A frequency dividing arrangement (5) comprises a frequency divider (6) coupled to an active filter (7) which is operative to suppress output radiation from the frequency dividing arrangement. The arrangement (5) may be incorporated into a frequency synthesis loop (4) of a television tuner circuit in order to reduce interference between the loop (4) and a down conversion stage of the tuner circuit.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LX</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FREQUENCY DIVIDING ARRANGEMENTS

This invention relates to frequency dividing arrangements, and in particular to frequency dividing arrangements which are suitable for use in tuners.

Frequency dividing arrangements, and in particular frequency dividing arrangements suitable for use in television tuning equipment typically comprise an input radio frequency amplifier followed by cascaded divide by two and divide by four elements which are realised in Emitter Coupled Logic (ECL) technology. The final dividing stage drives an output stage which interfaces with external circuitry. The output stage may be of ECL or transistor transistor logic (TTL) format, the ECL format producing balanced ECL type logic outputs by means of a differential transistor pair stage, and the TTL format being conventional TTL signal levels and circuitry. The differential transistor pair stage, by virtue of its gain, toggles rapidly and so produces a substantially square wave output which is very rich in harmonics.

Such frequency dividing arrangements are problematic in that they radiate electromagnetic signals at the harmonic frequencies of the square wave produced by the frequency dividing arrangement, which electromagnetic signals interfere with other circuitry in the vicinity of the frequency dividing arrangement.
The radiation of such electromagnetic signals is particularly disadvantageous when the frequency dividing arrangement is incorporated in a television tuner which also contains some intermediate frequency (IF) circuitry. This is because radiated signals having frequencies at harmonic frequencies at or near to the intermediate frequencies (such as 40 MHz) can be received by the IF circuitry within the tuner which leads to interference in the IF signal and distortion of the video picture.

It is an intention of the present invention to provide a frequency dividing arrangement which may be incorporated into a circuit arrangement and which reduces interference caused by electromagnetic signals radiated by the frequency dividing arrangement.

According to the present invention there is provided a frequency dividing arrangement for inclusion in a circuit arrangement, wherein the frequency dividing arrangement comprises a frequency divider coupled to an active filter, the active filter being operative to suppress output radiation from the frequency dividing arrangement.

The frequency dividing arrangement may form a whole or part of an integrated circuit.

According to the present invention there is further provided a tuner comprising a down conversion stage for providing an intermediate frequency signal in dependence
upon a radio frequency signal received by the tuner and a
local oscillator signal, and a frequency synthesiser means
for generating the local oscillator signal, wherein the
frequency synthesiser means includes a frequency dividing
arrangement comprising a frequency divider coupled to an
active filter, the active filter being operative to
suppress output radiation from the frequency dividing
arrangement.

The down conversion stage preferably comprises a
mixer for mixing the radio frequency signal with the local
oscillator signal to produce the intermediate frequency
signal, and the frequency synthesiser means preferably
comprises a voltage controlled oscillator for generating
the local oscillator signal and a feedback signal which is
afforded to a phase or frequency comparator via the
frequency dividing arrangement, which phase or frequency
comparator is arranged for providing a control signal for
the voltage controlled oscillator in dependence upon a
difference in phase or frequency between a reference
signal and a feedback signal afforded thereto from the
frequency dividing arrangement.

The invention will now be further described by way of
example, with reference to the accompanying drawings, in
which:

Figure 1 is a circuit diagram of a output stage of a
prior art frequency dividing arrangement;
Figure 2 is a schematic diagram of a television tuner which includes a frequency dividing arrangement according to the present invention;

Figure 3 is a circuit diagram of a preferred form of active filter; and

Figure 4 is a Bode plot illustrating attenuation characteristics of a preferred embodiment of the present invention and comparing them with characteristics of prior art frequency dividing arrangements.

Figure 1 is a circuit diagram of a prior art output stage of a frequency divider (not shown). The output stage comprises a long tail pair having transistors T_1 and T_2. The base electrodes of the transistors T_1 and T_2 are coupled to respective output terminals 1 and 2 of the final dividing stage of the frequency divider via resistors R_1 and R_2. The base electrode of each of the transistors T_1 and T_2 is coupled to the respective collector electrode via a capacitors C. The capacitors C and the resistors R_1 and R_2 are operative, in conjunction with the long tail pair, to slew rate limit the output of the frequency divider. However, the extent of slew rate limiting with this output stage is restricted and hence the degree of suppression of unwanted harmonics is also restricted.

An additional disadvantage with this output stage is that an external high order passive filter is required in
order to attenuate unwanted signals thereby to reduce output radiation from the frequency divider, and the passive filter cannot be fabricated in integrated circuit form. A further disadvantage with the passive filter is that it leads to attenuation of wanted signals which has to be compensated for in the frequency divider output stage by an increase in output swing accompanied by a decrease in output impedance in order that better matching into the filter be achieved.

Referring now to Figure 2, there is shown a schematic diagram of a television tuner which includes a frequency dividing arrangement embodying the present invention. The tuner comprises a frequency synthesis loop 4 which includes a frequency dividing arrangement 5.

The frequency dividing arrangement 5 comprises a frequency divider 6, which may be a known type of divide by N high speed prescaler, where for example N equals 64 or 256, coupled to an \(n^{\text{th}} \) order active filter 7.

An active filter is a filter which contains an active element, for example, a component arranged to provide gain. The 'order' of an active filter is a measure of how rapidly the attenuation of the filter increases with frequency.

The \(n^{\text{th}} \) order active filter 7, a specific example of which is described with reference to Figure 3 where \(n = 3 \), can be fabricated onto the same integrated circuit
chip as the frequency divider 6. The active filter 7 is operative to attenuate signals at intermediate frequencies (IF) thereby suppressing the radiation of electromagnetic waves from the frequency dividing arrangement 5.

The tuner shown in Figure 2 comprises a down conversion stage for providing an IF signal in dependence upon a radio frequency (RF) signal received by the tuner and a local oscillator signal. The down conversion stage includes a mixer 8 for mixing the RF signal with the local oscillator signal to produce use the IF signal. The frequency synthesis loop 4 generates the local oscillator signal and comprises a voltage controlled oscillator 9 for generating the local oscillator signal and a feedback signal which is afforded to a phase comparator 10 via the frequency dividing arrangement 5. The phase comparator 10 includes a means which provides a control signal for the voltage controlled oscillator 9 in dependence upon a difference in phase between a reference signal \(F_{\text{ref}} \) and the feedback signal.

The phase comparator 10 further comprises a programmable multimodulus divider (not shown) in the feedback signal path and a reference divider (not shown) in the reference signal path.

The phase comparator 10 may be replaced by a frequency comparator (not shown) in a case where the control signal is provided in dependence upon a difference
in frequency between the reference signal F_{ref} and
the feedback signal.

Since the active filter 7 is operative to suppress
output radiation, particularly at IF frequencies,
interference between the frequency synthesis loop 4 and IF
circuitry of the tuner is reduced.

Figure 3 shows a circuit diagram of a third order
active filter 11 which may be coupled to the frequency
divider 6 of the frequency dividing arrangement 5. The
third order active filter 11 receives frequency divided
input signals from the frequency divider 6 via input
terminals 1 and 2. The third order active filter 11
comprises a long tail pair, having a pair of transistors
T_3 and T_4 which are switched by the frequency divided
input signal. The collector electrodes of the transistors
T_3 and T_4 are connected to a voltage rail V_{CC} via
a filter network comprising resistors R_3, R_4 and a
capacitor C_1, and a diode D_1 provided for direct
current (d.c.) voltage matching. The third order active
filter 11 also comprises a pair of complementary circuit
networks 12 and 14 which provide complementary filtered
output signals at respective bonding pads 16 and 18. The
circuit networks 12 and 14 are similar to one another and
so only the circuit network 12 will be described below
with reference to Figure 3.

The collector electrode of the transistor T_4
affords an output signal which is fed to a feedback network comprising a pair of resistors \(R_5 \), \(R_6 \), a capacitor \(C_2 \) and a constant current source \(K_1 \). The feedback network is coupled to a cascode comprising a pair of transistors \(T_5 \) and \(T_6 \) and a pair of resistors \(R_7 \) and \(R_8 \) via a gain stage amplifier \(T_7 \) and \(R_{10} \) and unity gain follower transistors \(T_8 \) and \(T_9 \). The collector electrode of the transistor \(T_6 \) of the cascode is connected to \(V_{cc} \) via a resistor \(R_{11} \).

A capacitor \(C_3 \), which couples the resistor \(R_{11} \) to the corresponding resistor in the circuit network \(14 \), is operative in conjunction with the resistor \(R_{11} \) and the cascode to provide further filtering of the output signal which is afforded at the bonding pad \(16 \) via an emitter follower transistor \(T_{10} \) and a resistor \(R_9 \).

The particular component values are chosen so that the active filter 7 attenuates unwanted frequencies which may give rise to output radiation and which may interfere with other parts of the circuit in which the frequency dividing arrangement is situated.

Figure 4 shows a Bode plot illustrating the attenuation characteristics of the third order active filter 11 as compared with a prior art frequency divider and a prior frequency dividing arrangement which includes an external passive filter.
CLAIMS:

1. A frequency dividing arrangement for inclusion in a circuit arrangement, wherein the frequency dividing arrangement comprises a frequency divider coupled to an active filter, the active filter being operative to suppress output radiation from the frequency dividing arrangement.

2. An integrated circuit comprising a frequency dividing arrangement according to claim 1.

3. A tuner comprising a down conversion stage for providing an intermediate frequency signal in dependence upon a radio frequency signal received by the tuner and a local oscillator signal, and a frequency synthesiser means for generating the local oscillator signal, wherein the frequency synthesiser means includes a frequency dividing arrangement comprising a frequency divider coupled to an active filter, the active filter being operative to suppress output radiation from the frequency dividing arrangement.

4. A tuner according to claim 3, wherein the down conversion stage comprises a mixer for mixing the radio
frequency signal with the local oscillator signal to produce the intermediate frequency signal, and the frequency synthesiser means comprises a voltage controlled oscillator for generating the local oscillator signal and a feedback signal which is afforded to a phase comparator or a frequency comparator via the frequency dividing arrangement, which phase comparator or frequency comparator is arranged for providing a control signal for the voltage controlled oscillator in dependence upon a difference in phase or frequency between a reference signal and the feedback signal afforded thereto from the frequency dividing arrangement.
INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC: H 03 B 19/00; H 03 L 7/18; H 03 K 21/08

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 4</td>
<td>H 03 B; H 03 L; H 03 K</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EDN, volume 25, no. 19, 20 October 1980 (Boston, US), M. Force: "Low-noise interface circuits formal crystal-oscillator signals", pages 125-129,131 see page 128, lines 10-41; page 129, lines 34-56; figures 2,4a</td>
<td>2</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 10
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art.
 "Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 18th September 1986

Date of Mailing of this International Search Report: 28 OCT 1986

International Searching Authority: EUROPEAN PATENT OFFICE

Signature of Authorized Officer: M. VAN MEL
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FR, A, 2092627 (GENERAL RADIO CO.)
28 January 1972
see page 1, line 32 - page 5, line 27</td>
<td>1</td>
</tr>
</tbody>
</table>

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 08/10/86.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE-A- 2027517</td>
<td>09/12/71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1249598</td>
<td>13/10/71</td>
</tr>
</tbody>
</table>

For more details about this annex:
see Official Journal of the European Patent Office, No. 12/82