molecule(s). In one embodiment, the therapeutic agent is supplied as a dry sterilized lyophilized powder or water free concentrate in a hermetically sealed container and can be reconstituted, *e.g.*, with water or saline to the appropriate concentration for administration to a subject. In an alternative embodiment, the therapeutic agent is supplied in liquid form in a hermetically sealed container indicating the quantity and concentration of the therapeutic agent.

[00166] The lyophilized therapeutic agent (*i.e.*, a B7-H3-binding molecule, a PD-1-binding molecule, or a combination of such molecules) should be stored at between 2°C and 8°C in the original container and the agent should be administered within 12 hours, preferably within 6 hours, within 5 hours, within 3 hours, or within 1 hour after being reconstituted. In an alternative embodiment, the therapeutic agent is supplied in liquid form in a hermetically sealed container indicating the quantity and concentration of the molecule(s), fusion protein, or

conjugated molecule. Preferably, such therapeutic agent when provided in liquid form is supplied in a hermetically sealed container.

[00167] The invention also provides a pharmaceutical pack or kit comprising one or more containers containing a B7-H3-binding molecule, a PD-1-binding molecule, or a combination of such molecules alone or with other agents, preferably with a pharmaceutically acceptable carrier. Additionally, one or more other prophylactic or therapeutic agents useful for the treatment of a disease can also be included in the pharmaceutical pack or kit. The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

[00168] A kit can comprise a B7-H3-binding molecule, a PD-1-binding molecule, or a combination of such molecules. The kit can further comprise one or more other prophylactic and/or therapeutic agents useful for the treatment of cancer, in one or more containers; and/or the kit can further comprise one or more cytotoxic antibodies that bind one or more cancer antigens. In certain embodiments, the other prophylactic or therapeutic agent is a chemotherapeutic agent. In other embodiments, the prophylactic or therapeutic agent is a biological or hormonal therapeutic agent.

F. Methods of Use

[00169] As discussed above, molecules that specifically bind to B7-H3 and molecules that specifically bind to PD-1 may be used for therapeutic purposes in subjects with cancer or other diseases. Accordingly the present invention provides methods of treating cancer, comprising administering to a subject in need thereof a B7-H3-binding molecule and a PD-1-binding molecule. In particular, the present invention encompasses such methods wherein, the B7-H3-binding molecule comprises the epitope-binding site of an anti-B7-H3 antibody provided herein, and wherein the PD-1-binding molecule comprises the epitope-binding site of an anti-PD-1 antibody provided herein. In one embodiment the B7-H3-binding molecule is an antibody. In a further embodiment, both the B7-H3-binding molecule and PD-1-binding molecule are antibodies.

[00170] In one embodiment, a B7-H3-binding molecule and a PD-1-binding molecule are administered concurrently. As used herein, such "concurrent" administration is intended to denote:

- (A) the administration of a single pharmaceutical composition that contains both a B7-H3-binding molecule and a PD-1-binding molecule. Such molecules may be the same molecule (*e.g.*, a bispecific antibody), or may be distinct (*e.g.*, an anti-B7-H3 antibody, or antigen-binding fragment thereof, and an anti-PD-1-antibody, or antigen-binding fragment thereof); or
- (B) the separate administration of two or more pharmaceutical compositions, one composition of which contains a molecule that specifically binds to B7-H3 and another composition of which contains a molecule that specifically binds to PD-1, wherein the compositions are administered within a 48-hour period.

[00171] In a second embodiment, two distinct molecules are employed, and the molecules are administered "sequentially" (*e.g.*, an anti-B7-H3 antibody is administered and, at a later time, an anti-PD-1 antibody is provided, or vice versa). In such sequential administration, the second administered composition is administered at least 48 hours, or more after the administration of the first administered composition.

[00172] Providing a therapy or "treating" refers to any indicia of beneficial or desired results including, without limitation, clinical results such as shrinking the size of a tumor (in the cancer context, for example, a tumor of breast, gastric or prostate cancer), retardation of cancer cell growth, delaying the development of metastasis, decreasing a symptom resulting from the disease, increasing the quality of life of those suffering from the disease, decreasing the dose of other medications required to treat the disease, enhancing the effect of another medication such as via targeting and/or internalization, delaying the progression of the disease, and/or prolonging survival of an individual.

[00173] Subjects for treatment include animals, most preferably mammalian species such as non-primate (*e.g.*, bovine, equine, feline, canine, rodent, *etc.*) or a primate (*e.g.*, monkey, such as, cynomolgus monkey, human, *etc.*). In a preferred embodiment, the subject is a human.

[00174] Exemplary disorders that may be treated by various embodiments of the present invention include, but are not limited to, proliferative disorders, cell proliferative disorders, and cancer (especially a B7-H3-expressing cancer). In various embodiments, the invention

encompasses methods and compositions for treatment, prevention or management of a disease or disorder in a subject, comprising administering to the subject a therapeutically effective amount a molecule that specifically binds to B7-H3 and a molecule that specifically binds to PD-1. For example, the B7-H3-binding molecule and the PD-1-binding molecule are particularly useful for the prevention, inhibition, reduction of growth or regression of primary tumors, and metastasis of cancer cells. Although not intending to be bound by a particular mechanism of action, such binding molecules may mediate effector function against cancer cells, promote the activation of the immune system against cancer cells, cross-link cell-surface antigens and/or receptors on cancer cells and enhance apoptosis or negative growth regulatory signaling, or a combination thereof, resulting in tumor clearance and/or tumor reduction.

[00175] As used herein, an "effective amount" of a pharmaceutical composition, in one embodiment, is an amount sufficient to effect beneficial or desired results including, without limitation, clinical results such as decreasing symptoms resulting from the disease attenuating a symptom of infection (e.g., viral load, fever, pain, sepsis, etc.) or a symptom of cancer (e.g., the proliferation, of cancer cells, tumor presence, tumor metastases, etc.), thereby increasing the quality of life of those suffering from the disease, decreasing the dose of other medications required to treat the disease, enhancing the effect of another medication such as via targeting and/or internalization, delaying the progression of the disease, and/or prolonging survival of individuals. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially, or simultaneously. Particular dosages are discussed below.

[00176] In one embodiment, a B7-H3-binding molecule (*e.g.*, an antibody) and a PD-1-binding molecule (*e.g.*, an antibody) can be used to treat any disease or condition associated with or characterized by the expression of B7-H3. Thus, without limitation, the methods and compositions of the instant invention may be used for immunotherapy directed at cancer including cancers characterized by the presence of a cancer cell, including but not limited to a cell of an acute myeloid leukemia, an adrenal gland tumor, an AIDS-associated cancer, an alveolar soft part sarcoma, an astrocytic tumor, bladder cancer, bone cancer, a brain and spinal cord cancer, a metastatic brain tumor, a breast cancer, a carotid body tumors, a cervical cancer, a chondrosarcoma, a chordoma, a chromophobe renal cell carcinoma, a clear cell carcinoma, a colon cancer, a colorectal cancer, a cutaneous benign fibrous histiocytoma, a desmoplastic

small round cell tumor, an ependymoma, a Ewing's tumor, an extraskeletal myxoid chondrosarcoma, a fibrogenesis imperfecta ossium, a fibrous dysplasia of the bone, a gallbladder or bile duct cancer, gastric cancer, a gestational trophoblastic disease, a germ cell tumor, a head and neck cancer, hepatocellular carcinoma, a glioblastoma, an islet cell tumor, a Kaposi's Sarcoma, a kidney cancer, a leukemia, a lipoma/benign lipomatous tumor, a liposarcoma/malignant lipomatous tumor, a liver cancer, a lymphoma, a lung cancer, a medulloblastoma, a melanoma, a meningioma, a malignant mesothelioma, a multiple endocrine neoplasia, a multiple myeloma, a myelodysplastic syndrome, a neuroblastoma, a neuroendocrine tumors, a non-small cell lung cancer, an ovarian cancer, a pancreatic cancer, a pharyngeal cancer, a papillary thyroid carcinoma, a parathyroid tumor, a pediatric cancer, a peripheral nerve sheath tumor, a phaeochromocytoma, a pituitary tumor, a prostate cancer, a posterious uveal melanoma, a rare hematologic disorder, a renal cell carcinoma, a renal metastatic cancer, a rhabdoid tumor, a rhabdomysarcoma, a sarcoma, a skin cancer, a softtissue sarcoma, a squamous cell cancer, a stomach cancer, a synovial sarcoma, a testicular cancer, a thymic carcinoma, a thymoma, a thyroid metastatic cancer, and a uterine cancer. Such immunotherapy may, for example, be sufficient to reduce cell division in the cancer cell, delay the development (e.g., onset and extent) of metastasis, and/or to promote the activity of the immune system on the cancer cells.

[00177] In particular, the combination of a B7-H3-binding molecule and a PD-1-binding molecule is particularly useful for the treatment of squamous cell cancers of the head and neck (SCCHN), bladder cancers, breast cancers, colorectal cancers, gastric cancers, glioblastomas, kidney cancers, lung cancers including non-small cell lung cancers (NSCLC), melanomas, ovarian cancers, pancreatic cancers, pharyngeal cancers, prostate cancers, renal cell carcinomas, and small round blue cell tumors of childhood including neuroblastomas and rhabdomyosarcomas, each of which highly express B7-H3.

[00178] It is understood that the B7-H3-binding molecules and PD-1-binding molecules are administered at a concentration that promotes binding at physiological (*e.g.*, *in vivo*) conditions. The B7-H3-binding molecules and PD-1-binding molecules (*e.g.*, anti-B7-H3 and anti-PD-1 antibodies) may be administered with additional agents that enhance or direct an individual's own immune response, such as an agent that strengthens ADCC or stimulated T-cells.

[00179] In yet another embodiment, the B7-H3-binding molecule and/or the PD-1-binding molecule may be conjugated to or associated with a radioactive molecule, toxin (e.g., calicheamicin), chemotherapeutic molecule, liposomes or other vesicles containing chemotherapeutic compounds and administered to an individual in need of such treatment to target these compounds to the cancer cell containing the antigen recognized by the B7-H3-binding molecule and thus eliminate cancer or diseased cells. Without being limited to any particular theory, the B7-H3-binding molecule (e.g., an anti-B7-H3 antibody) is internalized by the cell bearing B7-H3 at its surface, thus delivering the conjugated moiety to the cell to induce the therapeutic effect and the PD-1-binding molecule promotes the activation of the immune system.

[00180] In yet another embodiment, the B7-H3-binding molecule and PD-1-binding molecule (*e.g.*, anti-B7-H3 and anti-PD-1 antibodies) can be employed as an adjuvant therapy at the time of the surgical removal of a tumor in order to delay, suppress or prevent the development of metastasis. The molecules can also be administered before surgery (neoadjuvant therapy) in order to decrease the size of the tumor and thus enable or simplify surgery, spare tissue during surgery, and/or decrease any resulting disfigurement.

[00181] Molecules having an Fc Domain with an increased affinity for FcyRIIIA and/or FcyRIIA, and optionally a decreased affinity for FcyRIIB, may lead to an enhanced activating response upon FcyR binding and thus have enhanced therapeutic efficacy for treating and/or preventing cancer. Accordingly, B7-H3-binding molecules comprising a variant Fc Domain are particularly useful for the treatment and/or prevention of a disease, or disorder where an effector cell function (e.g., ADCC) mediated by FcyR is desired (e.g., cancer). For example, a B7-H3-binding molecule having enhanced FcyRIIIA binding may bind a cell-surface antigen and FcyRIIIA on an immune effector cell (e.g., NK cell), stimulating an effector function (e.g., ADCC, CDC, phagocytosis, opsonization, etc.) against the cell. In some embodiments, the B7-H3-binding molecules provided herein are especially suited for the treatment of cancers. The efficacy of standard monoclonal antibody therapy depends on the FcyR polymorphism of Cartron, G. et al. (2002) "Therapeutic Activity Of Humanized Anti-CD20 Monoclonal Antibody And Polymorphism In IgG Fc Receptor FcgammaRIIIa Gene," Blood 99:754-758; Weng, W.K. et al. (2003) "Two Immunoglobulin G Fragment C Receptor Polymorphisms Independently Predict Response To Rituximab In Patients With Follicular Lymphoma," J Clin Oncol. 21(21):3940-3947. These receptors are expressed on the surface of

the effector cells and mediate ADCC. High affinity alleles improve the effector cells' ability to mediate ADCC. In particular the B7-H3-binding molecules provided herein comprising a variant Fc Domain that exhibits enhanced affinity to FcγRIIIA (relative to a wild-type Fc Domain) on effector cells are better immunotherapy reagents for patients regardless of their FcγR polymorphism.

G. Administration and Dosage

[00182] A combination of a B7-H3-binding molecule and a PD-1-binding molecule, may be provided for the treatment, prophylaxis, and amelioration of one or more symptoms associated with cancer or other disease, or disorder by administering to a subject an effective amount of such a combination, or pharmaceutical composition(s) comprising the same. In any of the embodiments below, the cancer is preferably a B7-H3 expressing cancer.

[00183] As used herein, the term "combination" refers to the use of more than one therapeutic agent (*e.g.*, a B7-H3-binding molecule and a PD-1-binding molecule). The use of the term "combination" does not restrict the order in which therapeutic agents are administered to a subject with a disorder, nor does it mean that the agents are administered at exactly the same time, but rather it is meant that the agents are administered to a subject in a sequence and within a time interval such that the agents can act to provide an increased benefit than if they were administered otherwise. For example, each therapeutic agent (*e.g.*, (*i.e.*, a B7-H3-binding molecule and a PD-1-binding molecule) may be administered at the same time or sequentially in any order and/or at different points in time so as to provide the desired therapeutic or prophylactic effect. Furthermore, each agent need not be administered for the entire course of treatment. For example, both agents may be administered for a period of time, after which one agent is discontinued. Each therapeutic agent can be administered separately, in any appropriate form and by any suitable route, *e.g.*, one by the oral route and one parenterally.

[00184] A variety of delivery systems and administration routes for providing a combination of a B7-H3-binding molecule and a PD-1-binding molecule are available. Delivery systems that can be used to administer a B7-H3-binding molecule and a PD-1-binding molecule, include, but are not limited to, encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the antibody or fusion protein, receptor-mediated endocytosis (See, e.g., Wu et al. (1987) "Receptor-Mediated In Vitro Gene Transformation By A Soluble DNA Carrier System," J. Biol. Chem. 262:4429-4432), construction of a nucleic acid

as part of a retroviral or other vector, *etc.* Methods of administering a B7-H3-binding molecule and a PD-1-binding molecule, include, but are not limited to, parenteral administration (*e.g.*, intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous), epidural, and mucosal (*e.g.*, intranasal and oral routes). In a specific embodiment, molecules are administered intramuscularly, intravenously, or subcutaneously. The compositions may be administered by any convenient route, for example, by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (*e.g.*, oral mucosa, rectal and intestinal mucosa, *etc.*) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, pulmonary administration can also be employed, *e.g.*, by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. See, *e.g.*, U.S. Patent Nos. 6,019,968; 5,985, 320; 5,985,309; 5,934,272; 5,874,064; 5,855,913; 5,290,540; and 4,880,078; and PCT Publication Nos. WO 92/19244; WO 97/32572; WO 97/44013; WO 98/31346; and WO 99/66903, each of which is incorporated herein by reference in its entirety.

[00185] Treatment of a subject with a therapeutically or prophylactically effective amount of a B7-H3-binding molecule and/or a PD-1-binding molecule can include a single treatment or, preferably, can include a series of treatments. For example, a subject may be treated with a B7-H3-binding molecule and/or a PD-1-binding molecule once a week, twice a week, once every two weeks, once every three weeks, once every four weeks, once every six weeks, once every two months for between about 2 to about 52 weeks. It will be appreciated that the effective dosage of the molecules used for treatment may increase or decrease over the course of a particular treatment. As provided herein, the B7-H3-binding molecule and the PD-1-binding molecule need not be administered at the same time or at the same intervals or for the same number of treatments.

[00186] Preferably the B7-H3-binding molecule and the PD-1-binding molecule are administered using a treatment regimen comprising one or more doses, wherein the treatment regimen is administered over 1 week, 2 weeks, 3 weeks, 4 week, 6 weeks, 8 or more than 8 weeks. In certain embodiments, the treatment regimen comprises intermittently administering doses of the effective amount of such molecules (for example, administering a dose on week one and week four and not administering doses of the molecule on week two or week three). Typically, there are 1, 2, 3, 4, 5 or more than 5 courses of treatment. Each course may be the same regimen or a different regimen.

[00187] The dosage of a B7-H3-binding molecule, a PD-1-binding molecule, or a combination of such molecules, administered to a patient is typically at least about at least about 1.0 mg/kg body weight, at least about 3 mg/kg body weight, at least about 5 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, or at least about 20 mg/kg. For antibodies encompassed by the invention, the dosage administered to a patient is typically 1.0 mg/kg to 20 mg/kg of the patient's body weight. Preferably, the dosage administered to a patient is between 1.0 mg/kg and 20 mg/kg, 1.0 mg/kg and 10 mg/kg, 1.0 mg/kg and 5 mg/kg, 2.0 mg/kg and 20 mg/kg, or 5 mg/kg and 20 mg/kg of the patient's body weight. In one embodiment, the dosage administered to a patient is between 1 mg/kg and 15 mg/kg body weight. In another embodiment, the dosage administered to a patient is 1 mg/kg, 2mg/kg, 3 mg/kg, 4 mg/kg, 5 mg/kg, 6 mg/kg, 7 mg/kg, 8 mg/kg, 9 mg/kg, 10 mg/kg, 11 mg/kg, 12 mg/kg, 13 mg/kg, 14 mg/kg, or 15 mg/kg, 16 mg/kg, 17 mg/kg, 18 mg/kg, 19 mg/kg, or 20 mg/kg body weight. The calculated dose will be administered based on the patient's body weight at baseline. Significant (≥ 10%) change in body weight from baseline or established plateau weight should prompt recalculation of dose.

[00188] Alternatively, a fixed dosage of a B7-H3-binding molecule, a PD-1-binding molecule, or a combination of such molecules is administered to a patient regardless of body weight. For antibodies encompassed by the invention, the fixed dosage administered to a patient is typically between 50 mg to 500 mg. Preferably, the fixed dosage administered to a patient is between 50 mg and 300 mg, 100 mg and 300 mg, or 100 mg and 200 mg. In one embodiment, the fixed dosage administered to a patient is 100 mg, 200 mg or 300 mg.

[00189] In various embodiments, a first therapeutic agent (*e.g.*, anti-B7-H3 antibody or anti-PD-1 antibody) can be administered prior to (*e.g.*, 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (*e.g.*, 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second (or subsequent) therapeutic agent (*e.g.*, anti-B7-H3 antibody or anti-PD-1 antibody) to a subject with a disorder. In preferred embodiments, two or more agents are administered within the same patient visit.

[00190] As provided herein, the B7-H3-binding molecule and the PD-1-binding molecule may be administered at different dosages, different concentrations, different times and/or on different schedules.

[00191] Although, as discussed above, various dosing regimens and administration routes may be employed in order to provide a combination of a molecule that specifically binds to B7-H3 and a molecule that specifically binds to PD-1 to recipient subjects in need thereof in accordance with the present invention, certain combinations, dosing regimens and administrative routes are particularly preferred for use in such treatment. The use of an anti-B7-H3 antibody (e.g., hBRCA84D-2) alone and in combination with an anti-PD-1 antibody (e.g., pembrolizumab) in such dosing and administrative is particularly preferred.

[00192] In certain embodiments, a dose of an anti-B7-H3 antibody is administered weekly in combination with a dose of an anti-PD-1 antibody administered every two or three weeks (wherein each administration of such a combination treatment regimen is herein referred to as a "cycle"). In one embodiment, 1 to 15 mg/kg patient body weight, preferably 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 mg/kg body weight, of an anti-B7-H3 antibody is administered weekly. In one embodiment, either 1 to 10 mg/kg patient body weight, preferably 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mg/kg body weight, of an anti-PD-1 antibody or a fixed 100, 200, or 300 mg dose of an anti-PD-1 antibody is administered once every two or three weeks until remission of disease or unmanageable toxicity is observed.

[00193] In particularly preferred embodiments, an anti-B7-H3 antibody is administered to the subject by IV infusion weekly and an anti-PD-1 antibody is administered to the subject by IV infusion every two or three weeks for a duration of at least 1 month or more, at least 3 months or more, or at least 6 months or more, or at least 12 months or more. A treatment duration of at least 6 months or more, or for at least 12 months or more, or until remission of disease or unmanageable toxicity is observed, is particularly preferred. In such IV administration once every two or three weeks, an anti-B7-H3 antibody and an anti-PD-1 antibody may be administered together or sequentially. In particularly preferred embodiments, an anti-B7-H3 antibody and an anti-PD-1 antibody are administration on more than 48 hours apart. In such sequential administration an anti-B7-H3 antibody may be administered prior to, or subsequent to, the administration of an anti-PD-1 antibody.

[00194] It is particularly preferred to provide a subject with multiple doses of a combination treatment of an anti-B7-H3 antibody and an anti-PD-1 antibody. A treatment regimen may thus comprise 1 cycle, at least 2 cycles or more than 2 cycles, at least 3 cycles or more than 3 cycles, at least 4 cycles or more than 4 cycles, at least 5 cycles or more than 5 cycles, or at least 6 cycles or more than 6 cycles. The dosage of each antibody in each such cycle may be the same or may vary from the prior administered dosage.

[00195] It is preferred that the antibodies not be administered as an IV push or bolus, but rather that such administration be accomplished by IV infusion. The antibodies are thus preferably diluted into an infusion bag comprising a suitable diluent, *e.g.*, 0.9% sodium chloride. Since infusion or allergic reactions may occur, premedication for the prevention of such infusion reactions is recommended and precautions for anaphylaxis should be observed during the antibody administration. It is particularly preferable for the IV infusion to be administered to the subject over a period of between 30 minutes and 24 hours. In certain embodiments, the IV infusion is preferably delivered over a period of 30-180 minutes, or 30-120 minutes, or 30-90 minutes, or over a period of 60 minutes, or over a lesser period, if the subject does not exhibit signs or symptoms of an adverse infusion reaction.

Accordingly, a preferred method of treating cancer is provided, the method [00196] comprising administering to a subject in need thereof a combination of an anti-B7-H3 antibody and an anti-PD-1 antibody, wherein the anti-B7-H3 antibody is administered at a dosage of 1 to 15 mg/kg body weight weekly and the anti-PD-1 antibody is administered at a fixed dosage of 200 mg every three weeks. In one embodiment, the anti-B7-H3 antibody is administered at a dosage of 1, 3, 10, or 15 mg/kg body weight. In a further embodiment, the anti-B7-H3 antibody is administered at a dosage of 1 mg/kg weekly and the anti-PD-1 antibody is administered at a fixed dosage of 200 mg every three weeks. In a further embodiment, the anti-B7-H3 antibody is administered at a dosage of 3 mg/kg body weight weekly and the anti-PD-1 antibody is administered at a fixed dosage of 200 mg every three weeks. In a further embodiment, the anti-B7-H3 antibody is administered at a dosage of 10 mg/kg body weight weekly and the anti-PD-1 antibody is administered at a fixed dosage of 200 mg every three weeks. In a further embodiment, the anti-B7-H3 antibody is administered at a dosage of 15 mg/kg body weight weekly and the anti-PD-1 antibody is administered at a fixed dosage of 200 mg every three weeks. In any of the above embodiments, the anti-B7-H3 antibody and the

anti-PD-1 antibody are administered by IV infusion, and when administered in the same week, both may be administered within a 48 hour, preferably 24 hour period.

[00197] Another preferred method of treating cancer is provided, the method comprising administering to a subject in need thereof a combination of an anti-B7-H3 antibody and an anti-PD-1 antibody, wherein the dosage of the anti-B7-H3 antibody is 1 to 15 mg/kg body weight weekly, and the dosage of the anti-PD-1 antibody is 1 to 10 mg/kg body weight every two or three weeks. In one embodiment, the dosage of the anti-B7-H3 antibody is 1, 3, 10, or 15 mg/kg body weight. In a further embodiment, the dosage of the anti-PD-1 antibody is 1, 2, 3 or 10 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 1 mg/kg body weight and the dosage of the anti-PD-1 antibody is 1 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 1 mg/kg and the dosage of the anti-PD-1 antibody is 2 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 1 mg/kg body weight and the dosage of the anti-PD-1 antibody is 3 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 1 mg/kg and the dosage of the anti-PD-1 antibody is 10 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 3 mg/kg body weight and the dosage of the anti-PD-1 antibody is 1 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 3 mg/kg body weight and the dosage of the anti-PD-1 antibody is 2 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 3 mg/kg body weight and the dosage of the anti-PD-1 antibody is 3 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 3 mg/kg body weight and the dosage of the anti-PD-1 antibody is 10 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 10 mg/kg body weight and the dosage of the anti-PD-1 antibody is 1 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 10 mg/kg body weight and the dosage of the anti-PD-1 antibody is 2 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 10 mg/kg body weight and the dosage of the anti-PD-1 antibody is 3 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 10 mg/kg body weight and the dosage of the anti-PD-1 antibody is 10 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 15 mg/kg body weight and the dosage of the anti-PD-1 antibody is 1 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 15 mg/kg body weight and the dosage of the anti-PD-1 antibody is 2 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 15 mg/kg body weight and the dosage of the anti-PD-1 antibody

is 3 mg/kg body weight. In a further embodiment, the dosage of the anti-B7-H3 antibody is 15 mg/kg body weight and the dosage of the anti-PD-1 antibody is 10 mg/kg body weight. In any of the above embodiments, the anti-B7-H3 antibody and the anti-PD-1 antibody are administered by IV infusion, and once every two or three weeks may both be administered within a 48 hour, preferably 24 hour period.

[00198] In any of the above embodiments, the anti-B7-H3 antibody comprises the CDRL1 CDRL2, CDRL3, CDRH1, CDRH2, and CDRH3 Domains of hBRCA84D, hBRCA69D, PRCA157, or the CDRL1 CDRL2, CDRL3, CDRH1, CDRH2, and CDRH3 Domains of any of the anti-B7-H3 antibody provided in Table 5, and the anti-PD-1 antibody comprises the CDRL1 CDRL2, CDRL3, CDRH1, CDRH2, and CDRH3 Domains of PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, or the CDRL1 CDRL2, CDRL3, CDRH1, CDRH2, and CDRH3 Domains of any of the anti-PD-1 antibodies provided in Table 6. In any of the above embodiments, the anti-B7-H3 antibody is hBRCA84D-2 and the anti-PD-1 antibody is selected from the antibodies provided in Table 6. In a preferred embodiment, the anti-B7-H3 antibody is hBRCA84D-2 and the anti-PD-1 antibody is pembrolizumab. In another preferred embodiment, the anti-B7-H3 antibody is hBRCA84D-2 and the anti-PD-1 antibody is hBRCA84D-2 and the anti-PD-1 antibody is pidilizumab. In another preferred embodiment, the anti-B7-H3 antibody is hBRCA84D-2 and the anti-PD-1 antibody is pidilizumab. In another preferred embodiment, the anti-B7-H3 antibody is hBRCA84D-2 and the anti-PD-1 antibody is pidilizumab. In another preferred embodiment, the anti-B7-H3 antibody is hBRCA84D-2 and the anti-PD-1 antibody is pidilizumab. In another preferred embodiment, the anti-B7-H3 antibody is hBRCA84D-2 and the anti-PD-1 antibody is pidilizumab. In another preferred embodiment, the anti-B7-H3 antibody is hBRCA84D-2 and the anti-PD-1 antibody is pidilizumab.

[00199] In any of the above embodiments, the therapeutic agents are preferably cyclically administered to a subject. Cycling therapy can reduce the development of resistance to one or more of the therapies, avoid or reduce the side effects of one of the therapies, and/or improves the efficacy of the treatment. Exemplary cycles are about once every week, about once every 10 days, about once every two weeks, and about once every three weeks. Each cycle can comprise at least 1 week of rest, at least 2 weeks of rest, at least 3 weeks of rest, etc. The number of cycles administered is from about 1 to about 12 cycles, more typically from about 2 to about 10 cycles, and more typically from about 2 to about 8 cycles.

[00200] A preferred dosage regimen for the therapeutic administration as provided in any of the embodiments above, comprises administering such combination of an anti-B7-H3 antibody and an anti-PD-1 antibody to a recipient subject in an initial cycle, and one or more subsequent cycles. In any of the embodiments provided above, the anti-B7-H3 antibody and the anti-PD-

1 antibody are administered on the same cycle schedule. In such embodiments, each cycle comprises two or three weeks, with the anti-B7-H3 antibody being provided to the subject in a weekly administration and the anti-PD-1 antibody being provided to the subject on the first week of each 2- or 3-week period. Alternatively, the anti-B7-H3 antibody and the anti-PD-1 antibody are administered on different cycle schedules. In such embodiments, each cycle for the anti-PD-1 antibody comprises two or three weeks, with the anti-PD-1 antibody being provided to the subject on the first week of each 2 or 3 week period. In such an embodiment, the initial cycle for the anti-B7-H3 antibody will preferably comprise 8 weeks, with the anti-B7-H3 antibody being provided to the subject in a weekly administration for the first four weeks of such 8 week initial period, followed by no administration to the subject for the period of weeks 5-8 of such 8 week initial period. Each subsequent cycle will preferably comprise a 4-week period, with the anti-B7-H3 antibody being provided to the subject in a weekly administration for the first three weeks of such 4-week subsequent period, followed by no administration to the subject for the period of week 4 of such 4 week subsequent period. Thus, for example, a subject would receive the B7-H3 antibody weekly in week 1, 2, 3, 4, 9, 10, 11, 13, 14, 15, etc., wherein weeks 1-8 are the initial dosage regimen cycle, weeks 9-12 are the first subsequent cycle, weeks 13-16 are a second subsequent cycle, etc.

I. Combination Therapies

[00201] The invention further encompasses administering to a subject, a combination of a molecule that specifically binds to B7-H3 and a molecule that specifically binds to PD-1 in further combination with other therapies known to those skilled in the art for the treatment or prevention of cancer, autoimmune disease, inflammation, or infectious disease, including but not limited to, current standard and experimental chemotherapies, hormonal therapies, biological therapies, immunotherapies, radiation therapies, or surgery. In some embodiments, the combination of a B7-H3-binding molecule and a PD-1-binding molecule (*e.g.*, an anti-B7-H3 antibody and an anti-PD-1 antibody) are administered in combination with a therapeutically or prophylactically effective amount of one or more additional therapeutic agents known to those skilled in the art for the treatment and/or prevention of cancer, in particular a B7-H3-expressing cancer.

[00202] In an embodiment for the treatment of a cell proliferative disorder, a B7-H3-binding molecule and/or a PD-1-binding molecule (*e.g.*, anti-B7-H3 antibody, anti-PD-1 antibody) is conjugated to, or administered in further combination with, another therapeutic agent, such as,

WO 2017/062619 PCT/US2016/055750

but not limited to, an alkylating agent (*e.g.*, mechlorethamine or cisplatin), angiogenesis inhibitor, anthracycline (*e.g.*, daunorubicin/daunomycin or doxorubicin), antibiotic (*e.g.*, dactinomycin, bleomycin, or anthramycin), antibody (*e.g.*, an anti-VEGF antibody such as bevacizumab (sold as AVASTIN® by Genentech, Inc.), an anti-EGFR antibody such as panitumumab (sold as VECTIBIXTM by Amgen, Inc.), or an anti-integrin antibody such as natalizumab (sold as TYSABRI® by Biogen Idec and Elan Pharmaceuticals, Inc.)), an anti-metabolite (*e.g.*, methotrexate or 5-fluorouracil), an anti-mitotic agent (*e.g.*, vincristine or paclitaxel), a cytotoxin (*e.g.*, a cytostatic or cytocidal agent), a hormone therapy agent (*e.g.*, a selective estrogen receptor modulator (*e.g.*, tamoxifen or raloxifene), aromatase inhibitor, luteinizing hormone-releasing hormone analog, progestational agent, adrenocorticosteroid, estrogen, androgen, anti-estrogen agent, androgen receptor blocking agent, 5-alpha reductase inhibitor, adrenal production inhibitor, *etc.*), a matrix metalloprotease inhibitor, a radioactive element (*e.g.*, alpha-emitters, gamma-emitters, *etc.*), or any other chemotherapeutic agent.

[00203] Non-limiting examples of suitable angiogenesis inhibitors include ABT-627; angiostatin (plasminogen fragment); angiozyme; antiangiogenic antithrombin III; Bay 12-9566; benefin; bevacizumab; BMS-275291; bisphosphonates; cartilage-derived inhibitor (CDI); CAI; CD59 complement fragment; CEP-7055; Col 3; combretastatin A-4; endostatin (collagen XVIII fragment); farnesyl transferase inhibitors (FTI); fibronectin fragment; grobeta; halofuginone; heparinases; heparin hexasaccharide fragment; HMV833; human chorionic gonadotropin (hCG); IM-862; interferon alpha/beta/gamma; interferon inducible protein (IP-10); interleukin-12; kringle 5 (plasminogen fragment); marimastat; metalloproteinase inhibitors (TIMPs); 2-methoxyestradiol; MMI 270 (CGS 27023A); MoAb IMC-1C11; neovastat; NM-3; panzem; PI-88; placental ribonuclease inhibitor; plasminogen activator inhibitor, platelet factor-4 (PF4); prinomastat; prolactin 16kDa fragment; proliferin-related protein (PRP); PTK 787/ZK 222594; retinoids; solimastat; squalamine; SS 3304; SU 5416; SU6668; SU11248; tetrahydrocortisol-S; tetrathiomolybdate; thalidomide; thrombospondin-1 (TSP-1); TNP-470; transforming growth factor-beta (TGF-b); vasculostatin; vasostatin (calreticulin fragment); ZD6126; and ZD 6474.

[00204] Non-limiting examples of additional antibodies for the treatment of a cell proliferative disorder include antibodies to 17-1A, ανβ₃, AFP, CD3, CD18, CD20, CD22, CD33, CD44, CD52, CEA, CTLA-4, DNA-associated proteins, EGF receptor, Ep-CAM, GD2-ganglioside, gp IIIb/IIIa, gp72, HLA-DR 10 beta, HLA-DR antigen, IgE, ganglioside GD3,

WO 2017/062619 PCT/US2016/055750

MUC-1, nuC242, PEM antigen, SK-1 antigen, tumor antigen CA125, tumor antigen MUC1, VEGF, and VEGF-receptor.

Examples

[00205] Having now generally described the invention, the same will be more readily understood through reference to the following examples, which are provided by way of illustration and are not intended to be limiting of the present invention unless specified.

Example 1

Dose-Escalation Study of a Combination of an Anti-B7-H3 Antibody and an Anti-PD-1 Antibody

[00206] While following dose-escalation study protocol details the use of the exemplary anti-B7-H3 antibody "hBRCA84D-2" in combination with the anti-PD-1 antibody "pembrolizumab," it will be understood in view of the teachings herein that similar combination protocols may be designed using any of anti-B7-H3 antibodies and anti-PD-1 antibodies provided herein.

[00207] A dose escalation study is performed to determine the Maximum Tolerated Dose (MTD) or Maximum Administered Dose (MAD) (if no MTD is defined) of escalating doses of hBRCA84D-2 administered weekly in combination with a dose of 2 mg/kg pembrolizumab administered every three weeks. This may be followed by a cohort expansion phase to further define the safety and initial efficacy of the combination with the hBRCA84D-2 dose established in the dose escalation study. hBRCA84D-2 is administered weekly and pembrolizumab is administered once every 3 weeks. Once every three weeks the agents are administered on the same day with pembrolizumab administered first, followed by hBRCA84D-2. However, where the combined dose exceeds 2,500 mg the antibodies should be administered on consecutive days. When administering the antibodies on consecutive days pembrolizumab may be administered on the first day, and hBRCA84D-2 may be administered on the next calendar day. Each cycle of therapy is defined as 3 weeks, in which hBRCA84D-2 is given on Days 1, 8 and 15, and pembrolizumab is given on Day 1. Tumor assessments may be performed during the study, preferably at the end of the first two cycles, and at the end of every subsequent three cycles of treatment (i.e., after 6 weeks [end of Cycle 2] and after 15 weeks, 24 weeks, 33 weeks, etc. [end of Cycle 5, 8, 11, etc.]).

hBRCA84D-2 may be evaluated in three sequential escalating doses, 3 mg/kg body 1002081 weight, 10 mg/kg, and 15 mg/kg body weight, in combination with 2 mg/kg pembrolizumab in cohort's patients. If it is determined that the MTD is exceeded in the first dose cohort, a dose de-escalation cohort to evaluate a lower dose of hBRCA84D-2 (1 mg/kg) in combination with 2 mg/kg pembrolizumab may be utilized.

[00209] For a cohort expansion phase additional patients are enrolled and will receive hBRCA84D-2 at the MTD (or MAD) established from the dose escalation phase of the study in combination with 2 mg/kg pembrolizumab.

[00210] Patients who remain clinically stable and do not experience unacceptable toxicity that necessitates permanent discontinuation of the study drugs, at the completion of the first two 3-week cycles will be eligible to receive additional treatment with hBRCA84D-2 and pembrolizumab. Patients that remain clinically stable, maintain a response status of stable disease or better, and do not experience unacceptable toxicity that necessitates permanent discontinuation of the study drugs, patients may receive additional treatment cycles of hBRAC84D-2 and pembrolizumab. Such additional treatment may continue for approximately one year such that patients may receive 51 doses of hBRCA84D-2 and 17 doses of pembrolizumab.

All publications and patents mentioned in this specification are herein incorporated [00211] by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference in its entirety. While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth.

[00212] The present specification and claims, the term 'comprising' and its derivatives including 'comprises' and 'comprise' is used to indicate the presence of the stated integers but does not preclude the presence of other unspecified integers.

Claims:

- 1. A method of treating cancer, comprising administering to a subject in need thereof:
 - (a) an anti-B7-H3 antibody or an antigen-binding fragment thereof that specifically binds to B7-H3 expressed on the surface of a cancer cell, and
 - (b) an anti-PD-1 antibody or an antigen-binding fragment thereof that specifically binds to PD-1;

wherein:

- (i) said anti-B7-H3 antibody or antigen-binding fragment thereof comprises:
 - (a) an antibody light chain variable (VL) domain that comprises the three complementarity determining regions (CDRs) of the light chain variable domain of anti-B7-H3 antibody BRCA84D:

CDR_L1: residues 24-34 of **SEQ ID NO:19**;

CDR_L2: residues 50-56 of SEQ ID NO:19; and

CDR_L3: residues 89-97 of **SEQ ID NO:19**;

and

(b) an antibody heavy chain variable (VH) domain that comprises the three CDRs of the heavy chain variable domain of anti-B7-H3 antibody BRCA84D:

CDR_H1: residues 31-35 of **SEQ ID NO:20**;

CDR_H2: residues 50-66 of SEQ ID NO:20; and

CDR_H3: residues 99-111 of **SEQ ID NO:20**;

and

- (ii) said anti-PD-1 antibody or antigen-binding fragment thereof comprises:
 - (a) (1) a VL domain that comprises the three CDRs of the VL domain of anti-PD-1 antibody nivolumab:

CDR_L1: residues 24-34 of **SEQ ID NO:43**;

CDR_L2: residues 50-56 of **SEQ ID NO:43**; and

CDR_L3: residues 89-97 of **SEQ ID NO:43**;

and

```
(2)
               a VH domain that comprises the three CDRs of the VH
               domain of anti-PD-1 antibody nivolumab:
               CDR<sub>H</sub>1: residues 31-35 of SEQ ID NO:42;
               CDR<sub>H</sub>2: residues 50-66 of SEQ ID NO:42; and
               CDR<sub>H</sub>3: residues 99-102 of SEQ ID NO:42;
       or
(b)
               a VL domain that comprises the three CDRs of the VL
       (1)
               domain of anti-PD-1 antibody pembrolizumab:
               CDR<sub>L</sub>1: residues 24-38 of SEQ ID NO:45;
               CDR<sub>L</sub>2: residues 54-60 of SEQ ID NO:45; and
               CDR<sub>L</sub>3: residues 93-101 of SEQ ID NO:45;
       and
       (2)
               a VH domain that comprises the three CDRs of the VH
               domain of anti-PD-1 antibody pembrolizumab:
               CDR<sub>H</sub>1: residues 31-35 of SEQ ID NO:44;
               CDR<sub>H</sub>2: residues 50-66 of SEQ ID NO:44; and
               CDR<sub>H</sub>3: residues 99-109 of SEQ ID NO:44;
or
               a VL domain that comprises the three CDRs of the VL
(c)
       (1)
               domain of anti-PD-1 antibody pidilizumab:
               CDR<sub>L</sub>1: residues 24-33 of SEQ ID NO:49;
               CDR<sub>L</sub>2: residues 49-55 of SEQ ID NO:49; and
               CDR<sub>L</sub>3: residues 88-96 of SEQ ID NO:49;
       and
       (2)
               a VH domain that comprises the three CDRs of the VH
               domain of anti-PD-1 antibody pidilizumab:
               CDR<sub>H</sub>1: residues 31-35 of SEQ ID NO:48;
               CDR<sub>H</sub>2: residues 50-66 of SEQ ID NO:48; and
               CDR<sub>H</sub>3: residues 99-106 of SEQ ID NO:48;
       or
(d)
               a VL domain that comprises the three CDRs of the VL
       (1)
               domain of anti-PD-1 antibody PD-1 mAb 6-ISQ:
               CDR<sub>L</sub>1: residues 24-38 of SEQ ID NO:58;
               CDR<sub>L</sub>2: residues 54-60 of SEQ ID NO:58; and
```

CDR_L3: residues 93-101 of **SEQ ID NO:58**;

and

- (2) the VH domain of anti-PD-1 antibody PD-1 mAb 6-ISQ (residues 1-119 of **SEQ ID NO:59**);
- (iii) (a) said cancer is a B7-H3-expressing cancer;
 - (b) said anti-B7-H3 antibody or antigen-binding fragment thereof is administered at a dosage of about 1-15 mg/kg body weight; and
 - (c) said anti-PD-1 antibody or antigen-binding fragment thereof is administered at:
 - (1) a fixed dosage of between 50 mg and 500 mg every two or three weeks, or
 - (2) a dosage of 1-10 mg/kg body weight every two or three weeks.
- 2. The method of claim 1, wherein said anti-B7-H3 antibody, or antigen-binding fragment thereof comprises a heavy chain variable domain comprising the amino acid sequence of SEQ ID NO:20, 27, 28, 29 or 30, and a light chain variable domain comprising the amino acid sequence of SEQ ID NOs:19, 21, 22, 23, 24, 25 or 26.
- 3. The method of any one of claims 1-2, wherein said anti-PD-1 antibody, or antigen-binding fragment thereof comprises the heavy chain variable domain and the light chain variable domain of nivolumab, pembrolizumab, pidilizumab, or the heavy chain variable domain and the light chain variable domain of anti-PD-1 antibody PD-1 mAb 6-ISQ.
- 4. The method of any one of claims 1-3, wherein said anti-B7-H3 antibody or antigen-binding fragment thereof comprises an Fc Domain, and said anti-PD-1 antibody or antigen-binding fragment thereof comprises an Fc Domain.
- 5. The method of claim4, wherein:
 - (A) said anti-B7-H3 antibody or antigen-binding fragment thereof comprises a variant Fc Domain having at least one modification in the Fc Domain that enhances ADCC, wherein said modification comprises any one, any two, any three, any four, or all five of the substitutions: L235V, F243L, R292P, Y300L, and P396L; and/or
 - (B) said anti-PD-1 antibody or antigen-binding fragment thereof, comprises:

- (a) a variant Fc Domain having at least one modification in the Fc Domain that reduces or abolishes ADCC activity, wherein said modification comprises any one, any two, any three, any four, or all five of the substitutions: L234A, L235A, D265A, N297A, and N297Q; or
- (b) an IgG4 Fc Domain.
- 6. The method of claim 5, wherein said variant Fc Domain of said anti-B7-H3 antibody or antigen-binding fragment thereof comprises:
 - (A) at least one substitution selected from the group consisting of F243L, R292P, Y300L, V305I, and P396L;
 - (B) at least two substitutions selected from the group consisting of:
 - (1) F243L and P396L;
 - (2) F243L and R292P; and
 - (3) R292P and V305I;
 - (C) at least three substitutions selected from the group consisting of:
 - (1) F243L, R292P and Y300L;
 - (2) F243L, R292P and V305I;
 - (3) F243L, R292P and P396L; and
 - (4) R292P, V305I and P396L;
 - (D) at least four substitutions selected from the group consisting of:
 - (1) F243L, R292P, Y300L and P396L; and
 - (2) F243L, R292P, V305I and P396L; or
 - (E) at least the five substitutions selected from the group consisting of:
 - (1) F243L, R292P, Y300L, V305I and P396L; and
 - (2) L235V, F243L, R292P, Y300L and P396L.
- 7. The method of any one of claims 5-6, wherein said variant Fc Domain of said anti-PD-1 antibody or antigen-binding fragment thereof comprises the substitution:
 - (A) L234A, L235A;
 - (B) D265A;
 - (C) N297A; or

- (D) N297Q.
- 8. The method of any one of claims 1-7, wherein said anti-PD-1 antibody or antigen-binding fragment thereof is administered at said fixed dosage of between 50 mg and 500 mg.
- 9. The method of claim 8, wherein said anti-PD-1 antibody or antigen-binding fragment thereof is administered:
 - (a) at a fixed dosage of 100 mg;
 - (b) at a fixed dosage of 200 mg; or
 - (c) at a fixed dosage of 300 mg.
- 10. The method of any one of claims 1-9, wherein:
 - (a) said anti-PD-1 antibody or antigen-binding fragment thereof is administered at a dosage of about 1 mg/kg body weight, about 2 mg/kg body weight, about 3 mg/kg body weight, about 5 mg/kg body weight, about 6 mg/kg body weight, or about 10 mg/kg body weight; and/or
 - (b) said anti-B7-H3 antibody or antigen-binding fragment thereof is administered at a dosage of about 1 mg/kg body weight, about 3 mg/kg body weight, about 10 mg/kg body weight or about 15 mg/kg body weight.
- 11. The method of claim 10, wherein:
 - (a) said anti-B7-H3 antibody or antigen-binding fragment thereof is administered at a dosage of about 3 mg/kg body weight, about 10 mg/kg body weight, or about 15 mg/kg body weight, and said anti-PD-1 antibody or antigen-binding fragment thereof is administered at a dosage of about 5 mg/kg body weight; or
 - (b) said anti-B7-H3 antibody or antigen-binding fragment thereof is administered at a dosage of about 3 mg/kg body weight, about 10 mg/kg body weight, or about 15 mg/kg body weight, and said anti-PD-1 antibody or antigen-binding fragment thereof is administered at a dosage of about 6 mg/kg body weight; or
 - (c) said anti-B7-H3 antibody or antigen-binding fragment thereof is administered at a dosage of about 3 mg/kg body weight, about 10 mg/kg body weight, or about 15 mg/kg body weight, and said

- anti-PD-1 antibody or antigen-binding fragment thereof is administered at a dosage of about 10 mg/kg body weight; or
- (d) said anti-B7-H3 antibody or antigen-binding fragment thereof is administered at a dosage of about 15 mg/kg body weight, and said anti-PD-1 antibody or antigen-binding fragment thereof is administered at a dosage of about 5 mg/kg body weight.
- 12. The method of any one of claims 1-11, wherein:
 - (a) said anti-B7-H3 antibody or antigen-binding fragment thereof is administered every week or every three weeks; and/or
 - (b) said anti-PD-1 antibody or antigen-binding fragment thereof is administered every two weeks or every three weeks.
- 13. The method of claim 12, wherein:
 - (a) said anti-B7-H3 antibody or antigen-binding fragment thereof is administered at a dosage of about 15 mg/kg body weight every three weeks; and
 - (b) said anti-PD-1 antibody or antigen-binding fragment thereof is administered at a fixed dosage of between 50 mg and 500 mg every three weeks.
- 14. The method of claim 13, wherein said anti-PD-1 antibody or antigen-binding fragment thereof is administered at a fixed dosage of 300 mg every three weeks, or at a fixed dosage of 200 mg every three weeks.
- 15. The method of any one of claims 1-14, wherein the anti-B7-H3 antibody or antigen-binding fragment thereof and the anti-PD-1 antibody or antigen-binding fragment thereof are administered by IV infusion.
- The method of any one of claims 1-15, wherein every three weeks said anti-B7-H3 antibody or antigen-binding fragment thereof and said anti-PD-1 antibody or antigen-binding fragment thereof are administered within a 48-hour period of each other.
- 17. The method of any one of claims 1-16, wherein every two weeks said anti-B7-H3 antibody or antigen-binding fragment thereof and said anti-PD-1 antibody or antigen-binding fragment thereof are administered within a 48-hour period of each other.
- 18. The method of any one of claims 1-17, wherein said B7-H3-expressing cancer is selected from the group consisting of: a squamous cell cancer of the head and

neck (SCCHN), a bladder cancer, a breast cancer, a colorectal cancer, a gastric cancer, a glioblastoma, a kidney cancer, a lung cancer, a melanoma, an ovarian cancer, a pancreatic cancer, a pharyngeal cancer, a prostate cancer, a renal cell carcinoma, a small round blue cell tumor, a neuroblastoma, and a rhabdomyosarcoma.

- 19. The method of any one of claims 1-18, wherein said treatment further comprises the step of administering a third therapeutic agent selected from the group consisting of an anti-angiogenic agent, an anti-neoplastic agent, a chemotherapeutic agent, and a cytotoxic agent.
- 20. The method of any one of claims 1-19, wherein said anti-B7-H3 antibody is hBRCA84D-2.
- 21. The method of any one of claims 1-20, wherein said anti-PD-1 antibody is pembrolizumab, nivolumab, or pidilizumab.
- 22. The method of any one of claims 1-21, wherein said anti-PD-1 antibody is mAb 6-ISQ.

1301_129PCT_ST25 SEQUENCE LISTING

<110> MacroGenics, Inc. Vasselli, Jim Wigginton, Jon Marc Bonvi ni , Ezi o Koeni g, Scott <120> Combination Therapy for the Treatment of Cancer <130> 1301. 0129PCT <150> US 62/239,020 <151> 2015-10-08 <160> 62 <170> PatentIn version 3.5 <210> <211> 217 <212> PRT <213> Homo sapiens <220> MI SC_FEATURE <221> (1). (217) CH2-CH3 Domains of Exemplary Human IgG1 <222> <220> MISC_FEATURE (217)..(217) X is Lysine (K) or absent <221> <222> <223> <400> 1 Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met IIe Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 65 70 75 80 Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85 90 95 Ala Leu Pro Ala Pro IIe Glu Lys Thr IIe Ser Lys Ala Lys Gly Gln
100 105 110 Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met 115 120 125 115 120

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135 140 135

Ser Asp IIe Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 155

Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 200

Lys Ser Leu Ser Leu Ser Pro Gly Xaa

<210> 2

216 <211>

<212> PRT

Homo sapiens

<220>

<221> <222> MI SC_FEATURE

(1)..(216) CH2-CH3 Domains of Exemplary Human IgG2 <223>

<220>

MI SC_FEATURE <221>

(216)...(216)<222>

X is Lysine (K) or absent

<400>

Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro

Lys Asp Thr Leu Met IIe Ser Arg Thr Pro Glu Val Thr Cys Val Val

Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln

Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly
85 90 95

Leu Pro Ala Pro IIe Glu Lys Thr IIe Ser Lys Thr Lys Gly Gln Pro Page 2

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr 120

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 130 135 140

Asp II e Ser Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 145 155 160

Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 180 185 190

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 195 200 205

Ser Leu Ser Leu Ser Pro Gly Xaa 210 215

<210>

3 217 <211>

PRT <212>

<213> Homo sapiens

<220>

<221> MI SC_FEATURE

<222> (1)..(217)

CH2-CH3 Domains of Exemplary Human IgG3

<220>

<221> MI SC_FEATURE

<222> (217)..(217)

X is Lysine (K) or Absent <223>

<400>

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys

Pro Lys Asp Thr Leu Met IIe Ser Arg Thr Pro Glu Val Thr Cys Val 20 25 30

Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Lys Trp Tyr 35 40 45

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50 60

Gln Tyr Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Leu His 65 70 75 80

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85 90 95

Ala Leu Pro Ala Pro IIe Glu Lys Thr IIe Ser Lys Thr Lys Gly Gln
100 105 110

Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met 115 120 125

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro

Ser Asp IIe Ala Val Glu Trp Glu Ser Ser Gly Gln Pro Glu Asn Asn 145 150 155 160

Tyr Asn Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Ile

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn Arg Phe Thr Gln 195 200 205

Lys Ser Leu Ser Leu Ser Pro Gly Xaa

<210>

<211> 217

<212> PRT

Homo sapiens

<220>

<221>

<222>

MISC_FEATURE (1)..(217) CH2-CH3 Domains of Exemplary Human IgG4

<220>

<221> MI SC_FEATURE

<222>

(217)..(217) X is Lysine (K) or Absent <223>

<400>

Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 1 5 10 15

Pro Lys Asp Thr Leu Met IIe Ser Arg Thr Pro Glu Val Thr Cys Val

Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Page 4

50

Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 65 70 75 80

55

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85 90 95

Gly Leu Pro Ser Ser IIe Glu Lys Thr IIe Ser Lys Ala Lys Gly Gln 100 105 110

Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135 140

Ser Asp IIe Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 145 150 160

Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu

Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 200

Lys Ser Leu Ser Leu Gly Xaa 215

<210>

217 <211>

<212> PRT

Artificial Sequence <213>

<220>

<223> Preferred IgG1 CH2 and CH3 Domains Having L234A/L235A Substitutions

<220>

MI SC_FEATURE <221>

(217)..(217) X is Lysine (K) or Absent <223>

<400>

Ala Pro Glu Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 1 10 15

Pro Lys Asp Thr Leu Met IIe Ser Arg Thr Pro Glu Val Thr Cys Val 20 25 30

```
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50 60
Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 65 70 75 80
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
85 90 95
Ala Leu Pro Ala Pro IIe Glu Lys Thr IIe Ser Lys Ala Lys Gly Gln
100 105 110
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
115 120 125
Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
130 135 140
Ser Asp IIe Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
145 150 155 160
Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
165 170 175
Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
180 185 190
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 195 200 205
Lys Ser Leu Ser Leu Ser Pro Gly Xaa
<210>
<211>
        217
<212>
        PRT
        Artificial Sequence
<213>
<220>
        Preferred "Knob-Bearing" CH2 and CH3 Domains
<220>
        MI SC_FEATURE
<221>
        (217)..(217)
X is Lysine (K) or Absent
<223>
<400>
Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 5 10 15
```

```
1301_129PCT_ST25
Pro Lys Asp Thr Leu Met IIe Ser Arg Thr Pro Glu Val Thr Cys Val
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35 40 45
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50 60
Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
65 70 75 80
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
85 90 95
Ala Leu Pro Ala Pro IIe Glu Lys Thr IIe Ser Lys Ala Lys Gly Gln
100 105 110
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
Thr Lys Asn Gln Val Ser Leu Trp Cys Leu Val Lys Gly Phe Tyr Pro
130 135 140
Ser Asp IIe Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
145 150 160
Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
195 200 205
Lys Ser Leu Ser Leu Ser Pro Gly Xaa
<210>
       217
<211>
<212>
       Artificial Sequence
<213>
<220>
       Preferred "Hole-Bearing" CH2 and CH3 Domains
<223>
<220>
       MISC_FEATURE
(217)..(217)
X is Lysine (K) or Absent
<221>
<222>
<400>
       7
```

```
1301_129PCT_ST25
Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
Pro Lys Asp Thr Leu Met IIe Ser Arg Thr Pro Glu Val Thr Cys Val
20 25 30
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35 40 45
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50 60
Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
65 70 75 80
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
85 90 95
Ala Leu Pro Ala Pro IIe Glu Lys Thr IIe Ser Lys Ala Lys Gly Gln
100 105 110
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
115 120 125
Thr Lys Asn Gln Val Ser Leu Ser Cys Ala Val Lys Gly Phe Tyr Pro
130 140
Ser Asp IIe Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
145 150 155 160
Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
165 170 175
Val Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
180 185 190
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn Arg Tyr Thr Gln
195 200 205
Lys Ser Leu Ser Leu Ser Pro Gly Xaa
<210>
        98
<211>
        PRT
<212>
        Homo sapiens
<220>
        MI SC_FEATURE
<221>
        (1)..(98)
        Exemplary Human IgG1 CH1 Domain
<400>
```

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 1 10 15

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr

Tyr IIe Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
85 90 95

Arg Val

<210>

<211> 98

PRT <212>

Homo sapiens

<220>

MI SC_FEATURE <221>

(1). (98) Exemplary Human IgG4 CH1 Domain

<400>

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
1 10 15

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr 65 75 80

Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys
85 90 95

Arg Val

```
<210>
       10
<211>
       15
<212>
       PRT
<213>
       Homo sapiens
<220>
       MISC_FEATURE (1)..(15) Exemplary Human IgG1 Hinge Region
<221>
<223>
<400>
       10
Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro
1 10 15
<210>
        11
<211>
       12
<212>
       PRT
       Homo sapiens
<220>
       MI SC_FEATURE
<221>
<222>
        <u>(</u>1)..(12)
       Exemplary Human IgG4 Hinge Region
<400>
Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro 1 5 10
<210>
       12
       12
<211>
<212>
      PRT
<213>
      Artificial Sequence
<220>
       IgG4 Fc Domain Containing S228P Stabilizing Hinge Mutation at
<223>
       Position 10
<400>
Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro
<210>
        13
<211>
       107
<212>
       PRT
<213>
       Homo sapiens
<220>
       MI SC_FEATURE
<221>
<222>
        (1)..(107)
<223>
       Human Kappa CL Domain
<400>
       13
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
```

```
1301_129PCT_ST25
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 20 25 30
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 35 40 45
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 50 55 60
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 65 70 75 80
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 85 90 95
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
100 105
<210>
        14
<211>
        113
<212>
        PRT
<213>
       Homo sapiens
<220>
        MI SC_FEATURE
<221>
        (1)..(113)
Human IgG1 CH1 Domain and Hinge
<222>
<400>
        14
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
1 5 10 15
Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80
Tyr II e Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
85 90 95
Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 100 105 110
```

Pro

```
<210>
        15
        217
<211>
<212>
        Artificial Sequence
<220>
        IgG1 CH2-CH3 Domains Comprising L235V, F243L, R292P, Y300L and
<223>
        P396L Substitutions
<400>
        15
Ala Pro Glu Leu Val Gly Gly Pro Ser Val Phe Leu Leu Pro Pro Lys
Pro Lys Asp Thr Leu Met IIe Ser Arg Thr Pro Glu Val Thr Cys Val 20 25 30
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35 40 45
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Pro Glu Glu 50 60
Gln Tyr Asn Ser Thr Leu Arg Val Val Ser Val Leu Thr Val Leu His
65 70 75 80
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
85 90 95
Ala Leu Pro Ala Pro IIe Glu Lys Thr IIe Ser Lys Ala Lys Gly Gln
100 105 110
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
115 120 125
Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
130 135 140
Ser Asp IIe Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
145 150 160
Tyr Lys Thr Thr Pro Leu Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 195 200 205
```

Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 <210> 16

<211> 110

<212> PRT

Artificial Sequence <213>

<220>

<223> IgG4 CH1 Domain and Stabilized Hinge Domain

<400>

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 10

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr

Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys

Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro

<210> 17

<211> 316

PRT <212>

<213> Homo sapiens

<220>

<221> MI SC_FEATURE

<222>

(1). (316) "21g" Form of Human B7-H3, Including 29 Amino Acid Residue Signal <223> Sequence

<220>

SI GNAL

<221> <222>

(1)..(29) Si gnal Sequence <223>

<400> 17

Met Leu Arg Arg Gly Ser Pro Gly Met Gly Val His Val Gly Ala 10 15

Ala Leu Gly Ala Leu Trp Phe Cys Leu Thr Gly Ala Leu Glu Val Gln

Val Pro Glu Asp Pro Val Val Ala Leu Val Gly Thr Asp Ala Thr Leu

Cys Cys Ser Phe Ser Pro Glu Pro Gly Phe Ser Leu Ala Gln Leu Asn 50 60 Leu II e Trp Gln Leu Thr Asp Thr Lys Gln Leu Val His Ser Phe Ala Glu Gly Gln Asp Gln Gly Ser Ala Tyr Ala Asn Arg Thr Ala Leu Phe 85 90 95 Pro Asp Leu Leu Ala Gln Gly Asn Ala Ser Leu Arg Leu Gln Arg Val 100 Arg Val Ala Asp Glu Gly Ser Phe Thr Cys Phe Val Ser IIe Arg Asp Phe Gly Ser Ala Ala Val Ser Leu Gln Val Ala Ala Pro Tyr Ser Lys Pro Ser Met Thr Leu Glu Pro Asn Lys Asp Leu Arg Pro Gly Asp Thr Val Thr IIe Thr Cys Ser Ser Tyr Arg Gly Tyr Pro Glu Ala Glu Val 165 170 175 Phe Trp Gln Asp Gly Gln Gly Val Pro Leu Thr Gly Asn Val Thr Thr Ser Gln Met Ala Asn Glu Gln Gly Leu Phe Asp Val His Ser Val Leu 195 200 205 Arg Val Val Leu Gly Ala Asn Gly Thr Tyr Ser Cys Leu Val Arg Asn 210 215 220 Pro Val Leu Gln Gln Asp Ala His Gly Ser Val Thr Ile Thr Gly Gln 225 235 240 Pro Met Thr Phe Pro Pro Glu Ala Leu Trp Val Thr Val Gly Leu Ser Val Cys Leu II e Ala Leu Leu Val Ala Leu Ala Phe Val Cys Trp Arg 260 265 270 Lys IIe Lys Gln Ser Cys Glu Glu Glu Asn Ala Gly Ala Glu Asp Gln 275 280 285 Asp Gly Glu Gly Glu Gly Ser Lys Thr Ala Leu Gln Pro Leu Lys His 290 295 300

Ser Asp Ser Lys Glu Asp Asp Gly Gln Glu Ile Ala

```
<210>
        18
<211>
       534
<212>
       PRT
       Homo sapiens
<220>
       MI SC_FEATURE
<221>
<222>
       (1). (534)
"41g" Form of Human B7-H3, Including 29 Amino Acid Residue Signal
<223>
        Sequence
<220>
<221>
       SI GNAL
       (1)..(29)
Si gnal Sequence
<222>
<223>
<400>
Met Leu Arg Arg Gly Ser Pro Gly Met Gly Val His Val Gly Ala
1 10 15
Ala Leu Gly Ala Leu Trp Phe Cys Leu Thr Gly Ala Leu Glu Val Gln
Val Pro Glu Asp Pro Val Val Ala Leu Val Gly Thr Asp Ala Thr Leu
Cys Cys Ser Phe Ser Pro Glu Pro Gly Phe Ser Leu Ala Gln Leu Asn 50 60
Leu II e Trp Gln Leu Thr Asp Thr Lys Gln Leu Val His Ser Phe Ala
Glu Gly Gln Asp Gln Gly Ser Ala Tyr Ala Asn Arg Thr Ala Leu Phe
Pro Asp Leu Leu Ala Gln Gly Asn Ala Ser Leu Arg Leu Gln Arg Val
Arg Val Ala Asp Glu Gly Ser Phe Thr Cys Phe Val
                                                   Ser IIe Arg Asp
Phe Gly Ser Ala Ala Val Ser Leu Gln Val Ala Ala Pro Tyr Ser Lys
Pro Ser Met Thr Leu Glu Pro Asn Lys Asp Leu Arg Pro Gly Asp Thr
                                                                 160
Val Thr IIe Thr Cys Ser Ser Tyr Gln Gly Tyr Pro Glu Ala Glu Val
165 170 175
Phe Trp Gln Asp Gly Gln Gly Val Pro Leu Thr Gly Asn Val Thr Thr
180 185 190
```

1301_129PCT_ST25 Ser Gln Met Ala Asn Glu Gln Gly Leu Phe Asp Val His Ser IIe Leu 20Ó Arg Val Val Leu Gly Ala Asn Gly Thr Tyr Ser Cys Leu Val Arg Asn 210 220 Pro Val Leu Gln Gln Asp Ala His Ser Ser Val Thr Ile Thr Pro Gln Arg Ser Pro Thr Gly Ala Val Glu Val Gln Val Pro Glu Asp Pro Val 250 Val Ala Leu Val Gly Thr Asp Ala Thr Leu Arg Cys Ser Phe Ser Pro Glu Pro Gly Phe Ser Leu Ala Gln Leu Asn Leu IIe Trp Gln Leu Thr 275 280 285 Asp Thr Lys Gln Leu Val His Ser Phe Thr Glu Gly Arg Asp Gln Gly Ser Ala Tyr Ala Asn Arg Thr Ala Leu Phe Pro Asp Leu Leu Ala Gln Gly Asn Ala Ser Leu Arg Leu Gln Arg Val Arg Val Ala Asp Glu Gly 330 Ser Phe Thr Cys Phe Val Ser IIe Arg Asp Phe Gly Ser Ala Ala Val340 345 350Ser Leu Gln Val Ala Ala Pro Tyr Ser Lys Pro Ser Met Thr Leu Glu Pro Asn Lys Asp Leu Arg Pro Gly Asp Thr Val Thr Ile Thr Cys Ser Ser Tyr Arg Gly Tyr Pro Glu Ala Glu Val Phe Trp Gln Asp Gly Gln Gly Val Pro Leu Thr Gly Asn Val Thr Thr Ser Gln Met Ala Asn Glu GIn Gly Leu Phe Asp Val His Ser Val Leu Arg Val Val Leu Gly Ala Asn Gly Thr Tyr Ser Cys Leu Val Arg Asn Pro Val Leu Gln Gln Asp Ala His Gly Ser Val Thr Ile Thr Gly Gln Pro Met Thr Phe Pro Pro 460

```
1301_129PCT_ST25
Glu Ala Leu Trp Val Thr Val Gly Leu Ser Val Cys Leu IIe Ala Leu
Leu Val Ala Leu Ala Phe Val Cys Trp Arg Lys IIe Lys Gln Ser Cys
485 490 495
Glu Glu Glu Asn Ala Gly Ala Glu Asp Gln Asp Gly Glu Gly Glu Gly 500 505 510
Ser Lys Thr Ala Leu Gln Pro Leu Lys His Ser Asp Ser Lys Glu Asp
                              520
                                                    525
Asp Gly Gln Glu lle Ala
<210>
       19
<211>
       107
       PRT
<212>
<213>
       Mus muscul us
<220>
       MISC_FEATURE
<221>
       (1)..(107)
<223>
       VL Domain of Anti-Human B7-H3 Antibody BRCA84D
<400>
Asp IIe Ala Met Thr Gln Ser Gln Lys Phe Met Ser Thr Ser Val Gly
Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln Asn Val Asp Thr Asn
Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Ala Leu IIe
35 40 45
Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Thr Gly 50 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Asn Asn Val Gln Ser
Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr Asn Asn Tyr Pro Phe 85 90 95
Thr Phe Gly Ser Gly Thr Lys Leu Glu IIe Lys
<210>
       20
```

<220>

<211><212>

<213>

122

PRT

Mus muscul us

MI SC_FEATURE (1).. (122) <221>

VH Domain of Anti-Human B7-H3 Antibody BRCA84D

<400>

Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Arg Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Glu Lys Gly Leu Glu Trp Val

Ala Tyr IIe Ser Ser Asp Ser Ser Ala IIe Tyr Tyr Ala Asp Thr Val 50 60

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Pro Lys Asn Thr Leu Phe 65 70 75 80

Leu Gln Met Thr Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Tyr Cys 85 90 95

Gly Arg Gly Arg Glu Asn IIe Tyr Tyr Gly Ser Arg Leu Asp Tyr Trp 100 105 110

Gly Gln Gly Thr Thr Leu Thr Val Ser Ser 115 120

<210> 21

<211> 107

<212> PRT

Artificial Sequence <213>

<220>

VL Domain of Humanized Anti-Human B7-H3 Antibody hBRCA84D VL1 <223>

<400>

Asp II e Gln Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly

Asp Arg Val Thr IIe Thr Cys Lys Ala Ser Gln Asn Val Asp Thr Asn 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu IIe 35 40 45

Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Gln Pro 65 70 75 80

```
1301_129PCT_ST25
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Phe
Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys
<210>
       22
       107
<211>
<212>
       PRT
       Artificial Sequence
<213>
<220>
<223>
       VL Domain of Humanized Anti-Human B7-H3 Antibody hBRCA84D VL2
<400>
Asp II e GIn Leu Thr GIn Ser Pro Ser Phe Leu Ser Ala Ser Val Gly
Asp Arg Val Thr IIe Thr Cys Lys Ala Ser Gln Asn Val Asp Thr Asn 20 25 30
Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Ala Leu IIe
35 40 45
Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Phe
Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys
<210>
       23
<211>
       107
<212>
       PRT
       Artificial Sequence
<220>
<223>
       VL Domain of Humanized Anti-Human B7-H3 Antibody hBRCA84D VL3
<400>
Asp II e Gln Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly
Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln Asn Val Asp Thr Asn 20 25 30
Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu IIe
35 40 45
```

```
1301_129PCT_ST25
Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Phe
Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys
<210>
       24
       107
<211>
<212>
       PRT
       Artificial Sequence
<213>
<220>
<223>
       VL Domain of Humanized Anti-Human B7-H3 Antibody hBRCA84D VL4
<400>
       24
Asp IIe GIn Leu Thr GIn Ser Pro Ser Phe Leu Ser Ala Ser Val GIy
Asp Arg Val Thr IIe Thr Cys Lys Ala Ser Gln Asn Val Asp Thr Asn
Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Lys Leu Leu IIe
35 40 45
Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Phe
Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys
             100
<210>
       25
<211>
       107
<212>
       PRT
       Artificial Sequence
<213>
<220>
<223>
       VL Domain of Humanized Anti-Human B7-H3 Antibody hBRCA84D VL5
<400>
Asp IIe Gln Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly
10 15
```

```
1301_129PCT_ST25
Asp Arg Val Thr IIe Thr Cys Lys Ala Ser Gln Asn Val Asp Thr Asn
Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Lys Ala Leu IIe
35 40 45
Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Phe 85 90 95
Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys
<210>
       26
<211>
       107
<212>
       PRT
<213>
       Artificial Sequence
<220>
<223>
       VL Domain of Humanized Anti-Human B7-H3 Antibody hBRCA84D VL6
<400>
       26
Asp II e Gln Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly 10 15
Asp Arg Val Thr IIe Thr Cys Lys Ala Ser Gln Asn Val Asp Thr Asn
Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu IIe
35 40 45
Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Glu Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Phe
85 90 95
Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys
<210>
       27
<211>
       122
       PRT
<212>
<213>
       Artificial Sequence
<220>
```

VH Domain of Humanized Anti-Human B7-H3 Antibody hBRCA84D VH1 <400>

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Tyr IIe Ser Ser Asp Ser Ser Ala IIe Tyr Tyr Ala Asp Thr Val 50 60

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 75 80

Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Gly Arg Glu Asn IIe Tyr Tyr Gly Ser Arg Leu Asp Tyr Trp
100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120

28

<210> <211> 122

<212>

Artificial Sequence

<220>

<223> VH Domain of Humanized Anti-Human B7-H3 Antibody hBRCA84D VH2

<400>

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Tyr IIe Ser Ser Asp Ser Ser Ala IIe Tyr Tyr Ala Asp Thr Val 50 60

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Gly Arg Gly Arg Glu Asn IIe Tyr Tyr Gly Ser Arg Leu Asp Tyr Trp 100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120

<210> 29

<211> 122 <212> PRT

<212> PRT <213> Artificial Sequence

<220>

<223> VH Domain of Humanized Anti-Human B7-H3 Antibody hBRCA84D VH3

<400> 29

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Tyr IIe Ser Ser Asp Ser Ser Ala IIe Tyr Tyr Ala Asp Thr Val 50 60

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Met Tyr Tyr Cys
85 90 95

Gly Arg Gly Arg Glu Asn IIe Tyr Tyr Gly Ser Arg Leu Asp Tyr Trp 100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120

<210> 30

<211> 122

<212> PRT

<213> Artificial Sequence

<220>

<223> VH Domain of Humanized Anti-Human B7-H3 Antibody hBRCA84D VH4

<400> 30

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Tyr IIe Ser Ser Asp Ser Ser Ala IIe Tyr Tyr Ala Asp Thr Val 50 60

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Gly Arg Glu Asn IIe Tyr Tyr Gly Ser Arg Leu Asp Tyr Trp
100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120

<210> 31

<211> 107

<212> PRT

<213> Mus muscul us

<220>

<221> MI SC_FEATURE

<222> (1). (107)

<223> VL´Domain´of Anti-Human B7-H3 Antibody BRCA69D

<400> 31

Asp II e Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly 1 10 15

Asp Arg Val Thr IIe Ser Cys Arg Ala Ser Gln Asp IIe Ser Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Lys Leu Leu IIe 35 40 45

Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr IIe Asp Asn Leu Glu Gln 65 70 75 80

Glu Asp IIe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Pro 85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu IIe Lys 100 105

<210> 32

<211> 120

<212> PRT

<213> Mus muscul us

<220>

<221> MI SC_FEATURE

<222> (1). (120)

<223> VH Domain of Anti-Human B7-H3 Antibody BRCA69D

<400> 32

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala 1 5 10 15

Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp IIe 35 40 45

Gly Thr IIe Tyr Pro Gly Asp Gly Asp Thr Arg Tyr Thr Gln Lys Phe 50 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Arg Gly IIe Pro Arg Leu Trp Tyr Phe Asp Val Trp Gly Ala 100 105 110

Gly Thr Thr Val Thr Val Ser Ser 115 120

<210> 33

<211> 107

<212> PRT

<213> Artificial Sequence

<220>

<223> VL Domain of Humanized Anti-Human B7-H3 Antibody hBRCA69D VL1

<400> 33

Asp IIe Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 10 15

Asp Arg Val Thr IIe Thr Cys Arg Ala Ser Gln Asp IIe Ser Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu IIe 35 40 45

Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp IIe Ala Thr Tyr Tyr Cys Gln Gln Gly Asn Thr Leu Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu IIe Lys 100 105 <210> 34 107 <211> <212> **PRT** Artificial Sequence <213> <220> <223> VL Domain of Humanized Anti-Human B7-H3 Antibody hBRCA69D VL2 <400> Asp IIe Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr IIe Thr Cys Arg Ala Ser Gln Ser IIe Ser Ser Tyr 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu IIe 35 40 45 Tyr Tyr Thr Ser Arg Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Gly Asn Thr Leu Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu IIe Lys 100 <210> 35 120 <211> <212> PRT Artificial Sequence <213>

<213> Artificial Sequence
<220>
<223> VH Domain of Humanized Anti-Human B7-H3 Antibody hBRCA69D VH1
<400> 35
GIn Val GIn Leu Val GIn Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30

Page 26

Trp Met Gln Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Thr IIe Tyr Pro Gly Asp Gly Asp Thr Arg Tyr Thr Gln Lys Phe 50 60

Lys Gly Arg Val Thr IIe Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Arg Gly IIe Pro Arg Leu Trp Tyr Phe Asp Val Trp Gly Gln
100 105 110

Gly Thr Thr Val Thr Val Ser Ser 115 120

<210> 36

<211> 120

<212> PRT

<213> Artificial Sequence

<220> <223> VH Domain of Humanized Anti-Human B7-H3 Antibody hBRCA69D VH2

<400> 36

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Trp Met Gln Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Thr IIe Tyr Pro Gly Gly Gly Asp Thr Arg Tyr Thr Gln Lys Phe 50 60

Gln Gly Arg Val Thr IIe Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Arg Gly IIe Pro Arg Leu Trp Tyr Phe Asp Val Trp Gly Gln
100 105 110

Gly Thr Thr Val Thr Val Ser Ser 115 120

```
<210>
        37
<211>
        108
<212>
       PRT
<220>
```

Mus muscul us

<221> MI SC_FEATURE

(1).. (108)

VL Domain of Anti-Human B7-H3 Antibody PRCA157 <223>

<400>

Asp II e Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Val Gly

Glu Thr Val Thr IIe Thr Cys Arg Ala Ser Glu Ser IIe Tyr Ser Tyr

Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro Gln Leu Leu Val

Tyr Asn Thr Lys Thr Leu Pro Glu Gly Val Pro Ser Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Gln Phe Ser Leu Lys Ile Asn Ser Leu Gln Pro

Glu Asp Phe Gly Arg Tyr Tyr Cys Gln His His Tyr Gly Thr Pro Pro 85 90 95

Trp Thr Phe Gly Gly Gly Thr Asn Leu Glu IIe Lys 100 105

<210> 38

117 <211>

<212> PRT

<213> Mus musculus

<220>

MI SC_FEATURE <221>

<222> (1)..(117)

<223> VH Domain of Anti-Human B7-H3 Antibody PRCA157

<400>

Glu Val Gln Gln Val Glu Ser Gly Gly Asp Leu Val Lys Pro Gly Gly 1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30

Gly Met Ser Trp Val Arg Gln Thr Pro Asp Lys Arg Leu Glu Trp Val

Ala Thr IIe Asn Ser Gly Gly Ser Asn Thr Tyr Tyr Pro Asp Ser Leu 50 60

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Arg Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys 85 90 95

Ala Arg His Asp Gly Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser 100 105 110

Val Thr Val Ser Ser 115

<210> 39

<211> 214

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino Acid Sequence of the Complete Light Chain of Humanized Anti-Human B7-H3 Antibody hBRCA84D-2

<400> 39

Asp IIe Gln Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly
10 15

Asp Arg Val Thr IIe Thr Cys Lys Ala Ser Gln Asn Val Asp Thr Asn $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Ala Leu IIe 35 40 45

Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Gln Pro 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Phe 85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys Arg Thr Val Ala Ala 100 105 110

Pro Ser Val Phe IIe Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205

Phe Asn Arg Gly Glu Cys 210

<210> 40

<211> 452

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino Acid Sequence of the Complete Heavy Chain of Humanized Anti-Human B7-H3 Antibody hBRCA84D-2

<400> 40

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe 20 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Tyr IIe Ser Ser Asp Ser Ser Ala IIe Tyr Tyr Ala Asp Thr Val 50 60

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Gly Arg Gly Arg Glu Asn IIe Tyr Tyr Gly Ser Arg Leu Asp Tyr Trp 100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro 115 120 125

Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr 130 135 140

Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr 145 150 155 160 1301_129PCT_ST25

Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro
165

170

175 Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr 180 185 190 Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr IIe Cys Asn Val Asn 195 200 205 His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser 210 215 220 Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Val 225 230 235 240 Gly Gly Pro Ser Val Phe Leu Leu Pro Pro Lys Pro Lys Asp Thr Leu 245 250 255 Met II e Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 275 280 285 Val His Asn Ala Lys Thr Lys Pro Pro Glu Glu Gln Tyr Asn Ser Thr 290 295 300 Leu Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 325 330 335 lle Glu Lys Thr lle Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 340 345 350Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val 355 360 365 Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp IIe Ala Val 370 375 380 Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 385 390 395 400 Leu Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 420 425 430

1301_129PCT_ST25 et His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Se

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 435 440 445

Ser Pro Gly Lys 450

<210> 41

<211> 288

<212> PRT <213> Homo sapiens

<220>

<221> MI SC_FEATURE

<222> (1). (288)

<223> Human PD-1, Lincluding 20 Amino Acid Residue Signal Sequence

<220>

<221> SI GNAL

<222> (1)..(20)

<223> Si gnal Sequence

<400> 41

Met GIn IIe Pro GIn Ala Pro Trp Pro Val Val Trp Ala Val Leu GIn 1 5 10 15

Leu Gly Trp Arg Pro Gly Trp Phe Leu Asp Ser Pro Asp Arg Pro Trp 20 25 30

Asn Pro Pro Thr Phe Ser Pro Ala Leu Leu Val Val Thr Glu Gly Asp 35 40 45

Asn Ala Thr Phe Thr Cys Ser Phe Ser Asn Thr Ser Glu Ser Phe Val 50 55 60

Leu Asn Trp Tyr Arg Met Ser Pro Ser Asn Gln Thr Asp Lys Leu Ala 65 70 75 80

Ala Phe Pro Glu Asp Arg Ser Gln Pro Gly Gln Asp Cys Arg Phe Arg $85 \hspace{0.5cm} 90 \hspace{0.5cm} 95$

Val Thr Gln Leu Pro Asn Gly Arg Asp Phe His Met Ser Val Val Arg 100 105 110

Ala Arg Arg Asn Asp Ser Gly Thr Tyr Leu Cys Gly Ala IIe Ser Leu 115 120 125

Ala Pro Lys Ala Gln IIe Lys Glu Ser Leu Arg Ala Glu Leu Arg Val 130 135 140

Thr Glu Arg Arg Ala Glu Val Pro Thr Ala His Pro Ser Pro 145 150 155 160

Arg Pro Ala Gly Gln Phe Gln Thr Leu Val Val Gly Val Val Gly Gly 165 170 175

Leu Leu Gly Ser Leu Val Leu Leu Val Trp Val Leu Ala Val IIe Cys 180 185 190

Ser Arg Ala Ala Arg Gly Thr IIe Gly Ala Arg Arg Thr Gly Gln Pro 195 200 205

Leu Lys Glu Asp Pro Ser Ala Val Pro Val Phe Ser Val Asp Tyr Gly 210 220

Glu Leu Asp Phe Gln Trp Arg Glu Lys Thr Pro Glu Pro Pro Val Pro 225 230 235 240

Cys Val Pro Glu Gln Thr Glu Tyr Ala Thr IIe Val Phe Pro Ser Gly 245 250 255

Met Gly Thr Ser Ser Pro Ala Arg Arg Gly Ser Ala Asp Gly Pro Arg 260 265 270

Ser Ala Gln Pro Leu Arg Pro Glu Asp Gly His Cys Ser Trp Pro Leu 275 280 285

<210> 42

<211> 113

<212> PRT

<213> Mus muscul us

<220>

<221> MI SC_FEATURE

<222> (1). (113)

<223> VH Domain of Anti-Human PD-1 Antibody PD-1 mAb 1

<400> 42

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15

Ser Leu Arg Leu Asp Cys Lys Ala Ser Gly IIe Thr Phe Ser Asn Ser 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Val IIe Trp Tyr Asp Gly Ser Lys Arg Tyr Tyr Ala Asp Ser Val 50 60

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Thr Asn Asp Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Page 33 1301_129PCT_ST25 105 110

100

<210> 43 <211> 107

<212> PRT

<213> Mus muscul us

<220>

Ser

<221> MI SC_FEATURE

<222> (1)..(107)

<223> VL Domain of Anti-Human PD-1 Antibody PD-1 mAb 1

<400> 43

Glu IIe Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Tyr 20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu IIe 35 40 45

Tyr Asp Ala Ser Asn Arg Ala Thr Gly IIe Pro Ala Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Glu Pro 65 70 75 80

Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Ser Asn Trp Pro Arg

Thr Phe Gly Gln Gly Thr Lys Val Glu IIe Lys 100 105

<210> 44

<211> 120

<212> PRT

<213> Mus musculus

<220>

<221> MI SC_FEATURE

<222> (1)..(120)

<223> VH Domain of Anti-Human PD-1 Antibody PD-1 mAb 2

<400> 44

Gln Val Gln Leu Val Gln Ser Gly Val Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30

Tyr Met Tyr Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Gly IIe Asn Pro Ser Asn Gly Gly Thr Asn Phe Asn Glu Lys Phe 50 60

Lys Asn Arg Val Thr Leu Thr Thr Asp Ser Ser Thr Thr Thr Ala Tyr 65 75 80

Met Glu Leu Lys Ser Leu Gln Phe Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Arg Asp Tyr Arg Phe Asp Met Gly Phe Asp Tyr Trp Gly Gln

Gly Thr Thr Val Thr Val Ser Ser

<210> 45

<211> 111

<212> **PRT**

Mus musculus

<220>

<221> <222> MI SC_FEATURE

(1)..(111)

<223> VL Domain of Anti-Human PD-1 Antibody PD-1 mAb 2

<400>

Glu II e Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Lys Gly Val Ser Thr Ser

Gly Tyr Ser Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro 35 40 45

Arg Leu Leu IIe Tyr Leu Ala Ser Tyr Leu Glu Ser Gly Val Pro Ala 50 60

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser 65 70 75 80

Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln His Ser Arg 85 90 95

Asp Leu Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu IIe Lys 100 105 110

<210> 46 <211> 121

```
<212> PRT
<213> Mus muscul us
<220>
```

<220> <221> MI SC_FEATURE

<222> (1)..(121)

<223> VH´Domain´of Anti-Human PD-1 Antibody PD-1 mAb 3

<400> 46

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala 1 5 10 15

Ser Val Gln Met Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Ser Ser 20 25 30

Trp IIe His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp IIe 35 40 45

Gly Tyr IIe Tyr Pro Ser Thr Gly Phe Thr Glu Tyr Asn Gln Lys Phe 50 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Trp Arg Asp Ser Ser Gly Tyr His Ala Met Asp Tyr Trp Gly
100 105 110

Gln Gly Thr Ser Val Thr Val Ser Ser 115 120

<210> 47 <211> 111 <212> PRT

<213> Mus muscul us

<220>

<221> MI SC_FEATURE <222> (1)..(111)

<222> (1)..(111) <223> VL Domain of Anti-Human PD-1 Antibody PD-1 mAb 3

<400> 47

Asp II e Val Leu Thr Gln Ser Pro Ala Ser Leu Thr Val Ser Leu Gly
1 10 15

Gln Arg Ala Thr IIe Ser Cys Arg Ala Ser Gln Ser Val Ser Thr Ser 20 25 30

Gly Tyr Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 35 40 45

```
1301_129PCT_ST25
Lys Leu Leu IIe Lys Phe Gly Ser Asn Leu Glu Ser Gly IIe Pro Ala 50 60
Pro Val Glu Glu Glu Asp Thr Ala Thr Tyr Tyr Cys Gln His Ser Trp
85 90 95
Glu lle Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu lle Lys
100 105 110
<210>
       48
<211>
       117
<212>
       PRT
       Mus muscul us
<220>
<221>
       MI SC_FEATURE
<222>
       (1)..(117)
<223>
       VH Domain of Anti-Human PD-1 Antibody PD-1 mAb 4
<400>
Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys IIe Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30
Gly Met Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Gln Trp Met
Gly Trp IIe Asn Thr Asp Ser Gly Glu Ser Thr Tyr Ala Glu Glu Phe 50 60
Lys Gly Arg Phe Val Phe Ser Leu Asp Thr Ser Val Asn Thr Ala Tyr 65 75 80
Leu Gln Ile Thr Ser Leu Thr Ala Glu Asp Thr Gly Met Tyr Phe Cys
Val Arg Val Gly Tyr Asp Ala Leu Asp Tyr Trp Gly Gln Gly Thr Leu
100 110
Val Thr Val Ser Ser
        115
```

<210> 49

106 <211>

<212> PRT

<213> Mus musculus

<220>

```
1301_129PCT_ST25
```

MI SC_FEATURE (1)..(106) <221>

VL Domain of Anti-Human PD-1 Antibody PD-1 mAb 4

<400>

Glu IIe Val Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr IIe Thr Cys Ser Ala Arg Ser Ser Val Ser Tyr Met 20 25 30

His Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp IIe Tyr 35 40 45

Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 50 60

Gly Ser Gly Thr Ser Tyr Cys Leu Thr IIe Asn Ser Leu Gln Pro Glu 65 70 75 80

Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Arg Ser Ser Phe Pro Leu Thr 85 90 95

Phe Gly Gly Gly Thr Lys Leu Glu IIe Lys 100 105

<210> 50

<211> 116

<212> PRT

<213> Mus muscul us

<220>

MI SC_FEATURE <221>

<222> (1).. (116)

<223> VH Domain of Anti-Human PD-1 Antibody PD-1 mAb 5

<400>

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Val Phe Ser Ser Phe 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

Ala Tyr IIe Ser Ser Gly Ser Met Ser IIe Ser Tyr Ala Asp Thr Val 50 60

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 75 80

Leu Gln Met Asn Ser Leu Arg Thr Glu Asp Thr Ala Leu Tyr Tyr Cys Page 38

```
1301_129PCT_ST25
   90
```

85

95

```
Ala Ser Leu Ser Asp Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Thr Val
                                  105
Thr Val Ser Ser
<210>
       51
<211>
       112
<212>
       PRT
<213>
       Mus muscul us
<220>
<221>
       MI SC_FEATURE
       (1)..(112)
       VL Domain of Anti-Human PD-1 Antibody PD-1 mAb 5
<400>
Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Leu Gly
GIn Pro Ala Ser IIe Ser Cys Arg Ser Ser GIn Ser Leu Val His Ser
Thr Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser
Pro Gln Leu Leu IIe Tyr Arg Val Ser Asn Arg Phe Ser Gly Val Pro 50 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys IIe 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Thr
Thr His Val Pro Trp Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys
<210>
       52
       119
<211>
<212>
       PRT
```

```
<213>
       Mus musculus
<220>
       MI SC_FEATURE
```

<221>

<222> (1).. (119) <223> VH Domain of Anti-Human PD-1 Antibody PD-1 mAb 6 <220>

<221> <222> MI SC_FEATURE (48)..(48) X is Isoleucine (I) or Alanine (A) <400> 52

Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Ser Tyr

Trp Met Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Xaa

Gly Val IIe His Pro Ser Asp Ser Glu Thr Trp Leu Asp Gln Lys Phe

Lys Asp Arg Val Thr IIe Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys

Ala Arg Glu His Tyr Gly Thr Ser Pro Phe Ala Tyr Trp Gly Gln Gly

Thr Leu Val Thr Val Ser Ser 115

<210> 53

<211> 111

<212> PRT

<213> Mus muscul us

<220>

MI SC_FEATURE <221>

<222> (1).. (111)

<223> VL Domain of Anti-Human PD-1 Antibody PD-1 mAb 6

<220>

MI SC_FEATURE (26). (26) <221>

<222>

X at Position 26 is Asnparagine (N) or Serine (S)

<220>

<221> <222> MI SC_FEATURE

(58)..(58)

<223> X at Position 58 is Glutamine (Q) or Arginine (R)

<400> 53

Glu IIe Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly

Glu Arg Ala Thr Leu Ser Cys Arg Ala Xaa Glu Ser Val Asp Asn Tyr

Gly Met Ser Phe Met Asn Trp Phe Gln Gln Lys Pro Gly Gln Pro Pro

1301_129PCT_ST25 Lys Leu Leu IIe His Ala Ala Ser Asn Xaa Gly Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Phe Cys Gln Gln Ser Lys 85 90 95 Glu Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Val Glu IIe Lys 100 105 110 <210> 54 119 <211> <212> PRT <213> Mus musculus <220> <221> MI SC_FEATURE <222> (1)..(119)<223> VH Domain of Anti-Human PD-1 Antibody PD-1 mAb 7 <220> <221> MI SC_FEATURE (12).. (12) X at Position 12 is Valine (V) or Alanine (A) <222> <220> <221> MI SC_FEATURE <222> (35)..(35)X at Position 35 is Serine (S) or Glycine(G) <223> <220> MISC_FEATURE <221> <222> (48)..(48)

<223> X at Position 48 is Valine (V) or Threonine (T)

<220>

MI SC_FEATURE <221>

<222>

(86). (86) X at Position 86 is Leucine (L) orAlanine (A) <223>

<400> 54

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Xaa Arg Pro Gly Gly

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30

Leu Val Xaa Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Xaa

Ala Thr IIe Ser Gly Gly Gly Gly Asn Thr Tyr Tyr Ser Asp Ser Val

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 75 Page 41

Leu Gln Met Asn Ser Xaa Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95

Ala Arg Tyr Gly Phe Asp Gly Ala Trp Phe Ala Tyr Trp Gly Gln Gly

Thr Leu Val Thr Val Ser Ser 115

<210> 55 <211> 107

<212> **PRT**

<213> Mus musculus

<220>

<221> MI SC_FEATURE

<222> (1).. (107)

VL Domain of Anti-Human PD-1 Antibody PD-1 mAb 7 <223>

<220>

MI SC_FEATURE <221>

<222>

(31).. (31) X at Position 31 is Serine (S) or Asparagine (N)

<220>

<221> MI SC_FEATURE

<222>

(50)..(50) X at Position 50 is N or D <223>

<400> 55

Asp IIe GIn Met Thr GIn Ser Pro Ser Ser Leu Ser Ala Ser Val GIy

Asp Arg Val Thr IIe Thr Cys Arg Ala Ser Glu Asn IIe Tyr Xaa Tyr 20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu IIe

Tyr Xaa Ala Lys Thr Leu Ala Ala Gly Val Pro Ser Arg Phe Ser Gly

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Gln Pro 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His His Tyr Ala Val Pro Trp

Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys

<210> 56

<211> 117

<212> PRT <213> Mus muscul us

<220>

<221> MI SC_FEATURE

<222> (1). (117)

<223> VH Domain of Anti-Human PD-1 Antibody PD-1 mAb 8

<400> 56

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Arg Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30

Leu II e Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Ala IIe Ser Gly Gly Gly Ala Asp Thr Tyr Tyr Ala Asp Ser Val 50 60

Lys Gly Arg Phe Thr IIe Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95

Ala Arg Arg Gly Thr Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu 100 110

Val Thr Val Ser Ser 115

<210> 57

<211> 107

<212> PRT

<213> Mus muscul us

<220>

<221> MI SC_FEATURE

<222> (1)..(107)

<223> VL Domain of Anti-Human PD-1 Antibody PD-1 mAb 8

<400> 57

Asp II e Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 10 15

Asp Arg Val Thr IIe Thr Cys Arg Ala Ser Glu Asn IIe Tyr Asn Tyr 20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu IIe 35 40 45

Tyr Asp Ala Lys Thr Leu Ala Ala Gly Val Pro Ser Arg Phe Ser Gly Page 43

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser Ser Leu Gln Pro 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His His Tyr Ala Val Pro Trp 85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu IIe Lys 100 105

55

<210> 58

<211> 218

<212> PRT

<213> Artificial Sequence

<220>
<223> Complete Light Chain of Exemplary Anti-Human PD-1 Antibody "PD-1 mAb 6-ISQ"

<400> 58

Glu II e Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Glu Ser Val Asp Asn Tyr 20 25 30

Gly Met Ser Phe Met Asn Trp Phe Gln Gln Lys Pro Gly Gln Pro Pro 35 40 45

Lys Leu Leu IIe His Ala Ala Ser Asn Gln Gly Ser Gly Val Pro Ser 50 55 60

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr IIe Ser 65 70 75 80

Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Phe Cys Gln Gln Ser Lys 85 90 95

Glu Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Val Glu IIe Lys Arg 100 105 110

Thr Val Ala Ala Pro Ser Val Phe IIe Phe Pro Pro Ser Asp Glu Gln 115 120 125

Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 130 135 140

Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 145 150 155 160

Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 165 170 175 Page 44

Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 180 185 190

His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 195 200 205

Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215

<210> 59

<211> 445

<212> PRT

<213> Artificial Sequence

<220>

<223> Complete Heavy Chain of Exemplary Anti-Human PD-1 Antibody "PD-1 mAb 6-ISQ"

<400> 59

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Ser Tyr 20 25 30

Trp Met Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp IIe 35 40 45

Gly Val IIe His Pro Ser Asp Ser Glu Thr Trp Leu Asp Gln Lys Phe 50 60

Lys Asp Arg Val Thr IIe Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Glu His Tyr Gly Thr Ser Pro Phe Ala Tyr Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190 Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro 195 200 205 Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro 210 220 Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe 225 230 235 240 Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met IIe Ser Arg Thr Pro 245 250 255 Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val 260 265 270 Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 275 280 285 Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val 290 295 300 Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 305 310 315 320 Lys Val Ser Asn Lys Gly Leu Pro Ser Ser IIe Glu Lys Thr IIe Ser 325 330 335 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350$ Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 355 360 365 Lys Gly Phe Tyr Pro Ser Asp IIe Ala Val Glu Trp Glu Ser Asn Gly 370 380 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp 385 390 395 400 Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp 405 410 415 Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 430 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly 435 440 445

```
<210>
       60
<211>
       98
<212>
       PRT
      Homo sapiens
<220>
       MI SC_FEATURE
<221>
       (1)...(98)
<222>
       Exemplary Human IgG2 CH1 Domain
<400>
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr
Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95
Thr Val
<210>
       61
<211>
       98
      PRT
<212>
<213>
      Homo sapiens
<220>
<221>
       MI SC_FEATURE
<222>
       (1)..(98)
       Exemplary Human IgG4 CH1 Domain
<223>
<400>
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
1 10 15
Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
                             40
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
```

Page 47

50

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr 70

55

Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Arg Val

<210> 62

<211> 22 <212> PRT

<213> Homo sapiens

<220>

<221>

<222>

MISC_FEATURE
(1)..(22)
Exemplary Human IgG2 Hinge Region

<400> 62

Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Glu Arg Lys Cys Cys Val 1 5 10 15

Glu Cys Pro Pro Cys Pro 20