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METHOD FOR STREAMING SVD COMPUTATION

FIELD OF INVENTION

{0661} ‘The present invention relates to calculation of streaming singular value
decomposition (SVD). In particular, the invention relates to a method of more
efficient, fast, and error bounded streamihg computation of SVD for streamed data

and/or for streamed processing of data.

BACKGROUND OF THE INVENTION

[0002] Singular value decomposition (SVD), apaft from having applications
in fields such as image processing, data mining, dynamic system control,
dimensionality reduction, and feature selectio'n,y also finds application in analysis
of computer network data, which include datasets of packets transferred from one
location to another and values thereof. |
[0003] Typically, SVD is used for low rank approximation of an m*n matrix
M. SVD of an m*n matrix M transforms the matrix M into a U*W*V" format
where U is an m x m matrix, V is an n X n matrix, and W is a m x n diagonal
matrix. The number of non-zero diagonal entries in W represents the number of
independent dimensions in M and is referred to as the rank of matrix M, denoted

by r. The entries in the diagonal of W are in decreasing order. This order is
indicative of the proportion of variance/energy capturéd by the projected
dimensions. Many a times, it is possible to approximate the original matrix M

using only the top k <<r projected dimensions. If only the top k dimensions of M
are considered, then these dimensions represent the normal space having ener_gy
above a predeﬁnedl threshold. The remaining r-k dimensions form- part of the

" residual space and demonstrate very little information. Reconstructing the matrix

M based on the top-k dimensions is also referred to as a low rank approximation of
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M (more specifically, a k-rank approximation‘ of M). Such réduction in the
dimensionality of the matrix from r to k dimensions, where k << r, enables faster
and efficient processing of the matrix at much lower computational complexity.
[0004] Typically, even though low-rénkr approiimations transform the matrix
from r dimensions to top k projected dimensions, choosing the top k dimensions
produces errors such as reconstruction errors. Further, in case of stream‘ing data or
‘streamed processing of data, introduction of a new data set at each iteration
requires SVD to be computed for the complete matrix at each such iteration, which
involves costly re-computation on the previous entries of data sets. Such re-
computation of already computed entries of data sets can be évoided by
incorporating only the changes introduced by the new entrant data sets. One such
method has been disclosed by Matthew Brand’s paper titled “Fast Online SVD
reyisions ,for‘ lightweight recommender systems”. However, the proposed
incremental calculation for only the new entrant data sets may result in loss of
orthogonality and reconstruction error beyond acceptable threshold.

[0005] Further, there are often instances when the matrix can be divided into
‘blocks of data having same normalization values or values that fall in a defined
reinge, and computing streaming SVD on the entire matrix of data rather than on
such blocks requires significantly higher computational time due to normalization
step that needs to be carried out for the matrix after each iteration. Furthermore,
computing sliding SVD on such a matrix having different normalization values
also becomes difficult and computationally expensive. |

[0006] There is therefore a need for an efficient method for éalculating
streaming SVD for streamed data and/or for streamed processing of data with

tolerable reconstruction error and loss of orthogonality.
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SUMMARY

The present disclosure is directed to techniques for efficient streaming SVD
computation. In an embodiment, streaming SVD can be applied for streamed data
and/or for streamed processing of data. In another embodiment, the streamed data
can include time series data, data in motion, and data at rest, wherein the data at
rest can include data from a database or a file and read in an ordered manner. More
particularly, the disclosure is directed to an efficient and faster method of
computation of stfeaming SVD for data sets such that errors including
reconstruction error and loss of orthogonality are error bounded. The method
avoids SVD re-computation of already computed data sets and ensures updates to
the SVD model by incorporating only the changes introduced by the new entrant |
data sets.

- BRIEF DESCRIPTION OF THE DRAWINGS

[0007] - The detailed description is set forth with reference to the
accompanying figures. In the figures, the left-most digit(s) of a reference number
identifies the figure in which the reference number first appears. The use of the
same reference numbers in different figures indicates similar or identical items.
[0008] Fig. 1 illﬁstrates a flowcha_rt of an efficient streaming SVD
compiltation method for streamed data and/or for streamed proéessing of data.
[0009] Fig. 2 illustrates a flowchart of an efficient Sliding Streaming SVD
(SSVD) computation method for streamed data and/or for streamed procéssing of
data.

'[0001-0] Fig. 3 illustrates a flowchart of an efficient Split and Merge SVD
(SMSVD) complitation method for streamed data and/or for streamed processing

of data.
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DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

- [00011]  This disclosure is directed to techniques for efficient streaming SVD
computatioh. In an embodiment, streaming SVD can be applied for streamed data
and/or for streamed processing of data. In another embodiment, the streamed data
can include time series data, data in motion, and data at rest, wherein the data at
rest can include data from a database or a file and read in an ordered manner.
Streamed data can further include periodic, non-periodic, and/or random data.
More particularly, the disclosure is directed to an efficient and faster method of
computation of streaming SVD for data sets such that errors including
reconstruction error and loss of orthogonality are error bounded. The method
avoids SVD re-computation of already computed data sets and ensures updates to
the SVD model by incorporating only the changes introduced by the new entrant
data sets.

[00012] The details disclosed below are provided to describe the following
embodiments in a manner sufficient to enable a person skilled in the relevant art to
make and use the disclosed embodiments. Several of the details described below,
however, may not be necessary to practice certain embodiments of the invention.

Additionally, the invention can include other embodiments that are within the
scope of the claims but are not described in detail with respect to the following

| description. In the following section, an exemplary environment that is suitable for
practicing various implementations is described. After. this discussion,
representative implementations of systems and processes for computing streaming
SVD are described. v

[00013] In an embodiment, stréaming singular value» decomposition can be
computed on an m*n matrix of data to choose k dimensions which capture an
eigen energy of over a predefined threshold such as 97% forming normal
subspace. The k dimensions ére identified such that k << r, wherein r represents
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the rank of the cofnplete matrix. Identification of the k dimensions transforms the
matrix from Ups* Wasn ¥V 10 8 Upe* W oV en. Using k dimensions instead
of N dimensions brings down the computational complexity of the matrix from
O(mn®) to O(mnk).

- [00014] In an embodiment, once an SVD is computed for the matrix, a
_decision as to whether the matrix needs to be divided ihto blocks is made. A matrix
can be divided into blocks for faster SVD computation based on multiple
parameters such as whether the data points in the matrix have same normalization
values or have values that fall in very different ranges. The matrix can also be
divided into blocké when faster and parallel processing is possible and required.
[00015]  In case division of the matrix into blocks is not needed, a partial SVD
(PSVD) can be computed for £ (k)' dimensions. The basic concept of PSVD has
been explained in a paper from Rasmus Munk Larsen titled “Lancoz
bidiagonalization with partiai reorthogonalization”. For instance, in. an
embodiment if f(k) = 2k, PSVD would be computed on 2*k dimensions. Based on
~ the Dopplinger effect, the approximation error identified while doing the k rank
approximation (also referred to as choosing k dimensions) is found to be
acceptable till k/2 dimensions are computed and shoot up immediately thereafter.
Selection of 2*k dimensions for computation of the PSVD therefore ensures that
the k dimensions resulting from the PSVD computation would contain error within
an acceptable bound. |

[00016] In an embodiment, reconstruction error can be computed after
| computation of the PSVD to identify if the reconstruction error is within the
predefined threshold. In another embodiment, both relative and absolute
reconstruction errors can be identified, wherein relative reconstruction error can be
identified through computation of | (X - U*W*VT)||[/IX|| and absolute
reconstruction error can be identified using || X - U¥W*VT |[. If the reconstruction
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errors are not within predefined thresholds, SVD needs to be computed again to
identify new set of top k dimensions that have the reconstruction errors within the
-threshold levels.

[00017] = Further to the computation of PSVD on the entire matrix, sliding
singular value decomposition (SSVD) can be computed by calculation of
streaming SVD values only for the new entering data points rather than for the
complete matrix. SSVD computation includes representation of the matrix with k
dimensions into X’ = X+AB' format, wherein X represents the matrix at a
particular instant N and X’ represents the resultant matrix at another instant N’
Such transformation of the matrix into X+ABT format allows the complexity of the
resultant matrix to become O(mk® + n). For instance, in case a new row of data
points needs to be added, complexity of the transformed resultant matrix X+ABT
.can be reduced to O(mk?® + n) by replacing and/or casting only the new data point
or the entering data point at instant N by the leaving data point of the instant N,
and excluding the other data sets of the matrix from the éurrent calculation. “A”
represents a matrix in m*1 matrix format and “B” represents a matrix in [X new state -
X oid state) 10 @ 1*n matrix format. Multiplicaﬁon of matrix A and matrix B allows
replacement of the outgoing data set by the entering data set that avoids SVD
recomputation of the remaining data sets. In an embodiment, SSVD can be
computed after p new data point entries, wherein p can be any value equal to or
more than 1. _

[00018]  In yet another embodiment, for each iteration of SSVD computation,
reconstruction error can be computed for the resultant matrix. For instance, after
one iteration of thé SSVD, the matrix after SSVD can be transformed into U’ *
W’ * V°T and its reconstruction error, both in relative and absolute forms can be
calculated. In case the reconstruction error exceeds the predefined thresholds, SVD
for the matrix can be computed again. In case the reconstruction error is within the
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predefined threshold, a check for loss of orthogonality can be done in U and V to
verify that the columns of U and V are respectively orthonormal to each other.
Both relative and absolute check for loss of orthogonality can be done for the
vectors. For instance, relative check can include verification of || (VT *V) ||/ ||V]|
and absolute check can be include verification of VT * V - I|| value. In an
embodiment, in case the measure of loss of orthogonality is more than a predefined
threshold, PSVD needs to be recomputed. SSVD can further be used for
modifying, adding, and deleting row and column data sets of the resultant matrix.
In many applications of SVD, prior to computing the SVD of a matrix M, the
matrix M needs to be mean centered. In the case of SSVD, such mean centering
also needs to be performed and preserved. In an embodiment, SSVD can also be
used for recentering the matrix, which is lost after the introduction of new data
points. Recentering can be used for bringing the column mean of the resultant
matrix to the origin point by further recasting of the matrix X* to X +ABT =X,
wherein B =. [lold_mean = W new_mean] and A> =[1,1... 1]. -

[00019] In an embodimenf, in case the matrix needs to be divided into blocks
based on the ranges of normalization values of the data points of the rhatrix or
based on the requirement of parallel processing, the matrix can be split into bldcks.
'PSVD can then be computed on each block for 2*¥*K dimensions. Dividing the
matrix into blocks having same normalization values helps in avoiding the heavy
computation involved in the normalization step that needs to be executed for each
data point of the entire matrix after each iteration of sliding SVD. In an
embodiment, reconstruction error can be computed for each block after
computation of the PSVD to identify if the reconstruction error is within a
predefined threshold. If the reconstruction error for any of the blocks is hot within
the predefined threshold, SVD needs to be computed again to identify new set of
top k dimensions that have the reconstruction errors within the threshold levels.
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[00020]  In case the reconstruction error for each block is within the predefined
threshold, SSVD can be computed for each block iteratively for each entry of the
new data point. This step is primarily done for each block to avoid normalization
of the entire resultant matrix, as each block is configured to have same
normalization values and therefore does not need normalization to be carried out
after every step, which otherWise_is to be done each time an SSVD is to be-
computed for each entry of new data point of the complete matrix. Computing an
SSVD individually for each of the identified blocks avoids such normalization to
be done as all such blocks have normalization values in a specific range and
therefore do not requ.ire the normalization to be done at every iteration.
Reconstruction error and measure of losé,of orthogonality can be checked at each
iteration of SSVD in each individual block of the matrix. In case the reconstruction
error is greater than a predefined threshold, SVD can be recomputed and in case
the measure of loss of orthogonality is greater than a predefined threshold, PSVD
“can be recomputed for the respective block.

[0.0021] At the time of analysis of the resultant matrix, values of each block of
the resultant matrix can be normalized and merged together to form the final
matrix. Exemplary working of the method for computing streaming SVD is now
discussed with reference to a flowchart. |

[00022] Fig. 1 illustrates a flowchart of an efficient streaming SVD
computation method for streamed data and/or for streamed processing of data. |
[00023] At block 102, streaming singular value decomposition (SVD) can be
computed on an m*n matrix of data to identify k dimensions that represent the
normal space and define eigen energy above a predefined threshold such as 95%.
The SVD can therefore be computed based on a predefined eigen energy threshold.
The k dimensions are identified such that k << n. Identification of the k
dimensions transforms the matrix from a U ,;,*m * W, * VT, formatto a U s *
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W i ¥ VT format bringing the complexity of the data set down from O(mn®) to
O(mnk). | -
[00024] | At block 104, a decision as to whether the matrix needs to be divided
into blocks is made. The m*n matrix can be divided into blocks based on multiple
parameters. In an embodiment, the matrix can be divided into blocks based on the
normalization values of the data sets, wherein each block can includes data sets
having normalization values within a spécific range. For instance, one block can
include data sets that represent -the age of a person and therefore would typically
fall in the range of 1-100 and the other block can include data sets that represent
‘the monthly income of a person and therefore would typically fall in the range of
10000-100000. In another embodiment, the matrix cén'also be divided in blocks
for parallel processing of the entire matrix.

[00025] At block 106, the matrix is not dividéd into blocks and sliding singular
value decomposition (SSVD) is computed fof the entire matrix. At block 108, on
the other hand, a decision to divide the matrix is taken and the matrix is split into B
number of blocks, wherein each block typically includes data sets having
normalization values in a defined range. | |

[00026] Fig. 2 rillustrates a flowchart of an efficient SSVD computatiori method
on the entire matrix for streamed data and/or for streamed processing of data.
[00027] At block 106, the matrix is not divided into blocks and SSVD is
‘computed on the entire matrix for the new entering data points. At block 202,
partial SVD (PSVD) can be computed for f(k) dimensions. In an embodiment f(k)
is equal to 2*k dimensions. As discussed earlier, the error identified while doing
the k rank approximation (also referred to as choosing k dimensions) is found to be
-acceptable till k/2 dimensions are identified and shoot up immediately thereafter.

Selection of 2*k dimensions for computation of the PSVD therefore ensures that
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the k dimensions resulting from the PSVD computation would contain an error that
is bounded within an acceptable limit.

- [00028] At block 204, reconstruction error can be computed after computation
of the PSVD to identify if the reconstruction error is within the predeﬁnéd
threshold. In another embodiment, both relative and absolute reconstruction errors
can be identified, wherein relative reconstruction error can be identified through
computation of |[(X - U*W*VT)||/||X]|| and absolute reconstruction error can be
identified using || X - U*W*VT ||. At block 206, if the reconstruction errors are not
within predefined thresholds, SVD needs to be computed again to identify new set
of top k dimensions that have the reconstruction errors within the threshold levels.
[00029] At block 208, in case the reconstruction error is within the predefined
threshold, SSVD is calculated after each iteration for the new entering data point.
SSVD computation includes calculation of SVD values only for the new entering
data points rather than for the complete matrix. SSVD computation Jincludes
répresentation of the matrix with k dimensions into X’ = X+AB format, wherein
X represents the matrix at a particular instant N and X’ represents the resultant

“matrix at another instant N’. In an embodiment, instants N and N’ can be
timestamps during which the new data point enters into the computational matrix.
Such transformation into X+AB” format allows the complexity of the resultant
matrix to become O(Mk? + N) by replacing/casting only the new data point or the
entering data point at instant N’ by the leaving data poiht of the instant N, and
excluding the other dafa sets of the matrix from the current calculation. “A”
repreSents. M*l matrix format and B represents [X new state ; X old state] in'a
1*N matrix format. Multip_lication of matrix A and matrix B allows replacement of
the outgoing data set by the entering data set that avoids .SVD recomputation of the

remaining data sets.
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[00030] At block 210, reconstruction error is computed after each iteration for
the resultant matfix. For instance, after one iteration of the SSVD, the matrix after
PSVD can be transformed into U’ uu*W’ ¥ VT . and its reconstruction error,
both in relative and absolute forms can be calculated. _
[00031] At block 212, in case the reconstruction error exceeds the predefined
threshold, SVD fof the matrix needs to be computed again. At block 214, in case
the reconstruction error is within the predefined threshold, a check for loss of
orthogonality can be done in U and V to verify that the columns of U and V are
respectively orthonormal to each other. Both relative and absolute check for the
loss of orthogonality can be done for the vectors. |
[00032] At block 216, the measure of los.s of orthogonality is compared with a
predefined threshold. In case the measure of loss of orthogonality is more than the
| predefined threshold, PSVD needs to be recomputed. On the other hand, in case
‘the measure of loss of orthogonality is within the predefined threshold, SSVD for
the next .iteration or the new entry data point can be computed. In another
embodiment, in case the measure of loss of orthogonality is more than a predefined
threshold, SVD can again be computed. _ _
[00033] Fig. 3 illustrates a flowchart of an efﬁcienf SMSVD computation
method for streamed data and/or for streaine’d processing of data.
[00034] At block 108, the matrix is split into B number of blocks, wherein
each block typically includes data sets having normalization values in a defined
range. At block 110, PSVD can be computed for each block on 2*k/B dimensions
-and reconstruction error can be computed for each block after computation of the
PSVD to identify if the reconstruction error is within a predefined threshold.
[00035] At block 112, if the computed reconstruction error for any of the
blocks is not within the predefined threshold, SVD needs to be computed again to

11
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identify new set of top 'k dimensions that have the reconstruction errors within the
threshold levéls. |

[00036] At block 302, in case the reconstruction error for each bloék is within
the predefined threshold, SSVD can be computed for each block iteratively for
each entry of the new data point. Computing an SSVD for each identified block
avoids normaiization to be done for all such blocks, which otherwise needs to be
done after each iteration in case the SSVD is computed on the complete matrix as,
for SSVD to be computed on a matrix, all blocks should be equally nofmalized
with the norm of the respective block.

[00037] At block 304, reconstruction error is computed for each block. At
block 306, in case the computed reconstruction error is not within the pfedeﬁned
threshold, SVD needs to be computed again to identify new set of top k
dimensions that have the reconstruction errors within the threshold levels.

[00038] At block 308, in case the computed reconstruction error for each block
is within the predefined threshold, measure of loss of orthogonality is done for
each block. At block 310, in case the measure of loss of orthogonality is not within
the predefined threshold for one or more blocks, PSVD can be recomputed for the
respective block(s).

[00039] At block 312, in case the measure of loss of orthogonality is within the
predefined threshold for each block, a decision as to whether an analysis for the
matrix is required is done. In case the analysis for the matrix is not required, SSVD
for the next entry data point is computed for one or more blocks.

[00040] At block 314, in case the analysis for the resultant matrix is required,
values of each block of the resultant matrix can be normalized with their respective
norms and merged together to form the final matrix.

[00041] It would be appreciated by a person skilled in the art that the proposed

"~ method for computing SVD is not only limited to one or more of image

12
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processing, data mining, dynamic system control, compression, noise suppression,
dimensionality reduction, separation into normal and residual subspaces and
feature selection, analysis of computer network data., but all other applications in

which SVD computation is desired.
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WE CLAIM:

1. A method for computing Singular Value JDecomposition for streamed data
and/or for streamed processing of data, comprisihg:

calculating singular value decomposition for matrix of said data to
identify k significant dimensions;

computing partial singular value decomposition for f(k) dimensions;
and | _ |

calculating sliding singular value decomposition on p new data point
entries;

computing reconstruction error after computing said sliding singular
“ value decomposition; |

re-calculating said singular value decomposition for said matrix to
identify new k significant dimensions if said reconstruction error is not within a
defined threshold; |

measuring loss of orthdgonality ilf said reconstruction error is within
said defined threshold; and _

re-computing said partial s1ngu1ar value decomposition if said measure
of loss of orthogonality is not within a second defined threshold.
2. The method as claimed in claim 1, further comprising the step of dividing said
matrix into a plurality of blocks, wherein decision of dividing said matrix into said
'plurality of blocks is taken based on normalization values of said data of said
matrix.
3. The method as claimed in claim 2, wherein said partial singular value
decomposition for f{k) dimensions is conducted for each said plurality of blocks.

4. The method as claimed in claim 3, further comprising the steps of

14
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computing reconstruction error after computing said partial singular
value decomposition for said f{k) dimensions; and |
~ re-calculating said singular value decomposition for said matrix to
identify new k significant dimensions if said reconstruction error is not within a
defined threshold.

5. The method as claimed in claim 2, wherein said sliding singular value

decomposition is computed for each of said plurality of blocks. |
6. The method as claimed in claim 2, wherein said reconstruction error is

computed for each of said plurality of blocks.

7. The method as claimed in claim 2, wherein said loss of orthogonality is

measured for each of said plurality of blocks. |

8. The method as claimed in claim 1, wherein f{k) = 2*k.
9. The method as clairhed' in claim 1, wherein value of said p is ‘1°, further
wherein after calculating said sliding singular value decomposition for each
itération, said new matrix X’ is equal to X+ABT, wherein X is matrix after
previous iteration, A is of [1.1.1..] in m*1 matrix format and B is of [X n;w state = X
old state] 1N 1%n matrix format.
10. The method as claimed in claim 9, further comprising the step of mean
centering said matrix by récasting said matrix X’ to X’+A’B’T = X*°, wherein B’
=. [Mold_mean = M new mean) and A’ =[1,1... 1].
11. The method as claimed in claim 1, wherein said sliding singular value
decomposition is used for modifying, adding, and deleting row and column data of
said matrix. _

12. The method as claimed in claim 1, wherein said streaming Singtilar Value
Decomposition is used in one or more of image processing, data mining, dynamic

system control, compression, noise suppression, dimensionality 'reduction,
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separation into normal and residual subspaces and feature selection, and analysis
of computer network data. |
13. A method for computing Singular Value Decomposition for streamed data
“and/or for streamed processing of data, comprising: |
calculating singular value decomposition for matrix of said data to
identify k significant dimensions; and |
calculating sliding singular value decomposition on p new data point
entries |
computing reconstruction error after computing said sliding singular
value decompbsition; and | |
re-calculating said singular value decomposition if said reconstruction
error is not within a deﬁnea threshold
measuring loss of orthogonality if said reconstruction error is within
said defined threshold; and
re-calculating said singular value decomposition if said measure of
loss of orthogonality is not within a second defined threshold. |
14. The method as claimed in claim 13, further comprising the step of dividing
said matrix into a plurality of blocks, wherein decision of dividing said matrix into
said plurality of blocks is taken based on normalization values of said data of said
matrix.
15. The method as claimed in claim 13, wherein said streaming data is data in
motion, wherein said data in motion continuously arrives at collection point.
16. The method as claimed in claim 13, wherein said streaming data is data at rest,

wherein said data at rest is read in an ordered manner.

16



WO 2011/117890 PCT/IN2011/000199

1/3
100 \‘

102

DIMENSIONS BASED ON EIGEN

CALCULATE SVD To GIVE K
ENERGY THRESHOLD

DOES THE 106

MATRIX
NEED TO BE DIVIDED INTO
BLOCKS?

108

DIVIDE MATRIX INTO BLOCKS

l 110

CALCULATE PSVD FOR EACH
BLOCK AND COMPUTE
RECONSTRUCTION ERROR

112

IS RECONSTRUCTION
ERROR FOR EACH BLOCK WITHIN
REDEFINED THRESHOLD?

114



WO 2011/117890

- 200\<

A

No

PCT/IN2011/000199
2/3

106

202

CALCULATE PSVD FOR 2*K
DIMENSIONS |

l 204

COMPUTE RECONSTRUCTION
ERROR ON THE MATRIX

206
IS RECONSTRUCTION
ERROR WITHIN PREDEFINED
THRESHOLD?
208

(" COMPUTE SSVD FOR EACH
ITERATION OF NEW DATA POINT
k ENTRY

l 210

( COMPUTE RECONSTRUCTION

212
IS RECONSTRUCTION
ERROR WITHIN PREDEFINED
THRESHOLD?
214
MEASURE LOSS OF
OORTHOGONALITY

L ERROR AFTER EACH ITERATION

216

S MEASURE OF
Loss OF ORTHOGONALITY
WITHIN PREDEFINED
THRESHOLD?

Fig. 2




WO 2011/117890 PCT/IN2011/000199
3/3

300 \

114

®

302
ComPUTE SSVD FOR EACH
BLOCK FOR EACH ITERATION OF
NEw DATA POINT ENTRY
y 304

COMPUTE RECONSTRUCTION
ERROR FOR EACH BLOCK

IS RECONSTRUCTION 306
ERROR FOR EACH BLOCK
WITHIN PREDEFINED
THRESHOLD?
308
MEASURE LOSS OF
ORTHOGONALITY OF EACH BLOCK
S MEASURE OF 310

Loss OF ORTHOGONALITY
WITHIN PREDEFINED
THRESHOLD

312

ANALYSIS OF MATRIX
REQUIRED?

314

NORMALIZE AND. MERGE THE
BLOCKS TO FORM RESULTANT
MATRIX

Fig. 3




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings

