操作高速缓存器的方法以及对应的高速缓存器

本发明提供了一种布置在客户端和至少一个服务器之间的高速缓存器(DANE)。所述高速缓存器(DANE)被配置为从客户端接收针对多媒体内容的分段的至少第一表示的请求。所述多媒体内容以多个表示可用。所述高速缓存器包括通信模块(10)，被配置为在第一时间段内，从客户端接收针对给定分段的多个请求。每个请求指定所述给定分段的一个第一表示和至少一个备选表示。相关性模块(15)，被配置为从第一时间段期间接收的请求的表示中确定所请求的至少一个主相关表示；并且其中，通信模块(10)还被配置为向远程服务器请求所述主相关表示。
1. 一种用于对布置在客户终端 (CT) 与至少一个服务器 (SE) 之间的高速缓存器 (DANE) 进行操作的方法, 所述高速缓存器 (DANE) 被配置为从客户终端 (CT) 接收针对多媒体内容的分段的至少第一表示的请求, 所述多媒体内容以多个表示可用。

其特征在于, 所述方法包括:

- 在第一时间段内从客户终端 (CT) 接收 (S1) 针对给定分段的多个请求, 每个请求指定所述给定分段的一个第一表示和至少一个备选表示；
- 从在第一时间段期间接收的请求的表示中确定 (S6, S7) 所请求的至少一个主相关表示；
- 从远程服务器 (SE) 请求 (S8) 给定分段的所述主相关表示。

2. 根据权利要求 1 所述的方法, 其中, 所述确定所请求的至少一个主相关表示的步骤包括:

- 确定 (S6) 第一时间段期间接收的所述请求中指定的所述给定分段的每个表示的相关性分数；
- 选择 (S7) 具有最高相关性分数的表示作为所述给定分段的主相关表示。

3. 根据权利要求 2 所述的方法, 其中, 与所述给定分段的所述请求表示相关联的相关性分数对应于所述所请求表示在高速缓存器 (DANE) 接收的请求中被指定的次数。

4. 根据权利要求 3 所述的方法, 其中, 接收的请求的每个表示具有优先级别, 表示被请求的次数通过第一因子加权, 所述第一因子取决于所述表示的优先级别。

5. 根据权利要求 2 到 4 中任一项权利要求所述的方法, 还包括:

- 确定 (S10) 是否存在并未请求主相关表示作为第一表示或作为备选表示的一个或多个其余客户终端 (CT)；
- 建立 (S11) 所述一个或多个其余客户终端 (CT) 已请求的表示的列表；
- 基于相关性分数来确定 (S12) 建立的列表的最辅助相关表示, 并且向服务器 (SE) 请求所述辅助相关表示。

6. 根据权利要求 1 到 5 中任一项权利要求所述的方法, 还包括: 当下一分段的主相关表示没有存储在所述高速缓存 (DANE) 中时, 从远程服务器 (SE) 请求下一分段的所述主相关表示。

7. 根据权利要求 1 到 6 中任一项权利要求所述的方法, 还包括:

- 在第二时间段内对向客户终端 (CT) 发送已经存储在高速缓存器中的每个所请求表示的次数进行计数 (S15), 以获得针对每个所请求表示的命中分数, 作为第一表示向客户终端 (CT) 发送的所请求表示的计数方式不同于作为备选表示发送的所请求表示的计数方式；
- 至少删除 (S16) 具有最低命中分数的所存储表示。

8. 一种布置在客户终端 (CT) 与至少一个服务器 (SE) 之间的高速缓存器 (DANE), 所述高速缓存器 (DANE) 被配置为从客户终端 (CT) 接收针对多媒体内容的分段的至少第一表示的请求, 所述多媒体内容以多个表示可用。

其特征在于, 所述高速缓存器包括:

- 通信模块 (10), 被配置为在第一时间段内, 从客户终端 (CT) 接收针对给定分段的多个请求, 每个请求指定所述给定分段的一个第一表示和至少一个备选表示；
- 相关性模块 (15)，被配置为在第一时间段期间接收的请求的表示中确定所请求的至少一个主相关表示；

并且其中，所述通信模块 (10) 还被配置为向远程服务器 (SE) 请求所述主相关表示。

9. 根据权利要求 8 所述的高速缓存器，还包括：

- 计分模块 (16)，被配置为确定第一时间段期间接收的请求中指定的所述给定分段的每个表示的相关性分数；

- 选择模块 (17)，被配置为选择具有最高相关性分数的表示作为所述给定分段的主相关表示。

10. 根据权利要求 9 所述的高速缓存器，其中，所述计分模块 (16) 包括至少一个第一计数器 (16A)，所述第一计数器 (16A) 被配置为确定每个所请求表示在由高速缓存器 (DANE) 接收的请求中被指定的次数，所述次数对应于与所述所请求表示相关联的相关性分数。

11. 根据权利要求 10 所述的高速缓存器，其中，接收的请求的每个表示具有优先级别，所述计分模块 (16) 还被配置为通过第一因子对表示被请求的次数进行加权，所述第一因子取决于所述表示的优先级别。

12. 根据权利要求 8 至 11 中任一项权利要求所述的高速缓存器，其中，所述相关性模块还被配置为：

- 确定是否存在并未请求主相关表示作为第一表示或作为备选表示的一个或多个其余客户终端 (CT)；

- 建立所述一个或多个其余客户终端 (CT) 已经请求的表示的列表；

- 基于相关性分数来确定建立的列表的最辅助相关表示，并且向服务器 (SE) 请求所述辅助相关表示。

13. 根据权利要求 8 至 12 中任一项权利要求所述的高速缓存器，其中，所述通信模块 (10) 还被配置为当一个一个分段的主相关表示没有存储在所述高速缓存 (DANE) 中时，从远程服务器 (SE) 请求下一个分段的所述主相关表示。

14. 根据权利要求 8 至 13 中任一项权利要求所述的高速缓存器，还包括：

- 第二计数器 (18A)，被配置为在第二时间段内对向客户终端发送已存储在高速缓存器 (DANE) 中的每个所请求表示的次数进行计数，并且获得针对每个所请求表示的命中分数，作为第一表示向客户终端发送的所请求表示的计数方式不同于为备选表示发送的所请求表示的计数方式；

- 移除模块 (18B)，被配置为至少删除具有最低命中分数的所存储表示。

15. 根据权利要求 8 至 14 中任一项所述的高速缓存器，所述高速缓存器是 HTTP 自适应流传输感知高速缓存器。
操作高速缓存器的方法以及对应的高速缓存器

技术领域
[0001] 本发明总体上涉及通过例如但不限于他地 HTTP（超文本传输协议）的自适应流传输技术领域，具体涉及对沿着客户终端与远程服务器之间的传输路径布置的高速缓存的操作。

背景技术
[0002] 本节意在向读者介绍相关技术的各个方面，这些方面可以与以下描述和 / 或要求保护的本发明的各个方面相关。相信本讨论有助于向读者提供背景信息，以便于更好地理解本发明的各个方面。因此，应当理解，这些陈述应当据此阅读，而并非作为对现有技术的认可。

[0004] 当客户终端希望以自适应流传输的方式播放视听内容（或 A/V 内容）时，首先必须得到描述如何能够获得该 A/V 内容的文件。通常通过从 URL（统一资源定位符）得到描述文件（所谓的清单 manifest）经由 HTTP 协议来进行，但是也能够通过其它方式（例如，广播、电子邮件、SMS 等）来实现。预先产生并由远程服务器传送至客户终端的清单基本上（在比特率、分辨率和其它属性方面）列举了这种 A/V 内容的可用表示（也称作实例或版本），表示与给定质量级别（比特率）相关联。

[0005] 将每个表示的整体数据流划分成等持续时间的分段（segment）（也称作分块 chunk）（通过分离的 URL 可访问），这些分段被配置为使得客户终端可以在两个分段之间平滑地从一个质量级别转换到另一个质量级别。因此，视频质量可以在播放时变化，而几乎不会中断（也称作冻结）。

[0006] 在客户端侧，基于传输路径的可用带宽的测量来选择分段。具体地，客户终端通常请求与符合所测量带宽的比特率编码相对应且因此与符合所测量带宽的质量相对应的分段表示。

[0007] 当高速缓存器沿着客户终端与远程服务器之间的传输路径时，在以下情况下给定分段的一个表示已经存储在所述高速缓存器中：另一客户先前已经请求了具有相同表示的相同分段，或者内容传递网络（CDN）已经存储在高速缓存器中供应了该分段。因此，与分段来自远程服务器的情况相比，对针对所述给定分段的 HTTP 请求的响应更快，并且可以避免重试传输，有效地节省了网络和服务器资源。

[0008] 然而，HTTP 自适应流传输看起来并非是高速缓存器友好型的（或者，至少与关于实现 H.264-SVC 的所谓分层基本切换（layered base switching）相比，高速缓存器友好性要差）。确实，如果第一客户终端请求给定分段的表示 R1，第二客户终端（与所述第一客户
终端共享传输路径的一部分和高速缓存器）（按照较高质量或较低质量）请求所述给定分段的表示 R2，则高速缓存器并未命中，导致高速缓存器与服务器之间的网络段上负载较高，存在引起拥塞的风险。然后完全消除了高速缓存的优点，并且高速缓存器当前不能改进这种情况。

[0009] 为了克服该缺陷，已知客户终端可以发送针对包括第一（也称作优选）表示和一个或若干备选表示在内的给定分段的请求。当这样的请求到达 HAS 感知高速缓存器 (HAS aware cache)（意味着所述高速缓存器符合诸如 MPEG-DASH 等 HAS 协议）时，所述高速缓存器在高速缓存了第一表示的情况下传送第一表示，或者在未高速缓存第一表示的情况下浏览备选表示。当高速缓存了备选表示之一时，高速缓存器向客户终端发送所述备选表示。当前请求的第一和备选表示都未被高速缓存时，向游转发请求。

[0010] 然而，存储在高速缓存器中的表示由之前的请求来确定。如果第一客户终端请求具有表示 R 的分段，则请求相同分段并且指定表示 R 作为备选表示的后续客户终端实际上会接收表示 R 而不是对应的请求的第一（或优选的）表示。由于后续客户端请求视为由高速缓存器来处理，所以分段的其它表现不会加载到高速缓存器（除非在不允许 R 作为备选表示的情况下一些客户端终端请求不对第一表示进行高速缓存）。如果表示 R 是低质量表示（例如因为开始请求给定分段的第一客户终端本身经历了不良网络条件，并且请求最低质量的表示），在资源和网络状况可以允许处理较高质量时，所有或大部分客户终端可以播放低质量视频。

[0011] 因此，请求给定的分段的第一客户终端可以影响由高速缓存器向请求相同分段的后续客户端终端提供的响应（并且然后影响质量）。因而，如果第一客户终端很不幸地不代表大部分客户终端的需求，则在所述大部分终端将受到第一客户终端的请求和行为的影响。

[0012] 本发明至少克服了上述缺点。

发明内容

[0013] 本发明涉及用于操作在客户终端与至少一个服务器之间布置的高速缓存器的方法，所述高速缓存器被配置为从客户终端接收针对多媒体内容的分段的至少第一表示的请求，所述多媒体内容以多个表示可用，

[0014] 所述方法包括：
[0015] - 在第一时间段内从客户终端接收针对给定分段的多个请求，每个请求指定所述给定分段的一个表示和至少一个备选表示；
[0016] - 从在第一时间段期间接收的请求的表示中确定所请求的至少一个主相关表示；
[0017] - 从远程服务器请求给定分段的所述主相关表示。
[0018] 在符合本发明的实施例中，确定所请求的主相关表示的步骤包括：
[0019] - 确定第一时间段期间接收的请求中指定的所述给定分段的每个表示的相关性分数；
[0020] - 选择具有最高相关性分数的表示作为所述给定分段的主相关表示。
[0021] 具体地，与所述给定分段的所请求表示相关联的相关性分数可以对应于所请求表示在所述由高速缓存器接收的请求中被指定的次数。

[0022] 因此，由于本发明的实施例，高速缓存可以考虑到关于客户端请求的统计数据，以
便向最大数目的客户端提供例如多媒体内容（例如 A/V 内容）的总体更好质量，而同时保持从高速缓存器本身提供的内容的比例。

[0023] 在所述实施例的另一方面，接收的请求的每个表示具有优先级别，表示被请求的次数可以通过第一因子加权，所述第一因子取决于所述表示的优先级别。

[0024] 在所述实施例的另一方面，所述方法可以包括：

[0025] - 确定是否存在并请求在所述表示作为第一类表示或作为备选表示的一个或多个其术其他客户端；
[0026] - 建立所述一个或多个其余客户端已经请求的表示的列表；
[0027] - 基于相关性的分数来确定所建立列表的最辅助相关表示，并且向服务器请求所述辅助相关表示。

[0028] 此外，所述方法还可以包括当下一个分段的所述主相关表示没有存储在所述高速缓存器中时，从远程服务器请求下一个分段的所述主相关表示。

[0029] 在所述实施例的另一方面中，方法还可以包括：

[0030] - 在第二时间段内，对向客户端终端发送已经被存储在高速缓存器中的每个所请求表示的次数进行加权，以获得针对每个所请求表示的命中分数，作为第一表示发送给客户端终端的所请求表示的计数方式不同于作为备选表示发送的所请求表示的计数方式；

[0031] - 至少删除具有最低命中分数的存储表示。

[0032] 此外，第一时间段可以开始于给定时刻，并且当高速缓存器已经从客户端接收到预定义数目的请求时结束。

[0033] 本发明还涉及在客户终端与至少一个服务器之间布置的高速缓存器，所述高速缓存器被配置为从客户终端接收针对多媒体内容的分段的至少第一表示的请求，所述多媒体内容以多个表示可用。所述高速缓存器包括：

[0034] - 通信模块，被配置为在第一时间段内，从客户终端接收针对给定分段的多个请求；
[0035] - 相关性模块，被配置为在第一时间段期间接收的请求的表示中确定所请求的至少一个主相关表示；

[0036] 并且其中，通信模块还被配置为向远程服务器请求所述主相关表示。

[0037] 在符合本发明的实施例中，所述高速缓存器还包括：

[0038] - 选择模块，被配置为确定在第一时间段期间接收的请求中指定的所述给定分段的每个表示的相关性分数；

[0039] - 选择模块，被配置为选择具有最高相关性分数的表示作为所述给定分段的主相关表示；

[0040] 具体地，分段模块包括至少一个第一计数器，所述第一计数器被配置为确定每个所请求表示在高速缓存器接收的请求中被指定的次数，所述次数对应于与所述所请求表示相关联的相关性分数。

[0041] 在所述实施例的另一方面中，接收的请求的每个表示具有优先级别，计分模块还可以被配置为通过第一因子对表示被请求的次数进行加权，所述第一因子取决于所表示的优先级别。

[0042] 此外，相关性模块还可以被配置为：
【0043】 - 确定是否存在并未请求主相关表示作为第一表示或作为备选表示的一个或多个
其余客户终端；
【0044】 - 建立所述一个或多个其余客户终端已经请求的表示的列表；
【0045】 - 基于相关性的分数来确定所建立列表的最辅助相关表示，并且向服务器请求所
述辅助相关表示。
【0046】 此外，通信模块还被配置为当下一个分段的所述主相关表示没有存储在所述高速
缓存中时，从远程服务器请求下一个分段的所述主相关表示。
【0047】 在所述实施例的另一方面中，所述高速缓存器还可以包括；
【0048】 - 第二计数器，被配置为在第二时间段内对向客户终端发送已经存储在高速缓存
器中的每个所请求表示的次数进行计数，并且获得针对每个所请求表示的命中分数，作为
第一表示发送给客户终端的所请求表示的计数方式不同于作为备选表示发送的所请求表
示的计数方式；
【0049】 - 移除模块，被配置为至少删除具有最低命中分数的所存储表示。
【0050】 在符合本发明的示例中，所述高速缓存器是 HTTP 自适应流传输感知高速缓存器。
【0051】 本发明还涉及可以从通信网络下载和 / 或记录在计算机可读介质上的和 / 或可以
由处理器执行的计算机程序产品，所述计算机程序产品包括用于实现上述方法的步骤的程
序代码指令。
【0052】 此外，本发明还涉及非暂时性计算机可读介质，所述非暂时性计算机可读介质包
括记录在其上并且能够由处理器运行的计算机程序产品，所述计算机程序产品包括用于实
现上述方法的步骤的程序代码指令。
【0053】 以下阐述了范围与所公开实施例相当的特定方面。应当理解，提出这些方面仅为
了向读者提供本发明可能采用的一些形式的简要概述，并且这些方面并不意在限制本发明
的范围。事实上，本发明可以涵盖以下未详述的多个方面。

附图说明
【0054】 参照附图，通过以下实施例和执行示例以非限制性的方式更好地理解和示意本发
明。在图中：
【0055】 图 1 是可以实现本发明的客户端 - 服务器网络架构的示意图；
【0056】 图 2 是根据本发明实施例的客户端终端示例的框图；
【0057】 图 3 是根据本发明实施例的智能高速缓存器示例的框图；
【0058】 图 4 是示出了根据所述实施例的用于对图 3 的智能高速缓存器进行操作的方法的
流程图。
【0059】 在图 1 到 4 中，呈现的框是纯功能实体，不必对应于物理上分离的实体。即，这些
框能够以软件、硬件的形式来开发，或者在包括一个或多个处理器的一个或多个集成电路
中实现。
【0060】 只要可能，贯穿附图使用相同附图标记来指代相同或类似部件。

具体实施方式
【0061】 应当理解的是，已经简化了本发明的附图和描述，以示意与清楚理解本发明有关
的元件，同时为了清楚目的，消除了在典型数字多媒体内容传送方法和系统中存在的许多其它元件。

[0062] 根据具体实施例，关于 HTTP 自适应流传输协议（或 HAS），并且特别关于 MPEG-DASH 来描述本发明。当然，本发明不限于这种特定环境，当然也可以考虑和实现其它自适应流传输协议。

[0063] 如图 1 所示，一个或多个网络 N（在附图中仅呈现了一个）所支持的能够实现本发明的客户端-服务器网络架构包括多个客户端 CT、一个或多个 HTTP 服务器 SE、多个智能高速缓存器 DANE、以及一个或多个继承高速缓存器 RNE。根据 DASH，这样的服务器 SE 还命名为媒体源（Media Origin）。例如，服务器 SE 产生媒体呈现描述（或 MPD），即所谓的清单。这是内容分发的源：多媒体内容可以源自一些外部实体，并且在媒体源处转换成 HAS 格式。

[0064] 智能高速缓存器 DANE 是网络 N 中的高速缓存元件，被配置为理解到传送了 HAS 内容。使用 MPEG-DASH 术语，将智能高速缓存器视为 DASH 感知网络元件（DANE）。

[0065] 继承高速缓存器 RNE 是网络 N 中的高速缓存元件，其数据类型或结构为 HAS 方面。在 MPEG-DASH 术语中，将继承高速缓存器视为规则网络元件（RNE）。

[0066] 客户终端 CT 希望从 HTTP 服务器 SE 之一获得多媒体内容。所述多媒体内容划分成多个分段。假设多媒体内容在服务器 SE 处以不同表示可用。在客户端请求时，HTTP 服务器 SE 能够通过一个或多个 TCP/IP 连接使用 HTTP 自适应流传输协议，将分段流传输至客户端 CT。

[0067] 每个客户终端 CT 可以是便携式媒体设备、移动电话、平板或便携式计算机、电视机、机顶盒、游戏设备或集成电路。当然，客户终端 CT 可能不包括完整的视频播放器，而仅包括一些子元件，例如，用于对媒体内容解复用和解码的子元件，并且可能依赖于外部装置向终端用户显示已解码内容。在这种情况下，客户终端 CT 是 HAS 感知视频解码器，例如，机顶盒。

[0068] 如图 2 所示，客户终端 CT 至少包括：

[0069] - 一个或多个连接接口 1（有线和 / 或无线，例如，WiFi、以太网、ADSL、有线、移动和 / 或广播（例如，DVB、ATSC）接口）

[0070] - 通信模块 2，包含与 HTTP 服务器 SE 通信的协议栈。具体地，通信模块 2 包含本领域公知的 TCP/IP 协议。当然，能够是任何其他类型的网络和 / 或通信装置，使得客户终端 CT 能够与 HTTP 服务器 SE 通信；

[0071] - 自适应流传输模块 3，从 HTTP 服务器 SE 接收 HTTP 流传输多媒体内容。自适应流传输模块 3 不断地选择比特率更好地匹配网络约束及其自身约束的分段；

[0072] - 视频播放器 4，适于对多媒体内容进行解码和渲染；

[0073] - 一个或多个处理器 5，用于执行客户终端 CT 的非易失性存储器中存储的应用和程序；

[0074] - 存储装置 6，例如，易失性存储器，用于缓冲从 HTTP 服务器 SE 接收的分段，之后将这些分段传输至视频播放器 4；

[0075] - 带宽估算器 7，被配置为估计传输路径的带宽；

[0076] - 选择模块 8，被配置为确定客户终端 CT 可能请求的容许表示的集合。在多媒体内容的给定分段的可用表示（如关联清单中所列）中选择容许表示。具体地，模块 8 对给
定分段的容许表示集合的确定可以基于一个或多个性能准则（例如，所估计的带宽、客户端的能力、先前所请求分段的表示。客户端分段 CT 的终端用户需要的体验质量等）。

【0077】 内部总线 B，连接各模块以及本领域技术人员公知的用于执行一般客户终端功能的所有装置。

【0078】 如图 3 所示，根据所述实施例的智能高速缓存器 DANE 包括：

【0079】 一个或多个连接接口 9（有线和/或无线）；

【0080】 通信模块 10，包括通过连接接口 9 进行通信的协议栈，具体地，通信模块可以包括互联网协议栈，著名的 IP 栈；

【0081】 存储模块 11，例如，易失性存储器和/或永久存储器，用于存储从一个或多个服务器 SE 接收的多媒体内容的分段，以便将分段发送至请求这种多媒体内容的客户端 CT；

【0082】 一个或多个处理器 12，执行例如存储在存储模块 11 中的应用和程序；

【0083】 控制模块 13，形成检查智能高速缓存器 DANE 是否已经高度缓存了请求第一（或优选的）表示的请求（由客户端 CT 发送）中的第一表示或者在没有高度缓存第一表示时是否已经高度缓存了列表中的一个优先表示；

【0084】 浏览模块 14，适用于在没有高度缓存第一表示的情况下，按照优选顺序浏览客户端 CT 发送的请求中所列的备选表示。在变型中，控制模块和浏览模块可以定义仅一个模块；

【0085】 内部总线 B1，连接各模块、处理装置以及本领域技术人员公知的用于执行一般驻留网关功能的所有装置。

【0086】 在下文中，假定给定客户端 CT 在网络 N 上发送请求，以获得多媒体内容的给定分段。每个请求指定所述给定分段的第一表示以及一个或多个备选表示，当第一表示在接收请求的智能高速缓存器 DANE 处不可用时，按照优先级别浏览该一个或多个备选表示。确实，优先级别由客户端 CT 发送的请求中指定的多个表示相关联，第一（或优选）表示具有最高的优先级。作为变形或作为补充，优先级别由每个请求中指定的表示的列表来隐含提供。当然，智能高速缓存器 DANE 还可以在不指定任何备选表示的情况下接收仅针对第一（或优选的）表示的一些请求。

【0087】 根据所述实施例，通信模块 10 还被配置为在第一时间段内（通过连接接口 9）从客户端 CT 接收针对给定分段的多个请求。所述第一时间段可以是例如周期性地触发或者是在针对所选分段的给定请求的接收期间（例如当所述分段的表述并未加载到智能高速缓存器 DANE 中时针对所述分段的第一请求）。此外，例如所述第一时间段可以开始于给定时刻，并且当智能高速缓存器 DANE 已经接收了来自客户端的预定义数目请求或所述分段的预定义数目给定表示时结束。在其它的补充中，所述第一时间段还可以由上限（例如几微秒）来限定，优选地，所述上限可以小于用于从远程服务器 SE 获得内容的正常延时。在变形中，第一时间段可以仅由常数值（例如几微秒）来限定。

【0088】 此外，图 3 的智能高速缓存器 DANE 还包括：

【0089】 相关性模块 15，被配置为在第一时间段期间由智能高速缓存器 DANE 接收的请求的所有表示中确定所请求的至少一个相关表示。

【0090】 计分模块 16，被配置为在第一时间段期间接收的请求中指定的给定分段的每个表示的相关性分数。为此，计分模块 16 可以包括第一计数器 16A，所述第一计数器适于对
所请求表示（即出现在第一时间段内接收的至少一个请求中的给定分段的表示）在智能高速缓存器 DANE 接收的请求中被指定的次数进行计数。该确定的次数对应于与给定分段的所请求表示相关联的相关性分数。在所述优选实施例的改进中，接收的请求的每个表示具有优先级别，计分模块 16 还可以被配置为使用取决于所述表示的优先级别的优先因子对计算的请求表示的次数进行加权。因此，与每个所请求表示相关联的相关性分数考虑在每个请求中的其优先级别。当然，在变型中，计数的次数可以使用加权因子来加权，其不同并且仅在不同的情况下为对应于表示的优先级别。在改进中，当在到达来自客户端的请求的预定义数目之前第一时间段结束时，计分模块 16 可以使用针对之前分段类似地计算的相关性分数来产生针对给定当前分段与之前分段获得的相关性分数之间的加权平均值。加权值可以与客户请求的数目成比例。这样的改进会考虑到相关性之前的了解，以防止受到会请求低质量表示的早期客户端的较小集合的影响。

[0091] - 选择模块 17，被配置为比较与给定分段的所请求表示相关的获得的相关性分数。所述选择模块还被配置为选择具有在获得的各种分数中相关性分数最高的所请求表示作为给定分段的主相关表示。

[0092] 在示出的实施例中，相关性模块 15，计分模块 16 和选择模块 17 是不同的，而所有图没有示出的变型中，这三个模块可以组合以形成单一的模块。在变型中，选择模块 17 可以集成在相关性模块 15 中。

[0093] 一旦最高的相关性分数已经由选择模块 17 选出，并且已经被相关性模块 15 视为主相关表示，那么通信模块 10 还被配置为从远程服务器 SE 请求所述相关表示，所述相关表示并未存储在所述智能高速缓存器 DANE 的存储模块 11 中。

[0094] 此时，选择的主相关表示适合于大量的客户端 CT。然而，由于客户端终端的请求中客户终端指示的所请求表示并不需要在所有客户端终端 CT 之间重叠，所以主相关表示对于考虑的客户端终端的子集可以是不可接受的，在下文中所述考虑的客户端终端的子集被称为其余客户端 CT，即并不请求主相关表示作为优选表示或者作为备选表示的客户终端 CT。针对这些其余客户端，智能高速缓存器 DANE 可以从服务器 SE 下载一个或多个附加表示（除选择的相关表示以外）以满足所述其余客户端终端的请求。

[0095] 为此，为了使这样的附加表示的数目最小化并且使满足最大化，相关性模块 15 还被配置为:

[0096] - 确定是否存在并未请求主相关表示作为第一表示或者作为备选表示的至少一个其余客户端 CT；

[0097] - 建立至少一个其余客户端 CT 已经请求的表示的列表；

[0098] - 基于计分模块 16 已经计算出的相关性分数，确定建立的列表的最相关的表示（下文中称为辅助相关表示）。然后，智能高速缓存器 DANE 的通信模块 10 可以请求该辅助相关表示；

[0099] - 通过该辅助相关表示来检查能否对所有其余客户端终端 CT 提供服务。如果不能，则相关性模块 15 更新列表并且确定如之前指示的新的最相关表示。当列表为空时（即不存在其余客户端 CT，所有请求客户端可以由智能高速缓存器 DANE 提供服务）过程停止。

[0100] 对于应被提供服务的所有客户端 CT，在已经确定了若干相关表示（主相关表示和一个或多个辅助表示）的情况下，要发送给每个客户端 CT 的表示可以根据其优先级别
由智能高速缓存器 DANE 的通信模块 10 从相应请求中列出的所要求表示中选出（在辅助相关表具有比主相关表之一更高的优先级的情况下，可以向客户终端 CT 发送辅助相关表示而不是发送主相关表示）。

在变型中，选择模块 17 还可以被配置为选择具有次高相关性分数的表示作为辅助相关列表，所述次高相关性分数由计分模块 16 计算。在这种情况下，通信模块 10 还可以被配置为从服务器 SE 请求所述辅助相关表示。

应当理解的是，根据描述的实施例，针对在第一时间段期间由智能高速缓存器 DANE 接收的请求的每个表示，计算相关性分数，所述请求并未存储在智能高速缓存器 DANE 的存储模块 11 中。当之后给定分段的至少第一或备选表示已经存储时（所述表示在第一时间段期间在客户终端 CT 发送的请求中指定，并且由智能高速缓存器 DANE 接收），则智能高速缓存器 DANE 向客户终端发送所述存储的表示。优选地，不会针对任何存储的表示计算相关性分数，但是请求的其它表示（如果存在的话）用于确定对应表示的相关性分数。

在所述实施例的变型中，当之后接收到对应请求时，还可以针对已经存储在智能高速缓存器 DANE 中的所请求表示来计算相关性分数。

此外，在所述实施例另外的改进中，通信模块 10 还可以被配置为，当针对下一个分段（即与给定分段具有时间关系的分段）的所述主相关表示没有存储在所述智能高速缓存器 DANE 的存储模块 11 中时，从远程服务器 SE 请求针对下一个分段的所述主相关表示。

这可以允许智能高速缓存器 DANE 预测需求，并且可以允许甚至在任何客户终端 CT 请求当前选择为相关表示的表示的下一个分段之前加载该下一个分段。

此外，当智能高速缓存器 DANE 达到其最大存储容量时，所述智能高速缓存器必须管理如何移除内容，以便能够高速缓存新的内容。这可以通过逐出算法来执行，所述逐出算法移除再次被请求的机会较小的内容。已知的逐出算法通常依赖内容的最后高速缓存命中日期或高速缓存命中内容的频率。在两种情况下，在限定的时间段期间没有任何请求的内容具有从高速缓存器中移除的较高可能性。

根据本实施例，两种类型的高速缓存命中（当向客户终端 CT 发送存储在所述智能高速缓存器 DANE 中的表示时，获得高速缓存命中）可以被识别为：

- 当客户终端已经从智能高速缓存器 DANE 处接收到其请求中指定的（第一或优选）表示时，达到第一类型的高速缓存命中；
- 当客户终端已经从智能高速缓存器 DANE 处接收到其请求中指定的备选表示时，达到第二类型的高速缓存命中。

具体地，智能高速缓存器 DANE 还装设有逐出模块 18，所述逐出模块包括：

- 第二计数器 18A，被配置为在第二时间段内对向客户终端 CT 发送已经存储在智能高速缓存器 DANE 中的每个所请求表示的次数进行计数。更具体地，使用第一权重对第一类型高速缓存命中进行加权，而使用第二权重对第二类型高速缓存命中进行加权。换句话说，第二计数器 18A 对第一类型和第二类型高速缓存命中加以区别，并且不同地对它们进行计数。

- 移除模块 18B，被配置为从存储模块 11 中至少删除具有最低命中分数的表示。

因此，智能高速缓存器 DANE 被配置为通过与更传统的情况不同的方式对高速缓存命中进行计数。针对给定分段，以权重来对第一和第二类型高速缓存命中进行计数，这可
以允许根据针对备选表示的命中来促成针对所述分段的第一（或优选）表示的命中。可以根据各种系统需求对加权因子进行调整。

[0114] 在其它改进中，逐出模块 18 可以考虑内容朝向客户端终端 CT 的普及性的时间变化。在有效时间段 T 内通过第二计数器 18A 来计算针对每个存储的表示的加权的高速缓存命中。针对 K 数目个时间段 T 保持每个存储的表示的命中分数。每一次新的时间段 T 完成，就将存储的表示的命中分数添加到分数列表，并且从所述列表中移除最旧的分数。这允许在持续时间 K×T 的滑动窗口上利用命中分数的加权平均值来计算每个存储的表示以下准则 c:

\[c = \sum_{p=1}^{p=k} weight[p] \times score[p] \]

[0116] 其中:
[0117] - p 表示列表中时间段 T 的索引 (p 越高对应于的时间段 T 越近);
[0118] - score[p] 是给定存储的表示的对应命中分数;

[0120] 相比于旧的请求，该改进可以向表示的最近请求提供更大的重要性。例如，在活动事件期间，请求自然地集中在当前内容上（可能具有一些小的延时），而不再注意较旧的内容。

[0121] 如图 4 所示，根据所述具体实施例，智能高速缓存器 DANE 配置为实现以下机制 M。所述机制 M 包括以下步骤:
[0122] - 在如之前限定的第一时间段内，从不同的客户终端 CT 接收（步骤 S1）针对给定分段的多个 HTTP 请求。每个 HTTP 请求指定一个第一表示和一个备选表示列表。在接收请求的智能高速缓存器 DANE 没有高速缓存第一表示的情况下，可以请求所述备选表示。可以通过优先级别或通过优选顺序来列出备选表示；
[0123] - 检查（步骤 S2）每个请求的第一表示是否存储在智能高速缓存器 DANE 的存储模块 11 中，并且如果第一表示由智能高速缓存器 DANE 高速缓存，则向对应客户端终端 CT 传递包括所请求第一表示的响应；
[0124] - 在第一表示没有被高速缓存的情况下，以优选顺序（例如从最期望的备选表示到不期望的备选表示）或以优先级别（如果存在的话）来浏览（步骤 S3）在请求中列出的备选表示；
[0125] - 以优选顺序（或者以优先级别）来检查（步骤 S4）请求的备选表示中的至少一个是否存储在智能高速缓存器 DANE 的存储模块 9 中；
[0126] - 向每个对应客户端终端 CT 传递（步骤 S5）响应，所述响应包括每个对应客户端终端 CT 的请求中指定的分段的所述备选表示，所述请求由智能高速缓存器 DANE 高速缓存；
[0127] - 确定（步骤 S6）请求中指定的所述分段的每个表示的相关性分数，所述请求在第一时间段期间接收，但是并未存储在智能高速缓存器 DANE 的存储模块 11 中。与所述分段的所述请求表示相关联的相关性分数对应于所述请求表示在智能高速缓存器 DANE 接收的请求。
中被指定的次数。在改进中，接收的请求的每个表示具有优先级别，表所示请求的次数通过依赖于所述表示的优先级别的第一因子来加权；

[0128] 选择（步骤 S7）具有最高相关性分数的表示作为所述分段的主相关表示；

[0129] 当主相关表示并未存储在所述智能高速缓存器 DANE 时，从远程服务器 SE 请求（步骤 S8）给定分段的主相关表示。

[0130] 此外，机制 M 还可以包括：当主相关表示并未存储在所述智能高速缓存器 DANE 中时，从远程服务器 SE 请求（步骤 S9）针对给定分段之后的下一分段的所述主相关表示。

[0131] 此外，机制 M 还可以包括：

[0132] 确定（步骤 S10）是否存在并未请求主相关表示作为第一表示或作为备选表示的其余客户终端 CT；

[0133] 如果存在的话，建立（步骤 S11）至少一个其余客户终端 CT 请求的表示的列表；

[0134] 基于所述模块 16 已经计算出的相关性分数来确定（步骤 S12）建立的列表的最相关表示（下文称为辅助相关表示）。然后，智能高速缓存器 DANE 的通信模块 10 可以请求该辅助相关表示；

[0135] 检查（步骤 S13）该辅助相关表示是否可以对所有的其余客户终端 CT 提供服务。如果不可以，则相关性模块 15 更新列表，并且如之前指示的来确定新的最相关表示。当列表为空时（即不存在其余客户终端 CT，所有请求客户端可以由智能高速缓存器 DANE 提供服务），过程停止。

[0136] 因此，智能高速缓存器 DANE 可以根据客户终端发送的每个对应请求中列出的表示的优先级别，向对应客户终端 CT 传递（步骤 S14）响应，所述响应包括给定分段的主要相对表示或辅助相对表示（在辅助相关表示具有比主相关表示之一更高的优先级别的情况下，可以向客户终端 CT 发送辅助相关表示而不是发送主相关表示）。

[0137] 此外，所述机制 M 还可以包括：

[0138] 在第二时间段内对向客户终端发送已经存储在智能高速缓存器 DANE 中的每个所请求表示的次数进行计数（步骤 S15），作为第一表示向客户终端 CT 发送所请求表示的计数方式不同于作为备选表示发送的所请求表示的计数方式；

[0139] 至少删除（步骤 S16）具有最低命中分数的表示。

[0140] 机制 M 可以周期性或在接收到针对所需分段的给定请求（例如，所需分段的表示并未存储在智能高速缓存器 DANE 时针对所述分段的最后请求）时实现。

[0141] 应当理解的是，在不背离本发明的前提下，可以至少部分地改变步骤 S1 至 S16 的顺序。例如，步骤 S2 到 S5 可以与步骤 S6 到 S8 并发地执行。

[0142] 还应当注意的是，智能高速缓存器 DANE 可以集成在代理、网关或其他适合的网络设备中。

[0143] 附图中的流程图和 / 或框图示了根据本发明各个实施例的系统、方法和计算机程序产品的可能实现方式的配制、操作和功能。关于这一点，流程图或框图中的每个框可以表示代码模块、段或部分，包括用于实现指定逻辑功能的一个或多个可执行指令。还应当注意，在一些备选实现中，框中标注的功能可以不按照附图中标注的顺序出现。例如，根据所涉及的功能，连续示出的两个框事实上可以实质上同时执行，或者框有时可以按照相反顺序执行，或者框可以按照备选顺序执行。还应当注意，框图和 / 或流程图示的每个框以
及框图和 / 或流程图示意中的框组合可以由执行特定功能或动作的基于专用硬件的系统或者专用硬件和计算机指令的组合来实现。尽管未明确描述，但是当前的实施例可以以任何组合或子组合的方式来使用。

[0144] 本领域技术人员应当认识到，本发明原理的方案可以实现为系统、方法或计算机可读介质。因此，本发明原理的方案可以采用以下形式：全部硬件实施例、全部软件实施例（包括固件、驻留软件、微代码等）、或组合了软件方面和硬件方案的实施例，在这里均一般称为“电路”、“模块”或“系统”。此外，本发明原理的方案可以采用计算机可读存储介质的形式。可以利用一个或多个计算机可读存储介质的任何组合。

[0145] 计算机可读存储介质可以采用计算机可读程序产品的形式，计算机可读程序产品嵌入在一个或多个计算机可读介质中并且其上实现有由计算机可执行的计算机可读程序代码。将这里所使用的计算机可读存储介质视为具备在其中存储信息的固有能力以及从中获取信息的固有能力的非暂时存储介质。例如，计算机可读存储介质可以是但不限于电、磁、光、电磁、红外或半导体系统、装置或设备，或者上述系统，装置或设备的任何适合组合。应当认识到，尽管以下提供了可以应用本发明原理的计算机可读存储介质的更多具体示例，但是本领域技术人员容易理解，以下仅是示意性并非完尽的列举：便携式计算机磁盘、硬盘；随机存取存储器（RAM）；只读存储器（ROM）；可擦除可编程只读存储器（EPROM 或闪存）；便携式紧凑盘只读存储器（CD-ROM）；光存储设备；磁存储设备；或上述存储介质的任何组合。
图 4