EP 1238 341 B1

0’ European Patent Office

(19)

Office européen des brevets (11) EP 1238 341 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) IntCl.:
of the grant of the patent: GO6F 9/38 (2006.01)

26.07.2006 Bulletin 2006/30
(86) International application number:

(21) Application number: 00970896.7 PCT/US2000/028422

(22) Date of filing: 12.10.2000 (87) International publication number:;

WO 2001/041530 (14.06.2001 Gazette 2001/24)

(54) METHOD, APPARATUS, MEDIUM AND PROGRAM FOR ENTERING AND EXITING MULTIPLE
THREADS WITHIN A MULTITHREADED PROCESSOR
VERFAHREN, VORRICHTUNG, MEDIUM UND PROGRAMM ZUR AUFNAHME UND ZUM
VERLASSEN VON MEHREREN FADEN IN EINEM VIELFADENPROZESSOR
PROCEDE, APPAREIL, SUPPORT ET PROGRAMME PERMETTANT D’ENTRER ET DE SORTIR
DE MULTIPLES UNITES D’EXECUTION DANS UN PROCESSEUR A UNITES D’EXECUTION
MULTIPLES

(84) Designated Contracting States: (56) References cited:
ATBECHCYDEDKESFIFRGBGRIEITLILU US-A- 5361 337 US-A- 5630 130
MC NL PT SE

* TULLSEN D M ET AL: "EXPLOITING CHOICE:

(30) Priority: 09.12.1999 US 458570 INSTRUCTION FETCH AND ISSUE ON AN

IMPLEMENTABLE SIMULTANEOUS

(43) Date of publication of application: MULTITHREADING PROCESSOR" COMPUTER

11.09.2002 Bulletin 2002/37 ARCHITECTURE NEWS, ASSOCIATION FOR
COMPUTING MACHINERY, NEW YORK, US, vol.
(73) Proprietor: INTEL CORPORATION 24,n0.2, 1 May 1996 (1996-05-01), pages 191-202,
Santa Clara, CA 95052 (US) XP000592185 ISSN: 0163-5964
* POKALA R P ET AL: "Physical synthesis for
(72) Inventors: performance optimization" PROCEEDINGS OF
* RODGERS, Dion THE ANNUAL IEEE INTERNATIONAL ASIC
Hillsboro, OR 97123 (US) CONFERENCE AND EXHIBIT, XX, XX, 21
» BOGGS, Darrell September 1992 (1992-09-21), pages 34-37,
Aloha, OR 97006 (US) XP002158891
* MERCHANT, Amit * BYRDGTET AL: "MULTITHREADED
Portland, OR 97229 (US) PROCESSOR ARCHITECTURES" IEEE
* KOTA, Rajesh SPECTRUM, IEEE INC. NEW YORK, US, vol. 32,
Aloha, OR 97006 (US) no. 8, 1 August 1995 (1995-08-01), pages 38-46,
* HSU, Rachel XP000524855 ISSN: 0018-9235
Hillsboro, OR 97124 (US) e THISTLEMR ET AL: "A PROCESSOR
ARCHITECTURE FOR HORIZON"

(74) Representative: Molyneaux, Martyn William et al PROCEEDINGS OF THE SUPERCOMPUTING
Harrison Goddard Foote CONFERENCE. ORLANDO, NOV. 14 - 18, 1988,
40-43 Chancery Lane WASHINGTON, IEEE COMP. SOC. PRESS, US,
London WC2A 1JA (GB) vol. CONF. 1, 14 November 1988 (1988-11-14),

pages 35-41, XP000042422 ISBN: 0-8186-8923-4

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

1 EP 1238 341 B1 2

Description

FIELD OF THE INVENTION

[0001] The present invention relates generally to the
field of multithreaded processors and, more specifically,
to a method and apparatus for entering and exiting mul-
tiple threads within a multithreaded (MT) processor.

BACKGROUND OF THE INVENTION

[0002] Multithreaded (MT) processor design has re-
cently been considered as an increasingly attractive op-
tion for increasing the performance of processors. Mul-
tithreading within a processor, inter alia, provides the po-
tential for more effective utilization of various processor
resources, and particularly for more effective utilization
of the execution logic within a processor. Specifically, by
feeding multiple threads to the execution logic of a proc-
essor, clock cycles that would otherwise have been idle
due to a stall or other delay in the processing of a partic-
ular thread may be utilized to service a further thread. A
stall in the processing of a particular thread may result
from a number of occurrences within a processor pipe-
line. Forexample, a cache miss or a branch misprediction
(i.e., along-latency operation) for an instruction included
within a thread typically results in the processing of the
relevant thread stalling. The negative effect of long-la-
tency operations on execution logic efficiencies is exac-
erbated by the recent increases in execution logic
throughput that have outstripped advances in memory
access and retrieval rates.

[0003] Multithreaded computer applications are also
becoming increasingly common in view of the support
provided to such multithreaded applications by a number
of popular operating systems, such as the Windows NT®
and Unix operating systems. Multithreaded computer ap-
plications are particularly efficient in the multi-media are-
na.

[0004] Multithreaded processors may broadly be clas-
sified into two categories (i.e., fine or coarse designs)
according to the thread interleaving or switching scheme
employed within the relevant processor. Fine multi-
threaded designs support multiple active threads within
a processor and typically interleave two different threads
on a cycle-by-cycle basis. Coarse multithreaded designs
typically interleave the instructions of different threads
on the occurrence of some long-latency event, such as
a cache miss. A coarse multithreaded design is dis-
cussed in Eickemayer, R.; Johnson, R.; etal., "Evaluation
of Multithreaded Uniprocessors for Commercial Applica-
tion Environments", The 23rd Annual International Sym-
posium on Computer Architecture, pp. 203-212, May
1996. The distinctions between fine and coarse designs
are further discussed in Laudon, J; Gupta, A,
" Architectural and Implementation Tradeoffs in the De-
sign of Multiple-Context Processors", Multithreaded
Computer Architectures: A Summary of the State of the

10

15

20

25

30

35

40

45

50

55

Art, edited by R.A. lannuci et al., pp. 167-200, Kluwer
Academic Publishers, Norwell, Massachusetts, 1994.
Laudon further proposes an interleaving scheme that
combines the cycle-by-cycle switching of a fine design
with the full pipeline interlocks of a coarse design (or
blocked scheme). To this end, Laudon proposes a "back
off" instruction that makes a specific thread (or context)
unavailable for a specific number of cycles. Such a "back
off" instruction may be issued upon the occurrence of
predetermined events, such as a cache miss. In this way,
Laudon avoids having to perform an actual thread switch
by simply making one of the threads unavailable.
[0005] A multithreaded architecture for a processor
presents a number of further challenges in the context
of an out-of-order, speculative execution processor ar-
chitecture. More specifically, the handling of events (e.g.,
branch instructions, exceptions or interrupts) that may
result in an unexpected change in the flow of an instruc-
tion stream is complicated when multiple threads are con-
sidered. In a processor where resource sharing between
multiple threads is implemented (i.e., there is limited or
no duplication of functional units for each thread support-
ed by the processor), the handling of event occurrences
pertaining to a specific thread is complicated in that fur-
ther threads must be considered in the handling of such
events.

[0006] Where resource sharing is implemented within
a multithreaded processor it is further desirable to at-
tempt increased utilization of the shared resources re-
sponsive to changes in the state of threads being serv-
iced within the multithreaded processor.

[0007] Tullsen DM et al, "Exploiting choice: instruction
fetch and issue on an implantable simultaneous multi-
threading processors”, Computer Architecture News,
ACM, New York, 24(2), 1 May 1996, pages 191-202,
XP000592185, ISSN: 0163-5964 discloses a simultane-
ous multithreading (SMT) technique. The technique per-
mits multiple independent threads to issue multiple in-
structions each cycle to a superscalar processor’s func-
tional units. SMT combines the multiple-instruction-issue
features of superscalars with latency-hiding ability of mul-
tithreaded architectures. Unlike conventional multi-
threaded architectures, which depend on fast context
switching to share processor execution resources, all
hardware contexts in an SMT processor are active simul-
taneously, competing each cycle for all available resourc-
es. The "best" instructions are provided to the processor
by an ability to favour for fetch and issue those threads
most efficiently using the processor each cycle.

[0008] WO-A-9921081 discloses a multithreaded
processor including storage of a state of a thread in a
thread state register and storing a plurality of thread
switch control events in a thread switch control register.
When a state of the thread changes, a signal is output
to the thread state register and the changed state of the
thread is compared with the plurality of thread switch con-
trol events. If the changed state results from a thread
switch control event, a signal is output to the multithread-

3 EP 1238 341 B1 4

ed processor to switch execution from the thread. The
thread state registers comprise a state register for each
thread to store the state of the corresponding thread. The
thread switch control register controls what events will
result in a thread switch.

SUMMARY OF THE INVENTION

[0009] According to a first aspect of the invention there
is provided a method as claimed in claim 1.

[0010] According to a second aspect of the invention,
there is provided an apparatus as claimed in claim 18.
[0011] According to a third aspect of the invention,
there is provided amachine-readable medium as claimed
in claim 19.

[0012] Further embodiments of the invention are dis-
closed in the dependent claims.

[0013] Other features of the present invention will be
apparent from the accompanying drawings and from the
detailed description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The present invention is illustrated by way of
example and not limited in the figures of the accompa-
nying drawings, in which like references indicate similar
elements and in which:

Figure 1 is a block diagram illustrating one embodi-
ment of a pipeline of a processor with multithreading
support.

Figure 2 is a block diagram illustrating an exemplary
embodiment of a processor, in the form of a general-
purpose multithreaded microprocessor.

Figure 3 is ablock diagram illustrating selected com-
ponents of an exemplary multithreaded microproc-
essor, and specifically depicts various functional
units that provide a buffering (or storage) capability
as being logically partitioned to accommodate mul-
tiple thread.

Figure 4 is a block diagram illustrating an out-of-or-
der cluster, according to one embodiment.

Figure 5 is a diagrammatic representation of a reg-
ister alias table and a register file and utilized within
one embodiment.

Figure 6A is a block diagram illustrating details re-
garding a re-order buffer, according to one embod-
iment, that is logically partitioned to service multiple
threads within a multithreaded processor.

Figure 6B is a diagrammatic representation of a
pending event register and an event inhibit register,
according to one embodiment.

10

15

20

25

30

35

40

45

50

55

Figure 7A is a flow chart illustrating a method, ac-
cording to one embodiment, of processing an event
within a multithreaded processor.

Figure 7B is a flow chart illustrating a method, ac-
cording to one embodiment, of handling a "virtual
nuke" event within a multithreaded processor.

Figure 8 is a diagrammatic representation of a
number of exemplary events that may be detected
by an event detector, according to one embodiment,
implemented within a multithreaded processor.

Figures 9 and 10 are respective block diagrams
showing exemplary content of a reorder table, within
an exemplary reorder buffer such as that illustrated
in Figure 6A.

Figure 11A is a flow chart illustrating a method, ac-
cording to an exemplary embodiment, of performing
a clearing (or nuke) operation within a multithreaded
processor supporting at least first and second
threads.

Figure 11B is a block diagram illustrating configu-
ration logic, according to one exemplary embodi-
ment, that operates to configure a functional unit in
accordance with the output of an active thread state
machine.

Figure 12 is a timing diagram illustrating the asser-
tion of a nuke signal, according to one embodiment.

Figure 13 is a flow chart illustrating a method, ac-
cording to one embodiment, of providing exclusive
access to an event handler within a multithreaded
processor.

Figure 14 is a state diagram depicting operation,
according to one embodiment, of an exclusive ac-
cess state machine implemented within a multi-
threaded processor.

Figure 15 is a state diagram illustrating states, ac-
cording to one embodiment, that may be occupied
by an active thread state machine implemented with-
in a multithreaded processor.

Figure 16A is a flow chart illustrating a method, ac-
cording to one embodiment, of exiting an active
thread on the detection of a sleep event for the active
thread within a multithreaded processor.

Figure 16B is a diagrammatic representation of the
storing of state and the delocation of registers upon

exiting a thread, according to one embodiment.

Figure 17 is a flow chart illustrating a method, ac-

5 EP 1238 341 B1 6

cording to one embodiment, of transitioning a thread
from an inactive to an active state upon the detection
of a break event for the inactive thread.

Figure 18 is a flow chart illustrating a method, ac-
cording to one embodiment, of managing the ena-
blement and disablement of a clock signal to at least
one functional unit within a multithreaded processor.

Figure 19A is a block diagram illustrating clock con-
trol logic, according to one embodiment, for enabling
and disabling a clock signal within a multithreaded
processor.

Figure 19B is a schematic diagram showing one
embodiment of the clock control logic shown in Fig-
ure 19A.

DETAILED DESCRIPTION

[0015] A method and apparatus for entering and exit-
ing multiple threads within a multithreaded processor are
described. In the following description, for purposes of
explanation, numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. It will be evident, however, to one skilled in the
art that the present invention may be practiced without
these specific details.

[0016] For the purposes of the present specification,
the term "event" shall be taken to include any event, in-
ternal or external to a processor, that causes a change
or interruption to the servicing of an instruction stream
(macro- or microinstruction) within a processor. Accord-
ingly, the term "event" shall be taken to include, but not
be limited to, branch instructions processes, exceptions
and interrupts that may be generated within or outside
the processor.

[0017] For the purposes of the present specification,
the term "processor" shall be taken to refer to any ma-
chine that is capable of executing a sequence of instruc-
tions (e.g., macro- or microinstructions), and shall be tak-
en to include, but not be limited to, general purpose mi-
croprocessors, special purpose microprocessors, graph-
ics controllers, audio controllers, multi-media controllers,
microcontrollers or network controllers. Further, the term
"processor"” shall be taken to refer to, inter alia, Complex
Instruction Set Computers (CISC), Reduced Instruction
Set Computers (RISC), or Very Long Instruction Word
(VLIW) processors.

[0018] Further, the term "clearing point" shall be taken
to include any instructions provided in an instruction
stream (including a microinstruction or macroinstruction
stream) by way of a flow marker or other instruction, of
alocation in the instruction stream at which an event may
be handled or processed.

[0019] The term "instruction" shall be taken to include,
but not be limited to, a macroinstruction or a microinstruc-
tion.

10

15

20

25

30

35

40

45

50

55

[0020] Certain exemplary embodiments of the present
invention are described as being implemented primarily
in either hardware or software. It will nonetheless be ap-
preciated by those skilled in the art that many features
may readily be implemented in hardware, software or a
combination of hardware and software.

[0021] Software (e.g., either microinstructions and
macroinstructions) for implementing embodiments of the
invention may reside, completely or at least patrtially,
within a main memory accessible by a processor and/or
within the processor itself (e.g., in a cache or a microcode
sequencer). For example, event handlers and state ma-
chines may be implemented in microcode dispatched
from a microcode sequencer.

[0022] Software may further be transmitted or received
via the network interface device.

[0023] For the purposes of this specification, the term
" machine-readable medium" shall be taken to include
any medium which is capable of storing or encoding a
sequence of instructions for execution by the machine
and that cause the machine to perform any one of the
methodologies of the present invention. The term
" machine-readable medium" shall accordingly be taken
to included, but not be limited to, solid-state memories,
optical and magnetic disks, and carrier wave signals.

Processor Pipeline

[0024] Figure 1is a high-level block diagram illustrat-
ing one embodiment of processor pipeline 10. The pipe-
line 10 includes a number of pipe stages, commencing
with a fetch pipe stage 12 atwhich instructions (e.g., mac-
roinstructions) are retrieved and fed into the pipeline 10.
For example, a macroinstruction may be retrieved from
a cache memory that is integral with the processor, or
closely associated therewith, or may be retrieved from
an external main memory via a processor bus. From the
fetch pipe stage 12, the macroinstructions are propagat-
ed to a decode pipe stage 14, where macroinstructions
are translated into microinstructions (also termed "mi-
crocode”) suitable for execution within the processor.
The microinstructions are then propagated downstream
to an allocate pipe stage 16, where processor resources
are allocated to the various microinstructions according
to availability and need. The microinstructions are then
executed at an execute stage 18 before being retired, or
"written-back” (e.g., committed to an architectural state)
at a retire pipe stage 20.

Microprocessor Architecture

[0025] Figure 2 is a block diagram illustrating an ex-
emplary embodiment of a processor 30, in the form of a
general-purpose microprocessor. The processor 30 is
described below as being a multithreaded (MT) proces-
sor, and is accordingly able to process multiple instruc-
tion threads (or contexts). However, a number of the
teachings provided below in the specification are not spe-

7 EP 1238 341 B1 8

cific to a multithreaded processor, and may find applica-
tion in a single threaded processor. In an exemplary em-
bodiment, the processor 30 may comprise an Intel Archi-
tecture (IA) microprocessor that is capable of executing
the Intel Architecture instruction set. An example of such
an Intel Architecture microprocessor is the Pentium Pro
® microprocessor or the Pentium Il ® microprocessor
manufactured by Intel Corporation of Santa Clara, Cali-
fornia.

[0026] In one embodiment, the processor 30 compris-
es an in-order front end and an out-of-order back end.
The in-order front end includes a bus interface unit 32,
which functions as the conduit between the processor 30
and other components (e.g., main memory) of a compu-
ter system within which the processor 30 may be em-
ployed. To this end, the bus interface unit 32 couples the
processor 30 to a processor bus (not shown) via which
data and controlinformation may be received at and prop-
agated from the processor 30. The bus interface unit 32
includes Front Side Bus (FSB) logic 34 that controls com-
munications over the processor bus. The bus interface
unit 32 further includes a bus queue 36 that provides a
buffering function with respect to communications over
the processor bus. The bus interface unit 32 is shown to
receive bus requests 38 from, and to send snoops or bus
returns to, a memory execution unit 42 that provides a
local memory capability within the processor 30. The
memory execution unit 42 includes a unified data and
instruction cache 44, a data Translation Lookaside Buffer
(TLB) 46, and memory ordering buffer 48. The memory
execution unit 42 receives instruction fetch requests 50
from, and delivers raw instructions 52 (i.e., coded mac-
roinstructions) to, a microinstruction translation engine
54 that translates the received macroinstructions into a
corresponding set of microinstructions.

[0027] The microinstruction translation engine 54 ef-
fectively operates as a trace cache "miss handler" in that
it operates to deliver microinstructions to a trace cache
62 in the event of a trace cache miss. To this end, the
microinstruction translation engine 54 functions to pro-
vide the fetch and decode pipe stages 12 and 14 in the
event of a trace cache miss. The microinstruction trans-
lation engine 54 is shown to include a next instruction
pointer (NIP) 100, an instruction Translation Lookaside
Buffer (TLB) 102, a branch predictor 104, an instruction
streaming buffer 106, an instruction pre-decoder 108, in-
struction steering logic 110, an instruction decoder 112,
and abranch address calculator 114. The nextinstruction
pointer 100, TLB 102, branch predictor 104 and instruc-
tion streaming buffer 106 together constitute a branch
prediction unit (BPU) 99. The instruction decoder 112
and branch address calculator 114 together comprise an
instruction translate (IX) unit 113.

[0028] The nextinstruction pointer 100 issues next in-
struction requests to the unified cache 44. In the exem-
plary embodiment where the processor 30 comprises a
multithreaded microprocessor capable of processing two
threads, the next instruction pointer 100 may include a

10

15

20

25

30

35

40

45

50

55

multiplexer (MUX) (not shown) that selects between in-
struction pointers associated with either the first or sec-
ond thread forinclusion within the nextinstruction request
issued therefrom. In one embodiment, the next instruc-
tion pointer 100 will interleave next instruction requests
forthe firstand second threads on a cycle-by-cycle ("ping
pong") basis, assuming instructions for both threads
have been requested, and instruction streaming buffer
106 resources for both of the threads have not been ex-
hausted. The next instruction pointer requests may be
for 16, 32 or 64-bytes depending on whether the initial
request address is in the upper half of a 32-byte or 64-
byte aligned line. The next instruction pointer 100 may
be redirected by the branch predictor 104, the branch
address calculator 114 or by the trace cache 62, with a
trace cache miss request being the highest priority redi-
rection request.

[0029] When the next instruction pointer 100 makes
aninstructionrequestto the unified cache 44, itgenerates
a two-bit "request identifier" that is associated with the
instruction request and functions as a "tag" for the rele-
vantinstruction request. When returning data responsive
to an instruction request, the unified cache 44 returns the
following tags or identifiers together with the data:

1. The "request identifier" supplied by the next in-
struction pointer 100;

2. A three-bit "chunk identifier" that identifies the
chunk returned; and

3. A "thread identifier" that identifies the thread to
which the returned data belongs.

[0030] Next instruction requests are propagated from
the next instruction pointer 100 to the instruction TLB
102, which performs an address lookup operation, and
delivers a physical address to the unified cache 44. The
unified cache 44 delivers a corresponding macroinstruc-
tion to the instruction streaming buffer 106. Each next
instruction request is also propagated directly from the
next instruction pointer 100 to the instruction streaming
buffer 106 so as to allow the instruction streaming buffer
106 to identify the thread to which a macroinstruction
received from the unified cache 44 belongs. The mac-
roinstructions from both firstand second threads are then
issued from the instruction streaming buffer 106 to the
instruction pre-decoder 108, which performs a number
of length calculation and byte marking operations with
respectto areceived instruction stream (of macroinstruc-
tions). Specifically, the instruction pre-decoder 108 gen-
erates a series of byte marking vectors that serve, inter
alia, to demarcate macroinstructions within the instruc-
tion stream propagated to the instruction steering logic
110.

[0031] The instruction steering logic 110 then utilizes
the byte marking vectors to steer discrete macroinstruc-
tions to the instruction decoder 112 for the purposes of
decoding. Macroinstructions are also propagated from
the instruction steering logic 110 to the branch address

9 EP 1238 341 B1 10

calculator 114 for the purposes of branch address calcu-
lation. Microinstructions are then delivered from the in-
struction decoder 112 to the trace delivery engine 60.
[0032] During decoding, flow markers are associated
with each microinstruction into which a macroinstruction
is translated. A flow marker indicates a characteristic of
the associated microinstruction and may, for example,
indicate the associated microinstruction as being the first
or last microinstruction in a microcode sequence repre-
senting a macroinstruction. The flow markers include a
"beginning of macroinstruction” (BOM) and an "end of
macroinstruction” (EOM) flow markers. According to the
present invention, the decoder 112 may further decode
the microinstructions to have shared resource (multiproc-
essor) (SHRMP) flow markers and synchronization
(SYNC) flow markers associated therewith. Specifically,
a shared resource flow marker identifies a microinstruc-
tion as a location within a particular thread at which the
thread may be interrupted (e.g., re-started or paused)
with less negative consequences than elsewhere in the
thread. The decoder 112, in an exemplary embodiment
of the present invention, is constructed to mark microin-
structions that comprise the end or the beginning of a
parent macroinstruction with a shared resource flow
marker as well as intermittent points in longer microcode
sequences. A synchronization flow marker identifies a
microinstruction as a location within a particular thread
at which the thread may be synchronized with another
thread responsive to, for example, a synchronization in-
struction within the other thread. For the purposes of the
present specification, the term "synchronize" shall be tak-
en to refer to the identification of at least a first point in
atleast one thread at which processor state may be mod-
ified with respect to that thread and/or at least one further
thread with a reduced or lower disruption to the proces-
sor, relative to a second point in that thread or in another
thread.

[0033] Thedecoder112,in an exemplary embodiment
of the present invention, is constructed to mark microin-
structions that are located at selected macroinstruction
boundaries where state shared among threads coexist-
ing in the same processor can be changed by one thread
without adversely impacting the execution of other
threads.

[0034] From the microinstruction translation engine
54, decoded instructions (i.e., microinstructions) are sent
to a trace delivery engine 60. The trace delivery engine
60 includes a trace cache 62, a trace branch predictor
(BTB) 64, a microcode sequencer 66 and a microcode
(uop) queue 68. The trace delivery engine 60 functions
as a microinstruction cache, and is the primary source
of microinstructions for a downstream execution unit 70.
By providing a microinstruction caching function within
the processor pipeline, the trace delivery engine 60, and
specifically the trace cache 62, allows translation work
done by the microinstruction translation engine 54 to be
leveraged to provide increased microinstruction band-
width. In one exemplary embodiment, the trace cache 62

10

15

20

25

30

35

40

45

50

55

may comprise a 256 set, 8 way set associate memory.
The term "trace", in the present exemplary embodiment,
may refer to a sequence of microinstructions stored with-
in entries of the trace cache 62, each entry including
pointers to preceding and proceeding microinstructions
comprising the trace. In this way, the trace cache 62 fa-
cilitates high-performance sequencing in that the ad-
dress of the next entry to be accessed for the purposes
of obtaining a subsequent microinstruction is known be-
fore a current access is complete. Traces, in one embod-
iment, may be viewed as "blocks" of instructions that are
distinguished from one another by trace heads, and are
terminated upon encountering an indirect branch or by
reaching one of many present threshold conditions, such
as the number of conditioned branches that may be ac-
commodated in a single trace or the maximum number
of total microinstructions that may comprise a trace.
The trace cache branch predictor 64 provides local
branch predictions pertaining to traces within the trace
cache 62. The trace cache 62 and the microcode se-
quencer 66 provide microinstructions to the microcode
queue 68, from where the microinstructions are then fed
to an out-of-order execution cluster. The microcode se-
quencer 66 is furthermore shown to include a number of
event handlers 67, embodied in microcode, that imple-
ment a number of operations within the processor 30 in
response to the occurrence of an event such as an ex-
ception or an interrupt. The event handlers 67, as will be
described in further detail below, are invoked by an event
detector 188 included within a register renamer 74 in the
back end of the processor 30.

[0035] The processor 30 may be viewed as having an
in-order front-end, comprising the bus interface unit 32,
the memory execution unit 42, the microinstruction trans-
lation engine 54 and the trace delivery engine 60, and
an out-of-order back-end that will be described in detail
below.

[0036] Microinstructions dispatched from the microc-
ode queue 68 are received into an out-of-order cluster
71 comprising a scheduler 72, a register renamer 74, an
allocator 76, a reorder buffer 78 and a replay queue 80.
The scheduler 72 includes a set of reservation stations,
and operates to schedule and dispatch microinstructions
for execution by the execution unit 70. The register re-
namer 74 performs a register renaming function with re-
spect to hidden integer and floating point registers (that
may be utilized in place of any of the eight general pur-
pose registers or any of the eight floating-point registers,
where a processor 30 executes the Intel Architecture in-
struction set). The allocator 76 operates to allocate re-
sources of the execution unit 70 and the cluster 71 to
microinstructions according to availability and need. In
the eventthatinsufficient resources are available to proc-
ess a microinstruction, the allocator 76 is responsible for
asserting a stall signal 82, that is propagated through the
trace delivery engine 60 to the microinstruction transla-
tion engine 54, as shown at 58. Microinstructions, which
have had their source fields adjusted by the register re-

11 EP 1238 341 B1 12

namer 74, are placed in a reorder buffer 78 in strict pro-
gram order. When microinstructions within the reorder
buffer 78 have completed execution and are ready for
retirement, they are then removed from a reorder buffer
and retrieved in an in-order manner (i.e., according to an
original program order). The replay queue 80 propagates
microinstructions that are to be replayed to the execution
unit 70.

[0037] Theexecutionunit70isshowntoinclude afloat-
ing-point execution engine 84, an integer execution en-
gine 86, and a level 0 data cache 88. In one exemplary
embodiment in which is the processor 30 executes the
Intel Architecture instruction set, the floating point exe-
cution engine 84 may further execute MMX® instructions
and Streaming SIMD (Single Instruction, Multiple Data)
Extensions (SSE'’s).

Multithreading Implementation

[0038] Inthe exemplary embodiment of the processor
30illustrated in Figure 2, there may be limited duplication
or replication of resources to support a multithreading
capability, and it is accordingly necessary to implement
some degree of resource sharing among threads. The
resource sharing scheme employed, it will be appreciat-
ed, is dependent upon the number of threads that the
processor is able simultaneously to process. As function-
al units within a processor typically provide some buffer-
ing (or storage) functionality and propagation functional-
ity, the issue of resource sharing may be viewed as com-
prising (1) storage and (2) processing/propagating band-
width sharing components. For example, in a processor
that supports the simultaneous processing of two
threads, buffer resources within various functional units
may be statically or logically partitioned between two
threads. Similarly, the bandwidth provided by a path for
the propagation of information between two functional
units must be divided and allocated between the two
threads. As these resource sharing issues may arise at
a number of locations within a processor pipeline, differ-
entresource sharing schemes may be employed at these
various locations in accordance with the dictates and
characteristics of the specific location. It will be appreci-
ated that different resource sharing schemes may be suit-
ed to different locations in view of varying functionalities
and operating characteristics.

[0039] Figure 3isablock diagramillustrating selected
components for one embodiment of the processor 30 il-
lustrated in Figure 2, and depicts various functional units
that provide a buffering capability as being logically par-
titioned to accommodate two threads (i.e., thread 0 and
thread 1). The logical partitioning for two threads of the
buffering (or storage) and processing facilities of a func-
tional unit may be achieved by allocating a first predeter-
mined set of entries within a buffering resource to a first
thread and allocating a second predetermined set of en-
tries within the buffering resource to a second thread.
However, in alternative embodiments, buffering can also

10

15

20

25

30

35

40

45

50

55

be dynamically shared. Specifically, this may be
achieved by providing two pairs of read and write point-
ers, afirst pair of read and write pointers being associated
with a first thread and a second pair of read and write
pointers being associated with a second thread. The first
set of read and write pointers may be limited to a first
predetermined number of entries within a buffering re-
source, while the second set of read and write pointers
may be limited to a second predetermined number of
entries within the same buffering resource. In the illus-
trated embodiment, the instruction streaming buffer 106,
the trace cache 62, and an instruction queue 103 are
shown to each provide a storage capacity that is logically
partitioned between the first and second threads.

The Out-of-Order Cluster (71)

[0040] Figure 4 is a block diagram illustrating further
details of one embodiment of the out-of-order cluster 71.
The cluster 71 provides the reservation station, register
renaming, replay and retirement functionality within the
processor 30. The cluster 71 receives microinstructions
from the trace delivery engine 60, allocates resources to
these microinstructions, renames source and destination
registers for each microinstruction, schedules microin-
structions for dispatch to the appropriate execution units
70, handles microinstructions that are replayed due to
data speculation, and then finally retires microinstruc-
tions (i.e., commits the microinstructions to a permanent
architectural state).

[0041] Microinstructions received at the cluster 71 are
simultaneously delivered to a register alias table 120 and
allocation and free list management logic 122. The reg-
ister alias table 120 is responsible for translating logical
register names to physical register addresses used by
the scheduler 72 and the execution units 70. More spe-
cifically, referring to Figure 5, the register alias table 120
renames integer, floating point and segment registers
maintained within a physical register file 124. The register
file 124 is shown to include 126 physical registers that
are aliased to eight (8) architectural registers. In the il-
lustrated embodiment, the register alias table 120 is
shown to include both a front-end table 126 and a back-
end table 128 for utilization by the respective front and
back ends of the processor 30. Each entry within the
register alias table 120 is associated with, or viewed as,
an architectural register, and includes a pointer 130 that
points to a location within the register file 124 at which
the data attributed to the relevant architectural register
is stored. In this way, the challenges provided by alegacy
microprocessor architecture that specifies a relatively
small number of architectural registers may be ad-
dressed.

[0042] The allocation and free list management logic
122 is responsible for resource allocation and state re-
covery within the cluster 71. The logic 122 allocates the
following resources to each microinstruction:

13 EP 1238 341 B1 14

1. A sequence number, which is given to each mi-
croinstruction to track the logical order thereof within
a thread as the microinstruction is processed within
the cluster 71. The sequence number attributed to
each microinstruction is stored together with status
information for the microinstruction within a table 180
(shown below in Figure 10) within the reorder buffer
162.

2. Afree list management entry, that is given to each
microinstruction to allow the history of the microin-
struction to be tracked and recovered in the case of
a state recovery operation.

3. A reorder buffer (ROB) entry, that is indexed by
the sequence number.

4. A physical register file 124 entry (known as a "mar-
ble") within which the microinstruction may store
useful results.

5. A load buffer (not shown) entry.

6. A stall buffer (not shown) entry.

7. An instruction queue entry (e.g., to either a mem-
ory instruction queue or a general instruction ad-
dress queue, as will be described below).

[0043] Inthe event of the logic 122 is not able to obtain
the necessary resources for a received sequence of mi-
croinstructions, the logic 122 will request that the trace
delivery engine 60 stall the delivery of microinstructions
until sufficient resources become available. This request
is communicated by asserting the stall signal 82 illustrat-
ed in Figure 2.

[0044] Regarding the allocation of an entry within the
register file 124 to a microinstruction, Figure 5 shows a
trash heap array 132 that maintains a record of entries
within the register file 124 that have not been allocated
to architectural registers (i.e., for which they are no point-
ers within the register alias table 120). The logic 122 ac-
cesses the trash heap array 132 to identify entries within
the register file 124 that are available to allocation to a
received microinstruction. The logic 122 is also respon-
sible for re-claiming entries within the register file 124
that become available.

[0045] The logic 122 further maintains a free list man-
ager (FLM) 134 to enable tracking of architectural regis-
ters. Specifically, the free list manager 134 maintains a
history of the changes to the register alias table 120 as
microinstructions are allocated thereto. The free list man-
ager 134 provides the capability to "unwind" the register
alias table 120 to point to a hon-speculative state given
a misprediction or an event. The free list manager 134
also "ages" the storage of data in the entries of the reg-
ister file 124 to guarantee that all the state information is
current. Finally, at retirement, physical register identifiers
are transferred from the free list manager 134 to the trash
heap array 132 for allocation to a further microinstruction.
[0046] Aninstruction queue unit 136 delivers microin-
structions to a scheduler and scoreboard unit (SSU) 138
in sequential program order, and holds and dispatches
microinstruction information needed by the execution

10

15

20

25

30

35

40

45

50

55

units 70. The instruction queue unit 136 may include two
distinct structures, namely an instruction queue (IQ) 140
and an instruction address queue (IAQ) 142. The instruc-
tion address queues 142 are small structures designed
to feed critical information (e.g., microinstruction sourc-
es, destinations and latency) to the unit 138 as needed.
The instruction address queue 142 may furthermore
comprise a memory instruction address queue (MIAQ)
that queues information for memory operations and a
general instruction address queue (GIAQ) that queues
information for non-memory operations. The instruction
queue 140 stores less critical information, such as op-
code and immediate data for microinstructions. Microin-
structions are de-allocated from the instruction queue
unit 136 when the relevant microinstructions are read
and written to the scheduler and scoreboard unit 138.
[0047] The scheduler and scoreboard unit 138 is re-
sponsible for scheduling microinstructions for execution
by determining the time at which each microinstructions
sources may be ready, and when the appropriate exe-
cution unitis available for dispatch. The unit 138 is shown
in Figure 4 to comprise a register file scoreboard 144, a
memory scheduler 146, a matrix scheduler 148, a slow-
microinstruction scheduler 150 and a floating point
scheduler 152.

[0048] The unit 138 determines when the source reg-
ister is ready by examining information maintained within
the register file scoreboard 144. To this end, the register
file scoreboard 144, in one embodiment, has 256 bits
that track data resource availability corresponding to
each register within the register file 124. For example,
the scoreboard bits for a particular entry within the reg-
ister file 124 may be cleared upon allocation of data to
the relevant entry or a write operation into the unit 138.
[0049] The memory scheduler 146 buffers memory-
class microinstructions, checks resource availability, and
then schedules memory-class microinstructions. The
matrix scheduler 148 comprises two tightly-bound arith-
metic logic unit (ALU) schedulers that allow the sched-
uling of dependent back-to-back microinstructions. The
floating point scheduler 152 buffers and schedules float-
ing point microinstructions, while the slow microinstruc-
tion scheduler 150 schedules microinstructions not han-
dled by the above mentioned schedulers.

[0050] A checker, replay and retirement unit (CRU)
160 is shown to include a reorder buffer 162, a checker
164, a staging queue 166 and a retirement control circuit
168. The unit 160 has three main functions, namely a
checking function, a replay function and a retirement
function. Specifically, the checker and replay functions
comprise re-executing microinstructions which have in-
correctly executed. The retirement function comprises
committing architectural in-order state to the processor
30. More specifically, the checker 164 operates to guar-
antee that each microinstruction has properly executed
the correct data. In the event that the microinstruction
has not executed with the correct data (e.g., due to a
mispredicted branch), then the relevant microinstruction

15 EP 1238 341 B1 16

is replayed to execute with the correct data.

[0051] The reorder buffer 162 is responsible for com-
mitting architectural state to the processor 30 by retiring
microinstructions in program order. A retirement pointer
182, generated by a retirement control circuit 168, indi-
cates an entry within the reorder buffer 162 that is being
retired. As the retirement pointer 182 moves past a mi-
croinstruction within an entry, the corresponding entry
within the free list manager 134 is then freed, and the
relevant register file entry may now be reclaimed and
transferred to the trash heap array 132. The retirement
control circuit 168 is also shown to implement an active
thread state machine 174 the purpose and functioning
of which will be explained below. The retirement control
circuit 168 controls the commitment of speculative results
held in the reorder buffer 162 to the corresponding archi-
tectural state within the register file 124

[0052] The reorder buffer 162 is also responsible for
handling internal and external events, as will be de-
scribed in further detail below. Upon the detection of an
event occurrence by the reorder buffer 162, a "nuke" sig-
nal 170 is asserted. The nuke signal 170 has the effect
of flushing all microinstructions from the processor pipe-
line that are currently in transit. The reorder buffer 162
also provides the trace delivery engine 60 with an ad-
dress from which to commence sequencing microinstruc-
tions to service the event (i.e., from which to dispatch an
event handler 67 embodied in microcode).

The Reorder Buffer (162)

[0053] Figure 6A is a block diagram illustrating further
details regarding an exemplary embodiment of reorder
buffer 162, that is logically partitioned to service multiple
threads within the multithreaded processor 30. Specifi-
cally, the reorder buffer 162 is shown to include a reorder
table 180 that may be logically partitioned to accommo-
date entries for first and second threads when the proc-
essor 30 is operating in a multithreaded mode When op-
erating in a single thread mode, the entire table 180 may
be utilized to service the single thread. The table 180
comprises, in one embodiment, a unitary storage struc-
ture that, when operating in multithreaded mode, is ref-
erenced by two (2) retirement pointers 182 and 183 that
are limited to predetermined and distinct sets of entries
within the table 180. Similarly, when operating in a single
thread mode, the table 180 is referenced by a single re-
tirement pointer 182. The table 180 includes an entry
corresponding to each entry of the register file 124, and
stores a sequence number and status information in the
form of fault information, a logical destination address,
and a valid bit for each microinstruction data entry within
the register file 124. The entries within the table 180 are
each indexed by the sequence number that constitutes
a unique identifier for each microinstruction. Entries with-
in the table 180 are, in accordance with the sequence
numbers, allocated and de-allocated in a sequential and
in-order manner. In addition to other flow markers, the

10

15

20

25

30

35

40

45

50

55

table 180is furthermore shown to store a shared resource
flow marker 184 and a synchronization flow marker 186
for each microinstruction.

[0054] The reorder buffer 162 includes an event de-
tector 188 that is coupled to receive interrupt requests in
the form of interrupt vectors and also to access entries
within the table 180 referenced by the retirement pointers
182 and 183. The event detector 188 is furthermore
shown to output the nuke signal 170 and the clear signal
172.

[0055] Assuming that a specific microinstruction for a
specific thread (e.g., thread 0) experiences no branch
misprediction, exception or interrupt, then the information
stored in the entry within the table 180 for the specific
instruction will be retired to the architectural state when
the retirement pointer 182 or 183 is incremented to ad-
dress the relevant entry. In this case, an instruction point-
er calculator 190, which forms part of the retirement con-
trol circuit 168, increments the macro-or microinstruction
pointer to point to (1) a branch target address specified
within the corresponding entry within the register file 124
or to (2) the next macro-or microinstruction if a branch is
not taken.

[0056] If a branch misprediction has occurred, the in-
formation is conveyed through the fault information field
to the retirement control circuit 168 and the event detector
188. In view of the branch misprediction indicated
through the fault information, the processor 30 may have
fetched atleast some incorrectinstructions that have per-
meated the processor pipeline. As entries within the table
180 are allocated in sequential order, all entries after the
mispredicted branch microinstruction are microinstruc-
tions tainted by the mispredicted branch instruction flow.
Inresponse to the attempted retirement of a microinstruc-
tion for which a mispredicted branch is registered within
the fault information, the event detector 188 asserts the
clear signal 172, that clears the entire out-of-order back
end of the processor of all state, and accordingly flushes
the out-of-order back end of all state resulting from in-
structions following a misprediction microinstruction. The
assertion of the clear signal 172 also blocks the issue of
subsequently fetched microinstructions that may be lo-
cated within the in-order front-end of the processor 30.
[0057] Within the retirement control circuit 168, upon
notification of a mispredicted branch through the fault
information of a retiring microinstruction, the IP calculator
190 insures that instruction pointers 179 and/or 181 are
updated to represent the correctinstruction pointer value.
Based upon whether the branch is to be taken or not
taken, the IP calculator 190 updates the instruction point-
ers 179 and/or 181with the result data from the register
file entry corresponding to the relevant entry of the table
180, or increments the instruction pointers 179 and 181
when the branch was not taken.

[0058] The event detector 188 also includes a number
of registers 200 for maintaining information regarding
events detected for each of multiple threads. The regis-
ters 200 includes an event information register 202, a

17 EP 1238 341 B1 18

pending event register 204, an event inhibit register 206,
and unwind register 208 and a pin state register 210.
Each of the registers 202-210 is capable of storing infor-
mation pertaining to an event generated for a specific
thread. Accordingly, event information for multiple
threads may be maintained by the registers 200.

[0059] Figure 6B is a schematic illustration of an ex-
emplary pending event register 204 and an exemplary
event inhibit register 206 for a first thread (e.g., TO).
[0060] Pending event and event inhibit registers 204
and 206 are provided for each thread supported within
the multithreaded processor 30. Distinct registers 204
and 206 may be provided for each thread, or alternatively
a single physical register may be logically partitioned to
support multiple threads.

[0061] The exemplary pending eventregister 204 con-
tains a bit, or other data item, for each event type that is
registered by the event detector 188 (e.g., the events
described below with reference to Figure 8). These
events may constitute internal events, which are gener-
ated internally within the processor 30, or external events
generated outside the processor 30 (e.g., pin events that
are received from the processor bus). The pending event
register 204 for each thread, in the illustrated embodi-
ment, does not include a bit for writeback event, as such
events are not thread specific and accordingly are not
"queued" in the pending event register. To this end, the
event detector 188 may include writeback detect logic
205 that asserts a writeback signal on the detection of a
writeback event. The bits within the pending event reg-
ister 204 for each thread are set by the event detector
188 that triggers a latch which sets the appropriate bit
within the pending event register 204. In an exemplary
embodiment, a set bit associated with a predetermined
event, within the pending event register 204 provides an
indication, as will be described below, that an event of
the relevant type is pending.

[0062] The event inhibit register 206 for each thread
similarly contains a bit, or other data structure, for each
event type that is recognized by the event detector 188,
this bit being either set or reset (i.e., cleared) to record
an event as being a break event with respect to the spe-
cific thread. The respective bits within an event inhibit
register 206 are set by a control register write operation,
that utilizes a special microinstruction that modifies non-
renamed state within the processor 30. A bit within an
event inhibit register 206 may similarly be reset (or
cleared) utilizing a control register write operation.
[0063] Anexemplary processor may also have certain
modes in which bits in the event inhibit register 206 may
be set to inhibit select events within the respective
modes.

[0064] Bits for a specific event type maintained within
each of the pending event and event inhibit registers 204
and 206 for a specific thread are outputted to an AND
gate 209, which in turn outputs an event detected signal
211 foreach eventtype when the contents of the registers
204 and 206 indicate that the relevant event type is pend-

10

15

20

25

30

35

40

45

50

55

10

ing and not inhibited. For example, where an event type
is not inhibited, upon the registering of an event within
the pending eventregister 204, the eventwillimmediately
be signaled as being detected by the assertion of the
event detected signal 211 for the relevant event type. On
the other hand, should the event type be inhibited by the
contents of the event inhibit register 206, the event oc-
currence will be recorded within the pending event reg-
ister 204, but the event detected signal 211 will only be
asserted if the appropriate bit within the event inhibit reg-
ister 206 is cleared while the event is still recorded as
pending within the register 204. Thus, an event may be
recorded within the pending event register 204, but the
event detected signal 211 for the relevant event occur-
rence may only be signaled at some later time when the
inhibiting of the event for the specific thread is removed.
[0065] The event detected signals 211 for each event
type for each thread are fed to event handling logic (event
prioritization and selection logic) and clock control logic,
as will further be described below.

[0066] An eventhandler for a specific event is respon-
sible for clearing the appropriate bit within the pending
eventregister 204 for a specific thread once the handling
of the event has been completed.. In an alternative em-
bodiment, the pending event register may be cleared by
hardware.

Event Occurrences and Event Handling within a Multi-
threaded Processor Environment

[0067] Events within the multithreaded processor 30
may be detected and signaled from a variety of sources.
For example, the in-order front-end of the processor 30
may signal an event, and the execution units 70 may
likewise signal an event. Events may comprise interrupts
and exceptions. Interrupts are events that are generated
outside the processor 30, and may be initiated from a
device to the processor 30 via a common bus (not
shown). Interrupts may cause the flow of control to be
directed to a microcode event handler 67. Exceptions
may be loosely classified as faults, traps and assist,
among others. Exceptions are events that are typically
generated within the processor 30.

[0068] Events are communicated directly to the event
detector 188 within the reorder buffer 162, responsive to
which the event detector 188 performs a number of op-
erations pertaining to the thread for which, or against
which, the eventwas generated. Ata high-level, the event
detector 188, responsive to the detection of an event,
suspends retirement of microinstructions for the thread,
writes the appropriate fault information into the table 180,
asserts the nuke signal 170, invokes an event handler
67 to process the event, determines a restart address,
and then restarts the fetching of microinstructions. The
events may be communicated directly to the event de-
tector 188 in the form of an interrupt request (or interrupt
sector) or through fault information recorded within the
reorder table 180 for an instruction of either a first or

19 EP 1238 341 B1

second thread that is retiring.

[0069] The assertion of the nuke signal 170 has the
effect of clearing both the in-order front-end and the out-
of-order back-end of the multithreaded processor 30 of
state. Specifically, numerous functional units, but not
necessarily all, are cleared of state and microinstructions
responsive to assertion of the nuke signal 170. Some
parts of the memory order buffer 48 and bus interface
unit 32 are not cleared (e.g., retired but not committed
stores, bus snoops, etc.) The assertion of the nuke signal
170 further stalls instruction fetching by the front-end and
also stalls the sequencing of microinstructions into the
microcode queue 68. While this operation can be per-
formed with impunity within a single-threaded multiproc-
essor, or a multiprocessor executing the single thread,
where multiple threads are extant and being processed
within a multithreaded processor 30, the presence of oth-
er threads cannot be ignored when addressing the event
occurrence pertaining to a single thread. Accordingly, the
present invention proposes a method and apparatus for
handling an event within a multithreaded processor that
takes cognizant of the processing and presence of mul-
tiple threads within the multithreaded processor 30 when
an event for a single thread occurs.

[0070] Figure 7A is a flowchart illustrating a method
220, according to exemplary embodiment of the present
invention, of processing an event occurrence within a
multithreaded processor 30. The method 220 commenc-
es at block 222 with the detection by the event detector
188 of a first event for a first thread. Figure 8 is a dia-
grammatic representation of a number of exemplary
events 224 that may be detected by the event detector
188 at block 222. The events represented in Figure 8
have been loosely grouped according to characteristics
of the responses to the events 224. Afirst group of events
includes a RESET event 226 and a MACHINE CHECK
event 228 that are signaled by the event detector 188 to
multiple threads within a multithreaded processor 30, in
the manner described below, immediately upon detec-
tion and cause all threads to go to the same event handler
67 at the same time. A second group of events includes
a FAULT event 235, an ASSIST event 232, a DOUBLE
FAULT event 234, a SHUTDOWN event 236 and a SMC
(Self Modifying Code) event 238 that are each reported
on the retirement of the microinstruction of a specific
thread that signaled the event. Specifically, the event de-
tector 188 will detect an event of the second group upon
the retirement of a microinstruction for which fault infor-
mation indicates a fault condition. The detection of an
event of the second group is signaled by the event de-
tector 188 only to the thread for which the relevant event
was generated.

[0071] A third group of events include an INIT (short
reset) event 240, an INTR (local interrupt) event 242; a
NMI (non-maskable interrupt) event 244, a DATA
BREAKPOINT event 246, a TRACE MESSAGE event
248 and an A20M (address wrap-around) event 258.
Events of the third group are reported on the retirement

10

15

20

25

30

35

40

45

50

55

11

20

of a microinstruction having an accept interrupt or accept
trap flow marker. The detection of event of the third group
is signaled by the event detector 188 only to the thread
for which the relevant event was generated.

[0072] A fourth group of events include a SMI (system
managementinterrupt) event 250,a STOP CLOCK event
252, and a PREQ (probe request) event 254. The events
of the fourth group are signaled to all threads extant within
the multithreaded processor 30, and are reported when
any one of multiple threads retires a microinstruction hav-
ing an appropriate interrupt flow marker. No synchroni-
zation is implemented between multiple threads respon-
sive to any of the events of the fourth group.

[0073] A fifth group of events, according to an exem-
plary embodiment, are specific to a multithreaded proc-
essor architecture and are implemented within the de-
scribed embodiment to address a number of considera-
tions that are particular to a multithreaded processor en-
vironment. The fifth group of events include a VIRTUAL
NUKE event 260, a SYNCHRONIZATION event 262 and
a SLEEP event 264.

[0074] The VIRTUAL NUKE event 260 is an event that
is registered with respect to a second thread when (1) a
first thread within the multithreaded processor 30 has a
pending event (e.g., any of the events described above
is pending), (2) the second thread has no pending events
(other than the event 260), and (3) a microinstruction
having either a shared resource flow marker 184 or a
synchronization flow marker 186 is retired by the reorder
buffer 162. A VIRTUAL NUKE event 260 has the effect
of invoking a virtual nuke event handler that restarts ex-
ecution of the second thread at the microinstruction sub-
sequent to the retired microinstruction having the flow
marker 184 or 186.

[0075] The SYNCHRONIZATION event 262 is signal-
ed by microcode when a particular thread (e.g., a first
thread) is required to modify a shared state or resource
within the multithreaded processor 30. To this end, the
microcode sequencer 66 inserts a synchronization mi-
croinstruction into the flow for the first thread and, in order
to avoid a deadlock situation, marks the "synchronization
microinstruction” with both a shared resource flow mark-
er 184 and a synchronization flow marker 186. The SYN-
CHRONIZATION event 262 is only detected (or regis-
tered) upon the retirement of the synchronization micro-
instruction for the first thread, and upon the retirement of
a microinstruction for the second thread that has a syn-
chronization flow marker 186 associated therewith. A
SYNCHRONIZATION event 262 has the effect of invok-
ing a synchronization event handler that restarts execu-
tion of the first thread at an instruction pointer stored in
a microcode temporary register. Further details regard-
ing the handling of a SYNCHRONIZATION event 262
are provided below. The second thread performs the vir-
tual NUKE 260.

[0076] The SLEEP event 264 is an event that causes
a relevant thread to transition from an active state to an
inactive (or sleep) state. The inactive thread may then

21 EP 1238 341 B1 22

again be transitioned from the inactive to the active state
by an appropriate BREAK event. The nature of the
BREAK event that transitions the thread back to the ac-
tive state is dependent upon the SLEEP event 264 that
transitioned the thread to the inactive state. The entry to
and exiting from an active state by threads is detailed
below.

[0077] Figure 9is a block diagram showing exemplary
content of the reorder table 180 within the reorder buffer
162 that shall be described below for the purposes of
explaining event and clearing point (also termed "nuke
point"”) detection within an exemplary embodiment of the
present invention. The detection of any one of the above
events by the event detector 188 at block 222 may occur
responsive to an event 266 communicated to the event
detector 188 from an internal source within the multi-
threaded processor 30 or from an external source outside
the processor 30. An example of such an event 266 com-
munication may be an interrupt vector. Alternatively, an
event occurrence may be communicated to the event
detector 188 by fault information 268 for a microinstruc-
tion of a particular thread (e.g., thread 1) that is being
retired and accordingly identified by the retirement point-
er 182. It will be noted that, for external events, there is
one (1) signal per thread (e.g., signals 266 and 267 re-
spectively). For internal events, the reorder buffer 162
entry containing the thread dictates the thread to which
the fault pertains by its position (e.g., TO vs. T1). Upon
the detection of an event, the event detector 188 stores
event information (e.g., event type, event source, etc.)
concerning the particular event within the event informa-
tion register 202, and furthermore registers a pending
eventfor the relevant thread in the pending eventregister
204. As described above, the registering of a pending
event within the pending event register 204 for the rele-
vant thread comprises setting a bit, associated with the
particular event, within the register 204. It will furthermore
be noted that the event may be effectively detected, by
assertion of an appropriate event detected signal 211, if
the event is not inhibited by a bit setting within the event
inhibit register 206 for the relevant thread and, in some
cases, a microinstruction includes an appropriate flow
marker.

[0078] Returning now to the flowchart shown in Figure
7A, following the detection of the first event for the first
thread at block 222, the event detector 188 stops retire-
ment of the first thread at block 270 and asserts a "pre-
nuke" signal 169. The pre-nuke signal 169 is asserted to
avoid a deadlock situation in which the first thread dom-
inates the instruction pipeline to the exclusion of the sec-
ond thread. Specifically, should the second thread be
excluded from access to the instruction pipeline, the con-
ditions with respect to the second thread which are re-
quired to commence a multithreaded nuke operation may
not occur. The pre-nuke signal 169 is accordingly prop-
agated to the front-end of the processor, and specifically
to the memory execution unit 42, to starve the processor
pipeline of microinstructions constituting the first thread

10

15

20

25

30

35

40

45

50

55

12

for which the event was detected. The starving of the
processor pipeline may, merely for example, be per-
formed by disabling the prefetching of instruction and Self
Modifying Code (SMC) operations performed by the
memory execution unit 42 or other components of the
front-end. In summary, by stopping the retirement of mi-
croinstructions of the first thread, and/or by halting or
substantially reducing, the feeding of microinstructions
with the first thread into the processor pipeline, the sec-
ond thread is given preference in the processor and the
probability of a deadlock situation is reduced.

[0079] At decision box 272, a determination is made
as to whether a second thread is active within the multi-
threaded processor 30, and accordingly being retired by
the reorder buffer 162. If no second thread is active, the
method 220 proceeds directly to block 274, where a first
type of clearing operation termed a "nuke operation” is
performed. The determination as to whether a particular
thread is active or inactive may be performed with refer-
ence to the active thread state machine 174 maintained
by the retirement control circuit 168. The nuke operation
commences with the assertion of the nuke signal 170
that has the effect of clearing both the in-order front end
and the out-of-order back-end of the multithreaded proc-
essor 30 of state, as described above. As only the first
thread is active, no consideration needs to be given to
the effect of the nuke operation on any other threads that
may be present and extant within the multithreaded proc-
essor 30.

[0080] Onthe other hand, if it is determined that a sec-
ond thread is active within the multithreaded processor
30 at decision box 272, the method 220 proceeds to per-
form a series of operations that constitute the detection
of a clearing point (or nuke point) for the second thread
at which a nuke operation may be performed with re-
duced negative consequences for the second thread.
The nuke operation performed following the detection of
a clearing point is the same operation as performed at
block 274, and accordingly clears the multithreaded proc-
essor 30 of state (i.e., state for both the first and second
threads). The clearing of state includes microinstruction
"draining" operations described elsewhere in the speci-
fication. In an exemplary embodiment disclosed in the
present application, the nuke operation performed fol-
lowing the detection of a clearing point does not discrim-
inate between the state maintained for a first thread and
the state maintained for a second thread within the mul-
tithreaded processor 30. In an alternative embodiment,
the nuke operation performed following the detection of
a clearing point may clear state for only a single thread
(i.e., the thread for which the event was detected), where
a significant degree of resource sharing occurs within a
multithreaded processor 30 and where such shared re-
sources are dynamically partitioned and un-partitioned
to service multiple threads, the clearing of state for a sin-
gle thread is particularly complex. However, this alterna-
tive embodiment may require increasingly complex hard-
ware.

23 EP 1238 341 B1 24

[0081] Following the positive determination at decision
box 272, a further determination is made at decision box
278 as to whether the second thread has encountered
an event. Such an event may comprise any of the events
discussed above, except the VIRTUAL NUKE event 260.
This determination is again made by the event detector
188 responsive to an event signal 266 or a fault informa-
tion signal 269 for the second thread. Information con-
cerning any event encountered by the second thread is
stored in the portion of the eventinformation register 202
dedicated to the second thread, and the event occur-
rence is registered within the pending event register 204.
[0082] Ifthe secondthread hasindependently encoun-
tered an event, then the method proceeds directly to
block 280, where a multithreaded nuke operation is per-
formed to clear the multithreaded processor 30 of state.
Alternatively, should the second thread not have encoun-
tered an event, a determination is made at decision box
282 whether the first event encountered for the first
thread requires that a shared state, or shared resources,
be modified to handle the first event. For example, where
the first event comprises a SYNCHRONIZATION event
262 as discussed above, thisindicates that the first thread
requires access to a shared state resource. The SYN-
CHRONIZATION event 262 may be identified by the re-
tirement of a synchronization microinstruction for the first
thread that has both shared resource and synchroniza-
tion flow markers 184 and 186 associated therewith. Fig-
ure 10 is a block diagram, similar to that shown in Figure
9, that shows exemplary content for the reorder table
180. The portion of the table 180 allocated to the first
thread (e.g., thread 0), is shown to include a synchroni-
zation microinstruction that is referenced by the retire-
ment pointer 182. The synchronization microinstruction
is furthermore shown to have a shared resource flow
marker 184 and a synchronization flow marker 186 as-
sociated therewith. The retirement of the illustrated syn-
chronization microinstruction will be registered by the
event detector 188 as the occurrence of a SYNCHRO-
NIZATION event 262.

[0083] If the first event for the first thread (e.g., thread
0) is determined not to modify a shared state or resource,
the method 220 proceeds to decision box 284, where a
determination is made as to whether the second thread
(e.g., thread 1) is retiring a microinstruction that has a
shared resource flow marker 184 associated therewith.
Referring to Figure 9, the retirement pointer 182 for the
thread 1 is shown to reference a microinstruction having
both a shared resource flow marker 184 and a synchro-
nization flow marker 186. In this situation, the condition
presented at decision box 284 will have been fulfilled,
and the method 220 accordingly proceeds to block 280,
where the multithreaded nuke operation is performed.
Alternatively, should the retirement pointer 182 for the
second thread (e.g., thread 1) not reference a microin-
struction having either a shared resource flow marker
184 or a synchronization flow marker 186, the method
proceeds to block 286, where retirement of the second

10

15

20

25

30

35

40

45

50

55

13

thread continues by advancement of the retirement point-
er 182. From the block 286, the method 220 loops back
to the decision box 278, where a determination is again
made whether the second thread has encountered an
event.

[0084] If, at decision box 282, it is determined that the
handling of the first event for the first thread (e.g., thread
0) requires the modification of a shared state resource,
the method 220 proceeds to decision box 288, where a
determination is made whether the second thread (e.g.,
thread 1) is retiring a microinstruction that has a synchro-
nization flow marker 186 associated therewith. If so, then
the multithreaded nuke operation is performed at block
280. If not, the retirement of microinstruction for the sec-
ond thread continues at block 286 until either an event
is encountered for the second thread or the retirement
pointer 182 for the second thread indexes a microinstruc-
tion having a synchronization flow marker 186 associated
therewith.

[0085] Following the commencement of the nuke op-
eration at block 280, at block 290, an appropriate event
handler 67, implemented in microcode and sequenced
from the microcode sequencer 66, proceeds to handle
the relevant event.

Virtual Nuke Event

[0086] Asdescribed above, the VIRTUAL NUKE event
260 is handled in a slightly different manner than other
events. To this end, Figure 7B is a flow chart illustrating
a method 291, according to an exemplary embodiment,
of detecting and handling a VIRTUAL NUKE event 260.
The method 291 assumes that no events for a second
thread are currently pending (i.e., recorded in a pending
register for the second thread).

[0087] The method 291 begins at block 292 with the
detection by the event detector 188 of a first event for
the first thread. Such an event could be any one of the
events discussed above with reference to Figure 8.
[0088] At block 293, the event detector 188 stops re-
tirement of the first thread. At block 294, the event de-
tector 188 detects retirement of a microinstruction with
either a shared resource flow marker 184 or a synchro-
nization flow marker. At block 295, a "virtual nuke" han-
dler is invoked from the microcode sequencer 66. The
"virtual nuke" event handler, at block 296, restarts exe-
cution of the second thread at a microinstruction subse-
quent to the microinstruction retired above at block 294.
The method 291 then ends at block 297.

The Nuke Operation

[0089] Figure 11A is a flowchart illustrating a method
300, according to exemplary embodiment, of performing
a clearing (or nuke) operation within a multithreaded
processor supporting at least first and second threads.
The method 300 commences at block 302 with the as-
sertion of the nuke signal 170 by the event detector 188

25 EP 1238 341 B1

responsive to the occurrence and detection of an event.
The nuke signal 170 is communicated to numerous func-
tional units within the multithreaded processor 30, and
the assertion and de-assertion thereof defines a window
within which activities in preparation for the clearing of
state and the configuration of functional units are per-
formed. Figure 12 is a timing diagram showing the as-
sertion of the nuke signal 170 occurring synchronous with
the rising edge of a clock signal 304.

[0090] At block 303, the active thread state machine
is evaluated.
[0091] Atblock 306 the sequence number and last mi-

croinstruction signal, that indicates whether the microin-
struction on which the event occurs retired or not, for both
the first and the second threads are communicated to
the allocation and free list management logic 122 and
the TBIT whichis a structure in a Trace Branch Prediction
Unit (TBPU) (thatis in turn part of the TDE 60) for tracking
macroinstruction and microinstruction pointer informa-
tion within the in-order front-end of the processor 30. The
TBIT utilizes this information to latch information con-
cerning the event (e.g., the microinstruction and mac-
roinstruction instruction pointer).

[0092] Atblock 308, the event detector 188 constructs
and propagates an event vector for each of the first and
second threads to the microcode sequencer 66. Each
event vector includes, inter alia, information that identi-
fies (1) the physical reorder buffer location that was re-
tiring when the nuke point (or clearing point) was located
(i.e., the value of each retirement pointer 182 when the
nuke point was identified), (2) an event handler identifier
that identifies a location within the microcode sequencer
66 where microcode constituting an event handler 67 to
process the detected event is located, and (3) a thread
identifier to identify either the first or the second thread,
and (4) a thread priority bit that determines the priority of
the eventhandler 67 relative to the event handler invoked
for other threads.

[0093] At block 310, the allocation and free list man-
agement logic 122 utilizes the sequence numbers com-
municated at block 306 to advance a shadow register
alias table (shadow RAT) to a point at which the nuke
point was detected and, at block 312, the state of the
primary register alias table 120 is restored from the shad-
ow register alias table.

[0094] At block 314, the allocation and free list man-
agement logic 122 recovers register numbers (or "mar-
bles") from the free list manager 134, and assigns the
recovered register numbers to the trash heap array 132
from which the register numbers may again be allocated.
The allocation and free list management logic 122 fur-
thermore asserts a "recovered" signal (not shown) when
all appropriate register numbers have been recovered
from the free list manager 134. The nuke signal 170 is
held in an asserted state until this "recovered" signal is
received from the allocation and free list management
logic 122.

[0095] Atblock 316, all "senior" stores (i.e., stores that

10

15

20

25

30

35

40

45

50

55

14

26

have retired but have not yet updated memory) for both
the firstand second threads are drained from the memory
order buffer using store commit logic (not shown).
[0096] At block 320, the event detector 188 then de-
asserts the nuke signal 170 on a rising edge of the clock
signal 304, as shown in Figure 12. It will be noted that
the nuke signal 170 was held in an asserted state for a
minimum of three clock cycles of the clock signal 304.
However, in the event that the "recovered" signal from
the allocation and free list management logic 122 is not
asserted within the first two clock cycles of the clock sig-
nal 304 following the assertion of the nuke signal 170,
the event detector 188 will extend assertion of the nuke
signal 170 beyond the illustrated three clock cycles. The
nuke signal 170 may, in one embodiment, be held long
enough (e.g., the three clock cycles) to allow completion
of blocks 303, 306 and 308 discussed above. The nuke
signal 170 may be required to be held for additional cycles
to allow completion of blocks 310, 312,314 and 316. To
this end, the memory order buffer asserts a "store buffer
drained" signal to extend the assertion of the nuke signal.
[0097] Atblock 322, the microcode sequencer 66 and
other functional units within the multithreaded processor
30 examine "active bits" maintained by the active thread
state machine 174 to determine whether the first and
second threads are each within an active or an inactive
state following the occurrence of the event. More specif-
ically, the active thread state machine 174 maintains a
respective bit indication for each thread extant within the
multithreaded processor 30 that indicates whether the
relevant thread is in an active or inactive (sleep) state.
The event, detected by the event detector 188 and re-
sponsive to which the event detector 188 asserted the
nuke signal 170, may comprise either a SLEEP event
264 or a BREAK event that transitions either the first or
the second thread between active and inactive states.
As indicated at 324 in Figure 12, the active thread state
machine 174 is evaluated during the assertion of the nuke
signal 170, and the state of the "active bits" are accord-
ingly regarded as valid upon the de-assertion of the nuke
signal 170

[0098] Atdecision box 326, each of the functional units
that examined the active bits of the active thread state
machine 174 makes a determination as to whether both
the first and second threads are active. If both threads
are determined to be active based on the state of the
active bits, the method 300 proceeds to block 328, where
each of the functional units is configured to support and
service both the first and the second active threads. For
example, storage and buffering capabilities provided
within various functional units may be logically partitioned
by activating a second pointer, or a second set of point-
ers, that are limited to a specific set (or range) of entries
within a storage array. Further, some MT specific support
may be activated if two threads are active. For example,
thread selection logic associated with the microcode se-
quencer may sequence threads from a first thread (e.g.,
TO0), from a second thread (e.g., T1) or from both first and

27 EP 1238 341 B1 28

second threads (e.g., TO and T1 in a "ping-pong" manner
based on the output of the active thread state machine
174. Further, localized clock gating may be performed
based onthe bit output of the active thread state machine.
In a further embodiment, any number of state machines
within a processor may modify their behavior, or change
state, based on the output of the active thread state ma-
chine. At block 330, the microcode sequencer 66 then
proceeds to sequence microinstructions for both the first
and second threads.

[0099] Alternatively, if it is determined at decision box
326 that only one of the first and second threads is active,
or that both threads are inactive, each of the functional
units is configured to support and service only a single
active thread at block 332 and some MT specific support
may be deactivated. Where no threads are active, func-
tional units are as a default setting configured to support
a single active thread. In the case where a functional unit
was previously configured (e.qg., logically partitioned) to
support multiple threads, pointers utilized to support fur-
ther threads may be disabled, and the set of entries within
a data array that are referenced by remaining pointer
may be expanded to include entries previously refer-
enced by the disabled pointers. In this way, it will be ap-
preciated that data entries that previously allocated to
other threads may then be made available for use by a
single active thread. By having greater resources avail-
able to the single active thread when further threads are
inactive, the performance of the single remaining thread
may be enhanced relative to the performance thereof
when other threads are also supported within the multi-
threaded processor 30.

[0100] At block 334, the microcode sequencer 66 ig-
nores event vectors for an inactive thread, or inactive
threads, and sequences microinstructions only for a pos-
sible active thread. Where no threads are active, the mi-
crocode sequencer 66 ignores the event vectors for all
threads.

[0101] By providing active bits maintained by the active
thread state machine 174 that can be examined by var-
ious functional units upon the de-assertion of the nuke
signal 170 (signaling the end of a nuke operation), a con-
venient and centralized indication is provided according
to which the various functional units may be configured
to support a correct number of active threads within a
multithreaded processor 30 following completion of a
nuke operation.

[0102] Figure 11B is a block diagram showing exem-
plary configuration logic 329, which is associated with a
functional unit 331, and that operates to configure the
functional unit 331 to support one or more active threads
within the multithreaded processor. The functional unit
331 may be any one of the functional units described
above, or any functional unit that will be understood by
a person skilled in the art to be included within a proces-
sor. The functional unit 331 is shown to have both storage
and logic components that are configured by the config-
uration logic 329. For example, the storage component

10

15

20

25

30

35

40

45

50

55

15

may comprise a collection of registers. Each of these
registers may be allocated to storing microinstruction or
data for a specific one of these threads when multiple
threads are active (i.e., when a processor is operating in
a MT mode). Accordingly, the storage component as
shownin Figure 11B to be logically partitioned to support
first and second threads (e.g., TO and T1). Of course, the
storage component could be partitioned to support any
number of active threads.

[0103] The logic component is shown to include MT
logic that is specifically to support multithreaded opera-
tion within the processor (i.e., a MT mode). [

[0104] The configurationlogic 329 is shown to maintain
pointer values 333, which are outputted to the storage
component of the functional unit 331. In one exemplary
embodiment, these pointer values 333 are utilized to log-
ically partition the storage component. For example, a
separate pair of read and write pointer values could be
generated for each active thread. The upper and lower
bounds of the pointer values for each thread are deter-
mined by the configuration logic 329 dependent on the
number of active threads. For example, the range of reg-
isters that may be indicated by a set of pointer values for
a particular thread may be increased to cover registers
previously allocated to another thread, should that other
thread become inactive.

[0105] The configuration logic 329 also includes MT
support enable indications 335, that are outputted to the
logic component of the functional unit to either enable or
disable the MT support logic of the functional logic 331.
[0106] The active bits 327, outputted by the active
thread state machine 174, provide input to the configu-
ration logic, and are utilized by the configuration logic
329 to generate the appropriate point of values 333 and
to provide the appropriate MT support enable outputs.

Exclusive Access by an Event Handler

[0107] Certain event handlers (e.g., those for handling
the paging and synchronization events) require exclusive
access to the multithreaded processor 30 to utilize
shared resources and to modify shared state. Accord-
ingly, the microcode sequencer 66 implements an exclu-
sive access state machine 69 which gives exclusive ac-
cess, in turn, to event handlers for the first and second
threads where either of these event handlers requires
such exclusive access. The exclusive access state ma-
chine 69 may only be referenced when more than one
thread is active within the multithreaded processor 30. A
flow marker, associated with an event handler that is pro-
vided with exclusive access, is inserted into the flow for
the thread to mark the end of the exclusive code com-
prising the event handler. Once the exclusive access is
completed for all threads, the microcode sequencer 66
resumes normal issuance of microinstructions.

[0108] Figure 13 is a flowchart illustrating a method
400, according to exemplary embodiment, of providing
exclusive access to an event handler 67 within a multi-

29 EP 1238 341 B1

threaded processor 30. The method 400 commences at
block 402 with the receipt by the microcode sequencer
66 of first and second event vectors, for respective first
and second threads, from the event detector 188. As de-
scribed above, each of the first and second event vectors
will identify a respective event handler 67.

[0109] At decision box 403, a determination is made
as to whether more than one (1) thread is active- This
determination is made by the microcode sequencer with
reference to the active thread state machine 174. If not,
the method 400 proceeds to block 434. If so, the method
400 proceeds to decision box 404.

[0110] At decision box 404, the microcode sequencer
66 makes a determination as to whether either of the first
or second event handlers 67 requires exclusive access
to a shared resource, or modifies a shared state. If so,
at block 406 the microcode sequencer 66 implements
the exclusive access state machine 69 to provide exclu-
sive access, in turn, to each of the first and second event
handlers 67. Figure 14 is a state diagram depicting op-
eration, according to exemplary embodiment, of the ex-
clusive access state machine 69. The state machine 69
is shown to include five states. In a first state 408, mi-
crocode for the first and second threads is both issued
by the microcode sequencer 66. On the occurrence of a
nuke operation 410 responsive to an event that requires
an exclusive access event handler, the state machine 69
transitions to a second state 412, wherein a first event
handler 67 (i.e., microinstructions), associated with an
event for a first thread, is issued. Following the sequenc-
ing of all microinstructions that constitute the first event
handler 67, and also following completion of all opera-
tions instructed by such microinstructions, the microcode
sequencer 66 then issues a stall microinstruction (e.g.,
microinstruction having an associated stall flow marker)
at 414 to transition the state machine 69 from the second
state 412 to a third state 416 in which issuance of a first
thread microinstructions is stalled. At 418, the stall mi-
croinstruction issued at 414 is retired from the reorder
buffer 162 to thereby transition the state machine 69 from
the third state 416 to a fourth state 420 in which the mi-
crocode sequencer 66 issues the second event handler
67, associated with an event for the second thread. Fol-
lowing the sequencing of all microinstructions that con-
stitute the second event handler 67, and also following
the completion of all operations instructed by such mi-
croinstructions, the microcode sequencer 66 then issues
afurther stall microinstruction at 422 to transition the state
machine 69 from the fourth state to a fifth state 424 in
which the second event handler 67 is stalled. At 426, the
stall microinstruction issued at 422 is retired from the
reorder buffer 162 to thereby transition the state machine
69 from the fifth state 424 back to the first state 408.
[0111] At block 432, the normal sequencing and issu-
ance of microinstructions for both the first and second
threads is resumed, assuming that both threads are ac-
tive.

[0112] Alternatively, ifitis determined the decision box

10

15

20

25

30

35

40

45

50

55

16

30

404 that neither of the first or second event handlers re-
quire exclusive access to shared resources or state of
the processor 30, the method proceeds to block 434,
where the microcode sequencer 66 sequences microc-
ode constituting the first and second event handlers 67
a non-exclusive, interleaved manner.

The Active Thread State Machine 174

[0113] Figure 15 is a state diagram 500 illustrating
states, according to an exemplary embodiment, that may
be occupied by the active thread state machine 174 and
also illustrating transition events, according to an exem-
plary embodiment, that may cause the active thread state
machine 174 to transition between the various states.
[0114] The active thread state machine 174 is shown
to reside in one of four states, namely a single thread O
(STO) state 502, a single thread 1 (ST1) state 504, a
multi-thread (MT) state 506, and a zero thread (ZT) state
508. The active thread state machine 174 maintains a
single active bit for each thread that, when set, identifies
the associated thread as being active and, when reset,
indicates the associate thread as being inactive or
asleep.

[0115] Thetransitions between the four states 502-508
are triggered by event pairs, each event of an event pair
pertaining to the first or the second thread. In the state
diagram 500, a number of event types are indicated as
contributing towards a transition between states. Specif-
ically, a SLEEP event is an event that causes a thread
to become inactive. A BREAK event is an event that,
when occurring for a specific thread, causes the thread
to transition from an inactive state to an active state.
Whether a particular event qualifies as a BREAK event
may depend on the SLEEP event that caused the thread
to become inactive. Specifically, only certain events will
cause athread to become active once inactive as a result
of a specific SLEEP event. A NUKE event is any event,
when occurring for specific thread, that results in the per-
formance of a nuke operation, as described above. All
events discussed above with reference to Figure 8 po-
tentially comprise nuke events. Finally, a "no event" oc-
currence with respect to a specific thread is also illustrat-
ed within the state diagram 500 as being a condition that
may be present in combination with an event occurrence
with respect to a further thread to cause a state transition.
[0116] In one embodiment, if a SLEEP eventis signal-
ed for a particular thread, and a BREAK event for that
thread is pending, the BREAK event is serviced imme-
diately (e.qg., the thread does not go to sleep and wake
later to service the BREAK event). The reverse may also
be true, in that a BREAK event may be signaled for a
particular thread, and a SLEEP event is pending, where-
after the BREAK event s then serviced.

[0117] Upon the assertion of the nuke signal 170 by
the event detector 188, the active thread state machine
174 is evaluated as indicated at 324 in Figure 12. Fol-
lowing de-assertion of the nuke signal 170, all functional

31 EP 1238 341 B1 32

units within the multithreaded processor 30 are config-
ured based on the active bits maintained by the active
thread state machine 174. Specifically, the checker, re-
play and retirement unit (CRU) 160 propagates a signal
generated based on the active bits to all effected func-
tional units to indicate to the functional units how many
threads are extant within the multithreaded processor,
and which of these threads are active. Following the as-
sertion of the nuke signal 170, the configuration of the
functional units (e.g. partitioning or un-partitioning) is typ-
ically completedin one clock cycle of the clock signal 304.

Thread Exit and Entry

[0118] The present invention proposes an exemplary
mechanism whereby threads within a multithreaded
processor 30 may enter and exit (e.g., become active or
inactive) where such entry and exiting occurs in a uniform
sequence regardless of the number of threads running,
and where clock signals to various functional units may
be gracefully stopped when no further threads within the
multithreaded processor 30 are active or running.
[0119] As described above with reference to the state
diagram 500, thread entry (or activation) occurs respon-
sive to the detection of a BREAK event for a currently
inactive thread. BREAK event definition for a specific in-
active thread is dependent on the reason for the relevant
thread being inactive. Thread exit occurs responsive to
a SLEEP event for a currently active thread. Examples
of SLEEP events include the execution of a halt (HLT)
instruction included within an active thread, the detection
of a SHUTDOWN or an ERROR _ SHUTDOWN condi-
tion, or a"wait for SIPI" (start-up inter-processor interrupt)
condition with respect to the active thread.

[0120] Figure 16A is a flowchart illustrating a method
600, according to exemplary embodiment of the present
invention, of exiting an active thread on the detection of
a SLEEP event for the active thread. The method 600
commences at block 602, where all required state for the
active thread is saved, and all register entries within the
register file 124 that have been previously allocated to
microinstructions for the active thread are de-allocated.
Merely for example, of the 128 register entries within the
register file 124, 28 entries that were previously allocated
to microinstructions of the active thread are de-allocated.
The content of the de-allocated registers for the active
thread is saved in a "scratch pad", that may comprise a
register array or random access memory (RAM) coupled
to a control register bus within the multithreaded proces-
sor 30.

[0121] The de-allocation of the register entries within
the register file 124 may be performed by a deallocate
microcode sequence that is issued by the microcode se-
guencer 66 responsive to the detection of a STOPCLK,
HALT (HLT) or SHUTDOWN event for the active thread.
The de-allocate microcode sequence operates to re-
move (or invalidate) records for the register file entries
within the free list manager 134, and to create (or vali-

10

15

20

25

30

35

40

45

50

55

17

date) records for the register file entries within the trash
heap array 132. In other words, records for the de-allo-
cate register file entries are transferred from the free list
manager 134 to the trash heap array 132 by the de-allo-
cated microcode sequence.

[0122] Figure 16B is a diagrammatic representation of
an exemplary embodiment of the operations that may be
performed at block 602. For example, the transfer of the
contents of a first set of registers, within the register file
124, that were previously allocated to a first thread (e.g.,
TO) are shown to be transferred to the scratch pad. Ad-
ditional operations that may be performed in the saving
of stateinclude the storage of the contents of architectural
registers for an exiting thread to the scratch pad, and
also the storage of the contents of microcode temporary
registers, allocated to the first thread, to the scratch pad
on exiting on this first thread. The registers vacated on
the exiting of a thread are then available for reallocation
to another thread (e.g., T1).

[0123] Uponthe re-entering of a particular thread (e.g.,
TO), itwill be appreciated that the contents of the registers
allocated to this thread may be restored from the scratch
pad, as indicated in broken line in Figure 16B.

[0124] At block 604, a thread-specific "fence microin-
struction” for the exiting thread is inserted into the micro-
instruction flow for the exiting thread to drain any remain-
ing pending memory accesses associated with the thread
from the memory order buffer 48, various caches and the
processor busses. This operation does not retire until all
these blocks are complete.

[0125] As these execution units 20 execute microin-
structions relatively quickly, all new microinstructions
added to the execution unit input are cleared with the
assertion of the nuke signal responsive to the detection
ofthe SLEEP event. As described above, the nuke signal
170 is held for sufficient period of time (e.g., three clock
cycles) so as to allow microinstructions that entered the
execution unit 70 prior to assertion of the nuke signal 170
to emerge therefrom. As these microinstructions emerge
from the execution unit 70, they are cleared and the write
backs canceled.

[0126] At block 606, the unwind register 208, main-
tained within the event detector 188, is set to indicate
that the exiting thread is in an inactive (or a sleep) state
by a microinstruction that, generated by the microcode
sequencer 66, writes back a value that sets the state of
the unwind register.

[0127] Atblock 608, the event inhibit registers 206 for
the exiting thread are set to inhibit non-break events for
the exiting thread by control register write microinstruc-
tions issued by microcode sequencer 66. The setting of
the event inhibit register for the exiting thread, instructed
as the control register microinstruction, is dependent up-
on the type of sleep event being serviced. As discussed
above, depending on the SLEEP event that triggered the
transition to the inactive stage, only certain events qualify
as break events with respect to the inactive thread. The
determination as to whether an event qualifies as a break

33 EP 1238 341 B1

event for a particular inactive thread is made with specific
reference to the state of the event inhibit register 206 for
the inactive thread.

[0128] At block 612, the sleep event for the exiting
thread is signaled using a special microinstruction that
places a sleep event encoding in the write-back fault in-
formation field of the special microinstruction

[0129] Figure 17 is a flow chart illustrating a method
700, according to an exemplary embodiment, of entering
an inactive thread to an active state upon the detection
of a BREAK event for the inactive thread. The method
700 commences at 702 with the detection of an event
occurrence for an event that may or may not qualify as
a BREAK event with respect to an inactive thread. At
decision box 703, a determination is made by an event
detection logic 185 for the relevant event to determine
whether the event qualifies as a BREAK event for the
inactive thread. To this end, the event detection logic 185
examines the event inhibit registers 206 within the reg-
isters 200 of the event detector 188. If the relevant event
type is not indicated as being an inhibited BREAK event
with respect to the inactive thread, the method 700 pro-
ceeds to block 704, where the clocks are turned on as
necessary, the event is signaled normally (waiting for a
nukeable point on the other thread), and the handler is
invoked as for any event. The event handler checks the
thread sleep state and, if set, proceeds to restore microc-
ode state at block 706. The event handler 67 confirms
the inactive state of the thread by accessing the unwind
register 208.

[0130] More specifically, the event handler 67 pro-
ceeds to restore the microcode state for the entering
thread by restoring all saved register state, inhibit register
state, and instruction pointer information.

[0131] Following restoration of the microcode state at
block 706, the method 700 proceeds to block 708, where
architectural state is restored for the entering thread. At
block 710, the event inhibit register 206 for the entering
thread is reset or cleared by an appropriate microinstruc-
tion issued from the microcode sequencer 66. At block
712, the eventhandler 67 proceeds to service the BREAK
event. At this point, microcode constituting the event han-
dler 67 is executed within the multithreaded processor
30 to perform a series of operations responsive to the
event occurrence. At block 716, instruction fetching op-
erations are then again resumed within the processor 30
for the entering thread. The method 700 then terminates
at block 718.

Clock Control Logic

[0132] Inorderto reduce power consumption and heat
dissipation within the multithreaded processor 30, it is
desirable to stop, or suspend, at least some clock signals
within the processor 30 under certain conditions. Figure
18 is a flow chart illustrating a method 800, according to
an exemplary embodiment, of stopping, or suspending,
selected clock signals within a multithreaded processor,

10

15

20

25

30

35

40

45

50

55

18

34

such as the exemplary processor 30 described above.
For the purposes of the present specification, reference
to the suspension or the stopping of clock signals within
the processor shall be taken to encompass a number of
techniques of suspending or stopping a clock signal, or
signals, within the processor 30. For example, a Phase
Lock Loop (PLL) within the processor 30 could be sus-
pended, distribution of a core clock signal along a clock
spine could be inhibited, or the distribution of a clock sig-
nal via the clock spine to individual functional units within
the processor could be gated or otherwise prevented.
One embodiment envisages the later situation, in which
the supply of an internal clock signal to functional units
within the processor 30 is suspended, or stopped, on a
functional unit by functional unit basis. Accordingly, the
internal clock signal may be supplied to certain functional
units, while being gated with respect to other functional
units. Such an arrangement is described within the con-
text of a single threaded microprocessor in U.S. patent
no. 5,655,127.

[0133] The method 800 illustrated in Figure 18, in one
embodiment, may be performed by clock control logic 35
that is incorporated within the bus interface unit 32 of the
processor 30. In alternative embodiments, the clock con-
trol logic 35 may of course be located elsewhere from
the processor 30. Figures 19A and 19B are block and
schematic diagrams respectively illustrating further de-
tails regarding exemplary clock control logic 35.

[0134] Turningfirstto Figure 19A, the clock control log-
ic 35 is shown to receive three primary inputs, namely
(1) active bits 820 (e.g., TO_ACTIVE and T1_ACTTVE)
as outputted via the active thread state machine 174; (2)
the event detected signals 211, outputted by the event
detector 188, and (3) asnoop control signal 822 outputted
by the bus interface unit 32, which detects a snoopable
access on the bus and asserts the signal 882. The clock
control logic 35 utilizes these inputs to generate a stop
clock signal 826 that in turn suppresses or inhibits the
clocking of certain functional units within the processor
30.

[0135] Figure 19B is a schematic diagram illustrating
exemplary combinational logic that utilizes the inputs
211, 820 and 822 to output the stop clock signal 826.
Specifically, the event detector signals 211 provide input
toan OR gate 822, thatin turn provides inputinto a further
OR gate 824. The active bits 820 and the snoop control
signal 822 also provide input into the NOR gate 824,
which OR’s these inputs to output the stop clock signal
826.

[0136] Turning specifically to Figure 18, the method
800 commences at decision box 802, with a determina-
tion as to whether any threads (e.g., a first and a second
thread) are active within the multithreaded processor 30.
This determination is reflected by the outputting of the
active bits 820 to the OR gate 824 in Figure 19B. While
the exemplary embodimentillustrates determination may
be met with respect to two threads, it will readily be ap-
preciated that this determination being made with respect

35 EP 1238 341 B1 36

to any number of threads supported within a multi-thread-
ed processor.

[0137] Following a negative determination at decision
box 802, the method 800 proceeds to decision box 804,
where a determination is made as to whether any events,
that are not inhibited, are pending for any threads sup-
ported within the multithreaded processor. Again, in the
exemplary embodiment, this comprises determining
whether any events are pending for a first or a second
thread. This determination is represented by the input of
the event detected signals 211 into the OR gate 822,
shown in Figure 19B.

[0138] Following a negative determination at decision
box 804, a further determination is made at decision box
806 whether any snoops (e.g., bus snoops, SNC snoops
or other snoops) are being processed by the processor
bus. In the exemplary embodiment of the present inven-
tion, this determination is implemented by the input of
the snoop control signal 822 into the OR gate 824.
[0139] Following a negative determination at decision
box 806, the method 800 proceeds to block 808, where
internal clock signals to selected functional units are
stopped or suppressed. Specifically, the clock signals to
bus pending logic and bus access logic is not suspended
or stopped, as this allows the bus interface unit 32 to
detect BREAK events or snoops originating on the sys-
tem bus (e.g., pin events) and to restart the clocks to
functional units responsive to such BREAK events. The
suppressing of the internal clock signals to functional
units is implemented by the assertion of the stop clock
signal 826, which has the effect of gating the clock signal
to predetermined functional units.

[0140] Following completion of block 808, the method
800 loops back to decision box 802. After the determi-
nations at decision box 802, 804 and 806 may be looped
through a continual basis.

[0141] Following a positive determination at any one
of the decision boxes 802, 804 and 806, the method 800
branches to block 810, where, if clock signals to certain
functional units have been gated, these internal clock
signals are then again activated. Alternatively, if clock
signals are already active, these clock signals are main-
tained in an active state.

[0142] Where block 810 is executed responsive to a
break event. (e.g., following a positive determination at
decision box 804), functional units within the microproc-
essor may be actively partitioned, in the manner de-
scribed above, based on the number of active threads,
at the assertion of the nuke signal. For example, in a
multithread processor 30 having two or more threads,
some of these threads may be inactive, in which case
the functional units will not be partitioned to accommo-
date the inactive threads.

[0143] Upon completion of block 810, the method 800
again loops back to decision box 802, and begins another
iteration of the decisions represented by decision boxes
802, 804 and 806.

[0144] Thus, method and apparatus for entering and

10

15

20

25

30

35

40

45

50

55

19

exiting multiple threads within a multithreaded processor
have been described. Although the present has been de-
scribed with reference to specific exemplary embodi-
ments, it will be evident that various modifications and
changes may be made to these embodiments without
departing from the broader scope of the invention. Ac-
cordingly, the specification and drawings are to be re-
garded in an illustrative rather than a restrictive sense.

Claims
1. A method including:

maintaining a state machine (174) to indicate a
respective status of an associated thread of mul-
tiple threads (TO, T1) being executed with a mul-
tithreaded processor (30);

detecting a change of status for a first thread
within the multithreaded processor; and char-
acterized by

responsive to the change of status for the first
thread within the multithreaded processor, alter-
ing a partitioning scheme for a functional unit
(331) to service a second thread (T1), but not
the first thread (TO) within the multithreaded
processor when the change of the status of the
first thread comprises a transition from an active
state (502, 506) to an inactive state (504, 508).

2. The method of claim 1, wherein maintaining a state
machine to indicate a respective status of an asso-
ciated thread includes providing a multi-bit output
(820), each bit of the multi-bit output to indicate the
status of the associated thread as being active or
inactive.

3. The method of claim 2, wherein the altering of the
partitioning scheme for the functional unit comprises
partitioning the functional unit to service both the first
thread (T0) and a second thread (T1) within the mul-
tithreaded processor (30) when the change of status
for the first thread (TO) comprises a transition from
an inactive state (504, 508) to an active state (502,
506).

4. The method of claim 2, wherein the altering of the
partitioning scheme for the functional unit comprises
un-partitioning the functional unit to service the sec-
ond thread (T1), but not the first thread (T0), within
the multithreaded processor (30) when the change
of the status of the first thread (T0O) comprises a tran-
sition from an active state (5 02, 506) to an inactive
state (504, 508).

5. The method of claim 1, wherein the detecting of the
change in the status of the first thread comprises
detecting (222) the occurrence of an event for the

10.

11.

12.

13.

14.

37
first thread (TO).

The method of claim 5, including asserting (302) a
first signal (170) responsive to the occurrence of the
event for the first thread, and evaluating (303) the
state machine (174) during the assertion of the first
signal.

The method of claim 6, wherein the partitioning
scheme for functional unit within the multithreaded
processor is altered, in accordance with the multi-bit
output (820) of the state machine (174), on the de-
assertion of the first signal.

The method of claim 1, wherein the detecting of the
change in the status of the first thread comprises
detecting the occurrence of a sleep event for the first
thread that transitions the first thread from an active
state to a sleep state.

The method of claim 8 including, responsive to the
detection of the occurrence of the sleep event, set-
ting an inhibit register (206) to inhibit an event that
is not a break event for the sleep state of the first
thread.

The method of claim 1 wherein the altering of the
portioning scheme for the functional unit within the
multithreaded processor comprises saving and de-
allocating state within the multithreaded processor
for the first thread.

The method of claim 10 wherein the saving and de-
allocating of the state within the multithreaded proc-
essor for the first thread comprises recording the
state for the first thread within a memory resource.

The method of claim 1 wherein the altering of the
portioning scheme for the functional unit within the
multithreaded processor comprises making regis-
ters, within a register file of the multithreaded proc-
essor, available to the second thread within the mul-
tithreaded processor.

The method of claim 1, wherein the functional unit
comprises any one of the group of functional units
including a memory order buffer (48), a store buffer,
a translation lookaside buffer (46, 102), a reorder
buffer (162), a register alias table (120), and a free
list manager (134).

The method of claim 1, wherein the altering of the
portioning scheme for the functional unitincludes in-
serting a fence instruction into an instruction stream
for the first thread at a location proximate a front-end
of the multithreaded processor, the fence instruction
defining an event boundary within the instruction
stream that assumes all memory accesses have

10

15

20

25

30

35

40

45

50

55

20

EP 1238 341 B1

15.

16.

17.

18.

19.

38
drained from the processor.

The method of claim 1, wherein the altering of the
portioning scheme for the functional unitincludes re-
storing state within the multithreaded processor.

The method of claim 1, wherein the detecting of the
change in the status of the first thread comprises
detecting the occurrence of a break event for the first
thread that transitions the first thread from a sleep
state to an active state.

The method of claim 16 including detecting a third
event for the first thread that does not constitute a
break event, and logging the third event within a
pending register (204) associated with the first
thread.

An apparatus comprising:

a state machine (174) arranged to indicate a re-
spective status of an associated thread of mul-
tiple threads being executed within a multi-
threaded processor (30), and to detect a change
of status for a first thread (T0) within the multi-
threaded processor;

characterized by:

configuration logic (329) arranged to alter a par-
titioning scheme for a functional unit (331) to
service a second thread (T1), but not the first
thread, within the multithreaded processor when
the change of the status of the first thread com-
prises a transition from an active state to an in-
active state responsive to the change of status
for the first thread within the multithreaded proc-
essor.

A machine-readable medium including a sequence
of instructions that, when executed by a machine,
cause the machine to:

maintain a state machine (174) to indicate a re-
spective status of an associated thread of mul-
tiple threads being executed with a multithread-
ed processor;

detect a change of status for a first thread (T0)
within the multithreaded processor; and

characterized by a sequence of instructions that,
when executed by said machine, cause said ma-
chine to

alter a partitioning scheme for a functional unit (331)
to service a second thread (T1), but not the first
thread within the multithreaded processor when the
change of the status of the first thread comprises a
transition from an active state to an inactive state

20.

39

responsive to the change of status for the first thread
within the multithreaded processor.

A computer program comprising computer program
code means adapted to perform all the steps of claim
1 when that program is run on a computer.

Patentanspriiche

1.

Verfahren, das folgendes aufweist:

das Verwalten einer Zustandsmaschine (174),
um einen entsprechenden Zustand eines zuge-
ordneten Threads mehrerer Threads (TO, T1)
anzuzeigen, die mit einem multithreading-fahi-
gen Prozessor (30) ausgefiihrt werden;

das Detektieren einer Zustandsveranderung fir
einen ersten Thread innerhalb des multithrea-
ding-fahigen Prozessors; und gekennzeichnet
durch

als Reaktion auf die Zustandsveranderung fir
denersten Thread innerhalb des multithreading-
fahigen Prozessors das Veréandern eines Parti-
tionierungsmusters fir eine funktionale Einheit
(331) zur Behandlung eines zweiten Threads
(T1) jedoch nicht des ersten Threads (TO) inner-
halb des multithreading-fahigen Prozessors,
wenn die Zustandsveranderung des ersten
Threads einen Ubergang aus einem aktiven Zu-
stand (502, 506) in einen inaktiven Zustand
(504, 508) umfasst.

Verfahren nach Anspruch 1, wobei das Verwalten
einer Zustandsmaschine zum Anzeigen eines ent-
sprechenden Zustands eines zugeordneten
Threads das Bereitstellen einer Mehrbitausgabe
(820) aufweist, wobei jedes Bit der Mehrbitausgabe
den Zustand des zugeordneten Threads als aktiv
oder inaktiv anzeigt.

Verfahren nach Anspruch 2, wobei das Verandern
des Partitionierungsmusters fur die funktionale Ein-
heit das Partitionieren der funktionalen Einheit um-
fasst, so dass sowohl der erste Thread (T0) und ein
zweiter Thread (T1) innerhalb des multithreading-
fahigen Prozessors (30) behandelt werden, wenn
die Zustandsveranderung fur den ersten Thread (TO)
einen Ubergang aus einem inaktiven Zustand (504,
508) in einen aktiven Zustand (502, 506) umfasst.

Verfahren nach Anspruch 2, wobei das Verandern
des Partitionierungsmusters fur die funktionale Ein-
heit das Aufheben der Partitionierung der funktiona-
len Einheit umfasst, so dass der zweite Thread (T1)
jedoch nicht der erste Thread (T0) in dem multithrea-
ding-fahigen Prozessor (30) behandelt wird, wenn
die Zustandsveranderung des ersten Threads (T0)

10

15

20

25

30

35

40

45

50

55

21

EP 1238 341 B1

10.

11.

12.

40

einen Ubergang aus einem aktiven Zustand (502,
506) in einen inaktiven Zustand (504, 508) umfasst.

Verfahren nach Anspruch 1, wobei das Detektieren
der Zustandsverénderung des ersten Threads das
Detektieren (222) des Eintretens eines Ereignisses
fur den ersten Thread (T0) umfasst.

Verfahren nach Anspruch 5, wobei ein erstes Signal
(170) als Reaktion auf das Eintreten des Ereignisses
fur den ersten Thread aktiviert wird (302), und wobei
die Zustandsmaschine (174) wahrend der Aktivie-
rung des ersten Signals evaluiert wird (303).

Verfahren nach Anspruch 6, wobei das Partitionie-
rungsmuster fur die funktionale Einheitinnerhalb des
multithreading-féhigen Prozessors gemafl der
Mehrbitausgabe (820) der Zustandsmaschine (174)
bei der Aufhebung der Aktivierung des ersten Si-
gnals verandert wird.

Verfahren nach Anspruch 1, wobei das Detektieren
der Zustandsverénderung des ersten Threads das
Detektieren des Eintretens eines Ruheereignisses
fur den ersten Thread umfasst, wobei der erste
Thread aus einem aktiven Zustand in einen Ruhe-
zustand tbergeht.

Verfahren nach Anspruch 8, wobei als Reaktion auf
das Detektieren des Eintretens eines Ruheereignis-
ses ein Sperrregister (206) so eingestellt wird, dass
ein Ereignis gesperrtwird, das kein Unterbrechungs-
ereignis fir den Ruhezustand des ersten Threads
darstellt.

Verfahren nach Anspruch 1, wobei das Verandern
des Partitionierungsmusters fur die funktionale Ein-
heit innerhalb des multithreading-féhigen Prozes-
sors das Speichern und neuerliche Zuweisen des
Zustands innerhalb des multithreading-fahigen Pro-
zessors fUr den ersten Thread umfasst.

Verfahren nach Anspruch 10, wobei das Speichern
und das neuerliche Zuweisen des Zustands inner-
halb des multithreading-fahigen Prozessors fur den
ersten Thread das Aufzeichnen des Zustands fir
den ersten Thread innerhalb einer Speicherressour-
ce umfasst.

Verfahren nach Anspruch 1, wobei das Verandern
des Partitionierungsmusters fur die funktionale Ein-
heit innerhalb des multithreading-fahigen Prozes-
sors das Erzeugen von Registern innerhalb einer
Registerdatei des multithreading-fahigen Prozes-
sors umfasst, die dem zweiten Thread innerhalb des
multithreading-fahigen Prozessors zur Verfiigung
stehen.

13.

14.

15.

16.

17.

18.

41 EP 1238 341 B1 42

Verfahren nach Anspruch 1, wobei die funktionale
Einheit eine beliebige Einheit der Gruppe der funk-
tionalen Einheiten umfasst, zu der ein Speicheran-
ordnungspuffer (48), ein Speicherpuffer, ein Adres-
sumsetzpuffer (46, 102), ein Umordnungspuffer
(162), eine Register Alias Table (120) und ein freier
Listenmanager (134) z&hlen.

Verfahren nach Anspruch 1, wobei das Verandern
des Partitionierungsmusters fur die funktionale Ein-
heit das Einfliigen eines Eingrenzungsbefehls in ei-
nen Befehlsstrom fiir den ersten Thread an einer von
dem Front-End des multithreading-fahigen Prozes-
sors entfernten Position aufweist, wobei der Ein-
grenzungsbefehl eine Ereignisbegrenzung inner-
halb des Befehlsstroms festlegt, wobei angenom-
men wird, dass alle Speicherzugriffe den Prozessor
verlassen haben.

Verfahren nach Anspruch 1, wobei das Verandern
des Partitionierungsmusters fur die funktionale Ein-
heit das Wiederherstellen des Zustands innerhalb
des multithreading-fahigen Prozessors aufweist.

Verfahren nach Anspruch 1, wobei das Detektieren
der Zustandsverénderung des ersten Threads das
Detektieren des Eintretens eines Unterbrechungs-
ereignisses fur den ersten Thread umfasst, der den
ersten Thread aus einem Ruhezustand in einen ak-
tiven Zustand Ubergehen l&sst.

Verfahren nach Anspruch 16, wobei das Verfahren
das Detektieren eines dritten Ereignisses fur den er-
sten Thread aufweist, das kein Unterbrechungser-
eignis darstellt, und das Protokollieren des dritten
Ereignisses innerhalb eines Warteregisters (204),
das dem ersten Thread zugeordnet ist.

Vorrichtung, die folgendes umfasst:

eine Zustandsmaschine (174), die so angeord-
net ist, dass sie einen entsprechenden Zustand
eines zugeordneten Threads mehrerer Threads
anzeigt, die mit einem multithreading-fahigen
Prozessor (30) ausgefuhrt werden; und wobei
sie eine Zustandsveréanderung fur einen ersten
Thread (TO) innerhalb des multithreading-fahi-
gen Prozessors detektiert;

gekennzeichnet durch:

eine Konfigurationslogik (329), die so angeord-
net ist, dass sie ein Partitionierungsmuster fir
eine funktionale Einheit (331) zur Behandlung
eines zweiten Threads (T1) jedoch nicht des er-
sten Threads innerhalb des multithreading-fahi-
gen Prozessors verandert, wenn die Zustands-
veranderung des ersten Threads einen Uber-

10

15

20

25

30

35

40

45

50

55

22

gang aus einem aktiven Zustand in einen inak-
tiven Zustand umfasst, und zwar als Reaktion
auf die Zustandsveranderung fur den ersten
Thread innerhalb des multithreading-fahigen
Prozessors.

19. Maschinenlesbares Medium mit einer Befehlsfolge,

die bei einer Ausflihrung durch eine Maschine be-
wirkt, dass die Maschine folgendes vornimmt:

das Verwalten einer Zustandsmaschine (174),
um einen entsprechenden Zustand eines zuge-
ordneten Threads mehrerer Threads anzuzei-
gen, die mit einem multithreading-fahigen Pro-
zessor ausgefiihrt werden;

das Detektieren einer Zustandsveranderung fir
einen ersten Thread (TO) innerhalb des multi-
threading-fahigen Prozessors; und gekenn-
zeichnet durch eine Befehlsfolge, die bei einer
Ausfiihrung durch die genannte Maschine be-
wirkt, dass die genannte Maschine folgendes
vornimmt:

das Verandern eines Partitionierungsmu-
sters fur eine funktionale Einheit (331) zur
Behandlung eines zweiten Threads (T1) je-
doch nicht des ersten Threads innerhalb
des multithreading-fahigen Prozessors,
wenn die Zustandsveranderung des ersten
Threads einen Ubergang aus einem aktiven
Zustand in einen inaktiven Zustand um-
fasst, und zwar als Reaktion auf die Zu-
standsverénderung fur den ersten Thread
innerhalb des multithreading-fahigen Pro-
Zessors.

20. Computerprogramm, das eine Computerprogramm-

Codeeinrichtung umfasst, die alle Schritte aus An-
spruch 1 ausfuhren kann, wenn das Programm auf
einem Computer ausgefihrt wird.

Revendications

Procédé comprenant les étapes consistant a :

maintenir une machine d'état (174) pour indi-
guer un statut respectif d'un thread associé de
multiples thread (TO, T1) exécutés avec un pro-
cesseur a plusieurs threads (30) ;

détecter un changement de statut pour un pre-
mier thread a l'intérieur du processeur a plu-
sieurs threads ; et caractérisé par

enréponse au changementde statut pour le pre-
mier thread a l'intérieur du processeur a plu-
sieurs threads, la modification d’un plan de par-
titionnement pour une unité fonctionnelle (331)
afin de gérer un second thread (T1), mais pas

43

le premier thread (TO0), a l'intérieur du proces-
seur a plusieurs threads lorsque le changement
du statut du premier thread comprend une tran-
sition depuis un état actif (502, 506) vers un état
inactif (504, 508).

Procédé selon la revendication 1, dans lequel le
maintient d’'une machine d’état pour indiquer un sta-
tut respectif d'un thread associé comprend I'étape
consistant a fournir une sortie a plusieurs octets
(820), chaque octet de la sortie a plusieurs octets
indiquant le statut du thread associé comme étant
actif ou inactif.

Procédé selon la revendication 2, dans lequel la mo-
dification du plan de partitionnement pour l'unité
fonctionnelle comprend I'étape consistant a parti-
tionner I'unité fonctionnelle afin de gérer a la fois le
premier thread (TO) et un second thread (T1) a I'in-
térieur du processeur a plusieurs threads (30) lors-
gue le changement de statut pour le premier thread
(TO) comprend une transition depuis un état inactif
(504, 508) vers un état actif (502, 506).

Procédé selon la revendication 2, dans lequel la mo-
dification du plan de partitionnement pour l'unité
fonctionnelle comprend I'étape consistant a dé-par-
titionner I'unité fonctionnelle afin de gérer le second
thread (T1), mais pas le premier thread (T0), a I'in-
térieur du processeur a plusieurs threads (30), lors-
gue le changement de statut du premier thread (TO)
comprend une transition depuis un état actif (502,
506) vers un état inactif (504, 508).

Procédé selon la revendication 1, dans lequel la dé-
tection du changement dans le statut du premier
thread comprend I'étape consistant a détecter (222)
I'occurrence d’'un événement pour le premier thread
(TO).

Procédé selon la revendication 5, comprenant I'éta-
pe consistant a valider (302) un premier signal (170)
en réponse a l'occurrence de I'événement pour le
premier thread, et a évaluer (303) la machine d’état
(174) pendant la validation du premier signal.

Procédé selon larevendication 6, dans lequel le plan
de partitionnement pour I'unité fonctionnelle a I'inté-
rieur du processeur a plusieurs threads est modifié,
conformément a la sortie a plusieurs octets (820) de
la machine d’'état (174), lors de la dé-validation du
premier signal.

Procédé selon la revendication 1, dans lequel la dé-
tection du changement dans I'état du premier thread
comprend la détection de I'occurrence d’'un événe-
ment de sommeil pour le premier thread qui fait pas-
ser le premier thread d'un état actif a un état de som-

10

15

20

25

30

35

40

45

50

55

23

EP 1238 341 B1

10.

11.

12.

13.

14.

15.

16.

44
meil.

Procédé selon la revendication 8 comprenant, en
réponse a la détection de I'occurrence de I'événe-
ment de sommeil, I'étape consistant a régler un re-
gistre d'inhibition (206) pour inhiber un événement
qui n'est pas un événement de rupture pour I'état de
sommeil du premier thread.

Procédé selon la revendication 1, dans lequel la mo-
dification du plan de partitionnement pour l'unité
fonctionnelle a I'intérieur du processeur a plusieurs
threads comprend I'étape consistant a enregistrer et
dé-attribuer I'état a I'intérieur du processeur a plu-
sieurs threads pour le premier thread.

Procédé selon la revendication 10, dans lequel I'en-
registrement et la dé-attribution de I'état & I'intérieur
du processeur a plusieurs threads pour le premier
thread comprend I'étape consistant a enregistrer
I'état pour le premier thread a I'intérieur d'une res-
source de mémoire.

Procédé selon la revendication 1, dans lequel la mo-
dification du plan de partitionnement pour l'unité
fonctionnelle & I'intérieur du processeur a plusieurs
threads comprend I'étape consistant a rentre les re-
gistres, a l'intérieur d’'un fichier de registre du pro-
cesseur a plusieurs threads, disponibles pour le se-
cond thread a l'intérieur du processeur a plusieurs
threads.

Procédé selon la revendication 1, dans lequel I'unité
fonctionnelle comprend I'une quelconque du groupe
d’unités fonctionnelles comprenant un tampon d’or-
dre de mémoire (48), un tampon d’enregistrement,
un tampon paralléle de traduction (46, 102), un tam-
pon de reclassement (162), un tableau d’alias de
registre (120), et un gestionnaire de liste libre (134).

Procédé selon la revendication 1, dans lequel la mo-
dification du plan de partitionnement pour l'unité
fonctionnelle comprend I'étape consistant a insérer
une instruction de limite dans un flux d’instructions
pour le premier thread a un emplacement proche
d'une extrémité avant du processeur a plusieurs
threads, l'instruction de limite définissant une limite
d’événement a l'intérieur du flux d’instructions qui
assume que tous les accés mémoire proviennent du
processeur.

Procédé selon la revendication 1, dans lequel la mo-
dification du plan de partitionnement pour l'unité
fonctionnelle comprend I'étape consistant a restau-
rer I'état a l'intérieur du processeur a plusieurs
threads.

Procédé selon la revendication 1, dans lequel la dé-

17.

18.

19.

45 EP 1238 341 B1 46

tection du changement dans le statut du premier
thread comprend I'étape consistant & détecter I'oc-
currence d’'un événement de rupture pour le premier
thread qui fait passer le premier thread d’'un état de
sommeil a un état actif.

Procédé selon la revendication 16 comprenant les
étapes consistant a détecter un troisieme événe-
ment pour le premier thread qui ne constitue pas un
événement de rupture, et & saisir le troisieme évé-
nement a l'intérieur d’un registre en cours (204) as-
socié au premier thread.

Appareil comprenant :

une machine d’'état (174) agencée pour indiquer
un statut respectif d’'un thread associé de mul-
tiples threads exécutés a l'intérieur d'un proces-
seur a plusieurs threads (30), et pour détecter
un changement de statut pour un premier thread
(TO) a lintérieur du processeur a plusieurs
threads ;

caractérisé par

une logique de configuration (329) agencée
pour modifier un plan de partitionnement pour
une unité fonctionnelle (331) afin de gérer un
second thread (T1), mais pas le premier thread,
a l'intérieur du processeur a plusieurs threads
lorsque le changement du statut du premier
thread comprend une transition depuis un état
actif vers un état inactif en réponse au change-
ment de statut pour le premier thread al'intérieur
du processeur a plusieurs threads.

Support lisible par machine comprenant une sé-
guence d'instructions qui, lorsqu’elles sont exécu-
tées par une machine, amenent la machine a :

maintenir une machine d'état (174) pour indi-
quer un statut respectif d’'un thread associé de
multiples threads exécutés avec un processeur
a plusieurs threads ;

détecter un changement de statut pour un pre-
mier thread (TO) a I'intérieur du processeur a
plusieurs threads ; et

caractérisé par une séquence d'instructions qui,
lorsqu’elles sont exécutées par ladite machine, ame-
nent ladite machine a

modifier un modifier un plan de partitionnement pour
une unité fonctionnelle (331) afin de gérer un second
thread (T1), mais pas le premier thread, a I'intérieur
du processeur a plusieurs threads lorsque le chan-
gement du statut du premier thread comprend une
transition depuis un état actif vers un état inactif en
réponse au changement de statut pour le premier

10

15

20

25

30

35

40

45

50

55

24

thread a lintérieur du processeur a plusieurs
threads.

20. Programme informatique comprenant des moyens

de code de programme informatique adaptés pour
réaliser toutes les étapes de la revendication 1 lors-
que ce programme est exécuté sur un ordinateur.

EP 1238 341 B1

12
N\
FETCH
14
N\
DECODE
16
A Y
ALLOCATE
l- 18
N\
EXECUTE
20
N\
RETIRE
(WRITE BACK)

FIG. 1

25

10

EP 1238 341 B1

32
TO PROCESSOR | [CLOCK CONTROL] BUS INTERFACE UNIT 30
BUS LOGIC ~
P> 35 36N
FSB LOGIC \34 BUS QUEUE
38
—~— SNOOP/ BUS —
-40 BUS RETURN 42 f REQUEST »
MEMORY EXECUTION UNIT
—44 46 48
UNIFIED CACHE| |DATA] | MEMORY
(LEVEL 1) TLB | |ORDERING
RAW * f INSTRUCTION FETCH
INSTRUCTIONS 54 REQUEST
MICROINSTRUCTION TRANSLATION ENGINE | ., ,
,\ 104 (MTE) !
NIP | | BTB [IC IPD | | BAC
100 108 112
~Hms| [1s8 [106 IS | |DECODEH-
102 110 5
—~— DECODED —
56 INSTRUCTIONS + ~ 60 ? STALL IN-ORDER
TRACE DELIVERY ENGINE [wicRO-CODE g6 FRONT
(TDE) SEQUENCER [A
TRACE | [TRACE EXCL. |-
CACHE BTB ACCESS sMm|[]—©°
62 64 EVENT _ |L.
HANDLERS [N— 67
MS UOP QUEUE <-J
| 68
~ ~ DECODED STALL—~—82 |~
INSTRUCTIONS ;0 f
. EXECUTION UNIT
SCHEDULER 84
||(RESERVATION PoRATNS 17 | 78
75 STATIONS) E,%E'\%m?,\, / v
| 86 REORDER OUT-OF-ORDER
. ST || e, || e
74 ‘RENAMER ENGINE (CHECKER)
88
DATA CACHE H-
(LEVEL0)
76 || ALLOCATOR
80
REPLAY QUEUE [~

26

EP 1238 341 B1

102 \ t
TRACE CACHE
THREAD 0 THREAD 1
> 74(76
»|RENAMER/ALLOCATOR| 75
v 103
IQ |
THREAD 0 THREAD 1
v 84
64 SCHEDULER o
Y v [Yy 84
%
ROB ROB REGISTER FILE
(THREAD 1)| (THREAD 2)
DATA
CACHE ALU ALU
84j 84 J 84 J

FIG. 3

27

EP 1238 341 B1

vl 891 .
/\/ />/ q G—m
SNIHOVIN (90H)
o#,%h &mmm%o. " mumm__mmm et
3NANDONIDVLS |1 JAOV | INIWIHILIY ol
+ 99} A
TE IR
« 2L
TENGE T R I aoe DN~ >
™| y344nd 630H03Y < (MvLSIV)
N LIHM V1S
A 91 ~ HO[LYD0T1V "HOLVOOTIV
(NYD) LINN AVd3H HINOIHD oot el
. HIDVNYI DAl
— 15173344 Lk
091 (37v)
i ||
dO-MO1S B Ol aNY NOILYOO TV
g3naaros. 1% onl 301
INIOd ONILYO14 WOHH Sdon
ganaas L8 ~{ oviD | OVIW L,
XIH LYW < 1
EINAI0S | |opl (o) -~ (1¥d) -
AHOW3IW B 3N3N0 IIav1 SYNnv
R - (dOn) NOILONYLNI HALSIDIH AHYWIEd | gz
374 5318193 [T ~ ~
) e
(NSs) m_._m&q m<:<
LINA QrQEIHOaS H3LSI93H MOQVHS

ggl

icl

28

EP 1238 341 B1

120 ~ REGISTER FILE
=== 77 T (DATA)

REG| DATA

EBX 1l

I

! ! 1
: FRONTEND RAT / -
| EAX

I

I

ECX |
N EDX

ESI

EDI

ESP

EBP

BACKEND RAT

EAX

EBX

ECX

ESI

EDI

ESP

EBP

Y EDX
I
I
I
|
|
|
I
|

126

134

TRASH HEAP ARRAY

FREE LISTMANAGER|e—> (D) ® (@

() —»

SN
132

FIG. 5

29

EP 1238 341 B1

6LL
002 \k y02 861 061 181
S0 | 7 / 7 \u \u. ¢, e
LdNY3IN———> ‘ TIIg HOLVINDWD| | | INIHOVIN N
| 2L ANIMNA || 9nIaNTd 10 d01S dl EITES T\v
HYI10 ——— TEFANT | [O3] 0L 11d Qv3HHL |-
N AVISNIA]| IN3AT || INIAS ¥10 dOLS NoaNOd H i __ a9
HN-3Hd 1 r HOL03.130 IN3A3 o g6l | [O1DOTIOHINGO ININIHILIH [
! 0l 902 A » AAdA _
69t | _
_
_ _ v “
“ _
| |
| _
| |
_ e
_]
“ |
| _
_ AJ 1
| _
_ 981 y8L 8l 98t ¥81 |
. 5 1§ _
| [INIOd | INIOd INIOd [INIDd |
| | 3ynN | 3ynn | L9 O4NI| YLva PN | NN | L8 O4NI| viva
| | oNAs | divHs [BrvA| Lsa|L1nva| 1insau ONAS | diHs [anvA| Lsafinv| 1insas "
| SHINHYW MO _(/
; _ } GY3HAL 0 Qv3HAHL |
V9 "OId | ave 29
L 08} 4344N9 H3AHO3Y _

30

EP 1238 341 B1

g9 "Oid

21907 10HLINOD %2010
ANV 21907 INJA3 OL
A
\sz_uxo,qmlm:m\s IN3A3 L1NdNITNINIAI LNdNI" LIN3IAT LNdNI"@LIN3A3 R
Le 602 g0z 442 602 Lie 602 |12 602
\ [] [] [] []
10313d
AOva3Lidm
W
W
SIN3A3 /_oooooo. Zoooooo‘
YOVE LIHM | INJAT IN3A3 | IN3A3 IN3A3 IN3A3 | IN3AT

(3L 43181934 LIGIHNI INIA3

90¢ \

(@L) Y31SI1934 IN3AT ONIGNI

¥0e \

31

EP 1238 341 B1

EVENT DETECTOR
DETECTS 1ST EVENT
FOR 1ST THREA:
EVENT DETECTOR STOPS

RETIREMENT OF 1ST THREAD AND
ASSERTS "PRE-NUKE" SIGNAL

270

NO 2ND THREAD

ACTIVE?

272

/ 220

276

YES

YES

2ND THREAD
ENCOUNTERS AN
EVENT?
278

NO

1ST EVENT REQUIRES
SHARED STATE
PDATE/RESOURCES?

282

YES

2ND THREAD RETIRES
MICROINSTRUCTION

WITH SYNC_NUKE POINT

NO

286

CONTINUE
RETIREMENT OF
SECOND
THREAD

NO

2ND THREAD RETIRES
MICROINSTRUCTION
WITH SRMP_NUKE POINT

. LOW MARKER?
288 284
v YES 280 YES
PERTORM COMMENCE MT
ST L,
NUKE NUKE PROCESS [©
PROCESS :
274 v
APPROPRIATE EVENT | 290
»{HANDLER (FROM MS) |\
HANDLES EVENT

32

FIG. 7A

EP 1238 341 B1

292

EVENT DETECTOR DETECTS |~

1ST EVENT PER 1ST THREAD
EVENT REGISTERED AS
PENDING EVENT

v

293

EVENT DETECTOR STOPS v

RETIREMENT OF 1ST THREAD

v

294

2ND THREAD RETIRES (\/

MICROINSTRUCTION WITH
SYNC_NUKE OR SRMP_NUKE
POINT FLOW MARKER

v

295

"VIRTUAL NUKE® EVENT =

HANDLER INVOKED

v

“VIRTUAL NUKE® EVENT
HANDLER RESTARTS
EXECUTION OF 2ND THREAD
SUBSEQUENT TO RETIRED
MICROINSTRUCTION WITH

FLOW MARKER

l 297
[END J"/

33

296

FIG. 7B

291
/

EP 1238 341 B1

226 228
—————— — — # ——————— -_———
| |
I RESET |
! I
e e e e e e . e ——— e e S G —— —— ——— — — —
232 236
ws | T==7 Tt f 7
“~—{ FAULT ASSISTS SHUTDOWN | |
I | 238
234
i [oous SMC —':/
l FAULT |
M F———————————— — — — — — 1 246
~1] NIT DATA
l BREAKPOINT | |
242 | |2 i8
:¥ INTR TRACE _4/
MESSAGE
244 : : :
T I
| |
250 F————————————————— A
254
I
\:x SMI PREQ |~
252 | :
| sToPCIK |
| |
I J/zsa
: A20M |
b = I
60 ~T T T oo N 264
1 L
| VIRTUAL NUKE SLEEP EVENT | |
262 | |
\:k SYNC |
I

34

224

FIG. 8

EP 1238 341 B1

6 '9Old

192 Y
: (11) IN3A3 692 201
HOLO3A -
LdNYY3ILNI '©°3) (0L) INIAT le 40103130 IN3A3 T
992
892 + \
N 881
H3LNIOd X don don
INIW3HIL3Y o o
eor 7] ¥3INIOd
ININ3HIL3Y
don X X don SR
281
don don
don don
don don
INIOd | INIOd | o4Ni viva INIOd | INIOd | o4Ni viva
DINN | DN | 19nv4 11ns3y IMNN | DION | 19nv4 1Ins3y
| ONAS | dWHS ONAS | dINHS
" SHINEYIN MO | SHINGYN MO13
0 av34HL ~og T | QV3IYHL

35

EP 1238 341 B1

0L "OId

192 v
(1)) IN3A3 |RIV 63¢ 291
——
HO103130 INIA3 T
(01) IN3A3 le B g
%l 18l i 1 we\
€81 f
IO\ Jf . don
wanawime™] X | X ANAS 4on
98l |v8I
don don
. . 281
\ \
don X X don 4FINIOd
IN3W3HIL3Y
don don
don don
don don
INIOd | INIOd | o4nNI v1va INIOd | INIOd | oaNi " VYiva
DINN | DN | 17nv4 1Ins3y DINN | 3UNN | j3nv4 1InS3y
ONAS | dWHS ONAS | dWHS
SEHEYN MO | - SH3IYEVN MO13
0 Qv34HL ~~o1 L | QV34HL

36

EP 1238 341 B1

EVENT DETECTOR 302

ASSERTS NUKE SIGNAL

j 300

306

SEND SEQUENCE NOS. AND LAST UOP SIGNAL
FOR BOTH THREADS TO ALF AND TBIT

EVALUATE THREAD 303

ACTIVE STATE MACHINE

308

SEND EVENT VECTOR FOR EACH THREAD TO MICROCODE SEQUENCER (SM)
THAT IDENTIFIES:
(1) PHYSICAL ROB LOCATION THAT WAS RETIRING WHEN EVENT DETECTED;
(2) EVENT HANDLER IDENTIFIER (E.G., VIRTUAL, INTERRUPT, SLEEP);
(3) THREAD ID
(4) THREAD PRIORITY BIT THAT DETERMINES WHICH THREAD GOES FIRST

SHADOW RAT ADVANCED TO EVENT 310
POINT FOR EACH THREAD
312
RESTORE RAT STATE FROM
SHADOW RAT
314
ALF RECOVERS REGISTER NOS.
(MARBLES) FROM FREE LIST
316

SENIOR STORES FOR EACH THREAD

DRAINED |
MS IGNORES 320
VECTOR INF. FOR EVENT DETECTOR DEASSERTS
INACTIVE THREAD NUKE SIGNAL MS SEQUENCES
AND SEQUENCES a00| UOPS FOR 1ST
s ACTIVE MS EXAMINES ACTIVE BITS OF AND 2ND THREADS
ACTIVE THREAD STATE MACHINE

CONFIGURE CONFIGURE

FUNCTIONAL 1ST AND 2ND FUNCTIONAL

UNITS FOR 1 THREADS UNITSFOR 2
ACTIVE THREAD ACTIVE? ACTIVE THREADS

FIG. 11A 328

37

EP 1238 341 B1

329\ 331 \
CONFIGURATION FUNCTIONAL
LOGIC 333 UNIT
307 .
,._/ [
J———/——» POINTERS To i
¢ s STORAGE
MT SUPPORT H—’ MT
ENABLE LOGIC L]

38

FIG. 11B

EP 1238 341 B1

Get

¢l "Old w vee
: SLEAYIWHL ; w
JAILOY OL m ;
m : @3LYNTYAI SNIHOYI
LINN TYNOILONNSY < ¢———p-ig— ONIGHOIIY —ppig—— |V
A9 3AI3034 SdON NE Y TS 31V1S QY3HHL MOV
“ S1INN “
WNOLONNA N

01

INNN

Il_ M10S

v0e

39

EP 1238 341 B1

400

A 4

MICROCODE SEQUENCER (M) | 402
RECEIVES 1ST AND 2ND VECTORS
FROM EVENT DETECTOR
IDENTIFYING 1ST AND 2ND EVENT
HANDLERS

ST OR 2ND HANDLER
REQUIRES EXCLUSIVE
ACCESS?

MS SEQUENCES 1ST AND 2ND EVENT
HANDLERS IN NON-EXCLUSIVE,
INTERLEAVED MANNER

MS PROVIDES EXCLUSIVE ACCESS
STATE MACHINE TO PROVIDE
EXCLUSIVE ACCESS, IN TURN, TO
EACH OF THE 1ST AND 2ND
HANDLERS

v

RESUME NORMAL
SEQUENCING AND
ISSUE FOR BOTH

432

THREADS

FIG. 13

40

EP 1238 341 B1

3000N av3ayHL
aNe 3NSSI

3000n av3dgHL
aNe 3NsSl

Ocy

vl Ol

HINVWMO4
TIVLS

HINVYWMO4
TV1S
34134

8Ly \

341134

9cv \

3000N av34HL
1S1TV1S

87

HINVAMOT4
TIVLS
3nssl

v_.v\

av3HHL H108
H04 3A00N INSSI

DINN

av3yHL LS4
"04 300N 3NSS|

87

41

EP 1238 341 B1

TO: NUKE

T1:NO EVENT / 500

502

TO: SLEEP
T1: NO EVENT

T0: NUKE
T1: SLEEP

TO: NUKE
T1: BREAK

T0: SLEEP
T1: SLEEP

T0: BREAK
T1: BREAK

T0: NO EVENT T0: NUKE
T1: NO EVENT Tt NUKE
T0: NO EVE
T1: SLEEP
T0: NO EVENT
T1: BREAK o BREAK

T1: NUKE

T1: NUKE
TO: NO EVENT

FIG. 15

42

EP 1238 341 B1

[600

SAVE ALL REQUIRED STATE AND
DE-ALLOCATION ALL REGISTERS
IN REGISTER FILE

DRAIN MEMORY ACCESS
FOR EXITING THREAD
USING THREAD-SPECIFIC FENCE

SET UNWIND TO INDICATE THAT
EXITING THREAD IS ASLEEP

SET EVENT INHIBIT REGISTERS
TO INHIBIT NON-BREAK EVENTS
FOR EXITING THREAD

612

SIGNAL SLEEP EVENT

614

END

FIG. 16A

43

EP 1238 341 B1

124

ARCHITECTURE
STATE
REGISTERS
(EAX, EBX, ETC.)
To T1
/
/)
/Al
/
Ve
L1
-~
SCRATCH PAD
I
! 4
/
I
|
|
‘\ MICROCODE
X TEMPORARY
\ REGISTERS
\
AN
\\ N
S~Aa TO T1

44

FIG. 16B

EP 1238 341 B1

702 703

DETECT EVENT YES
OCCURRENCE |

‘ NO
* TURN ON CLOCK (AS NECESSARY)
* SIGNAL EVENT (WAIT FOR NUKEABLE
POINT ON OTHER THREADS)
* INVOKE EVENT HANDLER(S)

* EVENT HANDLER(S) DETERMINES THAT
THREAD ASLEEP USING UNWIND

704

EVENT HANDLER RESTORES
MICROCODE STATE

708
RESTORE ARCHITECTURE
STATE

710

CLEAR INHIBIT REGISTER

712
SERVICE BREAK EVENT

716
RESTART INSTRUCTION

FETCH

718

END

FIG. 17

45

EP 1238 341 B1

/ 800
802
YES 1ST OR 2ND

THREADS ACTIVE?

NO
804

YES NON-INHIBITED

e EVENT PENDING FOR

1ST OR 2ND
THREAD?

NO

806

YES _~ ANY SNOOPS BEING
e PROCESSED BY THE
PROCESSOR BUS?

NO
810 808

A 4 -~ INHIBIT/SUPPRESS/STOP
ACTIVATE/MAINTAIN INTERNAL CLOCKS EXCEPT
INTERNAL CLOCKS (CLK CLOCKS NEEDED TO DETECT PIN

ENABLE CONDITION) ACTIVITY (CLK DISABLE
CONDITION)

FIG. 18

46

EP 1238 341 B1

STPCLK .
32
A_/ [
BUS INTERFACE UNIT
[%® SNOOP_CONTROL
820 "
ACTIVE | | | cLock conTroL LoGIc |
BITS OF ACTIVE <
THREAD
STATE MACHINE 5
I 211
PENDING
EVENT AND EVENT INHIBIT
REGISTERS OUTPUT
(EVENTN_DETECTED) FIG. 19A
[35
822 824

EVENT@_DETECTED

21

EVENTN_DETECTED

820 {

TO_ACTIVE
T1_ACTIVE

SNOOP_CONTROL),

822

STP_CLK

826 ‘

47

FIG. 19B

	bibliography
	description
	claims
	drawings

