特許協力条約に基づいて公開された国際出願

国際公開日
2015 年 10 月 15 日.il5.10.2015)

国際出願番号
WO 2015/156317 A1

出願人: 花王株式会社 (KAO CORPORATION)

代理人: 特許業務法人 アルガ特許事務所 (THE PATENT CORPORATE BODY ARUGA PATENT)

(19) 世界知的所有権機関
(43) 国際公開日
2015 年 10 月 15 日

(51) 国際特許分類:
A61K 8/34 (2006.01)
A61K 8/49 (2006.01)

(21) 国際出願番号:
PCT/JP2015/0080976

(22) 国際公開日:
2015 年 4 月 8 日 (08.04.2015)

(56) 資料

難水溶性芳香族化合物と二価アルコールと三価以上のアルコールを 100〜180°C で加熱処理する工程を含む難水溶性芳香族化合物含有組成物の製造方法。

(54) Title: MANUFACTURING METHOD FOR COMPOSITION CONTAINING POORLY WATER-SOLUBLE AROMATIC COMPOUND

(57) Abstract: Provided is new method for manufacturing a composition containing a poorly water-soluble aromatic compound, wherein the dissolution of the poorly water-soluble aromatic compound (component A of the present invention) in water is excel lent. The method for manufacturing a composition containing a poorly water-soluble aromatic compound includes a step in which the following are heat-treated at a temperature of 100-180°C in the presence of an aqueous medium: (A) a poorly water-soluble aromatic compound; (B) a divalent alcohol; and (C) an alcohol that is at least trivalent.
発明の名称：難水溶性芳香族化合物含有組成物の製造方法

技術分野
[0001] 本発明は、難水溶性芳香族化合物含有組成物の製造方法及び化粧料に関する。

背景技術
[0002] 芳香族化合物は、香料品、医薬品、食品、日用品等の製品に広く利用されている。芳香族化合物には常温において固体であり、水に難溶性のものが多く、その利用形態は、アルコールに溶解させて使用するのが一般的である（例えば、特許文献1、2）。しかしながら、アルコールの皮膚への刺激により使用感を損ないやすい。また、適用できる組成物が制限されています。

そこで、難水溶性の芳香族化合物を水に可溶化させる技術が検討され、例えば、イソプロピルメチルフエノールにグルコース等の糖を結合させたイソプロピルメチルフエノール配糖体（特許文献3）や、界面活性剤と湿潤剤を併用してイソプロピルメチルフエノールを可溶化させる方法（特許文献4）が報告されている。

また、水性媒体の存在下、難水溶性の育毛成分とポリフェノール配糖体等の水溶性芳香族化合物を100〜180℃で加熱処理して、難水溶性の育毛成分を可溶化する方法が報告されている（特許文献5）。

（特許文献）

発明の概要

（特許文献1）特開2009-96777号公報
（特許文献2）特開2011-153122号公報
（特許文献3）特開2005-82506号公報
（特許文献4）特開2011-98919号公報
（特許文献5）特開2013-124225号公報
本発明は、水性媒体の存在下、（A）難水溶性芳香族化合物と（B）二価アルコールと（C）三価以上のアルコールを100〜180℃で加熱処理する工程を含む、難水溶性芳香族化合物含有組成物の製造方法、該製造方法により得られる難水溶性芳香族化合物含有組成物、及び該難水溶性芳香族化合物含有組成物を含有する化粧料を提供するものである。

発明の詳細な説明

しかしながら、イソプロピルメチルフェノール配糖体のような難水溶性の芳香族化合物自身に糖を付加した所謂配糖体は水への溶解性が高いものの、製造工程が複雑であるためコストが高い。そのため、イソプロピルメチルフェノールに替えてイソプロピルメチルフェノール配糖体を使用することや、可溶化剤としてボリフェノール配糖体を使用することは経済的に不利である。

一方、界面活性剤を用いて難水溶性の芳香族化合物を可溶化させる方法では、十分な溶解性と抗菌効果という芳香族化合物の生理効果が得られない場合がある。

したがって、本発明は、難水溶性芳香族化合物（本発明の成分（A））の水への溶解性に優れる難水溶性芳香族化合物含有組成物（以下、該組分（A）含有組成物」と称する）を製造する新たな方法を提供しようとするものである。

また、本発明は、難水溶性芳香族化合物を安定に含有し、その効果が十分に発揮された化粧料を提供しようとするものである。

本発明者らは、難水溶性の芳香族化合物の可溶化技術について種々検討したところ、水性媒体の存在下、当該難水溶性の芳香族化合物と二価アルコールと三価以上のアルコールを100℃以上で加熱処理することで、通常の難水溶性芳香族化合物の水への溶解度と比較して飛躍的に難水溶性芳香族化合物の溶解濃度が増加すること、また、斯かる処理を経た組成物では室温下においても芳香族化合物の析出が抑えられ、安定的に高い水への成分（A）の溶解性が維持されることを見出した。
また、斯かる処理を経た成分（A）含有組成物と、消臭成分、殺菌成分及び感触向上成分から選ばれる1種以上と組み合わせることにより、難水溶性芳香族化合物の効果が十分に発揮されると共に、組み合わせられた成分の効果を十分発現できる化粧料が得られることを見出した。

本発明によれば、成分（A）の水への溶解性に優れる成分（A）含有組成物を、安価に製造することができる。この成分（A）含有組成物を用いることで、エタノールの使用を低減、又は回避することができるため、皮膚刺激の少ない水系の製品の提供が可能である。

また、本発明の化粧料は、成分（A）の水への溶解性に優れる成分（A）含有組成物を用いることにより、難水溶性芳香族化合物の効果を十分に発揮させることができる。難水溶性芳香族化合物として、芳香族の抗菌成分を用いた場合には、優れた消臭効果、殺菌効果が得られ、べたつき感がなく、すべて耐が得られることができる。

本発明の成分（A）含有組成物の製造方法においては、水性媒体の存在下、（A）難水溶性芳香族化合物と（B）ニードアルコールと（C）三価以上のアルコールを100〜180℃で加熱処理する工程を含む。

本発明で用いられる（A）難水溶性芳香族化合物としては、難水溶性のもの、例えば、水に対する25℃での溶解度が0.5g/L以下、更に0.3g/L以下、更に0.2g/L以下である芳香族化合物が好ましく適用できる。

また、（B）二価アルコールに対する25℃での溶解度が5g/L以上、更に10g/L以上、更に20g/L以上、である芳香族化合物が好ましく適用できる。ここで溶解度は、溶液1L中に溶解している溶質のグラム数を表し、単位は[gZL]である。

芳香族化合物としては、特に限定されず、抗菌成分、美白成分、育毛成分として用いられる芳香族化合物が例として挙げられる。A）難水溶性芳香族化合物は、1種であっても、2種以上の混合物であってもよい。

芳香族の抗菌成分としては、例えば、フエノール系抗菌剤、防腐剤等が挙
げられる。

フエノール系抗菌剤は、トリクロサン、クロルチモール、カルバクロール、クロロフェン、ジクロロフェン、ヘキサクロロフェン、クロロキシレノール、クロロクレゾール等のクロロフエノール系抗菌剤；FR型フエノール、イソプロピルメチルフエノールが好ましく、更にトリクロサン、イソプロピルメチルフエノールが好ましく、更にイソプロピルメチルフエノールが好ましい。

防腐剤は、メチルパラベン、エチルパラベン、プロピルパラベン、イソプロピルパラベン、ブチルパラベン、イソプロピルパラベン、ベンジルパラベン等のパラロキシ安息香酸エステルが好ましい。

[0011]芳香族の美白成分としては、例えば、クロモン誘導体等が挙げられる。

クロモン誘導体は、クロモン、すなわち4H-1ベンゾピラン1-4オンの2位に炭素数1～15の直鎖状又は分岐鎖状のアルキル基を有し、7位に水素原子、ヒドロキシ基又はアルコキシ基を有する化合物が好ましい。

このようなクロモン誘導体の例としては、2_ブチルクロモン、2_ペンチルクロモン、2_ヘプチルクロモン、2_ノニルクロモン、2_ヘキサデシルクロモン、2_(1_エチルペンチル)クロモン、2_ブチル7メトキシクロモン、2_ベンチル7メトキシクロモン、2_ヘプチル7メトキシクロモン、2_ノニル7メトキシクロモン、2_ペンタデシル7メトキシクロモン、2_(1_エチルペンチル)7メトキシクロモン、7_ヒドロキシ2_メチルクロモン、7_ヒドロキシ2_ブチルクロモン、7_ヒドロキシ2_ベンチルクロモン、7_ヒドロキシ2_ヘプチルクロモン、7_ヒドロキシ2_ノニルクロモン、7_ヒドロキシ2_ペンタデシルクロモン、7_ヒドロキシ2_(1_エチルペンチル)クロモン等が挙げられる。なかでも、2_(1_エチルペンチル)_1メトキシクロモンが好ましい。

クロモン誘導体は、公知の方法、例えば、特開平7_188208号公報に記載の方法により製造することができる。
芳香族の育毛成分としては、例えば、トランス-3, 4'-ジメチル-3-ヒドロキシフランノン等のフランノール誘導体、ニコチン酸ペンジル、ニコチン酸トコフェロール、ニコチン酸β-プロトキシメチル等のニコチン酸類；α-トコフェロール、酢酸d1-α-トコフェロール、ニコチン酸アシトコフェロール、天然ピタミンE等のピタミンE類；ピノキシジル、ビマトプロスト、タフルプロスト、ノニ酸パニリルアミド、オトギリ草抽出物、トウガラシシンキ等が挙げられる。

なかでも、トランス-3, 4'-ジメチル-3-ヒドロキシフランノン、ニコチン酸ペンジル、ニコチン酸トコフェロール、ニコチン酸β-プロトキシメチル、α-トコフェロール、酢酸d1-α-トコフェロール、ニコチン酸アシトコフェロール、天然ピタミンE、ピノキシジル、ビマトプロスト、タフルプロスト、ノニ酸パニリルアミド、オトギリ草抽出物及びトウガラシシンキが好ましく、トランス-3, 4'-ジメチル-3-ヒドロキシフランノンがより好ましい。フランノール誘導体は、公知の方法、例えば、特開2000-198779号公報に記載の方法により製造することができる。

本発明で用いられる（B）二価アルコールは、炭化水素の2個の水素を水酸基で置換したアルコール類の総称であり、例えば、エチレングリコール、プロピレングリコール、1,3_プロパンジオール、2_メチル_1,3_プロパンジオール、1,3_ブタンジオール等のアルケン基グリコール類；ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のポリアルケン基グリコール類が挙げられる。

なかでも、難水溶性芳香族化合物の可溶性の点から、エチレングリコール、プロピレングリコール、1,3_プロパンジオール、1,3_ブタンジオール、ジプロピレングリコールが好ましく、更にプロピレングリコール、1,3_プロパンジオール、1,3_ブタンジオールが好ましい。ポリエチレングリコールの重量平均分子量は、200〜20,000であるのが好ましい。

（B）二価アルコールは、単独で又は2種以上を組み合わせて用いること
ができる。

本発明で用いられる (C) 三価以上のアルコールは、炭化水素の 3 個以上の水素を水酸基で置換したアルコール類の総称であり、例えば、グリセリン、ジグリセリン、トリグリセリン等のグリセリン類; 1, 2, 4 一ブタントリオール、1, 2, 5 ベンタントリオール、2 メチルプロパントリオール、2 メチル 1, 2, 4 一ブタントリオール、トリメチロールプロパン等のトリオール類が挙げられ、三一五価のアルコールが好ましく、三価のアルコールがより好ましい。なお、難水溶性芳香族化合物の可溶化の点から、グリセリン類が好ましく、化粧料に適用可能であるという観点よりグリセリン、ジグリセリンが更に好ましい。

(C) 三価以上のアルコールは、単独で又は 2 種以上を組み合わせて用いることができる。

本発明で用いられる水性媒体とは、水、及び有機溶媒の水溶液をいう。水としては、水道水、蒸留水、イオン交換水、精製水が例示される。有機溶媒としては、水と均一に混合するものであれば特に限定されない。有機溶媒としては炭素数 4 以下の一価アルコールが好ましく、プロパノール及びエタノールがより好ましく、化粧料に適用可能であるという観点よりエタノールが更に好ましい。なお、本発明でいう有機溶媒とは (B) 二価アルコール及び (C) 三価以上のアルコールを除くものである。

有機溶媒を使用すると (A) 難水溶性芳香族化合物の水に対する溶解度が高くなるが、皮膚への刺激の観点より使用量を少なくすることが望ましい。水溶液中の有機溶媒の濃度は、0 〜 60 質量％が好ましく、0 〜 30 質量％がより好ましく、0 〜 10 質量％が更に好ましく、0 〜 1 質量％が更に好ましく、実質的に 0 質量％、すなわち有機溶媒を含まないのが更に好ましい。

(A) 難水溶性芳香族化合物、(B) 二価アルコール及び (C) 三価以上のアルコールを水性媒体に溶解した溶液へ分散させ、スラリーの状態で加熱処理に供しても良いし、(A) 難水溶性芳香族化合物を一旦 (B) 二価アルコール及び (C) 三価以上のアルコールに溶解若しくは分散したものを水
性媒体と混合した後、加熱処理に供してもよい。

【0017】加熱処理に供する際、水性媒体、（A）難溶性芳香族化合物、（B）二価アルコール及び（C）三価以上のアルコールを含有する加熱処理原料を調製、加熱処理を行う。

加熱処理原料中の（A）難溶性芳香族化合物の含有量は、その種類によって異なるが、通常、生産性の点から、0.1 g/L以上、更に0.5 g/L以上、更に0.7 g/L以上、更に0.9 g/L以上、更に1 g/L以上、更に2 g/L以上、更に7.5 g/L以上、更に30 g/Lが好ましく、また、流動性の点から、150 g/L以下、更に100 g/L以下、更に75 g/L以下、更に60 g/L以下、更に55 g/L以下、更に50 g/L以下が好ましい。また、0.1 - 150 g/Lが好ましく、0.1 - 100 g/Lがより好ましく、0.5 - 75 g/Lがより好ましく、0.7 - 60 g/Lが更に好ましく、0.9 - 55 g/Lが更に好ましく、1 - 55 g/Lが更に好ましく、1 - 50 g/Lが更に好ましく、2 - 50 g/Lが更に好ましく、7.5 - 50 g/Lが更に好ましく、30 - 50 g/Lが更に好ましい。

【0018】加熱処理原料中の（B）二価アルコールの含有量は、その種類によって異なるが、通常、成分（A）の溶解性の点から、1 g/L以上、更に10 g/L以上、更に20 g/L以上が好ましく、更に100 g/L以上が好ましく、更に300 g/L以上が好ましく、また、流動性の点から、700 g/L以下、更に600 g/L以下、更に500 g/L以下が好ましい。また、1 - 700 g/Lが好ましく、10 - 600 g/Lがより好ましく、20 - 500 g/Lが更に好ましく、100 - 500 g/Lが更に好ましく、300 - 500 g/Lが更に好ましい。

【0019】加熱処理原料中の（C）三価以上のアルコールの含有量は、その種類によって異なるが、成分（A）の溶解性の点から、1 g/L以上、更に10 g/L以上、更に50 g/L以上、更に100 g/L以上が好ましく、また、保存安定性の点、流動性の点から、500 g/L以下、更に300 g/L以下
更に250 g/L以下、更に200 g/L以下が好ましい。また、1〜5
00 g/Lが好ましく、1〜300 g/Lがより好ましく、10〜250 g
/Lが更に好ましく、50〜250 g/Lが更に好ましく、100〜200
g/Lが更に好ましい。

加熱処理原料中、成分 (B) に対する成分 (A) の質量比 [(A) ∕ (B)
] は、冷却後に得られる成分 (A) 含有組成物中における成分 (A) の溶
解性の点から、0.001以上、更に0.002以上、更に0.02以上、
更に0.025以上、更に0.06以上が好ましく、また、1以下、更に0
.5以下、更に0.2以下、更に0.15以下、更に0.13以下、更に0
.12以下、更に0.11以下が好ましい。また、0.001〜1が好まし
く、0.001〜0.5が更に好ましく、0.001〜0.2が更に好まし
く、0.002〜0.15が更に好ましく、0.002〜0.13が更に好
ましく、0.002〜0.12が更に好ましく、0.002〜0.11が更
に好ましく、0.02〜0.11が更に好ましく、0.02〜0.11が
更に好ましく、0.06〜0.11が更に好ましい。

本発明の製造方法により得られる成分 (A) 含有組成物を後述する化粧料
に用いる場合は、加熱処理原料中の成分 (B) に対する成分 (A) の質量比
[(A) ∕ (B)] は、冷却後に得られる成分 (A) 含有組成物中における
成分 (A) の溶解性の点から、0.02以上、更に0.025以上が好まし
く、更に0.06以上が好ましく、また、1以下、更に0.5以下、更に0
.15以下が好ましい。また、0.02〜1が好ましく、0.02〜0.5が
より好ましく、0.06〜0.15が更に好ましい。

加熱処理原料中、成分 (C) に対する成分 (A) の質量比 [(A) ∕ (C)
] は、冷却後に得られる成分 (A) 含有組成物中における成分 (A) の溶
解性の点から、0.001以上、更に0.005以上、更に0.01以上、
更に0.12以上、更に0.15以上、更に0.17以上が好ましく、また
、1.5以下、更に1以下、更に0.7以下、更に0.55以下が好ましい
。また、0.001〜1.5が好ましく、0.001〜1が更に好ましく、
0.005〜0.7が更に好ましく、0.01〜0.55が更に好ましく、
0.12〜0.55が更に好ましく、0.15〜0.55が更に好ましく、
0.17〜0.55が更に好ましい。

[0023] 本発明の製造方法により得られる成分 (A) 含有組成物を後述する化粧料
に用いる場合は、加熱処理原料中の成分 (C) に対する成分 (A) の質量比
[(A)/(C)] は、冷却後に得られる成分 (A) 含有組成物中における
成分 (A) の溶解性の点から、0.12以上、更に0.15以上、更に0.17以上が好ましく、また、1.5以下、更に1以下、更に0.6以下が好ましい。また、0.12〜1.5が好ましく、0.15〜1が更に好ましく、
0.17〜0.6が更に好ましい。

[0024] 加熱処理原料中、成分 (C) に対する成分 (B) の質量比 [(B)/(C)] は、冷却後に得られる成分 (A) 含有組成物中における成分 (A) の溶
解性の点から、1.5以上、更に2以上、更に2.5以上が好ましく、また
、10以下、更に8以下が好ましく、更に6以下が好ましい。また、1.5
〜10が好ましく、2〜8が更に好ましく、2.5〜6が更に好ましい。

[0025] また、加熱処理原料中、成分 (B) と成分 (C) の合計量に対する成分 (A) の質量比 [(A)/(B)+(C)] は、冷却後に得られる成分 (A) 2
含有組成物中における成分 (A) の溶解性の点、成分 (A) 含有組成物
の保存安定性の点から、0.001以上、更に0.002以上、更に0.015以上、更に0.019以上、更に0.05以上が好ましく、また、0.5
以下、更に0.2以下、更に0.15以下、更に0.12以下、更に0.1
0以下が好ましい。また、0.001〜0.5が好ましく、0.001〜0.2が更に好ましく、0.002〜0.15がより好ましく、0.002
〜0.12が更に好ましく、0.002〜0.10が更に好ましく、0.0
15〜0.10が更に好ましく、0.019〜0.10が更に好ましく、0
.05〜0.10が更に好ましい。

[0026] 本発明の製造方法により得られる成分 (A) 含有組成物を後述する化粧料
に配合する場合は、加熱処理原料中の成分 (B) と成分 (C) の合計量に対
する成分 (A) の質量比 \[
(A) / \{ (B) + (C) \}
\] は、冷却後に得られる成分 (A) 含有組成物中における成分 (A) の溶解性の点、成分 (A) 含有組成物の保存安定性の点から、0.015以上、更に0.019以上が好ましく、更に0.05以上が好ましく、また、0.5以下、更に0.2以下、更に0.1以下が好ましい。また、0.015～0.5が好ましく、0.019～0.5がより好ましく、0.05～0.2が更に好ましく、0.05～0.1が更に好ましい。

本発明の製造方法においては、界面活性剤を使用しても良いが、(A) 難水溶性芳香族化合物の生理活性を維持する観点や皮膚への刺激を少なくする観点より、界面活性剤の使用量は少なくすることが望ましい。加熱処理原料中の界面活性剤の含有量は、0〜1g/Lが好ましく、0〜0.5g/Lが更に好ましく、0〜0.1g/Lが更に好ましく、実質的に0g/L、すなわち界面活性剤を含まないので更に好ましい。

水性媒体の存在下、(A) 難水溶性芳香族化合物と(B) 二価アルコールと(C) 三価以上のアルコールを加熱処理する方法は、特に制限されず、公知の方法を適用できる。

加熱処理の温度は、100〜180℃であるが、(A) 難水溶性芳香族化合物の溶解性向上の点から、110℃以上が好ましく、120℃以上がより好ましく、また、熱安定性の点から170℃以下がより好ましく、160℃以下がより好ましい。また、加熱処理の温度は、110〜170℃が好ましく、120〜160℃が更に好ましく、120〜150℃が更に好ましい。

加熱の手段は、例えば、水蒸気、電気が挙げられる。

加熱処理時の圧力は、ゲージ圧力で0〜1OMPaが好ましく、0.1〜8MPaがより好ましく、0.1〜6MPaが更に好ましく、0.2〜6MPaが更に好ましく、0.2〜4MPaが更に好ましく、0.25〜2MPaが更に好ましく、0.3〜1.5MPaが更に好ましく、0.3〜0.6MPaが更に好ましい。なお、ゲージ圧とは、大気圧をOMPaとした圧力である。また、水の飽和蒸気圧以上に設定するのが好ましい。加圧には、ガ
スを用いてもよく、用いられるガスとしては、例えば、不活性ガス、水蒸気、窒素ガス、ヘリウムガス等が挙げられる。加圧には、ガスを用いず、背圧弁により調整しても良い。

加熱処理は、例えば、回分法、半回分法、流通法等いずれの方法によっても実施できる。なかでも、流通法は、加熱処理時間の制御が容易である点で好ましい。

加熱処理の時間は、(A) 難水溶性芳香族化合物の溶解性上の点から、水性媒体が上記加熱処理の温度に達してから0.1分以上が好ましく、0.2分以上がより好ましく、0.5分以上が更に好ましく、熱安定性の点から、30分以下が好ましく、15分以下がより好ましく、8分以下が更に好ましい。また、加熱処理の時間は、水性媒体が上記加熱処理の温度に達してから0.1〜30分が好ましく、更に0.2〜15分、更に0.5〜8分が好ましい。

流通法で行う場合、加熱処理の時間は、反応器の高温高圧部の体積を水性媒体の供給速度で割ることにより算出される平均滞留時間を用いる。

加熱処理は、例えば、回分法、半回分法、流通法等いずれの方法によっても実施できる。なかでも、流通法は、加熱処理時間の制御が容易である点で好ましい。

加熱処理の時間は、(A) 難水溶性芳香族化合物の溶解性上の点から、加熱処理原料が上記加熱処理の温度に達してから0.1分以上が好ましく、0.2分以上がより好ましく、0.5分以上が更に好ましく、熱安定性の点から、30分以下が好ましく、15分以下がより好ましく、8分以下が更に好ましい。また、加熱処理の時間は、加熱処理原料が上記加熱処理の温度に達してから0.1〜30分が好ましく、更に0.2〜15分、更に0.5〜8分が好ましい。

流通法で行う場合、加熱処理の時間は、反応器の高温高圧部の体積を加熱処理原料の供給速度で割ることにより算出される平均滞留時間を用いる。

流通法で行う場合の水性媒体の流速は、反応器の体積によって異なるが、
例えば、反応器体積が500Lの場合、15〜5,000L/分が好ましく、更に30〜2,500L/分が好ましく、更に60L/分〜1,000L/分が好ましい。

本発明の製造方法においては、加熱処理して得られた加熱処理液を、90°C以下、好ましくは50°C以下、更に好ましくは30°C以下に冷却する工程を含むことが好ましい。液状の成分（A）含有組成物を得る場合には、0°C以上が好ましく、10°C以上が好ましい。

加熱処理温度から90°Cまで低下するのに要した時間から算出される加熱処理液の冷却速度は0.2°C/s以上、更に0.5°C/s以上、1°C/s以上、更に3°C/s以上、更に5°C/s以上が好ましい。冷却速度が大きいほど難水溶性の芳香族化合物の溶解度を向上することができる。このため、冷却速度の上限は特に定めないが、製造設備の制約等の観点から、例えば100°C/s以下、更に50°C/s以下が好ましい。

更に、加熱処理液から、溶解放せずに残留する固形物を除去する工程を行うのが、得られる成分（A）含有組成物中における成分（A）の溶解安定性の点から好ましい。固形物を除去する方法としては、特に制限されず、例えば遠心分離やデカンテーショングロ過により行うことができる。

かくして得られる成分（A）含有組成物は、水性媒体中に、（A）難水溶性芳香族化合物、（B）二価アルコール、（C）三価以上のアルコールを含むものであり、（A）難水溶性芳香族化合物の含有量が高いにもかかわらず、室温下においても、また室温保存中も難水溶性芳香族化合物の析出が抑えられる。また、水への溶解性に優れている。

本発明の成分（A）含有組成物における成分（A）の含有量は、物流や使用性の点から、好ましくは0.5g/L以上であり、更に1g/L以上、更に1.5g/L以上、更に2g/L以上、更に7.5g/L以上、更に30g/Lが好ましく、また、150g/L以下、更に100g/L以下、更に75g/L以下、更に60g/L以下、更に55g/L以下、更に50g/L以下が好ましい。
本発明の成分 (A) 含有組成物において、(B) 二価アルコールの含有量は、成分 (A) 含有組成物中における成分 (A) の溶解性と安定性の点から、全組成中に 1 g/ L 以上、更に 10 g/ L 以上、更に 20 g/ L 以上が好ましく、更に 100 g/ L 以上が好ましく、更に 300 g/ L 以上が好ましく、また、流動性の点から、700 g/ L 以下、更に 600 g/ L 以下、更に 500 g/ L 以下が好ましい。また、1 〜 700 g/ L が好ましく、10 〜 600 g/ L がより好ましく、20 〜 500 g/ L が更に好ましく、10 〜 500 g/ L が更に好ましく、300 〜 500 g/ L が更に好ましい。

本発明の成分 (A) 含有組成物において、(C) 三価以上のアルコールの含有量は、成分 (A) 含有組成物中における成分 (A) の溶解性と安定性の点から、全組成中に 1 g/ L 以上、更に 10 g/ L 以上、更に 50 g/ L 以上、更に 100 g/ L 以上が好ましく、また、500 g/ L 以下、更に 300 g/ L 以下、更に 250 g/ L 以下、更に 200 g/ L 以下が好ましい。また、1 〜 500 g/ L が好ましく、1 〜 300 g/ L がより好ましく、1 〜 250 g/ L が更に好ましく、50 〜 250 g/ L が更に好ましく、1 〜 200 g/ L が更に好ましい。

本発明の成分 (A) 含有組成物における、成分 (B) に対する成分 (A) の質量比 [(A) / (B)] は、成分 (A) 含有組成物の安定性の点より、0.001 以上、更に 0.002 以上、更に 0.02 以上、更に 0.025 以上、更に 0.06 以上が好ましく、また、1 以下、更に 0.5 以下、更に 0.2 以下、更に 0.15 以下、更に 0.13 以下、更に 0.12 以下、更に 0.11 以下が好ましい。また、0.001 〜 1 が好ましく、0.001 〜 0.5 が更に好ましく、0.001 〜 0.2 が更に好ましく、0.002 〜 0.15 が更に好ましく、0.002 〜 0.13 が更に好ましく、0.02 〜 0.12 が更に好ましく、0.002 〜 0.11 が更に好ましく、0.02 〜 0.11 が更に好ましく、0.025 〜 0.11 が更に好ましく、0.06 〜 0.11 が更に好ましい。

本発明の成分 (A) 含有組成物における、成分 (C) に対する成分 (A)
の質量比 \[(A) \div (C)\] は、成分 (A) 含有組成物中における成分 (A) の溶解性の点より、0.001以上、更に0.005以上、更に0.01以上、更に0.12以上、更に0.15以上、更に0.17以上が好ましく、また、1.5以下、更に1以下、更に0.7以下、更に0.55以下が好ましい。また、0.001〜1.5が好ましく、0.001〜1が更に好ましく、0.005〜0.7が更に好ましく、0.01〜0.55が更に好ましく、0.12〜0.55が更に好ましく、0.15〜0.55が更に好ましく、0.17〜0.55が更に好ましい。

[0041] 本発明の成分 (A) 含有組成物における、成分 (C) 対する成分 (B) の質量比 \[(B) \div (C)\] は、成分 (A) 含有組成物中における成分 (A) の溶解性の点より、1.5以上、更に2以上、更に2.5以上が好ましく、また、10以下、更に8以下、更に6以下が好ましい。また、1.5〜1が好ましく、2〜8が更に好ましく、2.5〜6が更に好ましい。

[0042] また、本発明の成分 (A) 含有組成物における、成分 (B) と成分 (C) の合計量に対する成分 (A) の質量比 \[\{(A) \div (B) + (C)\}\] は、成分 (A) 含有組成物の安定性の点より、0.001以上、更に0.002以上、更に0.015以上、更に0.019以上、更に0.05以上が好ましく、また、0.5以下、更に0.2以下、更に0.15以下、更に0.12以下、更に0.1以下が好ましい。また、0.001〜0.5が好ましく、0.001〜0.2が好ましく、0.002〜0.15が好ましく、0.002〜0.12が更に好ましく、0.002〜0.1が更に好ましく、0.015〜0.1が更に好ましく、0.019〜0.1が更に好ましく、0.05〜0.1が更に好ましい。

[0043] 本発明の成分 (A) 含有組成物中、有機溶媒、とりわけ炭素数4以下のアルコールの含有量は、皮膚への刺激の観点より使用量を少なくすることが望ましい。成分 (A) 含有組成物中の有機溶媒の含有量は、0〜60質量％が好ましく、0〜30質量％がより好ましく、0〜10質量％が更に好ましく、0〜1質量％が更に好ましく、実質的に0質量％、すなわち有機溶媒
を含まないのが更に好ましい。

【0044】本発明の成分（A）含有組成物中、界面活性剤の含有量は、（A）難水溶性芳香族化合物の効果を有利に発揮する観点より少なくすることが望ましい。成分（A）含有組成物中の界面活性剤の含有量は、0〜1 g/ L が好ましく、0〜0.5 g/L が更に好ましく、0〜0.1 g/L が更に好ましく、実質的に0 g/L すなわち界面活性剤を含まないのが更に好ましい。

【0045】本発明の成分（A）含有組成物は、化粧料、医薬品、食品、日用品等の様々な製品に使用可能である。とりわけ、水系の製品、更に化粧料に利用するのが有用である。化粧料又は医薬品としては、洗浄料、化粧水、メイクアップ用化粧料、日焼け止め用化粧料、ニキビ用化粧料、デオドラント用化粧料、美白用化粧料等の皮膚化粧料、洗髪剤、育毛剤、歯磨剤、洗口剤、うがい薬等が挙げられる。

【0046】本発明の成分（A）含有組成物は、製品の用途に応じて水等で希釈して用いてもよい。希釈後の成分（A）含有組成物中の成分（A）の濃度は、0〜1〜5 g/L、更に0.5〜30 g/L、更に0.5〜10 g/L、更に0.5〜5 g/L、0.5〜2 g/Lが好ましい。本発明の成分（A）含有組成物は、通常の難水溶性芳香族化合物の水八の溶解度と比較して飛躍的に難水溶性芳香族化合物の溶解度が増加しているにも関わらず、所望の濃度に希釈することが出来、その場合においても難水溶性芳香族化合物の析出が抑えられ安定性が高い。また、難水溶性芳香族化合物の高い生理活性発現が期待できる。

【0047】本発明の化粧料は、上記のようにして得られた成分（A）含有組成物を含有するものであり、好ましくは（C）三価以上のアルコールに対する（B）二価アルコールの質量比【（B）/（C）】が1〜5又は10である成分（A）含有組成物を含有するものであり、更に好ましくは（D）消臭成分、殺菌成分及び感触向上成分から選ばれる1種以上を更に含有するものである。これにより、難水溶性芳香族化合物の効果が発揮十分に発揮されると共に、組み合わされた成分の効果を十分発現できる。
本発明の成分 (A) 含有組成物を化粧料に用いる場合、成分 (A) 含有組成物における、成分 (C) に対する成分 (B) の質量比 [(B) / (C)] は、成分 (A) 含有組成物中における成分 (A) の溶解性の点から、1.5 以上、更に2以上、更に2.5以上が好ましく、また、10以下、更に8以下、更に6以下が好ましい。また、1.5~10が好ましく、2~8が更に好ましく、2.5~6が更に好ましい。

また、本発明の成分 (A) 含有組成物を化粧料に用いる場合、成分 (A) 含有組成物中の成分 (A) の含有量は、物流や使用性の点から、好ましくは1g/L以上であり、更に2g/L以上、更に7.5g/L以上、更に30g/L以上が好ましい。

本発明の成分 (A) 含有組成物を化粧料に用いる場合、成分 (A) 含有組成物における、成分 (B) に対する成分 (A) の質量比 [(A) / (B)] は、難水溶性芳香族化合物の安定性を向上させる観点から、0.02以上、更に0.025以上、更に0.06以上が好ましく、また、1以下、更に0.5以下、更に0.15以下が好ましい。また、0.02~1が好ましく、0.025~0.5が更に好ましく、0.06~0.15が更に好ましい。

本発明の成分 (A) 含有組成物を化粧料に用いる場合、成分 (A) 含有組成物における、成分 (C) に対する成分 (A) の質量比 [(A) / (C)] は、成分 (A) 含有組成物の安定性を向上させる観点から、0.12以上、更に0.15以上、更に0.17以上が好ましく、また、1.5以下、更に1以下、更に0.6以下が好ましい。また、0.12~1.5が好ましく、0.15~1が更に好ましく、0.17~0.6が更に好ましい。

本発明の成分 (A) 含有組成物を化粧料に用いる場合、成分 (A) 含有組成物における、成分 (B) と成分 (C) の合計量に対する成分 (A) の質量比 [(A) / [(B) + (C)]] は、安定性の点より、0.015以上、更に0.019以上が好ましく、更に0.05以上が好ましく、また、0.5以下、更に0.2以下、更に0.1以下が好ましい。また、0.015~0.5が好ましく、0.019~0.5がより好ましく、0.05~0.2
が更に好ましく、0.05〜0.1が更に好ましい。

[0052] 本発明の化粧料において、成分（A）の難水溶性芳香族化合物の含有量は、難水溶性芳香族化合物の効果を十分に発揮させる観点、難水溶性芳香族化合物として、芳香族の抗菌成分を用いた場合には、優れた消臭効果、殺菌効果が得られ、べたつき感がなく、すべすべ感を得る観点から、全組成中に0.01質量％以上が好ましく、0.02質量％以上がより好ましく、0.05質量％以上が更に好ましく、0.3質量％以下が好ましい。また、成分（A）の含有量は、全組成中に0.01〜1質量％が好ましく、0.02〜0.5質量％がより好ましく、0.05〜0.3質量％が更に好ましい。

[0053] 本発明の化粧料において、成分（B）の二価アルコールの含有量は、難水溶性芳香族化合物の効果を十分に発揮させる観点、難水溶性芳香族化合物として、芳香族の抗菌成分を用いた場合には、優れた消臭効果、殺菌効果が得られ、べたつき感がなく、すべすべ感を得る観点から、全組成中に0.09質量％以上が好ましく、0.18質量％以上がより好ましく、0.3質量％以上が更に好ましく、0.45質量％以上が更により好ましく、0.4質量％以下が好ましく、0.7質量％以下がより好ましく、5.5質量％以下が更に好ましい。また、成分（B）の含有量は、全組成中に0.09〜8.4質量％が好ましく、0.18〜7質量％がより好ましく、0.3〜5.5質量％が更に好ましく、0.45〜5質量％が更により好ましい。

[0054] 本発明の化粧料において、成分（C）の三価以上のアルコールの含有量は、難水溶性芳香族化合物の効果を十分に発揮させる観点、難水溶性芳香族化合物として、芳香族の抗菌成分を用いた場合には、優れた消臭効果、殺菌効果が得られ、べたつき感がなく、すべすべ感を得る観点から、全組成中に0.01質量％以上が好ましく、0.03質量％以上がより好ましく、0.06質量％以上が更に好ましく、0.09質量％以上が更により好ましく、2.86質量％以下が好ましく、2.5質量％以下がより好ましく、2質量％
以下が更に好ましく、1.72質量%以下が更によく好ましい。また、成分（C）の含有量は、全組成中に0.01〜2.86質量%が好ましく、0.03〜2.5質量%がより好ましく、0.06〜2.6質量%が更に好ましい。

成分（D）として、消臭成分を用いる場合、その含有量は、塗布時のぬるつき感を低減する観点から、全組成中に0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.07質量%以上が更に好ましく、0.09〜1.72質量%が更によく好ましい。

本発明で用いられる成分（D）は、成分（A）以外のもので、消臭成分、殺菌成分及び感触向上成分から選ばれる1種以上のものである。

成分（D）のうち、消臭成分としては、化学的消臭法に関するもの；物理的消臭法に関するもの；生物的消臭法に関するもの；感覚的消臭法に関するもののいずれでも良い。

化学的消臭法に関するものとしては、臭い物質を化学的に吸着する酸化亜鉛、酸化チタン等の金属酸化物；臭い物質を中和するトリス（ヒドロキシメチル）アミノメタン（2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール）等のアミン類、臭い物質への分解を抑制するジブチルヒドロキシトルエン等の酸化防止剤などが挙げられる。

物理的消臭法に関するものとしては、臭い物質を物理的に吸着させるシクロデキストリン、ヒドロキシアバタイト、キトサン微粒子、活性炭等多孔性物質などが挙げられる。

生物的消臭法に関するものとしては、キハダエキス、オレイン酸等が挙げられる。

感覚的消臭法に関するものとしては、L-メントール等の香料などが挙げられる。

これらのうち、消臭効果の即効性の観点から、アミン類から選ばれる消臭成分が好ましく、使用性の観点から、トリス（ヒドロキシメチル）アミノメタン（2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール）がより好ましい。
0.9質量%以上が更により好ましく、塗布時のベタつき感を低減する観点から、2質量%以下が好ましく、1.5質量%以下がより好ましく、1質量%以下が更に好ましく、0.9質量%以下が更により好ましい。また、成分(D)として、消臭成分を用いる場合、その含有量は、全組成中に0.01～2質量%が好ましく、0.05～1.5質量%がより好ましく、0.07～1質量%が更に好ましく、0.09～0.9質量%が更により好ましい。

成分(D)のうち、殺菌成分としては、アルキルトリメチルアンモニウムプロミド、セチルビリジニウムクロライド、銀担持無機粒子、塩化リゾチーム、塩化ベンザルコニウム、塩化セチルビリジニウム(CPC)、ミヨウバン等が挙げられる。銀担持無機粒子としては、銀担持ゼオライト、銀担持カンクリナイト等が挙げられる。

これらのうち、さらさら感の持続性とぬるつけの少なさの観点から、塩化ベンザルコニウムが好ましい。

成分(D)として、殺菌成分を用いる場合、その含有量は、高い殺菌効果が得られる観点から、全組成中に0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましく、0.03質量%以上がより好ましく、4質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が更により好ましい。また、成分(D)として、殺菌成分を用いる場合、その含有量は、全組成中に0.05～4質量%が好ましく、0.01～3質量%がより好ましく、0.02～1質量%が更に好ましく、0.03～0.5質量%が更により好ましい。

成分(D)のうち、感触向上成分としては、粉末が挙げられ、無機粉末、有機粉末、これらを複合した粉末のいずれでも良い。

有機粉末として、例えば、ナイロン樹脂(市販品として、エルフ・アトケム社製、ORGASOL 2002 EXD NAT COS Type S、ORGASOL 4000 EXD NAT COS;東リ社製、SP-500等)、ポリスチレン樹脂(市販品として、住友化学工業社製、ファインバール;積
水化成品工業社製、テクポリマー－SB、総研化学社製、ファインパウダー－S
GＰ等）、ポリエチレン樹脂（市販品として、旭化成社製、サンテックPA
K0025、住友精化社製、フロービーズ等）、ポリメタクリリ酸メチル系
樹脂（市販品として、松本油脂製薬社製、マツモトマイクロスフェア－M
積水化成品工業社製、テクポリマー－MB、総研化学社製、ファインパウダー
MＰ等）、（メタ）アクリル酸エステル系樹脂、シリコン樹脂（市販品と
して、信越化学工業社製、KMP－590、東芝シリコン社製、トスパー
ル145、トスパーール2000B等）、シリコンゴムパウダー（市販品と
して、信越化学工業社製、KMP－597、KMP－598、東レ社製、ト
レフィル501、トレフィル505、トレフィル506、トレフィル601
等）、セルロースビーズ（市販品として、旭化成社製、アビサーRC－A
91NF等）などが挙げられる。また、メタクリリ酸ラウリル・メタクリリ
酸エチレングリコール・メタクリリ酸ナトリウム共重合体（特開2006－8659号公報）等の架橋（メタ）アクリル酸エステル系樹脂粉体などを
用いることもできる。
無機粉体として、例えば、タルク、セリサイト、マイカ、カオリノ、クロ
－、ペントナイト、ケイ酸、無水ケイ酸、ケイ酸マグネシウム、雲母、酸化
マグネシウム、酸化亜鉛、酸化チタン、酸化アルミニウム、硫酸アルミニュ
ム、硫酸カルシウム、硫酸バリウム、硫酸マグネシウムなどが挙げられる。
また、無機粉体と有機粉体とを複合化した中間的構造を有する粉体として
は、シロキサン結合が三次元的に伸びた網状構造をなし、ケイ素原子1個に
メチル基が結合したポリメチルシルセスギオキサン粉末等が挙げられる。
なお、感触向上成分として粉体を用いる場合において、消臭成分にも含ま
れるものは、消臭成分として、扱うものとする。
[0060] これらの感触向上成分は、きしみ感を低減するという観点から、平均粒径
が、0.01μm以上であるのが好ましく、0.05μm以上がより好ましく
、0.2μm以上が更に好ましく、ざらつきを抑え、すべすべ感をより向
上させる観点から、5μm以下が好ましく、20μm以下がより好ましく
成分（D）として、感触向上成分を用いる場合、その含有量は、きしみ感を低減し、さらつきを抑え、すべすべ感をより向上させる観点から、全組成中に0.01質量％以上が好ましく、0.1質量％以上がより好ましく、1質量％以上が更に好ましく、1.5質量％以上がより好ましく、2.0質量％以上がより好ましく、10質量％以上がより好ましく、5質量％以上がより好ましい。また、成分（D）として、感触向上成分を用いる場合、その含有量は、全組成中に0.01～2.0質量％が好ましく、0.1～2.0質量％がより好ましく、1.0～10質量％が更に好ましく、1.5～5質量％が更により好ましい。

また、成分（D）は、消臭成分、殺菌成分及び感触向上成分から選ばれる1種以上のものであり、例えば、消臭成分と、殺菌成分及び/又は感触向上成分を組み合わせて用いることもできる。

成分（D）の合計含有量は、使用する成分の種類により一概には決まらないが、例えば、各成分の機能、すなわち、消臭機能、殺菌機能、感触向上機能を発現させる観点から、全組成中に0.0.005質量％以上が好ましく、0.01質量％以上がより好ましく、0.02質量％以上が更に好ましく、2.0質量％以上が好ましく、15質量％以上がより好ましく、10質量％以上が更に好ましく、5質量％以上が更により好ましい。また、成分（D）の合計含有量は、全組成中に0.005～2.0質量％が好ましく、0.01～1.5質量％がより好ましく、0.02～10質量％が更に好ましく、0.05～5質量％が更により好ましい。

本発明の加圧料は、更に水等の水性媒体を含有することが好ましい。その配合方法は、成分（A）含有組成物を水性媒体に添加して、その後成分（D）とその他の成分を添加して混合してもよいし、成分（A）含有組成物、成分（D）、その他の成分を各々独立に、または一緒に添加して混合してもよい。

難水溶性芳香族化合物の水性媒体に対する濃度は、0.1～5.0g/L、更に0.2～3.0g/L、更に0.5～10g/L、更に0.5～5g/L
更に0.5〜2 g/Lが好ましい。

[0064] 本発明の化粧料は、前記成分以外に、通常の化粧料に用いられる成分、例えば、油性成分、界面活性剤、水溶性高分子、エキス類、酸化防止剤、色素、pH調整剤、紫外線吸収剤、血行促進剤、香料等を含有することができる。

[0065] 本発明の態様及び好ましい実施態様を以下に示す。

[0066] <1> 水性媒体の存在下、(A) 難水溶性芳香族化合物と (B) 二価アルコールと (C) 三価以上のアルコールを100〜180℃で加熱処理する工程を含む、難水溶性芳香族化合物含有組成物の製造方法。

[0067] <2> (A) 難水溶性芳香族化合物が、25℃における水への溶解度が好ましくは0.5 g/L以下、より好ましくは0.3 g/L以下、更に好ましくは0.2 g/L以下の芳香族化合物である<1>に記載の難水溶性芳香族化合物含有組成物の製造方法。

<3> (A) 難水溶性芳香族化合物が、25℃における(B) 二価アルコールへの溶解度が好ましくは5 g/L以上、より好ましくは10 g/L以上、更に好ましくは20 g/L以上の芳香族化合物である<1>又は<2>に記載の難水溶性芳香族化合物含有組成物の製造方法。

<4> (A) 難水溶性芳香族化合物が、好ましくは抗菌成分、美白成分及び育毛成分から選択される1種又は2種以上であり、より好ましくはフェノール系抗菌剤、防腐剤、クロモコン誘導体及びフラボノール誘導体から選択される1種又は2種以上である<1>〜<3>のいずれか1に記載の難水溶性芳香族化合物含有組成物の製造方法。

<5> フェノール系抗菌剤が、好ましくはトリクロソファン、クロルチモール、カルバクロル、クロロフェン、ジクロロフェン、ヘキサクロロフェン、クロロキシレノール、クロロクレゾール、〇_フエニルフェノール及びイソプロピルメチルフェノールから選択される1種又は2種以上であり、より好ましくはトリクロソファン及びイソプロピルメチルフェノールから選択される1種又は2種であり、更に好ましくはイソプロピルメチルフェノールである<4>
に記載の難水溶性芳香族化合物含有組成物の製造方法。
< 6 > 防腐剤が、好ましくはパラオキシ安息香酸エステルから選択される1
種又は2種であり、より好ましくはメチルパラベン、エチルパラベン、プロ
ピルパラベン、イソプロピルパラベン、プチルパラベン、イソプロチルパラベ
ン及びペンジルパラベンから選択される1種又は2種である< 4 > に記載の
難水溶性芳香族化合物含有組成物の製造方法。
< 7 > クロモン誘導体が、好ましくは2_ブチルクロモン、2_ペンチルク
ロモン、2_ヘプチルクロモン、2_ノニルクロモン、2_ヘキサデシルク
ロモン、2_（1一エチルペンチル）クロモン、2_ブチル_7—メトキシ
クロモン、2_ペンチル—7—メトキシクロモン、2_ヘプチル_7—メト
キシクロモン、2_ノニル—7—メトキシクロモン、2_ペンタデシル—7
—メトキシクロモン、2_（1—エチルペンチル）_7—メトキシクロモン
7—ヒドロキシ_2_メチルクロモン、7—ヒドロキシ_2_ブチルクロ
モン、7—ヒドロキシ_2_ペンチルクロモン、7—ヒドロキシ_2_ヘプ
チルクロモン、7—ヒドロキシ_2_ノニルクロモン、7—ヒドロキシ_2
—ペンタデシルクロモン及び7—ヒドロキシ_2_（1—エチルペンチル）
クロモンから選択される1種又は2種以上であり、より好ましくは2_（1
—エチルペンチル）_7—メトキシクロモンである< 4 > に記載の難水溶性
芳香族化合物含有組成物の製造方法。
< 8 > 育毛成分が、好ましくはフラパノール誘導体、ニコチン酸類、ビタミ
ンE類、ミノキシジル、ピマトプロスト、タフルプロスト、ノニル酸パニリ
ルアミド、オトギリ草抽出物及びトウガラシチンキから選択される1種又は
2種以上であり、より好ましくはトランス—3, 4'—ジメチル_3—ヒド
ロキシフラパノン、ニコチン酸ペンジル、ニコチン酸トコフェロール、ニコ
チン酸β—ブトキシジェチル、α—トコフェロール、酢酸_1_α—トコフェ
ロール、ニコチン酸トコフェロール、天然ビタミンE、ミノキシジル、ピマ
トプロスト、タフルプロスト、ノニル酸パニリルアミド、オトギリ草抽出物
及びトウガラシチンキから選択される1種又は2種以上であり、更に好まし
くはトランス-3、4'—ジメチル-3—ヒドロキシフラボノンである<4
>に記載の難水溶性芳香族化合物含有組成物の製造方法。
<9>（B）二価アルコールが、好ましくはエチレンジコール、プロピレン
グリコール、1、3-ブランジオール、2-メチル-1、3-ブランジオール、1、3-
ブタンジオール、ジエチレンジコール、ジプロピレン
グリコール、ポリエチレンリコール及びポリプロピレンリコールから選
択される1種又は2種以上であり、より好ましくはエチレンジコール、プロ
ピレングリコール、1、3-ブランジオール、1、3-ブタンジオール及
びジプロピレングリコールから選択される1種又は2種以上であり、更に
好ましくはプロピレングリコール、1、3-ブランジオール及び1、3-
ブタンジオールから選択される1種又は2種以上である<1>～<8>のいず
れか1に記載の難水溶性芳香族化合物含有組成物の製造方法。
<10>（C）三価以上のアルコールが、好ましくはグリセリン、ジグリセ
リン、トリグリセリン、1、2、4-ブタントリオール、1、2、5-ペン
タントリオール、2-メチルブランジトリオール、2-メチル-1、2、4-
ブタントリオール、トリメチロールエタン及びトリメチロールブランから
選択される1種又は2種以上であり、より好ましくはグリセリン、ジグリ
セリン及びトリグリセリンから選択される1種又は2種以上であり、更に好
ましくはグリセリン及び/又はジグリセリンである<1>～<9>のいず
れか1に記載の難水溶性芳香族化合物含有組成物の製造方法。
<11>水性媒体が、好ましくは水又は有機溶媒の水溶液であり、より好ま
しくは水又は炭素数4以下の一価アルコールの水溶液であり、より好ましく
は水又はエタノールの水溶液であり、更に好ましくは水である<1>～<1
0>のいずれか1に記載の難水溶性芳香族化合物含有組成物の製造方法。
<12>有機溶媒の水溶液中の有機溶媒の濃度が、好ましくは0～60質量
%、より好ましくは0～30質量%、更に好ましくは0～10質量%、更に
好ましくは0～1質量%であり、更に好ましくは含まない<11>に記載の
難水溶性芳香族化合物含有組成物の製造方法。
<13> 加熱処理する工程において、(A) 難水溶性芳香族化合物を、水性媒体、(A) 難水溶性芳香族化合物、(B) 二価アルコール及び(C) 三価以上のアルコールを含有する加熱処理原料中に、好ましくは 0.1 g/L 以上、より好ましくは 0.5 g/L 以上、更に好ましくは 0.7 g/L 以上、更に好ましくは 0.9 g/L 以上、更に好ましくは 1 g/L 以上、更に 2 g/L 以上、更に 7.5 g/L 以上、更に 30 g/L 以上含有し、また、好ましくは 150 g/L 以下、より好ましくは 100 g/L 以下、更に好ましくは 75 g/L 以下、更に好ましくは 60 g/L 以下、更に好ましくは 55 g/L 以下、更に好ましくは 50 g/L 以下含有し、また、好ましくは 0.1 〜 150 g/L、より好ましくは 0.1 〜 100 g/L、又は好ましくは 0.5 〜 75 g/L、更に好ましくは 0.7 〜 60 g/L、更に好ましくは 0.9 〜 55 g/L、更に好ましくは 1 〜 50 g/L、更に好ましくは 2 〜 50 g/L、更に好ましくは 7.5 〜 50 g/L、更に好ましくは 30 〜 50 g/L 含有する<1> 〜<12> のいずれか 1 に記載の難水溶性芳香族化合物含有組成物の製造方法。

<14> 加熱処理する工程において、(B) 二価アルコールを、水性媒体、(A) 難水溶性芳香族化合物、(B) 二価アルコール及び(C) 三価以上のアルコールを含有する加熱処理原料中に、好ましくは 1 g/L 以上、より好ましくは 10 g/L 以上、更に好ましくは 20 g/L 以上、更に好ましくは 100 g/L 以上、更に好ましくは 300 g/L 以上含有し、また、好ましくは 700 g/L 以下、より好ましくは 600 g/L 以下、更に好ましくは 500 g/L 以下含有し、また、好ましくは 1 〜 700 g/L、より好ましくは 10 〜 600 g/L、更に好ましくは 20 〜 500 g/L、更に好ましくは 100 〜 500 g/L、更に好ましくは 300 〜 500 g/L 含有する<1> 〜<13> のいずれか 1 に記載の難水溶性芳香族化合物含有組成物の製造方法。

<15> 加熱処理する工程において、(C) 三価以上のアルコールを、水性媒体、(A) 難水溶性芳香族化合物、(B) 二価アルコール及び(C) 三価
以上のアルコールを含有する加熱処理原料中に、好ましくは1 g/L以上、よリ好ましくは10 g/L以上、更に好ましくは50 g/L以上、更に好ましくは100 g/L以上含有し、また、好ましくは500 g/L以下、より好ましくは300 g/L以下、更に好ましくは250 g/L以下、更に好ましくは200 g/L以下含有し、また、好ましくは1〜500 g/L、より好ましくは1〜300 g/L、更に好ましくは10〜250 g/L、更に好ましくは50〜250 g/L、更に好ましくは100〜200 g/L含有する

< 1 > 〜 < 14 > のいずれか1に記載の難溶性芳香族化合物含有組成物の製造方法。

< 16 > 加熱処理する工程において、水性媒体、（A）難溶性芳香族化合物、（B）二価アルコール及び（C）三価以上のアルコールを含有する加熱処理原料中、成分（B）に対する成分（A）の質量比 [(A)/(B)] が、好ましくは0.001以上、より好ましくは0.002以上、更に好ましくは0.02以上、更に好ましくは0.025以上、更に好ましくは0.06以上であり、また、好ましくは1以下、より好ましくは0.5以下、更に好ましくは0.2以下、更に好ましくは0.15以下、更に好ましくは0.13以下、更に好ましくは0.12以下、更に好ましくは0.11以下であり、また、好ましくは0.001〜1、より好ましく0.001〜0.5、更に好ましくは0.001〜0.2、更に好ましくは0.002〜0.15、更に好ましくは0.002〜0.13、更に好ましくは0.002〜0.12、更に好ましくは0.002〜0.11、更に好ましくは0.02〜0.11、更に好ましくは0.06〜0.11である

< 17 > 加熱処理する工程において、水性媒体、（A）難溶性芳香族化合物、（B）二価アルコール及び（C）三価以上のアルコールを含有する加熱処理原料中、成分（C）に対する成分（A）の質量比 [(A)/(C)] が、好ましくは0.001以上、より好ましくは0.005以上、更に好ましく
くは0.01以上、更に好ましくは0.12以上、更に好ましくは0.15以上、更に好ましくは1.5以下、より好ましくは1以下、更に好ましくは0.7以下、更に好ましくは0.55以下であり、また、好ましくは0.001〜1.5、より好ましくは0.001〜1、更に好ましくは0.005〜0.7、更に好ましくは0.01〜0.55、更に好ましくは0.12〜0.55、更に好ましくは0.15〜0.55、更に好ましくは0.17〜0.55である<1>〜<16>のいずれか1に記載の難水溶性芳香族化合物含有組成物の製造方法。

<18>加熱処理する工程において、水性媒体、(A)難水溶性芳香族化合物、(B)二価アルコール及び(C)三価以上のアルコールを含有する加熱処理原料中、成分(B)に対する成分(C)の質量比 [(B)/(C)]が、好ましくは1.5以上、より好ましくは2以上、更に好ましくは2.5以上であり、また、好ましくは10以下、より好ましくは8以下、更に好ましくは6以下であり、また、好ましくは1.5〜10、より好ましくは2〜8、更に好ましくは2.5〜6である<1>〜<17>のいずれか1に記載の難水溶性芳香族化合物含有組成物の製造方法。

<19>加熱処理する工程において、水性媒体、(A)難水溶性芳香族化合物、(B)二価アルコール及び(C)三価以上のアルコールを含有する加熱処理原料中、成分(B)と成分(C)の合計量に対する成分(A)の質量比 [(A)/{(B)+(C)}]が、好ましくは0.001以上、より好ましくは0.002以上、更に好ましくは0.015以上、更に好ましくは0.019以上、更に好ましくは0.05以上であり、また、好ましくは0.5以下、より好ましくは0.2以下、更に好ましくは0.15以下、更に好ましくは0.12以下、更に好ましくは0.10以下であり、また、好ましくは0.001〜0.5、より好ましくは0.001〜0.2、更に好ましくは0.001〜0.5、より好ましくは0.002〜0.15、更に好ましくは0.002〜0.12、更に好ましくは0.002〜0.10、更に好ましくは0.015〜0.10、更に好ましくは0.019〜0.10、更に好ましくは0.05〜0.10で
ある<1>〜<18>のいずれか1に記載の難水溶性芳香族化合物含有組成物の製造方法。

<20>加熱処理する工程において、界面活性剤を、水性媒体、(A)難水溶性芳香族化合物、(B)二価アルコール及び(C)三価以上のアルコールを含有する加熱処理原料中、好ましくは0〜1g/L、より好ましくは0〜0.5g/L、更に好ましくは0〜0.1g/L含むか、更に好ましくは含まない<1>〜<19>のいずれか1に記載の難水溶性芳香族化合物含有組成物の製造方法。

<21>加熱処理の温度が、好ましくは110℃以上、より好ましくは120℃以上であり、また、好ましくは170℃以下、より好ましくは160℃以下であり、更に好ましくは120〜160℃、より好ましくは120〜150℃である<1>〜<20>のいずれか1に記載の難水溶性芳香族化合物含有組成物の製造方法。

<22>加熱処理時の圧力が、ゲージ圧力で好ましくは0〜10MPa、より好ましくは0.1〜8MPa、更に好ましくは0.1〜6MPa、更に好ましくは0.2〜4MPa、更に好ましくは0.2〜6MPa、更に好ましくは0.2〜6MPa、更に好ましくは0.2〜6MPa、更に好ましくは0.2〜6MPa、更に好ましくは0.2〜6MPa、更に好ましくは0.2〜6MPaである<1>〜<21>のいずれか1に記載の難水溶性芳香族化合物含有組成物の製造方法。

<23>加熱処理の時間が、水性媒体が<20>に記載の加熱処理の温度に達してから、好ましくは0.1分以上、より好ましくは0.2分以上、更に好ましくは0.5分以上であり、また、好ましくは30分以下、より好ましくは15分以下、更に好ましくは8分以下であり、更に好ましくは30分以下、より好ましくは0.1〜30分、より好ましくは0.2〜15分、更に好ましくは0.5〜8分である<1>〜<22>のいずれか1に記載の難水溶性芳香族化合物含有組成物の製造方法。

<24>加熱処理の時間が、加熱処理原料が<20>に記載の加熱処理の温度に達してから、好ましくは0.1分以上、より好ましくは0.2分以上、
更に好ましくは0.5分以上であり、また、好ましくは30分以下、より好ましくは15分以下、更に好ましくは8分以下であり、また、好ましくは0.1〜30分、より好ましくは1〜5分、更に好ましくは20〜500g/L、更に好ましくは100〜500g/L、更に好ましくは300〜500g/Lである<27>に記載の難水溶性芳香族化合物含有組成物の製造方法。

<25>更に、加熱処理して得られた加熱処理液を好ましくは0.2°C/s以上の冷却速度で冷却する工程を含む、<1>〜<24>のいずれか1に記載の難水溶性芳香族化合物含有組成物の製造方法。

<26>加熱処理液を冷却する工程において、加熱処理温度から90°Cまでの冷却速度が、好ましくは0.2°C/s以上、より好ましくは0.5°C/s以上、更に好ましくは1°C/s以上、更に好ましくは3°C/s以上、更に好ましくは5°C/s以上であり、また、好ましくは50°C/s以下である<25>に記載の難水溶性芳香族化合物含有組成物の製造方法。

[0068]<27><1>〜<26>のいずれか1に記載の製造方法により得られる難水溶性芳香族化合物含有組成物。

<28>難水溶性芳香族化合物含有組成物中の（A）難水溶性芳香族化合物の含有量が、好ましくは0.5g/L以上、より好ましくは1g/L以上、更に好ましくは1.5g/L以上、更に好ましくは2g/L以上である<27>に記載の難水溶性芳香族化合物含有組成物。

<29>難水溶性芳香族化合物含有組成物中の（B）の二価アルコールの含有量が、好ましくは1g/L以上、より好ましくは20g/L以上、更に好ましくは20〜500g/L以上、更に好ましくは20〜500g/L以上、更に好ましくは20〜500g/L以上、更に好ましくは20〜500g/L以上である<27>又は<28>に記載の難水
溶性芳香族化合物含有組成物。

＜３０＞ 難水溶性芳香族化合物含有組成物中の (C) の三価以上のアルコールの含有量が、好ましくは 1 g/L 以上、より好ましくは 10 g/L 以上、更に好ましくは 50 g/L 以上、更に好ましくは 100 g/L 以上であり、また、好ましくは 500 g/L 以下、より好ましくは 300 g/L 以下、更に好ましくは 250 g/L 以下、更に好ましくは 200 g/L 以下であり、また、好ましくは 1～500 g/L、より好ましくは 1～300 g/L、更に好ましくは 10～250 g/L、更に好ましくは 50～250 g/L、更に好ましくは 100～200 g/L である＜２７＞～＜２９＞のいずれか１に記載の難水溶性芳香族化合物含有組成物。

＜３１＞ 成分 (B) に対する成分 (A) の質量比 [(A)/(B)] が、好ましくは 0.001以上、より好ましくは 0.002以上、更に好ましくは 0.02以上、更に好ましくは 0.025以上、更に好ましくは 0.06以上であり、また、好ましくは 1以下、より好ましくは 0.5以下、更に 0.2以下、更に好ましくは 0.15以下、更に好ましくは 0.13以下、更に好ましくは 0.12以下、更に好ましくは 0.11以下であり、また、好ましくは 0.001～1、より好ましくは 0.002～0.5、更に好ましくは 0.001～0.2、更に好ましくは 0.002～0.15、更に好ましくは 0.002～0.13、更に好ましくは 0.002～0.12、更に好ましくは 0.002～0.11、更に好ましくは 0.02～0.11、更に好ましくは 0.06～0.11である＜２７＞～＜３０＞のいずれか１に記載の難水溶性芳香族化合物含有組成物。

＜３２＞ 成分 (C) に対する成分 (A) の質量比 [(A)/(C)] が、好ましくは 0.001以上、より好ましくは 0.005以上、更に好ましくは 0.01以上、更に 0.12以上、更に 0.15以上、更に 0.17以上であり、また、好ましくは 1.5以下、より好ましくは 1以下、更に好ましくは 0.7以下、更に好ましくは 0.55以下であり、また、好ましくは 0.
0.01〜1.5、より好ましくは0.001〜1、更に好ましくは0.005〜0.7、更に好ましくは0.01〜0.55、更に好ましくは0.12〜0.55、更に好ましくは0.15〜0.55、更に好ましくは0.17〜0.55である。＜2＞〜＜3＞のいずれか1に記載の難水溶性芳香族化合物含有組成物。

＜3＞成分（C）に対する成分（B）の質量比 [(B) / (C)] が、好ましくは1.5以上、より好ましくは2以上、更に好ましくは2.5以上であり、また、好ましくは10以下、より好ましくは8以下、更に好ましくは6以下であり、また、好ましくは1.5〜10、より好ましくは2〜8、更に好ましくは2.5〜6である。＜2＞〜＜3＞のいずれか1に記載の難水溶性芳香族化合物含有組成物。

＜3＞成分（B）と成分（C）の合計量に対する成分（A）の質量比 [(A) / { (B) + (C) }] が、好ましくは0.001以上、より好ましくは0.002以上、更に好ましくは0.015以上、更に好ましくは0.019以上、更に好ましくは0.05以上であり、また、好ましくは0.5以下、より好ましくは0.2以下、更に好ましくは0.15以下、更に好ましくは0.12以下、更に好ましくは0.10以下であり、また、好ましくは0.001〜0.5、より好ましくは0.001〜0.2、より好ましくは0.002〜0.15、更に好ましくは0.002〜0.12、更に好ましくは0.002〜0.10、更に好ましくは0.015〜0.1、更に好ましくは0.019〜0.1、更に好ましくは0.05〜0.1である。＜2＞〜＜3＞のいずれか1に記載の難水溶性芳香族化合物含有組成物。

＜3＞難水溶性芳香族化合物含有組成物中、有機溶媒の含有量が、好ましくは0〜60質量%、より好ましくは0〜30質量%、更に好ましくは0〜10質量%、更に好ましくは0〜1質量%であり、更に好ましくは含まれない。＜2＞〜＜4＞のいずれか1に記載の難水溶性芳香族化合物含有組成物。

＜4＞難水溶性芳香族化合物含有組成物中、炭素数4以下の1個アルコ
ルの含有量が、好ましくは 0 - 60 質量%、より好ましくは 0 - 30 質量%、
更に好ましくは 0 - 10 質量%、更に好ましくは 0 - 1 質量% であり、更
に好ましくは含まれない< 27 > - < 35 > のいずれか 1 に記載の難水溶性芳
香族化合物含有成分。
< 37 > 難水溶性芳香族化合物含有成分中、界面活性剤の含有量が、好ま
しくは 0 - 1 質量%、より好ましくは 0 - 0.5 質量%、更に好ましくは 0
- 0.1 質量% であり、更に好ましくは含まれない< 27 > - < 36 > のいず
れか 1 に記載の難水溶性芳香族化合物含有成分。

[0069] < 38 > < 27 > - < 37 > のいずれか 1 に記載の難水溶性芳香族化合物含
有成分を含有する化粧料。
< 39 > 更に、(D) 消臭成分、殺菌成分及び感触向上成分から選ばれる 1
種以上を含有する< 38 > に記載の化粧料。
< 40 > 水性媒体の存在下、(A) 難水溶性芳香族化合物と (B) 二価アル
コールと (C) 三価以上のアルコールを 100 - 180℃で加熱処理する工
程を含む方法により得られ、

(C) 三価以上のアルコールに対する (B) 二価アルコールの質量比 [(B)
/ (O)] が 1.5 - 10 である難水溶性芳香族化合物含有成分と、
(D) 消臭成分、殺菌成分及び感触向上成分から選ばれる 1 種以上
を含有する化粧料。
< 41 > 難水溶性芳香族化合物含有成分における、成分 (C) に対する成
分 (B) の質量比 [(B) / (C)] が、好ましくは 1.5 以上、より好ま
しくは 2 以上、更に好ましくは 2.5 以上であり、また、好ましくは 1.0 以
下、より好ましくは 8 以下、更に好ましくは 6 以下であり、また、1.5 -
10 が好ましく、より好ましくは 2 - 8 、更に好ましくは 2.5 - 6 である
< 38 > - < 40 > のいずれか 1 に記載の化粧料。
< 42 > 難水溶性芳香族化合物含有成分中の成分 (A) の含有量が、好ま
しくは 1 g / L 以上、より好ましくは 2 g / L 以上、更に好ましくは 7.5
g / L 以上、更に好ましくは 30 g / L 以上である< 38 > - < 41 > のい
ずれか 1 に記載の化粧料。

< 43 > 難水溶性芳香族化合物含有組成物における、成分 (B) に対する成分 (A) の質量比 [(A) / (B)] が、好ましくは 0.02 以上、より好ましくは 0.025 以上、更によ好ましくは 0.06 以上であり、また、好ましくは 1 以下、より好ましくは 0.5 以下、更によ好ましくは 0.15 以下であり、また、好ましくは 0.02〜1、より好ましくは 0.025〜0.5、更によ好ましくは 0.06〜0.15 である。<38>〜<42> のいずれか 1 に記載の化粧料。

< 44 > 難水溶性芳香族化合物含有組成物における、成分 (C) に対する成分 (A) の質量比 [(A) / (C)] が、好ましくは 0.12 以上、より好ましくは 0.15 以上、更によ好ましくは 0.17 以上であり、また、好ましくは 1.5 以下、より好ましくは 1 以下、更によ好ましくは 0.6 以下であり、また、好ましくは 0.12〜1.5、より好ましくは 0.15〜1、更によ好ましくは 0.17〜0.6 である。<38>〜<43> のいずれか 1 に記載の化粧料。

< 45 > 難水溶性芳香族化合物含有組成物における、成分 (B) と成分 (C) の合計量に対する成分 (A) の質量比 [(A) / [(B) + (C)]] が、好ましくは 0.015 以上、より好ましくは 0.019 以上、更によ好ましくは 0.05 以上であり、また、好ましくは 0.5 以下、より好ましくは 0.2 以下、更によ好ましくは 0.1 以下であり、また、好ましくは 0.015〜0.5、より好ましくは 0.019〜0.5、更によ好ましくは 0.05〜0.2、更によ好ましくは 0.05〜0.1 である。<38>〜<44> のいずれか 1 に記載の化粧料。

< 46 > 化粧料中の成分 (A) の難水溶性芳香族化合物の含有量が、全組成中に、好ましくは 0.01 質量％以上、より好ましくは 0.02 質量％以上、更によ好ましくは 0.05 質量％以上であり、また、好ましくは 1 質量％以下、より好ましくは 0.5 質量％以下、更によ好ましくは 0.3 質量％以下であり、また、好ましくは 0.01〜1 質量％、より好ましくは 0.02〜0
5 質量％に、更に好ましくは 0.05〜0.3 質量％である<38>〜<45> のいずれか 1 に記載の化粧料。

<47> 化粧料中の (B) 二価アルコールの含有量が、全組成中に、好ましくは 0.09 質量％以上、より好ましくは 0.18 質量％以上、更に好ましくは 0.3 質量％以上であり、また、好ましくは 0.09〜0.4 質量％、より好ましくは 0.18〜0.45 質量％、更に好ましくは 0.3〜0.5 質量％であり、更に好ましくは 0.5〜0.45 質量％である<38>〜<46> のいずれか 1 に記載の化粧料。

<48> 化粧料中の (C) 三価以上のアルコールの含有量が、全組成中に、好ましくは 0.01 質量％以上、より好ましくは 0.03 質量％以上、更に好ましくは 0.06 質量％以上であり、また、好ましくは 0.09〜0.86 質量％であり、より好ましくは 0.1〜0.72 質量％であり、また、好ましくは 0.01〜0.86 質量％であり、より好ましくは 0.03〜0.9〜1.72 質量％である<38>〜<47> のいずれか 1 に記載の化粧料。

<49> 加熱処理する工程において、成分 (B) に対する成分 (A) の質量比 [(A) / (B)] が、好ましくは 0.02 以上、より好ましくは 0.025 以上、更に好ましくは 0.06 以上であり、また、好ましくは 0.1 以下、より好ましくは 0.5 以下、更に好ましくは 0.15 以下であり、また、好ましくは 0.02〜1、より好ましくは 0.025〜0.5、更に好ましくは 0.06〜0.15 である<38>〜<48> のいずれか 1 に記載の化粧料。

<50> 加熱処理する工程において、成分 (C) に対する成分 (A) の質量比 [(A) / (C)] が、好ましくは 0.12 以上、より好ましくは 0.1
5以上、更に好ましくは0.17以上であり、また、好ましくは1.5以下、より好ましくは1以下、更に好ましくは0.6以下であり、また、好ましくは0.12〜1.5、より好ましくは0.15〜1、更に好ましくは0.7〜0.6である。<38>〜<49>のいずれか1に記載の化粧料。

<51>加熱処理する工程において、(B) ニッケルアールと(C) 三価以上のアルコールの合計量に対する(A) 難水溶性芳香族化合物の質量比 [(A) / {(B) + (C)}] が、好ましくは0.015以上、より好ましくは0.019、更に好ましくは0.05以上であり、また、好ましくは0.5以下、より好ましくは0.2以下、更に好ましくは0.1以下であり、また、好ましくは0.015〜0.5、より好ましくは0.019〜0.5、更に好ましくは0.05〜0.2、更に好ましくは0.05〜0.1である。<38>〜<50>のいずれか1に記載の化粧料。

<52>成分(D)のうち消臭成分が、好ましくは化学的消臭法に関するもの、物理的消臭法に関するもの、生物的消臭法に関するもの及び感覚的消臭法に関するものから選ばれる1種以上であり、より好ましくは酸化亜鉛、酸化チタン、トリス(ヒドロキシメチル)アミノメタン(2アミノ-2ヒドロキシメチル-1,3プロピレンジオール)、ジブチルヒドロキシトルエン、シクロテキストリオン、ヒドロキシアバタイト、キトサン微粒子、活性炭等多孔性物質、キハダエキス、オリエン酸及びL_メントールから選ばれる1種以上であり、更に好ましくはトリス(ヒドロキシメチル)アミノメタン(2アミノ-2ヒドロキシメチル-1,3プロピレンジオール)である。<39>〜<50>のいずれか1に記載の化粧料。

<53>成分(D)として消臭成分を用いる場合、その含有量が、全組成中に、好ましくは0.01質量％以上、より好ましくは0.05質量％以上、更に好ましくは0.07質量％以上、更に好ましくは0.09質量％以上であり、また、好ましくは2質量％以下、より好ましくは1.5質量％以下、更に好ましくは1質量％以下、更に好ましくは0.9質量％以下であり、また、好ましくは0.01〜2質量％、より好ましくは0.05〜1.5質量
%、更に好ましくは0.07〜1質量%、更に好ましくは0.09〜0.9
質量%である<39>〜<52>のいずれか1に記載の化粧料。
<54>成分(D)のうち殺菌成分が、好ましくはアルキルトリメチルアン
モニウムプロマイド、セチルピリジニウムクロライド、銀担持無機粒子、塩
化リゾチーム、塩化ベンザルコニウム、塩化セチルピリジニウム(CPC)
、ミヨウバン、銀担持セオライト及び銀担持カソクリサイトから選ばれる1
種以上であり、より好ましくは塩化ベンザルコニウムである<39>〜<5
3>のいずれか1に記載の化粧料。
<55>成分(D)として殺菌成分を用いる場合、その含有量が、全組成中
に、好ましくは0.005質量%以上、より好ましくは0.01質量%以上
、更に好ましくは0.02質量%以上、更に好ましくは0.03質量%以上
であり、また、好ましくは4質量%以下、より好ましくは3質量%以下、更
に好ましくは1質量%以下、更に好ましくは0.5質量%以下であり、また
、好ましくは0.005〜4質量%、より好ましくは0.01〜3質量%、
更に好ましくは0.02〜1質量%、更に好ましくは0.03〜0.5質量
%である<39>〜<54>のいずれか1に記載の化粧料。
<56>成分(D)の粘着向上成分は、好ましくは無機粉体、有機粉体又
はこれらを複合した粉体であり、より好ましくはナイロン樹脂、ポリステレ
ン樹脂、ポリエチレン樹脂、ポリメタクリル酸メチル系樹脂、(メタ)アクリ
ル酸エステル系樹脂、シリコーン樹脂、シリコーンゴムパウダー、セルロ
ースビーズ、メタクリル酸ラウリル・ジメタクリル酸エチレングリコール・
メタクリル酸ナトリウム共重合体、タルク、セリサイト、マイカ、カオリ
ン、ケレー、ベントナイト、ケイ酸、無水ケイ酸、ケイ酸マグネシウム、雲母
、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化アルミニウム、硫酸アル
ミニウム、硫酸カルシウム、硫酸バリウム、硫酸マグネシウム及びシロキサ
ン結合が三次元的に伸びた網状構造をなし、ケイ素原子1個にメチル基が結
合したポリメチルシルセスキオキサン粉末から選ばれる1種以上である<3
9>〜<55>のいずれか1に記載の化粧料。
<57> 感触向上成分の平均粒径が、好ましくは0.01μm以上、より好ましくは0.05μm以上、更に好ましくは0.2μm以上であり、また、好ましくは50μm以下、より好ましくは20μm以下、更に好ましくは8μm以下である<56>に記載の化粧料。

<58> 成分（D）として感触向上成分を用いる場合、その含有量が、全組成中に、好ましくは0.01質量％以上、より好ましくは0.1質量％以上、更に好ましくは1質量％以上、更に好ましくは1.5質量％以上であり、また、好ましくは20質量％以下、より好ましくは10質量％以下、更に好ましくは5質量％以下であり、更に好ましくは0.1〜20質量％、より好ましくは0.01〜20質量％、より好ましくは0.01〜10質量％、更に好ましくは1〜10質量％、更に好ましくは1.5〜5質量％である<39>〜<57>のいずれか1に記載の化粧料。

<59> 成分（D）の合計含有量が、全組成中に、好ましくは0.005質量％以上、より好ましくは0.01質量％以上、更に好ましくは0.02質量％以上であり、更に好ましくは15質量％以下であり、更に好ましくは10質量％以下、更に好ましくは5質量％以下であり、また、好ましくは0.005〜20質量％、より好ましくは0.01〜15質量％、更に好ましくは0.02〜10質量％、更に好ましくは0.02〜5質量％である<39>〜<58>のいずれか1に記載の化粧料。

<60> 更に、好ましくは水性媒体、より好ましくは水を含有する<38>〜<59>のいずれか1に記載の化粧料。

<61> 難水溶性芳香族化合物の水性媒体に対する濃度が、好ましくは0.1〜50g/L、より好ましくは0.2〜30g/L、更に好ましくは0.5〜10g/L、更に好ましくは0.5〜2g/Lである<60>に記載の化粧料。

実施例

[0070] イソプロピルメチルフエノール及びトランス-3,4'ージメチルー3ヒドロキシフランノン及び2_ (1ーエチルペンチル)_7ーメトキシクロ
モンの定量]

日立製作所製高速液体クロマトグラフを用い、インタクト社製カラムCa
denza CD—C 18 (4.6 m m 0 × 150 m m、3 μ m) を装着し、カラム温度40 ℃でグラジェント法により行った。移動相A液は0.05 m o l ／L 酢酸水溶液、B液はアセトンートリルとし、1.0 m L ／分で送液した。グラジェント条件は以下のとおりである。

<table>
<thead>
<tr>
<th>時間 (分)</th>
<th>A液 (%)</th>
<th>B液 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>2 0</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>3 5</td>
<td>1 0</td>
<td>9 0</td>
</tr>
<tr>
<td>5 0</td>
<td>1 0</td>
<td>9 0</td>
</tr>
<tr>
<td>5 0 . 1</td>
<td>8 5</td>
<td>1 5</td>
</tr>
<tr>
<td>6 0</td>
<td>8 5</td>
<td>1 5</td>
</tr>
</tbody>
</table>

試料注入量は10μL、検出はイソプロピルメチルフェノールは波長283 n m、トランス－3，4'－ジメチル－3－ヒドロキシフラバンノンは波長254 n m、2－(1－エチルベンチュリル)－7－メトキシクロモンは波長300 n m の吸光度により定量した。

[0071] [原材料]

イソプロピルメチルフェノール (1 PMP、大阪化成株式会社製、純度100 %)

2－(1－エチルベンチュリル)－7－メトキシクロモン (メトキシクロモン
、花王株式会社製、純度99 %以上)

トランス－3，4'－ジメチル－3－ヒドロキシフラバンノン (t _ フラバンノン、花王株式会社製、純度99 %以上)

1，3－プタンジオール (1，3 _ BG、K Hネオケム株式会社製、純度100 %)

1，3 _ プロパンジオール (1，3 _ PG、デュポン株式会社製、純度100 %)
グリセリン（Gly、花王株式会社製、純度100%）
ジグリセリン（DG、阪本薬品工業株式会社製、純度100%）

実施例1

イソプロピルメチルフエノールを7.5g/L、1,3-ブタンジオールを300g/L、グリセリンを100g/Lとなるように蒸留水に加え、得られたスラリーを内容積190mLのステンレス製回分式反応器（日東高圧（株）製）で加熱処理を行った。150℃に達温後1分間保持し速やかに室温（25℃）まで冷却を行った（冷却速度0.5℃/s）。加熱処理中の圧力は0.4MPaであった。冷却後速やかに加熱処理液を抜き出し、孔径0.2μmのPTFEフィルターで濾過し、イソプロピルメチルフエノール組成物を得た。

処理条件と25℃における組成物中のイソプロピルメチルフエノール濃度、1,3-ブタンジオール濃度及びグリセリン濃度を測定した結果を表1に示した。

実施例2〜11

イソプロピルメチルフエノール、1,3-ブタンジオール又は1,3-プロパンジオール、グリセリン又はジグリセリンをそれぞれ表1に示した量とされるように蒸留水に加え、実施例1と同様に加熱処理してイソプロピルメチルフエノール組成物を得た。

処理条件と25℃における組成物中のイソプロピルメチルフエノール濃度、1,3-ブタンジオール濃度、1,3-プロパンジオール濃度、グリセリン濃度及びジグリセリン濃度を測定した結果を表1に示した。
<table>
<thead>
<tr>
<th>成分(A)</th>
<th>剂名称</th>
<th>IPMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>濃度</td>
<td>[g/L]</td>
<td>7.5</td>
<td>12.5</td>
<td>12.5</td>
<td>17.5</td>
<td>30.0</td>
<td>40.0</td>
<td>50.0</td>
<td>55.0</td>
<td>35.0</td>
<td>40.0</td>
</tr>
<tr>
<td>成分(B)</td>
<td>剂名称</td>
<td>1,3-BG</td>
</tr>
<tr>
<td>濃度</td>
<td>[g/L]</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>成分(C)</td>
<td>剂名称</td>
<td>Gly</td>
</tr>
<tr>
<td>濃度</td>
<td>[g/L]</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>水分留</td>
<td>濃度</td>
<td>[g/L]</td>
<td>592.5</td>
<td>487.5</td>
<td>487.5</td>
<td>382.5</td>
<td>370.0</td>
<td>360.0</td>
<td>350.0</td>
<td>345.0</td>
<td>265.0</td>
</tr>
<tr>
<td>(A)/(B)質量比</td>
<td>[+]</td>
<td>0.025</td>
<td>0.042</td>
<td>0.031</td>
<td>0.044</td>
<td>0.060</td>
<td>0.080</td>
<td>0.100</td>
<td>0.110</td>
<td>0.070</td>
<td>0.080</td>
</tr>
<tr>
<td>(B)/(C)質量比</td>
<td>[+]</td>
<td>3.00</td>
<td>1.50</td>
<td>4.00</td>
<td>2.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>2.50</td>
<td>5.00</td>
</tr>
<tr>
<td>(A)/(B*(B+C))質量比</td>
<td>[+]</td>
<td>0.019</td>
<td>0.025</td>
<td>0.025</td>
<td>0.029</td>
<td>0.050</td>
<td>0.067</td>
<td>0.083</td>
<td>0.092</td>
<td>0.050</td>
<td>0.067</td>
</tr>
<tr>
<td>水性媒体</td>
<td>加熱温度(℃)</td>
<td>150</td>
</tr>
<tr>
<td>加熱時間(h)</td>
<td>1</td>
</tr>
<tr>
<td>ゲージ圧(MPa)</td>
<td>0.4</td>
</tr>
<tr>
<td>分析値</td>
<td>(A)濃度(25℃) [g/L]</td>
<td>7.5</td>
<td>12.5</td>
<td>12.5</td>
<td>17.5</td>
<td>30.0</td>
<td>40.0</td>
<td>49.9</td>
<td>55.0</td>
<td>35.0</td>
<td>39.9</td>
</tr>
<tr>
<td>(B)濃度(25℃) [g/L]</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>(C)濃度(25℃) [g/L]</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>(A)/(B)質量比</td>
<td>[+]</td>
<td>0.025</td>
<td>0.042</td>
<td>0.031</td>
<td>0.044</td>
<td>0.060</td>
<td>0.080</td>
<td>0.100</td>
<td>0.110</td>
<td>0.070</td>
<td>0.080</td>
</tr>
<tr>
<td>(B)/(C)質量比</td>
<td>[+]</td>
<td>3.00</td>
<td>1.50</td>
<td>4.00</td>
<td>2.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>2.50</td>
<td>5.00</td>
</tr>
<tr>
<td>(A)/(B*(B+C))質量比</td>
<td>[+]</td>
<td>0.019</td>
<td>0.025</td>
<td>0.025</td>
<td>0.029</td>
<td>0.050</td>
<td>0.067</td>
<td>0.083</td>
<td>0.092</td>
<td>0.050</td>
<td>0.067</td>
</tr>
</tbody>
</table>
1,3-ブタンジオールとグリセリンを添加せず、イソプロピルメチルフエノール1.5g/Lを蒸留水に分散し、実施例1と同様にしてイソプロピルメチルフエノール組成物を得た。処理条件と組成物中のイソプロピルメチルフエノール濃度を測定した結果を表2に示した。

【比較例2〜7】
イソプロピルメチルフエノール、1,3-ブタンジオール、及びグリセリンをそれぞれ表2に示した量となるように蒸留水に加え、該スラリーを室温で3日間攪拌（スターラー、500rpm）後、固形物を濾別した。処理条件と液部中のイソプロピルメチルフエノール濃度、1,3-ブタンジオール濃度及びグリセリン濃度を測定した結果を表2に示した。

【比較例8〜10】
グリセリンを添加せず、イソプロピルメチルフエノールと1,3-ブタンジオールをそれぞれ表2に示した量となるように蒸留水に加え、実施例1と同様にしてイソプロピルメチルフエノール組成物を得た。処理条件と組成物中のイソプロピルメチルフエノール濃度、1,3-ブタンジオール濃度を測定した結果を表2に示した。

【比較例11〜12】
1,3-ブタンジオールを添加せず、イソプロピルメチルフエノールとグリセリンをそれぞれ表2に示した量となるように蒸留水に加え、実施例1と同様にしてイソプロピルメチルフエノール組成物を得た。処理条件と組成物中のイソプロピルメチルフエノール濃度、グリセリン濃度を測定した結果を表2に示した。
<table>
<thead>
<tr>
<th>成分(A)</th>
<th>仕込</th>
<th>比較例1</th>
<th>比較例2</th>
<th>比較例3</th>
<th>比較例4</th>
<th>比較例5</th>
<th>比較例6</th>
<th>比較例7</th>
<th>比較例8</th>
<th>比較例9</th>
<th>比較例10</th>
<th>比較例11</th>
<th>比較例12</th>
</tr>
</thead>
<tbody>
<tr>
<td>剤名称</td>
<td>添加量 [g/L]</td>
<td>1.5</td>
<td>7.5</td>
<td>12.5</td>
<td>12.5</td>
<td>17.5</td>
<td>30.0</td>
<td>40.0</td>
<td>7.5</td>
<td>17.5</td>
<td>30.0</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>成分(B)</td>
<td>剤名称</td>
<td>1.3-BG</td>
<td>1.3-BG</td>
<td>1.3-BG</td>
<td>1.3-BG</td>
<td>1.3-BG</td>
<td>1.3-BG</td>
<td>1.3-BG</td>
<td>1.3-BG</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>添加量 [g/L]</td>
<td>-</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>成分(C)</td>
<td>剤名称</td>
<td>Gly</td>
</tr>
<tr>
<td>添加量 [g/L]</td>
<td>-</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>300</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>残留水</th>
<th>指示量 [g/L]</th>
<th>998.5</th>
<th>592.5</th>
<th>487.5</th>
<th>487.5</th>
<th>382.5</th>
<th>370.0</th>
<th>260.0</th>
<th>692.5</th>
<th>582.5</th>
<th>470.0</th>
<th>698.5</th>
<th>588.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)／(B)質量比</td>
<td>-</td>
<td>0.025</td>
<td>0.042</td>
<td>0.031</td>
<td>0.044</td>
<td>0.080</td>
<td>0.080</td>
<td>0.025</td>
<td>0.044</td>
<td>0.060</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(B)／(C)質量比</td>
<td>-</td>
<td>3.00</td>
<td>1.50</td>
<td>4.00</td>
<td>2.00</td>
<td>5.00</td>
<td>2.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(A)／(B)+(C)質量比</td>
<td>-</td>
<td>0.019</td>
<td>0.026</td>
<td>0.025</td>
<td>0.029</td>
<td>0.050</td>
<td>0.057</td>
<td>0.025</td>
<td>0.044</td>
<td>0.060</td>
<td>0.005</td>
<td>0.004</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>水性媒体</th>
<th>(A)／(B)質量比</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>加熱温度</td>
<td>°C</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>加熱時間</td>
<td>[分]</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ガージ圧 [MPa]</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>濃度(25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>[g/L]</td>
<td>0.2</td>
<td>1.7</td>
<td>2.5</td>
<td>4.1</td>
<td>6.0</td>
<td>10.4</td>
<td>15.6</td>
<td>1.3</td>
</tr>
<tr>
<td>(B)</td>
<td>[g/L]</td>
<td>-</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td>(C)</td>
<td>[g/L]</td>
<td>-</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>(A)／(B)質量比</td>
<td>-</td>
<td>0.006</td>
<td>0.008</td>
<td>0.010</td>
<td>0.015</td>
<td>0.021</td>
<td>0.031</td>
<td>0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>(B)／(C)質量比</td>
<td>-</td>
<td>3.00</td>
<td>1.50</td>
<td>4.00</td>
<td>2.00</td>
<td>5.00</td>
<td>2.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(A)／(B)+(C)質量比</td>
<td>-</td>
<td>0.004</td>
<td>0.005</td>
<td>0.008</td>
<td>0.010</td>
<td>0.017</td>
<td>0.022</td>
<td>0.004</td>
<td>0.008</td>
</tr>
</tbody>
</table>
2．（1—エチルベンチン）_ 7—メトキシクロモン、1、3—ブタンジオール、及びグリセリンをそれぞれ表3に示した量となるように蒸留水に加え、実施例1と同様に加熱処理して2．（1—エチルベンチン）_ 7—メトキシクロモン組成物を得た。処理条件と組成物中の2．（1—エチルベンチン）_ 7—メトキシクロモン濃度、1、3—ブタンジオール濃度及びグリセリン濃度を測定した結果を表3に示した。

[0081] 比較例1 3
1、3—ブタンジオールとグリセリンを添加せず、2．（1—エチルベンチン）_ 7—メトキシクロモン1.0 g／Lを蒸留水に分散し、実施例10と同様にして2．（1—エチルベンチン）_ 7—メトキシクロモン組成物を得た。処理条件と組成物中の2．（1—エチルベンチン）_ 7—メトキシクロモン濃度を測定した結果を表3に示した。

[0082] 比較例1 4—1 6
2．（1—エチルベンチン）_ 7—メトキシクロモン、1、3—ブタンジオール、及びグリセリンをそれぞれ表3に示した量となるように蒸留水に加え、該スラリーを室温で3日間攪拌（スターラー、500 rpm）後、固形物を濾別した。液部中の2．（1—エチルペンチン）_ 7—メトキシクロモン濃度、1、3—ブタンジオール濃度及びグリセリン濃度を測定した結果を表3に示した。

[0083] 比較例1 7—1 8
グリセリンを添加せず、2．（1—エチルペンチン）_ 7—メトキシクロモンと1、3—ブタンジオールそれぞれ表3に示した量となるように蒸留水に加え、実施例10と同様にして2．（1—エチルペンチン）_ 7—メトキシクロモン組成物を得た。処理条件と組成物中の2．（1—エチルペンチン）_ 7—メトキシクロモン濃度、1、3—ブタンジオール濃度を測定した結果を表3に示した。

[0084]
<table>
<thead>
<tr>
<th>成分(A) 剤名称</th>
<th>実施例12</th>
<th>実施例13</th>
<th>実施例14</th>
<th>実施例15</th>
<th>実施例16</th>
<th>比較例13</th>
<th>比較例14</th>
<th>比較例15</th>
<th>比較例16</th>
<th>比較例17</th>
<th>比較例18</th>
</tr>
</thead>
<tbody>
<tr>
<td>対親</td>
<td>3.0</td>
</tr>
<tr>
<td>ン</td>
<td>2.5</td>
</tr>
<tr>
<td>成分(B) 剤名称</td>
<td>1.3-BG</td>
</tr>
<tr>
<td>添加量</td>
<td>g/L</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>400</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>成分(C) 剤名称</td>
<td>Glys</td>
</tr>
<tr>
<td>添加量</td>
<td>g/L</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>蒸留水</td>
<td>添加量</td>
<td>g/L</td>
<td>397.5</td>
<td>397.5</td>
<td>396.0</td>
<td>292.5</td>
<td>999.0</td>
<td>397.5</td>
<td>397.5</td>
<td>296.0</td>
<td>597.5</td>
</tr>
<tr>
<td>(A)／(B) 質量比</td>
<td>[-]</td>
<td>0.006</td>
<td>0.005</td>
<td>0.008</td>
<td>0.015</td>
<td>-</td>
<td>0.006</td>
<td>0.005</td>
<td>0.008</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>(B)／(C) 質量比</td>
<td>[-]</td>
<td>2.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>2.00</td>
<td>5.00</td>
<td>5.00</td>
<td>2.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(A)／(B)+(C) 質量比</td>
<td>[-]</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.011</td>
<td>-</td>
<td>0.004</td>
<td>0.004</td>
<td>0.006</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>加熱条件</td>
<td>水性媒体</td>
<td>[-]</td>
<td>水</td>
<td>水</td>
<td>水</td>
<td>水</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>水</td>
<td>水</td>
</tr>
<tr>
<td>温度</td>
<td>[℃]</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>加熱時間</td>
<td>[分]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ゲージ圧</td>
<td>[MPa]</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>分析値</td>
<td>(A) 濃度(25℃)</td>
<td>g/L</td>
<td>2.5</td>
<td>2.5</td>
<td>4.0</td>
<td>7.5</td>
<td>0.003</td>
<td>0.99</td>
<td>1.8</td>
<td>3.1</td>
<td>0.32</td>
</tr>
<tr>
<td>(B) 濃度(25℃)</td>
<td>g/L</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>400</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>(C) 濃度(25℃)</td>
<td>g/L</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>-</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(A)／(B) 質量比</td>
<td>[-]</td>
<td>0.006</td>
<td>0.005</td>
<td>0.008</td>
<td>0.015</td>
<td>-</td>
<td>0.002</td>
<td>0.004</td>
<td>0.006</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>(B)／(C) 質量比</td>
<td>[-]</td>
<td>2.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>2.00</td>
<td>5.00</td>
<td>5.00</td>
<td>2.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(A)／(B)+(C) 質量比</td>
<td>[-]</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.011</td>
<td>-</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
トランス-3,4'-ジメチル-3-ヒドロキシフラバノン、1,3-ブタンジオール及びグリセリンをそれぞれ表4に示した量となるように蒸留水に加え、実施例1と同様に加熱処理してトランス-3,4'-ジメチル-3-ヒドロキシフラバノン組成物を得た。処理条件と組成物中のトランス-3,4'-ジメチル-3-ヒドロキシフラバノン濃度、1,3-ブタンジオール濃度及びグリセリン濃度を測定した結果を表4に示した。

[0086]比較例19

1,3-ブタンジオールとグリセリンを添加せず、トランス-3,4'-ジメチル-3-ヒドロキシフラバノン1.0g/Lを蒸留水に分散し、実施例14と同様にしてトランス-3,4'-ジメチル-3-ヒドロキシフラバノン組成物を得た。処理条件と組成物中のトランス-3,4'-ジメチル-3-ヒドロキシフラバノン濃度を測定した結果を表4に示した。

[0087]比較例20

トランス-3,4'-ジメチル-3-ヒドロキシフラバノンを1.0g/L、1,3-ブタンジオールを500g/L、グリセリンを100g/Lとなるように蒸留水に加え、該スラリーgを室温で3日間攪拌（スターラー、500rpm）後、固形物を濾別した。液部中のトランス-3,4'-ジメチル-3-ヒドロキシフラバノン濃度、1,3-ブタンジオール濃度及びグリセリン濃度を測定した結果を表4に示した。

[0088]比較例21

グリセリンを添加せず、トランス-3,4'-ジメチル-3-ヒドロキシフラバノンと1,3-ブタンジオールを蒸留水に加え、実施例14と同様にしてトランス-3,4'-ジメチル-3-ヒドロキシフラバノン組成物を得た。処理条件と組成物中のトランス-3,4'-ジメチル-3-ヒドロキシフラバノン濃度、1,3-ブタンジオール濃度を測定した結果を表4に示した。

[0089]
表1〜4より明らかのように、難水溶性芳香族化合物の含有量が多い成分(A)含有組成物を得ることができ、難水溶性芳香族化合物の溶解度を顕著に増大させることができた。

また、実施例1〜17で得られた成分(A)含有組成物を、室温に冷却しても沈殿が析出することなく、安定な溶解状態を保っていた。

実施例18〜24、比較例22〜26

実施例5〜11、比較例1、6、8、10及び12で得られたイソプロピルメチルフェノール(I P M P)組成物を用い、表5及び表6に示すディオードラント化粧料を製造し、べたつき感、消臭効果、殺菌効果、すべすべ感及び消臭効果の持続性を評価した。
結果を表5及び表6に併せて示す。

(製造方法)
実施例5〜11、比較例1、6、8、10、12で得たIPMP組成物のIPMP濃度分析値を基に、IPMP濃度が0.1質量％になるように室温（25℃）攪拌下の水に滴下して希釈した。その後、成分(D)を、IPMP組成物の滴下の前に、所定の濃度となるように予め水に混合しておいた。

(評価方法)
環境調整室（38℃、相対湿度40％）に30分間入室し、全身が発汗した後退室した男性5名に対し、各デオドラント化粧料を全身に使用し、デオドラント効果を評価した。

(1) べたつき感:
デオドラント化粧料を塗布した胸部のべたつき感を、使用者本人が以下の基準でスコア判定し、5名の平均値を算出した。
0 ：べたつかない。
1 ：ややべたつく。
2 ：べたつく。
3 ：非常にべたつく。

(2) 消臭効果:
デオドラント化粧料を塗布した直後の全身の汗臭の強さを、使用者本人が以下の基準でスコア判定した。すなわち、基準を5段階に分け、全く臭わなくなった場合を4、塗布差と変わらない場合を0として評価し、5名の平均値を算出した。

(3) 殺菌効果:
デオドラント化粧料を塗布した腋部にスタンプ培地（クリーンスタンプ「ニッスイ」SCDL寒天培地、日水製薬社）を押し当て、35℃、24時間後の培地コロニー数を計測した後、以下の基準でスコア化し、5名の平均値を算出した。
コロニー数0個/ cm²。
1:コロニー数1〜10個/ cm²以下。
2:コロニー数11〜100個/ cm²以下。
3:コロニー数101個/ cm²以上。

(4) すべすべ感:
デオドラント化粧料を塗布した後、日常生活を6時間経過した時の胸部のすべすべ感を、使用者本人が以下の基準でスコア判定した。すなわち、基準を5段階に分け、とてもすべすべする場合を4、全くすべすべしない場合を0として評価し、5名の平均値を算出した。

(5) 消臭効果の持続性:
デオドラント化粧料を塗布した後、日常生活を6時間経過した時の全身の汗臭の強さを、使用者本人が以下の基準でスコア判定し、5名の平均値を算出した。
0:塗布前より強くなつた。
1:塗布前と変わらない。
2:塗布前より弱くなつた。
3:全く臭わなくなった。
<table>
<thead>
<tr>
<th>実験例</th>
<th>実験例18</th>
<th>実験例19</th>
<th>実験例20</th>
<th>実験例21</th>
<th>実験例22</th>
<th>実験例23</th>
<th>実験例24</th>
<th>実験例25</th>
<th>実験例26</th>
<th>実験例27</th>
<th>実験例28</th>
</tr>
</thead>
<tbody>
<tr>
<td>色軽巣 (%)</td>
<td>30.1</td>
<td>45.2</td>
<td>35.7</td>
<td>35.8</td>
<td>35.9</td>
<td>39.9</td>
<td>38.4</td>
<td>38.9</td>
<td>39.5</td>
<td>39.9</td>
<td>38.1</td>
</tr>
</tbody>
</table>

※ コ:トリス(ヒドロキシメチル)アミノメタン(2—アミノ2—ヒドロキシメチル1,3—プロパンジオール)
シクロデキストリン;佐々木化学製
※3: キハダ樹皮エキス;新和物産(株)製
※斗:銀担持カンクリナイト;花王製
※ち:メタクリル酸ラウリルジメタクリル酸エチレングリコールメタクリル酸ナドJム共重合体(特開2006—8659公報、製造例2参照)
※6: 無水ケイ酸;佐々木化学製

[0100]
<table>
<thead>
<tr>
<th>希釈液</th>
<th>1倍</th>
<th>1.3倍</th>
<th>2倍</th>
<th>4倍</th>
</tr>
</thead>
<tbody>
<tr>
<td>比較例12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比較例11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比較例8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>比較例6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>比較例4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>比較例2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>比較例</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

[θ101] IPMPと消臭成分を組み合わせると、IPMPによる殺菌効果によ
臭発現抑制効果に加え、すでに発現してしまっている汗臭を即時に消臭する効果が得られた。

IPMPと殺菌成分を組み合わせると、IPMPでは殺菌効果が不十分な皮膚常在菌に対し、他の殺菌成分を併用することで殺菌性能が高まり、汗臭抑制効果が向上した。

IPMPと感触向上成分である粉体を組み合わせると、粉体による汗の蒸散促進効果によって、菌が増殖しにくい環境となり、IPMPの殺菌効果が向上した。また、すすべすべ感が得られた。

実施例2-5

実施例6で製造したイソプロピルメチルフェノール組成物2.5gにアルミニウムヒドロキシクロリド10g、ポリオキシエチレン硬化ひまし油0.2g、香料0.05gを添加し、精製水を加えて100gのデオドラントローションを調製した。組成は下記の通りである。

<table>
<thead>
<tr>
<th>成分</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPMP</td>
<td>0.1</td>
</tr>
<tr>
<td>1.3BG</td>
<td>1.25</td>
</tr>
<tr>
<td>グリセリン</td>
<td>0.25</td>
</tr>
<tr>
<td>アルミニウムヒドロキシクロリド</td>
<td>1.00</td>
</tr>
<tr>
<td>ポリオキシエチレン（40）硬化ひまし油</td>
<td>0.2</td>
</tr>
<tr>
<td>香料</td>
<td>0.05</td>
</tr>
<tr>
<td>精製水</td>
<td>100</td>
</tr>
</tbody>
</table>

実施例2-6

実施例5で製造したイソプロピルメチルフェノール組成物3.33gに1.3ブチレングリコール6g、オレインアルコール0.1g、P〇E（20）オレインアルコールエーテル0.4g、メチルパラベン0.2g、グリチルリチン酸ジカリウム0.2g、香料0.04gを添加し、精製水を加えて100gのアクネ化粧水を調製した。組成は下記の通りである。

<table>
<thead>
<tr>
<th>成分</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPMP</td>
<td>0.1</td>
</tr>
</tbody>
</table>
実施例27

油相として、ステアリン酸12g、ミリスチン酸14g、ラウリン酸5g、ホホバ油3g、ソルビット14.047g、グリセリン10g、1,3-ブチレングリコール10gを加熱溶解し、70℃に保った。実施例7で製造したイソプロピルメチルフェノール組成物2.0gに精製水20gを加えて水酸化カリウム5gを溶解し、油相を撹拌しつつゆっくりと添加した。N-メチルタウリン4gをさらに加えて10分間撹拌を行って中和反応を十分に行った後に、P0E(20)グリセロールモノステアリン酸エステル1.9gを添加した。25℃までゆっくりと冷却（放冷）して、ハンドウォッシュを調製した。組成は下記の通りである。

<table>
<thead>
<tr>
<th>成分</th>
<th>量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ステアリン酸</td>
<td>12.0</td>
</tr>
<tr>
<td>ミリスチン酸</td>
<td>14.0</td>
</tr>
<tr>
<td>ラウリン酸</td>
<td>5.0</td>
</tr>
<tr>
<td>ホホバ油</td>
<td>3.0</td>
</tr>
<tr>
<td>ソルビット (ソルビトール70%水溶液)</td>
<td>14.047</td>
</tr>
<tr>
<td>グリセリン</td>
<td>10.2</td>
</tr>
<tr>
<td>1,3-BG</td>
<td>11.0</td>
</tr>
<tr>
<td>水酸化カリウム</td>
<td>5.0</td>
</tr>
<tr>
<td>N-メチルタウリン</td>
<td>4.0</td>
</tr>
</tbody>
</table>

合計：100.0
P〇E（20）グリセロール モノステアリン酸 エステル

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>I P M P</td>
<td>0.1</td>
</tr>
<tr>
<td>P G</td>
<td>8.421</td>
</tr>
</tbody>
</table>

精製水 残部

合計 100.0
請求の範囲

[請求項1] 水性媒体の存在下、(A) 難水溶性芳香族化合物と (B) 二価アルコールと (C) 三価以上のアルコールを 100 〜 180℃ で加熱処理する工程を含む、難水溶性芳香族化合物含有組成物の製造方法。

[請求項2] (A) 難水溶性芳香族化合物が、25℃における水への溶解度が 0.5g/L以下の芳香族化合物である請求項1記載の難水溶性芳香族化合物含有組成物の製造方法。

[請求項3] (A) 難水溶性芳香族化合物が、フエノール系抗菌剤、クロロン誘導体及びプラパノール誘導体から選択される1種又は2種以上である請求項1又は2記載の難水溶性芳香族化合物含有組成物の製造方法。

[請求項4] (A) 難水溶性の芳香族化合物が、イソプロピルメチルフエノール、トリクロサン、2_ (1 --エチルベンチル)_ 7 ーメトキシクロモン及びトランス ー 3 _ 4'_ ーグルメチル _ 3 ーヒドロキシプラパノンから選択される1種又は2種以上である請求項1又は2記載の難水溶性芳香族化合物含有組成物の製造方法。

[請求項5] (B) 二価アルコールが、エチレングリコール、プロピレングリコール、1,3_プロパンジオール、1,3_ブタンジオール、ジプロピレングリコール及びポリエチレングリコールから選択される1種又は2種以上である請求項1〜4のいずれか1項記載の難水溶性芳香族化合物含有組成物の製造方法。

[請求項6] (C) 三価以上のアルコールが、グリセリン又はジグリセリンである請求項1〜5のいずれか1項記載の難水溶性芳香族化合物含有組成物の製造方法。

[請求項7] 加熱処理する工程において、(B) 二価アルコールに対する (A) 難水溶性芳香族化合物の質量比 [(A)] / (B)] が 0.001 〜 1 である、請求項1〜6のいずれか1項記載の難水溶性芳香族化合物含有組成物の製造方法。

[請求項8] 加熱処理する工程において、(C) 三価以上のアルコールに対する
（B）二価アルコールの質量比 [(B) / (C)] が 1.5 ~ 1.0 である、請求項1〜7のいずれか1項記載の難水溶性芳香族化合物含有組成物の製造方法。

[請求項9] 加熱処理する工程において、(B)二価アルコールと(C)三価以上のアルコールの合計量に対する(A)難水溶性芳香族化合物の質量比 [(A) / { (B) + (C) }] が 0.01 ~ 0.5 である、請求項1〜8のいずれか1項記載の難水溶性芳香族化合物含有組成物の製造方法。

[請求項10] 更に、加熱処理して得られた加熱処理液を 0.2°C/s 以上の冷却速度で冷却する工程含む、請求項1〜9のいずれか1項記載の難水溶性芳香族化合物含有組成物の製造方法。

[請求項11] 請求項1〜10のいずれか1項記載の製造方法により得られる、難水溶性芳香族化合物含有組成物。

[請求項12] (B)二価アルコールと(C)三価以上のアルコールの合計量に対する(A)難水溶性芳香族化合物の質量比 [(A) / { (B) + (C) }] が 0.01 ~ 0.5 である、請求項11記載の難水溶性芳香族化合物含有組成物。

[請求項13] 請求項11又は12記載の難水溶性芳香族化合物含有組成物を有する化粧料。

[請求項14] 更に、(D)消臭成分、殺菌成分及び感触向上成分から選ばれる1種以上を含有する請求項13記載の化粧料。

[請求項15] 難水溶性芳香族化合物含有組成物における、(C)三価以上のアルコールに対する(B)二価アルコールの質量比 [(B) / (C)] が 1.5 ~ 1.0 である請求項14記載の化粧料。
INTERNATIONAL SEARCH REPORT

International application No.
PCT / JP2 015 / 0 6097 6

A. CLASSIFICATION OF SUBJECT MATTER
A 61K 8 / 3 (200 6 . 01) i , A 61K 8 / 39 (200 6 . 01) i , A 61Q 15 / 0 0 (200 6 . 01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A 61K 8 / 0 0 - 8 / 9 9 , A 61Q 1 / 0 0 - 9 0 / 0 0 , C 07C 37 / 8 8 , C 07C 41 / 5 8 , C 07D 31 1 / 0 0 - 3 11 / 9 6 ,
A 0 1N 3 / 1 0 8 - 3 1 / 1 6 , A 0 1N 4 3 / 1 6 , A 61K 31 / 0 5 - 3 1 / 0 5 5 , A 61K 31 / 3 5 2 - 3 5 5 , A 61K 47 / 1 0 ,
B 0 1 J 13 / 0 0 , B 0 1 F 1 / 0 0

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
JST Plus / JMEDPlus / JST 7 5 0 (JDream / II), CapSci / REGISTRY / MEDLINE / EMBASE / BIOSIS (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2011-231082 A (Lion Corp.)</td>
<td>11-15</td>
</tr>
<tr>
<td>A</td>
<td>17 November 2011 (17.11.2011), claims ; paragraphs [0002], [0004] to [0005],</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>[0009] to [0016], [0020] to [0021], [0025], [0029] ; example s (Family : none)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 2010/090236 A (Sunstar Inc.)</td>
<td>11-15</td>
</tr>
<tr>
<td>A</td>
<td>12 August 2010 (12.08.2010), claims ; paragraphs [0002] to [0006], [0026] to</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>[0027], [0031]; example s (table s 1, 2) ; & JP 2012-41352 A & US 2011/0288038 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& EP 2394634 A & CN 102300552 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& KR 10-2011-0116194 A</td>
<td></td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"Q" document referring to an oral disclosure, use, exhibition or other means of publication prior to the international filing date but later than the priority date claimed
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"$" member document of the same patent family

Date of the actual completion of the international search 02 July 2015 (02.07.15)
Date of mailing of the international search report 14 July 2015 (14.07.15)

Name and mailing address of the ISA
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X A</td>
<td>JP 2003-284525 A (Hayashibara Biochemical Labs., Inc.), 07 October 2003 (07.10.2003), claims; paragraph [0019]; example sections 1, 3 (Family: none)</td>
<td>11; 1-1</td>
</tr>
<tr>
<td>A</td>
<td>JP 2012-214427 A (Sumitomo Seika Chemicals Co., Ltd.), 08 November 2012 (08.11.2012), claims; paragraphs [0015] to [0016]; example sections & CN 102726421 A</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>CN 101475448 A (HUAJIAN WANBANG AROMATIC CHEMICALS CO., LTD.), 08 July 2009 (08.07.2009), claims; page 4, 2nd paragraph; example sections (Family: none)</td>
<td>1-15</td>
</tr>
</tbody>
</table>
明の属する 分類
A61K8/34(2006.01)i, A61K8/49(2006.01)i, A61Q15/00(2006.01)i

B. 調査を行った分野

調査 了 最小限

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国实用新案公報 1 1996.
日本 公開実用新案公報 1 71-2015.
日本国实用新案公表公報 1 4-9015.

JSTPlus/JMEDPlus/JST7580 (JDreamII), CaplUS/REGISTRY/EDLINE/EMBASE/BIOSIS (STN)

関連すると考えられる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求先の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>オン</td>
<td>特許の範囲</td>
<td>11-15</td>
</tr>
<tr>
<td>2010/090236</td>
<td>サンスター会社</td>
<td>パテントファミリーに関する別紙を参照</td>
</tr>
</tbody>
</table>

C 欄の続きに文献が列挙されている。

** 引用文献のカテゴリ**

「I」に関すること

国際調査を完了した国

国際調査機関の名称及び住所

日本 許併 (I)

特許庁審査官のある職 | 4 9546
松本 直子 | 5 1101 内線 3421
引用文献の関連する文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2003-284525 A (株式会社林原生物化学研究所) 2003. 10. 07, 特許請求の範囲、段落 [0019]，実施例 1, 3 (ファミリーなし)</td>
<td>11-15</td>
</tr>
<tr>
<td>A</td>
<td>JP 2012-214427 A (住友精化株式会社) 2012. 11. 08, 特許請求の範囲、段落 [0015] - [0016]，実施例 & CN 102726421 A</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>CN 101475448 A (HUAIAN WANBANG AROMATIC CHEMICALS CO., LTD.) 2009. 07. 08, 特許請求の範囲 A 頁 2 段落 2 実施例 (ファミリーなし)</td>
<td>1-15</td>
</tr>
</tbody>
</table>

様式 PCT/ISA/210 (第2ページの続き) (2009年7月)