05/020022 A2 I} K A0 T VO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
3 March 2005 (03.03.2005)

A OO O

(10) International Publication Number

WO 2005/020022 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2004/027145

(22) International Filing Date: 20 August 2004 (20.08.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/647,070 22 August 2003 (22.08.2003) US

(71) Applicant (for all designated States except US): OM-
NILUX, INC.; 283 Great Valley Parkway, 130 West Union
Street, Pasadena, CA 91103 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): ADHIKARI,
Prasanna [NP/US]; 280 East Del Mar Boulevard,
#333, Pasadena, CA 91101 (US).

(74) Agent: RATTNER, Charles;
Darien, CT 06820 (US).

12 Homewood Lane,

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: SELF-HEALING TREE NETWORK

400

Timeout

Tirveout

& (57) Abstract: A communications network is provided with a self-healing topological architecture. Each node in the network de-
tects continuously transmitted beacon packets that are propagated through the network at regular intervals by a root node. Upon
failure to detect a new beacon packet after a predetermined time from a parent node, a network node determines a network isolation
condition and searches for another node that is still actively connected in the network. Algorithms are provided for registering with
and identifying active parent node candidates during a network failure so as to prevent the creation of network loops.

=

WO 2005/020022 A2 I} }10 Y A080A0 AT A0 00 0 AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

WO 2005/020022 PCT/US2004/027145

Title of the Invention:

Self-Healing Tree Network

Field of the Invention:

This invention generally relates to data communication, and in particular it relates to

network signaling.

Background of the Invention:

A communications\ network, such as a computer network, a telecommunications
network, an optical network, a wireless network, or any other network type, typically
includes a number of nodes that allow routing, signaling and communication of data between
electronic, telephonic or computing devices. Many such communications networks are known
to include Layer 2 (Ethernet) or Layer 3 (Internet Protocol or IP) switches to readily
accomplish these functions. The Layer 2 protocol is also referred to as a Data Link layer.
The main task of this Data Link layer is to configure a raw transmission line such that it
remains free of transmission errors.

Referring now to FIGS. 1-3, in an Ethernet-based local-area network (LAN), network
nodes or switches 102 are interconnected by a plurality of network segments 100. The key
function of such a node 102, which includes an Ethernet switch, is to forward a data packet it
receives on one of its ports to any one or more of the other ports. As a packet is received, a
node 102 examines its destination address to decide which segment the packet is to be
forwarded on. In a typical scenario, a node 102 or a switch makes a forwarding decision and

forwards a packet to appropriate network destination as soon as the entire packet is received.

10

15

20

WO 2005/020022 PCT/US2004/027145

Once such a decision has been made, the node 102 transmits the data packet over the
corresponding network segment 100. If the node 102 can determine which segment a packet
is to be forwarded, it forwards the packet to only that segment. If the node 102 has no
knowledge of where a packet is to be forwarded or if the packet is to be forwarded to
everyone (such as in the case of a broadcast packet), it forwards the packet to all the network
segments 100 with which it is connected, with the exception of the segment from which the
packet was received.

One characteristic of a network segment 100 is that all the connected network nodes
102 share a common physical medium for the transmission and reception of data packets.
Such data packets typically include a source address and destination address, commonly
referred to as media access control (MAC) addresses, which allow nodes to identify proper
switching of the data packet within the network.

By sharing the same physical medium, all the nodes 102 in a segment 100 can receive
data packets transmitted by any other node 102 connected to that segment 100. However, it
also allows the nodes 102 within the same network segment 100 to interfere with each other
when two or more nodes 102 transmit a data packet at the same time. Such collisions can
significantly reduce the throughput of the network once the number of nodes 102 in each
segment 100 grows.

As the number of nodes 102 in a network grows, a corresponding reduction in
network capacity or bandwidth due to collisions is alleviated by separating various segments
into two or more separate segments 100 and using bridging devices to bridge data traffic
between them. Such bridging devices, which may likewise include an Ethernet switch, have
two or more interfaces, each connected to a different network segment 100. The bridging

devices function in such a way that the aggregate of all the connected segments 100 behave

10

15

20

WO 2005/020022 PCT/US2004/027145

like a single LAN. Packets generated within one segment 100 and destined for a node 102
within the same segment 100 are typically not transmitted into another segment 100, thus
reducing network collisions.

One such function that a switch is required to perform is the propagation of a
broadcast data packet that is generated in one segment 100 and is meant to be transmitted to
all other segments 100 with which the switch is connected. The switches must also be able to
forward other types of data packets with unknown destinations. For example, when a switch
receives a data packet and it does not know the segment 100 in which the destination address
for the packet resides, it forwards the packet to all the segments 100 except the segment from
which the packet was received.

Because of the characteristics of segments 100 and nodes 102 outlined above,
network segments 100 should, in general, not be interconnected by nodes 102 in such a way
that a network loop is created. The problems created by network loops can be illustrated by
the simple case of three switches 102 that are used to connect three network segments 100, as
shown in FIG. 1. When such a loop is created, any broadcast packet generated within one
network segment 100 is forwarded by the switches 102 through the network and the packet
continues to propagate around the network until the network loop is broken. The situation is
even more pronounced in the case of a mesh network, as shown in FIG. 2, where a broadcast
packet not only gets propagated but also gets multiplied as it propagates around the network.
This eventually leads to the network as a whole to be saturated with broadcast packets, a
situation often referred to as "broadcast storm,” such that network bandwidth is adversely
affected.

Accordingly, in order to avoid these problems, a Layer 2 mesh network must not have

any loops in at least its logical connections. One optimal way to interconnect network nodes

10

15

20

WO 2005/020022 PCT/US2004/027145

102 without creating a network loop is to deploy them in a tree topology, as illustrated in
FIG. 3. Such a topology may optimize the average distance between segments in a network.
As will be readily appreciated, a mesh network can be converted into a tree network by
eliminating certain logical or physical network segments 100.

A tree network, however, suffers from certain limitations. In particular, if any network
segment 100 or switch fails, all the network segments 100, nodes 102 and switches that are
downstream from the failure become isolated and are no longer able to transmit or receive
data packets via the network. In such a case, the network gets separated into two or more sub-
networks that are isolated from each other. The nodes 102 in one such sub-network would not
be able to receive traffic from the nodes 102 in any other sub-networks. Such isolation
remains in effect until either the network recovers from the failure or the network topology is
changed.

As one solution to the deficiencies of tree networks, the IEEE has introduced a
spanning tree protocol (STP) that allows a self-recovery capability by a network node in
response to a network failure. However, upon isolation detection, network recovery in such a
system is a slow process, typically requiring several minutes.

Accordingly, there is a need for a network isolation detection and recovery protocol

that addresses certain problems of existing network technologies.

Summary of the Invention:

It is an object of the present disclosure, therefore, to have a system directed to
particular features of a self-healing tree network. In particular, one aspect of the invention
includes a method and apparatus for detecting a network failure at a network node, in which a

beacon packet is received from a parent node over a network. An aging indicator for the

10

15

20

25

WO 2005/020022 PCT/US2004/027145

beacon packet is stored after an aging interval and a network isolation condition is
determined if the aging indicator is not reset by a second beacon packet received before a
second interval greater than the aging interval.

The beacon packets may originate from root node that generates beacon packets
having a unique source and destination address, as well as other unique identifiers. In certain
embodiments, the beacon packets contain no payload information other than these identifiers.
The beacon packets are continuously transmitted to downstream nodes at an interval that is
less than an aging interval used by the downstream node to age the beacon packet.

Upon determining a network isolation condition based on an age of a stored beacon
packet received from a parent node, a node may search for a new source of beacon packets
from a neighboring node other than the parent node. If such a neighboring node is found, the
isolated node transmits a registration request to the neighboring node to establish the
neighboring node as a new parent node.

Upon receipt of a reconfiguration request from a management system, the node may
first transmit a discovery message on a parent port to determine if the neighboring node is a
descendant and when the neighboring node is not a descendant, a registration request is sent

to the neighboring node. In this manner, creation of network loops may be avoided.

Brief Description of the Drawings:
Further aspects of the present disclosure will be more readily appreciated upon review
of the detailed description of its various embodiments, described below, when taken in

conjunction with the accompanying drawings, of which:

FIG. 1 is a diagram of a simple network loop of the prior art;

10

15

20

25

WO 2005/020022 PCT/US2004/027145

FIG. 2 is a diagram of an exemplary mesh network of the prior art;

FIG. 3 is a diagram of an exemplary tree network of the prior art;

FIG. 4 is a diagram of various operating states of a network node according to certain

embodiments of the present disclosure;

FIG. 5 is a flowchart of an exemplary network self-healing process performed by a

network node according to certain embodiments of the present disclosure; and

FIG. 6 is a timing diagram by which a network node determines its isolation based on

aging of beacon packets according to certain embodiments of the present disclosure.

Detailed Description of the Specific Embodiments:

In self-healing communications networks described herein with respect to FIGS. 4-6,
a number of nodes are physically deployed in a mesh configuration and may be logically
connected in a tree structure. The node may provide sophisticated switch functions, such as
switching decision based on the IP address or TCP port of the received packet. Such
interconnected nodes can then simultaneously behave as Layer-2 (Ethernet) switches and
Layer-3 (IP) switches, wherein Layer-2 switching may be provided for applications that do
not need the flexibility or the additional complexities of Layer-3 switching and the Layer-3
capabilities allows for additional network flexibility. Such additional switching functionality
is advantageous for provisioning advanced services, but is not required to perform the
processes of the present disclosure.

The decision as to where a received packet is sent (i.e., a switching decision) is
determined by each network node based on the MAC address of a received data packet. The

decision on whether to perform packet switching as a Layer-2 switch or a Layer-3 switch

10

15

20

WO 2005/020022 PCT/US2004/027145

may also be determined based on the MAC address of the data packet. This flexibility in per-
packet behavior allows each node to behave as a Layer-2 switch and a Layer-3
simultaneously, though this requires additional processing by a central processing unit (CPU)
of the node. This dual functionality of network nodes with respect to Layer-2 and Layer-3
switching is advantageous, however, for purposes of this discussion, Layer-2 or Ethernet
switching of the network will be described, although other implementations are readily
contemplated.

There are two primary ways of representing a network link: a physical link and a
logical link. A physical link is a physical medium, i.e. a fiber optic cable, used to transmit and
receive data signals between any two nodes and thus is identified by the characteristic of the
physical transmission medium. Two nodes that are interconnected with each other by means
of a link are referred to as neighbors.

A logical link is a interface between two such nodes and is characterized by fields in
data packets used by the two nodes to communicate with each other which are exchanged
over the physical link. The physical links described herein will be characterized as FSO (Free
Space Optics) links, The two nodes may communicate using the Fast Ethernet (i.e., 100 Base
FX) protocol. This allows two nodes to exchange data packets between them by formatting
them as Ethernet data packets. For purposes of the description herein, a link between two
nodes may be considered as a point-to-point fiber optics link that uses Layer-2 transmission
protocols. Point-to-point links are used to establish a line of communication between two end
points of a network segment. Such point-to-point links are commonly used to interconnect
Layer-2 devices. However, it should be readily appreciated that the present disclosure may be
implemented as any type of communications network, and is not specifically limited to a

fiber optics environment using a particular communications protocol.

10

15

20

WO 2005/020022 PCT/US2004/027145

A link between any two nodes has also been referred to herein as a network segment.
In particular, each node interfaces with as many as four other nodes according to the present
disclosure. In addition, a node also has an additional interface, referred to as User Interface
(UI), through which the user of the node (i.e. a customer or subscriber) may access the
network. These Ul interfaces do not necessarily participate in the disclosed process described
herein.

For user devices accessing the network through the U], the node behaves exactly like
a Layer-2 switching device, but with two added functionalities. For all upstream traffic (i.e.,
the traffic going from the user to the network), a rate limitation feature may be imposed such
that any data transmissions that exceed a predetermined bandwidth usage are dropped. This is
implemented to make sure that no user can send data traffic into the network at rates higher
that an allowed rate. For all the downstream traffic (i.e., the traffic going from the network to
a user), edge filtering is implemented such that any packet destined for other users, other than
broadcast packets, are not passed on to a particular user.

As explained above, a node in the present network acts as a Layer-2 switch. In fact, a
node not only behaves as a single switch, but as multiple logical switches, allowing for
operation of multiple logical networks, such as virtual LANs (VLANS), that can overlay the
physical mesh network in a tree topology. A VLAN may then be considered a Layer-2
(Ethernet) logical network that spans the mesh network. Each node in the network functions
as a Layer-2 (Ethernet) switch, forwarding traffic based on their Ethernet MAC destination
addresses and any assigned VLAN tags. A network can thus simultaneously have
multiple VLLANS, each identified uniquely by its own VLAN-ID tag. All the VLANs may be
topologically balanced and optimized and may overlap the same set of physical links and

nodes.

10

15

20

WO 2005/020022 PCT/US2004/027145

It should be readily apparent from the description of the network herein that the
physical network may have one or more loops. In fact, the process disclosed herein would
add no value to a network that does not have such physical loops. The requirement that the
network does not have any loops may apply to logical network topologies only and not
necessarily to the physical connections of the network. Such a logical network can be created
by disabling a node's logical interface with a segment even if the physical connection still
exists. This allows for the creation of a logic tree network overlaid on top of a mesh network.
Such logical connections can
be based on the type of data packets transmitted or received there-through. For example,
Ethernet packets can be created only for packets with certain VLAN tags. Therefore, VLAN
tags also allow for creation of logical tree networks, such as VLAN Tree Networks (VTNs),
overlaid on top of the physical network in order to determine the routing of such VLAN-
tagged packets. The node described herein supports VLAN tagging, allowing for creation of
logical network topologies as discussed herein.

In order to make a switching decision, switching hardware maintains what is referred
to as a VLAN Table and a MAC Table. Each entry of the tables identifies the ports that are
the members of a VLAN. Each time a packet is received by the switching hardware of a
node, it first examines a standard MAC Address Table to see if it can find an entry matching
the destination MAC address and/or the VL AN tag of the packet. Each entry in the MAC
Table includes, among other information, a MAC Address, a VLAN and an interface ID (port
number). If a corresponding entry is found for a received packet with a destination MAC and
VLAN tag, that packet is transmitted via the port specified in the entry. If no matching entry
is found in the MAC Address Table, the switch may refer to the entry in the VLAN Table

corresponding to the VLAN tag of the received packet. If the VLAN entry is not enabled, the

10

15

20

WO 2005/020022 PCT/US2004/027145

packet is dropped. Otherwise, the node transmits a copy of the packet through each interface
that is designated as a member of the VLAN.

Even though a VTN spans all the nodes in a network, it does not necessarily make
each user attached to a network node a member of the VIN. In some embodiments, each user
needs to be "subscribed" to the membership of each VTN in order for it to use that VTN for
customer data. This feature allows network operates to create different subnets within a mesh
network by assigning different customers or set of customers to different VTNs.

As previously described, the VTN is a tree network. Such a tree structure guarantees
that while all the nodes are reachable from the root of the tree, no network loops are created.
A general tree structure, however, has the previously described disadvantage of a failure of a
link that forms a branch of the tree causing all downstream nodes to be isolated from the rest
of the network. Unless all the nodes downstream are notified, these nodes would not detect
such an isolation and would continue to attempt to use the old VIN to send and receive data
packets.

As described in detail herein below, a VTN algorithm is now disclosed that allows a
node to automatically detect and self-recover from any kind of link or other network
isolation. The algorithm described herein as been developed to autonomously create and
manage a logical network that spans the maximum number of nodes in the network described
above. The algorithm or the process autonomously creates one or more topologically
identical logical networks which spans the maximum number of nodes in the network. It
creates such networks such that no such network has a single network loop. It generates the
network with a tree-like topological structure such that the average distance between nodes
remain close to minimal. When a set of nodes are logically isolated from the core or the

network, the algorithm allows for the nodes that are isolated to detect their isolation. When

10

10

15

20

WO 2005/020022 PCT/US2004/027145

such isolation takes place and detected by the affected nodes, the process allows the affected
nodes to search for an alternate connection to the logical network. When such alternate
connection is identified, the algorithm allows such nodes to re-establish a network connection
while making sure that such process does not create a network loop. More importantly the
algorithm allows for all the actions described above, namely tree-like network creation,
network isolation detection and recovery from isolation, take place by automatic interaction
among the nodes and without any outside or manual intervention. In addition, the algorithm
outlined also allow for reconfiguration for the topological structure of the network by means
of external sources like a management system while guaranteeing that no loops are created
during such a process.

These functions above would be challenging, if not impossible, to implement in a
large and dynamic network if each node has to keep track of the topology of the entire
network. Therefore, the algorithm allows nodes to self-detect their isolation from the network
and identify an active branch to which it can connect, all without having to know the
topology of the entire network. It is desirable for the algorithm to be very efficient in
detecting and recovering for such isolation while minimizing the CPU utilization of a node by
instead using a node’s switching hardware to perform such functions.

The algorithm is distributed in the sense that all the nodes use an identical algorithm,
but operate it independently of each other while in an idle state, as described later below.

The distributed nature of the algorithm allows the nodes in the network to establish
connections among their neighbors in such a fashion that the resulting network tree spans the
maximum number of nodes in the network, even though each node does not have a complete
picture of the entire network. Each node only has a local picture of the network, namely its

parent node (PN). By definition, a parent node is a neighboring node that is closer to the root

11

10

15

20

WO 2005/020022 PCT/US2004/027145

node of the tree network. In constructing such a tree network, the only decision that a node
makes that is topologically meaningful is that it identifies its parent node.

In order to assist a node in identifying its parent, the network uses a special type of
Layer-2 data packet referred to as a beacon packet. Beacon packets are special packets that
may have a globally identical destination address, VLAN-ID and a unique EtherType field in
its header. Beacon packets are generated and transmitted periodically by root nodes of the
network. Each node in the network then forwards every beacon packet to all of its physically-
connected neighbors. A node considers a beacon packet to be valid only if the packet is
received from its parent node. In normal operation, all other received beacon packets are
dropped by the node.

The root nodes are like any other nodes with the exception of the fact that they
generate special types of packets referred to as Beacon packets and at least one root node has
to be functioning at any time in the network. If there are multiple root nodes, they should be
logically interconnected with each other in order to facilitate the creation of the network
disclosed herein. The definition of a root node in conjunction with definition of parent node
for each of the other nodes in the network completely defines a logical tree structure in the
network presently disclosed. It should be readily appreciated that devices other than root
nodes may be used to generate beacon packets.

The algorithm is particularly suited for the types of network that have one or more
nodes serving as gateways. In networks with gateways, such gateways could serve the
purpose of the root nodes. However, no part of this algorithm requires that a root node also be
a gateway or vice versa.

As a result, in normal operation, beacon packets propagate downstream from the root

through all the branches of the tree network. Beacon packets that are periodically transmitted

12

10

15

20

WO 2005/020022 PCT/US2004/027145

in this manner allow all network nodes to detect when they are isolated from the root of the
network and further allow such nodes to find neighboring nodes that are not isolated. For
example, in case of an isolation due to a failure of a link or a node that is part of the tree, all
the nodes downstream from the failure can detect their isolation by detecting the absence of
beacon packets from their parent nodes after a certain interval. When such a failure takes
place, nodes that are not downstream from the failed link or node are not affected. They
continue to forward beacon packets to all their connected neighbors. This allows an affected
node to search for an alternate connection to the tree by enabling reception of beacon packets
from all its neighbors. Reception of beacon packets from a neighbor for a certain
predetermined interval guarantees that the neighbor from which the beacon packet is received
is not affected by the failure. If such a neighbor is found, the affected node would designate
that neighbor as its new parent node, thus establishing a logical connection with the un-
isolated part of the network.

Each beacon packet is generated with the same p;edeﬁned, globally identical
destination address. The source MAC Address of a beacon packet may correspond to the
MAC Address of the root node that is generating the beacon packet. Beacon packets
generated by two or more root nodes can be distinguished from each other by the Source
MAC Address of the packets. The unique destination MAC addresses may be used by each
downstream node to identify a received beacon packet.

Alternately, in an Ethernet network supporting the 802.1Q protocol, beacon packets
could be identified by a specific VLLAN tag or an absence of a VLAN tag. In the latter case,
beacon packets are transmitted by each node without VLAN tags. Therefore, when beacon
packets are received by each port, they are received without a VLAN tag. As beacon packets

arrive at each port, a VLAN tag is assigned to each beacon packet by the switching device of

13

10

15

20

WO 2005/020022 PCT/US2004/027145

a node. When a beacon packet without a VLAN tag is received by a node, the node may also
assign a VLAN tag to the packet based on the state of the port on which it is received. If the
port is enabled to drop beacon packets it receives, all beacon packets received by that port are
assigned a unique VLAN tag referred to as NULL VLAN. Otherwise, if the port is enabled to
accept the beacon packets it receives, all beacon packets received by that port are assigned
unique VLAN tag referred to as a Beacon VLAN tag

Beacon VLAN tag is the tag assigned to beacon packets by a node as they are
received by a port that is enabled to receive a beacon packet. The scope of Beacon VLAN tag
is limited to only one node, namely the receiving node. This is because Beacon packets are
passed between nodes with their VLAN tags removed. Therefore, each node in the network
could assign a Beacon VLLAN tag that is most suited for its need. However, when a node
sends a registration message or a discovery message as described later below, it must use a
VLAN tag that is common between the two nodes. The VLAN tag can therefore be the same
as the Beacon VLAN tag to accommodate this requirement.

If the packet is received on a port without a VLAN tag, the switching hardware
assigns a VLAN tag to the packet on the basis of port where the packet is received.
Alternately, the switching hardware can assign a VLAN tag to an untagged packet based on
the Ethertype field of the packet. Each port can also assign a unique VLAN tag to all
untagged packets it receives.

Once the beacon packets are identified, a node could accept or discard the packet
based on a state of the interface where such packet was received. Using ingress filtering,
switching hardware decides on a per-packet basis whether or not to accept a packet it receives
on each one of its ports. Such a decision is based on the VLAN tag of the received packet or

the VLAN tag assigned to an untagged packet.

14

10

15

20

WO 2005/020022 PCT/US2004/027145

When a packet is received with a VLAN tag, the switching hardware examines the
VLAN tag of the packet. If the port where the packet is received is a member of the VLAN,
the packet is accepted for further processing. On the contrary, if the port is not a member of
the VL AN, the packet is discarded.

A beacon packet payload can be used to include various kinds of information. For
example, it can include information to facilitate authentication of beacon packets by each
node. It can also include information with which a node needs to be updated every time it
searches for and finds beacon packets. For example, beacon interval information, aging
interval information and the like can also be included as part of the beacon packet payload.
The beacon packet payload may also convey a VLAN ID to be used for registration, as well
as VLAN IDs for all logical network trees created. It may also include filler bytes to meet a
minimum Ethernet field size requirement. However, it is possible to implement the use of
beacon packets without any payload information.

A beacon interval identifies the interval at which beacon packets are transmitted by
the root node or other beacon source. The greater the frequency of beacon packet
transmissions, the quicker a node may detect its isolation. Therefore, a better recovery time of
anetwork may be achieved, since beacon outages can be determined in a shorter interval.
Each root node will transmit a beacon packet at least as often as indicated by this parameter.
The beacon interval, or changes in the beacon interval, can be communicated by the root
node via the beacon packet payload.

In order to determine an isolation condition using such periodically transmitted
beacon packets, it is not necessary to detect the presence of beacon packets so long as the loss
of beacon packets can be detected. Existing address aging functions and automatic address

learning feature found in existing switching hardware can be used to efficiently detect the

15

10

15

20

WO 2005/020022 PCT/US2004/027145

loss of beacon packets at wire speed without sacrificing CPU processing of the node. A node
detects an outage by means of periodic MAC address aging of beacon packets received from
a parent node. The address aging is performed at periodic interval referred to as an aging
interval, which must be greater than the beacon interval, and can be on the order of
milliseconds.

An outage interval is the interval during which at least one beacon packet needs to be
received by a node in order prevent it from concluding that beacon packets have been lost due
to network isolation. If no beacon packet is received during an outage interval or longer, the
event is referred to as beacon outage In other words, if no beacon packets are received during
a defined outage interval, a node will determine that it has become isolated and it begins a
search for a new source of beacon packets from its neighbors. The outage interval may be
upper-bounded by two times the aging interval and lower-bounded by the aging interval,
though other intervals larger than the aging interval may be used with varying efficiency.
Communication of an outage interval to be used by a node, or changes thereto, can be
communicated in beacon packet payloads as described previously.

The existing address learning functions performed by existing switching hardware of
a node generally record source addresses of any received data packets so that the switch can
determine the port that the packet needs to be transmitted on in order to properly propagate
future packets downstream through the network to their destination. In order to free memory
space, anode should perform address aging to remove old addresses after a time. However,
such devices have limited memory capability and cannot store all such entries indefinitely,
and therefore, entries need to be removed periodically to make room for new entries.
Therefore, such devices implement address aging function which remove these from the table

in a periodic manner.

16

10

15

20

WO 2005/020022 PCT/US2004/027145

To do this, entries in the MAC address table are flagged after a period of time by the
aging function and flagged entries are then periodically removed. If a new packet is received
with the same source address, the entry in the MAC address table may be replaced and the
aging flag for the entry is automatically removed. If operating in 802.1Q mode, the device
may also store the VLAN tag of the packet

This aging process described immediately above may be modified and used to age
beacon packets that are received at regular and brief intervals. The aging function for beacon
packets is correspondingly brief (on the order of milliseconds) and if an age flag for the latest
stored beacon packet is ever indicated, an isolation can be more quickly determined.
According to the address aging and learning functions as modified in certain embodiments
herein, entries in the MAC Address Table have flags referred to as aging bits. Each time a
beacon packet with a specific Source MAC Address and VLAN tag is received, the switch
sets the aging flag for the entry corresponding to the Source MAC Address and VLAN tag of
the beacon packet. If no such entry exists, a new entry is created in the table with the aging
flag set. Each time an aging function is performed, the switch resets the aging flag of each
entry in the MAC Table. If, during an aging process herein, an entry is found which already
had its aging bit at a reset state, the switch removes the entry and may notify the CPU of the
node that is managing the switch for which the specific entry has been removed. Within an
interval after such notification, the CPU may determine that a beacon outage event has
occurred. It should however be understood that address aging on the Source MAC Address of
beacon packets using standard functions provided by Ethernet switches is only a one way of
implementing the algorithm and is not required in all embodiments

In any network, it is highly desirable to minimize the time it takes a node to detect an

isolation event from the time the event actually takes place. With the algorithm disclosed

17

10

15

20

WO 2005/020022 PCT/US2004/027145

here, the time it takes a node to detect network isolation is directly proportional to the beacon
interval, but is no less than the beacon interval. The shorter the beacon interval, the shorter
the time it takes a node to detect its isolation. If the modified aging process described herein
is used to detect beacon outage, the time it takes to detect an outage event is directly
proportional to the aging interval but is no less that aging interval. Therefore, the outage
detection time can be reduced by reducing the beacon interval and the aging interval.

Reduction of beacon interval requires generation of beacon packets by a root node at a
higher frequency. Since beacon packets are very simple and small, generating them at higher
frequency is not a significant challenge. In addition, since beacon packets only need to be
generated by the root nodes, they can be generated by special hardware devices designed
solely for the purpose of generating beacon packets. Aging on the other hand needs to be
performed by each node in the network. However, as discussed earlier, the aging process is
also a simple operation and can be implemented in hardware.

In actual implementation it is desirable to make the aging interval somewhat larger
than the beacon interval at which beacon packets are transmitted. The primary reason for this
is to make sure that there are no false isolation detections due to variance in the interval at
which beacon packets are received. As individual beacon packet propagates through the
network, it can be delayed at each node due to congestion in the network and such delays
may accumulate as the packet goes from one node to the other. This can result in a variation
of beacon packet arrival time at each node, a phenomenon commonly referred to as jitter.
Even though such delays are small as compared to the beacon interval time, if the aging
interval does not properly accommodate for jitter, a node may conclude that an isolation has

taken place merely because a beacon packet was slightly delayed on its way to the node.

18

10

15

20

WO 2005/020022 PCT/US2004/027145

Another compelling reason to make sure that aging intervals are sufficiently long is to
avoid detection of isolation when such isolations are short lived. For example, if a link gets
disconnected momentarily such that only one beacon packet gets lost, it may not be
meaningful to reconfigure the network. Therefore, it may be appropriate for a node to wait
for multiple beacon packets to get lost before an isolation is determined. This can be achieved
by making the aging interval several times larger than beacon interval. For example, if aging
interval is N times the beacon interval, N consecutive beacon packets have to be lost before
beacon outage can be declared. The ratio of the aging interval to the beacon interval is based
on characteristics of the network in which the disclosed process is petformed. In networks
with fiber optics links, where probability of loss of packets is minimal, an aging interval to

beacon interval ratio of 2 may be more than sufficient, whereas for wireless networks where

_ the probability of a loss of packets is higher, a ratio or 3 or 4 may be better. Such ratio

depends on the probability of loss of packets for reason other than isolation.

Another consideration in designing a self-healing network is the network capacity
consumed by overhead traffic like beacon packets. The size of the overhead network capacity
s dictated by the size of beacon packets and the frequency at which they are sent. Therefore,
much of the overhead network capacity could be consumed by beacon packets. As was
discussed above however, the beacon packets of the disclosed process carry very limited
information so as to limit consumption of overhead network capacity. In fact, the size of
beacon packets is dictated mostly by the minimum data packet size allowed by a network
protocol. For example the minimum Ethernet packet size is 84 Bytes (including preamble and
inter packet gap). If beacon packets have the size of minimum Ethernet packet and are
transmitted every 50 ms, that frequency would allow a node to detect isolation within 100 ms,

and would consume only about 0.01 % of the total network capacity of each 100 Mbps link.

19

10

15

20

WO 2005/020022 PCT/US2004/027145

Reducing the interval to 5 ms would achieve isolation detection within 10 ms while
consuming only 0.1% of the network capacity.

Another attractive feature of the disclosed algorithm is the scalability of the
algorithm. Just like the isolation detection time, it is desirable to reduce the time it takes for a
network to recover from such isolation. As can be expected, such recovery time is directly
proportional to the number of nodes in the network, i.e., the more nodes there are, the longer
it takes the entire network to recover. However, with the disclosed algorithm, the recovery
time is proportional to Log(N), where N is the number of nodes in the network. Therefore, the
recovery time does not grow significantly as the number of nodes in the network grows.

Using all the functionality described in the foregoing, a logical tree network deployed
as a physical mesh is now provided with nodes that can automatically identify a beacon
outage and reconfigure its branch of the tree network in response thereto. In such a network,
detection of network isolation may happen on the scale of microseconds. Convergence, or
network recovery, is correspondingly more expedient, with self-recovery limited only by
speed of network hardware. Optimization and balancing of the network (such that every
branch has the same number of nodes) is possible and may be substantially maintained after a
self-healing process, since recovery propagates around the center of the network failure.

This solution is scalable to large scale networks and provides a Log(N) recovery rate,
where N is the number of nodes in a network. The solution utilizes features that may be
provided in existing Ethernet switches, such as automatic address learning and aging
functions to detect the loss and recovery of beacon packets, an example of which is specified
in IEEE standards 802.1Q. Ingress filtering may be used for selectively dropping beacon
packets. Broadcasting and multicasting features are used to forward beacon packets to all

neighboring nodes. Thus, the network functions disclosed herein work may be adapted to

20

10

15

20

WO 2005/020022 PCT/US2004/027145

existing Ethernet chipsets, and the CPU in each node does not have to get involved until a
network failure occurs.

The network functions described herein also prevent the creation of network loops,
even for a transient time, without requiring intervention by a remote management system).

Particular features of the present disclosure will now be referenced with respect to
FIGS. 4-6. Turning first to FIG. 4, there is depicted a state diagram 400 of the various
exemplary operating states of a node that automatically detects and recovers from upstream
network failures. The node may be considered to be implemented in terms of a set of states of
a Finite State Machine (FSM). Each state is characterized by a set of actions that the node
performs while in that state and a set of actions the node performs when leaving the state to
some other state due to the occurrence of a network event. A node in the instant VTN may
operate in the six states as illustrated in FIG. 4.

The Idle State 410 is the normal operating state of a node. During this state 410, the
node has one of its neighbors designated as its parent node (PN) and the corresponding port
through with it communicated with PN is designated as its parent port (PP). During the Idle
State 410, a node receives beacon packets from all neighbors and drops beacon packets
received from any neighboring nodes that are not its parent node. Such an operation would
normally require the CPU at each node to examine the source address of beacon packets and
drop them if they are not received from the PN. However, by using the ingress filtering
feature of the switching hardware, processing power is preserved since the switching
hardware of a node may instead perform this function.

The node can enter the Idle State 410 from three other states: Registration State 460,

Discovery State 420 and Reconfiguration State 430. Regardless of which state the transition

21

10

15

20

WO 2005/020022 PCT/US2004/027145

is made from, the transition is made only if the node has a parent note from which it is
receiving beacon packets.

While in the Idle State 410, the node may receive a Registration Request Message
(RQM) that is a request from a neighbor to establish the node as its PN in response to an
outage event, a Reconfiguration Request Message (RCM) that is a request from a neighbor to
establish the node as its PN in response to a reconfiguration command from a network
management system, or a Node Discovery Message (NDM) that is received from a neighbor
for the same reason. The node may also receive a fourth type of message, a Parent Change
Message (PCM), from a remove management entity that is managing the‘network to initiate
reconfiguration of the network as described below. The circumstances under which these
messages are received and the format of these messages are discussed below. A node not in
the idle state 410 would not send an ACK message back to the requestor.

If anode in the Idle State 410 receives an RCM or RQM from a neighbor, it sends a
response, called a Registration Acknowledgement Message (ACK), to the neighbor when the
neighbor is allowed to become a child. If VLANSs are being used for logical network, the
node makes the neighbor a member of all the VLANS being used. Once such actions are
performed, it sends an ACK back to the requesting node indicating a success of such
operation. Alternately, if the neighboring node is not allowed to be a child node, no action is
taken by the receiving node other than sending an ACK back to the requesting node with an
error flag indicating such condition,

The format of ACK messages can depend on the network protocol. Such ACK
messages can also convey other information that need to be shared by the two neighboring

nodes. ACK messages are addressed specifically to the node that is being responded to. In

22

10

15

20

WO 2005/020022 PCT/US2004/027145

Ethernet network, ACK messages are transmitted with the Destination MAC Address
identical to the MAC address of the requesting node.

A node may also receive a Node Discovery Message (NDM) from any other node in
the network. As will be evident later, a NDM message is sent by a node to another node to
discover any ancestor-descendant relationship between them. In order to handle NDM
message, a node in the Idle State 410 has a variable, REQUEST ID, to keep track of
identification of the source of the message. If the value REQUEST ID is 0, the node updates
this variable with the MAC address of the requesting node and sends a message, called Node
Found Message (NFM), to the requesting node. It also starts a timer when such a response is
sent. After the timer expires, the variable is set to a '0' if it is not already so. If, when NDM is
received, the REQUEST ID is other than '0' or the node is not in the Idle State 410, the node
does not send out a response.

A node may receive a Reconfiguration Request Message (RCM) from its neighboring
node when the sender is attempting to make the node its PN following a request to do so by a
central management system. Conditions under which the requesting node may not be allowed
to become a child are: (1) the MAC address of the requestor does not match REQUEST ID
variable; (2) whether the requesting node is PN of the node receiving the request; (3) the link
interconnecting the node and the neighboring node is known to be non-functioning for
transmission of packets 4) such a link has been disabled for usage by some central
managem;:nt system.

When in the Idle State 410, if a node receives a PCM from a network remote
management system, the node makes a transition to the Discovery State 420. A transition to
this state 420 does not change the overall behavior of the node. The purpose of the Discovery

State 420 is for a node to verify that a prospective parent node (PPN) is not one if its

23

10

15

20

WO 2005/020022 PCT/US2004/027145

descendants. Since a node, which is being asked to change its parent node, does not have a
complete topological structure of the network, it has to have a way of identifying if a PPN is
not its own descendant. A consequence of not doing so may lead to creation of a network
loop which is isolated from the rest of the network.

If PPN is allowed to be a parent node, the PPN sends a response to the requestor
indicating that the operation can proceed. If, however, the change is not allowed to be made,
the PPN sends a response to the requestor indicating that the operation can not proceed. Some
of the conditions under Whi!ch such changes are not allowed include: (1) a REQUEST ID
field is not set to '0' (2) PPN is not a neighbor node of the requestor; and (3) the link between
the node and PPN is not usable (either the link is not functioning or has been disabled).
While making a transition to Discovery State, the node sets the value of its REQUEST ID
variable to '0'.

During the Discovery State 420, the node continues to operate as it does in the Idle
State 410 with respect to the network. During this state 420, a node does not perform any
specific function when it receives the message like RCM and PCM. However, it periodically
sends a Node Discovery Message (NDM) to the PPN via its interface which connects it with
its Parent Node. Such an interface is referred to as Parent Port l(PP). It is critical that such
requests are sent through PP and PP only in order to guarantee that the NDM is received by
the PPN node only if the PPN is not a descendant of the node, i.e., only if is not located
somewhere downstream from the node. The NDM messages are sent by the node to the PPN
via its PN until an acceptable response is received from the PPN or for a predetermined
intervals that depends on the size network, latency as well as the packet loss probability of

the network.

24

10

15

20

WO 2005/020022 PCT/US2004/027145

While in Discovery state 420, if the node receives, after it has sent NDM to its PPN, a
Node Found Message (NFM) from the PPN, it examines the interface through which the
message is received. If the NFM message was received from the interface that connects the
node with its PN, the node makes a transition to Reconfiguration State 430. Checking for PN
when a message is received ensures that only the messages received from nodes that are not
descendants are accepted. If however, no acceptable response is received by the end of a
predetermined interval, a timeout is said to happen and the node makes a transition to the Idle
State 410.

The purpose of Reconfiguration State 430 is nearly the same as that of the
Registration State 460, described later below with respect to FIG. 5. During this state 430, a
node periodically sends a RCM to its PPN indicating its intention use it as its new PN. The
RCMs are sent to PPN through the interface that connects the node directly with its PPN.
However, before sending RCM to its PPN, the node also makes sure that the PPN is not
already a part of the logical network the node is trying to create and, if it is, disables the
interface for the logical network. For example, in case of Ethernet, the node confirms that the
interface with the PPN is not a member of any VLAN other that Beacon VLAN,

While in Reconfiguration state 430, if the node receives, after it has sent RCMs to its
PPN, an Acknowledgement Message (ACK) from the PPN, it examines the message and the
interface through which the message is received. If the message indicates a success and was
received from the interface that connects the node with its PPN, the node performs the
following actions: (1) removes PN from the membership of all logical networks; (2) enables
discarding of beacon packets received from PN (3) enables reception of beacon packets from
PPN; (4) makes PPN a member of all logical networks; (5) designates PPN as its PN; (6)

sends a message to its remote management system, if any, indicating that the node has

25

10

15

20

WO 2005/020022 PCT/US2004/027145

changed its parent node; and (7) makes a transition to Idle state 410. If no ACK is received
for a predetermined time out period, the node makes a transition to the Idle State 410 without
making any other changes.

If the PPN is allowed to accept the requesting node as its child, it does so by making
the port that connects it with the node as a member of all VLANS in its VLAN table, and
sends an ACK message to the requesting node. If the PPN is not allowed to accept a node as a
child, it takes no action and does not send any ACK.

Although the node in Reconfiguration State 430 behaves much like a node in the Idle
State 410, during this state 430, a node does not perform any specific function when it
receives the message like RCM and PCM. This is because, during this process, it is critical
that no topological changes in the network are performed when a change of parent process is
underway. Sending a response to RQM in the same fashion as the nodes does while in the
Idle State 410 is possible, but only after making sure that no transient conditions can occur.

While in the Reconfiguration State 430, the node waits for a timeout period, followed
by a periodic transmission of a Reconfiguration Message (RCM) to its PPN via the preferred
parent port (PPP) that connects it with the PPN. If PPN is in Idle State 410 and its REQUEST
ID matches the MAC address of the node sending the RCM, it makes the requesting node its
child and sends the ACK back to the requesting node. Once the requesting node receives the
response from the PPN, it removes the parent status of the old PN and adds the PPN as its
new PN. Forwarding of beacon packets received from the new PN to all the neighbors is
enabled and a transition is made back to the Idle State 410.

Upon detection of a loss of beacon packets from a PN, the node transitions from any
of states 410-430 to a Search State 440, where the node searches for a new source of beacons

from all of its neighbors. While in the Search State 440, the node does not make any changes

26

10

15

20

WO 2005/020022 PCT/US2004/027145

to the state of any one of its link with respect to their membership of a particular logical
network. Specifically, for tﬁe case of Ethernet network, the VLAN memberships of the ports
are not changed. This guarantees that, in the event that the network recovers from isolation
while the node is in this state 440, the network traffic continues to flow through the network.

While making this transition, a node will performs the following operations: (1) set
the value of REQUEST ID to '0' (2) enable reception of beacon packets from all its
neighboring nodes; and (3) stop forwarding for beacon packet to any one of the node's
neighbors.

Reception of beacon packets for certain duration form a neighbor guarantees that the
neighbor is not affected by the failure. When such a new source is found, the node enters a
Wait State 450, and if the new source is not a descendant node, the node requests the new
source to be its parent during a Registration State 460. The operability of a node within states
440-460 are more particularly described immediately below with reference to FIG. 5.

A self-healing process 500 may be performed whenever a node is in the Idle State 410
(step 502) and detects an isolation from its root (step 504). The process 500 may also be
performed from states 420 and 430. Once a beacon loss is detected, the node may initially
wait for a brief interval (step 510) to determine whether beacon packet reception from a PN is
restored, after which a transition is made from its current state to the Search State 440. When
a transition is made to this state 440, the node enables reception of beacon packets from all of
its connected neighbors on all ports (step 512) and continues to iterative steps 506 and 508 to
determine if beacon packets are received from other neighboring nodes. . Subsequent entries
into step 512 may include the enabling of all ports except ports previously attempted. A final
entry in step 512, after all neighboring nodes have been examined, may once again enable all

ports until a transmission of a beacon packet from any neighbor is detected.

27

10

15

20

WO 2005/020022 PCT/US2004/027145

When a neighboring node is not isolated from the network, it continues to forward
beacon packets to all its neighbors, including the isolated nodes. Therefore, if a node receives
a beacon packet from one of its neighbors, it is an indication that the neighbor is not isolated
from the root.

If a link connecting the node in Search State 440 with its neighbor is not connected, or
is connected but is in a Down state, beacon packets received from that neighbor are
discarded. This is done in order to make sure that a link that is disconnected or down does not
become a PN of the new VTN tree.

During this state 440, forwarding of beacon packets to all neighboring nodes is also

- disabled. This is done in order to make sure that a node is not fooled into selecting its

descendant as its new parent by reception of a beacon packet that was originally transmitted
by it downstream. If one of the neighbors is a descendant of the node in the Search State 440,
the node would receive the same beacon packet it forwarded to its child neighbor. By
disabling the forwarding of beacon packets, this potential for creating a network loop is
avoided. Suspension of the forwarding of beacon packets also serves to ensure that other
downstream nodes detect the beacon outage.

During the Search State 440, no change is made to the VLAN membership
information stored by a node. This guarantees that, in the event that the network recovers
from isolation while the node is in this state, the network traffic continues to flow through the
network
The node also does not perform any specific function in response the message like RQM,
RCM, and PCM.

While in the Search State 440, the primary goal is to find any neighboring node that is

not isolated from the root node. However, if there are multiple such neighbors, it may be

28

10

15

20

WO 2005/020022 PCT/US2004/027145

desirable to connect with one such neighbor over another. For example, a link connecting the
node and one of its neighbors may have had better history of reliability than a link connecting
the node with another one of its neighbors. In this case, it is preferable to connect the first
neighbor as a parent node instead of the second one. However, if the first neighbor is also
isolated, it is more desirable to use the second neighbor as a parent node if no other
alternatives are available. In order to achieve this objective, the algorithm can allow for
priority assignments to interfaces of each node such that when searching of a new parent, a
node can choose the neighbor with higher priority if such a neighbor is available.

In Search State 440, the node uses a timer to periodically check beacon packets it may
have received from its neighboring nodes. The timer is first started by the node when it enters
the Search State 440, enabies reception of beacon packets from all its neighbors and keeps a
history of the interfaces from which the packet was received each time such a packet was
received. When the timer reaches a timeout event, the node exams the history of the ports
from which the packets were received. Among the ports that received packets during the
interval, the node selects the port with the highest priority value with the exception of the
ports in their Invalid Flags set as it Candidate Parent Port (CPP) and makes a transition to a
Wait State 450. If no beacon packets are received during this interval, the node reset the
Invalid Flag of all the interfaces and restarts the timer. The value of this interval depends on
the beacon interval, jitter in the beacon interval and the reliability of network links. This
interval also dictates the time it takes for a node to recover from an isolation.

If a beacon packet is received from a neighbor at step 508 above, the node next enters
the Wait State 450. The Wait State 450 serves three purposes. It provides sufficient time for
any transient conditions in the network to settle down. It allows a node to verify that the

beacon packet continues to be received from its neighbor node, now designated a Candidate

29

10

15

20

WO 2005/020022 PCT/US2004/027145

Parent Node (CPN) (step 514). It also allows for authentication of the beacon packets
received from the CPN, and the node may extract any parameters provided in the beacon
packet payload. Unlike in Search State 440, when in this state 450, the node accepts beacon
packets only from its CPN. Beacon packets received on any other ports are discarded. The
beacon packets received from the CPN are not forwarded to any one of the neighboring
nodes.

A node remains in the Wait State 450 only for a predetermined brief interval. During
this interval, it discards any beacon packets received from nodes other than its Candidate
Parent Node (CPN). If no packets are received from CPN either, it sets the Invalid Flag of the
candidate parent port (CPP) corresponding to CPN and makes a transition to Search State 440
above. While making the transition, the node enables reception of beacon packets from all its
neighbors. On the other hand, if at least one beacon packet is received from the CPN during
the interval, the node authenticates the beacon packet and makes a transition to Registration
State 460.

Only one neighbor at a time can be identified as a CPN. The port that connects the
isolated node to the CPN is referred to as the Candidate Parent Port (CPP). Once a valid
beacon packet is received on CPP, a transition is made to Registration State 460.

The purpose of the Registration State 460 is to notify a CPN about a node's intention
of using it as a PN. During this state 460, a node periodically sends Registration Request
Messages (RQM) to its CPN (step 516) through its CPP. However, before sending RQM to
its CPN, the node also makes sure that the interface is not already a part of the logical
network the node is trying to create and, if it is, disable the interface for the logical interface.
For example, in case of Ethernet, the node ensures that the port is not a member of any

VLAN other that Beacon VLAN. The RQM messages are sent by the node to the CPN until

30

10

15

20

WO 2005/020022 PCT/US2004/027145

an acceptable response is received from the PPN or a predetermined interval expires. That
predetermined interval depends on the packet loss probability of the link connecting the
nodes and its CPN.

A registration request packet is a Layer-2 data packet that is sent from the isolated
node to the CPN in step 516 above. The source MAC address field of a registration request
packet is the same as the MAC address of the node sending the registration request. This field
then helps the CPN identify the MAC address of the requesting node and provides the
address to which an acknowledgement may be sent.

When a node sends out a registration request packet to its neighboring node, it may
not know the MAC address of the neighboring node. This is because no aspect of the
algorithm requires that a node attaching itself to a branch of a tree know anything about its
neighboring nodes. The destination MAC address of a registration packet then depends on the
type of the packet and the circumstances under which the packet is generated. If the CPN is
identified as a known node, which means its Node ID is known, it is assumed that its MAC
address is also known. In that case, a Registration Request packet is sent out with its MAC
address the same as the MAC address stored for the CPN,

If the parent node identified as an unknown node, which means its Node ID and its
MAC address is not known, a Registration Request packet is sent with a globally identical
MAC address, referred to as a Registration MAC address. In this mode, the requesting node
forwards the registration Request packet with the Registration MAC address to the port that is
connected to the CPN. The CPN also makes sure that it does not continue to forward beacon
packets to the nodes downstream so that no false registrations take place. Just like with

beacon packets, every node is knowledgeable of such globally identical MAC Address.

31

10

15

20

WO 2005/020022 PCT/US2004/027145

While in Registration state 460, if the node receives, after it has sent RQMs to its
CPN, an Acknowledgement Message (ACK) from the CPN (step 518), it examines the
message and the interface through which the message is received. If the message indicates a
success and was received from the interface that connects the node with its CPN, the node
performs the following actions: (1) removes PN from the membership of all logical networks;
(2) enables discarding of beacon packets received from PN; (3) enables reception of beacon
packets from CPN; (4) makes CPN member of all logical networks; (5) designates CPN as
PN (step 520); (6) sends a message to a remote management system, if any, indicating that
the node has changed its parent; and (7) makes a transition to the Idle State 410.

When an ACK indicating a success is received (step 518), the node may examine the
payload of ACK to retrieve any network information sent by the CPN. If however, an ACK
is received with an error indication, the node puts the CPP in the state is was in before the
RQM message was sent. For example, if the node has removed the CPP from the
membership of certain VLANS before sending the RQM as stated above, the node makes the
CPP member of those VLANS. It also sets the Invalid Flag corresponding to the CPP and
makes a transition to the Search State 440. If no ACK response is received after a
predetermined interval, a timeout is said to happen. In this case also, the node sets the Invalid
Flag corresponding to CPP and makes a transition to the Search State 440. In this case, the
node does not restore the state of the CPP., While making the transition, it also makes sure

that all the other ports of the node are enabled (step 524) to receive beacon packets and all the

~ ports are disabled to forward beacon packets, after which the process 500 returns to step 506

above.
A key aspect of the Registration State 460 is to remove the CPP from VLAN

membership prior to acknowledgement from the CPP. This is because CPN, at some time in

32

10

15

20

WO 2005/020022 PCT/US2004/027145

the past, may have been a child node. If the CPP remains a member of VLAN and CPP also
adds all VLANS after it receives the registration request, a transient loop may created in the
network. This is because, before the requesting node receives an acknowledgement from the
CPP, it would continue to use the old parent as its Parent Node. Until this Parent Port is
removed from the stored membership of VLANS, a loop is created in the network.

When the CPN (or PPN) changes its parent, it would not have notified its PN node
about the change and, therefore, the PN would have never had a chance to remove the link
from logical network. At some point later in time, when the node sends the RQM (or RCM)
message to the CPN (or PPN) neighbor, the neighbor may accept the request and add the
corresponding interface to the logical network. This would create a loop in the logical
network until the requesting node receives the ACK message and removes its interface with
its old parent node from the logical network. However, most often, existence of the loop even
for a very short duration may mean a serious trouble for the network. Therefore, the removal
of the interface from the logical network before a RCM or RQM is sent out is essential

Turning now to FIG. 6, there is depicted an exemplary timing diagram displaying the
process by which a node may detect a network isolation using the aging of beacon packets.
The aging process can be implemented in various forms. It can be implemented in software
where a CPU sets a flag every time a node receives a packet matching the description of a
beacon packet from its parent port. The flag may be reset periodically.

The aging process can also be implemented in hardware where a flag, represented as a
register, is updated every time a packet matching the Source Address (Source MAC Address)
of beacon packets is received. The flag may be reset periodically by a recurring process, €.g.,

a counter clocked by a periodic signal.

33

10

15

20

WO 2005/020022 PCT/US2004/027145

The aging process can ether be triggered by the CPU or done by the switching
hardware at a pre-defined interval 602, as shown in FIG. 6. When triggered by the CPU, the
CPU has to instruct the switching hardware to initiate the aging process. However, the aging
process itself may instead be performed by the switching hardware alone. Regardless of
which aging method is used, the switching hardware provides mechanism to notify the CPU
when a new address is learned or an old address is removed.

All beacon packets 604 are transmitted by root nodes with the same predefined source
MAC address for validation at a beacon interval 600 of b milliseconds. Each node performs
periodic aging of the Beacon Source MAC address at every aging interval 602 of a
milliseconds. If @ > b, then during normal operating condition, we expect to receive at least
one beacon packet between every two consecutive aging events. As long as at least one
beacon packet is received between two consecutive aging intervals, the Beacon Source
address is not aged out by the aging process.

If there are no valid beacon packets received between two consecutive aging events,
the beacon source MAC address is removed during the second of the two events and the CPU
is notified of the aging events. Such notification can be used as an indication of the loss of
beacon packets and network failure, and the process 500 described above is initiated.

The following discussions are directed to the resolution of errors that may arise during
transient conditions of network reconfiguration in response to an outage event or a PCM. It
has been demonstrated that even in small networks, loops can be created when error
conditions are not handled properly. One such case is when registration response packets
from a CPN to a requesting node in the Registration State 460 are lost in the network. This
may create a transient state during which a CPN may need to change its PN. If the CPN

selects a descendant of the requesting node, a loop could temporarily exist in the network.

34

10

15

20

WO 2005/020022 PCT/US2004/027145

One way to prevent this kind of transient state would be to require that the node sending the
registration request to its CPN first remove the CPP from membership of the VLAN.

Removing the CPP as a member of the VLANS before sending the registration request
packets would disrupt VTN traffic to the nodes downstream. Such disruptions, though, have
little impact if the parent port change is brought about by self-healing mechanism. Such a
disruption howe\:er could be a problem if the parent port change event is due to a
reconfiguration request from the remote management system.

In event of a reconfiguration message when a node is asked to connect with its own
child node, if the node removes the port that connects it with its PPN, the PPN and all the
nodes downstream from it would lose their network connectivity until the process is
complete.

A registration request with a node's own child is never going to be fulfilled, since the child
knows the parent status of the requesting node and will not allow for the change. This is
because a node recognizes its PN and can not allow it parent to register with as a child.
However, a serious problem is created when a node is asked by a reconfiguration message to
use one of its later descendants as its parent node.

Such problems could be solved if a node has a way of verifying that a PPN is not one
of its descendants. As a first manner for accomplishing this, a node may send a message to its
PPN via its PN and wait for a response. The message is thus only sent upstream such that if
the node's PPN is downstream, it would not receive the message.

The second manner, which is not entirely reliable, is to use an address query
mechanism. In this case, a node would try to find out if its PPN is its descendant by searching
for the MAC address of the prospective parent in its MAC table. This mechanism could be

made more reliable by first sending a message to the PPN and after receiving a response,

35

10

15

20

WO 2005/020022 PCT/US2004/027145

searching for its MAC address in the address table. The prospective parent is guaranteed not
to be a descendant of the node if and only if the MAC address resides in the port that is also
the PP of the node.

A combination of both these solutions may be used such that the message is sent to a
PPN via an upstream node and when a response is received, the node performs an address
query to verify that the address resides in the PP. This would guarantee that the PPN is not a
descendant node.

Besides verifying ancestor-descendant relationship, it would be advantageous to
guarantee that the relationship is maintained until the node actually completes changing the
PPN to its PN. After the time a node receives a response to the message about ancestor-
descendant relationship, the network topology may have changed. If such topology change
occurs, the ancestor-descendant relationship just verified may no longer be valid. One way to
solve this problem is to implement a messaging mechanism by which a node notifies all its
descendants if it has changed its parent. This can be done by sending a beacon-like packet
downstream from the node to all its children, which in turn would then relay the bacon-like
packet further downstream.

An even more desirable way to solve this problem is to make sure that no more than
one reconfiguration process per mesh is initiated. By ensuring that no more than one
reconfiguration process takes place in a network, we can guarantee that topological
relationship between two node and PPN would not change without either node knowing
about it.

Once a node receives a reconfiguration message from the remote management system,
it sends a message to its PPN through its upstream parent node. Such a message it called

Discovery Message. Since the isolated node knows the MAC address of the PPN, the

36

10

15

20

WO 2005/020022 PCT/US2004/027145

message is sent to that MAC address, but using the Beacon VLAN tag. When the node sends
out Discovery Message, it also raises a DISCOVERY _TX flag to indicate that the node is in
the process of discovering the relationship between itself and the PPN,

When the PPN receives a Discovery Message from the node and it is in the Idle State
410, it sends out a response to the node. If it is not in the Idle State 410, it does not send a
reply back to the node. When the PPN sends a reply back to the node, it sets REQUEST ID to
the MAC address of the node.

When the node receives the reply from PPN, it checks to see if its DISCOVERY TX
flag has been set. If the flag has been set, this indicates that the PPN hasn't been affected by
any topological changes since the node last sent out the Discovery Message. In this case, the
isolated node sends out a Registration Request to node PPN thought the link which connects
the isolated node with the PPN,

When node PPN receives a registration request from the node, it checks the status of
its REQUEST ID. If the REQUEST ID has not been set to 0, this confirms that the PPN has
not been affected by any topological changes since it received Discovery Message (assuming
that only one node sent such a message). In the event that the flag is set, the PPN accepts the
registration request, and sends a response to the node.

If either the node or its PPN detects a change in topology, they would reset their
corresponding DISCOVERY_TX flag and REQUEST ID respectively, thereby indicating the
topological change since the last Discovery process.

It has further been demonstrated that a transient condition can exist in the network if,
while a node is trying to change is parent to another node, some other node also tries to
change its parent due to a failure condition. The simplest way to avoid this loop by adding a

fixed time between the time when the node receives a NFM message from its CPN until the

37

10

15

20

WO 2005/020022 PCT/US2004/027145

time it sends a registration request to its CPN that is sufficient to detect subsequent network
changes while minimizing impact on network recovery time.

The remaining discussions herein are directed to leveraging the communication used
by the Parent Search algorithm in order to transmit weight information among different
nodes. The purpose is to introduce a Weight Calculation algorithm that prevents extra
network communication that could negatively impact overall network performances.

For a given node, the VTN parent change process follows those steps:

1. The Parent Search is triggered by some event (e.g., beacon loss, user command,
etc).

2. The Parent, Search starts and the node goes in VTN Search state. (During this state
the searching node will not forward packets upstream.)

3. The Parent Search ends identifying a set of candidate parent ports (which is a
subset of the searching node connected ports). The Parent Search algorithm guarantees that
no loop will be created in case the searching node connects to any one of its candidate parent.

4. The Parent Selection algorithm sorts the set of candidate ports from the most to the
less desirable. The sorted set is called preferred parent ports. This sorting is done so that the
use of the first preferred parent port as parent port will optimize some networking
performance at the best, the use of the second preferred parent port will optimize less and so
on. |

5. The Parent Registration starts and the node goes in VTN Registration state. The
node will try to register with its first preferred parent. If that registration attempt fails, the
second preferred parent will be tried and so on. (If the node is not able to register with any of

its preferred parents, it will start the Parent Search again.)

38

10

15

20

WO 2005/020022 PCT/US2004/027145

6. Assuming that the node was able to register with one of its preferred parents, the
node is now in VTN Idle state. The node has fixed its parent and it will start another Parent
Search only if triggered by specific events (e.g., beacon loss, user command, etc).

The Parent Search process exchanges several packets between the searching node x,
x's neighbors y;, and the base node bi to which a particular neighbor y; is connected to. Those
packets are exchanged in the following order:

1. The searching node x sends to all its neighbors y; a Discovery Request (DREQ)
packet.

2. Every neighbor node y; acknowledges the receiving of the DREQ sending a
Discovery Acknowledge (DACK) packet back to the searching node x.

3. Every neighbor node y; sends a Base Reqest (BREQ) packet upstream to its base
node b;. |

4. The base node b; acknowledges the receiving of the BREQ sending a Base
Acknowledge (BACK) packet back to the neighbor node y;.

5. The neighbors node y; notifies the discovering of its base node sending a Discovery
Response (DRES) back to the searching node x.

6. The searching node adds the neighbor node y; to the list of candidate parent ports.
(It is understood that the port x is using to connect to y; is actually added to the candidate
parent ports set, and not the y; node itself. This destination between node and port will not be
explicitly made in the future when it is obvious by the specific context.)

Once a node z is in VTN Idle state, it exchanges packets (at a low frequency) with its
parent node 7. Node z uses those packets to make sure that its parent link (i.e., the link

between the node and its parent node) has not failed in the upstream direction. (The beacon

39

10

15

20

WO 2005/020022 PCT/US2004/027145

process, instead, detects link failure in the downstream direction.) Those packets are
exchanged in the following order:

1. The child node z sends a Parent Request (PREQ) packet to its parent node 7,; and

2. The parent node T, acknowledges the receiving of the PREQ sending a Parent
Acknowledge (PACK) packet back to the child node z from which the PREQ was received.

This process gets in input the set of candidate parent ports from the Parent Search
process. The objective of the process is to sort the candidate parent ports set so to optimize
network performances. The sorted candidate parent ports set (sorted from the best to worst
candidate parent port) is called preferred parent ports set and it is the output of the algorithm.
The Parent Selection optimizes networking performances following those criteria:

1. User control. Give control to the user.

2. Bandwidth. Guarantee some minimal amount of bandwidth.

3. Reliability. Minimize overall probability of failure of the set of links that every
node uses to connect to its base node.

4, Quality. Minimize overall probability of bad quality of the set of links that every
node uses to connect to its base node.

5. Balancing. Balance the distribution of available capacity among the nodes.

These criteria will be referred to hereinafter as the optimization criteria, with the first
criterion being referred to as the user control optimization criterion and to the other criteria
all together as to the automatic optimization criteria.

The goal here is to associate a weight to the choice of each candidate parent port. This
port weight will need to contain enough information in order to satisfy the optimization
criteria. The preferred parent ports set is then obtained sorting the candidate parent ports set

with respect to the relative port weights.

40

10

15

20

WO 2005/020022 PCT/US2004/027145

In order to sort the set of candidate parent ports with respect to the port weights, it is
sufficient (and necessary) to define a comparison operator for the port weights. Given two
ports with the relative weights, the comparison operator minw() is defined to return the port
with the minimum weight. (Obviously the plain min() operator defined for real number
cannot be used here since the port weight is not a real number.) According with the above
optimization criteria, the port weight will be a structure containing information about user
priorities, bandwidth, probability of failure, probability of baci quality and available capacity.
The minw() operator needs to be constructed so that the two weights are compared with each
other taking into consideration all those different information and with the objective to satisfy
the optimization criteria.

The user can manually specify priorities for the different, connected, links of a given
node. For a given link (or port on a node), the user priorities will be: AUTO, LAST, 1, 2, ...,
or K (where K is the total number of connected ports on the node). Only one priority can be
assigned for a given port on a given node. Priorities AUTO, LAST and 1 can always be
assigned. A priority k € (2,. . . , K) can be assigned to a given port only if priority k - 1 has
been already specified for a different port on the same node. Multiple ports on the same node
can have the same user specified priority at the same time.

The Parent Selection algorithm will sort the candidate parent ports according with the
specified user priorities. This guarantees that a port with priority k will always came before a
port with priority k - 1 in the preferred parent ports set (assuming that both ports are in the
candidate parent potts set). If one or more candidate ports have priority LAST, the Parent
Selection algorithm will put all those ports at the end of the preferred parent ports set.

Candidate parent ports having priority AUTO will be sorted by the Parent Selection

algorithm following the automatic optimization criteria. If both candidate ports have the same

41

10

15

20

WO 2005/020022 PCT/US2004/027145

priority, the Parent Selection algorithm will use the automatic optimization criteria to chose
between them. Let w, and wy, be the port weights for port a and port b respectively. Moreover,
let u, = wy.user and uy, := wy.user be the user specified priorities for port a and b. According

with the above comments on the user priorities, the minimum weight minw(w,, Wp) is

correctly defined by the following table:

Ua
i (g, wy) | AUTO LAST L,2,...,K
Up AUTQ | minwa{w,,ws) W Uy
LAST | o minwa(e,, wy) Wy
1,2,.... K wy W manon(w, , ws)

where minw() is the minimum weight operator, minwa() is the minimum weight auto
operator and minwn() is the minimum weight number operator. The minwa() operator needs
to be defined so that it returns the minimum weight respecting the automatic criteria. The
minwn() operator needs to be defined so that it returns the minimum weight respecting the
user priority numbers-it will use the plain min() operator to compare two different priority
numbers and minwa() to compare equal priority numbers. Once minwa() and minwn() are
defined, the above table complitely defines minw(). It is easy to verify the table above defines
the minw() operator respecting the optimization criteria (and in particular the user priorities).
It is evident that if the user specifies priorities different from AUTO, the automatic
optimization criteria will not be used at all. This opens up the risk from the VTN topology to
be completely out of optimality if the user assigns priorities that are no good for the network.
The trade-off here is between letting the user directly control the VTN topology and having
the VTN automatically optimize its topology. To prevent the user priority assignment from

taking the VTN topology too far from the optimal configuration, we add the constraint that

42

10

15

20

WO 2005/020022 PCT/US2004/027145

the user priority will be considered only for those candidate ports that have already a good
enough score in terms of the automatic optimization criteria. For this purpose, let needa(w) be
a function which, given a port weight w, returns true iff w is not a good enough weight with
respect to the automatic optimization criteria. The user priority w.user of a candidate port will
be taken under consideration (according with the table above) if needa(w) is false. On the
contrary, if needa(w) is true then w will be compared with other ports like if w.user were set
to AUTO (i.e., using the automatic optimization criteria).

The objective of bandwidth optimization criteria is to sort the candidate parent port
set into the preferred parent port set so that some minimum amount of link capacity is
guaranteed. The idea is to enforce a lower bound on the link total capacity. Given two
candidate parent ports, if the link connecting the searching node to either of those two ports
has a capacity lower then the lower bound, the port with biggest capacity will be
automatically chosen.

The objective of this reliability optimization criteria is to sort the candidate parent
port set into the preferred parent port set so that the overall probability of failure of the links
in the path between the searching node and base node is minimized.

Let p =<wvy, V2,..., vn, Vi1 > be a path from node v; (in out case, the searching node) to
node vy+ (in our case, the base node) and let's indicate with (i, j) the link between node v; and
node v;. We assume to know the probability of failure for any given link (a, j) and we indicate
this probability with prob(F, ;) The probability of success of link (i, j) is given by 1 -
prob(Fg,). The path p succeeds iff all its links succeed, therefore the probability of success

for p is given by:

{1—prab(F(; 2)))[1 - prob{Fi2,3)] .. . [1~prob(F peny)] = H [1—-prob(E)]
tidlep
43

10

15

20

WO 2005/020022 PCT/US2004/027145

and the probability of failure for p is given by:

prob(Fp) =1~ [i — prob(Fe)l
(hpee

A node y is a candidate parent for the searching node x only if it has a path to a base

node. (In fact, y is a candidate parent only if it sends a DRES to the searching node. The

DRES is sent only if y receives a BACK from its base node which guarantees y has a path to

a base node.) Let's indicate this path as Py ,=<Y,...,b,>whereb, is the base node to

which y is connected to. Since y is a neighbor of x (other necessary condition for y to be a
candidate parent), <X, P ¥, >=<x,y,..., by > is a path between the searching node x and a

base node (by). <x, Py > is the path that would connect x to base node if x were to select y

as its parent. Let's indicate with T the set of candidate parents for the searching node x and

with ¥ , for any y € Iy, the path between y and its base node. The problem of selecting the
preferred parent for the searching node x as the candidate parent that minimizes the
probability of failure of the path that will connect the searching node to base node can be

formulated as follows:

arg min prob(F ey a,5)
peEl,

It can be shown that this optimization problem is equivalent to a Shortest Path (SP) problem

where the link distance weights are set to:

i) = - Inf1 ~ prob(Fg ;)]

In summary, we have shown that the reliability optimization criteria is achieved by an
algorithm that implements the SP when the link distance weights are set to be equal to the f;,
j)- In order to calculate the fi;,) we have assumed to know the probability of failure prob(Fg, ;)
for every link (i, j).

44

10

15

20

WO 2005/020022 PCT/US2004/027145

An objective of the quality optimization criteria is to sort the candidate parent port set
into the preferred parent port set so that the overall probability of having a bad quality link in
the path between the searching node and base node is minimized. Since we are (again)
dealing with probabilities, we follow the same approach we have followed for the reliability
optimization criteria. We assume to know the probability of bad quality for any given link (i,
j) and we indicate this probability with prob(By; j)). Since we have a bad quality path when we
have one or more bad quality links in the path, the overall probability of bad quality for a
path p is given by:

prob{Bp) =1 — H {L — prob(Ba)
(ijlep
This formula has the same structure of the one for prob(F,). Therefore, following the same
reasoning we have followed for the reliability optimization criteria, we conclude that the
quality optimization criteria is achieved by an algorithm that implements the SP when we
know the probability of bad quality prob(b, ;) for every link (i, j) and we assign the SP link
distance weights to be equal to:
b,) += —Infl ~ prob(B; ;)]

The difference between the quality and the reliability optimization criteria is in how
the relative probabilities are calculated. The quality optimization criteria assumes that the link
has not failed and only then looks for good quality links, The reliability optimization criteria
just checks to see if the link has failed or not. The time scale to use to measure those two
probabilities will also be different. Measures of the bad link quality probability will happen
much frequently then the measures of the link failure probability.

An objective of the balancing optimization criteria is to sort the candidate parent port

set into the preferred parent port set so that the amount of available bandwidth is uniformly

45

10

15

20

WO 2005/020022 PCT/US2004/027145

distributed among the nodes in the network. Let p =< vy, va,. . . , V4, Vi > be a path from node
vi (in our case, the searching node) to node vy, (in our case, the base node) and let's indicate
with (i, j) the link between vi and v;. For any link (2, j), we assume to know the total capacity
¢, j) and the used capacity 1, j) while we calculate the available capacity ag, j) = cq, j - 1, j).
The total capacity ¢, j) is the total amount of bandwidth that the link (i, j) can carry (e.g., 100
Mbps for a primary FSO link or 10 Mbps for a third party backup link). The used capacity Ig,
i) is the amount of the total capacity that is (in average) used on the link (i, j). The available
capacity ag, j) is the amount of total capacity that is (in average) not used on the link (i,).
Obviously, 0 <=1 j <=

¢, i and 0 <= ag,j) <=c, ;) always and for any link (i, j). For a path p the available capacity if
given by:

tp = min ay ;

since the link with the minimum available capacity ads like a bottle neck in the path sefting
the upper bound on the amount of available capacity that the whole path can carry from one
end node to the other. Adoplting the usual notation, the problem of selecting the preferred
parent for the searching node x among the set of its candidate parents, so that the available
capacity of the path that will connect X to base node is maximized can be formulated as

follows:

Arf INax e
gUEr* ’(3.T3w:"

We have shown that the reliability and quality optimization criteria can be achieved by two
different instances of SP algorithm.

We now propose an algorithm to solve the SP problem on the network. The proposed
algorithm is a variant of the classic Dijkstra SP algorithm that takes into account the

distributed nature of the network. Following the usual Dijkstra SP notation, we will indicate
46

10

15

20

WO 2005/020022 PCT/US2004/027145

with d; the overall weight for node i and with dg, j, the weight for link (i, j). The d; will be
determined by the algorithm while the d;, ;) are assumed to be given. (The dg;, ;, will be equal
to the £, ;) in case we want the SP to achieve the reliability optimization criteria or they will
be equal to the bg, ;) in case we want the SP to achieve the quality optimization criteria.)

A Distributed Incremental Shortest Path (DISP) will now be introduced. For a base
node b the node weight dy, is always set to 0. Base node b will include its weight dy, into all
the PACK packets that are sent out to its children nodes. For a searching node x, the
following steps will occur:

1. The Parent Search algorithm generates the set of candidate parents I'y. (Here ends
the Parent Search algorithm. Node x is still in VTN Search. state.)

2. (Here starts the Parent Selection algorithm.) Calculate the set of candidate parent

weights as follows:
Dm - {d{g.yj + dv}vy e r.’r}

Node x extracts the d, weight from the DRES packet received from the candidate parent node
y. (To speed up the Parent Search algorithm, node y could include the d, into the DACK
packet also. The basic idea here is that the Parent Search algorithm will not wait for the
DRES from a node y if node x already got a DRES from a neighbor node with a better
weight. The Parent Search algorithm will use the d, included in the DACK to identify this last
case. This idea needs to be investigated more during system design.)

3. Sort Iy, in crescent order with respect to the weights in D,.

T} = crescent sort(Lz, Dy)

First element of I'*, will be the element of Ty with the smallest weight in Dy and so on. (Here

ends the Parent Selection algorithm. Node x goes in VTN Registration state.)

47

10

15

20

WO 2005/020022 PCT/US2004/027145

4. (Here starts the Parent Registration algorithm.) Attempt to register with first node
in I'y. If registration fails, try second node in T, and so on. Let Tx be the first node in I'*, to
which node x is able to connected to. 7y is the parent node of node x. Calculate and set node x

overall weight as follows:

dr = dig ny) + n,

(Here ends the Parent Registration algorithm. Node x is in VTN Idle state.)

3. While node x is in VTN Idle state, it will include its weight d,, into all the PACK
packets that are sent out the children nodes. On the other end, node x will update its weight
dy, any time a PACK is received from its parent node m using the formula:

d@r = d($"ﬂ'g] + dﬂ'x

This ends the DISP algorithm.,

An algorithm for balancing criteria will now be introduced. For any link (i, j) we
assume to know the total capacity c(i,j) and to be able to measure the used capacity For every
base node b, we also assume to know the total and used capacity, respectively Co, swy and L,
sw), between the base node and the outside world (e.g., the switch). In such a Distributed
Incremental Capacity Balancing (DICB), let M be a very big number (bigger then any
possible link total capacity). For a base node b the node weight ay is always set to:

ab = a(p ey + M= ¢y 00 — L{h‘sw) +M
Base node b will include its weight a;, into all the PACK packets that are sent out to its
children nodes.

A searching node x then performs the following:

1. The Parent Search algorithm generates the set of candidate parents I'y. (Here ends

the Parent Search algorithm. Node x is still in VTN Search state.)

48

10

15

20

WO 2005/020022 PCT/US2004/027145

2. (Here starts the Parent Selection algorithm.) Calculate the set of candidate parent
weights as follows:
Ay = {Tﬂm{ﬂ(z@}gﬂu}h Yyelz}
Node x extracts the a, weight from the DRES packet received from the candidate parent y.
(To speed up the Parent Search algorithm, node y could include ay into the DACK packet also
- see similar comment in DISP algorithm.)

3. Sortin T'xdecrescent order with respect to the weights in A,.

Iy == decrescent sori(Ty, Ay, {a,, ¥y € T, 1)

First element of I'*, will be the element of T, with the biggest weight in A, and so on. If two
nodes have the same weight in A, the node with the bigger a, weight will come first in I'*,.
(Here ends the Parent Selection algorithm, Node x goes in VTN Registration state.)

4. (Here starts the Parent Registration algorithm.) Attempt to register with first node
in I'*,. If registration fails, try second node in I'*,, and so on. Let be Ty the first node in I'*, to
which node x is able to connect to. m is the parent node of node x. Calculate and set node x

overall weight as follows:

g = Wi{ez 5.}, e, }

(Here ends the Parent Registration algorithm. Node x is in VTN Idle state.)

5. While node x is in VTN Idle state, it will monitor the used capacity lex, m) Of its
parent link. If this capacity changes, the available capacity ax, m) = Cx, m) - 1(x, m) Changes too.
This ultimately causes a change in the node weight a, = min {a, m), ax). (The used capacity
may vary drastically in a very short amount of time, the actual value used here by the
algorithm should be averaged over time.) Node x will be monitoring lix, m) periodically and it

will update its weight a, accordingly. The node x will include its weight a, into all the PACK

49

10

15

20

WO 2005/020022 PCT/US2004/027145

packets that are sent out to its children nodes. On the other end, node x will update its weight
ay any time a PACK is received from its parent node 7, extracting a, from the PACK. This
ends the DICB algorithm.

A minimum weight operator minw() is now defined to returns the minimum weight
among two given ports weights. This operator is used to sort the set of candidate parents into
the set of preferred parents. Therefore, it is important for minw() to select the minimum
weight as the best weight to satisfy the optimization criteria.

We have already partially defined the minw() operator. In particular we have seen
how to define this operator in order to satisfy the user control optimization criteria. In order
to complete the definition of minw() we still have to define the minimum weight auto
minwa() operator (that takes into consideration the automatic optimization criteria above) and
the minimum weight number minwn() operator (that takes into consideration the priority
numbers specified for the user optimization criteria).

All the different components of the port weight can be listed as follows. Let be node x
the searching node and node y a candidate parent for node x. We associate to the candidate
parent y the overall port weight wy as follows:

1. User control criteria. The weight w, has a component wy.user set to the user
specified priority for link (x, y).

2. Bandwidth criteria. The weight w, has a component wy.capacity.total set to 1.

3. Reliability criteria. The weight wy has a component wy.failure set to fxy) + f,
(according to the DISP algorithm used for this criteria).

4. Quality criteria. The weight wy has a component wy.badq set to by, + by

(according to the DISP algorithm used for this criteria).

50

10

15

20

WO 2005/020022 PCT/US2004/027145

. 5. Balancing. The weight wy has a component Wy.capacity.availaﬁle set to min{ay),
ay) (according with the DICB algc;rithm used for this criteria). (As stressed out in the DICB
algorithm, if two candidate parents have the same wy.capacity.available weight we need to
chose the one with the bigger a,. This requires to slightly change the minw() algorithm
proposed here to include also the ay information in the port weight and to maximize among
the ay weight components at last for those wei ghts that score the same “wy.capacity.available.)

The nodes will run a DISP algorithm to calculate the w,.failure weight (i.e.,),
another DISP algorithm to calculate the w,.badq weight (i.e., b,) and a DICB algorithm to
calculate the w,.capacity.available weight, for every node z. The user will specify priorities
defining the w,.user weight (this weight component will be AUTO by default).

A Minimum Weight Auto (minwa(w;, w;)) may be defined as having inputs: port
weight wi and port weight w»; and out puts the minimum weight between wj and w;, as the
weight that satisfies the most of the automatic optimization criteria.

A Minimum Weight Number Algorithm (minwa(w,, w,)) may be defined as having
inputs: port weight w; and port weight w; so that wy.user, wa.user € {1, 2, ..., K). its output
is the minimum weight between w; and w; as the weight that satisfies the most the user
priority numbers for the user optimization criteria.

In summary, the Parent Selection algorithm will take in input the set of candidate
parent ports. As we discussed, the DISP and the DICB algorithms calculate those port
weights associated to the automatic optimization criteria for all the candidate parents. The
user sets the port weights asséciated to the user optimization criteria. The Parent Selection
algorithm sorts the candidate port set into the preferred parent port set using the calculated

weights and according to the minw() operator. Because of how the weights are calculated and

51

10

15

20

WO 2005/020022 PCT/US2004/027145

how minw() operator is defined, the Parent Selection algorithm satisfies the optimization
criteria taken together.

The Parent Selection algorithms are assumed to know several different quantities for
every given link:

1. Probability of Link Failure. The DISP algorithm for the reliability optimization
criteria assumed to know the probability of link failure for any given link (i, j).

2. Probability of Bad Link Quality. The DISP algorithm for the quality optimization
criteria assumed to know the probability of bad quality link for any given link (i, j).

3. Total and Used Link Capacity. The DICB algorithm for the balancing optimization
criteria assumed to know the total and used capacities, ¢, and lg, j) respectively, for any
given link (i, j). The above information may be collected in any of a variety of manners.

The total link capacity will be specified by the user when link (i, J) is connected. The node
will just be responsible to permanently store this value. The used capacity 1(i,j) is measured
by the node as the total amount of throughput of link (i, j). The component of the node system
which is responsible to calculate the link quality may calculate the link used capacity as well.

Although the best methodologies of the invention have been particularly described in
the foregoing disclosure, it is to be understood that such descriptions have been provided for
purposes of illustration only, and that other variations both in form and in detail can be made
thereupon by those skilled in the art without departing from the spirit and scope of the present

invention, which is defined first and foremost by the appended claims.

52

WO 2005/020022 PCT/US2004/027145

What is claimed is:

1. A method for detecting a network isolation by a network node, comprising:
5 receiving a beacon packet from a parent node over a network;
storing an aging indicator for the received beacon packet after an aging
interval; and
indicating a network isolation condition when the aging indicator is not reset
by a second beacon packet received from the parent node before a second interval greater

10 than the aging interval.

2. The method of claim 1, the beacon packet comprising a universal destination

address for validating the beacon packet.

15 3. The method of claim 1, said receiving further comprising:
receiving the beacon packet from a neighboring network node other than the
parent node; and
dropping the beacon data packet received from the neighboring node when the
network isolation condition is not indicated.
20
4. The method of claim 3, further comprising:
transmitting a request to the neighboring network node to register the
neighboring network node as a new parent node when the network isolation condition is

indicated.

53

WO 2005/020022 PCT/US2004/027145

5. The method of claim 4, said transmitting further comprising:
transmitting a discovery message upstream; and
receiving a reply to the discovery message from the neighboring network node

5 onan upstream port.

6. The method of claim 4, further comprising:

receiving an approval from the neighboring network node in response to the

request;
10 deleting a parent status of the parent node; and
storing an indication of the neighboring network node as the new parent node.
7. The method of claim 1, wherein the second interval is at least twice the aging
interval.
15
8. The method of claim 1, further comprising:
continuously receiving a plurality of beacon packets that are individually
transmitted by a root node at an interval that is shorter than the predetermined aging interval.
20 9. The method of claim 1, further comprising:

transmitting the beacon data packet received from the parent network node to

all neighboring network nodes.

54

WO 2005/020022 PCT/US2004/027145

10. The method of claim 1, further comprising;
receiving a network reconfiguration command; and
selecting a new parent node that is not a descendant node within the network

5 inresponse to the network reconfiguration command.

11. The method of claim 10, further comprising:
operating in a discovery state after receiving the network reconfiguration

command until an ancestor/descendant relationship is identified.

10
12. The method of claim 1, said storing performed by a network switching
element of a node without any processing by a central processing unit (CPU) of the node.
13. The method of claim 1, the network comprising an Ethernet protocol network.
15
14, The method of claim 1, the age indicator stored in an age field of a packet
address table.
15. The method of claim 1, further comprising:
20 storing an age indicator for a plurality of stored data packets other than the

beacon packet at the predetermined aging interval.

55

10

15

20

WO 2005/020022 PCT/US2004/027145

16. A computer readable medium encoded with processing instructions for
implementing a method for detecting a network isolation by a network node, the method
comprising:

receiving a beacon packet from a parent node over a network;

storing an aging indicator for the beacon packet after an aging interval; and

indicating a network isolation condition if the aging indicator is not reset by a
second beacon packet received from the parent node before a second interval greater than the

aging interval.

17. An apparatus for detecting a network isolation by a network node, comprising:
means for receiving a beacon packet from a parent node over a network;
means for storing an aging indicator for the beacon packet after an aging

interval; and
means for indicating a network isolation condition if the aging indicator is not
reset by a second beacon packet received from the parent node before a second interval

greater than the aging interval.

18. A method for identifying a network connection failure, the method
comprising;
receiving a beacon packet from a parent node over a network, the beacon
packet comprising a latest of a series of received beacon packets transmitted at a beacon
interval by a root node;
storing an age indicator for the received beacon packet after an aging interval

that is greater than the beacon interval;

56

WO 2005/020022 PCT/US2004/027145

storing the age indicator until a receipt of a subsequent beacon packet; and
determining a network failure based on the age indicator if the subsequent

beacon packet has not been received from the parent node prior to an outage interval that is

greater than the aging interval.

19. The method of claim 18, the outage interval being at least twice the aging
interval.
20. A method for establishing a self-healing tree network, comprising:
10 generating a beacon packet including a unique source address;

transmitting the beacon packet downstream at an interval that is less than an

aging interval used to age the beacon packet, whereby the age of the beacon packet may be

used by a node to determine a network isolation.

A method for re-establishing a network connection, comprising:

15 21.
determining a network isolation based on an age indicator of a beacon packet

received from a parent node;
searching for a new beacon packet from a neighboring node other than the

parent node;
receiving the new beacon packet from the neighboring node; and

20
transmitting a registration request to the neighboring node to establish the

neighboring node as a new parent node.

57

WO 2005/020022 PCT/US2004/027145

22. The method of claim 21, further comprising;
receiving an acknowledgement of the registration request from the
neighboring node; and

5 establishing the neighboring node as a new parent node.

23. A method for accepting a child node comprising:
receiving a beacon packet te from a neighboring node;
transmitting a registration request to a neighboring node to establish the
10 neighboring node as a child node;
transmitting a discovery message on an upstream port to determine if the
neighboring node is an ancestor node; and
receiving an acknowledgement of the registration request if the discovery

message is not later received from the neighboring node.

15
24. The method of claim 23, said receiving an acknowledgement further
comprising:
determining whether the neighboring node is an ancestor node based on a
stored address of the neighboring node; and
20 transmitting the discovery message only when the stored address is not an

ancestor address.

58

WO 2005/020022 PCT/US2004/027145

25. A method for re-establishing a network connection, comprising:
determining a network isolation based on an age indicator of a beacon packet
received from a parent node;
5 establishing a priority for a plurality of neighboring nodes based on a weight
assigned to each of the neighboring nodes;
searching for a new beacon packet from a neighboring node other than the
parent node;
receiving the new beacon packet from the neighboring node; and
10 transmitting a registration request to the neighboring node to establish the
neighboring node as a new parent node, based on the weight assigned to the neighboring

node.

59

WO 2005/020022 PCT/US2004/027145

1/4

102

FIG. 1
(PRIOR ART)

100

FIG. 2
(PRIOR ART)

102
/ \ 100

[Shien] [SwieR]——{swich— svitch} /{smchj

Switeh}

Switch,
FIG. 3
(PRIOR ART)

WO 2005/020022 PCT/US2004/027145

2/4

400

W Timeout

Timeout

FIG. 4

WO 2005/020022

500
\

DEFINE CPN AS
— PARENT PORT
920

3/4

MAINTAIN IDLE
STATE

REMOVE
CANDIDATE
PARENT PORT AND
ENABLE ALL OTHER
PORTS

524

%
YES

YES
INTERVAL

EXPIRED?
522

NO

ACK RECEIVED?
—\ 518
N

LOSS OF

BEACON FROM\/
PARENT? .~

YES

LISTEN FOR
BEACON

¢ PORTS

SEND
REGISTRATION
REQUEST TO NEW
CANDIDATE
PARENT

51

PCT/US2004/027145

ENABLE ALL

12

506
BEACO
RECElVED ?
508

YES

DEFINE NEW
CANDIDATE

PARENT NODE
914

FIG. 5

NO YES

INTERVAL
EXPIRED?
510

WO 2005/020022

Last Packet __
Before Aging

604
\ 3 L‘l

Beacon Packets I
Arrival Events

4/4

_ Updating Event
“Age” flag set to 1"

A

[1

Last Packet
, Before Aging

PCT/US2004/027145

Address Leamt
“pge” fiag setto 1’
CPU Notified

|
|
|
1
|
\

<>)
500 [~
Beacon Loss Beacon Lo$s Period
1
Aging Events E
4 4 ! 1 }
N —— —>) |
I 802 | |
“Age” flag “Age” flag “Age" fiag ‘Age"flag Address Removed No Action
setto ‘0’ setto '’ setto'0’ setto'0' CPU Notified

FIG. 6

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

