ABSTRACT

A bracket mountable between the inner ends of automobile visors so that a tissue box may be mounted thereon by impaling said box by a piercing end of said bracket.

1 Claim, 7 Drawing Figures
Tissue Box Bracket

This invention relates to an improved bracket for holding a tissue box in an automobile, and particularly relates to a mounting bracket positionable between the inner ends of the automobile visor so that the tissue box may be held upside down with easy access to the projecting tissue sheets at the top of the box.

Owners of automobiles quickly appreciate the desirability of having a box of paper tissues available inside the car. The presence of such a tissue box becomes even more desirable as the time period extends in which drivers or passengers remain in the car, in particular, long trips.

A problem of continuing annoyance relates to the location and accessibility of such tissue box or container. Attempts have been made to mount such a paperboard tissue box in an oversize rigid container below the dashboard. The tissue box is held upside down within such a container so the opening of the top of the box extends downward. The tissues, of course, extend one at a time outwardly opening so that they may be pulled free of the box by a downward motion of the hand. There are disadvantages to both the location and the accessibility of such means because it is awkward to place a box within such a container and it is necessary to often grep with the hand before the extending tissue is located. Allowing the tissue box to rest freely on the seat or other locations within the car is unsatisfactory because of difficulty in finding the box when needed, because the box could be crushed by the persons within the car, because such a box could fall below the seat, and because of still other problems. Placing the tissue box on the dashboard for sake of convenience to the driver and passenger is also objectionable because of interference with the view of the driver. A further objection is that such a placement intrudes itself too easily to the views of the passenger, therefore, being unsightly.

It is one important object of the present invention to provide an improved bracket for securely holding a tissue box in a highly desired position within the car for easy accessibility, while causing no problems to driver or passengers.

Another important object is to provide an improved bracket for a tissue box which permits the box to be quickly mounted thereby and to be quickly and easily removed for replacement after the tissues are exhausted.

The foregoing objects are attained together with still other objects which will occur to practitioners from time to time, as they consider the disclosure of the present invention which includes drawings wherein:

FIG. 1 is a top plan view of an embodiment of the impaling tissue bracket;
FIG. 2 is a side elevational view of the bracket shown in FIG. 1;
FIG. 3 is a front elevational view on a slightly enlarged scale of the tissue bracket shown in FIG. 1;
FIG. 4 is a perspective view showing the impaling tissue bracket mounted to a visor assembly between the inner ends of a visor;
FIG. 5 is a view along lines 5—5 of FIG. 4, partly in section, with the additional feature of a tissue box shown as mounted on the bracket;
FIG. 6 is a substantially sectional view, somewhat diagrammatic, showing how the mounting means of tissue bracket may be engaged with the visor assembly between the ends of the visor; and
FIG. 7 is a top plan view of an impaling tissue bracket illustrating an alternative mounting means.

Referring to the drawings, a tissue impaling bracket which incorporates the teachings of this invention shown generally at 10. The bracket includes an elongated blade 12 which has a side-to-side dimension substantially greater than the top-to-bottom dimensions. A piercing end 14 is provided which is shaped to facilitate said end impaling the end wall of the tissue box. In the form illustrated, a bevel 16 is provided with its opposite side formed on the radius as illustrated. This leads to efficient action of the desired impaling operation without presenting any hazard to the user in demounting or mounting a tissue box.

Fixed to the mounting blade is a stop member shown as an angle plate 18. The angle plate includes a fastened arm 20 held to the bottom surface of the elongated plate by means such as welds 21. The angle plate has a depending arm 20 which axis is substantially normal to the longitudinal axis of the blade 10. The end of the impaling bracket opposite to the piercing end is the mounting end 23. In the illustrated form, the mounting end is provided with a mounting aperture 24. For reasons which will be better understood later, the stop member 18 is positioned substantially closer to the mounting end than to the piercing end. Stated in another way, the stop member 18 is positioned a major distance away from the piercing end, and a minor distance away from the mounting end. The major distance may be considered as being more than one half the longitudinal distance of the mounting blade, whereas a minor distance may be considered as being less than one half this distance.

The impaling bracket is shown mounted in association with a visor assembly in the view of FIGS. 4–6. In mounted position, the elongated blade follows generally the roof assembly 25 of the automobile. The impaling bracket is shown mounted between visors 26, particularly between the visor inner ends 28. Pivot rods 29 extend from each of the visor ends 28 to a visor assembly shown generally as 30.

The visor assembly, for purposes of the present invention, is the assembly of elements between the visor inner ends which cooperate in securing the mounting end 23 of the impaling bracket. In the illustrated form, a mounting plate 32 is shown which is held by fasteners such as screws 34, one of said screws 34a in the mounting plate being used for engaging mounting aperture 24. The illustrated assembly also shows the rear view mirror post 36 mounted to the plate 32, and the rear view mirror 37 which is mounted in the usual way by pivotable means, not shown, to the post. For the purposes of the present invention, a molding 38, associated with the roof assembly 25, may be considered as part of the visor assembly for an alternative way to mount the impaling tissue bracket. Such a molding strip is held to the roof assembly by mounting screws 39. The relationship of the molding strip to the impaling tissue bracket will be later described.

It may be seen how the tissue box 42 is impaled on the bracket in upside down position with the top opening facing downward (not shown), and a tissue 44 extending out of said opening in position to be grasped.
and withdrawn by a user. The tissue box 42 is mounted on the bracket by rupturing end wall 46 of the box with the piercing end 14 of the impaling bracket, and moving the impaling bracket into the box until end wall 46 abuts stop member 18. The length of the elongated blade is sufficiently great so that it extends over a major distance of the longitudinal axis of the tissue box 42, as shown. The top surface of the blade non-rotationally supports the bottom wall 47 of the tissue box. The non-rotational support rises from the greater side-to-side dimension of elongated blade relative to its top-to-bottom dimension.

The positioning of the tissue box is desirable because there is no interference with the normal use of the visors. If a particular visor assembly does not permit the placement described previously, then the alternative embodiment shown in FIG. 7 may be employed. The bracket has an elongated impaling blade 48, a piercing end 50, a stop member 52 held by welds or the like 54, all elements being generally similar to those described and associated with bracket 10. The end of the bracket opposite the piercing end 50 is, however, provided with an offset arm portion 56 which axis is normal to the longitudinal axis of the blade 48, and a mounting arm portion 58 which axis is parallel to the longitudinal axis of the mounting blade 48. The mounting end 60 of the bracket is provided with a mounting aperture 62. The offset arm portion 56 permits the mounting arm to be secured to a screw such as 39 in the molding strip 38, while at the same time allowing elongated blade 48 to extend substantially between the inner visor ends 28. It will be appreciated that mounting arm 58 may even be secured to a fastener behind the inner end of the visor while still permitting the blade 48 to extend between the inner visor ends. In this sense, the molding strip 38 and the fastener screws 39 are included within the term "visor assembly" for purposes of identifying the locations for securing the mounting ends to the impaling bracket.

The tissue box impaling bracket disclosed herein may be constructed from a variety of material, although it has been found that spring steel is a highly useful material because it permits the bracket to resume its configuration following displacement. Further, the spring steel will be urged towards the roof of the automobile to maintain the tissue box therewith against. When spring steel is employed, the stop member 18 may likewise be a steel spring steel angle plate which is fastened by welds or the like to the elongated plate. It will be appreciated, however, that other materials may be used, including resilient type integrally molded plastics. While the mounting end of the bracket has been shown as having an aperture through which a mounting screw, or the like, may pass to hold the bracket to parts of the visor assembly, other mounting means may be employed. This may include clamps, bonding tabs, or piercing points which penetrate the upholstery of the roof structure 25. Various tissue boxes may be used including those where the individual tissues do not extend out of the box. Such tissue boxes allow the tissue to be individually removed by placing the fingers behind a flat fold. Such boxes may be preferable when a projecting tissue appears in the rear view mirror and thereby tends to partially obscure vision.

The claims of the invention are now presented.
What is claimed is:

1. A tissue box bracket assembly for mounting adjacent an automobile visor, including a tissue box impaled on a bracket, said bracket being a unitary body having an elongated, impaling blade of substantially uniform width and formed of spring steel, one end of said blade formed into a piercing end for rupturing an end wall of the tissue box, said blade having top and bottom substantially flat surfaces so that the top surface thereof serves as a support for the inside surface of the top of the tissue box, a spring steel angle stop member having a fastened arm fixed to the bottom surface of the blade, said stop member having a flat depending arm with an axis substantially normal to the longitudinal axis of said blade, said flat depending arm of the stop member having a width substantially equal to the width of the blade and being planar so the depending arm fully abuts the end wall of tissue box when the impaling blade is inserted therein, the distance of said blade between said depending arm and said piercing end comprising at least a major distance of the longitudinal axis of said tissue box, said major distance of the arm extending over a major distance of the longitudinal axis of a tissue box impaled thereon, said piercing end formed by a bevel on the bottom surface, said bevel extending substantially to the opposite sides of the blade, such opposite sides of the bevel formed on a radius so that said end easily ruptures the end wall of a tissue box but provides no hazard to the user in mounting and demounting a tissue box, and the end of the bracket opposite the piercing end provided with a mounting aperture to secure said bracket to a threaded fastener adjacent an inner end of an automobile visor.

* * * * *