发明名称
用于乙烯聚合及乙烯与α-烯烃共聚合的催化剂组合及催化剂组合的制备方法及含该组合的催化剂

摘要
一种用于乙烯聚合及乙烯与C3-C10 α-烯烃共聚合的固体催化剂组合，含有钛、钒和氧，基本上可
用下式（原子比）定义：VTiCln (其中 n = 1—3)。该催化剂组合可按下式通过使四氯化钛与芳烃
钒[V° (芳烃)] (芳烃 = 苯或一、二或三—烷基取代的苯) 反应制得：V° (芳烃) + nTiCl4 →
VTiCln+2 芳烃。然后可用氯化烷基铝处理。该催化
剂组合与三烷基铝一起使用时，在乙烯聚合和共
聚中具有很高活性。
权利要求书

1. 一种用于乙烯聚合及乙烯与 C₃ - C₁₀ α - 烯烃共聚合的固体催化剂组分的制备方法，该固体催化剂组分为粒径为 5 - 20 μm，表面积为 10 - 70 m²/g 且平均孔半径为 10, 000 - 20, 000Å 的颗粒，其化学式为:

VTinCl₄ⁿ

其中，n = 1 - 3

该方法包括使四氯化钛与芳烃钒[V°(芳烃)₂]按照下式反应:

V° (芳烃)₂ + nTiCl₄ → VTinCl₄ⁿ+2 芳烃

其中，芳烃 = 甲苯或一、二或三烷基取代的苯.

2. 权利要求 1 所述的方法，其特征在于芳烃选自苯、甲苯、对二甲苯和 1, 3, 5 - 三甲苯，式中的 n 为 2.

3. 权利要求 1 所述的方法，其特征在于芳烃钒与四氯化钛的反应在惰性液态有机溶剂中，于 Ti/V 原子比在 1/1~3/1 的范围内于 20 - 120 ℃ 温度下进行 5 秒钟至 24 小时.

4. 权利要求 2 所述的方法，其特征在于所述反应是在 Ti/V 原子比为 2/1 且温度约为 90 - 100 ℃ 条件下进行的.

5. 权利要求 3 所述的方法，其特征在于所述惰性液态有机溶剂为脂肪烃.

6. 权利要求 1 所述的方法，其特征在于所述催化剂组分进一步用氯化烷基铝处理，该处理是在惰性液态有机溶剂中，于 20 - 80 ℃ 温度下进行 0.3~3 小时，其中 Al/Ti 原子比为 1/1~5/1.
7. 权利要求 6 所述的方法，其特征在于所述惰性液态有机溶剂为脂肪烃。

8. 权利要求 6 所述的方法，其特征在于所述处理是用氯化二乙基铝、氯化乙基铝或倍半氯化乙基铝，在 Al/Ti 原子比为 1/1~1.5/1 及室温条件下处理 1 小时。

9. 一种用于乙烯聚合及乙烯与 C3 - C10 α-烯烃共聚合的催化剂，其特征在于该催化剂含有权利要求 1~8 所述的方法制备的固体催化剂组分以及烷基部分具有 2~8 个碳原子的三烷基铝，其中 Al/(Ti+V) 原子比为 2/1~50/1。

10. 权利要求 9 所述的催化剂，其特征在于所述的 Al/(Ti+V) 原子比为 3/1~7/1。

11. 权利要求 9 所述的催化剂，其特征在于所述三烷基铝的烷基部分具有 2~4 个碳原子。

12. 权利要求 11 所述的催化剂，其特征在于所述三烷基铝为三乙基铝或三异丁基铝。
说明书

用于乙烯聚合及乙烯与 α-烯烃共聚合的催化剂组分的制备方法及含该组分的催化剂

本发明涉及到用于乙烯聚合及乙烯与 C₃-C₁₀α-烯烃共聚合的固体催化剂组分及催化剂。本发明还涉及到上述催化剂组分及上述催化剂在低压、低温悬浮聚合过程，于管式反应器或耐压器中进行的高压、高温聚合过程，以及于溶液中进行的高温聚合过程中的用途。

在本领域中通常采用低压齐格勒方法聚合乙烯或一般的 α-烯烃。为达到此目的，采用一般通过将元素周期表Ⅳ族至Ⅵ族元素的化合物（过渡金属化合物）与元素周期表 I 族至Ⅲ族元素的有机金属化合物或氢化物混合而得到的催化剂，在溶液、悬浮液或气相中操作进行聚合。另外还采用这样的催化剂，其中过渡金属载负在固体有机或无机载体上，该载体可能已经过物理和／或化学处理。

上述催化剂中通常采用的过渡金属是钛，采用该金属会得到高产率和高产量，特别是在乙烯聚合时更是如此。在制备乙烯聚合物或具有特定特性的共聚物时还可将钛与其它过渡金属如钒、锆或铪结合在一起使用。特别是在制备具有优良的机械性能和改进的加工性能的、共聚用单体在大分子中均匀分布的乙烯共聚物时，常将钛、钒结合在一起使用。一般通过将钛化合物（一般为四氯化钛）、钒化合物（一般为氯化钒）和氯化烷基铝在反应条件（如
欧洲专利申请公开No.57,050所述条件）下进行接触来制备上述催化剂组分。这种催化剂组分的主要缺点在于其聚合活性较低，这就需要从聚合物中除去催化剂残留物，而这一提纯操作的费用是较高的。另一个缺点在于重复制备具有所需特性的催化剂是较困难的。

美国专利4,037,041和4,151,110公开了用四氯化钛和零价钒化合物羰基钒（vanadium carbonyl）制备催化剂组分的方法。然而，即使在一般聚合条件下，这种催化剂组分的活性也较差。另外，羰基钒是一种难以制备和处理的化合物，使该催化剂组分不适宜用于工业化设备中。

现在发现了一种含有钛和钒的新型催化剂组分，该催化剂组分在于低压、高压或溶液中进行的乙烯聚合（共聚合）中是稳定的并且具有高活性，该催化剂组分还能制备具有优良机械性能和加工性能的乙烯聚合物（共聚物）。

以此为基础，根据本发明的第一个方面，本发明提供了一种固体催化剂组分。该催化剂组分为粒径为5～20μm、表面积为10～70m²/g且孔半径为10,000～20,000Å的颗粒。该催化剂组分基本上可用下式定义（原子比）：

\[\text{VTinCl}_n \]

其中n = 1～3, 最好为2。

可按照下式通过使四氯化钛与芳烃钒[V^*(芳烃)_2]反应制备上述催化剂组分：
\[V^\circ (苯)_2 + nTiCl_4 \rightarrow VTinCl_{14n} + 2苯 \]

其中，苯烃为苯、一、二、或三-烷基取代的苯。

芳烃的实例为苯、甲苯、对二甲苯和1,3,5-三甲苯，其中，优选苯。

根据本发明，将芳烃钒溶液于惰性液体有机溶剂（最好为脂肪烃如庚烷、辛烷、壬烷和癸烷），然后向该溶液加入四氯化钛。四氯化钛的加入量应使Ti/V原子比在1/1 ～3/1 的范围内，最好为2/1。

在20～120 °C温度（最好大约90～100 °C）下，几秒（例如5～10秒）至24小时的时间内进行上述过程，沉淀出固体催化剂组分。在向聚合反应器“管线进料”（其中以于有机溶剂中的溶液形式存在的固体催化剂组分母体在送入反应器前迅速混合）的情况下，采用较短的接触时间。因此，在本发明的一个具体实施方案中，以其悬浮液母液的形式在管线内直接制备并使用上述固体催化剂组分。在本发明的另一具体实施方案中，用常规方法如过滤、澄清或离心从悬浮液中分离出沉淀的固体催化剂组分，然后用惰性液态有机溶剂（特别是烃溶剂如庚烷）洗涤。该洗涤操作是在室温至所
用溶剂的沸点的温度下进行的。用这种方法得到的催化剂组分在\(X \)射线检测时为非晶形固体，且为粒径为5 ~ 20 \(\mu \text{m} \)、表观密度为0.2 ~ 0.35 \(\text{g/ml} \)、表面积为20 ~ 70 \(\text{m}^2/\text{g} \)、孔半径为10,000 ~ 20,000 \(\text{Å} \)的颗粒。

根据本发明的一个具体实施方案，用氯化烷基铝（优选氯化二乙基铝、二氯化乙基铝或倍半氯化乙基铝）处理用上述方法制备的固体催化剂组分。可通过将固体催化剂组分悬浮于惰性液态有机溶剂（优选脂肪烃如庚烷、辛烷、壬烷或癸烷）中，于\(20 \sim 80^\circ \text{C} \)温度下进行上述处理过程。处理时间随选择的温度而定，一般为0.3 ~ 3小时。氯化烷基铝中的铝与固体催化剂组分中钛的原子比为1/1 ~ 5/1。

较佳的操作条件为\(\text{Al}/\text{Ti} \)原子比约为1/1 ~ 1.5/1，温度为环境温度，时间为约1小时。宜用惰性液态有机溶剂（特别是脂肪烃）于上述条件下洗涤通过上述方法处理过的固体催化剂组分。上述处理过程一般会提高催化剂组分的表面积，减小平均粒径和平均孔半径（但这些值仍落在上述范围内），并得到通常未处理的催化剂组分活性更高的固体催化剂组分。将上述固体催化剂组分和在烷基部分有2 ~ 8个碳原子（最好为2 ~ 4个碳原子）的三烷基铝混合便得到本发明的催化剂。最好采用三乙基铝和三异丁基铝。在本发明的催化剂中，铝原子（于三烷基铝中）与钛原子和钒原子（在固体催化剂组分中）之和的原子比的范围宜为2/1 ~ 50/1，该原子比的上限不是很严格，主要由经济因素制约。上述原子比的较佳值为3/1 ~ 7/1, 原子比在该值范围内会提高聚合物的产率。此外，在
高温聚合时最好采用低原子比，因为这样能防止三烷基铝参与还原反应，而该还原反应的产物没有聚合作活性。

本发明的催化剂在乙烯的聚合及乙烯与 C₃-C₁₀ α-烯烃共聚合时具有活性。

具体地说，本发明催化剂在宽范围条件下具有活性。更具体地说，在悬浮聚合方法中通常采用的低温、低压过程中，于管式反应器或耐压容器中进行的高温、高压过程中，以及在溶液中进行的高温过程中，本发明催化剂都具有活性。悬浮聚合一般在稀释剂存在下，于 60 ~ 100 ℃温度和 5 ~ 15 atm (6.01 × 10⁵ ~ 16.16 × 10⁵ Pa) 压力下，以及作为调节剂的氢的气态存在下进行。高温、高压聚合一般在 100 ~ 280 ℃温度和 800 ~ 1800 atm (809 × 10⁵ ~ 1819 × 10⁵ Pa) 压力下进行。溶液聚合一般在 150 ~ 300 ℃温度下进行。

在乙烯的均聚中，本发明催化剂能保证得到分子量分布从单一到宽的聚合物，该聚合物特别适于用如吹塑法（在制造薄膜制品和其它制品时）和注塑法成型。在乙烯与 α-烯烃（特别是1-丁烯和1-己烯）的共聚中，本发明催化剂能保证得到低密度线形聚合物，该聚合物特别适于通过吹塑法或注塑法成型。采用那种方法成型，要根据分子量分布来确定。在所有情况下，与已知的钛-钒基催化剂相比较，本发明的催化剂具有意想不到的高聚合活性。

下面给出的实施例进一步说明本发明。在涉及固体催化剂组分的制备的实施例中，所用的钒为 V° (苯)_2。该 V° (苯)_2 是通过上述 E. O. Fisher, H. S. Kogler 和 F. Calderazzo 方法按上述步骤制备的：将 300ml 苯中的 17.8g (0.113 moles)
VCl₅、9.6g (0.36 moles) 铝粉和79.1g (0.6 moles) 三氯化铝于
750ml 三颈烧瓶 (装有搅拌器、侧旋塞和与汞安全阀相连的冷凝
器) 中回流加热18小时。用2.5l苯稀释反应混合物, 然后在剧烈搅
拌下缓慢加入冷的由100g Na₂S₂O₃和1.25l 30% w/w 氢氧化钾
水溶液形成的溶液。分离出苯并干燥。残余物在140～160°C 和
10毫米汞柱压力下升华。得到6～7g V*(苯)₂, 为黑褐色八面体
结晶。

实施例1

在250ml 带搅拌器的反应器中, 将0.152g V*(苯)₂溶于
100ml 正庚烷中。然后在25°C 下加入0.28g 四氯化钛 (Ti/ V 原
子比 = 2/1)。将得到的悬浮液于25°C 连续搅拌24小时。然后濺
析出固体物并用正庚烷洗涤3次, 每次100ml。由此得到0.3g 具有下
述特性的固体催化剂组分。

钛含量: 22.9% (重量) (以金属计),
比表面积: 27m²/g,
表观密度: 0.28g/ml,
平均孔半径: 15,000Å,
平均粒径: 12μm。
该催化剂组分含有22.9%钛、13.0%钒和64.1%氯 (重量)。
如用原子比表示这种催化剂组分, 可用下式表示:

Ti(1.9), V(1), Cl(7.2)
实施例2

在250ml 带搅拌器的反应器（装有球管冷凝器）中，将0.152g V\(^{\circ}\) (苯)_2溶于100ml 正庚烷中。然后在25\(^{\circ}\)C下加入0.28g 四氯化钛（Ti/V原子比 = 2/1）。将得到的悬浮液于庚烷沸点温度回流2小时。由此得到0.32g 具有下述特性的固体催化剂组分。

钛含量：22.7%（重量），
比表面积：45m\(^2\)/g，
表观密度：0.24g/ml，
平均孔半径：10.000 Å，
平均粒径：10.0μm。

该催化剂组分含有22.7%钛、11.5%钒和65.8%氯（重量）。如用原子比表示这种催化剂组分，可用下式表示:

\[Ti(2.1), V(1), Cl(8.4) \]

实施例3

在250ml 带搅拌器的反应器中，将0.3g按实施例1 所述方法得到的催化剂组分悬浮于100ml 正庚烷中。然后于25\(^{\circ}\)C加入0.18g 氯化二乙基铝（Al/Ti 原子比 = 1/1）。将得到的悬浮液于25\(^{\circ}\)C连续搅拌2小时。然后滤析出固体物并用正庚烷洗涤3次，每次100ml。由此得到0.3g具有下述特性的固体催化剂组分。
钛含量：21.4%（重量）（以金属计），
比表面积：55m²/g，
表观密度：0.22g/ml，
平均孔半径：8,000 Å，
平均粒径：8 μm。
该催化剂组分含有21.4%钛, 12.0%钒和66.6%氯（重量）。
如用原子比表示这种催化剂组分，可用下式表示：

Ti(1.9), V(1), Cl(8)

实施例4

在250ml带搅拌器的反应器中，将0.3g按实施例2所述方法得到的催化剂组分悬浮于100ml正庚烷中。然后于25℃加入0.178g氯化二乙基铝（Al/Ti原子比=1/1）。按实施例3的方法操作，得到0.3g具有下述特性的固体催化剂组分。

钛含量：21.9%（重量）（以金属计），
比表面积：70m²/g，
表观密度：0.19g/ml，
平均孔半径：5,000 Å，
平均粒径：6 μm。
该催化剂组分含有21.9%钛, 11.6%钒和66.4%氯（重量）。
如用原子比表示这种催化剂组分，可用下式表示：
实施例5

在250ml带搅拌器的反应器中，将0.152g V° (苯)2 溶于100ml正庚烷中。然后于25℃加入0.42g 四氯化钛（Ti / V原子比 = 3/1）。将得到的悬浮液于25℃连续搅拌24小时。滤析出固体物，用正庚烷洗涤3次，每次100ml。由此得到0.4g具有下述特性的固体催化剂组分。

钛含量：24.8%（重量）（以金属计），
比表面积：32m²/g，
表观密度：0.26g/ml，
平均孔半径：13,000 Å，
平均粒径：11μm。
该催化剂组分含有24.8%钛、8.5%钒和56.7%氯（重量）。
如用原子比表示这种催化剂组分，可用下式表示：

$$ \text{Ti}(3.1), \text{V}(1), \text{Cl}(11.3) $$

实施例6（对比例）

在250ml带搅拌器的反应器中，将0.5g 四氯化钛和0.23g 氯氧化钒 (VOCl₃) （Ti/V原子比 = 2/1）溶于100ml正庚烷中。然
后于25℃加入0.3g氯化二乙基铝（Al/Ti原子比=1/1）。将得到的悬浮液于25℃连续搅拌2小时。析提出固体物，用正庚烷洗涤3次，每次100ml。由此得到0.7g具有下述特性的固体催化剂组分。

钛含量：17.9%（重量）（以金属计），
比表面积：20m²/g，
表观密度：0.32g/ml，
平均孔半径：18,000 Å，
平均粒径：14μm。
该催化剂组分含有17.9%钛、9.5%钒和72.5%氯（重量）。
如用原子比表示这种催化剂组分，可用下式表示：

\[\text{Ti}(2), \text{V}(1), \text{Cl}(11) \]

实施例7（对比例）

在500ml带搅拌器的反应器中，将0.5g四氯化钛和1.82g氯氧化钒（Ti/V原子比=2/1）溶于200ml正庚烷中，然后于25℃加入0.63g氯化二乙基铝（Al/Ti原子比=2/1）。将得到的悬浮液于25℃连续搅拌2小时。析提出固体物，用正庚烷洗涤3次，每次100ml。由此得到2.2g具有下述特性的固体催化剂组分。

钛含量：5.8%（重量）（以金属计），
比表面积：36m²/g，
表观密度：0.28g/ml，
平均孔半径：14,000Å，
平均粒径：14μm。
该催化剂组分含有5.8%钛、23.9%钒和70.3%氯（重量）。
如用原子比表示这种催化剂组分，可用下式表示：

\[\text{Ti} (1), \text{V} (3.9), \text{Cl} (16.5) \]

实施例8

将1900ml无水正庚烷、0.23g三乙基铝和10.9mg按实施例1
所述方法得到的固体催化剂组分[Al/(Ti+V)原子比=25]依次加到5
升带搅拌器的反应器中。将反应器温度升至90℃，充入氢气将反应
器压力升至2atg（3.03×10^5Pa），再充入乙烯将压力升至6.5atg
（7.58×10^5Pa），通过连续充入乙烯将该压力保持1小时。然后
通过加入20ml10%w/w紫罗兰醇（2,6-二叔丁基-对甲酚）
的乙醇溶液终止聚合反应。

收集聚乙烯，得到下述数据：

生产能力：9.2kg（公斤聚乙烯/克固体催化剂组分），

产率：40kg（公斤聚乙烯/克固体催化剂组分中的钛），

产率：75.5kg（公斤聚乙烯/克固体催化剂组分中的钒），

由此制备的聚乙烯具有下述特性：

熔体指数：0.28g/10min(ASTM-D1238F),

剪切敏度：12.8(ASTM-D1238F),

密度：0.955g/ml(ASTM-D2839),

表观密度：0.18/ml.
实施例 9

将 1900ml 无水正庚烷、0.23g 三乙基铝和 10.6mg 按实施例 2 所述方法得到的固体催化剂组分[Al/(Ti+V)原子比 = 25]依次加到 5 升带搅拌器的反应器中。将反应器温度升至 90 ℃，充入氢气将反应器压力升至 2atg(3.03 × 10^5 Pa)，再充入乙烯将压力升至 6.5atg(7.58 × 10^5 Pa)，按实施例 8 所述方法聚合 1 小时，得到聚乙烯。

生产能力：12.7kg，
产率（相对于钛）：56.0kg，
产率（相对于钒）：105.0kg。

由此制备的聚乙烯具有下述特性：
熔体指数：0.25g/10min，
剪切敏度：13.0，
密度：0.955g/ml，
表观密度：0.20g/ml。

实施例 10

将 1900ml 无水正庚烷、0.23g 三乙基铝和 10.2mg 按实施例 2 所述方法得到的固体催化剂组分[Al/(Ti+V)原子比 = 25]依次加到 5 升带搅拌器的反应器中。将反应器温度升到 90 ℃，充入氢气将反应器压力升至 2atg(3.03 × 10^5 Pa)，加入 4g 1-丁烯，再充入乙烯将压力升至 6.5atg(7.58 × 10^5 Pa)，按实施例 8 所述方法聚合 1 小时，得到乙烯/1-丁烯共聚物。

生产能力：16.0kg，
产率（相对于钛）：70kg，
产率（相对于钒）：131.0kg。
由此制备的共聚物具有下述特性：
熔体指数：0.34g/10min，
剪切敏度：12.4，
密度：0.940g/ml，
表观密度：0.15g/ml。

实施例11
将1900ml无水正庚烷、0.23g三乙基铝和10.4mg按实施例2所述方法得到的固体催化剂组分[Al/(Ti+V)原子比=25]依次加到5升带搅拌器的反应器中。将反应器温度升到90℃，充入氮气将反应器压力升至2atg(3.03×10^5Pa)。加入10g1-己烯，然后充入乙烯将压力升至6.5atg(7.58×10^5Pa)，按实施例8所述方法聚合1小时，得到乙烯/1-己烯共聚物。

生产能力：15.0kg，
产率（相对于钛）：65.9kg，
产率（相对于钒）：123.5kg。
由此制备的共聚物具有下述特性：
熔体指数：0.32g/10min，
剪切敏度：12.5，
密度：0.942g/ml，
表观密度：0.16g/ml。

实施例12
将 1900ml 无水正庚烷、0.23g 三乙基铝和 10.6mg 按实施例 3 所述方法得到的固体催化剂组分[Al/(Ti+V)原子比 = 25]依次加到 5 升带搅拌器的反应器中。将反应器温度升到 90 ℃，然后充入氢气将反应器压力升至 2atg(3.03 × 10^5Pa)，再充入乙烯将压力升至 6.5atg(7.58 × 10^5Pa)。按实施例 8 所述方法聚合 1 小时，得到聚乙烯。

生产能力：10.7kg，

产率（相对于钛）：50kg，

产率（相对于钒）：94kg。

由此制得的聚乙烯具有下述特性:
熔体指数：0.32g/10min，
剪切模量：12.8，
密度：0.956g/ml，
表观密度：0.22g/ml。

实施例 13

将 1900ml 无水正庚烷、0.23g 三乙基铝和 10.1mg 按实施例 4 所述方法得到的固体催化剂组分[Al/(Ti+V)原子比 = 25]依次加到 5 升带搅拌器的反应器中。将反应器温度升到 90 ℃，然后充入氢气将反应器压力升至 2atg(3.03 × 10^5Pa)，再充入乙烯将压力升至 6.5atg(7.58 × 10^5Pa)。按实施例 8 所述方法聚合 1 小时，得到聚乙烯。

生产能力：15.3kg，

产率（相对于钛）：70kg，
产率（相对于钒）：132kg．
由此制备的聚乙烯具有下述特性：
熔体指数：0.22g/10min，
剪切敏度：13.4，
密度：0.954g/ml，
表观密度：0.22g/ml．

实施例14

将1900ml无水正庚烷、0.23g三乙基铝和10.0mg按实施例5所述方法得到的固体催化剂组分[Al/(Ti+V)原子比=25]依次加到5升带搅拌器的反应器中．将反应器温度升到90℃，充入氢气将反应器压力升至2atg(3.03×10⁵Pa)．再充入乙烯将压力升至6.5atg(7.58×10⁵Pa)．按实施例8所述方法聚合1小时，得到聚乙烯．

生产能力：12.1kg，
产率（相对于钛）：50kg，
产率（相对于钒）：143kg．
由此制备的聚乙烯具有下述特性：
熔体指数：0.32g/10min，
剪切敏度：12.8，
密度：0.956g/ml，
表观密度：0.24g/ml．

实施例15

采用容积为1.5升并带有搅拌器及控制反应温度的传热夹套的
钢制反应器。用于复式压缩机以20kg/小时的流量将乙烯与1-丁烯的混合物（50:50w/w）送入反应器的一端。用加压泵（intensifier pump）以80ml/小时的流量将含有1.7g/l按实施例4所述方法制备的固体催化剂组分的C_{10} − C_{12} 异构链烷烃混合物悬浮液加到反应器的同一端。用加压泵以180ml/小时的流量将10%（重量）的于C_{10} − C_{12} 异构链烷烃混合物中的三乙基铝溶液加到反应器的该端，使该三乙基铝中的铝与上述固体催化剂组分中的钛的原子比为15/1。

在下述条件下进行聚合:

反应器进口压力: 1200atg (1213 × 10^5 Pa),
反应器进口温度: 60 ℃,
聚合温度: 270 ℃,
在反应器内停留时间: 2分钟。

连续进行聚合反应，向反应器出口物流中加入10ml/小时的丙三醇以活化催化剂。在上述条件下操作，以乙烯计转化率为17.5%，用多级闪蒸室收集聚合物，将聚合物从该闪蒸室直接送入挤出机。将未反应的单体提纯后循环至反应器进口并添加新鲜的单体。经120小时连续反应，平均得到3.5kg/小时乙烯/1-丁烯共聚物。

生产能力: 25.2kg,
产率（相对于钒）: 216.2kg,
产率（相对于钛）: 117kg.
由此制备的共聚物具有下述特性:
熔体指数: 1.1g/10min,
剪切敏度: 37.
密度: 0.9290g/ml.

实施例16（对比例）
重复实施例15的操作，但采用实施例7的固体催化剂组分，得到乙烯/1-丁烯共聚物。
生产率: 11.6kg，
产率(相对于钒): 200kg，
产率(相对于钛): 48.3kg。
由此制备的共聚物具有下述特性:
熔体指数: 1.0g/10min，
剪切敏度: 39，
密度: 0.9290g/ml。

实施例17（对比例）
将1900ml无水正庚烷, 0.23g三乙基铝和14mg按实施例6所述方法得到的固体催化剂组分[Al/(Ti+V)原子比=25]依次加到5升带搅拌器的反应器中。将反应器温度升到90℃，然后充入氢气将反应器压力升至2.0atg(3.03×10^5Pa)，再充入乙烯将压力升至6.5atg(7.58×10^5Pa)。按实施例8所述方法聚合1小时，得到聚乙烯。
生产能力: 4.2kg，
产率(相对于钒): 44kg，
产率(相对于钛): 23.5kg。
由此制备的聚合物具有下述特性:
熔体指数：0.44g/10min，
剪切敏度：12.0，
密度：0.955g/ml，
表观密度：0.27g/ml。

实施例18
将1900ml无水正庚烷、0.116g三乙基铝和10.9mg按实施例1所述方法得到的固体催化剂组分[Al/(Ti+V)摩尔比 = 12.6]依次加到5升带搅拌器的反应器中，将反应器温度升到90℃，然后充入氢气，将反应器压力升至2atg(3.03 × 10^5Pa)，再充入乙烯将压力升至6.5atg(7.58 × 10^5Pa)。按实施例8所述方法聚合1小时，得到聚乙烯。

生产能力：17.9kg，
产率（相对于钒）：152kg，
产率（相对于钛）：80kg。

由此制备的聚乙烯具有下述特性：
熔体指数：0.24g/10min，
剪切敏度：12.0，
密度：0.956g/ml，
表观密度：0.18g/ml。

实施例19
将1900ml无水正庚烷、0.06g三乙基铝和10.9mg按实施例1所述方法得到的固体催化剂组分[Al/(Ti+V)摩尔比 = 6.4]依次加到5升带搅拌器的反应器中，将反应器温度升到90℃，然后充入氢气，将反应器压力升至2atg(3.03 × 10^5Pa)，再充入乙烯将压力升至6.5atg(7.58 × 10^5Pa)。按实施例8所述方法聚合1小时，得到聚乙烯。

由此制备的聚乙烯具有下述特性：
熔体指数：0.24g/10min，
剪切敏度：12.0，
密度：0.956g/ml，
表观密度：0.18g/ml。
升带搅拌器的反应器中。将反应器温度升到 90 ℃，然后充入氮气将反应器压力升至 2atg(3.03 × 10^5 Pa)，再充入乙烯将压力升至 6.5atg(7.58 × 10^5 Pa)。按实施例 8 所述方法聚合 1 小时，得到聚乙烯。

生产能力：35.4kg，
产率（相对于钒）：297kg，
产率（相对于钛）：158kg。

由此制备的聚乙烯具有下述特性：
熔体指数：0.4g/10min，
剪切敏度：48，
密度：0.959g/ml，
表观密度：0.20g/ml。

实施例 20
将 1900ml 无水正庚烷、0.038g 三乙基铝和 10.9mg 按实施例 1 所述方法得到的固体催化剂组分[Al/(Ti+V)摩尔比 = 4]依次加到 5 升带搅拌器的反应器中。将反应器温度升到 90 ℃，然后充入氮气将反应器压力升至 2atg(3.03 × 10^5 Pa)，再充入乙烯将压力升至 6.5atg(7.58 × 10^5 Pa)。按实施例 8 所述方法聚合 1 小时，得到聚乙烯。

生产能力：40kg，
产率（相对于钒）：335kg，
产率（相对于钛）：178.5kg。

由此制备的聚乙烯具有下述特性：
熔体指数：0.35g/10min，
剪切敏度：48，
密度：0.958g/ml，
表观密度：0.2g/ml。

实施例21

将1900ml无水正庚烷、0.35g三乙基铝和10.9mg按实施例1所述方法得到的固体催化剂组分[Al/(Ti+V)摩尔比=38]依次加到5升带搅拌器的反应器中。将反应器温度升到90℃，然后充入氢气将反应器压力升至2atg(3.03×10^5Pa)，再充入乙烯将压力升至6.5atg(7.58×10^5Pa)。按实施例8所述方法聚合1小时，得到聚乙烯。

生产能力：8.7kg，
产率（相对于钒）：73kg，
产率（相对于钛）：38.8kg。

由此制备的聚乙烯具有下述特性：
熔体指数：0.21g/10min，
剪切敏度：13，
密度：0.955g/ml，
表观密度：0.17g/ml。

实施例22

将1900ml无水正庚烷和0.23g三乙基铝依次加到5升耐压反应器中。将该溶液加热至90℃，充入氢气将反应器压力升至2atg(3.03
将 2ml 含有 0.364gV(1,3,5-三甲苯)_2 的庚烷溶液和 2ml 含有 0.475g 四氯化钛的庚烷溶液在惰性气氛下加到含有 10ml 无水正庚烷的容积为 20ml 的分散混合器中，以模拟在前述实施例中采用的"管线进料 " 固体催化剂组分混合物（Ti/V 原子比 = 2）。将由此形成的催化剂组分悬浮液用乙烯压入聚合反应器，乙烯的压力达 6.5atg(7.58 × 10^5Pa)[Al/(Ti+V) 原子比 = 25]。通过充入乙烯将压力保持在 6.5atg(7.58 × 10^5Pa)，共 1 小时。

按前述实施例的方法终止聚合，收集聚乙烯。

生产能力：7kg，
产率（相对于钒）：58.6kg，
产率（相对于钛）：31.2kg。由此制备的聚乙烯具有下述特性：
熔体指数：0.23g/10min，
剪切敏度：13，
密度：0.955g/ml，
表观密度：0.22g/ml。

实施例 23
将 1900ml 无水正庚烷和 0.06g 三乙基铝依次加到 5 升耐压反应器中。将该溶液加热至 90 ℃，充入氢气将反应器压力升至 2atg(3.03 × 10^5Pa)。

将 2ml 含有 0.364gV(1,3,5-三甲苯)_2 的庚烷溶液和 2ml 含有 0.475g 四氯化钛的庚烷溶液在惰性气氛下加到含有 10ml 无水庚烷
的容积为 20ml 的分散混合器中，以模拟在前述实施例中采用的“管线进料”固体催化剂组分混合物（Ti/V 原子比 = 2）。将由此形成的催化剂组分悬浮液用乙烯压入聚合反应器，乙烯的压力达 6.5atg(7.58 × 10^5Pa)[Al/(Ti+V) 原子比 = 6.4]。连续聚合 1 小时，收集聚乙烯。

生产能力：31.6kg，
产率（相对于钒）：264kg，
产率（相对于钛）：141kg。
由此制备的聚乙烯具有下述特性：
熔体指数：0.24g/10min，
剪切敏度：46，
密度：0.9585g/ml，
表观密度：0.20g/ml。