
US 20070220205A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0220205 A1

Sonoda et al. (43) Pub. Date: Sep. 20, 2007

(54) NAS WITH WORM FUNCTION Related U.S. Application Data

(63) Continuation of application No. 10/892,187, filed on
(76) Inventors: Koji Sonoda, Sagamihara (JP); Yoji Jul. 16, 2004, now Pat. No. 7,222,215.

Nakatani, Yamato (JP); Takahiro O O
Nakano, Yokohama (JP) (30) Foreign Application Priority Data

May 14, 2004 (JP)...................................... 2004-144687
Correspondence Address:
ANTONELLI, TERRY, STOUT & KRAUS,

Publication Classification

LLP (51) Int. Cl.
13OO NORTH SEVENTEENTH STREET G06F 12/00 (2006.01)
SUTE 18OO (52) U.S. Cl. .. 711A114
ARLINGTON, VA 22209-3873 (US)

(57) ABSTRACT
(21) Appl. No.: 11/751,781

A network Storage system accessible by a computer, includ
(22) Filed: May 22, 2007 ing worm functions.

300 300

NAS CLIENT NASCLIENT 250

NAS HEAD

MEMORY

worMFILECREATING 29
PROCESSNGPROGRAM

UALLOCATING 2O2 350
PROCESSING PROGRAM

MNTale WORM buf SAN CLINET

MAP Table 2052

150

100

1

& SC
ŠC ses

Patent Application Publication Sep. 20, 2007 Sheet 1 of 14 US 2007/0220205 A1

300 300

NAS CLIENT NAS CLIENT 250

NAS HEAD

WoRMFILE CREATING 29
PROCESSING PROGRAM

UALLOCATING 2O2 350
PROCESSING PROGRAM

MNT Table WORM buf SAN CLINET

MAP Table 2O52

15O

CONTROLLER

LU Table LDEW Table

s
S
SS

Patent Application Publication Sep. 20, 2007 Sheet 2 of 14 US 2007/0220205 A1

dev name mint point is type mode A time

MNT Table 2032

FG.2

Patent Application Publication Sep. 20, 2007 Sheet 3 of 14 US 2007/0220205 A1

regular

500 worMI -1.
502

MAP Table 2042

FG.3

Patent Application Publication Sep. 20, 2007 Sheet 4 of 14 US 2007/0220205 A1

LU Table 1401

FG4

Patent Application Publication Sep. 20, 2007 Sheet 5 of 14 US 2007/0220205 A1

LDEV num type

OT cmd
regular 1,000,000,000
regular 2,000,000,000

WORM 500,000,000
WORM 500,000,000

LDEV Table 1402

FG.5

Patent Application Publication Sep. 20, 2007 Sheet 6 of 14 US 2007/0220205 A1

ldev path /file 1

last access time

Meta info

FG.6

Patent Application Publication Sep. 20, 2007 Sheet 7 of 14 US 2007/0220205 A1

STAR read mode OPEN
PROCESSING

to SEARCH Meta FS TO OBTAIN
META-INFORMATION OF FILE

10O2 SEARCH MAP Table
WITH LDEV num

SLU NO
1OO3 ALREADY 3.

LU ALLOCATING

-|- PROCESSING | -

1005

MOUNTLU ON Read mode
UPDATE MNT Table Yes saxxx xxxxx-xx-xxxxsetzerzegressertarascetragrariars Exces

SEARCH MNT Table TO
1007 OBTAIN MOUNT POINT

OPEN FILE AND RETURN

END read mode OPEN
PROCESSING -/

1008

s

FG.7

Patent Application Publication Sep. 20, 2007 Sheet 8 of 14 US 2007/0220205 A1

START Write mode OPEN
PROCESSING A

SEARCH Meta FS TO OBTAIN
2001 META-INFORMATION OF FILE

Yes 2002 -s3 Type=WORM? C
N

SEARCH Map Table
2003 WITH LDEV num

S LUALREADY X

2004 NALLOCATED2-1
s

Yes

SEARCH MNT Table TO
2005 OBTAIN MOUNT POINT

OPEN FILE AND RETURN
2OO6 RESULT ...

END Write mOde OPEN
PROCESSING A.

ERROR RETURN

FG.8

Patent Application Publication Sep. 20, 2007 Sheet 9 of 14 US 2007/0220205 A1

START LUALLOCATING
PROCESSING

s
ex

LOOK UP MAP Table FOR LUTHAT IS
3OO1 NOT ALLOCATED TO LDEV

S SEARCH FOR
UNASSIGNED LU

SUCCESS2

LOOK UP MNT Table FOR LU
(Type=Temp&mode=r) THAT HAS NOT
BEEN ACCESSED FOR THE LONGEST

3OO4 UNMOUNT OBTANED LU

3003

ISSUE COMMAND, TO RAID DEVICE,
FOR ALLOCATING OBTANED LU

3005 TO LDEV

3OO6 UPDATE MAP Table

FG.9

Patent Application Publication Sep. 20, 2007 Sheet 10 of 14 US 2007/0220205 A1

START WORM FLE CREATING
PROCESSING

s ages

400 SEARCH Meta FS TO OBTAIN FILE THAT
HAS PASSED GIVEN PERIOD

4002

as'
Yes

4003 READ EVERY FILE ON LIST TO CREATE
UDF IMAGE IN WORM buf

4004 SECURE LDEVFOR STORING UDF
MAGE AND REGISTER IN MAP Table

PERFORMLUALLOCATING
4005 PROCESSING ON

ASSIGNED DEV

4OO6 WRITE UDF IMAGE

4OO7 CHANGELDEV Type TO WORM

Aoos UPDATE INFORMATION IN Meta info
DELETE FILE N Data FS

END WORM FLE CREATING M

PROCESSING -1

FG1 O

Patent Application Publication Sep. 20, 2007 Sheet 11 of 14 US 2007/0220205 A1

300 3OO

NASCENT NASCIENT

CONTROLLER

NAS HEAD

MEMORY
WORM FLE CREATING 2012
PROCESSING PROGRAM

LUALLOCATING 2022
PROCESSING PROGRAM

MNT Table WORM buf

MAP Tabie 2O52

is 1102
MEMORY - 1112

LDEV GUARD PROGRAM
1122

DEV CHANGER
PROGRAM

INTERNAL NEWORK

131

4d is & DISKADAPTOR. ---------,

350

SAN CLENT

1101 CONTROLLER
MEMORY

1112
DEVGUARD
PROGRAM

1122
LDEV CHANGER
PROGRAM

SHARED MEMORY

DEV Table

Patent Application Publication Sep. 20, 2007 Sheet 12 of 14 US 2007/0220205 A1

0 cmd. O Ol
1 regular 1,000,000,000 Ol
2 regular 2000,000,000 Ol

WORM 500,000,000 500,000,000

WORM 500,000,000 500,000,000
WORM 500,000,000 100,000

LDEV Table 1402

FG12

Patent Application Publication Sep. 20, 2007 Sheet 13 of 14 US 2007/0220205 A1

1,000,000,000
2,000,000,000 O

1 500,000,000 500,000,000

WORM 244 500,000,000 500,000,000

-1 500,000,000 100,000

MAP Table 2042

regular 1

regular

FG.13

Patent Application Publication Sep. 20, 2007 Sheet 14 of 14

5002

5004

5005

5006

5009

5010

PROCESSING
START WORM FILE CREATING

SEARCH Meta FS TO OBTAN

S THERE LDEV THAT

REGISTER SECURED LDEV
NMAP Table

TO ADD TO WORM buf

TO WORM buf AND DAA

META-INFORMATION ON TARGET FILE

SSUE COMMAND FOR SECURING
WORM type LDEVAND OBTAIN

UALOCATING
PROCESSENG

UPDATE wbegin OF MAP Table

CAN STORE FILE-e

LU ALLOCATING
PROCESSING

READ DIRECTORY
NFORMATION OF UDF FROM

LdeV INTO WORM buf
W.

NITALIZE WORM buf

READ USER DATA OF TARGET FILE

WRITE, INLDEV, USER DATA ADDED
OF DIRECTORY INFORMATION

END WORM FLE CREATING
PROCESSING

US 2007/0220205 A1

US 2007/0220205 A1

NAS WITH WORM FUNCTION

CROSS REFERENCE TO RELATED
APPLICATION

0001. This is a continuation of U.S. application Ser. No.
10/892,187, filed Jul. 16, 2004. The entirety of the contents
and subject matter of all of the above is incorporated herein
by reference.

CLAIM OF PRIORITY

0002 The present application claims priority from Japa
nese application P2004-144687 filed on May 14, 2004, the
content of which is hereby incorporated by reference into
this application.

BACKGROUND

0003. The present invention relates to a storage system
which stores files used by computers. More specifically, the
invention relates to a storage system capable of saving the
resource while exerting a WORM function.
0004. When holding electronic data in a memory device
Such as a storage, there are problems in that as a retention
period of the electronic data becomes longer and an amount
of data increases, a demanded capacity of the storage also
increases, requiring higher costs. Therefore, more important
data is recorded on a high-speed storage with a large transfer
bandwidth, and less important data is recorded on a rela
tively low-speed storage. Such a high-speed storage with the
large transfer bandwidth costs high, and Such a relatively
low-speed storage costs low. Further, based on the date when
the data is saved (i.e., the archive date), fresh data (data for
which not much time has elapsed since being archived) is
recorded on the high-speed storage, and old data (data for
which a given duration of time has elapsed since being
archived) is recorded on the low-speed storage. This type of
data management method is called Data Lifecycle Manage
ment (DLCM).
0005 One of known file archive mechanisms which are
designed by taking into account long-term file retention in
this data lifecycle management is Write Once Read Many
(WORM) archives, which manages modification, and era
sure of files whose archive period has not expired yet. In
order to apply WORM to a memory device, a storage device
or a controller has to have a WORM function.

0006 An example of a WORM function for Network
Attached Storage (NAS) is a technology proposed to make
any erasure, modificationDor Such on a file that is stored
under a specific directory impossible by setting the mode bit
of the file to “Read Only” through a NAS server (see, for
example, the following internet article:
0007 Network Appliance, “NetApp. NearStore', on
line. <URL:http://www.netapp.com/products/nearstore/

SUMMARY

0008 According to the article cited above, the WORM
function is obtained by setting “writable' or “unwritable'
for each file on the file system level. The WORM function
given in this manner to a storage device does not work when
a SAN client or the like directly accesses a volume in the
storage device, allowing data alteration. The cited technique

Sep. 20, 2007

also takes up a large part of the resource of the NAS server
since every Volume of the storage device has to be recog
nized by the NAS server.
0009. It is therefore an object of the present invention to
provide a storage system capable of cutting back the
resource while obtaining a WORM function on a volume
level of a storage device.
0010. In a storage system according to the present inven
tion, a controller obtains from the memory module infor
mation on one of logical devices that is a target of a write
request is made by a computer, and when the logical device
is set to unwritable, informs the fact to the computer. An
interface references meta-information held in the disk drive
to obtain a list of files that are not accessed for a predeter
mined period, secures a logical device that is capable of
storing the files on the obtained list of files, and causes the
controller to store, in the logical device, the files on the list
of files and sets to unwritable the logical device that stores
the files in a manner that makes information stored in the
memory module.
0011. The present invention enables a storage system to
obtain a WORM function on the logical device level and to
cut back the resources of an interface (NAS head) and a
RAID device.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 FIG. 1 is a block diagram showing a configuration
of a storage system according to a first embodiment of the
present invention.
0013 FIG. 2 is an explanatory diagram showing an
example of a configuration of an MNTTable 2032 according
to the first embodiment of the present invention.
0014 FIG. 3 is an explanatory diagram showing an
example of a configuration of a MAP Table 2042 according
to the first embodiment of the present invention.
0015 FIG. 4 is an explanatory diagram showing an
example of a configuration of an LU Table 1401 according
to the first embodiment of the present invention.
0016 FIG. 5 is an explanatory diagram showing an
example of a configuration of an LDEV Table 1042 accord
ing to the first embodiment of the present invention.
0017 FIG. 6 is an explanatory diagram showing an
example of a configuration of Meta info according to the first
embodiment of the present invention.
0018 FIG. 7 is a flow chart showing processing which is
executed, upon an OPEN request made in a file read mode,
in a NAS head 200 according to the first embodiment of the
present invention.
0019 FIG. 8 is a flow chart showing processing which is
executed, upon an OPEN request made in a file write mode,
in the NAS head 200 according to the first embodiment of
the present invention.
0020 FIG. 9 is a flow chart showing LE allocating
processing which is executed in the NAS head 200 accord
ing to the first embodiment of the present invention.
0021 FIG. 10 is a flow chart showing WORM file
creating processing which is executed in the NAS head 200
according to the first embodiment of the present invention.

US 2007/0220205 A1

0022 FIG. 11 is a block diagram showing a configuration
of a storage system according to a modified example of the
first embodiment of the present invention.
0023 FIG. 12 is an explanatory diagram showing an
example of a configuration of an LDEV Table 1042 accord
ing to a second embodiment of the present invention.
0024 FIG. 13 is an explanatory diagram showing an
example of a configuration of an MAPTable 2042 according
to the second embodiment of the present invention.
0025 FIG. 14 is a flow chart showing WORM file
creating processing which is executed in a NAS head 200
according to the second embodiment of the present inven
tion.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0026 Storage systems according to embodiments of the
present invention will be described below with reference to
the accompanying drawings.
0027 FIG. 1 is a block diagram showing a configuration
of a storage system according to a first embodiment of the
present invention.

0028) A RAID device 100 is connected to a NAS (Net
work Attached Storage) head 200 and to a SAN client 350
through a SAN (Storage Area Network) 150. The NAS head
200 and each NAS client 300 are connected to one another
through a LAN (Local Area Network) 250.
0029. In the RAID device 100, a controller 110, a shared
memory 140, and a disk drive 130 are connected to one
another through an internal network 120.
0030) The controller 110 receives file data sent from the
NAS head 200 or the SAN client 350 through the SAN 150,
and sends file data of the RAID device 100 to the NAS head
200 or the SAN client 350 through the SAN 150. The
controller 110 also receives a control command sent from
the NAS head 200 or the SAN client 350 through the SAN
150, and carries out processing based on the received control
command. The controller 110 is equipped with a control
device (CPU) 1101 and a memory 1102. The memory 1102
stores an LDEV guard program 1112 and an LDEV changer
program 1122. These programs are, as will be described
later, executed by the CPU based on a control command
received by the controller 110, thereby starting given pro
cessing. The memory 1102 is comprised a memory module
that is semiconductor memory, magnetic disk or the like.
0031. The disk drive 130 is composed of logical devices
(LDEVs) obtained by logically dividing plural hard disks
which take the RAID configuration. The disk drive 130 is
connected to the internal network 120 through a disk adaptor
131. Each LDEV has an LDEV number (LDEV num) unique
throughout the RAID device 100, and is registered in an
LDEV Table 1402.

0032) The disk drive 130 breaks into a meta file system
(Meta FS) 1301, a data file system (Data FS) 1302, and a
temporary file system (Temp FS) 1303 in keeping with file
systems provided by the NAS head 200. The Meta FS 1301
holds meta-information of every file that is stored in the disk
drive 130. The Data FS 1302 holds file data. The Temp FS
1303 holds file data similar to the Data FS 1302, but is set

Sep. 20, 2007

in a manner that allows the file system to be mountable and
unmountable to a file system of the NAS head.
0033. The shared memory 140 is a memory device for
storing configuration information or the like of the disk drive
130. The shared memory 140 holds the one LDEV Table
1402, which covers the entire RAID device 100, and an LU
Table 1401, which is provided for each controller 110. The
LDEV Table 1402 holds information for managing the
LDEVs of the disk drive 130 (management information).
The management information includes LDEV numbers,
which are unique to the respective LDEVs throughout the
RAID device 100, the types and sizes of the LDEVs, and the
like. The LU Table 1401 holds LU (Logical Unit) numbers
(LU nums) each of which is associated with an LDEV
number. The LU numbers are identifiers used by the NAS
head 200 to read/write a block through the controller 110.
The shared memory 140 is comprised a memory module that
is semiconductor memory, magnetic disk or the like.

0034) The NAS head 200 functions as an interface that
provides the NAS client 300, through a file system, with the
data Stored in the RAID device 100.

0035) The NAS head 200 is equipped with a control
device (CPU) 2001 and a memory 2002. The memory 2002
holds a WORM file creating processing program 2012, an
LU allocating processing program 2002, a mount Table
(MNTTable) 2032, a MAP Table 2042, and a WORM buffer
(WORM buf) 2052. The memory 2002 is comprised a
memory module that is semiconductor memory, magnetic
disk or the like.

0036) The WORM file creating processing program 2012
and the LU allocating processing program 2022 are
executed, as will be described later, by the CPU 2001 upon
request from the NAS client 300 (a file read/write request or
the like), thereby starting given processing.

0037. The MNT Table 2032 holds the association
between the LU numbers mounted on the NAS head 200 as
a file system and their mount points. The MAP Table 2042
holds the association between every LU number that is
managed by the NAS head 200 and the LDEV number
allocated to the LU number in question.
0038. The WORM buf 2052 temporarily holds data cre
ated as an image in the UDF (Universal Disk Format) format
when a file is stored as a WORM file in an LDEV upon
request from the NAS client 300. It is therefore unnecessary
to set an area of the memory 2002 aside for the WORM buf
2052 all the time. The WORM buf 2052 may be set in the
disk drive 130 when the UDF image has large data size.

0039. In the RAID device 100, a command device is
defined for each controller 110. The NAS head 200 or the
SAN client 350 issues a given command (for example, to
secure an LDEV, to change which LU number is associated
with which LDEV number, or to change the type of an
LDEV) by informing the command to a defined command
device.

0040. The Temp FS 1303, of the disk drive 130 is not
always mounted to a file system provided by the NAS head
200. The Temp FS 1303 holds WORM files which might not
be accessed for a long period (several tens years, for
instance), while the Meta FS 1301 and the Data FS 1302
hold files that are frequently accessed. Keeping every LDEV

US 2007/0220205 A1

mounted to the file system is not practical since it is a waste
of resources of the NAS head 200 and of the RAID device
1OO.

0041 LU mount/unmount processing takes time and is a
heavy load on the system, which makes it desirable to keep
mounted an LU that has a frequently accessed file. On the
other hand, in the Temp FS 1303 which stores WORM files
that might not be accessed for a long period, an LU is
mounted only when a WORM file stored therein is to be
accessed and is kept unmounted for the rest of the time. In
this way, it is possible to take full advantage of the resources
of the NAS head 200 and the RAID device 100.

0042. Of the LUs in the Temp FS 1303 of FIG. 1,
crosshatched ones represent LUs that are mounted, while
outlined ones represent LUs that are unmounted.
0043. The LUs may be mounted/unmounted dynamically
as the need arises. The LU mount/unmount processing will
be discussed later.

0044 FIG. 2 is an explanatory diagram of the MNTTable
2032 held in the memory 2002 of the NAS head 200.
0045. The NAS head 200 is an interface which provides
a file system to the NAS client 300. The MNT Table 2032
is used for management of directory information and direc
tory attributes (write/read and the like) in order to provide a
file system.
0046) The MNT Table 2032 is composed of the name of
a device mounted (dev name), the mount point (mint point),
the file system type (fs. Type), the mode (mode), the last
access time (A time), and others.
0047 A “dev name is expressed by attaching an LU
number to "/dev/lu'. For “fs. Type' data, the type of a file
system is stored. There are three file system types: meta,
data, and temp; “meta’ indicates a meta file system which
stores a directory tree and file attributes such as the location
to store a file are stored, “data' indicates a file system type
which stores a file that can be updated, and “temp” indicates
a file system in which an LU storing a file that cannot be
updated is mounted temporarily.
0.048. The “mode” represents an attribute of the mount
point in question. The symbol “r” denotes readable, “w”
denotes writable, and “rw' denotes readable/writable.
0049. For the “last access time', the time at which the
mounted LU is last accessed (read or write, for example) is
recorded.

0050 FIG.3 is an explanatory diagram of the MAP Table
2042 held in the memory 2002 of the NAS head 200.
0051) The MAP Table 2042 is used to manage the asso
ciation between every LU and LDEV that are managed by
the NAS head 200.

0.052 The MAP Table 2042 is composed of an LDEV
number (LDEV num), the type of an LDEV (Type), an LU
number (LU num) to which the LDEV is allocated, and
others.

0053 Examples of the LDEV Type include “cmd.
“regular”, and “WORM. The symbol “cmd” denotes a
command device used as the target of a command issued
from a client. Commands directed to the RAID device 100
to secure an LDEV, associate an LDEV with an LU (map

Sep. 20, 2007

ping), change the LDEV type, and the like are sent from the
NAS head 200 to an LDEV of “cmd. Type. An LDEV
denoted as “regular is one that allows a client to read and
write a file. The Type “WORM' indicates that a file in an
LDEV can be read but not written.

0054) When the LU num is “-1” (in the example of FIG.
3, the LU num associated with an LDEV num 500 is “-1),
it means that the LDEV has no LU allocated thereto.

0055 FIG. 4 is an explanatory diagram showing an
example of the LU Table 1401 in the shared memory 140 of
the RAID device 100.

0056. The LU Table 1401 is made for each controller 110
provided in the RAID device 100, and is stored in the shared
memory 140. In the configuration example of FIG. 1, there
are two of the controller 110 and accordingly the shared
memory 140 stores two of the LU Table 1401, each of which
is for one of the two controllers. Each LU Table 1401 is
composed of an LU number (LU num), the number of the
LDEV (LDEV num) allocated to the LU that is denoted by
the LU number, and others.

0057. Upon receiving a block read/write request from the
NAS head 200, the controller 110 obtains the LU number
contained in the request. Then the controller 110 looks up its
own LU Table 1401 for the LDEV number that is associated
with the obtained LU number. Thus the block read/write
processing is performed on the LDEV that is specified by the
obtained LDEV number.

0058 FIG. 5 is an explanatory diagram showing an
example of the LDEV Table 1402 in the shared memory 140
of the RAID device 100.

0059) There is only one LDEVTable 1402 throughout the
entire RAID device 100, which is held in the shared memory
140. The contents of the LDEV Table 1402 define configu
rations of LDEVs in the disk drive 130.

0060. The LDEV Table 1402 is composed of an LDEV
number (LDEV num) unique to an LDEV throughout the
RAID device 100, the type of the LDEV (type), the size of
the LDEV (size), and others. There are three LDEV types as
has been described referring to FIG. 3. The size means the
maximum storage capacity of the LDEV in question.

0061 FIG. 6 shows an example of meta-information
(meta-data) stored in the meta file system (Meta FS) 1301 of
the disk drive 130.

0062 Meta-information is information on files kept in the
disk drive 130 and is stored for each of the files in the Meta
FS 1301.

0063 Each piece of meta-information is composed of the
name of a file (name), the size (size) of the file, the number
of the LDEV that stores the file (LDEV num), the local path
name (LDEV path) of the local file that stores the file in the
LDEV, the time at which the file is last accessed (last
access), the type of the file (type), and others.

0064. As has been described, file type examples include
a file type which allows read and write (regular) and a file
type which allows read but not write (WORM).
0065 Referencing such meta-information yields the
name of a file, the size of the file, the number of the LDEV

US 2007/0220205 A1

where the file is stored, the name of the directory path
storing the file, the time the file is last accessed, and the type
of the file.

0.066 Described next is the operation of the storage
system of this embodiment.
0067 FIG. 7 is a flow chart showing processing executed
by the NAS head 200 when a file is opened on a read mode
upon request from the NAS client 300.
0068. The NAS client 300 sends to the NAS head 200 a
request to open a file on the read mode. Receiving the
request from the NAS client 300, the NAS head 200 obtains
a file name contained in the request. The NAS head 200 then
references the Meta FS 1301 of the disk drive 130 in the
RAID device 100 to obtain meta-information (FIG. 6)
associated with the file name obtained (Step S1001).
0069. Next, the objective LDEV number is pulled out of
the obtained meta-information. The MAPTable 2402 is then
looked up for the LU number that is associated with the
obtained LDEV number (Step S1002).
0070 Referring to the LU number retrieved, the NAS
head 200 judges whether an LU is allocated or not (Step
S1003). Specifically, when the retrieved LU number is “-1”,
it is judged that no LU is allocated to the LDEV specified by
the obtained LDEV number and the process proceeds to
processing for allocating an LU to the LDEV denoted by that
LDEV number (LU allocating processing) (Step S1004). As
an LU is allocated to the LDEV through the LU allocating
processing, which will be described later with reference to
FIG. 7, the process proceeds to Step S1005.
0071. On the other hand, when it is judged in Step S1003
that an LU has already been allocated, the process proceeds
to Step S1005 skipping the LU allocating processing of Step
S1004.

0072) In Step S1005, the MNT Table 2032 is referenced
to judge whether the LU that is specified by the LU number
is mounted or not. When the LU is judged to be not mounted,
the LU is mounted (Step S1006) and then the process
proceeds to Step S1007.
0073. In the case where the LU is judged to be already
mounted, on the other hand, the process proceeds to Step
S1007 skipping Step S1006.
0074) In Step S1007, the MNT Table 2032 is referenced

to pull out the mount point associated with the obtained
number of the LU that has been mounted.

0075. Then a relative path contained in the obtained
meta-information is used as a relative path from the obtained
mount point to perform the read OPEN processing on the
requested file. The result of the read OPEN processing is
sent to the NAS client 300 (Step S1008).
0076. This series of processing enables the NAS client
300 to perform the file open processing on the read mode
through a file system of the NAS head 200.
0.077 FIG. 8 is a flow chart showing processing executed
by the NAS head 200 when a file is opened on a write mode
upon request from the NAS client 300.
0078. The NAS client 300 sends to the NAS head 200 a
request to open a file on the write mode. Receiving the file
OPEN request from the NAS client 300, the NAS head 200

Sep. 20, 2007

obtains a file name contained in the request. The NAS head
200 then references the Meta FS 1301 of the disk drive 130
in the RAID device 100 to obtain meta-information (see
FIG. 6) on the obtained file name (Step S2001).
0079 Next, the Type of the file is pulled out of the
obtained meta-information to check whether the Type is
“WORM or not (Step S2002). When the file Type is found
to be “WORM, the file cannot be opened on the write mode
and an error is sent to the NAS client 300 that has made the
request to end the processing (Step S2007).
0080. In the case where the file Type is found out to be
other than “WORM, the objective LDEV number is picked
up from the obtained meta-information. The MAP Table
2402 is then looked up for the LU number that is associated
with the obtained LDEV number (Step S2003).
0081 Referring to the LU number retrieved, the NAS
head 200 judges whether an LU is allocated or not (Step
S2004). When the retrieved LU number is “-1”, it is judged
that no LU is allocated to the LDEV specified by the
obtained LDEV number. In this case, an error is sent to the
NAS client 300 that has made the request and the processing
is ended (Step S2007). In the system of this embodiment, as
described above, a file OPEN request on the write mode for
an LDEV to which no LU is allocated is unacceptable since
any LDEV that has no LU allocated thereto constitutes the
Temp FS 1303, which stores WORM files.
0082) On the other hand, when it is judged in Step S2004
that an LU has already been allocated, the MNTTable 2032
is referenced to pull out the mount point associated with the
obtained number of the LU that has been mounted (Step
S2005).
0083. Then a relative path contained in the obtained
meta-information is used as a relative path from the obtained
mount point to perform the write OPEN processing on the
requested file. The result of the write OPEN processing is
sent to the NAS client 300 (Step S2006).
0084. This series of processing enables the NAS client
300 to open a file on the write mode through a file system
of the NAS head 200.

0085. It should be noted that, in the case of an LU
WRITE request made by the SAN client 350 to the RAID
device 100 without the intermediary of the NAS head 200,
the WORM function is obtained through control by the
controller 110. Specifically, as a write request is made by the
SAN client 350, the LDEV guard program 1112 of the
controller 110 looks up the LDEV Table for the Type of the
LDEV associated with the LU in question. When the
retrieved Type is “regular, the LDEV grants the write
request. On the other hand, when the retrieved Type is
“WORM, the write request on the LDEV is denied and an
error is sent to the SAN client 350.

0086 FIG. 9 is a flow chart showing the LU allocating
processing (Step S1004 in FIG. 7) executed by the NAS
head 200.

0087 First, the MAP Table 2042 is looked up for an LU
that is not allocated to an LDEV (Step S3001). The NAS
head 200 then judges whether or not the search for an
unallocated LU has succeeded, in other words, whether there
is an unallocated LU or not (Step S3002). When it is judged
that there is an unallocated LU, the process proceeds to Step
S3OOS.

US 2007/0220205 A1

0088. When it is judged that there is no LU left unallo
cated, the MNTTable 2032 is looked up for the LU that has
not been accessed for the longest time out of the LUs whose
Type is “Temp' and whose mode is “r” (read) by checking
the A Time (Step S3003). The thus retrieved LU is
unmounted (Step S3004).

0089. Then an LU allocating command is issued to the
RAID device 100 in order to allocate the retrieved LU to an
LDEV (Step S3005).

0090 Specifically, the NAS head 200 issues an LU
allocating command having as parameters the LDEV num of
the LDEV to which the LU is to be allocated and the LU
num, to the LU number of “cmd' (for control) defined in the
MAP Table 2042. The LU allocating command issued is
received by the controller 110 in the RAID device 100 which
exchanges data with the NAS head 200. The LDEV changer
program 1122 of the controller 110 that has received the
command changes, based on the parameters of the LU
allocating command, the association between LUS and
LDEVs in the LU Table 1401 held in the shared memory 140
which is associated with the controller 110 that has received
the command.

0091. The NAS head 200 then sets the number of the
allocated LU in the entry of the corresponding LDEV of the
MAP Table 2042 which is held in the memory 2002.

0092 An LU is allocated to an LDEV that has not been
assigned an LU through this series of processing.

0093. When there is no LU unallocated, one that has not
been accessed longest out of the LUs mounted to the file
system is unmounted to be allocated to the LDEV. In Step
S3003, an LU whose Type is “Temp' and whose mode is “r”,
namely, an LU set as WORM is unmounted.
0094 WORM file creating processing is discussed next.

0.095. In this embodiment, file data is usually stored in the
Data FS of the disk drive 130. Of the files Stored in the Data
FS, the NAS head 200 looks up for those that have not been
accessed for a given period (several months to several years,
for example) and moves file data of such files as WORM
files to the Temp FS.

0096 FIG. 10 is a flow chart showing the WORM file
creating processing executed by the WORM file creating
processing program 2012 held in the memory 2002 of the
NAS head 200.

0097. The WORM file creating processing program 2012
Searches the Meta FS 1301 in the disk drive 130 of the RAID
device 100 for a file that has not been accessed for a given
period (Step S4001). Each piece of Meta info (see FIG. 6)
held in the Meta FS 1301 keeps the date and time of the last
access to respective files stored in the disk drive 130. The
NAS head 200 obtains the last access date and time and,
when there is any that is over the given period, information
on the file in question is obtained and listed for the record.

0098. Then whether a file that has not been accessed for
a given period is found in Step S4001 or not is checked (Step
S4002). When the check finds no file that has not been
accessed for the given period, the WORM file creating
processing is ended since there is no file to be turned into a
WORM file.

Sep. 20, 2007

0099. On the other hand, when a file that has not been
accessed for the given period is found as a result of the
checking, the whole data of the file is read out of the Data
FS 1302 first to create a UDF (Universal Disk Format)
image from the read file. The created UDF image is stored
in the WORM buf 2052 of the memory 2002 (Step S4003).
0100. Then an LDEV is secured in order to store the UDF
image created (Step S4004). Specifically, an LDEV securing
command which specifies the size required to store the UDF
image is sent to the RAID device 100. The controller 110 of
the RAID device 100 secures an LDEV whose Type is
“regular and which meets the specified size based on the
command received.

0101. As the LDEV is secured, the WORM file creating
processing program 2012 registers information of the
secured LDEV in the MAP Table 2032 held in the memory
2002.

0102 Next, the LU allocating processing (see FIG. 9) is
performed on the secured LDEV (Step S4005). The UDF
image stored in the WORM buf 2052 is written in the LU
that is allocated to the secured LDEV through the LU
allocating processing (Step S4006).

0103) Then the Type of the LDEV in which the UDF
image is written is set to “WORM” (Step S4007). In this
processing, a command for setting the LDEV to WORM is
sent to the RAID device 100. The controller 110 of the RAID
device 100 receives the command and sets the Type of the
LDEV of the LDEV Table 1402 held in the shared memory
140 to “WORM. Meanwhile, the NAS head 200 sets the
Type of the corresponding LDEV of the MAP Table 2042
held in the memory 2002 to “WORM'.
0.104 Lastly, Meta info of every file that has been turned
into a WORM file is updated and data of the files is deleted
from the Data FS 1302 (Step S4008). Specifically, the file
data on the Data FS 1302 is deleted with the use of the
LDEV path of Meta info of each file that has been turned
into a WORM file. Thereafter, the number of the LDEV in
which the UDF image is written is set as the LDEV num in
the Meta info, the path name in the UDF is set as the LDEV
path in the Meta info, and “WORM is set as the Type in the
Meta info.

0105 Through the above processing, a file that has not
been accessed for a given period can be turned into a
WORM file.

0106 Although in the processing example shown in FIG.
10, the NAS head 200 reads a file to be turned into a WORM
file, creates a UDF image from the file, stores the image in
the buffer, and writes the image in the RAID device 100, the
RAID device 100 may move the file following instructions
of the NAS head 200. In this case, the controller 110 needs
to have the function of a file system. Upon receiving an
instruction from the NAS head 200, the controller 110
converts a file specified in the instruction into a UDF image,
which is then stored in the Temp FS 1303. In this way,
processing on the part of the NAS head 200 is reduced as
well as data communication between the NAS head 200 and
the RAID device 100.

0.107. In the processing shown in FIG. 10, files that have
not been accessed for a given period are uniformly searched
for turning the files into WORM files. Alternatively, the time

US 2007/0220205 A1

period for turning a file into a WORM file may vary from
one file to another. In this case, information on how long a
file has to wait before being turned into a WORM file is
contained in Meta info of the file. A time period of one year,
for instance, is set counting from the day the file is stored as
data file in the RAID device 100. This information is pulled
out of the Meta info of the file in Step S4001 of FIG. 10 and,
if it is found that the set time period (one year) has expired,
the file is turned into a WORM file. The subsequent pro
cessing is as described above.
0108. In the thus structured first embodiment of the
present invention, Type is set by the LDEV Table 1402 for
each LDEV that constitutes the disk drive 130 of the RAID
device 100. This makes it possible to, for instance, permit
read alone in an LDEV that is set to “WORM, thereby
realizing the WORM function on the LDEV level of the
RAID device 100. In addition, since the Temp FS 1303
which holds WORM files is mounted/unmounted to a file
system by the NAS head 200 as the need arises, it is possible
to save the resources of the NAS head 200 which provides
the file system and of the RAID device 100.
0109 The storage system shown in FIG. 1 may be
modified as shown in FIG. 11 in which the controller 110 is
given a function of a NAS head 210 and a controller 115
constructed as one module is provided in the RAID device
100. This configuration makes the RAID device 100, instead
of the NAS head, the one that provides the NAS client 300
with a file system and at the same time makes it possible to
use WORM also to limit access from the SAN client 350 via
the SAN 150.

0110. A storage system according to a second embodi
ment of the present invention is described next.
0111. The first embodiment shows a method in which
data stored in an LDEV that has not been accessed for a
given period is automatically turned into WORM data by the
NAS head 200. The first embodiment is contrasted by the
second embodiment where the NAS client 300 gives an
instruction to turn a file into a WORM file for each file. The
NAS head 200 turns the relevant file into a WORM file with
the instruction from the NAS client 300 as the trigger.
Components in the second embodiment that are identical to
those in the first embodiment are denoted by the same
reference symbols, and descriptions on Such components are
omitted here.

0112 In the second embodiment, conducting the WORM
file creating processing for each file upon instruction from
the NAS client 300 is made possible by setting an LDEV for
storing a WORM file such that a file can additionally be
written in the LDEV. Specifically, a field indicating the head
block of a writable area is added to the LDEV Table 1402,
so that an area that is turned into WORM and a writable area
can be managed for each LDEV. In the WORM file creating
processing, a UDF image in an LDEV a part of which has
already been turned into WORM is read and sent to the
WORM buf 2052 and, after creating a UDF image to which
a file to be turned into a WORM file is added, the added
portion alone is written in the LDEV.
0113 FIG. 12 is an explanatory diagram showing the
LDEV Table 1402 in the Second embodiment.

0114. The LDEV Table 1402 of this embodiment has a
“wbegin” field in addition to the contents of the LDEV Table

Sep. 20, 2007

1402 shown in FIG. 5. The wbegin field indicates a writable
area of an LDEV whose Type is “WORM. In other words,
the area preceding the block number indicated by wbegin is
an unwritable area, while the area following the block
number of wbegin is an area in which data can be written
only once.

0.115. In the first embodiment described above, files
turned into WORM files are written at once in an LDEV and
then the Type of the LDEV is set to “WORM in the LDEV
Table 1402. Once the LDEV Type is set to “WORM,
writing in the LDEV is prohibited and no additional data can
be written in the LDEV.

0116. In the second embodiment, on the other hand, the
Type in the LDEV Table 1402 is set to “WORM and the
wbegin field (FIG. 12) is set to “0” when an LDEV is
secured. When a WORM file (data in the UDF format) is
written in this LDEV thereafter, the write process is con
cluded by setting as wbegin the value “the last block of the
written data +1. With this processing, only the blocks that
precede the block number of wbegin are made unwritable.

0117 FIG. 13 shows the MAP Table 2042 in the second
embodiment. The MAP Table 2042 of this embodiment has
“size' and “wbegin” fields in addition to the contents of the
MAP Table 2042 shown in FIG. 3. The “size field indicates
the size of an LDEV. The “wbegin” field indicates the first
block of a writable area of the LDEV as has been described
referring to FIG. 12.

0118 FIG. 14 is a flow chart showing WORM file
creating processing in the second embodiment which is
conducted by the NAS head 200 by executing the WORM
file creating processing program 2012 held in the memory
2002 of the NAS head 200.

0119) A NAS client specifies a file and sends, via the
NAS client 300, an instruction to turn the file into a WORM
file. The NAS head 200 receives the instruction and carries
out the processing of FIG. 14.

0.120. Upon receiving a WORM file creating instruction
from the NAS client 300, the NAS head 200 first looks up
the Meta FS in the disk drive 130 of the RAID device 100
for meta-information of the file in question (Step S5001).

0121 Then it is judged whether or not there is an LDEV
that can store the specified file (Step S5002). Specifically,
the MAP Table 2042 is referenced to judge whether or not
there is an LDEV having a capacity large enough to store the
file among LDEVs whose Type is “WORM. The LDEV
size required to store a file is obtained by subtracting the
value of the wbegin field in the MAP Table 2042 from the
value of the size field in the MAP Table 2042.

0122) When storing a file in an LDEV whose Type is
“WORM, it is necessary to store meta-information of the
file as well as the file data. Accordingly, the chosen LDEV
has to have a capacity large enough to store the file data and
the meta-information both.

0123. In the case where an LDEV capable of storing the
specified file is found, the LU allocating processing (see
FIG. 8) for allocating an LU is performed on the LDEV
(Step S5007). Next, directory information of this LDEV is
read into the WORM buf 2052 of the memory 2002 (Step
S5008).

US 2007/0220205 A1

0.124 When it is judged in Step S5002 that there is no
LDEV capable of storing the file, an LDEV whose Type is
“WORM is secured (Step S5003). Specifically, an LDEV
securing command which specifies the capacity required to
store the specified file is sent to the RAID device 100. The
controller 110 of the RAID device 100 secures an LDEV
whose Type is “WORM based on the received command.
0125) Then the number of the secured LDEV (LDEV
num) is registered in the MAP Table 2042 (Step S5004). The
LU allocating processing (see FIG. 8) for allocating an LU
is performed on the secured LDEV. After the LU is allocated
to the LDEV, the WORM buf 2052 of the memory 2002 is
initialized (Step S5006). Specifically, an empty UDF image
whose capacity is large enough to store the specified file is
created. The process then proceeds to Step S5009.
0126. In Step S5009, user data of the specified file is read
out of the Data FS in the disk drive 130 of the RAID device
100. The read file is added as a UDF image to the WORM
buf 2052 to create a UDF image that is to be written in the
LDEV.

0127. When writing the UDF image in the LDEV, meta
information Such as directory information is written along
with the user data in the LDEV (Step S5010). A write start
block of the LDEV can be known from the value indicated
by the wbegin of the LDEV in the MAP Table 2042. The
controller 110 is instructed to write in the LDEV by speci
fying the number of the LU that is allocated to the LDEV.
0128. Next, the wbegin value in the MAP Table 2042 is
changed to one to which the capacity of data written in the
LDEV is added (Step S5011). At this point, the NAS head
200 instructs the controller 110 of the RAID device 100 to
update the wbegin value of the LDEV Table 1042 as well.
0129. Through the above processing, a file can be turned
into a WORM file upon instruction from the NAS client 300.
0130. The thus structured second embodiment of the
present invention is, in addition to having the effects of the
first embodiment, capable of turning any arbitrary file into a
WORM file as the need arises since a WORM file can be
created upon instruction from the NAS client 300. Further
more, data of a WORM file is additionally written in an
LDEV and therefore LDEVs can be used efficiently, which
is a great help to cutting back the resource of the RAID
device 100.

0131) A period in which no file is allowed to be updated
may be set for an LDEV that stores a file turned into a
WORM file. For instance, a no-file-update period is set for
each LDEV in the LDEV Table 1402. File data Stored in the
corresponding LDEV cannot be updated or deleted until the
no-file-update period is over (this makes the file a WORM
file). After the no-file-update period passes, it is allowed to,
for example, delete the file in order to reduce the disk
capacity. A user specifies a no-file-update period via the
NAS client 300. The NAS head 200 instructs the controller
110 of the RAID device 100 to set the specified no-file
update period in the LDEV Table 1402 before the WORM
file creating processing is started.

0132) The above first and second embodiments take as an
example a case in which the NAS client 300 gives instruc
tions on the unit of conversion to WORM, how long it takes
to start conversion to WORM, and timing of conversion to

Sep. 20, 2007

WORM. Instead of the NAS client 300, a storage manage
ment server may give those instructions. This facilitates
storage management since the storage management server
can also manage WORM files in a centralized manner.
0.133 While the present invention has been described in
detail and pictorially in the accompanying drawings, the
present invention is not limited to such detail but covers
various obvious modifications and equivalent arrangements,
which fall within the purview of the appended claims.

What is claimed is:
1. A storage system accessible by a computer, comprising:

a disk drive unit comprised of plural logical devices;

a memory module which stores information about the disk
drive unit;

a first controller comprised of an interface which provides
a file system to the computer to facilitate access of files
by the computer, and

a second controller which receives access requests from
the computer, wherein:

the first and second controllers, when a write request is
made by the computer, looks up in the memory module
for information on a logical target device that is a target
of the write request and, when the logical target device
is set to unwritable, inform to the computer that the
logical target device is set to unwritable;

the memory module stores a logical unit table which
indicates an association between the logical target
device and an allocated logical unit allocated to the
logical target device;

where the allocated logical unit allocated to the logical
target device is accessible by the computer using the
file system;

wherein the interface:

stores a mount table indicating which logical unit is
mounted to the file system and indicating whether a
write in the logical unit is possible; and

stores a map table indicating an association between the
logical target device and the allocated logical unit
allocated to the logical target device; and

wherein the interface:

obtains a list of files that are not accessed for a predeter
mined period, referring to meta-information held in the
meta logical units for which a first attribute is set;

creates a Universal Disk Format image containing files on
the list of files;

secures a logical targeted device that is capable of storing
the Universal Disk Format image:

judges whether or not any logical unit is allocated to the
secured logical targeted device;

searches, when no logical unit is allocated to the secured
logical targeted device, for a logical unit that is not

US 2007/0220205 A1

assigned to any logical device from among logical units
in which a third attribute is set, using information
stored in the memory module:

obtains, when no logical unit is found that is not assigned
to any logical device, information of an oldest logical
unit that has not been accessed for a longest period,
from among the logical units in which the third
attribute is set;

unmounts the oldest logical unit for which the information
is obtained off the file system;

instructs to the first controller to allocate at least a portion
of the unmounted logical unit as a new logical device;

Sep. 20, 2007

reflects a result of the allocating to the information about
the map table, the information being stored in the
memory module;

specifies the logical unit to store the created Universal
Disk Format image in the new logical device to which
the logical unit is allocated; and

sets information on the new logical device that stores the
Universal Disk Format image to unwritable, the infor
mation being stored in the memory module.

