Method for transmitting a radio navigation signal.

Abstract: The invention concerns a method for transmitting a radio navigation signal including encoded and interleaved data; the signal comprises a channel modulated by the encoded and interleaved data and another channel not modulated by said data, and the channel not modulated by said data includes a known code (Cp) enabling the interleaved data deinterleaving to be synchronized upon reception.
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible) : ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasiens (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européens (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :
— avec rapport de recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux “Notes explicatives relatives aux codes et abréviations” figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(57) Abrégé : L’invention concerne un procédé de transmission d’un signal de radionavigation qui comprend des données codées et entrelacées ; le signal comporte une voie modulée par les données codées et entrelacées et une autre voie non modulée par ces données, et la voie non modulée par ces données comprend un code connu Cp permettant de synchroniser à la réception le désentrelacement des données entrelacées.
PROCÉDE DE TRANSMISSION D’UN SIGNAL DE RADIONAVIGATION

L’invention concerne la transmission d’un signal de radionavigation.

La radionavigation par satellites permet d’obtenir la position d’un récepteur à partir de signaux émis par des satellites.

Dans les systèmes de radionavigation actuels tels que les systèmes GPS (acronyme de l’expression anglo-saxonne « Global Positionning System ») ou GLONASS, les satellites émettent un signal constitué d’une porteuse modulée par un code d’étalement connu, à haute fréquence (quelques MHz), et par des données a priori inconnues, à basse fréquence (50 Hz typiquement).

De manière générale, les systèmes de radionavigation par satellites, actuels ou futurs sont désignés systèmes GNSS (acronyme de l’expression anglo-saxonne « Global Navigation Satellite System »).

Pour des raisons de robustesse et d’intégrité de la restitution des données reçues, les futurs systèmes de navigation tels que le système GALILEO, utiliseront des techniques de codage des données à l’émission permettant de détecter et de corriger automatiquement les erreurs à la réception.

Une technique connue consiste à utiliser à l’émission un codage convolutif utilisant des registres à décalage et introduisant une redondance, et à la réception un décodage basé sur l'algorithme de Viterbi.

Cette technique est généralement associée à l’émission, à un entrelacement des bits de données préalablement codées et à la réception à un désentrelacement des données reçues, avant leur décodage.

Cela permet de traiter les erreurs de bits consécutives dues à une perturbation dans le canal de transmission entre l’antenne de l’émetteur et celle du récepteur, en dispersant les bits erronés et en les reconstituant par redondance.

Mais le désentrelacement n’est pas un processus invariant dans le temps et il nécessite une synchronisation lorsque débute le désentrelacement. Les bits de données permettent de réaliser cette synchronisation mais dans le cas de certains entrelacements, les bits de
données ne peuvent être utilisées car ils ne sont accessibles qu’après désentrelacement et décodage.

Une solution consiste à essayer plusieurs hypothèses de synchronisation en parallèle ou en séquentiel en effectuant pour chacune le désentrelacement et le décodage jusqu’à la convergence du processus c’est-à-dire jusqu’à ce que le taux d’erreur de bits (qui est un indicateur de l’algorithme de Viterbi) soit faible. Cela mobilise une charge de calcul importante et complique l’architecture du récepteur.

Une autre solution a été proposée dans le cas du système Galileo. Elle consiste à insérer dans le flux de bits de données, des séquences de bits reconnaissables, non codés ni entrelacés, et désignés par l’expression anglo-saxonne « Unique Word Insertion ». Cela permet de synchroniser directement le désentrelacement des bits reçus entre les séquences. L’inconvénient de cette solution est qu’elle réduit le débit utile car les bits de synchronisation ne contiennent pas d’information et que d’autre part elle oblige à interrompre le processus d’entrelacement des symboles ce qui le complique.

Un but important de l’invention est donc de synchroniser le désentrelacement sans rencontrer les inconvénients sus-mentionnés.

Pour atteindre ce but, l’invention propose un procédé de transmission d’un signal de radionavigation qui comprend des données codées et entrelacées, principalement caractérisé en ce que le signal comporte une voie modulée par les données codées et entrelacées et une autre voie non modulée par ces données, et en ce que la voie non modulée par ces données comprend un code connu \(C_p \) permettant de synchroniser à la réception le désentrelacement des données entrelacées.

Ainsi à la réception, on utilise ce code de la voie pilote pour réaliser la synchronisation sans avoir à désentrelacer et à décoder les données inconnues de la voie données et sans réduire le débit utile.

Selon une caractéristique de l’invention, l’entrelacement et le désentrelacement sont obtenus à partir d’une mémoire comportant des lignes et des colonnes présentant respectivement \(M \) et \(N \) cases mémoire.

L’entrelacement est par exemple convolutif avec \(N=M \) et le code connu \(C_p \) présente une longueur multiple de \(M \).
L'entrelacement peut aussi être matriciel et le code connu Cp présente une longueur multiple de M.N.

Selon une caractéristique de l'invention, les données sont codées en utilisant un code correcteur d'erreur, par exemple un code « FEC ».

De préférence, la voie non modulée par les données comporte en outre un code primaire, le code connu Cp étant alors désigné code secondaire Csp.

L'invention a aussi pour objet un émetteur d'un signal de radionavigation comprenant un générateur de données, un dispositif de codage des données, un dispositif d'entrelacement des données codées, caractérisé en ce qu'il comporte un générateur de code Cd destiné à générer un signal modulé par les données codées et entrelacées et un générateur de code Cp décorrélé du code Cp et destiné à générer un signal non modulé par ces données.

Selon une caractéristique de l'invention, le dispositif d'entrelacement dit convolutif comprend une mémoire qui comporte des lignes et des colonnes présentant chacunes M cases mémoire, et le générateur de code Cp est destiné à générer un code de longueur égale à un multiple de M.

Selon une autre caractéristique de l'invention, le dispositif d'entrelacement dit matriciel comprend une mémoire qui comporte des lignes et des colonnes présentant respectivement M et N cases mémoire et le générateur de code Cp est destiné à générer un code de longueur égale à un multiple de M.N.

L'invention concerne également un récepteur d'au moins un signal de radionavigation comportant des données codées et entrelacées modulées par un code Cd, le récepteur étant équipé d'un canal de réception pour chaque signal de radionavigation, et comportant pour au moins un canal de réception, un générateur du code apte à démoduler le signal de radionavigation de manière à obtenir les données codées et entrelacées, un dispositif de désentrelacement des données codées, caractérisé en ce que le canal de réception comportant deux voies, le dispositif de désentrelacement est sur une première voie et en ce qu'il comporte sur la deuxième voie, un générateur d'un autre code Cp décorrélé du code Cd, et destiné à synchroniser le dispositif de désentrelacement.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit, faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :

la figure 1a représente schématiquement un exemple de codeur de données, basé sur l'utilisation de 6 registres à décalage ; sur la figure 1b sont représentés les bits de données avant codage et les symboles $D_{cod}(t)$ obtenus après codage, selon l'exemple de la figure 1a,

la figure 2a représente schématiquement un exemple de symboles D_{cod}, en entrée d'un dispositif d'entrelacement, et les symboles entrelacés $D_{ent}(t)$, destinés à être émis ; des exemples de disposition de cases mémoire permettant d'obtenir un entrelacement convolutif ou matriciel sont respectivement représentés figures 2b et 2c,

la figure 3 représente schématiquement les principaux composants d'un émetteur connu basé sur l'utilisation d'un code correcteur d'erreur et d'un entrelacement,

la figure 4 représente schématiquement des exemples de signaux utilisés pour l'émission,

la figure 5 représente schématiquement un exemple de récepteur connu comportant un dispositif de décodage et un dispositif de désentrelacement,

la figure 6 représente schématiquement un exemple d'intervalle d'intégration,

des exemples de disposition de cases mémoire permettant d'obtenir un désentrelacement correspondant à l'entrelacement convolutif de l'émission est représenté figure 7a ; figure 7b sont représentés des exemples de symboles entrelacés D_{ent}, et les symboles désentrelacés $D_{cod}(t)$, respectivement en entrée et en sortie du dispositif de désentrelacement,

la figure 8 représente schématiquement les principaux composants d'un émetteur selon l'invention,

la figure 9 représente schématiquement un exemple de récepteur selon l'invention,

la figure 10 représente schématiquement un exemple de code produit d'un code primaire C_{pp} et d'un code secondaire $C_{pp'}$.
la figure 11a représente schématiquement un exemple de signal de la voie pilote qui comporte un code secondaire \(C_{sp}(t) \); la figure 11b représente schématiquement un exemple de symboles entrelacés \(D_{ent}(t) \) de la voie données, en entrée du dispositif de désentrelacement ; la figure 11c illustre un exemple de désentrelacement convolutif.

On a illustré figure 1a un exemple de codeur de données, basé sur l'utilisation de 6 registres à décalage, c'est-à-dire sur l'utilisation de 7 bits consécutifs, \(\text{bit}_n, \text{bit}_{n-1}, \ldots, \text{bit}_{n-6} \). Les données \(D(t) \) sont présentées sous forme de bits en entrée du codeur selon un débit \(d \). En sortie, le codeur fournit les données codées sous forme de symboles \(a_n(t) \) et \(b_n(t) \) selon un débit \(2d \).

Dans cet exemple, on obtient:
\[
\begin{align*}
a_n &= \text{bit}_n \times \text{bit}_{n-4} \times \text{bit}_{n-5} \times \text{bit}_{n-6} \\
b_n &= \text{bit}_n \times \text{bit}_{n-2} \times \text{bit}_{n-4} \times \text{bit}_{n-6}
\end{align*}
\]

Sur la figure 1b sont représentés les bits de données \(D(t) \) avant codage et les symboles \(D_{cod}(t) \) obtenus après codage, selon l'exemple de la figure 1a. On a:
\[
D_{cod}(t) = a_1 b_1 a_2 b_2 \ldots a_n b_n \ldots
\]

Les symboles \(D_{cod}(t) \) obtenus en sortie du codeur sont ensuite entrelacés selon un mode convolutif ou matriciel ou autre.

On va décrire un exemple d'entrelacement convolutif. Figure 2a sont représentés les symboles \(D_{cod} \), en entrée du dispositif d'entrelacement, et les symboles entrelacés \(D_{ent}(t) \), destinés à être émis. Le dispositif d'entrelacement comprend des cases mémoires disposées en tableau : en entrée, les symboles sont écrits par lignes et, en sortie les symboles sont lus par colonnes, ce qui produit l'entrelacement. On a indiqué figure 2a les changements de ligne.

Selon la disposition de ces cases mémoire, l'entrelacement obtenu est convolutif ou matriciel ou autre.

Des exemples de disposition de cases mémoire 1 permettant d'obtenir un entrelacement convolutif ou matriciel sont respectivement représentés figures 2b et 2c. Les sens d'écriture des symboles dans l'ordre
(en entrée, soit \(D_{\text{cote}}(t) \)) et de lecture (en sortie, soit \(D_{\text{ent}}(t) \)) des symboles entrelacés sont indiqués.

Les symboles entrelacés \(D_{\text{ent}} \) sont ensuite modulés de manière classique par un code d’étalement et une porteuse avant d’être émis.

On a représenté figure 3, les principaux composants d’un émetteur connu basé sur l’utilisation d’un code correcteur d’erreur et d’un entrelacement. Il comprend un dispositif 12 de codage par un code correcteur d’erreur (« FEC » acronyme de l’expression anglo-saxonne « Forward Corrector Error ») et un dispositif d’entrelacement 14, un générateur de code d’étalement 20, un générateur de porteuse 30, un modulateur 40, un amplificateur 50 de coefficient \(A \) et une antenne d’émission 60.

On a représenté figure 4, des exemples de signaux utilisés pour l’émission : les symboles entrelacés \(D_{\text{ent}}(t) \), le code d’étalement \(C(t) \), le signal \(D_{\text{ent}}(t) . C(t) \) obtenu, la porteuse \(\cos(\omega t) \) et le signal émis \(S_{\text{e}}(t) \) qui est de la forme,

\[
S_{\text{e}}(t) = A . \cos(\omega t) . C(t) . D_{\text{ent}}(t)
\]

La durée \(T \) d’un symbole de données \(D_{\text{ent}}(t) \) est celle d’une séquence de code périodique.

A la réception, le signal reçu \(S_{r}(t) \) est de la forme :

\[
S_{r}(t) = S_{\text{e}}(t) + S_{\text{perturbations}}(t)
\]

Avec \(S_{\text{perturbations}} = \text{bruits} + \text{autres signaux} \).

Un exemple de récepteur connu est représenté figure 5. Un multiplicateur complexe \(M_{p} \) permet d’éliminer la porteuse en multipliant le signal échantillonné par le signal complexe \(e^{j(\omega t+\phi)} \) issu d’une boucle d’asservissement de la porteuse qui comprend notamment de manière classique un générateur de porteuse (table de cosinus et sinus) et un intégrateur NCO (acronyme de l’expression anglo-saxonne « Numerically Controlled Oscillator »). Le signal obtenu est alors corrélé à un code primaire local au moyen d’un multiplicateur complexe \(M_{c} \) (voire plus), chaque multiplicateur complexe étant associé à un intégrateur complexe \(I \). Le code local, réplique du code émis, est issu d’une boucle d’asservissement de code qui comprend notamment un générateur \(G_{c} \) de code local et un intégrateur NCO.
On rappelle que les intégrateurs NCO fournissent à partir des commandes de vitesse mises à jour par la boucle d'asservissement à une fréquence inférieure à 1 KHz, la phase de la porteuse ou du code produite à la fréquence d'échantillonnage, soit quelques MHz.

On obtient en sortie de l'intégrateur I, le signal z :

\[z(n) = \frac{1}{T} \int_{nT, (n+1)T} \text{S}_{\text{reçu}}(t) \cdot e^{j(\omega t + \phi)} \cdot C(t) \, dt \]

L'intervalle d'intégration correspond à la durée d'un symbole de données comme illustré figure 6.

On suppose en outre que le code local C(t+\tau) a été synchronisé avec le code reçu C(t) au cours d'une première phase d'acquisition, c'est-à-dire que \(\tau = 0 \).

En remplaçant \(S_{\text{reçu}} \) par \(S_\delta + S_{\text{perturbations}} \), on obtient pour z :

\[z(n) = \frac{1}{T} \int_{nT, (n+1)T} S_\delta(t) \cdot e^{j(\omega t + \phi)} \cdot C(t) \, dt \quad (1) \]

\[+ \frac{1}{T} \int_{nT, (n+1)T} S_{\text{perturbations}}(t) \cdot e^{j(\omega t + \phi)} \cdot C(t) \, dt \quad (2) \]

\((1) = \frac{1}{T} \int_{nT, (n+1)T} A \cos(\omega t) \cdot C(t) \cdot D_{\text{ent}}(t) \cdot e^{j(\omega t + \phi)} \cdot C(t) \, dt \)

\((2) = \text{bruit} \)

Concernant le terme (1), on a : \(C(t) \cdot C(t) = 1 \)

En désignant \(nT_+ \), la valeur suivant la transition \(nT \) (cf figure 6), on obtient finalement :

\[z(n) = \frac{1}{2} A e^{j\phi} D_{\text{ent}}(nT_+) + \text{bruit} \]

On a ainsi éliminé la modulation par la porteuse et par le code d'étalement. Grâce à une boucle de phase de porteuse (« PLL » acronyme de l'expression anglo-saxonne « Phase Lock Loop »), on asservit la phase de la porteuse locale \(\phi \) par rapport à celle de la porteuse reçue, égale à 0. On conserve finalement la modulation par les données codées entrelacées Dent.

Celles-ci sont alors désentrelacées au moyen d'un dispositif de désentrelacement Dés pour obtenir les symboles codés D_{\text{cod}}(t). Le désentrelacement doit correspondre à l'entrelacement.

Des exemples de disposition de cases mémoire permettant d'obtenir un désentrelacement correspondant à l'entrelacement de l'émission.
est représenté figure 7a. Il s’agit d’un désentrelacement convolutif. Les cases mémoire sont disposées dans un tableau qui a la même forme que pour l’entrelacement mais les sens d’écriture (en entrée) des symboles entrelacés et de lecture (en sortie) des symboles dans l’ordre sont inversés par rapport aux sens d’écriture et de lecture adoptés à l’émission. Figure 7b sont représentés les symboles entrelacés D_{ent}, en entrée du dispositif de désentrelacement, et les symboles désentrelacés $D_{\text{dec}}(t)$, destinés à être décodés. On a indiqué figure 7b les changements de colonne.

Les symboles codés $D_{\text{dec}}(t)$ obtenus sont alors décodés au moyen d’un dispositif de mise en œuvre de l’algorithme de Viterbi, « FEC⁻¹ » pour obtenir les données $D(t)$.

Mais le désentrelacement n’est pas un processus invariant dans le temps et il nécessite donc une synchronisation lorsque débute le désentrelacement pour déterminer les instants de changements de colonne en entrée du dispositif de désentrelacement.

Le procédé selon l’invention consiste à utiliser un signal de radionavigation comportant deux voies, l’une appelée voie données, l’autre voie pilote, et à utiliser cette voie pilote pour synchroniser le désentrelacement à la réception :

- la voie données correspond au signal traditionnel constitué d’une porteuse modulée par un code d’étalement connu $C_d(t)$ et par des données a priori inconnues,

- la voie pilote est un signal produit comme le signal traditionnel constitué d’une porteuse de même fréquence que celle de la voie données, modulée par un code d’étalement connu $C_p(t)$ mais non modulée par des données inconnues. Le code $C_p(t)$ comprend une séquence de données connues à l’avance qui est utilisée à la réception pour permettre une synchronisation directe ; il est en outre décorrélé du code $C_d(t)$. On choisit généralement un code dont la période est longue. Cela permet de diminuer les intercorrélations entre les codes d’un satellite à l’autre et donc de mieux différencier les satellites entre eux. Cela présente en outre l’avantage de mieux lutter contre les interférences à bande étroite.
A la réception, on utilise ce code de la voie pilote pour réaliser la synchronisation sans avoir à désentrelacer et à decoder les données inconnues de la voie données.

On a représenté figure 8, les principaux composants d'un émetteur selon l'invention basé sur l'utilisation d'un code correcteur d'erreur, d'un entrelacement et sur l'utilisation de deux voies pilote et données. Il comprend pour la voie données, un codeur comportant un dispositif de codage par un code correcteur d'erreur 12 et un dispositif d'entrelacement 14, un générateur de code d'étalement Cd 20, un générateur de porteuse 30, un modulateur 40, un amplificateur 50 de coefficient Ad, qui produisent un signal données Sd(t) ; il comprend pour la voie pilote un générateur de code d'étalement Cp 20', un générateur de porteuse 30', un modulateur 40', un amplificateur 50' de coefficient Ap qui produisent un signal pilote Sp(t). Il comprend en outre un sommateur 70 qui permet d'effectuer une sommation de ces signaux Sp+Sd et une antenne d'émission 60.

Le signal émis Sd(t) est de la forme :

\[S_d(t) = S_d(t) + S_p(t) \]

\[S_d(t) = A_d \cdot \cos(\omega t). C_d(t). D_{ent}(t) \]

\[S_p(t) = A_p \cdot \sin(\omega t). C_p(t). \]

Les voies pilote et données sont en quadrature de phase de porteuse à titre d'exemple. Cela permet de garder une enveloppe constante au niveau de l'énergie du signal émis.

Dans la suite, on considérera pour simplifier le cas particulier où \(A_p = A_d = 1 \).

A la réception, le signal reçu Sr(t) est de la forme :

\[S_r(t) = S_d(t) + S_{perturbations}(t) \]

Avec \(S_{perturbations} = bruits + autres signaux. \)

Un exemple de récepteur selon l'invention est représenté figure 9. Un multiplicateur complexe Mp permet alors d'éliminer la porteuse en multipliant le signal échantillonné par le signal complexe \(e^{i(\omega t + \phi)} \) issu d'une boucle d'asservissement de la porteuse qui comprend notamment de manière classique un générateur de porteuse (table de cosinus et sinus) et un intégrateur NCO (acronyme de l'expression anglo-saxonne « Numerically
Controlled Oscillator »). Le signal obtenu est alors corrélé d’une part à un code local de la voie pilote, et d’autre part à un code local de la voie données, au moyen d’un multiplicateur complexe (voire plus) par voie, chaque multiplicateur complexe étant associé à un intégrateur complexe I ; les multiplicateurs sont respectivement désignés Mcp et Mcd. Pour chaque voie, chacun des signaux obtenus est intégré par intervalles au moyen des intégrateurs I. Les codes locaux sont respectivement issus d’une boucle d’asservissement de code qui comprend notamment un générateur Gcp de code local pour la voie pilote, un générateur Gcd de code local pour la voie données et un intégrateur NCO.

On obtient en sortie des intégrateurs I, le signal z_p pour la voie pilote et le signal z_d pour la voie données :

$$z_p(n) = \int_{[nT, (n+1)T]} S_{p\text{eq}}(t) \cdot e^{j(\omega t + \phi)} \cdot C_p(t+c) \, dt$$
$$z_d(n) = \int_{[nT, (n+1)T]} S_{p\text{eq}}(t) \cdot e^{j(\omega t + \phi)} \cdot C_d(t+c) \, dt$$

En remplaçant $S_{p\text{eq}}$ par $S_p + S_d + S_{\text{perturbations}}$, et en supposant également que le code local (pilote respectivement données) a été synchronisé avec le code reçu (pilote respectivement données) au cours d’une première phase d’acquisition, on obtient pour z_d :

$$z_d(n) = \int_{[nT, (n+1)T]} S_p(t) \cdot e^{j(\omega t + \phi)} \cdot C_d(t+c) \, dt \quad (1)$$
$$+ \int_{[nT, (n+1)T]} S_d(t) \cdot e^{j(\omega t + \phi)} \cdot C_d(t+c) \, dt \quad (2)$$
$$+ \int_{[nT, (n+1)T]} S_{\text{perturbations}}(t) \cdot e^{j(\omega t + \phi)} \cdot C_d(t+c) \, dt \quad (3)$$

(1) $= \int_{[nT, (n+1)T]} \sin(\omega t) \cdot C_p(t) \cdot e^{j(\omega t + \phi)} \cdot C_d(t+c) \, dt$
(2) $= \int_{[nT, (n+1)T]} \cos(\omega t) \cdot D_{\text{ent}}(t) \cdot C_d(t) \cdot e^{j(\omega t + \phi)} \cdot C_d(t+c) \, dt$
(3) $=$ bruit

Le terme (1) est nul puisque les codes données Cd et pilote Cp sont décorrélés. On obtient finalement pour z_d :

$$z_d(n) = \frac{1}{2} \cdot e^{j \phi} \cdot D_{\text{ent}}(nT + \phi) + \text{bruit}$$

On a ainsi éliminé pour la voie données, la modulation par la porteuse et par le code d’étalonnage. Grâce à une boucle de phase de porteuse, on asservit la phase de la porteuse locale ϕ par rapport à celle de
la portée reçue, égale à 0. On conserve finalement la modulation par les données codées entrelacées Den.

On obtient pour z_p :

$$
5 \quad z_p(n) = \frac{1}{T} \int_{[nT, (n+1)T]} S_p(t) \cdot e^{j(\omega t+\phi)} \cdot C_p(t) \, dt \tag{1}
$$

$$
6 \quad + \frac{1}{T} \int_{[nT, (n+1)T]} S_d(t) \cdot e^{j(\omega t+\phi)} \cdot C_p(t) \, dt \tag{2}
$$

$$
7 \quad + \frac{1}{T} \int_{[nT, (n+1)T]} S_{perturbations}(t) \cdot e^{j(\omega t+\phi)} \cdot C_p(t) \, dt \tag{3}
$$

Le terme (2) est nul puisque les codes données C_d et pilote C_p sont décorrélés.

Concernant le terme (1), on distingue plusieurs cas selon la façon dont est constitué le code pilote.

Selon un premier mode de réalisation, le code d'étalonnage $C_p(t)$ de la voie pilote est le produit de deux codes, un code primaire $C_{pp}(t)$ et un code secondaire $C_{sp}(t)$ notamment pour la raison suivante. La durée d'acquisition du signal reçu est proportionnelle à la longueur du code : lorsque le code est le produit d'un code primaire par un code secondaire, l'acquisition peut être réalisée à partir du seul code primaire, ce qui réduit considérablement la durée d'acquisition, le code secondaire étant celui utilisé pour la synchronisation du désentrelacement.

On rappelle que l'acquisition consiste à synchroniser le code local avec le code reçu par une recherche d'énergie : le récepteur teste tous les retards possibles du code local par rapport au code reçu (retards limités à la longueur d'onde du code), de demi-chip de code en demi-chip de code, jusqu'à ce qu'il obtienne le pic de corrélation qui apparaît lorsque le code local et le code reçu sont en phase et qui est détecté en sortie des intégrateurs.

Le code primaire $C_{pp}(t)$ a une fréquence élevée et une longueur courte T_{pp} et le code secondaire $C_{sp}(t)$ a une fréquence égale à l'inverse de la longueur du code primaire et une longueur T_{sp} multiple de M ou de $M.N$ selon que l'entrelacement est convolutif ou matriciel. On a représenté figure 10, un exemple de code primaire $C_{pp}(t)$ et de code secondaire $C_{sp}(t)$. Dans ce
cas, à la réception, on élimine la modulation par le code primaire pour la voie pilote pour ne garder que la modulation par le code secondaire qui est utilisé pour la synchronisation du désentrelacement.

On obtient en intégrant sur la durée d'un bit de code secondaire :

\[z_p(n) = \frac{1}{T} \int_{[nT, (n+1)T]} \sin(\alpha t) \cdot C_{pp}(t) \cdot C_{sp}(t) \cdot e^{j(\omega t + \phi)} \cdot C_{pp}(t) \, dt \]

On a éliminé pour la voie pilote cette fois, la modulation par la porteuse et par le code primaire. Grâce à une boucle de phase de porteuse, on asservit la phase de la porteuse locale \(\phi \) par rapport à celle de la porteuse reçue, égale à 0. On conserve finalement la modulation par le code secondaire \(C_{sp} \). Il suffit alors de reconnaître la séquence de code secondaire pour déterminer quelle transition correspond au début de la séquence périodique de désentrelacement. La synchronisation du désentrelacement est ainsi réalisée après la corrélation par le code primaire.

On a représenté figure 11a, le signal de la voie pilote dans lequel sont incluses les séquences périodiques connues aussi désignées code \(C_{sp}(t) \) et figure 11b, les symboles entrelacés \(D_{ent} \) de la voie données, en entrée du dispositif de désentrelacement, c'est-à-dire prêts à être écrits dans ce dispositif sous forme de colonnes. Les changements de colonne lors de l'écriture sont également indiqués. Le tableau représenté figure 11c, est celui d'un exemple de désentrelacement convolutif, avec \(N=M \).

Selon une variante de l'invention, le code d'étalement \(C_p(t) \) de la voie pilote est le produit de trois codes selon le même principe, un code primaire, un code secondaire et un code tertiaire, ce dernier étant utilisé pour la synchronisation du désentrelacement. Le code primaire pilote peut être identique au code primaire de la voie données, le code secondaire pilote décorrélé du code secondaire de la voie donnée, et le code tertiaire multiple de \(M \) ou \(M.N \) selon que l'entrelacement est convolutif ou matriciel.

L'introduction de ces codes secondaire ou tertiaire augmente la période du code global de la voie pilote et donc l'étalement spectral du brouilleur ce qui présente l'avantage d'améliorer la résistance aux interférences à bande étroite.
Selon un autre mode de réalisation, le récepteur effectue l’acquisition par une première synchronisation du code primaire local avec le signal reçu, (avec une corrélation du signal reçu avec le code primaire sans corrélation avec le code secondaire en intégrant sur la durée d’un bit de code secondaire), puis par une seconde synchronisation du code secondaire local avec le signal reçu (avec une corrélation du signal reçu avec les codes primaire et secondaire en intégrant sur une durée indépendante des codes).

La seconde synchronisation est obtenue par une recherche d’énergie : le récepteur teste tous les retards possibles du code secondaire local par rapport au code secondaire reçu (retards limités à la longueur d’onde du code), de chip en chip, jusqu’à ce qu’il obtienne le pic de corrélation qui apparaît lorsque le code secondaire local et le code secondaire reçu sont en phase et qui est détecté en sortie des intégrateurs.

Les codes locaux primaire et secondaire sont alors synchrones avec les codes primaire et secondaire reçus. Il est alors immédiat de connaître le moment où commence le désentrelacement : la synchronisation du désentrelacement est réalisée pendant la corrélation par le code secondaire.

Selon un autre mode de réalisation, le code d’étallement \(C_p(t) \) de la voie pilote n’est pas le produit de deux codes. Dans ce cas, en intégrant sur une durée indépendante des codes, on obtient :

\[
(1) = \frac{1}{T} \int_{[nT,(n+1)]} \sin(\omega t) \cdot C_p(t) \cdot e^{j(\omega t + \phi)} \cdot C_p(t) \, dt
\]

\[
z_p = \frac{1}{2} e^{j(\pi/2)} + \text{bruit}
\]

On a éliminé la modulation par la porteuse et par le code \(C_p \). Grâce à une boucle de phase de porteuse, on asservit la phase de la porteuse locale \(\phi \) par rapport à celle de la porteuse reçue, égale à 0. Le code local est ainsi synchrone avec le code reçu et il est alors immédiat de connaître le moment où commence le désentrelacement : la synchronisation du désentrelacement est ainsi réalisée pendant la corrélation par le code \(C_p \).

Le désentrelacement est effectué au moyen d’un dispositif de désentrelacement Dés pour obtenir les symboles codés \(D_{cod}(t) \) comme déjà décrit en relation avec la figure 5. De même les symboles codés \(D_{cod}(t) \) obtenus sont décodés au moyen d’un dispositif de mise en œuvre de l’algorithme de Viterbi, « FEC-1 » pour obtenir les données \(D(t) \).
On a décrit l’invention dans le cas d’un signal de radionavigation émis par un satellite. On peut l’étendre à plusieurs satellites émettant chacun un signal de radionavigation sur la même porteuse.

Dans ce cas, le récepteur comprend un canal de réception par satellite, c'est-à-dire autant de canaux de réception que de signaux de radionavigation. Pour chaque canal de réception recevant un signal tel que décrit, le récepteur comprend les éléments tels que ceux décrits en relation avec la figure 9.

De manière générale le signal de radionavigation provient d’un ou plusieurs satellites. Il peut aussi provenir d’un ou plusieurs pseudolites.
REVENDICATIONS

1. Procédé de transmission d'un signal de radionavigation qui comprend des données codées et entrelacées, caractérisé en ce que le signal comporte une voie modulée par les données codées et entrelacées et une autre voie non modulée par ces données, et en ce que la voie non modulée par ces données comprend un code connu Cp permettant de synchroniser à la réception le désentrelacement des données entrelacées.

2. Procédé selon la revendication précédente, caractérisé en ce que l'entrelacement et le désentrelacement sont obtenus à partir d'une mémoire comportant des lignes et des colonnes présentant respectivement M et N cases mémoire.

3. Procédé selon la revendication précédente, caractérisé en ce que l'entrelacement est convolutif et N=M et en ce que le code connu Cp présente une longueur multiple de M.

4. Procédé selon la revendication 2, caractérisé en ce que l'entrelacement est matriciel et le code connu Cp présente une longueur multiple de M.N.

5. Procédé selon l'une des revendications précédentes, caractérisé en ce que les données sont codées en utilisant un code correcteur d'erreur.

6. Procédé selon la revendication précédente, caractérisé en ce que le code correcteur d'erreur est un code « FEC ».

7. Procédé selon l'une des revendications précédentes, caractérisé en ce que la voie modulée par les données est également modulée par un code d'étalement connu Cd, le code Cd étant décorrélé du code Cp.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la voie non modulée par les données comporte en outre un code primaire C_{pp}, le code connu C_{p} étant alors désigné code secondaire C_{sp}.

9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le signal de radionavigation est émis par un satellite ou un pseudolite.

10. Procédé selon l'une des revendications précédentes, caractérisé en ce que le signal de radionavigation est un signal GNSS.

11. Émetteur d'un signal de radionavigation comprenant un générateur de données, un dispositif de codage des données, un dispositif d'entrelacement des données codées, caractérisé en ce qu'il comporte un générateur de code C_{d} destiné à générer un signal modulé par les données codées et entrelacées et un générateur de code C_{p} décorrélé du code C_{d} et destiné à générer un signal non modulé par ces données.

12. Émetteur selon la revendication précédente, caractérisé en ce que le dispositif d'entrelacement comprend une mémoire qui comporte des lignes et des colonnes présentant chacune M cases mémoire et en ce que le générateur de code C_{p} est destiné à générer un code de longueur égale à un multiple de M.

13. Émetteur selon la revendication 11, caractérisé en ce que le dispositif d'entrelacement comprend une mémoire qui comporte des lignes et des colonnes présentant respectivement M et N cases mémoire et en ce que le générateur de code C_{p} est destiné à générer un code de longueur égale à un multiple de M.N.

14. Émetteur selon l'une des revendications 11 à 13, caractérisé en ce que le dispositif de codage des données est un dispositif à code correcteur d'erreur.
15. Émetteur selon l’une des revendications 11 à 14, caractérisé en ce que le signal de radionavigation est un signal GNSS.

16. Récepteur d’au moins un signal de radionavigation comportant des données codées et entrelacées modulées par un code Cd, le récepteur étant équipé d’un canal de réception pour chaque signal de radionavigation, et comportant pour au moins un canal de réception, un générateur du code apte à démoduler le signal de radionavigation de manière à obtenir les données codées et entrelacées, un dispositif de désentrelacement des données codées, caractérisé en ce que le canal de réception comportant deux voies, le dispositif de désentrelacement est sur une première voie et en ce qu’il comporte sur la deuxième voie, un générateur d’un autre code Cp décorrélé du code Cd, et destiné à synchroniser le dispositif de désentrelacement.

17. Récepteur selon la revendication précédente, caractérisé en ce qu’il comporte sur la première voie un dispositif de décodage des données désentrelacées.

18. Récepteur selon la revendication précédente, caractérisé en ce que le dispositif de décodage est apte à mettre en œuvre l’algorithme de Viterbi.

19. Récepteur selon l’une des revendications 16 à 18, caractérisé en ce que le dispositif de désentrelacement comprend une mémoire qui comporte des lignes et des colonnes présentant respectivement M et N cases mémoire et en ce que le générateur de code Cp est destiné à générer un code de longueur égale à un multiple de M.N.

20. Récepteur selon l’une des revendications 16 à 18, caractérisé en ce que le dispositif de désentrelacement comprend une mémoire qui comporte des lignes et des colonnes présentant chacune M cases mémoire et en ce que le générateur de code Cp est destiné à générer un code de longueur égale à un multiple de M.
Changement de colonne dans l'écriture

FIG.11a

FIG.11b

FIG.11c
INTERNATIONAL SEARCH REPORT

International Application No:

PCT/EP2005/052420

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G01S1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G01S

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X US 5 519 718 A (YOKEV ET AL) 21 May 1996 (1995-05-21) abstract column 1, line 28 - column 3, line 48 column 6, line 18 - column 2, line 60; figures 1-20</td>
<td>1,11,16</td>
</tr>
<tr>
<td>A</td>
<td>2-8, 12-14, 17-20</td>
</tr>
<tr>
<td>X US 6 697 629 B1 (GRILLI FRANCESCO ET AL) 24 February 2004 (2004-02-24) abstract column 3, line 30 - column 15, line 23; figures 1-7</td>
<td>1,11,16</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation box C. Patent family members are listed in annex.

Special categories of cited documents:

- **X** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubt on novelty of the invention or which is cited to establish the publication date of another document
- **C** document referring to an oral disclosure, use, exhibition or other means
- **D** document published prior to the international filing date but later than the priority date claimed

- **T** inter document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **S** document member of the same patent family

Date of the actual completion of the international search

4 July 2005

Date of mailing of the international search report

10.11.2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentissen 2
NL - 2280 HV Rijswijk
Tel.: (31-70) 340-3040, Fx: 31 681 epo nl
Fax: (31-70) 340-3015

Authorized officer

Blondel, F

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5592180 A</td>
<td></td>
<td>US 5546422 A</td>
<td>07-01-1997</td>
</tr>
<tr>
<td>US 5546422 A</td>
<td></td>
<td>US 5870426 A</td>
<td>13-08-1996</td>
</tr>
<tr>
<td>US 5870426 A</td>
<td></td>
<td>US 5499266 A</td>
<td>09-02-1999</td>
</tr>
<tr>
<td>US 5499266 A</td>
<td></td>
<td></td>
<td>12-03-1996</td>
</tr>
<tr>
<td>US 6697629 B1</td>
<td>24-02-2004</td>
<td>AU 1345302 A</td>
<td>22-04-2002</td>
</tr>
<tr>
<td>BR 0114556 A</td>
<td></td>
<td>CN 1471795 A</td>
<td>09-11-2004</td>
</tr>
<tr>
<td>CN 1471795 A</td>
<td></td>
<td>EP 1338165 A2</td>
<td>28-01-2004</td>
</tr>
<tr>
<td>TW 546970 B</td>
<td></td>
<td>TW 546970 B</td>
<td>15-04-2004</td>
</tr>
<tr>
<td>WD 0242184 A2</td>
<td></td>
<td>WD 0242184 A2</td>
<td>11-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24-06-2004</td>
</tr>
</tbody>
</table>
A. CLASSEMENT DE L'ORIGINE DE LA DEMANDE
CIB 7 G01S1/00

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB.

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement):

CIB 7 G01S

Documentation consultée outre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche.

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes du recherche utilisés):

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 519 718 A (YOKEV ET AL) 21 mai 1996 (1996-05-21) abrégé</td>
<td>1,11,16</td>
</tr>
<tr>
<td></td>
<td>colonne 1, ligne 28 - colonne 3, ligne 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colonne 6, ligne 18 - colonne 2, ligne 60; figures 1-20</td>
<td>2-8, 12-14, 17-20</td>
</tr>
<tr>
<td></td>
<td>colonne 3, ligne 30 - colonne 15, ligne 23; figures 1-7</td>
<td></td>
</tr>
</tbody>
</table>

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant ajouter un doute sur une revendication de priorité ou clé pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais posteriorlement à la date de priorité revendiquée
- "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais clé pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'inventeur revendiqué ne peut être considéré comme nouvelle ou commença impliquant une activité inventive par rapport au document considéré isolément
- "Y" document plus particulièrement pertinent; l'inventeur revendiqué ne peut être considéré comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du même art
- "F" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

4 juillet 2005

Date d'expiration du présent rapport de recherche internationale

10.11.2005

Nom et adresse postale de l'administration chargée de la recherche Internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (031-70) 940-2540, Tx 31 651 epos nl,
Fax: (031-70) 940-3018

Fonctionnaire autorisé

Blondel, F
<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 5592180 A</td>
<td>07-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5546422 A</td>
<td>13-08-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5870426 A</td>
<td>09-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5499256 A</td>
<td>12-03-1996</td>
</tr>
<tr>
<td>US 6697629 B1</td>
<td>24-02-2004</td>
<td>AU 1345392 A</td>
<td>22-04-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0114556 A</td>
<td>09-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1471795 A</td>
<td>28-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1338165 A2</td>
<td>27-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004511990 T</td>
<td>15-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 546970 B</td>
<td>11-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0232184 A2</td>
<td>18-04-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004128386 A1</td>
<td>24-06-2004</td>
</tr>
</tbody>
</table>