TONER COMPOSITIONS COMPRISING POLYESTER RESIN AND POLYPYRROLE

Inventors: James R. Combes, Burlington (CA); Karen A. Moffat, Brantford (CA); Maria N.V. McDougall, Burlington (CA)

Correspondence Address:
Xerox Corporation
Patent Documentation Center
Xerox Square 20th Floor
100 Clinton Ave. S.
Rochester, NY 14644 (US)

Assignee: Xerox Corporation

Filed: Jan. 23, 2003

Related U.S. Application Data
Division of application No. 09/723,911, filed on Nov. 28, 2000.

Publication Classification
Int. Cl. G03G 9/093; G03G 13/01
U.S. Cl. 430/108.22; 430/109.4; 430/110.2; 430/137.14; 430/120; 430/45

ABSTRACT
Disclosed is a toner comprising particles of a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment of the present invention is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process.
FIG. 6
FIG. 10A

FIG. 10B

FIG. 10C
This is a divisional application Ser. No. 09/723, 911, filed on Nov. 28, 2000.

Copending application U.S. Ser. No. 09/408,606, filed Sep. 30, 1999, entitled “Marking Materials and Marking Processes Therewith,” with the named inventors Richard P. Veregin, Carl P. Tripp, Maria N. McDougall, and T. Brian McaNaney, the disclosure of which is totally incorporated herein by reference, discloses an apparatus for depositing a particulate marking material onto a substrate, comprising (a) a printhead having defined therein at least one channel, each channel having an inner surface and an exit orifice with a width no larger than about 250 microns, the inner surface of each channel having thereon a hydrophobic coating material; (b) a propellant source connected to each channel such that propellant provided by the propellant source can flow through each channel to form propellant streams therein, said propellant streams having kinetic energy, each channel directing the propellant stream through the exit orifice toward the substrate; and (c) a marking material reservoir having an inner surface, said inner surface having thereon the hydrophobic coating material, said reservoir containing particles of a particulate marking material, said reservoir being communicatively connected to each channel such that the particulate marking material from the reservoir can be controllably introduced into the propellant stream in each channel so that the kinetic energy of the propellant stream can cause the particulate marking material to impact the substrate, wherein either (i) the marking material particles of particulate marking material have an outer coating of the hydrophobic coating material; or (ii) the marking material particles have additive particles on the surface thereof, said additive particles having an outer coating of the hydrophobic coating material; or (iii) both the marking material particles and the additive particles have an outer coating of the hydrophobic coating material.

Copending application U.S. Ser. No. 09/410,271, filed Sep. 30, 1999, entitled “Marking Materials and Marking Processes Therewith,” with the named inventors Karen A. Moffat, Richard P. Veregin, Maria N. McDougall, Philip D. Floyd, Jaan Nodlandi, T. Brian McaNaney, and Danielle Boils, the disclosure of which is totally incorporated herein by reference, discloses a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having a channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, wherein the particulate marking material comprises particles which comprise a resin and a colorant, said particles having an average particle diameter of no more than about 7 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said particles are prepared by an emulsion aggregation process.

Copending application U.S. Ser. No. 09/585,044, filed Jun. 1, 2000, entitled “Marking Material and Ballistic Aerosol Marking Process Therewith,” with the named inventors Maria N. V. McDougall, Richard P. N. Veregin, and Karen A. Moffat, the disclosure of which is totally incorporated herein by reference, discloses a marking material comprising (a) toner particles which comprise a resin and a colorant, said particles having an average particle diameter of no more than about 7 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, and (b) hydrophobic conductive metal oxide particles situated on the toner particles. Also disclosed is a process for depositing a particulate marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having a channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises (a) toner particles which comprise a resin and a colorant, said particles having an average particle diameter of no more than about 7 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, and (b) hydrophobic conductive metal oxide particles situated on the toner particles.

Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0568), filed contemporarily herewith, entitled “Ballistic Aerosol Marking Process Employing Marking Material Comprising Vinyl Resin and Poly(3,4-ethylendioxythiophene),” with the named inventors Karen A. Moffat and Maria N. V. McDougall, the disclosure of which is totally incorporated herein by reference, discloses a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a vinyl resin, an optional colorant, and poly(3,4-ethylendioxythiophene), said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, and a hydrophobic conductive metal oxide particles situated on the toner particles.
Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0568Q), filed concurrently herewith, entitled “Ballistic Aerosol Marking Process Employing Marking Material Comprising Vinyl Resin and Poly(3,4-ethylenedioxythiophene),” with the named inventors Karen A. Moffat, Rina Carlini, Maria N. V. McDougall, and Paul J. Gerroir, the disclosure of which is totally incorporated herein by reference, discloses a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, said toner particles having an average bulk conductivity of at least about 10⁻¹¹ Siemens per centimeter.

Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0689Q), filed concurrently herewith, entitled “Toner Compositions Comprising Polytetrahydrofurans,” with the named inventors Karen A. Moffat, Rina Carlini, Dan A. Hays, Jack T. LeStrange, and James R. Combes, the disclosure of which is totally incorporated herein by reference, discloses a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a resin and an optional colorant, said toner particles having coated thereon a polystyrene.

Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0689Q), filed concurrently herewith, entitled “Toner Compositions Comprising Polypyrroles,” with the named inventors Karen A. Moffat, Rina Carlini, Dan A. Hays, Jack T. LeStrange, and James R. Combes, the disclosure of which is totally incorporated herein by reference, discloses a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a resin and an optional colorant, said toner particles having coated thereon a polypyrrole.

Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0979), filed concurrently herewith, entitled “Ballistic Aerosol” Marking Process Employing Marking Material Comprising Polyester Resin and Poly(3,4-ethylenedioxythiophene),” with the named inventors Karen A. Moffat, Rina Carlini, Maria N. V. McDougall, and Danielle C. Boils, the disclosure of which is totally incorporated herein by reference, discloses a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a polyester resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, said toner particles having an average bulk conductivity of at least about 10⁻¹¹ Siemens per centimeter.

Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0981), filed concurrently herewith, entitled “Toner Compositions Comprising Polyester Resin and Poly(3,4-ethylenedioxythiophene),” with the named inventors Karen A. Moffat, Rina Carlini, Maria N. V. McDougall, Dan A. Hays, and Jack T. LeStrange, the disclosure of which is totally incorporated herein by reference, discloses a process which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a polyester resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, said toner particles having an average bulk conductivity of at least about 10⁻¹¹ Siemens per centimeter.
ment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process.

[0012] Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0982), filed concurrently herewith, entitled “Toner Compositions Comprising Vinyl Resin and Poly(3,4-ethylenedioxypyrrole),” with the named inventors Karen A. Moffat, Maria N. V. McDougall, Rina Carlini, Dan A. Hays, Jack T. LeStrange, and Paul J. Gerroir, the disclosure of which is totally incorporated herein by reference, discloses a toner comprising particles of a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process.

[0013] Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0983), filed concurrently herewith, entitled “Toner Compositions Comprising Polyester Resin and Poly(3,4-ethylenedioxythiophene),” with the named inventors Karen A. Moffat, Rina Carlini, Maria N. V. McDougall, Dan A. Hays, and Jack T. LeStrange, the disclosure of which is totally incorporated herein by reference, discloses a toner comprising particles of a polyester resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process.

[0014] Copending application. U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0984), filed concurrently herewith, entitled “Toner Compositions Comprising Vinyl Resin and Poly(3,4-ethylenedioxythiophene),” with the named inventors Karen A. Moffat, Maria N. V. McDougall, Rina Carlini, Dan A. Hays, Jack T. LeStrange, and Paul J. Gerroir, the disclosure of which is totally incorporated herein by reference, discloses a toner comprising particles of a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process.

[0015] Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0A20), filed concurrently herewith, entitled “Process for Controlling Triboelectric Charging,” with the named inventors Karen A. Moffat, Maria N. V. McDougall, and James R. Combes, the disclosure of which is totally incorporated herein by reference, discloses a process which comprises (d) dispersing into a solvent (i) toner particles comprising a resin and an optional colorant, and (ii) monomers selected from pyroles, thiophenes, or mixtures thereof; and (b) causing, by exposure of the monomers to an oxidant, oxidative polymerization of the monomers onto the toner particles, wherein subsequent to polymerization, the toner particles are capable of being charged to a negative or positive polarity, and wherein the polarity is determined by the oxidant selected.

[0016] Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0736), filed concurrently herewith, entitled “Electrophotographic Development System With Induction Charged Toner,” with the named inventors Dan A. Hays and Jack T. LeStrange, the disclosure of which is totally incorporated herein by reference, discloses an apparatus for developing a latent image recorded on an imaging surface, including a housing defining a reservoir storing a supply of developer material comprising conductive toner; a donor member for transporting toner on an outer surface of said donor member to a region in synchronous contact with the imaging surface; means for loading a toner layer onto a region of said outer surface of said donor member; means for induction charging said toner loaded on said donor member; means for conditioning toner layer; means for moving said donor member in synchronous contact with imaging member to detach toner from said region of said donor member for developing the latent image; and means for discharging and removing residual toner from said donor and returning said toner to the reservoir.

[0017] Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0761), filed concurrently herewith, entitled “Electrophotographic Development System With Induction Charged Toner,” with the named inventors Dan A. Hays and Jack T. LeStrange, the disclosure of which is totally incorporated herein by reference, discloses a method of developing a latent image recorded on an image receiving member with marking particles, to form a developed image, including the steps of moving the surface of the image receiving member at a predetermined process speed; storing a supply of developer material comprising conductive toner in a reservoir; transporting developer material on a donor member to a development zone adjacent the image receiving member; and, inductive charging said toner layer onto said outer surface of said donor member prior to the development zone to a predefined charge level.

[0018] Copending application U.S. Ser. No. (not yet assigned; Attorney Docket Number D/A0A24), filed concurrently herewith, entitled “Electrophotographic Development System With Custom Color Printing,” with the named inventors Dan A. Hays and Jack T. LeStrange, the disclosure of which is totally incorporated herein by reference, discloses an apparatus for developing a latent image recorded on an imaging surface, including: a first developer unit for developing a portion of said latent image with a toner of custom color, said first developer unit comprising a housing defining a reservoir for storing a supply of developer material comprising conductive toner; a dispenser for dispensing toner of a first color and toner of a second color into said
housing, said dispenser including means for mixing toner of said first color and toner of said second color together to form toner of said custom color; a donor member for transporting toner of said custom color on an outer surface of said donor member to a development zone; means for loading a toner layer of said custom color onto said outer surface of said donor member; and means for inductive charging said toner layer onto said outer surface of said donor member prior to the development zone to a predefine charge level; and a second developer unit for developing a remaining portion of said latent image with toner being substantially different than said toner of said custom color.

BACKGROUND OF THE INVENTION

[0019] The present invention is directed to toners suitable for use in electrostatic imaging processes. More specifically, the present invention is directed to toner compositions that can be used in processes such as electrophotography, electrohydrography, ionography, or the like, including processes wherein the toner particles are triboelectrically charged and processes wherein the toner particles are charged by a nonmagnetic inductive charging process. One embodiment of the present invention is directed to a toner comprising particles of a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment of the present invention is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process.

[0020] The formation and development of images on the surface of photoconductive materials by electrostatic means is well known. The basic electrophotographic imaging process, as taught by C. F. Carlson in U.S. Pat. No. 2,297,691, entails placing a uniform electrostatic charge on a photoconductive insulating layer known as a photoconductor or photoreceptor, exposing the photoreceptor to a light and shadow image to dissipate the charge on the areas of the photoreceptor exposed to the light, and developing the resulting electrostatic latent image by depositing on the image a finely divided electroscopic material known as toner. Toner typically comprises a resin and a colorant. The toner will normally be attracted to those areas of the photoreceptor which retain a charge, thereby forming a toner image corresponding to the electrostatic latent image. This developed image may then be transferred to a substrate such as paper. The transferred image may subsequently be permanently affixed to the substrate by heat, pressure, a combination of heat and pressure, or other suitable fixing means such as solvent or overcoating treatment.

[0021] Another known process for forming electrostatic images is ionography. In ionographic imaging processes, a latent image is formed on a dielectric image receptor or electrophoreceptor by ion or electron deposition, as described, for example, in U.S. Pat. Nos. 3,564,556, 3,611,419, 4,240, 084, 4,569,584, 2,919,171, 4,524,371, 4,619,515, 4,463,363, 4,254,424, 4,538,163, 4,409,604, 4,408,214, 4,365,549, 4,267,556, 4,160,257, and 4,155,093, the disclosures of which are totally incorporated herein by reference. Generally, the process entails application of charge in an image pattern with an ionographic or electron beam writing head to a dielectric receiver that retains the charged image. The image is subsequently developed with a developer capable of developing charge images.

[0022] Many methods are known for applying the electroscopic particles to the electrostatic latent image to be developed. One development method, disclosed in U.S. Pat. No. 2,618,552, the disclosure of which is totally incorporated herein by reference, is known as cascade development. Another technique for developing electrostatic images is the magnetic brush process, disclosed in U.S. Pat. No. 2,874,063. This method entails the carrying of a developer material containing toner and magnetic carrier particles by a magnet. The magnetic field of the magnet causes alignment of the magnetic carriers in a brushlike configuration, and this “magnetic brush” is brought into contact with the electrostatic image bearing surface of the photoreceptor. The toner particles are drawn from the brush to the electrostatic image by electrostatic attraction to the undischarged areas of the photoreceptor, and development of the image results. Other techniques, such as touchdown development, powder cloud development, and jumping development are known to be suitable for developing electrostatic latent images.

[0023] Powder development systems normally fall into two classes: two-component, in which the developer material comprises magnetic carrier granules having toner particles adhering triboelectrically thereto, and single component, which typically uses toner only. Toner particles are attracted to the latent image, forming a toner powder image. The operating latitude of a powder xerographic development system is determined to a great degree by the ease with which toner particles are supplied to an electrostatic image. Placing charge on the particles, to enable movement and imagewise development via electric fields, is most often accomplished with triboelectricity.

[0024] The electrostatic image in electrophotographic copying/printing systems is typically developed with a nonmagnetic, insulative toner that is charged by the phenomenon of triboelectricity. The triboelectric charging is obtained either by mixing the toner with larger carrier beads in a two component development system or by rubbing the toner between a blade and donor roll in a single component system.

[0025] Triboelectricity is often not well understood and is often unpredictable because of a strong materials sensitivity. For example, the materials sensitivity causes difficulties in identifying a triboelectrically compatible set of color toners that can be blended for custom colors. Furthermore, to enable “offset” print quality with powder-based electrophotographic development systems, small toner particles (about 5 micron diameter) are desired. Although the functionality of small, triboelectrically charged toner has been demonstrated, concerns remain regarding the long-term stability and reliability of such systems.

[0026] In addition, development systems which use triboelectricity to charge toner, whether they be two component (toner and carrier) or single component (toner only), tend to exhibit nonuniform distribution of charges on the surfaces of the toner particles. This nonuniform charge distribution results in high electrostatic adhesion because of localized high surface charge densities on the particles. Toner adhesion, especially in the development step, can
limit performance by hindering toner release. As the toner particle size is reduced to enable higher image quality, the charge Q on a triboelectrically charged particle, and thus the removal force (F=QE) acting on the particle due to the development electric field E, will drop roughly in proportion to the particle surface area. On the other hand, the electrostatic adhesion forces for tribo-charged toner, which are dominated by charged regions on the particle at or near its points of contact with a surface, do not decrease as rapidly with decreasing size. This so-called “charge patch” effect makes smaller, triboelectric charged particles much more difficult to develop and control.

[0027] To circumvent limitations associated with development systems based on triboelectrically charged toner, a non-triob toner charging system can be desirable to enable a more stable development system with greater toner materials latitude. Conventional single component development (SCD) systems based on induction charging employ a magnetic loaded toner to suppress background deposition. If with such SCD systems one attempts to suppress background deposition by using an electric field of polarity opposite to that of the image electric field (as practiced with electrophotographic systems that use a triboelectric toner charging development system), toner of opposite polarity to the image toner will be induction charged and deposited in the background regions. To circumvent this problem, the electric field in the background regions is generally set to near zero. To prevent deposition of uncharged toner in the background regions, a magnetic material is included in the toner so that a magnetic force can be applied by the incorporation of magnets inside the development roll. This type of SCD system is frequently employed in printing apparatus that also include a transfuse process, since conductive (black) toner may not be efficiently transferred to paper with an electrostatic force if the relative humidity is high. Some printing apparatus that use an electron beam to form an electrostatic image on an electoreceptor also use a SCD system with conductive, magnetic (black) toner. For these apparatus, the toner is fixed to the paper with a cold high-pressure system. Unfortunately, the magnetic material in the toner for these printing systems precludes bright colors.

[0028] Powder-based toning systems are desirable because they circumvent a need to manage and dispose of liquid vehicles used in several printing technologies including offset, thermal ink jet, liquid ink development, and the like. Although phase change inks do not have the liquid management and disposal issue, the preference that the ink have a sharp viscosity dependence on temperature can compromise the mechanical properties of the ink binder material when compared to heat/pressure fused powder toner images.

[0029] To achieve a document appearance comparable to that obtainable with offset printing, thin images are desired. Thin images can be achieved with a monolayer of small (about 5 micron) toner particles. With this toner particle size, images of desirable thinness can best be obtained with monolayer to sub-monolayer toner coverage. For low micro- noise images with sub-monolayer coverage, the toner preferably is in a nearly ordered array on a microscopic scale.

[0030] To date, no magnetic material has been formulated that does not have at least some unwanted light absorption. Consequently, a nonmagnetic toner is desirable to achieve the best color gamut in color imaging applications.

[0031] For a printing process using an induction toner charging mechanism, the toner should have a certain degree of conductivity. Induction charged conductive toner, however, can be difficult to transfer efficiently to paper by an electrostatic force if the relative humidity is high. Accordingly, it is generally preferred for the toner to be rhologically transferred to the (heated) paper.

[0032] A marking process that enables high-speed printing also has considerable value.

[0033] Electrically conductive toner particles are also useful in imaging processes such as those described in, for example, U.S. Pat. Nos. 3,639,245, 3,563,734, European Patent 0,441,426, French Patent 1,456,993, and United Kingdom Patent 1,406,983, the disclosures of each of which are totally incorporated herein by reference.

[0034] Marking materials of the present invention are also suitable for use in ballistic aerosol marking processes. Ink jet is currently a common printing technology. There are a variety of types of inkjet printing, including thermal ink jet printing, piezoelectric inkjet printing, and the like. In inkjet printing processes, liquid ink droplets are ejected from an orifice located at one terminus of a channel. In a thermal ink jet printer, for example, a droplet is ejected by the explosive formation of a vapor bubble within an ink bearing channel. The vapor bubble is formed by means of a heater, in the form of a resistor, located on one surface of the channel.

[0035] Several disadvantages can be associated with known ink jet systems. For a 300 dot-per-inch (dpi) thermal ink jet system, the exit orifice from which an ink droplet is ejected is typically on the order of about 64 microns in width, with a channel-to-channel spacing (pitch) of typically about 84 microns; for a 600 dpi system, width is typically about 35 microns and pitch is typically about 42 microns. A limit on the size of the exit orifice is imposed by the viscosity of the fluid ink used by these systems. It is possible to lower the viscosity of the ink by diluting it with increasing amounts of liquid (such as water) with an aim to reducing the exit orifice width. The increased liquid content of the ink, however, results in increased wicking, paper wrinkle, and slower drying time of the ejected ink droplet, which negatively affects resolution, image quality (such as minimum spot size, intercolor mixing, spot shape), and the like. The effect of this orifice width limitation is to limit resolution of thermal ink jet printing, for example to well below 900 spi, because spot size is a function of the width of the exit orifice, and resolution is a function of spot size.

[0036] Another disadvantage of known ink jet technologies is the difficulty of producing grayscale printing. It is very difficult for an ink jet system to produce varying size spots on a printed substrate. If one lowers the propulsive force (heat in a thermal ink jet system) so as to eject less ink in an attempt to produce a smaller dot, or likewise increases the propulsive force to eject more ink and thereby to produce a larger dot, the trajectory of the ejected droplet is affected. The altered trajectory in turn renders precise dot placement difficult or impossible, and not only makes monochrome grayscale printing problematic, it makes multiple color grayscale ink jet printing impracticable. In addition, preferred grayscale printing is obtained not by varying the dot
size, as is the case for thermal ink jet, but by varying the dot density while keeping a constant dot size.

[0037] Still another disadvantage of common ink jet systems is the rate of marking obtained. Approximately 80 percent of the time required to print a spot is taken by waiting for the ink jet channel to refill with ink by capillary action. To a certain degree, a more dilute ink flows faster, but raises the problem of wicking, substrate wrinkle, drying time, and the like, discussed above.

[0038] One problem common to ejection printing systems is that the channels may become clogged. Systems such as thermal ink jet which employ aqueous ink colorants are often sensitive to this problem, and routinely employ non-printing cycles for channel cleaning during operation. This cleaning is required, since ink typically sits in an ejector waiting to be ejected during operation, and while sitting may begin to dry and lead to clogging.

[0039] Ballistic aerosol marking processes overcome many of these disadvantages. Ballistic aerosol marking is a process for applying a marking material to a substrate, directly or indirectly. In particular, the ballistic aerosol marking system includes a propellant which travels through a channel, and a marking material that is controllably (i.e., modifiable in use) introduced, or metered, into the channel such that energy from the propellant propels the marking material to the substrate. The propellant is usually a dry gas that can continuously flow through the channel while the marking apparatus is in an operative configuration (i.e., in a power-on or similar state ready to mark). Examples of suitable propellants include carbon dioxide gas, nitrogen gas, clean dry ambient air, gaseous products of a chemical reaction, or the like; preferably, non-toxic propellants are employed, although in certain embodiments, such as devices enclosed in a special chamber or the like, a broader range of propellants can be tolerated. The system is referred to as “ballistic aerosol marking” in the sense that marking is achieved by in essence launching a non-colloidal, solid or semi-solid particulate, or alternatively a liquid, marking material at a substrate. The shape of the channel can result in a collimated (or focused) flight of the propellant and marking material onto the substrate.

[0040] The propellant can be introduced at a propellant port into the channel to form a propellant stream. A marking material can then be introduced into the propellant stream from one or more marking material inlet ports. The propellant can enter the channel at a high velocity. Alternatively, the propellant can be introduced into the channel at a high pressure, and the channel can include a constrictor (for example, de Laval or similar converging/diverging type nozzle) for converting the high pressure of the propellant to high velocity. In such a situation, the propellant is introduced at a port located at a proximal end of the channel (the converging region), and the marking material ports are provided near the distal end of the channel (at or further downstream of the diverging region), allowing for introduction of marking material into the propellant stream.

[0041] In the situation where multiple ports are provided, each port can provide for a different color (for example, cyan, magenta, yellow, and black), pre-marking treatment material (such as a marking material adherent), post-marking treatment material (such as a substrate surface finish material, for example, matte or gloss coating, or the like), marking material not otherwise visible to the unaided eye (for example, magnetic particle-bearing material, ultraviolet-fluorescent material, or the like) or other marking material to be applied to the substrate. Examples of materials suitable for pre-marking treatment and post-marking treatment include polyester resins (either linear or branched); poly(styrene) homopolymers; poly(acrylate) and poly(methacrylate) homopolymer mixtures and materials thereof; random copolymers of styrene monomers with acrylate, methacrylate, or butadiene monomers and materials thereof; polyvinyl acetals; poly(vinyl alcohol); vinyl alcohol-vinyl acetate copolymers; polycarbonates; mixtures thereof; and the like. The marking material is imparted with kinetic energy from the propellant stream, and ejected from the channel at an exit orifice located at the distal end of the channel in a direction toward a substrate.

[0042] One or more such channels can be provided in a structure which, in one embodiment, is referred to herein as a printhead. The width of the exit (or ejection) orifice of a channel is typically on the order of about 250 microns or smaller, and preferably in the range of about 100 microns or smaller. When more than one channel is provided, the pitch, or spacing from edge to edge (or center to center) between adjacent channels can also be on the order of about 250 microns or smaller, and preferably in the range of about 100 microns or smaller. Alternatively, the channels can be staggered, allowing reduced edge-to-edge spacing. The exit orifice and/or some or all of each channel can have a circular, semicircular, oval, square, rectangular, triangular or other cross-sectional shape when viewed along the direction of flow of the propellant stream (the channel’s longitudinal axis).

[0043] The marking material to be applied to the substrate can be transported to a port by one or more of a wide variety of ways, including simple gravity feed, hydrodynamic, electrostatic, ultrasonic transport, or the like. The material can be metered out of the port into the propellant stream also by one of a wide variety of ways, including control of the transport mechanism, or a separate system such as pressure balancing, electrostatics, acoustic energy, ink jet, or the like.

[0044] The marking material to be applied to the substrate can be a solid or semi-solid particulate material, such as a toner or variety of toners in different colors, a suspension of such a marking material in a carrier, a suspension of such a marking material in a carrier with a charge director, a phase change material, or the like. Preferably the marking material is particulate, solid or semi-solid, and dry or suspended in a liquid carrier. Such a marking material is referred to herein as a particulate marking material. A particulate marking material is to be distinguished from a liquid marking material, dissolved marking material, atomized marking material, or similar non-particulate material, which is generally referred to herein as a liquid marking material. However, ballistic aerosol marking processes are also able to utilize such a liquid marking material in certain applications.

[0045] Ballistic aerosol marking processes also enable marking on a wide variety of substrates, including direct marking on non-porous substrates such as polymers, plastics, metals, glass, treated and finished surfaces, and the like. The reduction in wicking and elimination of drying time also provides improved printing to porous substrates such as paper, textiles, ceramics, and the like. In addition, ballistic
aerosol marking processes can be configured for indirect marking, such as marking to an intermediate transfer member such as a roller or belt (which optionally can be heated), marking to a viscous binder film and nip transfer system, or the like.

[0046] The marking material to be deposited on a substrate can be subjected to post-ejection modification, such as fusing or drying, overcoating, curing, or the like. In the case of fusing, the kinetic energy of the material to be deposited can itself be sufficient effectively to melt the marking material upon impact with the substrate and fuse it to the substrate. The substrate can be heated to enhance this process. Pressure rollers can be used to cold-fuse the marking material to the substrate. In-flight phase change (solid-liquid-solid) can alternatively be employed. A heated wire in the particle path is one way to accomplish the initial phase change. Alternatively, propellant temperature can accomplish this result. In one embodiment, a laser can be employed to heat and melt the particulate material in-flight to accomplish the initial phase change. The melting and fusing can also be electrostatically assisted (i.e., retaining the particulate material in a desired position to allow ample time for melting and fusing into a final desired position). The type of particulate can dictate the post-ejection modification. For example, ultraviolet curable materials can be cured by application of ultraviolet radiation, either in flight or when located on the material-bearing substrate.

[0047] Since propellant can continuously flow through a channel, channel clogging from the build-up of material is reduced (the propellant effectively continuously cleans the channel). In addition, a closure can be provided that isolates the channels from the environment when the system is not in use. Alternatively, the printhead and substrate support (for example, a platen) can be brought into physical contact to effect a closure of the channel. Initial and terminal cleaning cycles can be designed into operation of the printing system to optimize the cleaning of the channel(s). Waste material cleaned from the system can be deposited in a cleaning station. It is also possible, however, to engage the closure against an orifice to redirect the propellant stream through the port and into the reservoir thereby to flush out the port.

Tuan Anh Vo, entitled “Inorganic Overcoat for Particulate Transport Electrode Grid”, the disclosures of each of which are totally incorporated herein by reference.

[0049] U.S. Pat. No. 5,834,080 (Mort et al.), the disclosure of which is totally incorporated herein by reference, discloses controllably conductive polymer compositions that may be used in electrophotographic imaging developing systems, such as scavengeless or hybrid scavengeless systems or liquid image development systems. The conductive polymer compositions include a charge-transporting material (particularly a charge-transporting, thiophene-containing polymer or an inert elastomeric polymer, such as a butadiene- or isoprene-based copolymer or an aromatic polyethylene-based polyurethane elastomer, that additionally comprises charge transport molecules) and a dopant capable of accepting electrons from the charge-transporting material. The invention also relates to an electrophotographic printing machine, a developing apparatus, and a coated transport member, an intermediate transfer belt, and a hybrid compliant photoreceptor comprising a composition of the invention.

[0050] U.S. Pat. No. 5,853,906 (Hsieh), the disclosure of which is totally incorporated herein by reference, discloses a conductive coating comprising an oxidized oligomer salt, a charge transport component, and a polymer binder, for example, a conductive coating comprising an oxidized tetraloyldiamine salt of the formula

![Chemical structure](image)

[0051] a charge transport component, and a polymer binder, wherein \(X \) is a monovalent anion.

[0052] U.S. Pat. No. 5,457,001 (Van Ritter), the disclosure of which is totally incorporated herein by reference, discloses an electrically conductive toner powder, the separate particles of which contain thermoplastic resin, additives conventional in toner powders, such as coloring constituents and possibly magnetically attractive material, and an electrically conductive protonized polyaniline complex, the protonized polyaniline complex preferably having an electrical conductivity of at least 1 Siemens, the conductive complex being distributed over the volume of the toner particles or present in a polymer-matrix at the surface of the toner particles.

[0053] U.S. Pat. No. 5,202,211 (Vercoulen et al.), the disclosure of which is totally incorporated herein by reference, discloses a toner powder comprising toner particles which carry on their surface and/or in an edge zone close to the surface fine particles of electrically conductive material consisting of fluoro-doped tin oxide. The fluoro-doped tin oxide particles have a primary particle size of less than 0.2 micron and a specific electrical resistance of at most 50 ohms.cm. The fluorine content of the tin oxide is less than 10 percent by weight, and preferably is from 1 to 5 percent by weight.

[0054] U.S. Pat. No. 5,035,926 (Jonas et al.), the disclosure of which is totally incorporated herein by reference, discloses new polythiophenes containing structural units of the formula

\[
\text{[Chemical structure]}
\]

[0055] in which \(A \) denotes an optionally substituted \(C_1-C_4 \) alkylene radical, their preparation by oxidative polymerization of the corresponding thiophenes, and the use of the polythiophenes for imparting anisotropic properties on substrates which only conduct electrical current poorly or not at all, in particular on plastic mouldings, and as electrode material for rechargeable batteries.

[0056] While known compositions and processes are suitable for their intended purposes, a need remains for improved marking processes. In addition, a need remains for improved electrostatic imaging processes. Further, a need remains for toners that can be charged inductively and used to develop electrostatic latent images. Additionally, a need remains for toners that can be used to develop electrostatic latent images without the need for triboelectric charging of the toner with a carrier. There is also a need for toners that are sufficiently conductive to be employed in an inductive charging process without being magnetic. In addition, there is a need for conductive, nonmagnetic toners that enable controlled, stable, and predictable inductive charging. Further, there is a need for conductive, nonmagnetic, inductively chargeable toners that enable uniform development of electrostatic images. Additionally, there is a need for conductive, nonmagnetic, inductively chargeable toners that have relatively small average particle diameters (such as 10 microns or less). A need also remains for conductive, nonmagnetic, inductively chargeable toners that have relatively uniform size and narrow particle size distribution values. In addition, a need remains for toners suitable for use in printing apparatus that employ electron beam imaging processes. Further, a need remains for toners suitable for use in printing apparatus that employ single component development imaging processes. Additionally, a need remains for conductive, nonmagnetic, inductively chargeable toners with desirably low melting temperatures. There is also a need for conductive, nonmagnetic, inductively chargeable toners with tunable gloss properties, wherein the same monomers can be used to generate toners that have different melt and gloss characteristics by varying polymer characteristics such as molecular weight (M_n, M_w, M_w/M_n, or the like) or crosslinking. In addition, there is a need for conductive, nonmagnetic, inductively chargeable toners that can be prepared by relatively simple and inexpensive methods. Further, there is a need for conductive, nonmagnetic, induc-
tively chargeable toners with desirable glass transition temperatures for enabling efficient transfer of the toner from an intermediate transfer or fusible member to a print substrate. Additionally, there is a need for conductive, nonmagnetic, inductively chargeable toners with desirable glass transition temperatures for enabling efficient transfer of the toner from a heated intermediate transfer or fusible member to a print substrate. A need also remains for conductive, nonmagnetic, inductively chargeable toners that exhibit good fusing performance. In addition, a need remains for conductive, nonmagnetic, inductively chargeable toners that form images with low toner pile heights. Further, a need remains for conductive, nonmagnetic, inductively chargeable toners wherein the toner comprises a resin particle encapsulated with a conductive polymer, wherein the conductive polymer is chemically bound to the particle surface. Additionally, a need remains for conductive, nonmagnetic, inductively chargeable toners that comprise particles having tunable morphology in that the particle shape can be selected to be spherical, highly irregular, or the like. There is also a need for insulative, triboelectrically chargeable toners that enable uniform development of electrostatic images. In addition, there is a need for insulative, triboelectrically chargeable toners that have relatively small average particle diameters (such as 10 microns or less). A need also remains for insulative, triboelectrically chargeable toners that have relatively uniform size and narrow particle size distribution values. In addition, a need remains for insulative, triboelectrically chargeable toners with desirably low melting temperatures. Further, a need remains for insulative, triboelectrically chargeable toners with tunable gloss properties, wherein the same monomers can be used to generate toners that have different melt and gloss characteristics by varying polymer characteristics such as molecular weight (M_w, M_p, M_w/p or the like) or crosslinking. Additionally, a need remains for insulative, triboelectrically chargeable toners that can be prepared by relatively simple and inexpensive methods. There is also a need for insulative, triboelectrically chargeable toners with desirable glass transition temperatures for enabling efficient transfer of the toner from an intermediate transfer or fusible member to a print substrate. In addition, there is a need for insulative, triboelectrically chargeable toners with desirable glass transition temperatures for enabling efficient transfer of the toner from a heated intermediate transfer or fusible member to a print substrate. Further, there is a need for insulative, triboelectrically chargeable toners that exhibit good fusing performance. Additionally, there is a need for insulative, triboelectrically chargeable toners that comprise particles having tunable morphology in that the particle shape can be selected to be spherical, highly irregular, or the like. Further, a need remains for insulative, triboelectrically chargeable toners that can be charge either positively or negatively, as desired, without varying the resin or colorant comprising the toner particles. Additionally, a need remains for insulative, triboelectrically chargeable toners that can be made to charge either positively or negatively, as desired, without the need to use or vary surface additives.

SUMMARY OF THE INVENTION

The present invention is directed to a toner comprising particles of a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment of the present invention is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin; an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic elevational view of an illustrative electrophotographic printing machine suitable for use with the present invention.

FIG. 2 is a schematic illustration of a development system suitable for use with the present invention.

FIG. 3 illustrates a monolayer of induction charged toner on a dielectric overcoated substrate.

FIG. 4 illustrates a monolayer of previously induction charged toner between donor and receiver dielectric overcoated substrates.

FIG. 5 is a schematic elevational view of an illustrative electrophotographic printing machine incorporating therein a nonmagnetic inductive charging development system for the printing of black and a custom color.

FIG. 6 is a schematic illustration of a ballistic aerosol marking system for marking a substrate according to the present invention.

FIG. 7 is cross sectional illustration of a ballistic aerosol marking apparatus according to one embodiment of the present invention.

FIG. 8 is another cross sectional illustration of a ballistic aerosol marking apparatus according to one embodiment of the present invention.

FIG. 9 is a plan view of one channel, with nozzle, of the ballistic aerosol marking apparatus shown in FIG. 8.

FIGS. 10A through 10C and 11A through 11C are end views, in the longitudinal direction, of several examples of channels for a ballistic aerosol marking apparatus.

FIG. 12 is another plan view of one channel of a ballistic aerosol marking apparatus, without a nozzle, according to the present invention.

FIGS. 13A through 13D are end views, along the longitudinal axis, of several additional examples of channels for a ballistic aerosol marking apparatus.

DETAILED DESCRIPTION OF THE INVENTION

Marking materials of the present invention can be used in conventional electrostatic imaging processes, such as electrophotography, ionography, electrogro, or the like. Another embodiment of the present invention is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b)
developing the latent image by contacting the imaging member with charged toner particles according to the present invention. In one embodiment of the present invention, the toner particles are charged triboelectrically, in either a single component development process or a two-component development process. In another embodiment of the present invention, the toner particles are charged by an inductive charging process. In one specific embodiment employing inductive charging, the developing apparatus comprises a housing defining a reservoir storing a supply of developer material comprising the conductive toner; a donor member for transporting toner on an outer surface of said donor member to a development zone; means for loading a toner layer onto said outer surface of said donor member; and means for inductive charging said toner layer onto said outer surface of said donor member prior to the development zone to a predefined charge level. In a particular embodiment, the inductive charging means comprises means for biasing the toner reservoir relative to the bias on the donor member. In another particular embodiment, the developing apparatus further comprises means for moving the donor member into synchronous contact with the imaging member to detach toner from the development zone from the donor member, thereby developing the latent image. In yet another specific embodiment, the predefined charge level has an average toner charge-to-mass ratio of from about 5 to about 50 microCoulombs per gram in magnitude. Yet another specific embodiment of the present invention is directed to a process for developing a latent image recorded on a surface of an image receiving member to form a developed image, said process comprising (a) moving the surface of the image receiving member at a predetermined process speed; (b) storing in a reservoir a supply of toner particles according to the present invention; (c) transporting the toner particles on an outer surface of a donor member to a development zone adjacent the image receiving member; and (d) inductive charging said toner particles on said outer surface of said donor member prior to the development zone to a predefined charge level. In a particular embodiment, the inductive charging step includes the step of biasing the toner reservoir relative to the bias on the donor member. In another particular embodiment, the donor member is brought into synchronous contact with the imaging member to detach toner in the development zone from the donor member, thereby developing the latent image. In yet another particular embodiment, the predefined charge level has an average toner charge-to-mass ratio of from about 5 to about 50 microCoulombs per gram in magnitude.

[0071] In some embodiments of these processes, the imaging material can comprise toner particles that are relatively insulative for use with triboelectric charging processes, with average bulk conductivity values typically of no more than about 10^-12 Siemens per centimeter, and preferably no more than about 10^-13 Siemens per centimeter, and with conductivity values typically no less than about 10^-10 Siemens per centimeter, and preferably no less than about 10^-15 Siemens per centimeter, although the conductivity values can be outside of these ranges. “Average bulk conductivity” refers to the ability for electrical charge to pass through a pellet of the particles, measured when the pellet is placed between two electrodes. The particle conductivity can be adjusted by various synthetic parameters of the polymerization; reaction time, mole ratios of oxidant and dopant to pyrrole monomer, temperature, and the like. These insulative toner particles are charged triboelectrically and used to develop the electrostatic latent image.

[0072] In embodiments of the present invention in which the marking particles are used in electrostatic imaging processes wherein the marking particles are triboelectrically charged, toners of the present invention can be employed alone in single component development processes, or they can be employed in combination with carrier particles in two component development processes. Any suitable carrier particles can be employed with the toner particles. Typical carrier particles include granular zircon, steel, nickel, iron ferrites, and the like. Other typical carrier particles include nickel berry carriers as disclosed in U.S. Pat. No. 3,847,604, the entire disclosure of which is incorporated herein by reference. These carriers comprise nodular carrier beads of nickel characterized by surfaces of reoccurring recesses and protrusions that provide the particles with a relatively large external area. The diameters of the carrier particles can vary, but are generally from about 30 microns to about 1,000 microns, thus allowing the particles to possess sufficient density and inertia to avoid adherence to the electrostatic images during the development process.

[0073] Carrier particles can possess coated surfaces. Typical coating materials include polymers and terpolymers, including, for example, fluoropolymers such as polyvinylidene fluorides as disclosed in U.S. Pat. Nos. 3,526,533, 3,849,186, and 3,942,979, the disclosures of each of which are totally incorporated herein by reference. Coating of the carrier particles may be by any suitable process, such as powder coating, wherein a dry powder of the coating material is applied to the surface of the carrier particle and fused to the core by means of heat, solution coating, wherein the coating material is dissolved in a solvent and the resulting solution is applied to the carrier surface by tumbling, or fluid bed coating, in which the carrier particles are blown into the air by means of an air stream, and an atomized solution comprising the coating material and a solvent is sprayed onto the airborne carrier particles repeatedly until the desired coating weight is achieved. Carrier coatings may be of any desired thickness or coating weight. Typically, the carrier coating is present in an amount of from about 0.1 to about 1 percent by weight of the uncoated carrier particle, although the coating weight may be outside this range.

[0074] In a two-component developer, the toner is present in the developer in any effective amount, typically from about 1 to about 10 percent by weight of the carrier, and preferably from about 3 to about 6 percent by weight of the carrier, although the amount can be outside these ranges.

[0075] Any suitable conventional electrophotographic development technique can be utilized to deposit toner particles of the present invention on an electrostatic latent image on an imaging member. Well known electrophotographic development techniques include magnetic brush development, cascade development, powder cloud development, and the like. Magnetic brush development is more fully described, for example, in U.S. Pat. No. 2,791,949, the disclosure of which is totally incorporated herein by reference; cascade development is more fully described, for example, in U.S. Pat. Nos. 2,618,551 and 2,618,552, the disclosures of each of which are totally incorporated herein by reference; powder cloud development is more fully
described, for example, in U.S. Pat. Nos. 2,725,305, 2,918, 910, and 3,015,305, the disclosures of each of which are totally incorporated herein by reference.

[0076] In other embodiments of the present invention wherein nonmagnetic inductive charging methods are employed, the marking material can comprise toner particles that are relatively conductive, with average bulk conductivity values typically of no less than about 10⁻¹¹ Siemens per centimeter, and preferably no less than about 10⁻⁸ Siemens per centimeter, although the conductivity values can be outside of these ranges. There is no upper limit on conductivity for these embodiments of the present invention. “Average bulk conductivity” refers to the ability for electrical charge to pass through a pellet of the particles, measured when the pellet is placed between two electrodes. The particle conductivity can be adjusted by various synthetic parameters of the polymerization; reaction time, molar ratios of oxidant and dopant to pyrrole monomer, temperature, and the like. These conductive toner particles are charged by a nonmagnetic inductive charging process and used to develop the electrostatic latent image.

[0077] While the present invention will be described in connection with a specific embodiment thereof, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.

[0078] Inasmuch as the art of electrophotographic printing is well known, the various processing stations employed in the printing machine of FIG. 1 will be shown hereinafter schematically and their operation described briefly with reference thereto.

[0079] Referring initially to FIG. 1, there is shown an illustrative electrophotographic printing machine. The printing machine, in the shown embodiment an electrophotographic printer (although other printers are also suitable, such as ionographic printers and the like), incorporates a photoreceptor 10, in the shown embodiment in the form of a belt (although other known configurations are also suitable, such as a roll, a drum, a sheet, or the like), having a photoconductive surface layer 12 deposited on a substrate. The substrate can be made from, for example, a polyester film such as MYLAR® that has been coated with a thin conductive layer which is electrically grounded. The belt is driven by means of motor 54 along a path defined by rollers 49, 51, and 52, the direction of movement being counterclockwise as viewed and as shown by arrow 16. Initially a portion of the belt 10 passes through a charge station A at which a corona generator 48 charges surface 12 to a relatively high, substantially uniform, potential. A high voltage power supply 50 is coupled to device 48.

[0080] Next, the charged portion of photoconductive surface 12 is advanced through exposure station B. In the illustrated embodiment, at exposure station B, a Raster Output Scanner (ROS) 56 scans the photoconductive surface in a series of scan lines perpendicular to the process direction. Each scan line has a specified number of pixels per inch. The ROS includes a laser with a rotating polygon mirror to provide the scanning perpendicular to the process direction. The ROS imagewise exposes the charged photoconductive surface 12. Other methods of exposure are also suitable, such as light lens exposure of an original document or the like.

[0081] After the electrostatic latent image has been recorded on photoconductive surface 12, belt 10 advances the latent electrostatic image to development station C as shown in FIG. 1. At development station C, a development system or developer unit 44 develops the latent image recorded on the photoconductive surface. The chamber in the developer housing stores a supply of developer material. In embodiments of the present invention in which the developer material comprises insulative toner particles that are triboelectrically charged, either two component development, in which the developer comprises toner particles and carrier particles, or single component development, in which only toner particles are used, can be selected for developer unit 44. In embodiments of the present invention in which the developer material comprises conductive or semiconductive toner particles that are inductively charged, the developer material is a single component developer consisting of nonmagnetic, conductive toner that is induction charged on a dielectric overcoated donor roll prior to the development zone. The developer material may be a custom color consisting of two or more different colored dry powder toners.

[0082] Again referring to FIG. 1, after the electrostatic latent image has been developed, belt 10 advances the developed image to transfer station D. Transfer can be directly from the imaging member to a receiving sheet or substrate, such as paper, transparency, or the like, or can be from the imaging member to an intermediate and subsequently from the intermediate to the receiving sheet or substrate. In the illustrated embodiment, at transfer station D, the developed image 4 is tack transferred to a heated transfuse belt or roll 100. The covering on the compliant belt or drum typically consists of a thick (1.3 millimeter) soft (IRHD hardness of about 40) silicone rubber. (Thinner and harder rubbers provide tradeoffs in latitudes. The rubber can also have a thin VITON® top coat for improved reliability.) If the transfuse belt or roll is maintained at a temperature near 120°C, tack transfer of the toner from the photoreceptor to the transfuse belt or drum can be obtained with a nip pressure of about 30 pounds per square inch. As the toned image advances from the photoreceptor-transfuse belt nip to the transfuse belt-medium transfuse nip formed between transfuse belt 100 and roller 68, the toner is softened by the –120° C. transfuse belt temperature. With the receiving sheet 64 preheated to about 85° C. in guides 66 by a heater 200, as receiving sheet 64 is advanced by roll 62 and guides 66 into contact with the developed image on roll 100, transfuse of the image to the receiving sheet is obtained with a nip pressure of about 100 pounds per square inch. It should be noted that the toner release from the roll 100 can be aided by a small amount of silicone oil that is imbibed in the roll for toner release at the toner/nip interface. The bulk of the compliant silicone material also contains a conductive carbon black to dissipate any charge accumulation. As noted in FIG. 1, a cleaner 210 for the transfuse belt material is provided to remove residual toner and fiber debris. An optional glossing station (not shown) can be employed by the customer to select a desired image gloss level.

[0083] After the developed image has been transferred from photoconductive surface 12 of belt 10, the residual
developer material adhering to photoconductive surface 12 is removed therefrom by a rotating fibrous brush 78 at cleaning station E in contact with photoconductive surface 12. Subsequent to cleaning, a discharge lamp (not shown) floods photoconductive surface 12 with light to dissipate any residual electrostatic charge remaining thereon prior to the charging thereof for the next successive imaging cycle.

[0084] Referring now to FIG. 2, which illustrates a specific embodiment of the present invention in which the toner in housing 44 is inductively charged, as the donor 42 rotates in the direction of arrow 69, a voltage DC₁ 300 is applied to the donor roll to transfer electrostatically the desired polarity of toner to the belt 10 while at the same time preventing toner transfer in the nonimage areas of the imaged belt 10. Donor roll 42 is mounted, at least partially, in the chamber of developer housing 44 containing nonmagnetic conductive toner. The chamber in developer housing 44 stores a supply of the toner that is in contact with donor roll 42. Donor roll 42 can be, for example, a conductive aluminum core overcoated with a thin (50 micron) dielectric insulating layer. A voltage DC₁ 302 applied between the developer housing 44 and the donor roll 42 causes induction charging and loading of the nonmagnetic conductive toner onto the dielectric overcoated donor roll.

[0085] As successive electrostatic latent images are developed, the toner particles within the developer housing 44 are depleted. A toner dispenser (not shown) stores a supply of toner particles. The toner dispenser is in communication with housing 44. As the level of toner particles in the chamber is decreased, fresh toner particles are furnished from the toner dispenser.

[0086] The maximum loading of induction charged, conductive toner onto the dielectric overcoated donor roll 42 is preferably limited to approximately a monolayer of toner. For a voltage DC_c 302 greater than approximately 100 volts, the monolayer loading is essentially independent of bias level. The charge induced on the toner monolayer, however, is proportional to the voltage DC_c 302. Accordingly, the charge-to-mass ratio of the toner loaded on donor roll 42 can be controlled according to the voltage DC_c 302. As an example, if a DC_c voltage of −200 volts is applied to load conductive toner onto donor roll 42 with a dielectric overcoating thickness of 25 microns, the toner charge-to-mass ratio is ~17 microCoulombs per gram.

[0087] As the toned donor rotates in the direction indicated by arrow 69 in FIG. 2, it is desirable to condition the toner layer on the donor roll 42 before the development zone 310. The objective of the toner layer conditioning device is to remove any toner in excess of a monolayer. Without the toner layer conditioning device, toner-toner contacts in the development zone can cause wrong-sign toner generation and deposition in the nonimage areas. A toner layer conditioning device 400 is illustrated in FIG. 2. This particular example uses a compliant overcoated roll that is biased at a voltage DC_c 304. The overcoating material is charge relaxable to enable dissipation of any charge accumulation. The voltage DC_c 304 is set at a higher magnitude than the voltage DC_c 302. For synchronous contact between the donor roll 42 and conditioning roll 400 under the bias voltage conditions, any toner on donor roll 42 that is on top of toner in the layer is induction charged with opposite polarity and deposited on the roll 400. A doctor blade on conditioning roll 400 continually removes the deposited toner.

[0088] As donor 42 is rotated further in the direction indicated by arrow 69, the induction charged and conditioned toner layer is moved into development zone 310, defined by a synchronous contact between donor 42 and the photoresistor belt 10. In the image areas, the toner layer on the donor roll is developed onto the photoresistor by the electric fields created by the latent image. In the nonimage areas, the electric fields prevent toner deposition. Since the adhesion of induction charged, conductive toner is typically less than that of triboelectrically charged toner, only DC electric fields are required to develop the latent electrostatic image in the development zone. The DC field is provided by both the DC voltages DC_d 300 and DC_c 302, and the electrostatic potentials of the latent image on photoconductor 10.

[0089] Since the donor roll 42 is overcoated with a highly insulative material, undesired charge can accumulate on the overcoating surface over extended development system operation. To eliminate any charge accumulation, a charge neutralizing device may be employed. One example of such device is illustrated in FIG. 2 whereby a rotating electrostatic brush 315 is brought into contact with the toned donor roll. The voltage on the brush 315 is set at or near the voltage applied to the core of donor roll 42.

[0090] An advantageous feature of nonmagnetic inductive charging is that the precharging of conductive, nonmagnetic toner prior to the development zone enables the application of an electrostatic force in the development zone for the prevention of background toner and the deposition of toner in the image areas. Background control and image development with an induction charged, nonmagnetic toner employs a process for forming a monolayer of toner that is brought into contact with an electrostatic image. Monolayer toner coverage is sufficient in providing adequate image optical density if the coverage is uniform. Monolayer coverage with small toner enables thin images desired for high image quality.

[0091] To understand how toner charge is controlled with nonmagnetic inductive charging, FIG. 3 illustrates a monolayer of induction charged toner on a dielectric overcoated substrate 42. The monolayer of toner is deposited on the substrate when a voltage V_a is applied to conductive toner. The average charge density on the monolayer of induction charged toner is given by the formula

\[
\sigma = \frac{V_a \varepsilon_0}{(T_b / \varepsilon_a + 0.32 R_p)}
\]

[0092] where T_b is the thickness of the dielectric layer, \(\varepsilon_a \) is the dielectric constant, \(R_p \) is the particle radius, and \(\varepsilon_0 \) is the permittivity of free space. The 0.32\(R_p \) term (obtained from empirical studies) describes the average dielectric thickness of the air space between the monolayer of conductive particles and the insulative layer.

[0093] For a 25 micron thick dielectric layer (\(\varepsilon_a = 3.2 \)), toner radius of 6.5 microns, and applied voltage of ~200 volts, the calculated surface charge density is ~18 nC/cm².
Since the toner mass, density for a square lattice of 13 micron nonmagnetic toner is about 0.75 mg/cm², the toner charge-to-mass ratio is about ~17 microCoulombs per gram. Since the toner charge level is controlled by the induction charging voltage and the thickness of the dielectric layer, one can expect that the toner charging will not depend on other factors such as the toner pigment, flow additives, relative humidity, or the like.

[0094] With an induction charged layer of toner formed on a donor roll or belt, the charged layer can be brought into contact with an electrostatic image on a dielectric receiver. FIG. 4 illustrates an idealized situation wherein a monolayer of previously induction charged conductive spheres is sandwiched between donor 42 and receiver dielectric materials 10.

[0095] The force per unit area acting on induction charged toner in the presence of an applied field from a voltage difference, V_d, between the donor and receiver conductive substrates is given by the equation

\[
F/A = \frac{\varepsilon_0}{2\varepsilon_0/\varepsilon_r + \varepsilon_0/\varepsilon_r + T_i/\varepsilon_r + T_r/\varepsilon_r + T_i + T_r}{2\varepsilon_0/\varepsilon_r + \varepsilon_0/\varepsilon_r + T_i/\varepsilon_r + T_r/\varepsilon_r + T_i + T_r} \frac{\alpha V_d}{T_i/\varepsilon_r + T_r/\varepsilon_r + T_i + T_r} (F_d - F_r)
\]

[0096] where \(\varepsilon \) is the average charge density on the monolayer of induction charged toner (described by Equation 1), \(T_i/\varepsilon_r \) and \(T_r/\varepsilon_r \) are the dielectric thicknesses of the receiver and donor, respectively, \(T_i \) and \(T_r \) are the average thicknesses of the receiver and donor air gaps, respectively, \(V_d \) is the applied potential, \(T_i=0.32 \) R, where R is the particle radius, \(\varepsilon_0 \) is the permittivity of free space, and \(F_d \) and \(F_r \) are the short-range force per unit area at the receiver and donor interfaces, respectively. The first term, because of an electrostatic image force from neighboring particles, becomes zero when the dielectric thicknesses of the receiver and its air gap are equal to the dielectric thicknesses of the donor and its air gap. Under these conditions, the threshold applied voltage for transferring toner to the receiver should be zero if the difference in the receiver and donor short-range forces is negligible. One expects, however, a distribution in the short-range forces.

[0097] To illustrate the functionality of the nonmagnetic inductive charging device, the developer system of FIG. 2 was tested under the following conditions. A sump of toner (conducting toner of 13 micron volume average particle size) biased at a potential of ~200 volts was placed in contact with a 25 micron thick MYLAR® (grounded aluminum on backside) donor belt moving at a speed of 4.2 inches per second. To condition the toner layer and to remove any loosely adhering toner, a 25 micron thick MYLAR® covered aluminum roll was biased at a potential of ~300 volts and contacted with the toned donor belt at substantially the same speed as the donor belt. This step was repeated a second time. The conditioned toner layer was then contacted to an electrostatic image moving at substantially the same speed as the toned donor belt. The electrostatic image had a potential of ~650 volts in the nonimage areas and ~200 volts in the image areas. A DC potential of ~400 volts was applied to the substrate of electrostatic image bearing member during synchronous contact development. A toned image with adequate optical density and low background was observed.

[0098] Nonmagnetic inductive charging systems based on induction charging of conductive toner prior to the development stage offer a number of advantages compared to electrophotographic development systems based on triboelectric charging of insulative toner. The toner charging depends only on the induction charging bias, provided that the toner conductivity is sufficiently high. Thus, the charging is insensitive to toner materials such as pigment and resin. Furthermore, the performance should not depend on environmental conditions such as relative humidity.

[0099] Nonmagnetic inductive charging systems can also be used in electrophotographic printing systems for printing black plus one or more colors with a wide range of colors as a gamut obtained by blending conductive, nonmagnetic color toners in a single component development system. The induction charging of conductive toner blends is generally pigment-independent. Each electrostatic image is formed with either ion or Electron Beam Imaging (EBI) and developed on separate electro receptors. The images are tack transferred image-next-to-image onto a transfuse belt or drum for subsequent heat and pressure transfire to a wide variety of media. The custom color toners, including fillers, are obtained by blending different comonomers and percentages of toners from a set of nine primary toners plus transparent and black toners to control the lightness or darkness of the custom color. The blending of the toners can be done either outside of the electrophotographic printing system or within the system, in which situation the different proportions of color toners are directly added to the in-situ toner dispenser.

[0100] FIG. 5 illustrates the components and architecture of such a system for custom color printing. FIG. 5 illustrates two electroreceptor modules, although it is understood that additional modules can be included for the printing of multiple custom colors on a document. For discussion purposes, it is assumed that the second module 2 prints black toner. The electroreceptor module 2 uses a nonmagnetic, conductive toner single component development (SCD) system that has been described in FIG. 2. A conventional SCD system, however, uses conductive toner that is induction charged by the electrostatic image on the electroreceptor and can also be used to print the black toner.

[0101] For the electroreceptor module 1 for the printing of custom color, an electrostatic image is formed on an electroreceptor drum 505 with either ion or Electron Beam Imaging (EBI) and a conductivity 510 as taught in U.S. Pat. No. 5,839,598, the disclosure of which is totally incorporated herein by reference. The nonmagnetic, single component development system contains a blend of nonmagnetic, conductive toners to produce a desired custom color. An insulative overcoated donor 42 is loaded with the induction charged blend of toners. A toner layer conditioning station 400 helps to ensure a monolayer of induction charged toner on the donor. (Monolayer donor coverage is sufficient to provide adequate image optical density if the coverage is uniform. Monolayer coverage with small toner particles enables thin images desired for high image quality.) The monolayer of induction charged toner on the donor is brought into synchronous contact with the imaged electroreceptor 505. (The develop-
ment system assembly can be cammed in and out so that it is only in contact with warmer electroreceptor during copying/printing. The precharged toner enables the application of an electrostatic force in the development zone for the prevention of background toner and the deposition of toner in the image areas. The toned image on the electroreceptor is tack transferred to the heated transfuse member 100 which can be a belt or drum. The covering on the compliant transfuse belt or drum typically consists of a thick (1.3 millimeter) soft (IRID hardness of about 40) silicone rubber. Thinner and harder rubbers can provide tradeoffs in latitudes. The rubber can also have a thin VITON® top coat for improved reliability. If the transfuse belt/drum is maintained at a temperature near 120° C, tack transfer of the toner from the electroreceptor to the transfuse belt/drum can be obtained with a nip pressure of about 50 psi. As the toned image advances from the electroreceptor-transfuse drum nip for each module to the transfuse drum-medium transfuse nip, the toner is softened by the about 120° C transfuse belt temperature. With the medium 64 (paper for purposes of this illustrative discussion although others can also be used) preheated by heater 200 to about 85° C, transfer of the image to the medium is obtained with a nip pressure of about 100 psi. The toner release from the silicone belt can be aided by a small amount of silicone oil that is imbedded in the belt for toner release at the toner/belt interface. The bulk of the compliant silicone material also contains a conductive carbon black to dissipate any charge accumulation. As noted in FIG. 5, a cleaner 210 for the transfuse drum material is provided to remove residual toner and fiber debris. An optional glossing station 610 enables the customer to select a desired image gloss level. The electroreceptor cleaner 514 and eraser bar 512 are provided to prepare for the next imaging cycle.

[0102] The illustrated black plus custom color(s) printing system enables improved image quality through the use of smaller toners (3 to 10 microns), such as toners prepared by an emulsion aggregation process.

[0103] The SCD system for module 1 shown in FIG. 5 inherently can have a small sump of toner, which is advantageous in switching the custom color to be used in the SCD system. The bulk of the blended toner can be returned to a supply bottle of the particular blend. The residual toner in the housing can be removed by vacuuming 700. SCD systems are advantaged compared to two-component developer systems, since in two-component systems the toner must be separated from the carrier beads if the same beads are to be used for the new custom color blend.

[0104] A particular custom color can be produced by offline equipment that blends a number of toners selected from a set of nine primary color toners (plus transparent and black toners) that enable a wide custom color gamut, such as PANTONE® colors. A process for selecting proportional amounts of the primary toners for in-situ addition to a SCD housing can be provided by dispenser 600. The color is controlled by the relative weights of primaries. The P₁, . . ., P₉ primaries can be selected to dispense toner into a toner bottle for feeding toner to a SCD housing in the machine, or to dispense directly to the sump of the SCD system on a periodic basis according to the amount needed based on the run length and area coverage. The dispensed toners are tumbled/agitated to blend the primary toners prior to use. In addition to the nine primary color toners for formulating a wide color gamut, one can also use metallic toners (which tend to be conducting and therefore compatible with the SCD process) which are desired for greeting, invitation, and name card applications. Custom color blends of toner can be made in an offline (paint shop) batch process; one can also arrange to have a set of primary color toners continuously feeding a sump of toner within (in-situ) the printer, which enables a dial-a-color system provided that an in-situ toner waste system is provided for color switching.

[0105] The deposited toner image can be transferred to a receiving member such as paper or transparency material by any suitable technique conventionally used in electrophotography, such as corona transfer, pressure transfer, adhesive transfer, bias roll transfer, and the like. Typical corona transfer entails contacting the deposited toner particles with a sheet of paper and applying an electrostatic charge on the side of the sheet opposite to the toner particles. A single wire corotron having applied thereto a potential of about 5000 and about 8000 volts provides satisfactory transfer. The developed toner image can also first be transferred to an intermediate transfer member, followed by transfer from the intermediate transfer member to the receiving member.

[0106] After transfer, the transferred toner image can be fixed to the receiving sheet. The fixing step can be also identical to that conventionally used in electrophotographic imaging. Typical, well known electrophotographic fusing techniques include heated roll fusing, flash fusing, oven fusing, laminating, adhesive spray fixing, and the like. Transfix or transfuse methods can also be employed, in which the developed image is transferred to an intermediate member and the image is then simultaneously transferred from the intermediate member and fixed or fused to the receiving member.

[0107] The marking materials of the present invention are also suitable for use in ballistic aerosol marking processes. In the following detailed description, numeric ranges are provided for various aspects of the embodiments described, such as pressures, velocities, widths, lengths, and the like. These recited ranges are to be treated as examples only, and are not intended to limit the scope of the claims hereof. In addition, a number of materials are identified as suitable for various aspects of the embodiments, such as for marking materials, propellants, body structures, and the like. These recited materials are also to be treated as exemplary, and are not intended to limit the scope of the claims hereof.

[0108] With reference now to FIG. 6, shown therein is a schematic illustration of a ballistic aerosol marking device 110 according to one embodiment of the present invention. As shown therein, device 110 comprises one or more ejection orifices 112 to which a propellant 114 is fed. A marking material 116, which can be transported by a transport 118 under the command of control 120, is introduced into ejector 112. (Optional elements are indicated by dashed lines.) The marking material is metered (that is controllably introduced) into the ejector by metering device 121, under command of control 122. The marking material ejected by ejector 112 can be subject to post-ejection modification 123, optionally also part of device 110. Each of these elements will be described in further detail below. It will be appreciated that device 110 can form a part of a printer, for example of the type commonly attached to a computer network, personal computer or the like, part of a facsimile machine, part of a
document duplicator, part of a labelling apparatus, or part of any other of a wide variety of marking devices.

[0109] The embodiment illustrated in FIG. 6 can be realized by a ballistic aerosol marking device 124 of the type shown in the cut-away side view of FIG. 7. According to this embodiment, the materials to be deposited will be four colored marking materials, for example cyan (C), magenta (M), yellow (Y), and black (K), of a type described further herein, which can be deposited concomitantly, either mixed or unmixed, successively, or otherwise. While the illustration of FIG. 7 and the associated description contemplates a device for marking with four colors (either one color at a time or in mixtures thereof), a device for marking with a fewer or a greater number of colors, or other or additional materials, such as materials creating a surface for adhering marking material particles (or other substrate surface pre-treatment), a desired substrate finish quality (such as a matte, satin or gloss finish or other substrate surface post-treatment), material not visible to the unaided eye (such as magentic particles, ultra violet-fluorescent particles, and the like) or other material associated with a marked substrate, is clearly contemplated herein.

[0110] Device 124 comprises a body 126 within which is formed a plurality of cavities 128C, 128M, 128Y, and 128K (collectively referred to as cavities 128) for receiving materials to be deposited. Also formed in body 126 can be a propellant cavity 130. A fitting 132 can be provided for connecting propellant cavity 130 to a propellant source 133 such as a compressor, a propellant reservoir, or the like. Body 126 can be connected to a print head 134, comprising, among other layers, substrate 136 and channel layer 137.

[0111] With reference now to FIG. 8, shown therein is a cut-away cross section of a portion of device 124. Each of cavities 128 include a port 142C, 142M, 142Y, and 142K (collectively referred to as ports 142) respectively, of circular, oval, rectangular, or other cross-section, providing communication between said cavities, and a channel 146 which adjoins body 126. Ports 142 are shown having a longitudinal axis roughly perpendicular to the longitudinal axis of channel 146. The angle between the longitudinal axes of ports 142 and channel 146, however, can be other than 90 degrees, as appropriate for the particular application of the present invention.

[0112] Likewise, propellant cavity 130 includes a port 144, of circular, oval, rectangular, or other cross-section, between said cavity and channel 146 through which propellant can travel. Alternatively, print head 134 can be provided with a port 144 in substrate 136 or port 144 in channel layer 137, or combinations thereof, for the introduction of propellant into channel 146. As will be described further below, marking material is caused to flow out from cavities 128 through ports 142 and into a stream of propellant flowing through channel 146. The marking material and propellant are directed in the direction of arrow AA toward a substrate 138, for example paper, supported by a platen 140, as shown in FIG. 7. It has been demonstrated that a propellant marking material flow pattern from a print head employing a number of the features described herein can remain relatively collimated for a distance of up to 10 millimeters, with an optimal printing spacing on the order of between one and several millimeters. For example, the print head can produce a marking material stream which does not deviate by more than about 20 percent, and preferably by not more than about 10 percent, from the width of the exit orifice for a distance of at least 4 times the exit orifice width. The appropriate spacing between the print head and the substrate, however, is a function of many parameters, and does not itself form a part of the present invention. In one preferred embodiment, the kinetic energy of the particles, which are moving at very high velocities toward the substrate, is converted to thermal energy upon impact of the particles on the substrate, thereby fixing or fusing the particles to the substrate. In this embodiment, the glass transition, temperature of the resin in the particles is selected so that the thermal energy generated by impact with the substrate is sufficient to fuse the particles to the substrate; this process is called kinetic fusing.

[0113] According to one embodiment of the present invention, print head 134 comprises a substrate 136 and channel layer 137 in which is formed channel 146. Additional layers, such as an insulating layer, capping layer, or the like (not shown) can also form a part of print head 134. Substrate 136 is formed of a suitable material such as glass, ceramic, or the like, on which (directly or indirectly) is formed a relatively thick material, such as a thick permanent photosensist (for example, a liquid photosensitve epoxy such as SU-8, commercially available from Microlithography Chemicals, Inc.; see also U.S. Pat. No. 4,882,245, the disclosure of which is totally incorporated herein by reference) and/or a dry film-based photosensist such as the Riston photospolymer resist series, commercially available from DuPont Printed Circuit Materials, Research Triangle Park, N.C. which can be etched, machined, or otherwise in which can be formed a channel with features described below.

[0114] Referring now to FIG. 9, which is a cut-away plan view of print head 134, in one embodiment channel 146 is formed to have at a first, proximal end a propellant receiving region 147, an adjacent converging region 148, a diverging region 150, and a marking material injection region 152. The point of transition between the converging region 148 and diverging region 150 is referred to as throat 153, and the converging region 148, diverging region 150, and throat 153 are collectively referred to as a nozzle. The general shape of such a channel is sometimes referred to as a de Laval expansion pipe or a venturi convergence/divergence structure. An exit orifice 156 is located at the distal end of channel 146.

[0115] In the embodiment of the present invention shown in FIGS. 8 and 9, region 148 converges in the plane of FIG. 9, but not in the plane of FIG. 8, and likewise region 150 diverges in the plane of FIG. 9, but not in the plane of FIG. 8. Typically, this divergence determines the cross-sectional shape of the exit orifice 156. For example, the shape of orifice 156 illustrated in FIG. 10A corresponds to the device shown in FIGS. 8 and 9. However, the channel can be fabricated such that these regions converge/diverge in the plane of FIG. 8, but not in the plane of FIG. 9 (illustrated in FIG. 10B), or in both the planes of FIGS. 8 and 9 (illustrated in FIG. 10C), or in some other plane or set of planes, or in all planes (examples illustrated in FIGS. 11A-11C) as can be determined by the manufacture and application of the present invention.

[0116] In another embodiment, shown in FIG. 12, channel 146 is not provided with a converging and diverging region, but rather has a uniform cross section along its axis. This
cross section can be rectangular or square (illustrated in FIG. 13A), oval or circular (illustrated in FIG. 13B), or other cross section (examples are illustrated in FIGS. 13C-13D), as can be determined by the manufacture and application of the present invention.

[0117] Any of the aforementioned channel configurations or cross sections are suitable for the present invention. The de Laval or venturi configuration is, however, preferred because it minimizes spreading of the collimated stream of marking particles exiting the channel.

[0118] Referring again to FIG. 8, propellant enters channel 146 through port 144, from propellant cavity 130, roughly perpendicular to the long axis of channel 146. According to another embodiment, the propellant enters the channel parallel (or at some other angle) to the long axis of channel 146 by, for example, ports 144' or 144" or other manner not shown. The propellant can flow continuously through the channel while the marking apparatus is in an operative configuration (for example, a "power on" or similar state ready to mark), or can be modulated such that propellant passes through the channel only when marking material is to be ejected, as dictated by the particular application of the present invention. Such propellant modulation can be accomplished by a valve 131 interposed between the propellant source 133 and the channel 146, by modulating the generation of the propellant for example by turning on and off a compressor or selectively initiating a chemical reaction designed to generate propellant, or the like.

[0119] Marking material can controllably enter the channel through one or more ports 142 located in the marking material injection region 152. That is, during use, the amount of marking material introduced into the propellant stream can be controlled from zero to a maximum per spot. The propellant and marking material travel from the proximal end to a distal end of channel 146 at which is located exit orifice 156.

[0120] According to one embodiment for metering the marking material, the marking material includes material which can be imparted with an electrostatic charge. For example, the marking material can comprise a pigment suspended in a binder together with charge directors. The charge directors can be charged, for example by way of a corona 166C, 166M, 166Y, and 166K (collectively referred to as coronas 166), located in cavities 128, shown in FIG. 8. Another option is that the material is charged by way of a corona 145 in cavity 130 (or some other appropriate location such as port 144 or the like). The charged propellant can be made to enter into cavities 128 through ports 142, for the dual purposes of creating a fluidized bed 186C, 186M, 186Y, and 186K (collectively referred to as fluidized bed 186), and imparting a charge to the marking material. Other options include tribocharging, by other means external to cavities 128, or other mechanism.

[0121] Formed at one surface of channel 146, opposite each of the ports 142 are electrodes 154C, 154M, 154Y, and 154K (collectively referred to as electrodes 154). Formed within cavities 128 (or some other location such as at or within ports 144) are corresponding counter-electrodes 155C, 155M, 155Y, and 155K (collectively referred to as counter-electrodes 155). When an electric field is generated by electrodes 154 and counter-electrodes 155, the charged marking material can be attracted to the field, and exits cavities 128 through ports 142 in a direction roughly perpendicular to the propellant stream in channel 146. Alternatively, when an electric field is generated by electrodes 154 and counter-electrodes 155, a charge can be induced on the marking material, provided that the marking material has sufficient conductivity, and can be attracted to the field, and exits cavities 128 through ports 142 in a direction roughly perpendicular to the propellant stream in channel 146. In either embodiment, the shape and location of the electrodes and the charge applied thereto determine the strength of the electric field, and accordingly determine the force of the injection of the marking material into the propellant stream. In general, the force injecting the marking material into the propellant stream is chosen such that the momentum provided by the force of the propellant stream on the marking material overcomes the injecting force, and into the propellant stream in channel 146, the marking material travels with the propellant stream out of exit orifice 156 in a direction towards the substrate.

[0122] In the event that fusing assistance is required (for example, when an elastic substrate is used, when the marking material particle velocity is low, or the like), a number of approaches can be employed. For example, one or more heated filaments 1122 can be provided proximate the ejecion port 156 (shown in FIG. 9), which either reduces the kinetic energy needed to melt the marking material particle or in fact at least partly melts the marking material particle in flight. Alternatively, or in addition to filament 1122, a heated filament 1124 can be located proximate substrate 138 (also shown in FIG. 9) to have a similar effect.

[0123] While FIGS. 9 to 13 illustrate a print head 134 having one channel therein, it will be appreciated that a print head according to the present invention can have an arbitrary number of channels, and range from several hundred micrometers across with one or several channels, to a page-width (for example, 8.5 or more inches across) with thousands of channels. The width of each exit orifice 156 can be on the order of 250 μm or smaller, preferably in the range of 100 μm or smaller. The pitch, or spacing from edge to edge (or center to center) between adjacent exit orifices 156 can also be on the order of 250 μm or smaller, preferably in the range of 100 μm or smaller in non-staggered array. In a two-dimensionally staggered array, the pitch can be further reduced.

[0124] In some embodiments, the resin is selected so that the resin glass transition temperature is such as to enable kinetic fusing. If the velocity of the toner particles upon impact with the substrate is known, the value of the \(T_g \) required to enable kinetic fusing can be calculated as follows:
The critical impact velocity V_c required to melt the toner particle kinetically is estimated for a collision with an infinitely stiff substrate. The kinetic energy E_k of a spherical particle with velocity v, density ρ, and diameter d is:

$$E_k = \frac{\pi \cdot \rho \cdot d^3 \cdot v^2}{12}$$

The energy E_m required to heat a spherical particle with diameter d, heat capacity C_p, and density ρ from room temperature T_o to beyond its glass transition temperature T_g is:

$$E_m = \frac{\pi \cdot \rho \cdot d^3 \cdot C_p \cdot (T_g - T_o)}{6}$$

The energy E_p required to deform a particle with diameter d and Young's modulus E beyond its elasticity limit σ_e and into the plastic deformation regime is:

$$E_p = \frac{d^3 \cdot \sigma_e^2}{2E}$$

For kinetic fusing (melting the particle by plastic deformation from the collision with an infinitely stiff substrate), the kinetic energy of the incoming particle should be large enough to bring the particle beyond its elasticity limit. In addition, if the particle is taken beyond its elasticity limit, kinetic energy is transformed into heat through plastic deformation of the particle. If it is assumed that all kinetic energy is transformed into heat, the particle will melt if the kinetic energy (E_k) is larger than the heat required to bring the particle beyond its glass transition temperature (E_m). The critical velocity for obtaining plastic deformation (V_{cp}) can be calculated by equating E_k to E_p:

$$v_{cp} = \sqrt{\frac{6}{\pi \rho E} \cdot \sigma_e}$$

Note that this expression is independent of particle size. Some numerical examples (Source: CRC Handbook) include:

<table>
<thead>
<tr>
<th>Material</th>
<th>E (Pa)</th>
<th>ρ (kg/m³)</th>
<th>σ_e (Pa)</th>
<th>v_{cp} (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>200E9</td>
<td>8,000</td>
<td>700E6</td>
<td>25</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>140E6</td>
<td>900</td>
<td>7E6</td>
<td>28</td>
</tr>
<tr>
<td>Neoprene</td>
<td>3E6</td>
<td>1,250</td>
<td>20E6</td>
<td>450</td>
</tr>
<tr>
<td>Lead</td>
<td>13E9</td>
<td>11,800</td>
<td>14E6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Most thermoplastic materials (such as polyethylene) require an impact velocity on the order of a few tens of meters per second to achieve plastic deformation from the collision with an infinitely stiff wall. Velocities on the order of several hundred of meters per second are achieved in ballistic aerosol marking processes. The critical velocity for kinetic melt (v_{em}) can be calculated by equating E_k to E_m:

$$v_{em}=\sqrt{\frac{2\pi \cdot \rho \cdot d^3 \cdot C_p \cdot (T_g - T_o)}{6\cdot E}}$$

Note that this expression is independent of particle size and density. For example, for a thermoplastic material with $C_p=1000$ J/kg.K and $T_g=60^0$ C, $T_o=20^0$ C, the critical velocity V_{em} to achieve kinetic melt is equal to 280 meters per second, which is in the order of magnitude of the ballistic aerosol velocities (typically from about 300 to about 350 meters per second).

In embodiments of the present invention wherein the toner particles of the present invention are used in ballistic aerosol marking processes, the toner particles have average bulk conductivity values typically of no more than about 10 Siemens per centimeter, and preferably no more than about 10^{-7} Siemens per centimeter, and with conductivity values typically no less than about 10^{-13} Siemens per centimeter, although the conductivity values can be outside of these ranges. “Average bulk conductivity” refers to the ability for electrical charge to pass through a pellet of the metal oxide particles having a surface coating of hydrophobic material, measured when the pellet is placed between two electrodes. The particle conductivity can be adjusted by various synthetic parameters of the polymerization; reaction time, molar ratios of oxidant and dopant to pyrrole monomer, temperature, and the like.

The toners of the present invention comprise particles typically having an average particle diameter of no more than about 13 microns, preferably no more than about 12 microns, more preferably no more than about 10 microns, and even more preferably no more than about 7 microns, although the particle size can be outside of these ranges, and typically have a particle size distribution of GSD equal to no more than about 1.25, preferably no more than about 1.23, and more preferably no more than about 1.20, although the particle size distribution can be outside of these ranges. In some embodiments, larger particles can be preferred even for those toners made by emulsion aggregation processes, such as particles of between about 7 and about 13 microns, because in these instances the toner particle surface area is relatively less with respect to particle mass and accordingly a lower amount by weight of conductive polymer with respect to toner particle mass can be used to obtain the desired particle conductivity or charging, resulting in a thinner shell of the conductive polymer and thus a reduced effect on the color of the toner. The toner particles comprise a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process.
suitable resins include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polypentene terephthalate, polyhexene terephthalate, polybutene terephthalate, polyoctene terephthalate, polypropylene-diethylene terephthalate, poly(bisphenol A-fumarate), poly(bisphenol A-terephthalate), copoly(bisphenol A-terephthalate-copoly(bisphenol A-fumarate), poly(neopentyl-terephthalate), sulfonated polyesters such as those disclosed in U.S. Pat. Nos. 5,438,832, 5,459,807, 5,604,076, 5,648,193, 5,658,704, 5,660,065, 5,840,462, 5,853,944, 5,916,725, 5,919,395, 5,945,425, 6,054,246, 6,017,671, 6,020,101, Copending application U.S. Ser. No. 08/221,595, Copending application U.S. Ser. No. 09/657, 340, Copending application U.S. Ser. No. 09/415,074, and Copending application U.S. Ser. No. 09/624,532, the disclosures of each of which are totally incorporated herein by reference, including salts (such as metal salts, including aluminum salts, salts of alkali metals such as sodium, lithium, and potassium, salts of alkaline earth metals such as beryllium, magnesium, calcium, and barium, metal salts of transition metals, such as scandium, yttrium, titanium, zirconium, hafnium, vanadium, chromium, niobium, tantalum, molybdenum, tungsten, manganese, rhenum, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, copper, platinum, silver, gold, zinc, cadmium, mercury, and the like, salts of lanthanide materials, and the like, as well as mixtures thereof) of poly(1,2-propylene-5-sulfoisophthalate), poly(neopentylene-5-sulfoisophthalate), poly(diethylene-5-sulfoisophthalate), copoly(1,2-propylene-5-sulfoisophthalate)-copoly(1,2-propylene-terephthalate), copoly(1,2-propylene-diethylene-5-sulfoisophthalate)-copoly(1,2-propylene-terephthalate), copoly(ethylenecoepentylene-5-sulfoisophthalate), copoly(propoxylated bisphenol A)-copoly(propoxylated bisphenol A-5-sulfoisophthalate), copoly(ethyleneteraphthalate)-copoly(ethylene-5-sulfoisophthalate), copoly(propylene-terephthalate)-copoly(propylene-5-sulfoisophthalate), copoly(dihylen-5-sulfoisophthalate), copoly(propylene-terephthalate)-copoly(propylene-terephthalate)-copoly(propylene-5-sulfoisophthalate), copoly(propylene-butyleneteraphthalate)-copoly(propylene-terephthalate)-copoly(ethylene-5-sulfoisophthalate), copoly(propoxylated bisphenol A-5-sulfoisophthalate), copoly(ethoxylated bisphenol A-fumarate)-copoly(ethoxylated bisphenol A-5-sulfoisophthalate), copoly(ethoxylated bisphenol A-maleate)-copoly(ethoxylated bisphenol A-5-sulfoisophthalate), copoly(propylene-diethylene terephthalate)-copoly(propylene-5-sulfoisophthalate), copoly(neopentyl-terephthalate)-copoly(neopentyl-5-sulfoisophthalate), and the like, as well as mixtures thereof. Some examples of suitable polyesters include those of the formula

\[
\begin{array}{c}
\left(\begin{array}{c}
O-C-O-R-C-O-R'
\end{array}\right)_n
\end{array}
\]

\[
\left(\begin{array}{c}
O-C-O-R-C-O-R'
\end{array}\right)_o
\]

\[
\text{or}
\]

\[
\left(\begin{array}{c}
O-C-O-X
\end{array}\right)_n
\]

\[
\left(\begin{array}{c}
O-C-O-X
\end{array}\right)_o
\]

\[\text{wherein M is hydrogen, an ammonium ion, or a metal ion, R is an alkylene group, typically with from 1 to about 25 carbon atoms, although the number of carbon atoms can be outside of this range, or an arylene group, typically with from 6 to about 24 carbon atoms, although the number of carbon atoms can be outside of this range, R'}\text{ is an alkylene group, typically with from 1 to about 25 carbon atoms, although the number of carbon atoms can be outside of this range, or an oxalkylene group, typically with from 1 to about 20 carbon atoms, although the number of carbon atoms can be outside of this range, n and o each represent the moles of monomers, wherein n+o=100, and preferably wherein n is from about 92 to about 95.5 and o is from about 0.5 to about 8, although the values of n and o can be outside of these ranges. Also suitable are those of the formula}

\[
\left(\begin{array}{c}
O-C-O-R-C-O-R'
\end{array}\right)_n
\]

\[
\left(\begin{array}{c}
O-C-O-R-C-O-R'
\end{array}\right)_o
\]

\[
\text{wherein X is hydrogen, an ammonium ion, or a metal ion, R is an alkylene or oxalkylene group, typically with from about 2 to about 25 carbon atoms, although the number of carbon atoms can be outside of this range, R is an arylene or oxarylene group, typically with from 6 to about 36 carbon atoms, although the number of carbon atoms can be outside of this range, and n and o each represent the numbers of randomly repeating segments. Also suitable are those of the formula}

\[
\left(\begin{array}{c}
O-C-O-X
\end{array}\right)_n
\]

\[
\left(\begin{array}{c}
O-C-O-X
\end{array}\right)_o
\]

\[\text{wherein X is hydrogen, an ammonium ion, or a metal ion, R is an alkylene or oxalkylene group, typically with from about 2 to about 25 carbon atoms, although the number of carbon atoms can be outside of this range, R is an arylene or oxarylene group, typically with from 6 to about 36 carbon atoms, although the number of carbon atoms can be outside of this range, and n and o each represent the numbers of randomly repeating segments. Also suitable are those of the formula}\]
wherein X is a metal ion, X represents an alkyl group derived from a glycol monomer, with examples of suitable glycols including neopentyl glycol, ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, dipropylene glycol, or the like, as well as mixtures thereof, and n and o each represent the numbers of randomly repeating segments. Preferably, the polyester has a weight average molecular weight of from about 2,000 to about 100,000, a number average molecular weight of from about 1,000 to about 50,000, and a polydispersity of from about 2 to about 18 (as measured by gel permeation chromatography), although the weight average and number average molecular weight values and the polydispersity value can be outside of these ranges.

The resin is present in the toner particles in any desired or effective amount, typically at least about 75 percent by weight of the toner particles, and preferably at least about 85 percent by weight of the toner particles, and typically no more than about 99 percent by weight of the toner particles, and preferably no more than about 98 percent by weight of the toner particles, although the amount can be outside of these ranges.

Any desired colorant can be employed. The polypyrrole in or on the toner particles generally imparts a high degree of color to the toner particle, and the toners of the present invention are usually preferred for embodiments wherein black images are desired, but other colorants can also be employed to impart to the toner particles a desired color or tint. Examples of suitable colorants include dyes and pigments, such as carbon black (for example, REGAL 3300X), magentas, phthalocyanines, HEIJOGEN BLUE L6900, D6840, D7080, D7020, PYLAM OIL BLUE, PYLAM OIL YELLOW, and PIGMENT BLUE 1, all available from Paul Uhlich & Co., PIGMENT VIOLET 1, PIGMENT RED 48, LEMON CHROME YELLOW DCC 1026, E.D. TOLUIDINE RED, and BON RED C, all available from Dominion Color Co., NOVAPERM YELLOW FGL and HOSTAPERM PINK E, available from Hoechst, CINQUASIA MAGENTA, available from E. I. Du Pont de Nemours & Company, 2,9-dimethyl-substituted quinacridone and anthraquinone dyes identified in the Color Index as CI 60710, CI Dispersed Red 15, diazo dyes identified in the Color Index as CI 26050, CI Solvent Red 19, copper tetra (octadecyl sulfonamido) phthalocyanine, x-copper phthalocyanine pigment listed in the Color Index as CI 74160, CI Pigment Blue, Anthrahtrene Blue, identified in the Color Index as CI 69810, Special Blue X-2137, diarylide yellow 3,3-dichlorobenzidine acetatoxyanilides, a monoazo pigment identified in the Color Index as CI 12700, CI Solvent Yellow 16, a nitrophthalein amine sulfonamide identified in the Color Index as CI 11820, CI Dispersed Yellow 33, 2,5-dimethoxy-4-sulfonilamide phenylazo-4-chloro-2,5-dimethoxy acetatoxyanilide, Permanent Yellow FGL, Pigment Yellow 74, B 1:5 cyan pigment dispersion, commercially available from Sun Chemicals, Magenta Red 81:3 pigment dispersion, commercially available from Sun Chemicals, Yellow 180 pigment dispersion, commercially available from Sun Chemicals, colored magnetites, such as mixtures of MAPICO BLACK® and cyan components, and the like, as well as mixtures thereof. Other commercial sources of pigments available are aqueous pigment dispersion from either Sun Chemical or Ciba include (but are not limited to) Pigment Yellow 17, Pigment Yellow 14, Pigment Yellow 93, Pigment Yellow 74, Pigment Violet 23, Pigment Violet 1, Pigment Green 7, Pigment Orange 36, Pigment Orange 21, Pigment Orange 16, Pigment Red 185, Pigment Red 122, Pigment Red 81:3, Pigment Blue 15:3, and Pigment Blue 61, and other pigments that enable reproduction of the maximum Pantone color space. Mixtures of colorants can also be employed. When present, the optional colorant is present in the toner particles in any desired or effective amount, typically at least about 1 percent by weight of the toner particles, and preferably at least about 2 percent by weight of the toner particles, and typically no more than about 25 percent by weight of the toner particles, and preferably no more than about 15 percent by weight of the toner particles, depending on the desired particle size, although the amount can be outside of these ranges.

The toner particles optionally can also contain charge control additives, such as alkyl pyridinium halides, including cetyl pyridinium chloride and others as disclosed in U.S. Pat. No. 4,298,672, the disclosure of which is totally incorporated herein by reference, sulfates and bisulfates, including diesteryl dimethyl ammonium methyl sulfate as disclosed in U.S. Pat. No. 4,560,635, the disclosure of which is totally incorporated herein by reference, and diesteryl dimethyl ammonium bisulfate as disclosed in U.S. Pat. Nos. 4,937,157, 4,560,635, and copending application Ser. No. 07/356,497, the disclosures of each of which are totally incorporated herein by reference, zinc 3,5-di-tet-tolyl sulicylate compounds, such as Benron E-84, available from Orient Chemical Company of Japan, or zinc compounds as disclosed in U.S. Pat. No. 4,656,112, the disclosure of which is totally incorporated herein by reference, aluminum 3,5-di-tet-butyl sulicylate compounds, such as Benron E-88, available from Orient Chemical Company of Japan, or aluminum compounds as disclosed in U.S. Pat. No. 4,645,003, the disclosure of which is totally incorporated herein by reference, charge control additives as disclosed in U.S. Pat. Nos. 3,944,493, 4,007,293, 4,079,014, 4,394,430, 4,464,452, 4,480,021, and 4,560,635, the disclosures of each of which are totally incorporated herein by reference, and the like, as well as mixtures thereof. Charge control additives are present in the toner particles in any desired or effective amounts, typically at least about 0.1 percent by weight of the toner particles, and typically no more than about 5 percent by weight of the toner particles, although the amount can be outside of this range.

Examples of optional external surface additives include metal salts, metal salts of fatty acids, colloidal silicas, and the like, as well as mixtures thereof. External additives are present in any desired or effective amount, typically at least about 0.1 percent by weight of the toner particles, and typically no more than about 2 percent by weight of the toner particles, although the amount can be outside of this range, as disclosed in, for example, U.S. Pat. Nos. 3,590,000, 3,720,617, 3,655,374 and 3,983,045, the disclosures of each of which are totally incorporated herein by reference. Preferred additives include zinc stearate and AEROSIL R812® silica as flow aids, available from Degussa. The external additives can be added during the aggregation process or blended onto the formed particles.

The toner particles of the present invention are prepared by an emulsion aggregation process. This process entails (1) preparing a colorant (such as a pigment) dispersion in a solvent (such as water), which dispersion comprises a colorant, a first ionic surfactant, and an optional charge
control agent; (2) shearing the colorant dispersion with a latex mixture comprising (a) a counterionic surfactant with a charge polarity of opposite sign to that of said first surfactant, (b) a nonionic surfactant, and (c) a resin, thereby causing flocculation or heterocoagulation of formed particles of colorant, resin, and optional charge control agent to form electrostatically bound aggregates, and (3) heating the electrostatically bound aggregates to form stable aggregates of at least about 1 micron in average particle diameter. Toner particle size is typically at least about 1 micron and typically no more than about 7 microns, although the particle size can be outside of this range. Heating can be at a temperature typically of from about 5 to about 50°C above the resin glass transition temperature, although the temperature can be outside of this range, to coalesce the electrostatically bound aggregates, thereby forming toner particles comprising resin, optional colorant, and optional charge control agent. Alternatively, heating can be first to a temperature below the resin glass transition temperature to form electrostatically bound micron-sized aggregates with a narrow particle size distribution, followed by heating to a temperature above the resin glass transition temperature to provide coalesced micron-sized toner particles comprising resin, optional colorant, and optional charge control agent. The coalesced particles differ from the uncoalesced aggregates primarily in morphology: the uncoalesced particles have greater surface area, typically having a “grape cluster” shape, whereas the coalesced particles are reduced in surface area, typically having a “potato” shape or even a spherical shape. The particle morphology can be controlled by adjusting conditions during the coalescence process, such as pH, temperature, coalescence time, and the like. Optionally, an additional amount of an ionic surfactant (of the same polarity as that of the initial latex) or nonionic surfactant can be added to the mixture prior to heating to minimize subsequent further growth or enlargement of the particles, followed by heating and coalescing the mixture. Subsequently, the toner particles are washed extensively to remove excess water soluble surfactant or surface absorbed surfactant, and are then dried to produce (optionally colored) polymeric toner particles. An alternative process entails using a flocculating or coagulating agent such as polyaluminum chloride) instead of a counterionic surfactant of opposite polarity to the ionic surfactant in the latex formation; in this process, the growth of the aggregates can be slowed or halted by adjusting the solution to a more basic pH (typically at least about 7 or 8, although the pH can be outside of this range), and, during the coalescence step, the solution can, if desired, be adjusted to a more acidic pH to adjust the particle morphology. The coagulating agent typically is added in an acidic solution (for example, a 1 molal nitric acid solution) to the mixture of ionic latex and dispersed optional colorant, and during this addition step the viscosity of the mixture increases. Thereafter, heat and stirring are applied to induce aggregation and formation of micron-sized particles. When the desired particle size is achieved, this size can be frozen by increasing the pH of the mixture, typically to from about 7 to about 8, although the pH can be outside of this range. Thereafter, the temperature of the mixture can be increased to the desired coalescence temperature, typically from about 80 to about 95°C, although the temperature can be outside of this range. Subsequently, the particle morphology can be adjusted by dropping the pH of the mixture, typically to values of from about 4.5 to about 7, although the pH can be outside of this range.

[0143] When particles are prepared without a colorant, the latex (usually around 40 percent solids) is diluted to the right solids loading (of around 12 to 15 percent by weight solids) and then under identical shearing conditions the counterionic surfactant or polyaluminum chloride is added until flocculation or heterocoagulation takes place.

[0144] Examples of suitable ionic surfactants include anionic surfactants, such as sodium dodecylsulfate, sodium dodecylbenzene sulfonate, sodium dodecylnaphthalenesulfate, dialkyl benzenealkyl sulfates and sulfonates, abietic acid, NEOGEN® and NEOGEN SC®, available from Kao, DOWFAX®, available from Dow Chemical Co., and the like, as well as micellar surfactants that can be employed in any desired or effective amount, typically at least about 0.01 percent by weight of monomers used to prepare the copolymer resin, and preferably at least about 0.1 percent by weight of monomers used to prepare the copolymer resin, and typically no more than about 10 percent by weight of monomers used to prepare the copolymer resin, and preferably no more than about 5 percent by weight of monomers used to prepare the copolymer resin, although the amount can be outside of these ranges.

[0145] Examples of suitable ionic surfactants also include cationic surfactants, such as dialkyld benzenealkyl ammonium chloride, laurel trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkybenzyl dimethyl ammonium bromide, benzalkonium chloride, cetearyl pyridinium bromide, C12, C13, and C14 trimethyl ammonium bromides, halide salts of quaternized polyoxyethyalkylamines, dodecybenzyl triethyl ammonium chloride, MIRAPOL® and ALKAQUAT® (available from Alkair Chemical Company), SANIZOL® (benzalkonium chloride, available from Kao Chemicals), and the like, as well as mixtures thereof. Cationic surfactants can be employed in any desired or effective amounts, typically at least about 0.1 percent by weight of water, and typically no more than about 5 percent by weight of water, although the amount can be outside of this range. Preferably the molar ratio of the cationic surfactant used for flocculation to the anionic surfactant used in latex preparation from about 0.5:1 to about 4:1, and preferably from about 0.5:1 to about 2:1, although the relative amounts can be outside of these ranges.

[0146] Examples of suitable nonionic surfactants include polyvinyl alcohol, polyacrylic acid, methacrole, methyl cellulose, ethyl cellulose, propyl cellulose, hydroxy ethyl cellulose, carboxymethyl cellulose, polyoxyethylene cetyl ether, polyoxyethylene lauryl ether, polyoxyethylene octyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, dilaurylphenoxylypoly(ethylenoxy) ethanol (available from Rhone-Poulenc as IGEPEL CA-210®, IGEPEL CA-520®, IGEPEL CA-720®, IGEPEL CO-890®, IGEPEL CO-720®, IGEPEL CO-290®, IGEPEL CA-210®, ANTAROX 890®, and ANTAROX 897®), and the like, as well as mixtures thereof. The nonionic surfactant can be present in any desired or effective amount, typically at least about 0.01 percent by weight of monomers used to prepare the copolymer resin, and preferably at least about 0.1 percent by weight.
of monomers used to prepare the copolymer resin, and typically no more than about 10 percent by weight of monomers used to prepare the copolymer resin, and preferably no more than about 5 percent by weight of monomers used to prepare the copolymer resin, although the amount can be outside of these ranges.

[0147] In embodiments of the present invention wherein the polymer resin is a sulfonated polyester (wherein some of the repeat monomer units of the polymer have sulfonate groups thereon), one preferred emulsion aggregation process comprises admixing a colloidal solution of sulfonated polyester resin with the colorant, followed by adding to the mixture a coalescence agent comprising an ionic metal salt, and subsequently isolating, filtering, washing, and drying the resulting toner particles. In a specific embodiment, the process comprises (i) mixing a colloidal solution of a sodio-sulfonated polyester resin with a particle size of from about 10 to about 80 nanometers, and preferably from about 10 to about 40 nanometers, and colorant; (ii) adding thereto an aqueous solution containing from about 1 to about 10 percent by weight in water at neutral pH of a coalescence agent comprising an ionic salt of a metal, such as the Group 2 metals (such as beryllium, magnesium, calcium, barium, or the like) or the Group 13 metals (such as aluminum, gallium, indium, or thallium) or the transition metals of Groups 3 to 12 (such as zinc, copper, cadmium, manganese, vanadium, nickel, niobium, chromium, iron, zirconium, scandium, or the like), with examples of suitable anions including halides (fluoride, chloride, bromide, or iodide), acetate, sulfate, or the like; and (iii) isolating and, optionally, washing, drying the resulting toner particles. In embodiments wherein uncolored particles are desired, the colorant is omitted from the preparation.

[0148] The emulsion aggregation process suitable for making the toner materials for the present invention has been disclosed in previous U.S. patents. For example, U.S. Pat. No. 5,280,654 (Sacripante et al.), the disclosure of which is totally incorporated herein by reference, discloses a process for the preparation of toner compositions which comprises dissolving a polymer, and, optionally a pigment, in an organic solvent; dispersing the resulting solution in an aqueous medium containing a surfactant or mixture of surfactants; stirring the mixture with optional heating to remove the organic solvent, thereby obtaining suspended particles of about 0.05 micron to about 2 microns in volume diameter; subsequently homogenizing the resulting suspension with an optional pigment in water and surfactant; followed by aggregating the mixture by heating, thereby providing toner particles with an average particle volume diameter of from about 3 to about 21 microns when said pigment is present.

[0149] U.S. Pat. No. 5,308,734 (Sacripante et al.), the disclosure of which is totally incorporated herein by reference, discloses a process for the preparation of toner compositions which comprises generating an aqueous suspension of toner fines, ionic surfactant and nonionic surfactant, adding thereto a counterion surfactant with a polarity opposite to that of said ionic surfactant, homogenizing and stirring said mixture, and heating to provide for coalescence of said toner fine particles.

[0150] U.S. Pat. No. 5,348,832 (Sacripante et al.), the disclosure of which is totally incorporated herein by reference, discloses a process for the preparation of toner compositions comprising: (i) preparing an emulsion latex comprising soido sulfonated polyester resin particles of from about 5 to about 500 nanometers in size diameter by heating said resin in water at a temperature of from about 65° C. to about 90° C.; (ii) preparing a pigment dispersion in a water by dispersing in water from about 10 to about 25 weight percent of sodo sulfonated polyester and from about 1 to about 5 weight percent of pigment; (iii) adding the pigment dispersion to a latex mixture comprising sulfonated polyester resin particles in water with shearing, followed by the addition of an alkali halide in water until aggregation results as indicated by an increase in the latex viscosity of from

[0151] wherein M is an ion independently selected from the group consisting of hydrogen, ammonium, an alkali metal ion, an alkaline earth metal ion, and a metal ion; R is independently selected from the group consisting of aryl and alkyl; R' is independently selected from the group consisting of alkyl and oxalkylene; and n and o represent random segments; and wherein the sum of n and o are equal to 100 mole percent. The toner is prepared by an in situ process which comprises the dispersion of a sulfonated polyester of the formula or as essentially represented by the formula

\[
\text{O-C-R-CO-R'}_n \leftrightarrow \text{O-C-R-CO-R'}_o \quad \text{SO}_3^{-} \quad \text{M}^+
\]

[0152] wherein M is an ion independently selected from the group consisting of hydrogen, ammonium, an alkali metal ion, an alkaline earth metal ion, and a metal ion; R is independently selected from the group consisting of aryl and alkyl; R' is independently selected from the group consisting of alkyl and oxalkylene; and n and o represent random segments; and wherein the sum of n and o are equal to 100 mole percent, in a vessel containing an aqueous medium of an anionic surfactant and a nonionic surfactant at a temperature from about 150° C. to about 250° C., thereby obtaining suspended particles of about 0.05 micron to about 2 microns in volume average diameter; subsequently homogenizing the resulting suspension at ambient temperature; followed by aggregating the mixture by adding thereto a mixture of cationic surfactant and pigment particles to effect aggreagation of said pigment and sulfonated polyester particles; followed by heating the pigment-sulfonated polyester particles aggregates above the glass transition temperature of the sulfonated polyester causing coalescence of the aggregated particles to provide toner particles with an average particle volume diameter of from between 3 to 21 microns.

[0153] U.S. Pat. No. 5,593,807 (Sacripante et al.), the disclosure of which is totally incorporated herein by reference, discloses a process for the preparation of toner compositions comprising: (i) preparing an emulsion latex comprising sodio sulfonated polyester resin particles of from about 5 to about 500 nanometers in size diameter by heating said resin in water at a temperature of from about 65° C. to about 90° C.; (ii) preparing a pigment dispersion in a water by dispersing in water from about 10 to about 25 weight percent of sodio sulfonated polyester and from about 1 to about 5 weight percent of pigment; (iii) adding the pigment dispersion to a latex mixture comprising sulfonated polyester resin particles in water with shearing, followed by the addition of an alkali halide in water until aggregation results as indicated by an increase in the latex viscosity of from
about 2 centipoise to about 100 centipoise; (iv) heating the resulting mixture at a temperature of from about 45° C. to about 80° C. thereby causing further aggregation and enabling coalescence, resulting in toner particles of from about 4 to about 9 microns in volume average diameter and with a geometric distribution of less than about 1.3; and optionally (v) cooling the product mixture to about 25° C. and followed by washing and drying.

[0154] U.S. Pat. No. 5,648,193 (Patel et al.), the disclosure of which is totally incorporated herein by reference, discloses a process for the preparation of toner compositions or particles comprising i) flushing a pigment into a sulfonated polyester resin, and which resin has a degree of sulfonation of from about 2.5 and 20 mol percent; ii) dispersing the resulting sulfonated polyester resin into water, which water is at a temperature of from about 40 to about 95° C., by a high speed shearing polytron device operating at speeds of from about 100 to about 5,000 revolutions per minute thereby enabling the formation of stable toner size submicron particles, and which particles are of a volume average diameter of from about 5 to about 200 nanometers; iii) allowing the resulting dispersion to cool to from about 5 to about 10° C. below the glass transition temperature of said pigmented sulfonated polyester resin; iv) adding an alkali metal halide solution, which solution contains from about 0.5 percent to about 5 percent by weight of water, followed by stirring and heating from about room temperature, about 25° C., to a temperature below the resin Tg to induce aggregation of said submicron pigmented particles to obtain toner size particles of from about 3 to about 10 microns in volume average diameter and with a narrow GSD; or stirring and heating to a temperature below the resin Tg followed by the addition of alkali metal halide solution until the desired toner size of from about 3 to about 10 microns in volume average diameter and with a narrow GSD is achieved; and v) recovering said toner by filtration and washing with cold water, drying said toner particles by vacuum, and thereafter, optionally blending charge additives and toner additives.

[0155] U.S. Pat. No. 5,658,704 (Patel et al.), the disclosure of which is totally incorporated herein by reference, discloses a process for the preparation of toner comprising i) flushing pigment into a sulfonated polyester resin, and which resin has a degree of sulfonation of from between about 0.5 and about 2.5 mol percent based on the repeat unit of the polymer; ii) dispersing the resulting pigmented sulfonated polyester resin in warm water, which water is at a temperature of from about 40° to about 95° C., and which dispersing is accomplished by a high speed shearing polytron device operating at speeds of from about 100 to about 5,000 revolutions per minute thereby enabling the formation of toner sized particles, and which particles are of a volume average diameter of from about 3 to about 10 microns with a narrow GSD; iii) recovering said toner by filtration; iv) drying said toner by vacuum; and v) optionally adding to said dry toner charge additives and flow aids.

[0156] U.S. Pat. No. 5,660,965 (Mychajlowskij et al.), the disclosure of which is totally incorporated herein by reference, discloses a process for the preparation of toner compositions or toner particles comprising generating a latex comprising a sulfonated polyester and olefinic resin in water; generating a pigment mixture comprised of said pigment dispersed in water; shearing said latex and said pigment mixture; adding an alkali (II) halide; stirring and heating to enable coalescence; followed by filtration and drying.

[0157] U.S. Pat. No. 5,840,462 (Foucher et al.), the disclosure of which is totally incorporated herein by reference, discloses a process for the preparation of toner which involves i) flushing a colorant into a sulfonated polyester resin; ii) mixing an organic soluble dye with the colorant polyester resin of i); iii) dispersing the resulting mixture into warm water thereby enabling the formation of submicron particles; iv) allowing the resulting solution to cool below about, or about equal to the glass transition temperature of said sulfonated polyester resin; v) adding an alkali halide solution and heating; and optionally vi) recovering said toner, followed by washing and drying.

[0158] U.S. Pat. No. 5,853,944 (Foucher et al.), the disclosure of which is totally incorporated herein by reference, discloses a process for the preparation of toner with a first aggregation of sulfonated polyester, and thereafter a second aggregation with a colorant dispersion and an alkali halide.

[0159] U.S. Pat. No. 5,916,725 (Patel et al.), the disclosure of which is totally incorporated herein by reference, discloses a process for the preparation of toner comprising mixing an amine, an emulsion latex containing sulfonated polyester resin, and a colorant dispersion, heating the resulting mixture, and optionally cooling.

[0160] U.S. Pat. No. 5,919,595 (Mychajlowskij et al.), the disclosure of which is totally incorporated herein by reference, discloses a surfactant free process for the preparation of toner comprising heating a mixture of an emulsion latex, a colorant, and an organic complexing agent.

[0161] U.S. Pat. No. 5,945,245 (Mychajlowskij et al.), the disclosure of which is totally incorporated herein by reference, discloses a surfactant free process for the preparation of toner comprising heating a mixture of an emulsion latex, a colorant, and an organic complexing agent.

[0162] U.S. Pat. No. 6,054,240 (Julien et al.), the disclosure of which is totally incorporated herein by reference, discloses a yellow toner including a resin, and a colorant comprising a mixture of a yellow pigment and a yellow dye, wherein the combined weight of the colorant is from about 1 to about 50 weight percent of the total weight of the toner, and wherein the chroma of developed toner is from about 90 to about 130 CIE LAB units.

[0163] U.S. Pat. No. 6,017,671 (Sacripante et al.), the disclosure of which is totally incorporated herein by reference, discloses a toner composition comprising a polyester resin with hydrophobic end groups, colorant, optional wax, optional charge additive, and optional surface additives.

[0164] U.S. Pat. No. 6,020,101 (Sacripante et al.), the disclosure of which is totally incorporated herein by reference, discloses a toner comprising a core which comprises a first resin and colorant, and thereover a shell which comprises a second resin and wherein said first resin is an ion complexed sulfonated polyester resin, and said second resin is a transition metal ion complex sulfonated polyester resin.
a colorant such as Pigment Blue 15:3, available from Sun Chemicals, in an amount of from about 3 to about 5 percent by weight of toner. The resulting mixture is heated to a temperature of from about 50 to about 60°C, followed by adding thereto an aqueous solution of a metal salt such as zinc acetate (5 percent by weight in water) at a rate of from about 1 to about 2 milliliters per minute per 100 grams of polyester resin, causing the coalescence and ionic complexation of sulfonated polyester colloid and colorant to occur until the particle size of the core composite is from about 3 to about 6 microns in diameter (volume average throughout unless otherwise indicated or inferred) with a geometric distribution of from about 1.15 to about 1.25 as measured by the Coulter Counter. Thereafter, the reaction mixture is cooled to about room temperature, followed by filtering, washing once with deionized water, and drying to provide a toner comprising a sulfonated polyester resin and colorant wherein the particle size of the toner is from about 3 to about 6 microns in diameter with a geometric distribution of from about 1.15 to about 1.25 as measured by the Coulter Counter. The washing step can be repeated if desired. The particles are now ready for the conductive polymer surface treatment.

When particles without colorant are desired, the emulsion aggregation process entails diluting with water to 40 weight percent solids the sulfo-sulfonated polyester resin instead of adding it to a pigment dispersion, followed by the other steps related hereinabove.

Subsequently, synthesis of the toner particles, the toner particles are washed, preferably with water. Thereafter, polypropylene is applied to the toner particle surfaces by an oxidative polymerization process. The toner particles are suspended in a solvent in which the toner particles will not dissolve, such as water, methanol, ethanol, butanol, acetone, acetonitrile, blends of water with methanol, ethanol, butanol, acetone, acetonitrile, and/or the like, preferably in an amount of from about 5 to about 20 weight percent toner particles in the solvent, and the pyrrole monomer is added slowly (a typical addition time period would be over about 10 minutes) to the solution with stirring. The monomer typically is added in an amount of from about 5 to about 15 percent by weight of the toner particles. Thereafter, the solution is stirred for a period of time, typically from about 0.5 to about 3 hours. When a dopant is employed, it is typically added at this stage, although it can also be added after addition of the oxidant. Subsequently, the oxidant selected is dissolved in a solvent sufficiently polar to keep the particles from dissolving therein, such as water, methanol, ethanol, butanol, acetone, acetonitrile, or the like, typically in a concentration of from about 0.1 to about 5 molar equivalents of pyrrole monomer, and slowly added dropwise with stirring to the solution containing the toner particles. The amount of oxidant added to the solution typically is in a molar ratio of 1:1 or less with respect to the pyrrole monomer, although a molar excess of oxidant can also be used and can be preferred in some instances. The oxidant is preferably added to the solution subsequent to addition of the pyrrole monomer so that the pyrrole has had time to adsorb onto the toner particle surfaces prior to polymerization, thereby enabling the pyrrole to polymerize on the toner particle surfaces instead of forming separate particles in the solution. When the oxidant addition is complete, the solution is again stirred for a period of time, typically from about 1 to about 2 days, although the time can
be outside of this range, to allow the polymerization and doping process to occur. Thereafter, the toner particles having polymeric pyrrole polymerized on the surfaces thereof are washed, preferably with water, to remove therefrom any polymerized pyrrole that formed in the solution as separate particles instead of as a coating on the toner particle surfaces, and the toner particles are dried. The entire process typically takes place at about room temperature (typically from about 15 to about 30°C), although lower temperatures can also be used if desired.

[0171] The polypyrrole is made from pyrrole monomers, of the formula

![Formula](image)

[0172] The polymerized pyrrole (shown in the reduced form) is believed to be of the formula

![Reduced Form](image)

[0173] wherein n is an integer representing the number of repeat monomer units.

[0174] Examples of suitable oxidants include water soluble persulfates, such as ammonium persulfate, potassium persulfate, and the like, cerium (IV) nitrate, ferric salts, such as ferric chloride, iron (III) sulfate, ferric nitrate nonahydrate, tris(p-toluene-sulfonato)iron (III) (commercially available from Bayer under the tradename Baytron C), and the like. The oxidant is typically employed in an amount of at least about 0.1 molar equivalent of oxidant per molar equivalent of pyrrole monomer, preferably at least about 0.25 molar equivalent of oxidant per molar equivalent of pyrrole monomer, and more preferably at least about 0.5 molar equivalent of oxidant per molar equivalent of pyrrole monomer, and typically is employed in an amount of no more than about 5 molar equivalents of oxidant per molar equivalent of pyrrole monomer, preferably no more than about 4 molar equivalents of oxidant per molar equivalent of pyrrole monomer, and more preferably no more than about 3 molar equivalents of oxidant per molar equivalent of pyrrole monomer, although the relative amounts of oxidant and pyrrole can be outside of these ranges.

[0175] The polarity to which the toner particles prepared by the process of the present invention can be charged can be determined by the choice of oxidant used during the oxidative polymerization of the pyrrole monomer. For example, using oxidants such as ammonium persulfate and potassium persulfate for the oxidative polymerization of the pyrrole monomer tends to result in formation of toner particles that become positively charged when subjected to triboelectric or inductive charging processes. Accordingly, toner particles can be obtained with the desired charge polarity without the need to change the toner resin composition, and can be achieved independently of any dopant used with the polypyrrole.

[0176] The molecular weight of the polypyrrole formed on the toner particle surfaces need not be high; typically the polymer can have three to six or more repeat pyrrole units to enable the desired toner particle conductivity. If desired, however, the molecular weight of the polymer formed on the toner particle surfaces can be adjusted by varying the molar ratio of oxidant to pyrrole or thiophene monomer, the acidity of the medium, the reaction time of the oxidative polymerization, and/or the like. Molecular weights wherein the number of pyrrole repeat monomer units is about 1,000 or higher can be employed, although higher molecular weights tend to make the material more insoluble and therefore more difficult to process.

[0177] Alternatively, instead of coating the polypyrrole onto the toner particle surfaces, the polypyrrole can be incorporated into the toner particles during the toner preparation process. For example, the polypyrrole can be prepared during the aggregation of the toner latex process to make the toner size particles, and then as the particles coalesced, the polypyrrole can be included within the interior of the toner particles in addition to some polymer remaining on the surface. Another method of incorporating the polypyrrole within the toner particles is to perform, the oxidative polymerization of the pyrrole monomer on the aggregated toner particles prior to heating for particle coalescence. As the irregular shaped particles are coalesced with the polypyrrole, the pyrrole polymer can be embedded or partially mixed into the toner particles as the particle coalesce. Yet another method of incorporating polypyrrole within the toner particles is to add the pyrrole monomer, dopant, and oxidant after the toner particles are coalesced and cooled but before any washing is performed. The oxidative polymerization can, if desired, be performed in the same reaction kettle to minimize the number of process steps.

[0178] When the marking material is used in a process in which the toner particles are triboelectrically charged, the polypyrrole can be in its reduced form. To achieve the desired toner particle conductivity for marking materials suitable for nonmagnetic inductive charging processes or ballistic aerosol marking processes, it is sometimes desirable for the pyrrole polymer to be in its oxidized form. The pyrrole polymer can be shifted to its oxidized form by doping it with dopants such as sulfonate, phosphate, or phosphonate moieties, iodine, or the like. Polypyrrole in its doped and oxidized form is believed to be of the formula

![Doped Form](image)

[0179] wherein D' corresponds to the dopant and n is an integer representing the number of repeat monomer units. For example, polypyrrole in its oxidized form and doped with sulfonate moieties is believed to be of the formula
[0180] wherein R corresponds to the organic portion of the sulfonate dopant molecule, such as an aryl group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkyl groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an alkoxy group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkoxy groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryl group, including substituted aryl groups, typically with from 6 to about 14 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryloxy group, including substituted aryloxy groups, typically with from 6 to about 17 carbon atoms, and preferably with from 6 to about 15 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyl group or an alkylaryl group, including substituted arylalkyl and substituted alkylaryl groups, typically with from 7 to about 20 carbon atoms, and preferably with from 7 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyloxy or an alkylaryloxy group, including substituted arylalkyloxy and substituted alkylaryloxy groups, typically with from 7 to about 21 carbon atoms, and preferably with from 7 to about 17 carbon atoms, although the number of carbon atoms can be outside of these ranges, wherein the substituents on the substituted alkyl, alkoxy, aryl, aryloxy, arylalkyl, alkylaryl, arylalkyloxy, and alkylaryloxy groups can be (but are not limited to) hydroxy groups, halogen atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carboxyl groups, thio carbonyl groups, sulfite groups, sulfonate groups, sulfide groups, sulfite oxide groups, phosphine groups, phosphonium groups, phosphate groups, nitrite groups, mercapto groups, nitro groups, nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, mixtures thereof, and the like, as well as mixtures thereof, and wherein two or more substituents can be joined together to form a ring, and n is an integer representing the number of repeat monomer units.

[0181] One method of causing the polypyrrole to be doped is to select as the polyester toner resin a sulfonated polyester toner resin. In this embodiment, some of the repeat monomer units in the polyester polymer have sulfonate groups thereon. The sulfonated polyester resin has surface exposed sulfonate groups that serve the dual purpose of anchoring and doping the coating layer of polypyrrole onto the toner particle surface.

[0182] Another method of causing the polypyrrole to be doped is to place groups such as sulfonate moieties on the toner particle surfaces during the toner particle synthesis. For example, the ionic surfactant selected for the emulsion aggregation process can be an anionic surfactant having a sulfonate group thereon, such as sodium dodecyl sulfonate, sodium dodecylbenzene sulfonate, dodecylbenzene sulfonic acid, dialkyl benzenealkyl sulfonates, such as 1,3-benzene disulfonic acid sodium salt, para-ethylbenzene sulfonic acid sodium salt, and the like, sodium alkyl naphthalene sulfonates, such as 1,5-naphthalene disulfonic acid sodium salt, 2-naphthalene disulfonic acid, and the like, sodium poly(styrene sulfonate), and the like, as well as mixtures thereof. During the emulsion polymerization process, the surfactant becomes grafted and/or adsorbed onto the latex particles that are later aggregated and coalesced. While the toner particles are washed subsequent to their synthesis to remove surfactant therefrom, some of this surfactant still remains on the particle surfaces, and in sufficient amounts to enable doping of the polypyrrole so that it is desirably conductive.

[0183] Yet another method of causing the polypyrrole to be doped is to add small dopant molecules containing sulfonate, phosphate, or phosphonate groups to the toner particle solution before, during, or after the oxidative polymerization of the pyrrole. For example, after the toner particles have been suspended in the solvent and prior to addition of the pyrrole, the dopant can be added to the solution. When the dopant is a solid, it is allowed to dissolve prior to addition of the pyrrole monomer, typically for a period of about 0.5 hour. Alternatively, the dopant can be added after addition of the pyrrole and before addition of the oxidant, or after addition of the oxidant, or at any other time during the process. The dopant is added to the polypyrrole in any desired or effective amount, typically at least about 0.1 molar equivalent of dopant per molar equivalent of pyrrole monomer, preferably at least about 0.25 molar equivalent of dopant per molar equivalent of pyrrole monomer, and more preferably at least about 0.5 molar equivalent of dopant per molar equivalent of pyrrole monomer, and typically no more than about 5 molar equivalents of dopant per molar equivalent of pyrrole monomer, and preferably no more than about 4 molar equivalents of dopant per molar equivalent of pyrrole monomer, and more preferably no more than about 3 molar equivalents of dopant per molar equivalent of pyrrole monomer, although the amount can be outside of these ranges.

[0184] Examples of suitable dopants include p-toluene sulfonic acid, camphor sulfonic acid, dodecanedioic acid, benzene sulfonyl acid, sulfonate sulfuric acid, dodecylbenzene sulfonic acid, sodium dodecyl sulfonate, sodium dodecylbenzene sulfonate, dialkyl benzenealkyl sulfonates, such as 1,3-benzene disulfonic acid sodium salt, para-ethylbenzene sulfonic acid sodium salt, and the like, sodium alkyl naphthalene sulfonates, such as 1,5-naphthalene disulfonic acid sodium salt, 2-naphthalene disulfonic acid, and the like, poly(styrene sulfonate sodium salt), and the like.

[0185] Still another method of doping the polypyrrole is to expose the toner particles that have the polypyrrole on the particle surfaces to iodine vapor in solution, as disclosed in, for example, Yamamoto, T.; Morita, A.; Miyazaki, Y.; Miyama, T.; Wakayama, H.; Zhou, Z. H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K.; Macromolecules, 1992, 25, 1214 and Yamamoto, T.; Abla, M.; Shimizu, T.; Komaru-
The polymeric thickness on the toner particles is a function of the surface area exposed for surface treatment, which is related to spherical vs potato or raspberry. For smaller particles, the weight fraction of polymeric monomer used based on total mass of particles can be increased to, for example, 20 percent from 10 or 5 percent. The coating weight typically is at least about 5 weight percent of the toner particle mass, and typically is no more than about 20 weight percent of the toner particle mass. Similar amounts are used when the polymeric is present throughout the particle instead of as a coating. The solids loading of the washed toner particles can be measured using a heated balance which evaporates off the water, and, based on the initial mass and the mass of the dried material, the solids loading can be calculated. Once the solids loading is determined, the toner slurry is diluted to a 10 percent loading of toner in water. For example, for 20 grams of toner particles the total mass of toner slurry is 200 grams and 2 grams of pyrrole is used. Then the pyrrole and other reagents are added as indicated hereinabove. For a 5 micron toner particle using a 10 weight percent of pyrrole, 2 grams for 20 grams of toner particles the thickness of the conductive polymer layer was 20 nanometers. Depending on the surface morphology, which also can change the surface, the shell can be thicker or thinner or even incomplete.

The toners of the present invention typically are capable of exhibiting triboelectric surface charging of from about +2 to about +60 microcoulombs per gram, and preferably of from about +10 to about +50 microcoulombs per gram, although the triboelectric charging capability can be outside of these ranges. Charging can be accomplished triboelectically, either against a carrier in a two component development system, or in a single component development system, or inductively.

The marking materials of the present invention can be employed in ballistic aerosol marking processes. Another embodiment of the present invention is directed to a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a polyester resin, an optional colorant, and polymeric, said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, said toner particles having an average bulk conductivity of at least about 10⁻¹¹ Siemens per centimeter.

Specific embodiments of the invention will now be described in detail. These examples are intended to be illustrative, and the invention is not limited to the materials, conditions, or process parameters set forth in these embodiments. All parts and percentages are by weight unless otherwise indicated.

The particle flow values of the toner particles were measured with a Hosokawa Micron Powder tester by applying a 1 millimeter vibration for 90 seconds to 2 grams of the toner particles on a set of stacked screens. The top screen contained 150 micron openings, the middle screen contained 75 micron openings, and the bottom screen contained 45 micron openings. The top percent cohesion is calculated as follows:

\[\text{% cohesion} = 50 \times A + 30 \times B + 10 \times C \]

wherein A is the mass of toner remaining on the 150 micron screen, B is the mass of toner remaining on the 75 micron screen, and C is the mass of toner remaining on the 45 micron screen. (The equation applies a weighting factor proportional to screen size.) This test method is further described in, for example, R. Vernein and R. Bartha, Proceedings of IS&T 14th International Congress on Advances in Non-Impact Printing Technologies, pg 358-361, 1998, Toronto, the disclosure of which is totally incorporated herein by reference. For the toners, the input energy applied to the apparatus of 300 millivolts was decreased to 50 millivolts to increase the sensitivity of the test. The lower the percent cohesion value, the better the toner flowability.

Conductivity values of the toners were determined by preparing pellets of each material under 1,000 to 3,000 pounds per square inch and then applying 10 DC volts across the pellet. The value of the current flowing was then recorded, the pellet was removed and its thickness measured, and the bulk conductivity for the pellet was calculated in Siemens per centimeter.

EXAMPLE 1

A linear sulfonated random copolyester resin comprising 46.5 mole percent terephthalate, 3.5 mole percent sodium sulfosuccinate, 47.5 mole percent 1,2-propandiol, and 2.5 mole percent diethylene glycol was prepared as follows. Into a 5 gallon Parr reactor equipped with a bottom drain valve, double turbine agitator, and distillation receiver with a cold water condenser were charged 3.98 kilograms of dimethyl terephthalate, 451 grams of sodium dimethyl sulfosuccinate, 3.104 kilograms of 1,2-propandiol (1 mole excess of glycol), 351 grams of diethylene glycol (1 mole excess of glycol), and 8 grams of butyltin hydroxide oxide catalyst. The reactor was then heated to 165° C. with stirring for 3 hours whereby 1.33 kilograms of distillate were collected in the distillation receiver, and which distillate comprised about 98 percent by volume methanol and 2 percent by volume 1,2-propandiol as measured by the ABBE refractometer available from American Optical Corporation. The reactor mixture was then heated to 190° C. over a one hour period, after which the pressure was slowly reduced from atmospheric pressure to about 260 Torr over a one hour period, and then reduced to 5 Torr over a two hour period with the collection of approximately 470 grams of distillate in the distillation receiver, and which distillate comprised approximately 97 percent by volume 1,2-propandiol and 3 percent by volume methanol as measured by the ABBE refractometer. The pressure was then further reduced to about 1 Torr over a 30 minute period whereby an
additional 530 grams of 1,2-propanediol were collected. The reactor was then purged with nitrogen to atmospheric pressure, and the polymer product discharged through the bottom drain onto a container cooled with dry ice to yield 5.60 kilograms of 3.5 mole percent sulfonated polyester resin, sodio salt of (1,2-propylene-dipropylene-5-sulfosophtale- late)-copoly (1,2-propylene-dipropylene terephthalate). The sulfonated polyester resin glass transition temperature was measured to be 56.6°C (onset) utilizing the 910 Differential Scanning Calorimeter available from E. I. DuPont operating at a heating rate of 10°C per minute. The number average molecular weight was measured to be 3,250 grams per mole, and the weight average molecular weight was measured to be 5,290 grams per mole using tetrahydrofuran as the solvent.

[0194] A 15 percent by weight solids concentration of the colloidal sulfonated polyester resin dissipated in an aqueous medium was prepared by first heating 2 liters of deionized water to 85°C with stirring and adding thereto 500 grams of a sulfonated polyester resin, followed by continued heating at about 85°C and stirring of the mixture for a duration of from about one to about two hours, followed by cooling to room temperature (about 25°C). The colloidal solution of the sodio-sulfonated polyester resin particles had a characteristic blue tinge and particle sizes in the range of from about 5 to about 150 nanometers, and typically in the range of 20 to 40 nanometers, as measured by a Nicomp® Particle Size Analyzer.

[0195] A 2 liter colloidal solution containing 15 percent by weight of the sodio sulfonated polyester resin was then charged into a 4 liter kettle equipped with a mechanical stirrer. To this solution was added 42 grams of a carbon black pigment dispersion containing 30 percent by weight of Regal® 330 (available from Cabot, Inc.), and the resulting mixture was heated to 50°C with stirring at about 180 to 200 revolutions per minute. To this heated mixture was then added dropwise 760 grams of an aqueous solution containing 5 percent by weight of zinc acetate dihydrate. The dropwise addition of the zinc acetate dihydrate solution was accomplished utilizing a peristaltic pump, at a rate of addition of about 2.5 milliliters per minute. After the addition was complete (about 5 hours), the mixture was stirred for an additional 3 hours. A sample (about 1 gram) of the reaction mixture was then retrieved from the kettle, and a particle size of 5.9 microns with a GSD of 1.16 was measured with a Coulter Counter. The mixture was then allowed to cool to room temperature (about 25°C) overnight (about 18 hours) with stirring. The product was then filtered through a 3 micron hydrophobic membrane cloth and the toner cake was resuspended into approximately 2 liters of deionized water and stirred for about 1 hour. The toner slurry was refiltered and dried with a freeze dryer for 48 hours. The uncoated cyan polyester toner particles with average particle size of 5.9 microns and GSD of 1.16 were pressed into a pellet and the average bulk conductivity was measured to be 1.4 × 10⁻¹² Siemens per centimeter.

[0196] Into a 250 milliliter glass beaker was placed 75 grams of distilled water along with 6.0 grams of the resultant black polyester toner prepared as described above. This dispersion was then stirred with the aid of a magnetic stirrer to achieve an essentially uniform dispersion of polyester particles in the water. To this dispersion was added 1.01 grams of pyrrole monomer. The pyrrole monomer, with the aid of further stirring, dissolved in under 5 minutes. In a separate 50 milliliter beaker, 10.0 grams of ferric chloride were dissolved in 25 grams of distilled water. Subsequent to the dissolution of the ferric chloride, this solution was added dropwise to the toner in water/pyrrole dispersion. The beaker containing the toner, pyrrole, and ferric chloride was then covered and left overnight under continuous stirring. The toner dispersion was thereafter filtered and the supernatant aqueous solution was measured for conductivity (71 milliSiemens per centimeter). After filtration the toner was washed twice in 600 milliliters of distilled water, filtered, and freeze dried.

[0197] The dried product was then submitted for a triboelectric charging measurement. The conductive toner particles were charged by blending 24 grams of carrier particles (65 micron Hoeganaes core having a coating in an amount of 1 percent by weight of the carrier, said coating comprising a mixture of poly(methyl methacrylate) and SC Ultra carbon black in a ratio of 80 to 20 by weight) with 1.0 gram of toner particles to produce a developer with a toner concentration (Tc) of 4 weight percent. This mixture was conditioned overnight at 50 percent relative humidity at 22°C, followed by rolling milling the developer (toner and carrier) for 30 minutes at 80°F. and 80 percent relative humidity to reach a stable developer charge. The total toner blow off method was used to measure the average charge ratio (Q/M) of the developer with a Faraday Cage apparatus (such as described at column 11, lines 5 to 28 of U.S. Pat. No. 3,533,835, the disclosure of which is totally incorporated herein by reference). The conductive particles reached a triboelectric charge of +0.56 microCoulombs per gram. In a separate experiment another 1.0 gram of these toner particles were roll milled for 30 minutes with carrier while at 50°F. and 20 percent relative humidity. In this instance the triboelectric charge reached +1.52 microCoulombs per gram.

[0198] The measured average bulk conductivity of a pressed pellet of this toner was 1.1 × 10⁻⁷ Siemens per centimeter.

[0199] This example demonstrates a positive charging tribo value at both environmental conditions studied (i.e., at 80°F. and 80 percent relative humidity and at 50°F. with 20 percent relative humidity).

EXAMPLE II

[0200] Black toner particles were prepared by aggregation of a polyester latex with a carbon black pigment dispersion as described in Example I.

[0201] Into a 250 milliliter glass beaker was placed 150 grams of distilled water along with 12.0 grams of the black polyester toner. This dispersion was then stirred with the aid of a magnetic stirrer to achieve an essentially uniform dispersion of polyester particles in the water. To this dispersion was added 2.03 grams of pyrrole monomer. The pyrrole monomer, with the aid of further stirring, dissolved in under 5 minutes. To the solution was then added 2.87 grams of p-toluene sulfonic acid. After dissolution of this acid and 30 minutes of stirring, the pH of the solution was measured to be 1.50 with an Accumet Research AR 20 pH meter. In a separate 50 milliliter beaker, 17.1 grams of ammonium persulfate were dissolved in 25 grams of distilled water. Subsequent to the dissolution of the ammonium persulfate, this solution was then added dropwise to the
toner in water/pyrrole/p-toluene sulfonic acid dispersion. The beaker containing the toner, pyrrole, p-toluene sulfonic acid, and ammonium persulfate was then covered and left overnight under continuous stirring. The toner dispersion was thereafter filtered and the supernatant aqueous solution was measured for conductivity (96 millisiemens per centimeter). After filtration, the toner was washed twice in 600 milliliters of distilled water, filtered, and freeze dried.

[0202] The dried product was then submitted for a triboelectric charging measurement. The conductive toner particles were blended with carrier particles and triboelectric charging was measured as described in Example XX. This mixture was conditioned overnight at 50 percent relative humidity at 22 °C, followed by roll milling the developer (toner and carrier) for 30 minutes at 80°F and 80 percent relative humidity to reach a stable developer charge. The conductive particles reached a triboelectric charge of ~3.85 microCoulombs per gram. The triboelectric charge measured for this mixture of toner and carrier roll milled for 30 minutes at 50°F and 20 percent relative humidity was measured to be ~5.86 microCoulombs per gram.

[0203] The measured average bulk conductivity of a pressed pellet of this toner was 1.1x10^-7 Siemens per centimeter.

[0204] This example demonstrates a negative charging tribo value. EXAMPLE III

[0205] Additional toners are prepared as described in Examples I and II, varying the relative amount of p-toluene sulfonic acid (mole ratio p-TSA, a ratio of the relative amount of p-TSA by mole percent used with respect to the relative amount by mole percent of pyrrole) and the relative amount of pyrrole (wt. % pyrrole, a measurement of the relative amount of pyrrole by weight used with respect to the relative amount by weight of toner particles). Testing of these toners for conductivity (measured in Siemens per centimeter), tribo charging at 80°F and 80 percent relative humidity (Q/M A zone, measured in microCoulombs per gram) and at 50°F and 20 percent relative humidity (Q/M C zone, measured in microCoulombs per gram), and percent cohesion indicated the following:

<table>
<thead>
<tr>
<th>Toner</th>
<th>mole ratio p-TSA</th>
<th>wt.% pyrrole</th>
<th>Q/M A zone</th>
<th>Q/M C zone</th>
<th>conductivity</th>
<th>% cohesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>-7.02</td>
<td>-13.49</td>
<td>9.6 x 10^-9</td>
<td>93.8</td>
</tr>
<tr>
<td>2</td>
<td>2:1</td>
<td>8.4</td>
<td>-2.58</td>
<td>-3.10</td>
<td>9.0 x 10^-9</td>
<td>94.9</td>
</tr>
<tr>
<td>3</td>
<td>1:1</td>
<td>16.8</td>
<td>-2.53</td>
<td>-4.49</td>
<td>9.8 x 10^-3</td>
<td>93.7</td>
</tr>
<tr>
<td>4</td>
<td>0.5:1</td>
<td>8.4</td>
<td>-5.76</td>
<td>-5.89</td>
<td>1.8 x 10^-5</td>
<td>96.6</td>
</tr>
<tr>
<td>5</td>
<td>1:1</td>
<td>8.4</td>
<td>-4.09</td>
<td>-3.50</td>
<td>1.0 x 10^-5</td>
<td>98.1</td>
</tr>
<tr>
<td>6</td>
<td>2:1</td>
<td>16.8</td>
<td>-2.87</td>
<td>-2.58</td>
<td>1.3 x 10^-2</td>
<td>86.4</td>
</tr>
</tbody>
</table>

EXAMPLE IV

[0206] Toner compositions are prepared as described in Examples I, II, and III except that no dopant is employed. It is believed that the resulting toner particles will be relatively insulative and suitable for two-component development processes.

EXAMPLE V

[0207] Toners are prepared as described in Examples I, II, III, and IV. The toners thus prepared are each admixed with a carrier as described in Example I to form developer compositions. The developers thus prepared are each incorporated into an electrophotographic imaging apparatus. In each instance, an electrostatic latent image is generated on the photoreceptor and developed with the developer. Thereafter the developed images are transferred to paper substrates and affixed thereto by heat and pressure.

EXAMPLE VI

[0208] Toners are prepared as described in Examples I to III. The toners are evaluated for nonmagnetic inductive charging by placing each toner on a conductive (aluminum) grounded substrate and touching the toner with a 25 micron thick MYLAR® covered electrode held at a bias of +100 volts. Upon separation of the MYLAR® covered electrode from the toner, it is believed that a monolayer of toner will be adhered to the MYLAR® and that the electrostatic surface potential of the induction charged monolayer will be approximately ~100 volts. The fact that the electrostatic surface potential is equal and opposite to the bias applied to the MYLAR® electrode indicates that the toner is sufficiently conducting to enable induction toner charging.

[0209] Other embodiments and modifications of the present invention may occur to those of ordinary skill in the art subsequent to a review of the information presented herein; these embodiments and modifications, as well as equivalents thereof, are also included within the scope of this invention.

What is claimed is:

1. A toner comprising particles of a polyester resin, an optional colorant, and polyvinylpyrrolidone, wherein said toner particles are prepared by an emulsion aggregation process.
2. A toner according to claim 1 wherein the toner particles have an average particle diameter of no more than about 13 microns.
3. A toner according to claim 1 wherein the toner particles comprise a core comprising the polyester resin and optional colorant and, coated on the core, a coating comprising the polyvinyl ester.
4. A toner according to claim 1 wherein the polyester resin is polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyethylene terephthalate, polyhexanalene terephthalate, polyethylene terephthalate, polycarbonate-terephthalate, poly(propylene-diene-terephthalate), poly(bisphenol A-fumarate), poly(bisphenol A-terephthalate), copoly(bisphenol A-terephthalate-copoly(bisphenol A-fumarate), poly(neopentyl-terephthalate), or mixtures thereof.
5. A toner according to claim 1 wherein the polyester resin is a sulfonated polyester.
6. A toner according to claim 1 wherein the polyester resin is a poly(1,2-propylene-5-sulfosioxophthalate), a poly(neopentyl-5-sulfosioxophthalate), a poly(diene-5-sulfosioxophthalate), a copoly(1,2-propylene-5-sulfosioxophthalate)-co-poly(1,2-propylene-terephthalate), a copoly(1,2-propylene-5-sulfosioxophthalate)-co-poly(1,2-propylene-terephthalate), a copoly(propylene-5-sulfosioxophthalate)-co-poly(ethylene-terephthalate)-co-poly(ethylene-neopentylene-5-sulfosioxophthalate), a copoly(propoxyxylated bisphenol A)-co-poly(propoxyxylated bisphenol A-5-sulfosioxophthalate), a copoly(ethylene-terephthalate)-co-poly(ethylene-5-sulfo-isophthalate), a copoly(propylene-terephthalate)-co-poly(propylene-5-
sulfo-isophthalate), a copoly(diethylene-terephthalate)-co-
poly(diethylene-5-sulfo-isophthalate), a copoly(propylene-
diethylene-terephthalate)-co-poly(propylene-diethylene-5-
sulfoisophthalate), a copoly(propylene-butylene-
terephthalate)-co-poly(propylene-butylene-
5-sulfo-isophthalate), a copoly(propoxyxylated bisphenol-A-
fumarate)-co-poly(propoxylated bisphenol A-5-sulfo-
isophthalate), a copoly(ethoxylated bisphenol-A-fumarate)-
copoly(ethoxylated bisphenol-A-5-sulfo-isophthalate), a copoly(
ethoxylated bisphenol-A-maleate)-co-poly(ethoxy-
lated bisphenol-A-5-sulfo-isophthalate), a copoly(propyl-
ene-diethylene terephthalate)-co-poly(propylene-5-sul-
foisophthalate), a copoly(neopentyl-terephthalate)-co-poly-
(neopentyl-5-sulfoisophthalate), or a mixture thereof.

7. A toner according to claim 1 wherein the resin is present
in the toner particles in an amount of at least about 75
percent by weight of the toner particles and wherein the resin
is present in the toner particles in an amount of no more than
about 99 percent by weight of the toner particles.

8. A toner according to claim 1 wherein the toner particles

9. A toner according to claim 1 wherein the toner particles
contain a colorant, said colorant being present in an amount
of at least about 1 percent by weight of the toner particles,
and said colorant being present in an amount of no more than
about 25 percent by weight of the toner particles.

10. A toner according to claim 1 wherein the emulsion
aggregation process comprises (1) shearing a first ionic
surfactant with a latex mixture comprising (a) a counterion
curfactant with a charge polarity of opposite sign to that of
said first ionic surfactant, (b) a nonionic surfactant, and (c)
a polymer resin, thereby causing flocculation or heteroco-
agulation of formed particles of resin to form electrostatically
bound aggregates; and (2) heating the electrostatically bound
aggregates to form aggregates of at least about 1 micron
in average particle diameter.

11. A toner according to claim 1 wherein the emulsion
aggregation process comprises (1) preparing a colorant
dispersion in a solvent, which dispersion comprises a col-

12. A toner according to claim 1 wherein the emulsion
aggregation process comprises (1) shearing an ionic sur-
factant with a latex mixture comprising (a) a flocculating agent,
(b) a nonionic surfactant, and (c) a polyester resin, thereby
causing flocculation or heterocoagulation of formed par-
ticles of colorant and resin to form electrostatically bound
aggregates; and (2) heating the electrostatically bound
aggregates to form aggregates of at least about 1 micron
in average particle diameter.

13. A toner according to claim 1 wherein the emulsion
aggregation process comprises (1) preparing a colorant
dispersion in a solvent, which dispersion comprises a col-

14. A toner according to claim 1 wherein the emulsion
aggregation process comprises (1) preparing a colloidal
solution comprising a polyester resin and an optional colo-
rant, and (2) adding to the colloidal solution an aqueous
solution containing a coalescence agent comprising an ionic
metal salt to form toner particles.

15. A toner according to claim 1 wherein the polypyrrole
is of the formula

wherein D⁺ corresponds to the dopant and n is an integer
representing the number of repeat monomer units.

16. A toner according to claim 1 wherein the polypyrrole
has at least about 3 repeat monomer units.

17. A toner according to claim 1 wherein the polypyrrole
has at least about 6 repeat monomer units and wherein the
polypyrrole has no more than about 100 repeat monomer
units.

18. A toner according to claim 1 wherein the polypyrrole
is doped with iodine, molecules containing sulfonate groups,
molecules containing phosphate groups, molecules contain-
ing phosphonate groups, or mixtures thereof.

19. A toner according to claim 1 wherein the polypyrrole
is doped with sulfonate containing anions of the formula
RSO₃⁻— wherein R is an alkyl group, an alkoxyl group, an
aryl group, an arylxylo group, an alkylaryloxy group, an alkyl-
aryl group, an aryalkylxylo group, an alkylaryloxyl group,
or mixtures thereof.

20. A toner according to claim 1 wherein the polypyrrole
is doped with anions selected from p-toluene sulfonate,
camphor sulfonate, benzene sulfonate, naphthalene sul-
fonate, dodecyl sulfonate, dodecylbenzene sulfonate, dialkyl
benezenealkyl sulfonates, para-ethylbenzene sulfonate, alkyl
naphthalene sulfonates, poly(styrene sulfonate), or mixtures
thereof.

21. A toner according to claim 1 wherein the polypyrrole
is doped with anions selected from p-toluene sulfonate,
camphor sulfonate, benzene sulfonate, naphthalene sul-
fonate, dodecyl sulfonate, dodecylbenzene sulfonate, 1,3-
benzene disulfonate, para-ethylbenzene sulfonate, 1,5-naph-
thalene disulfonate, 2-naphthalene disulfonate, poly(styrene
sulfonate), or mixtures thereof.

22. A toner according to claim 1 wherein the polypyrrole
is doped with a dopant present in an amount of at least about
0.1 molar equivalent of dopant per molar equivalent of
pyrrole monomer and present in an amount of no more than
about 5 molar equivalents of dopant per molar equivalent of
pyrrole monomer.

23. A toner according to claim 1 wherein the polypyrrole
is doped with a dopant present in an amount of at least about
0.25 molar equivalent of dopant per molar equivalent of
pyrrole monomer and present in an amount of no more than about 4 molar equivalents of dopant per molar equivalent of pyrrole monomer.

24. A toner according to claim 1 wherein the polypyrrole is doped with a dopant present in an amount of at least about 0.5 molar equivalent of dopant per molar equivalent of pyrrole monomer and present in an amount of no more than about 3 molar equivalents of dopant per molar equivalent of pyrrole monomer.

25. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no more than about 10^{-5} Siemens per centimeter.

26. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no more than about 10^{-4} Siemens per centimeter, and wherein the toner particles have an average bulk conductivity of no less than about 10^{-10} Siemens per centimeter.

27. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no less than about 10^{-1} Siemens per centimeter.

28. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no less than about 10^{-7} Siemens per centimeter.

29. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no more than about 10^{-7} Siemens per centimeter.

30. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no more than about 10^{-7} Siemens per centimeter.

31. A toner according to claim 1 wherein the polypyrrole is present in an amount of at least about 5 weight percent of the toner particle mass and wherein the polypyrrole is present in an amount of no more than about 20 weight percent of the toner particle mass.

32. A process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process.

33. A process according to claim 32 wherein the toner particles are charged triboelectrically by admixing them with carrier particles.

34. A process according to claim 33 wherein the toner particles are charged triboelectrically by admixing them with carrier particles.

35. A process according to claim 32 wherein the toner particles are charged inductively.

36. A process according to claim 35 wherein the toner particles are charged in a developing apparatus which comprises a housing defining a reservoir storing a supply of developer material comprising the toner particles; a donor member for transporting toner particles on an outer surface of said donor member to a development zone; means for loading a layer of toner particles onto said outer surface of said donor member; and means for inductive charging said toner layer onto said outer surface of said donor member prior to the development zone to a predefined charge level.

37. A process according to claim 36 wherein said inductive charging means comprises means for biasing said toner reservoir relative to the bias on the donor member.

38. A process according to claim 36 wherein the developing apparatus further comprises means for moving the donor member into synchronous contact with the imaging member to detach toner in the development zone from the donor member, thereby developing the latent image.

39. A process according to claim 36 wherein the predefined charge level has an average toner charge-to-mass ratio of from about 5 to about 50 microCoulombs per gram in magnitude.

40. A process for developing a latent image recorded on a surface of an image receiving member to form a developed image, said process comprising (a) moving the surface of the image receiving member at a predetermined process speed; (b) storing in a reservoir a supply of toner particles comprising a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process; (c) transporting the toner particles on an outer surface of a donor member to a development zone adjacent the image receiving member; and (d) inductive charging said toner particles on said outer surface of said donor member prior to the development zone to a predefined charge level.

41. A process according to claim 40 wherein the inductive charging step includes the step of biasing the toner reservoir relative to the bias on the donor member.

42. A process according to claim 40 wherein the donor member is brought into synchronous contact with the imaging member to detach toner in the development zone from the donor member, thereby developing the latent image.

43. A process according to claim 40 wherein the predefined charge level has an average toner charge-to-mass ratio of from about 5 to about 50 microCoulombs per gram in magnitude.

44. A process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the propellant stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a polyester resin, an optional colorant, and polypyrrole, said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, said toner particles having an average bulk conductivity of at least about 10^{-11} Siemens per centimeter.

45. A process according to claim 44 wherein each said channel has a converging region and a diverging region, and wherein said propellant is introduced in said converging region and flows into said diverging region, whereby said propellant is at a first velocity and first pressure in said converging region and a second velocity and a second pressure in said diverging region, said first pressure greater than said second pressure and said first velocity less than said second velocity.