(51) International Patent Classification 6:
H01Q 3/32

(11) International Publication Number: WO 96/37922

(21) International Application Number: PCT/SE96/00678

(22) International Filing Date: 24 May 1996 (24.05.96)

(30) Priority Data:
9501955-0 24 May 1995 (24.05.95) SE

(71) Applicant (for all designated States except US): ALLGON AB
[SE/SE]; P.O. Box 500, S-184 25 Åkersberga (SE).

(72) Inventors; and
(75) Inventors/Applicants (for US only): ARVIDSSON, Per-Anders
ANDERSSON, Stefan [SE/SE]; Professorslingan 39-503,
S-104 05 Stockholm (SE).

(74) Agents: MODIN, Jan et al.; Axel Ehners Patentbyrå AB, P.O.
Box 10316, S-100 55 Stockholm (SE).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY,
CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS,
JP, KE, KG, KR, KZ, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, TJ, TM, TR, TT, UA, US, UZ, VN,
ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

(54) Title: DEVICE FOR ADJUSTING THE BEAM DIRECTION OF AN ANTENNA, AND FEED LINE STRUCTURE THEREFORE

(57) Abstract

A feed line structure (1), especially integrated with a stationary array of antenna elements so as to enable adjustment of the direction of the beam radiated from the array. The feed line structure comprises a feed conductor line pattern (3) disposed on a fixed carrier plate (2) at a distance from and in parallel to a fixed ground plate (4), and a movable dielectric plate (5) located therebetween. The feed line pattern (3) is elongated in the same direction (A) as the movement direction of the dielectric plate (5). The propagation velocity of the signal components is reduced by the dielectric plate (5), whereby a controlled phase difference between the various signal components is obtained.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LR</td>
<td>Liberia</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LT</td>
<td>Lithuania</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LV</td>
<td>Latvia</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>ML</td>
<td>Mali</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MN</td>
<td>Mongolia</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MR</td>
<td>Mauritania</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
DEVICE FOR ADJUSTING THE BEAM DIRECTION OF AN ANTENNA, AND FEED LINE STRUCTURE THEREFOR

The present invention concerns a device for adjusting the beam direction of a beam radiated from a stationary array of antenna elements, wherein at least two antenna element feed points are coupled to a common signal source via a feed line structure having a source connection terminal to be connected to said source and at least two feed connection terminals to be connected to said antenna element feed points, said feed line structure comprising a feed conductor line pattern disposed in a fixed planar arrangement, e.g. on a carrier plate, at a distance from and in parallel to a fixed ground plate, and a movable dielectric body located therebetween, said movable dielectric body being displaceable in parallel to said feed conductor line pattern and said ground plate so as to change the exciting phase of a signal component reaching one of said feed connection terminals. The invention also concerns a feed line structure for use in an antenna or any other device requiring a controlled adjustment of the phase difference between at least two signal components derived from a radio frequency signal generated by a common source.

A device of the kind referred to above is previously known from JP, A, 63296402. A number of triangular dielectric bodies are movable in two perpendicular directions, in each case transversely to a conductor line segment so as to enable a controlled delay of the corresponding signal component. The delay is substantially proportional to the surface portion of the triangle being in registry with the associated conductor line segment. In this way, the beam can be adjusted in two mutually perpendicular directions.

However, each triangular body has relatively small dimensions in relation to the length of each conductor line leading to a feed connection terminal. Therefore, the adjustment possibilities are rather limited. Furthermore, in case such triangular bodies with larger dimensions were to be used, the
impedance of the feed line structure would be adversely affected.

Against this background, it is a primary object of the present invention to achieve an adjustment device, which enables a substantial phase shift while keeping the input impedance at the source connecting terminal essentially unchanged.

Another object is to achieve a feed line structure, which is easy to manufacture and convenient to operate, in particular by means of a manual control means.

These and other objects are achieved for a device having the features stated in appended claims 1 and 10. Thus, according to the invention, the feed line pattern is elongated in a main direction and includes longitudinal feed line segments extending in parallel to said main direction towards each one of the feed connection terminals. The dielectric body is formed substantially as a dielectric plate, which is displaceable in the main direction between two end positions. Furthermore, the dielectric plate is dimensioned and located so as to extend in a region covering supplementary portions of the longitudinal feed line segments. In this way, these supplementary portions will effect a well-defined propagation velocity reduction of the corresponding signal components before they reach the respective feed connection terminals.

Since the dielectric plate is movable in the same direction as the extension of the longitudinal feed line segments (the main direction), the propagation velocity reduction will be very distinct and easy to control by mechanically controlling the linear movement of the dielectric plate between the two end positions. Preferably, the dielectric plate is continuously displaceable so as to be positioned in any desired location. In this way, the beam direction can be adjusted accordingly.

Preferably, the source connection terminal is located at a central portion of the feed line pattern, whereas the feed
connection terminals are located at opposite end portions of the pattern. The dielectric plate then extends in a region also covering the central portion of the feed line pattern and it will normally have a relatively large area corresponding to at least half of the surface area of the carrier plate (or the outer contour of the feed line pattern).

In a preferred embodiment, the dielectric plate is substantially rectangular, and the feed conductor line pattern is meander-shaped. Moreover, because of the elongated structure of the meander-shaped pattern, the longitudinal feed line segments constitute a major part of the total length of the feed line segments in the feed conductor line pattern.

In principle, there could be only two feed connection terminals, one at each end of a straight conductor line. However, most preferably, the feed conductor line pattern includes several meander-shaped portions with loops being branched off from each longitudinal feed line segment and including at least two further longitudinal feed line segments.

With such a meander-shaped configuration, it is possible to keep a predetermined relation between the phase angles of the various signal components, irrespective of the particular position of the dielectric plate.

Preferably, the dielectric plate is displaceable by means of a mechanical actuator coupled to a manually operable control means, e.g., a control knob on a rotatable axis coupled via a gear mechanism to a longitudinally guided rack, which is secured to the dielectric plate.

Further details and modifications of the feed line structure are stated in the dependent claims and will appear from the detailed description below, reference being made to the drawings.
Figure 1 shows schematically, in a perspective view, a feed line structure according to the invention;

Figure 2 illustrates, in schematic top plan views, various modifications of the feed line structure;

Figure 3 shows, in a perspective view, a device according to the invention, including a mechanical actuator illustrated schematically; and

Figure 4 shows, to a larger scale, a partial longitudinal section along the lines IV-IV in figure 3.

According to the main aspect of the invention, an especially designed feed line structure is integrated in an antenna device for adjusting the direction of a beam radiated from a stationary array of antenna elements. The adjustment is achieved by controlling the respective phase angles of the signal components reaching the respective antenna element. In case the antenna elements are positioned along a vertical row, and there is a constant phase difference between adjacent antenna elements, the resulting beam will be directed or tilted correspondingly, as is well known per se in the art. The present invention relates to the feed line structure that makes such an adjustment possible.

In figure 1 there is schematically shown a feed line structure 1, which is generally flat and which comprises an upper, stationary carrier plate 2 with a feed conductor line pattern 3 deposited thereon, a stationary bottom plate 4, serving as a ground plane, and a movable dielectric plate 5 located therebetween. The carrier plate 2 is made of a dielectric material, whereas the bottom plate 4 is made of an electrically conducting material, e.g. a metal such as aluminum.

The feed conductor line pattern has a generally rectangular, elongated outer contour, normally even more elongated than indicated schematically in figure 1. The direction of
elongation is indicated in figure 1 by an arrow A, which coincides with the movement direction of the movable intermediate plate 5.

In the central portion of the feed conductor line pattern, there is a source connection terminal 6 to which a signal transmission line from a common source is to be connected. The source connection terminal 6 is followed by a transversal, relatively short conductor line segment 7 ending in a junction point 8, from which two longitudinally extending feed line segments 9 and 10 depart in opposite directions in parallel to the main direction A. At the respective far ends of these longitudinal feed line segments 9 and 10, there are feed line terminals T₁ and T₂ intended to be connected to respective feed points of associated antenna elements.

Adjacent to these feed connection terminals T₁ and T₂, meander-shaped loops 11 and 12 are branched off so as to form continued feed conductor line segments, including two relatively long such segments extending in parallel to the main direction A. The meander-shaped loops 11 and 12 end at respective feed connection terminals T₁ and T₂, intended to be connected to associated antenna element feed points.

The movable dielectric plate 5 has a width corresponding to the width of the carrier plate 2 and a length approximately corresponding to half the length of the carrier plate. At each transversal, shorter side edge, there is a step-like recess 13 and 14, respectively, which is dimensioned so as to minimize reflexion of the radio wave energy propagating along the feed conductor line segments 9, 10, 11 and 12.

In the centrally located position of the dielectric plate 5, drawn by full lines in figure 1, the energy or signal propagation velocity will be symmetrical with respect to the central transversal conductive line segment 7. The dielectric plate 5 fills the air gap between the carrier plate 2 and the ground plate 4. Therefore, the propagation velocity will be
slightly lower in those portions of the conductive line segments lying above the plate 5, due to the dielectric material between the conductive line and the ground plate.

When the plate 5 is displaced in the main direction A, e.g., to an end position corresponding to the dotted lines 14', the signal components propagating along the conductor line segments 10 and 12 will be delayed, more so at the feed connection terminal T₁ than at the feed connection terminal T₂, whereas the signal components propagating along the conductor line segments 9 and 11 will run slightly ahead, more so at the feed connection terminal T₁ than at the feed connection terminal T₂. On the other hand, when the plate 5 is moved in the opposite direction, to the end position indicated by the dotted lines 13', the reverse conditions will prevail, i.e. the signal components propagating along the conductor line segments 9 and 11 will be delayed, whereas the signal components propagating along the conductor line segments 10 and 12 will run ahead.

Because of the geometrical configuration, the phase angle differences between the signal components at feed connection terminals T₁, T₂, T₃ and T₄ will always be the same, irrespective of the particular position of the dielectric plate 5. In particular, assume that the end position 13' corresponds to an exactly horizontal direction of the composit beam radiated from four antenna elements connected to the terminals T₁ through T₄. When the plate 5 is displaced a certain increment in the direction A, the signal components at the four terminals will be delayed, e.g., with phase angle shifts of 15°, 5°, -5° and -15° (in the order T₁, T₂, T₃ and T₄). Then, upon a further incremental displacement, the angle shift will be, e.g., 30°, 10°, -10° and -30°. So, the phase angle differences between adjacent terminals will always be the same. Accordingly, the composit beam from the four antenna elements will always have a wave front in the form of a straight line. With increasing angular phase differences, the inclination of this wave front line will increase, and the beam will be gradually tilted downwards.
Clearly, it is a great advantage that the uniform phase angle difference between the various feed connection terminals will be maintained in the course of a simple linear movement of the dielectric plate 5.

Of course, it is possible to modify the configuration of the feed line structure with meander-shaped loops. In figure 2, a number of such modified embodiments are shown.

In the first example (at the top of figure 2) there are three separate feed line structures, of which the structures 1a and 1b each correspond essentially to the embodiment shown in figure 1, whereas the central feed line structure 20 merely serves to feed the outer structures 1a and 1b with their respective terminals T₁ through T₄ and T₅ through T₈.

The central darker areas depict the respective dielectric plates 5, and these three plates are mechanically coupled together so as to be moved in synchronism. In this way, eight antenna elements can be fed with eight different signal components derived from a common source signal.

The next two examples are slightly modified embodiments with outer and central structures 1'a, 1'b, 20' and 1''a, 1''b and 20'', respectively. In the latter example, the dielectric plates are not as wide as the carrier plate.

The variation possibilities are enormous, and at the bottom of figure 2 there are two further examples of feed line structures each feeding eight feed connection terminals T₁ through T₈ with a single feed line structure 21 and 21', respectively.

Figures 3 and 4 serve to illustrate a mechanical actuator, by means of which the dielectric plate can be displaced by manual control. The feed line structure appears from figure 3 with a modified feed conductor line pattern 31, and from figure 4 with the carrier plate 32 (on which the feed conductor line pattern
is deposited), the movable dielectric plate 33 and the stationary bottom plate 34.

The dielectric plate 33 is mechanically connected to a longitudinally guided rack 35, the linear movement of which is controlled by a gear mechanism, with gears 36 and 37, coupled to a rotatable axis 38 with a control knob 39. By manually turning the control knob 39, the rack 35 and the dielectric plate 33 can be longitudinally displaced to any desired position.
CLAIMS

1. A device for adjusting the beam direction of a beam radiated from a stationary array of antenna elements, wherein at least two antenna element feed points are coupled to a common signal source via a feed line structure (1) having a source connection terminal (6) to be connected to said source and at least two feed connection terminals (T₁, T₂, T₃, T₄) to be connected to said antenna element feed points, said feed line structure comprising a feed conductor line pattern (3) disposed in a fixed planar arrangement (2) at a distance from and in parallel to a fixed ground plate (4), and a movable dielectric body (5) located therebetween, said movable dielectric body being displaceable in parallel to said feed conductor line pattern and said ground plate so as to change the exciting phase of a signal component reaching one of said feed connection terminals, characterized in that

- said feed line pattern (3) is elongated in a main direction (A),
- said feed line pattern (3) includes longitudinal feed line segments extending in parallel to said main direction (A) towards each one of said feed connection terminals (T₁, T₂, T₃, T₄),
- said dielectric body is formed substantially as a dielectric plate (5), which is displaceable in said main direction (A) between two end positions (13', 14'), and
- said dielectric plate (5) is dimensioned and located so as to extend, in any position between and including said end positions, in a region covering supplementary portions of said longitudinal feed line segments (9, 10, 11, 12), said supplementary portions effecting a controlled propagation velocity reduction of the corresponding signal components before they reach the respective feed connection terminals (T₁, T₂, T₃, T₄).
2. A device as defined in claim 1, characterized in that
- said source connection terminal (6) is located at a central portion of said feed line pattern (3),
- said feed connection terminals (T₁, T₂, T₃, T₄) are located at opposite end portions of said feed line pattern (3), and
- said dielectric plate (5) extends in a region also covering said central portion of said feed line pattern (3).

3. A device as defined in claim 1 or 2, characterized in that
- said dielectric plate (5) is substantially rectangular, and
- said feed conductor line pattern (3) is meander-shaped, and
- said longitudinal feed line segments (9, 10, 11, 12) constitute the major part of the total length of the feed line segments in said feed conductor line pattern (3).

4. A device as defined in claim 3, characterized in that
- said feed conductor line pattern (3) includes a meander-shaped portion on each side of central portion including said source connection terminal (6), and
- each of the meander-shaped portions includes a longitudinal feed line segment (9, 10) leading to one of said feed connection terminals (T₁, T₂), and at least one meander loop (11, 12), which is branched off from said longitudinal feed line segment and includes at least two further longitudinal feed line segments leading to another one of said feed connection terminals (T₃, T₄).

5. A device as defined in any of claims 1 through 4, characterized in that said dielectric plate (33) is displaceable into any desired position between and including said end position by means of a mechanical actuator (35, 36, 37) coupled to a manually operable control means (38, 39) for adjusting the beam direction.
6. A device as defined in claim 5, characterized in that said mechanical actuator comprises a longitudinally guided rack (35) meshing with a gear mechanism (36, 37) coupled to a rotatable axis (38) with a control knob (39).

7. A device as defined in any one of claims 1 through 6, characterized in that the device comprises at least one further feed line structure (1b) of the same kind and having a displaceable dielectric plate, which is displaceable in synchronism with the dielectric plate of the first mentioned feed line structure (1a).

8. A device as defined in claim 7, characterized in that two similar feed line structures (1a, 1b) are connected to said common signal source (6) via a third feed line structure (20) of a similar kind.

9. A device as defined in any one of claims 1-8, characterized in that opposite end portions (13, 14) of said dielectric plate (5) are provided with step-like recesses dimensioned so as to minimize signal reflexion in the corresponding portions of the feed line structure.

10. A feed line structure (1) for adjusting the phase difference between at least two signal components derived from a radio frequency signal generated by a source, comprising a source connection terminal (6) and at least two feed connection terminals ((T₁, T₂, T₃, T₄), and a feed conductor line pattern (3) disposed in a fixed planar arrangement (2) at a distance from and in parallel to a fixed ground plate (4), and a movable dielectric body (5) located therebetween, said movable dielectric body being displaceable in parallel to said feed conductor line pattern and said ground plate so as to change the exciting phase of a signal component reaching one of said feed connection terminals, characterized in that

- said feed line pattern (3) is elongated in a main direction (A),
- said feed line pattern (3) includes longitudinal feed line segments extending in parallel to said main direction (A) towards each one of said feed connection terminals (T₁, T₂, T₃, T₄),

- said dielectric body is formed substantially as a dielectric plate (5), which is displaceable in said main direction (A) between two end positions (13', 14'), and

- said dielectric plate (5) is dimensioned and located so as to extend, in any position between and including said end positions, in a region covering supplementary portions of said longitudinal feed line segments (9, 10, 11, 12), said supplementary portions effecting a controlled propagation velocity reduction of the corresponding signal components before they reach the respective feed connection terminals (T₁, T₂, T₃, T₄).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: H01Q 3/32
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: H01Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, CLAIMS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Patent Abstracts of Japan,, abstract of JP, A, 62-196903 (MATSUSHITA ELECTRIC WORKS LTD), 31 August 1987 (31.08.87), see the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>Patent Abstracts of Japan,, abstract of JP, A, 63-296402 (MITSUBISHI ELECTRIC CORP), 2 December 1988 (02.12.88), see the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>DE 2947987 A1 (SIEMENS AG), 3 Sept 1981 (03.09.81), page 3, line 27 - page 5, line 23, figure 1/1</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 13 August 1996
Date of mailing of the international search report: 20 -08- 1996

Name and mailing address of the ISA:
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. + 46 8 666 02 86

Authorized officer
Karin Säfsten
Telephone No. + 46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0618639 A2 (MITSUBISHI DENKI KABUSHIKI KAISHA), 5 October 1994 (05.10.94), column 11, line 55 - column 14, line 1, figure 3, abstract</td>
<td>1-10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE-A1- 2947987</td>
<td>03/09/81</td>
<td>NONE</td>
</tr>
<tr>
<td>EP-A2- 0618639</td>
<td>05/10/94</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 1992)