wo 2010/036983 A1 I 10K 0 O 0000 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 1d Intellectual P t t) e
(19) Warld niellecuat roperty Organizaion /€52 | RO M RGO
International Bureau S,/ 0
3\ i 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
1 April 2010 (01.04.2010) PCT WO 2010/036983 Al
(51) International Patent Classification: (dba MailSite), 1901 South Bascom Avenue, Suite 900,
GO6F 15/16 (2006.01) Campbell, CA 95008 (US).
(21) International Application Number: (74) Agent: PHAM, Tam, Thanh; Carr & Ferrell LLP, 2200
PCT/US2005/058506 Geng Road, Palo Alto, CA 94303 (US).
(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
25 September 2009 (25.09.2009) kind of national protection available): AE, AG, AL, AM,
25) Filing L) Enelish AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(25) Filing Language: nglis CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L. HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
61/194,572 25 September 2008 (25.09.2008) us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(71) Applicant (for all designated States except US): ROCK- NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
LIFFE SYSTEMS, INC. (dba MAILSITE) [US/US]; SE, 8G, SK, SL, SM, ST, SV, 8Y, TJ, TM, TN, TR, TT,
1901 South Bascom Avenue, Suite 900, Campbell, CA TZ,UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
95008 (US). (84) Designated States (unless otherwise indicated, for every
(72) Inventors; and kind of regional protection available): ARIPO (BW, GH,
(75) Inventors/Applicants (for US only): HENDERS, GM, KE, LS, MW, MZ, NA, SD, SL, $Z, TZ, UG, ZM,
Michael [CA/US]; C/o RocKliffe Systems, Inc. (dba Mail- ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Site), 1901 South Bascom Avenue, Suite 900, Campbell,
CA 95008 (US). FITZPATRICK, Rory [GB/US]; C/o
Rockliffe Systems, Inc. (dba MailSite), 1901 South Bas-
com Avenue, Suite 900, Campbell, CA 95008 (US).
DAVIES, John [US/US]; C/o Rocklitfe Systems, Inc.

[Continued on next page]

(54) Title: PERSONAL INFORMATION MANAGEMENT DATA SYNCHRONIZATION

(57) Abstract: A data management application that may be implemented
in a mobile device to perform two-way synchronization of electronic mes-
sages and/or PIM data with a server device. The device may be a mobile
device such as a mobile phone or Smartphone, as well as a personal digital
assistant, notebook computer, or other mobile device communicating us-
0 ing any of several wireless protocols. PIM data may include PIM applica-
Sord Gonmant tion objects or other data, including but not limited to calendar, contact,

I and task object data. The data management application may synchronize
0 e-mail and PIM data on a client device with that of a server where the

Receive

Cornmand server and client utilize one or more different protocols.

209 218

Lockup ID

240

AddiMadify/Detete
Object?

Parse Command

250
Parse Conmmiang

Association
Identifind?

60
Modify 250 555
Add 1D

FIGURE 2

WO 2010/036983 A1 I W00)00 00O AU

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2010/036983 PCT/US2009/058506

PERSONAL INFORMATION MANGEMENT DATA SYNCHRONIZATION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the priority benefit of U.S. provisional patent
application number 60/194,572 filed September 25, 2008 and entitled “Personal
Information Management Data Synchronization for Remote Devices,” the disclosure of

which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention
[0002] The present invention generally relates to mobile communication. More
specifically, the present invention concerns synchronization and management of

electronic messages (e-mail) and personal information management (PIM) data between

a mobile device and a server.

Description of the Related Art

[0003] Software for performing two-way synchronization of e-mail and PIM data
such as calendar, contact, task, and other data are well known in the art. Such software
solutions perform synchronization between a mobile device and a server that initially
receives e-mail or PIM data, such as a Microsoft® Exchange Server. The software may
also synchronize e-mail and PIM data on a client device with corresponding data at the
server. Changes made to e-mail or PIM data on the mobile device are recognized by the
server. These changes may then be reflected at a typical (and often less mobile) client
device such as a desktop computer or workstation communicatively coupled to the
server.

[0004] The BlackBerry® suite of mobile devices allow for a user to access e-mail and

PIM data while ‘out of the office” or to generate new e-mail and PIM data while ‘on the

WO 2010/036983 PCT/US2009/058506

go.” The Microsoft® Exchange Server line of server products provides enterprise level
management of e-mail and various types of PIM data. BlackBerry® mobile devices and
Microsoft® Exchange Servers are both individually well known and widely
implemented with respect to access and management of e-mail and PIM data.

[0005] To allow for a BlackBerry® mobile device to connect to a Microsoft®
Exchange Server, however, requires a BlackBerry® Enterprise Server from Research in
Motion Limited. This cumbersome solution implements additional software operating
between the Exchange Server and mobile device. This middleware solution is required
in order to allow for synchronization of e-mail and PIM data between the Smartphone
and Microsoft® Exchange Server. BlackBerry® Enterprise Servers are relatively
expensive costing as much as $5000 USD in some instances.

[0006] Microsoft Corporation, in turn, implements a software solution known as
Microsoft® ActiveSync to be used in conjunction with Microsoft® Exchange Server 2003
with Service Pack 1 and Microsoft® Exchange Server 2007. ActiveSync® provides the
functionality of an Exchange Server, but does so specifically in the context of mobile
devices. ActiveSync® does not work with a variety of devices, including BlackBerry®
Smartphones.

[0007] The need and cost of a BlackBerry® Enterprise Server and the lack of inter-
device functionality in the ActiveSync® software solution are just two examples facing
users and information technology professionals demanding or wishing to provide for
out of the office connectivity to e-mail and PIM data. These and other so-called
solutions in the marketplace suffer from the inability to map object identifiers, identify
objects changes, and preclude data loss. Queue and transaction management as well as
message prioritization and object versioning serialization are also lacking in any number
of synchronization and management solutions.

[0008] There is a need in the art for a stable, reliable, cost-effective, and easy to
manage solution that allows for synchronization and management of e-mail and PIM
data between a mobile device and server notwithstanding the fact that the device and

server may use disparate communication or synchronization protocols.

WO 2010/036983 PCT/US2009/058506

SUMMARY OF THE CLAIMED INVENTION

[0009] In one claimed embodiment, a method for synchronizing data is claimed.
The method includes accessing a first data object stored on a client, the first data object
having a first format associated with a client application. An update request is
generated for a second data object stored on a server. The update request has a second
format associated with the server. The update request is then transmitted to the server.
[0010] A second claimed embodiment sets forth a computer-readable storage
medium. A program is embodied in the storage medium. The program embodied in
that storage medium may be executed by a processor to perform a method for
synchronizing data. Through this method, a first data object is accessed. The data object
has a first format associated with a client application. An update request is generated
for a second data object. The update request has a second format associated with a
server. An update request is then transmitted to the server as a result of executing the

aforementioned program.

WO 2010/036983 PCT/US2009/058506

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIGURE 1 illustrates a system for synchronizing e-mail and PIM data objects.
[0012] FIGURE 2 illustrates a method for mapping objects stored on a device with
objects stored on a server.

[0013] FIGURE 3 illustrates a method for identifying changed objects between a
mobile device and a server.

[0014] FIGURE 4 illustrates a method executed during a synchronization process
after changes sent by a server have been processed.

[0015] FIGURE 5 illustrates a method for calculating a hash on a PIM object using a
standard MD5 hash algorithm.

[0016] FIGURE 6 illustrates a method for avoiding data loss.

[0017] FIGURES 7, 8 and, 9 illustrate methods for priority queue management.
[0018] FIGURE 10 illustrates a method for transaction management at the start of a
transactional synchronization process.

[0019] FIGURE 11 illustrates a method for transaction management called when a
synchronization process is successfully completed.

[0020] FIGURE 12 illustrates a method for transaction management when an error

occurs.

WO 2010/036983 PCT/US2009/058506

DETAILED DESCRIPTION

[0021] Embodiments of the presently disclosed invention provide for data
management application that may be implemented in a mobile device to perform two-
way synchronization of e-mail and PIM data with a server device. The device may be a
mobile device such as a mobile phone or Smartphone, as well as a personal digital
assistant, notebook computer, or other mobile device communicating using any of
several wireless protocols. PIM data may include PIM application objects or other data,
including but not limited to calendar, contact, and task object data. The data
management application may synchronize e-mail and PIM data on a client device with
that of a server where the server and client utilize one or more different communication
or synchronization protocols.

[0022] Embodiments of the presently disclosed invention may further allow for
mapping object i;ientifiers, identifying changed objects, avoiding data loss, managing
queues and prioritizing messages and objects, performing object versioning for
serialization, and managing transactions. The data management application may be
implemented in the context of a downloadable and installable software plug-in that is
compatible with protocols used by disparate mobile devices (e.g., a BlackBerry®
Smartphone) versus those of a corresponding server device (e.g., Microsoft® Exchange
Server 2003 and/or 2007 and ActiveSync®).

[0023] FIGURE 1 illustrates a system 100 for synchronizing e-mail and PIM data
objects. The system 100 illustrated in FIGURE 1 includes a client device 110 and server
120. Client device 110 and server 120 may communicate with one another over one or
more networks 130. The one or more networks 130 may include wireless networks
provided by cellular telephone service providers as well as the Internet, wide area
networks (WANSs), local area networks (LANs), intranets, extranets, or private networks.
[0024] Client device 110 of FIGURE 1 includes data management application 115.
The data management application 115 may be stored in memory of the client device 110

and executable by a processor at the client device 110. Through execution of the data

WO 2010/036983 PCT/US2009/058506

management application 115, the client device 110 may synchronize and manage data by
establishing a connection between the client device 110 and the server 120.
Synchronization and management occurs, in part, as a result of the client device 110
establishing a hypertext transfer protocol (HTTP) or secure hypertext transfer protocol
(HTTPS) connection with the server 120 over network 130.

[0025] The data management application 115 may be maintained in any number of
computer-readable storage mediums such as random access memory (RAM), read only
memory (ROM), flash memory, as well as the microcode of an application specific
processing device. The data management application 115 can be wirelessly downloaded
to the mobile device. Alternatively, the application may be installed via a
synchronization operation as might occur through a Universal Serial Bus (USB)
connection to a desktop computer or as part of a manufacturer installation process.
Regardless of the mode of installation, data management application 115 may execute in
the background of the client device 110. The data management application 115 may
allow a user to configure the name of a mail server such as server 120, a username and
password as it relates to accessing data at server 120, and select which types of data a
user wishes to synchronize (e.g., e-mail and calendar changes but not a notepad or
contacts list).

[0026] In addition to memory and at least one processor, the client device 110 may
have one or more displays and user input components such as a keypad or touch screen.
The mobile device 110 may further have wireless communication capabilities to allow
for operation and data exchange over Wi-Fi or cellular networks.

[0027] The client device 110 of system 100 may be implemented as a cell phone or
Smartphone such as the aforementioned BlackBerry®. The present invention is not
limited to the aforementioned example; other cell phone and Smartphone
implementations are within the scope of the present invention. With respect to server
120, this particular component may be implemented in the context of Microsoft®
Exchange Server 2003 with Service Pack 1 or a Microsoft® Exchange Server 2007. Like

client device 110, the server 120 referenced in FIGURE 1 (and throughout the present

WO 2010/036983 PCT/US2009/058506

description) is not limited to any particular manufacturer.

[0028] An exemplary implementation of the data management application 115 may
include software that can implement a Microsoft® ActiveSync® program protocol,
connect and communicate with a Microsoft® Exchange 2003 (with Service Pack 1) or
2007 Server, and synchronize e-mail and PIM data to allow a BlackBerry® mobile device
to work with Microsoft® Exchange using ActiveSync® protocols—a previously
incompatible combination. The data management application 115 may be compatible
with other devices such as those using Java 2 Micro Edition (J2ME) and communicate
using one or more protocols such as Connected Limited Device Configuration (CLDC),
mobile information device protocol 2.0 (MIDP 2.0), and Java Specification Requests
(JSR).

[0029] A PIM data application is executable to manage a set of data objects. A data
object may be a record, entry, or other element that corresponds to an address book
contact, calendar entry, task entry, an e-mail message or some other element of data.
The PIM application may assign or associate a unique identifier to each object. When
two different systems each have a native PIM application, the identifiers unique to each
application may not necessarily match. For example, a first contact for a PIM
application on a mobile device may have a unique identifier that does not match the
unique identifier for the corresponding first contact in the server PIM data. This lack of
correspondence can make it difficult if not impossible to accurately synchronize or
otherwise process —create, read, update, delete—objects between a server and a device
that identify or associate an object to be synchronized or processed with different
identifiers.

[0030] In an exemplary embodiment of the present invention, execution of the data
management application 115 maps unique identifiers for device objects to unique
identifiers for objects on a server. The mapping may be implemented utilizing any
number of methodologies including one or more hash tables or B+ trees. For example,
object unique identifiers between a mobile device and a server may be mapped using

two B+ trees. The first B+ tree may map mobile or other device unique identifiers to

WO 2010/036983 PCT/US2009/058506

server unique identifiers. The second B+ tree may map server unique identifiers to
mobile or other device unique identifiers.

[0031] One or more B+ trees may be populated as communications are transmitted
between the mobile device and the server. When a request to create a new calendar
object is sent from the client device to the server, the request will include the unique
identifier used by the client PIM for the calendar object. When the server receives the
request, the new calendar object is created, a server-side unique identifier is generated
for the new calendar object, and a confirmation response is sent to the device by the
server. The confirmation response includes the unique identifier associated with the
new calendar object by the server.

[0032] Once received, the data management application 115 can populate the local
tree with the server unique identifier (and client unique identifier) for the new calendar
object. Subsequently, when the data management application 115 sends a request
involving the created calendar object, it may determine the client PIM unique identifier
for the calendar object, access the tree to determine the unique identifier for the calendar
object used by the server, and reference or identify the calendar object in the request to
the server using the server unique identifier.

[0033] If a server creates an address book entry object, the server will send a request
to create a new address book entry object to the client that includes the server unique
identifier for the new object. The client receives the new calendar object request and
corresponding unique identifier created by the server, creates the calendar object, stores
the corresponding server unique identifier in a B+ tree, and performs any other needed
operations to complete the transaction.

[0034] Unique identifiers may be transmitted between a client and server in
communications not associated with a request or synchronization. Communications
between a client and server may include other information as well, including client
device ID, server ID, time stamp information, and other data.

[0035] FIGURE 2 illustrates a method 200 for mapping objects stored on a device

with objects stored on a server. In step 210, for each client change to be sent to the

WO 2010/036983 PCT/US2009/058506

server, a lookup of the server ID for the corresponding client ID is performed. In step
220, a command is sent to the server referencing the server ID. For each command
received from the server (step 230), if the command is to add an object—a determination
made at step 240 —then the command is parsed at step 250 to get the server ID and the
object is then created on the device at step 255. An ID is then generated for the newly
created object at step 260; this newly created ID is the client ID. This newly created
client ID is added to the client-server ID mapping at step 265; the map identifies the
correlation between the client and the server and is (at least) stored locally at the client
device 110.

[0036] If the determination at step 240 indicates that the command is to modify an
entry to the client-server ID mapping, then the command is parsed at step 270 to retrieve
the server ID and the updated properties of the object. A lookup to determine the client
ID for the identified server ID occurs at step 275. If the client ID is found, then the object
is modified at step 280. If the client ID is not found at step 275, then the object is deemed
not to be present on the device and the command is treated as a command to add an
object and the process continues at step 255.

[0037] If the determination made at step 240 is that the command is to delete an
object, then the command is parsed at step 285 in order to identify the server ID. A
lookup to determine to the client ID for the identified server ID occurs at step 290. If the
client ID is found, then the object corresponding to the client ID is deleted from the
device in step 295. If a corresponding client ID is not found, then the process come to an
end as the object does not exist on the device.

[0038] As users manage PIM data objects, a user may change —create, read, update,
or delete—objects on the client device 110. The data management application 115
referenced in FIGURE 1 will periodically send synchronization requests to the server 120
to synchronize objects that have been identified or detected as changed on the client
device 110. The data management application 115 may identify objects that have
changed by, for example, comparing hash entries for the data. For example, a hash entry

may be generated for an object, such as a user contact, wherein the entry includes data

WO 2010/036983 PCT/US2009/058506

for each field of the contact object or record. The hash entry may be generated when the
object is created at the device or received from the server, or in response to some other
event. These hash entries can be maintained by the client device 110. B+ trees may also
be utilized in the context of identifying object changes.

[0039] An additional hash may be created to compare to the pre-existing hash
entries (i.e., the maintained hash entries). For example, the device address book can be
periodically polled for one or more address book entries. Objects can be sequentially
polled in their entirety. For example, all address book objects may be sequentially and
individually polled. A new hash is created for results of the address book poll. The new
hash is then compared to the existing hash. For example, one or more identification
tables generated with respect to object ID mapping may be compared. If any changes
are detected, objects that have changed are identified. Identification may include
marking an object record in a table, adding the object unique identifier in a list, or some
other manner of identifying the object.

[0040] Marking the object may include indicating the object should be created, read,
updated, or deleted, or processed in some particular manner. The changes to make to
the objects are indicated separately from a marking that indicates the object is to be
updated. The objects to be changed are then scheduled to be sent to the server to update
the corresponding server object.

[0041] Polling may be periodically performed at every 10 minute, 30 minute, or at
some other periodic interval, which may be set by a user. The polling may also be
performed according to a non-periodic schedule. For example, polling may occur at a
time when the device is using a small portion of available processor resources, when in
sleep mode, when the device is plugged in and recharging, or in some other mode of
operation. With respect to e-mail messages, a notification can be received when a user
deletes, creates, sends or receives a message. Message deletion, creation or other
changes can be scheduled to be sent to the server for synchronization by the data

management application 115.

10

WO 2010/036983 PCT/US2009/058506

[0042] FIGURE 3 illustrates a method 300 for identifying changed objects between a
mobile device 110 and a server 120. The method 300 may be called when the address
book or calendar of the client device 110 is polled to check for changed objects and
returns a list with the client ID and the type of change (e.g., new, updated, deleted).
[0043] In step 310 of FIGURE 3, a sorted list of PIM objects on the device 110 is
generated, the list sorted by ID. A sorted list of IDs from a hash store is similarly
generated in step 320. The IDs of the PIM object list and the hash store list are then
compared beginning in step 320. At step 325, a determination is made as to whether the
next ID from the PIM object list generated in step 310 is smaller than the next ID from
the hash store list generated in step 315. If so, then the PIM object has been added and a
new change record is added at step 330. The process continues at step 320 albeit with
the ‘next” ID from the PIM object list.

[0044] If the determination at step 325 is in the negative, then a determination as to
whether the ID from the hash list is larger than that of the PIM object list is made at step
340. If so, then an object has been removed and a deleted change record is added at step
345 and the process continues at step 320 albeit with the ‘next’ ID from the hash list.
[0045] If there is no difference at steps 325 and 340, then the PIM object from the
PIM object list is hashed with the hash in the store for the corresponding ID in the hash
list at step 350. If the hashes are different following a comparison at step 355, then an
updated change record is added in step 360. If the hashes are the same, a determination
is next made as to whether there are objects still left in the PIM object and hash lists at
step 365. If there are no objects left in either list, then the process comes to an end.
[0046] If the PIM object list still has objects left in the list as determined at step 370
and the hash list is at its end, then deleted change records are added to the remaining
IDs from the hash list at step 375. If the PIM object list has no remaining objects, but the
hash list has remaining IDs as determined at step 380, then new change records are
added for all remaining objects in the PIM object list at step 385. Otherwise, the process

come to an end.

11

WO 2010/036983 PCT/US2009/058506

[0047] FIGURE 4 illustrates a method 400 executed (i.e., called) during a
synchronization process after changes sent by the server have been processed; changes
are tracked in a list that is passed to an updated record store. The method 400 of
FIGURE 4 is useful as the process for finding a PIM object on some client devices (e.g., a
BlackBerry® device) is slow. Instead of iterating through updated IDs and looking up
each record, it may be faster to loop through all PIM objects in a PIM list and update
those for which an entry exists in an update ID store.

[0048] In method 400, for each PIM object of the PIM list, the ID of the PIM object is
retrieved in step 410. A determination is then made in step 420 as to whether the ID
exists in a list of updated IDs. If the ID is not in the list, then the method 400 of FIGURE
4 comes to an end at step 430. If the ID is in the list, then a hash operation is performed
on the PIM object at step 440. If the hash of the PIM object is already being tracked, as
determined at step 450, then the hash associated with the object is updated with the new
hash at step 460. If the hash is not yet being tracking, then tracking commences in step
470.

[0049] FIGURE 5 illustrates a method 500 for calculating a hash on a PIM object
using a standard MD?5 hash algorithm. The method 500 of FIGURE 5 may be
implemented on any device that supports the Java Specification Request 75 for accessing
the EventList (Calendar) and ContactList (Address book). The method 500 of FIGURE 5
will likewise work in the context of a To Do List.

[0050] In step 510, a byte stream array is created to store serialized PIM object fields.
The device is then asked for all fields supported by the particular PIM object fields in
step 520. For each supported field, the number of values is checked in step 530. For
each value, the field is serialized based upon its particular type in step 535. This
serialization may include types such as byte, Boolean, date, int, string, and string array).
In step 540, the serialized value is written to the stream; a separator value is written to
stream in step 545.

[0051] A determination is made at step 550 as to whether the PIM object is that for

an event. If the object is for an event, then the repeat rule for the event is serialized at

12

WO 2010/036983 PCT/US2009/058506

step 560. That serialized value is written to the stream in step 570. Event exceptions are
serialized in step 575 and written to the stream in step 580. An MD5 hash is then
generated on the stream at step 590, as likewise occurs if the determination at step 550
concludes that the object is not an event.

[0052] In some instances, a PIM application on a client device may not support the
same format of objects, records, fields or properties as the PIM application on a server.
For example, a client device PIM application may only have ten fields for an address
book contact object while a server PIM application may support up to fifty fields or
more for an address book contact object. A situation may therefore exist where an object
created by a server PIM application has fields or properties that a client PIM application
cannot support. This can result in data loss when transferring, synchronizing or
otherwise communicating the data object between the server and the client.

[0053] To avoid data loss, the PIM application data that is only supported by one of
the client device PIM application or server PIM application is managed to avoid data
loss. Managing a data object to avoid data loss can include mapping fields or properties
from both object formats, which correspond to each other, and handling fields or
properties that do not correspond in a separate manner.

[0054] Consider a case when a server supports more fields for an address book
object than the client device PIM application. When the server receives a new address
book object with data in a field not supported in the client device PIM application, the
data management application will create a new object which maps as many of the server
created object fields to corresponding client object fields. Fields that do not map from
the server object to the client object may be stored elsewhere on the client or ignored.
[0055] When a client updates an object for which the server supports more fields or
properties, there is a possibility that fields not supported by the client have values at the
server. Simply sending an update request by the client with empty values for
unsupported data object fields may cause those unsupported fields to be erased.
Therefore, the data for the unsupported fields is retrieved, placed in an update request

to be sent to the server, the data in the fields of the client data object are added to the

13

WO 2010/036983 PCT/US2009/058506

object in the update request, and the update request is transmitted to the server with all
data for the object, including data not supported by the client device PIM.

[0056] In some instances, the unsupported data may be retrieved locally from the
client device if the data is stored locally. The entire data object may similarly be
retrieved from the server. The retrieved copy is then updated with data from the
corresponding client device object. In such an embodiment, only the fields supported by
the client device PIM will be updated in the retrieved copy. The updated retrieved copy
is then sent back to the server as part of an update request.

[0057] FIGURE 6 illustrates a method 600 for avoiding data loss. The method 600 of
FIGURE 6 is specifically referenced in the context of ActiveSync®. Notwithstanding,
other software, server, and client device environments are not meant to be excluded
from the application of method 600.

[0058] In step 610, for each client change, the PIM object is retrieved from a PIM list
at the client device. In step 620, a corresponding server ID is looked up in the client-
server ID map. A determination is made at step 630 as to whether the type of change is
an update. If the change is an update, then an AS PIM entity is created to represent the
state of the object of a corresponding server at step 640.

[0059] If the server (i.e.,, an ActiveSync® server) supports the ItemOperations
command (as determined at step 650), then the ItemOperations command is executed at
step 655 in order to retrieve the current state of the object from the server. The
ActiveSync® PIM entity object is then populated with the fields returned by the server
at step 660.

[0060] If the ItemOperations command is not supported as determined at step 650,
then a locally stored copy of unsupported fields are retrieved at step 670. The
ActiveSync® PIM entity object is populated at step 675 and the client object and server
object are then merged at step 680. The fields of the client objects take precedence in

such a merger operation.

14

WO 2010/036983 PCT/US2009/058506

[0061] Returning to step 630, if the change is not that of an update, then no merger is
required. The entity object is sent to the server at step 690. Server delivery (step 690)
also occurs following the population step of step 660 as well as at merger step 680.
[0062] Mobile devices have a limited amount of memory. As a result, it may be
desirable to control the size of data required for messages and/or objects contained on
the client device. A message queue may be maintained that prioritizes messages based
on receipt date and when viewed. Message data may be stored for messages within the
queue and not stored for messages transitioned or “pushed” out of the queue.

[0063] For example, the queue may be implemented as a “backwards” queue in that
messages in the front of the queue are “removed.” Removal of a message from a queue
may result in deletion of the message data, transferring the message data to another
local or remote location in memory, or allowing the memory containing the message
data to be overwritten locally at the client device. In such an embodiment, messages are
prioritized and moved to the back of the queue when they are first received or when
they are viewed. Thus, as messages are received or viewed, other messages in the queue
are moved to the front and eventually “removed” from the queue. Message data for
recent messages and messages most recently viewed can be stored longer than message
data for older messages and messages for which a user has not viewed.

[0064] FIGURES 7, 8 and 9 illustrate exemplary methods for priority queue
management. The priority queue may be a part of a mail summary store used to
manage which messages are kept and which are thrown out when the store runs out of
memory or reaches a configured maximum capacity. A B+ Tree may be utilized where
message full objects are stored keyed by the message ID and a hash map where the
message summary objects are stored keyed by the message ID.

[0065] In the method 700 of FIGURE 7, a list of message to be added is retrieved in
step 705. A list of message locally stored is retrieved in step 710. The two lists are
merged in step 715; the merged list is sorted by date received in step 720 and then by ID
in step 725. A determination is made in step 730 as to whether the number of messages

in the list is in excess of a pre-configured capacity of limit. If the messages are not in

15

WO 2010/036983 PCT/US2009/058506

excess of the limit, then the process ends until it is later necessary to determine whether
to manage the priority queue.

[0066] If the storage capacity or limit has been exceeded as determined in step 730,
then the highest indexed message from the list is identified in step 735, the ID of that
message is recorded in step 740, and the message is then removed from the list in step
745. For each ID recorded in step 740, a message full object is removed from local
storage and the list of messages to be added at step 750. The message full object for the
remaining objects to be added is stored at step 755.

[0067] The method 800 of FIGURE 8 commences at step 805 with the retrieval of a
list of messages to be updated. At step 810, a list of messages stored locally is retrieved.
For each message to be updated, if the message is stored locally as determined at step
815, then the locally stored message is updated at step 820. If the message is not stored

" locally, then the message to be updated is added to the local store as if it was new at step
825.

[0068] The list of messages to be stored locally is then sorted at step 830. If the
number of messages is greater than the pre-configured capacity as determined at step
835 —no further action being necessary if the number of messages are not in excess of
capacity —then the highest indexed message is identified in step 840. The ID of the
message is recorded at step 845 removed from the list in 850. For each ID recorded at
step 845, the message full object is removed from local storage at step 850.

[0069] The method 900 of FIGURE 9 commences at step 910 with the retrieval of a
list of messages to be removed, followed by retrieval of a list of messages stored locally
at step 920. A determination is made at step 930 as to whether messages exist in local
storage for each message to be removed. If the message does not exist locally, then the
method 900 comes to an end. If the message does exist in local store, then the message is
removed in step 940. The message full object is subsequently removed in step 950.
[0070] PIM applications and other applications that access and use PIM objects may
be updated with new versions. Some new versions may not be compatible with older

data object formats. To avoid errors and data loss, data objects can be updated to

16

WO 2010/036983 PCT/US2009/058506

comply with new application versions. To avoid errors or comprising data due to
version incompatibility, the data management application 115 of FIGURE 1 will attempt
to deserialize a client configuration.

[0071] For example, the application 115 will identify whether an accessed object to
be updated is compatible with a most recent version. Version data for objects may be
stored in the base class of the object. If the accessed object, for example an address book
entry, is not compatible with a new version, the object is updated as discussed above. In
some embodiments, other objects similar to the accessed object may be updated as well.
In some instance, only the accessed object is updated to comply with requirements of the
new version.

[0072] An object and message transaction may require a series of steps to complete;
for example, updating a calendar object at a server based on a changed corresponding
calendar object at a client device. The client calendar object may be marked for updating
at the server. The update might then be scheduled, update request generated, and the
request then sent to the server. The server may receive the request, update the
corresponding calendar object, generate a confirmation response, and then transmit the
confirmation response to the client. The calendar object update transaction may be
interrupted at any of these steps, resulting in an incomplete transaction. This may cause
an undesirable result, especially if the transaction is not completed at some time after the
interruption.

[0073] The data management application 115 may implement a policy of managing
transactions such that interrupted transactions can be identified and completed at a later
time. Steps in a transaction may be logged or otherwise recorded. As transactions are
scheduled, the status of the transaction is not changed to a complete state until the
transaction is completely finished; thus, the transaction is not marked as complete
merely because the transaction has been initiated.

[0074] To detect non-completed transactions, a transaction log may be checked upon
restart after a hard reset, after an error condition or state occurs, or based on some other

event that may indicate a condition occurred that interrupted a transaction in progress.

17

WO 2010/036983 PCT/US2009/058506

In some embodiments, the transaction log may be periodically checked. If the
transaction log indicates that a transaction was interrupted before it completed, the
transaction may be added to a transaction queue for completion.

[0075] FIGURE 10 illustrates a method 1000 for transaction management at the start
of a transactional synchronization process. In step 1010, a client change queue is locked
to ensure thread safety. A determination is made at step 1020 to determine if a
transaction has already started. If a transaction has already commenced at step 1020,
then an error is returned at step 1030. If the transaction has not commenced, then the
content of a client change queue are moved to an in progress queue at step 1040 and the
client change queue is then unlocked at step 1050.

[0076] FIGURE 11 illustrates a method 1100 for transaction management called
when a synchronization process is successfully completed. In step 1110, the client
change queue is locked to ensure thread safety. The in progress queue is emptied at step
1120 and the client change queue unlocked at step 1130.

[0077] FIGURE 12 illustrates a method 1200 for transaction management when an
error occurs. The client queue is locked at step 1210. A determination is then made at
step 1220 as to whether the client change queue is empty; that is, have any further
changes occurred? If the queue is empty, then objects are moved from an in progress
queue back to the changes queue at step 1230. If the queue is not empty as determined
at step 1220, then objects are merged from the in progress queue with newer changes to
a changes queue in step 1240. The in progress queue is then emptied at step 1250 and
the changes queue unlocked at step 1260.

[0078] The foregoing detailed description has been presented for purposes of
illustration and description. Said description is not intended to be exhaustive or to
otherwise limit the invention as claimed below. Modifications and variations are
possible in light of the above teachings including the combination of various
methodologies and processes. The scope of the present invention is intended to be

defined and limited only by the claims appended hereto.

18

WO 2010/036983 PCT/US2009/058506

CLAIMS

WHAT IS CLAIMED IS:

1. A method for synchronizing data, comprising:

accessing a first data object stored on a client, the first data object having a first
format associated with a client application;

generating an update request for a second data object stored on a server, the
update request having a second format associated with the server; and

transmitting the update request to the server.

2. A computer-readable storeage medium having embodied thereon a program, the
program being executable by a processor to perform a method for synchronizing data,
the method comprising:

accessing a first data object stored, the first data object having a first format
associated with a client application;

generating an update request for a second data object, the update request having
a second format associated with a server; and

transmitting the update request to the server.

19

WO 2010/036983 PCT/US2009/058506
1/12

G

g

2
Server

)
@
o0
.4
f.
o
=
o
&
=

FIGURE 1

&2

1
Client Device
143
Data
Management
Apuplication

SUBSTITUTE SHEET (RULE 26)

WO 2010/036983 PCT/US2009/058506
2/12

g
o

£94 210
Lookup D

220

Send Command

230

Receive
Command

240

Add/Modify/Delets
Object?

Modify Delele

270 288
Parse Command Add Parse Command

250
Parse Command

Association
identifled?

2558 End

Association

identified? Create Object

260
Generate 1D 2G5

Delets

¢

Modify -°

265

Add D

FIGURE 2

SUBSTITUTE SHEET (RULE 26)

WO 2010/036983 PCT/US2009/058506
3/12

a3
-
jroe

316
Generate List
of PIM
Obiects

315
Generaie List of
Hash Store I1Ds

345

Add
Delele
Record

. 320 Compare -

325
Qbiect
ListiD <
Hash
List

330
Add

Yes Record
Meow

Yes

340
Hash D >
PiM Object
iD

350
Hash

No

325 360
Different? Add Update
Record
385
Yes Obiect > Yes Neow
Delete Hish 7

FIGURE 3

SUBSTITUTE SHEET (RULE 26)

B
L]

WO 2010/036983 PCT/US2009/058506
4/12

410

Retrieve PIM
Objects

is PIM Object 430

List of UlDs? End

440 Hash

450

470

Tracking? Start Tracking

460

Update

FIGURE 4

SUBSTITUTE SHEET (RULE 26)

i
>

WO 2010/036983 PCT/US2009/058506
5/12

1
gﬁ’reate Byte
Array Stream

520
Ask Device for

Supported Fields

530 Check
Mumber of
Yalues
8535
Serialize
Write Serial
540 Value
580
Generate Hash
Write Separator
Yalue
545
Wirite Serialized
580 Yalue
375 Serialize
Exception
560 Zerialize 570
Wirite Serislized
Repeat
Yalue
Rule

FIGURE 5

SUBSTITUTE SHEET (RULE 26)

WO 2010/036983

610

Retrisve

620
Lookup Server 1D

630
Update’?

Mo

Yes

6/12

640
Create

690
Send Entity

AS PiM
Entity

650
ftem
Cperations
Supporied?

£58
Execute ltem
Operations

Populate

660

PCT/US2009/058506

(.
joed
joued

870
Retrieve

Local
Copy

8675
Popuiate
AS PIM

630
Merge

FIGURE 6

SUBSTITUTE SHEET (RULE 26)

oo
L]

WO 2010/036983

PCT/US2009/058506
7112
Retrieve List of
Messages to be
Added
7058
I
Retrieve List of
Messages
Locally Stored
718
l
Merge
715
l
Sort by Date
720
755
Sort by ID Store
735 Remaining
Chiects
Over Limit? End
750 Remove
Message
735 Full Object
D Highest
indexed Message
740 745
Record iD Remove
Message

FIGURE 7

SUBSTITUTE SHEET (RULE 26)

WO 2010/036983

o0
e
o2

8/12

g5)
Get List to
Update

810 Get List of
Massage

Stored Locally

825

Add

815

Stored
Locally?

PCT/US2009/058506

820

Update

830

Sort

835
Exceed?

End

B840
2 Highlight
indexed Message

845
Record D

850
Remove

SUBSTITUTE SHEET (RULE 26)

FIGURE 8

62
=

WO 2010/036983 PCT/US2009/058506
9/12

810
Retrieve List

to be
Removed

920

Hetrieve List
Stored Locally

No End

940

Remove
Local

8950

Remove
Message Full

FIGURE 9

SUBSTITUTE SHEET (RULE 26)

WO 2010/036983

PCT/US2009/058506
10/12
1610
Lock Queus
10620
\ 1630
Transaction Error

Started?

No

1040
Move
Contenis

1050

Uniock Queus

FIGURE 10

SUBSTITUTE SHEET (RULE 26)

oo

WO 2010/036983

>

PCT/US2009/058506
11/12

1110

Lock Gueue

1128

Empty

1130

Uniock

FIGURE 11

SUBSTITUTE SHEET (RULE 26)

ooos

WO 2010/036983 PCT/US2009/058506
12/12

p

4240
Lock

Empty? Yes Move Object

MNo
1244

Merge

1250

Empty

1260
Unlock

FIGURE 12

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 09/58506

A. - CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 15/16 (2010.01)
USPC - 709/248

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC- GO6F 15/16 (2010.01);
USPC- 709/248

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC- 709/217; 707/3; 705/42; 718/104; 715/203, 762; Patents and NPL (view search terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWest (US Pat, PgPub, EPO, JPO: class, keyword), DialogClassic (Derwent, EPO, JPO, USPTO, WIPO: keyword), GoogleScholar;
search terms: simultaneous, two way, synchronize, pim, personal information manager

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2007/0260751 A1 (MEESSEMAN) 08 November 2007 (08.11.2007) entire document, 1,2
especially Abstract; para [0001), [0009], {0010], [0021]-[0026], [0032]-{0034]

Y US 2006/0200583 A1 (LE LANN et al.) 07 September 2006 (07.09.2006) entire document, 1,2
especially Abstract; para [0002], [0006], [0014], [0030], [0035], [0336], (0043]

A US 2003/0045301 A1 (WOLLRAB) 06 March 2003 (06.03.2003), entire document 1,2

A JONSSON et al. "SyncML - Getting the mobile Internet in sync." Datasheet [online]. Ericsson 1,2
Review No. 3, 2001, pages 110-115. Published December, 2001. [retrieved on 2010-01-05].
Retrieved from the Internet: <URL:
http:/Aurtle.ee.ncku.edu.tw/~andypony/present92/syncml/syncmi_intro.pdi>

A US 6,131,096 A (NG et al.)} 10 October 2000 (10.10.2000), entire document 1,2

D Further documents are listed in the continuation of Box C.

[

hd Special categories of cited documents:

“A"” document defining the general state of the art which is not considered
to be of particular relevance

“E" earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other
special reason (as specified)

“0™ document referring to an oral disclosure, use, exhibition or other
means
“P" document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X”" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

04 January 2010 (04.01.2010)

Date of mailing of the international search report

26 JAN 2010

Name and mailing address of the ISA/US

Mail Stop PCT, Atin: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. s571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report

