The present disclosure describes soft and velvet touch barrier laminate with customized polymer alloying which is dry or wet blending of multiple polymers, additives and colorant and making a single compounded polymer mix with designated characteristics. The soft and velvet touch barrier laminate can be used to prepare articles having soft outer surface with a mat finish.
Soft and Velvet Touch Barrier Laminate

TECHNICAL FIELD

[0001] The subject matter described herein in general relates to barrier laminates having soft outer surface with a mat finish, articles made therefrom, and the process of making the same.

BACKGROUND

[0002] The use of barrier laminates for packaging is well known in the industry. The "barrier" layer in barrier laminates serve to protect the packaged product from physical stresses caused by the normal handling of the product during packaging, shipping, or during commercialization. In addition, a heat sealant layer may be utilized to bond films together to form packages for products, such as pharmaceutical or food products. Further, the combination of layers may allow for a film that has favorable physical properties, such as, for example, strength, stiffness, abrasion and chemical resistance.

[0003] There are limited examples of barrier laminates with soft touch and mat finish. UV curing over varnish is one method of preparing barrier laminates with soft touch and mat finish. Hot air curing over water based lacquer can also be used to achieve soft and mat finish on articles, such as plastic tube container. Another way to achieve soft touch and mat finish on barrier laminates is by casting the outer film layer on a mat finished chill roll to generate mat outer surface. However, as the outer surface is passed through hot air zones or sealed with heat sealing jaws, the mat surface appearance gets diminished.

[0004] Thus there is a need for a barrier laminate with a sensory element such as soft touch and feel, mat and velvety look

SUMMARY

[0005] The present disclosure relates to a soft and velvet touch barrier laminate including: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.
Further aspect of the present disclosure is the process for the preparation of the soft and velvet touch barrier laminate.

Another aspect of the present disclosure is an article comprising the barrier laminate in accordance with the present disclosure. Yet another aspect of the present disclosure is a process of preparing an article comprising the barrier laminate.

These and other features, aspects and advantages of the present subject matter will be better understood with reference to the following description and appended claims. This summary is provided to introduce a selection of concepts in a simplified form. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF DRAWINGS

The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The same numbers are used throughout the drawings to reference like features and components.

Figure 1 illustrates a soft and velvet touch barrier laminate 100, according to an implementation of the present disclosure.

DETAILED DESCRIPTION

Those skilled in the art will be aware that the present disclosure is subject to variations and modifications other than those specifically described. It is to be understood that the present disclosure includes all such variations and modifications. The disclosure also includes all such steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively and any and all combinations of any or more of such steps or features.

Definitions

For convenience, before further description of the present disclosure, certain terms employed in the specification, and examples are collected here. These definitions should be read in the light of the remainder of the disclosure and understood as by a person of skill in the art. The terms used herein have the meanings recognized and known to those of skill in the art,
however, for convenience and completeness, particular terms and their meanings are set forth below.

[0013] The articles "a", "an" and "the" are used to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article.

[0014] The terms "comprise" and "comprising" are used in the inclusive, open sense, meaning that additional elements may be included. Throughout this specification, unless the context requires otherwise the word "comprise", and variations, such as "comprises" and "comprising", will be understood to imply the inclusion of a stated element or step or group of element or steps but not the exclusion of any other element or step or group of element or steps.

[0015] The term "including" is used to mean "including but not limited to". "Including" and "including but not limited to" are used interchangeably.

[0016] The term "co-extrusion" refers to a process of extruding multiple thermoplastic polymeric materials having affinity to bond with each other through different extruders, minimum of 2 but up to 11, and channelizing through a multi-manifold DIE to get a single composite film of desired thickness. Co-extrusion process could be either blown (air pressurized) or cast (on chill roll).

[0017] Ratios, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a temperature range of about 60°C to about 90°C should be interpreted to include not only the explicitly recited limits of about 60°C to about 90°C, but also to include sub-ranges, such as 65°C to 75°C, 80°C to 90°C, and so forth, as well as individual amounts, including fractional amounts, within the specified ranges, such as 82.2°C, 85.6°C, and 71.3°C, for example.

[0018] The present disclosure relates to a soft and velvet touch barrier laminate including: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in
contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening
temperature in the range of 60°C to 90°C. The outer surface or the printable layer of the barrier
laminate soft and mat finish, good for print decoration. Inner surface of the laminate is smooth
for easy heat sealability.

[0019] The soft and velvet touch barrier laminate can be used to form articles, such as tubular
packaging materials that will safely hold semi liquid products such as paste for designated shelf
life.

[0020] The conventional multilayer barrier sheets do not meet the requirement of high speed
print process, innovative decoration and tubing conversion due to high coefficient friction,
inconsistence mat finish vales, consistence print decoration. Moreover, the texture of artificially
crafted laminate gets faded away with the processing of the multilayer laminate in secondary
operations like printing & decoration, tubing, and open end sealing.

[0021] The present disclosure provides for soft and velvet touch barrier laminate with
customized polymer alloying which is dry or wet blending of multiple polymers, additives and
colorant and making a single compounded polymer mix with designated characteristics. The soft
and velvet touch barrier laminate includes a printable layer comprising of polypropylene
elastomer which is semicrystalline polyolefin copolymer due to the placement of propylene
within the polymer chain in a stereoregular isotactic manner leading to isotactic propylene
crystallinity. Along with polypropylene elastomer in the printable layer, stiffer high density
polyethylene (HDPE) polymer can be used to provide a base for accepting softer polypropylene
co-polymer. Replacement of HDPE with linear low density polyethylene (LLDPE) or blend of
HDPE with LLDPE, can result in a laminate with undesirable properties, such as Shore hardness-
D, in the range of 65 to 80 and roughness value (Ra) in the range of 0.3 to 0.5 micrometer. Film
formulation require minimum of two layers extrusion but preferable 3extruders-3 layers co-
extrusion technique provide versatile product outcome.

[0022] In one implementation of the present disclosure, Figure 1 illustrates an exemplary
structure of the soft and velvet touch barrier laminate 100, in accordance with an implementation
of the present disclosure. In said implementation, as mentioned earlier, the soft and velvet touch
barrier laminate 100 is formed having a minimum of seven-layered structure. The barrier layer
302 is selected from the group consisting of metal foil barrier film and non-metal multilayer
barrier film. The barrier layer 302 is placed between first bond layer 402 and second bond layer
404. The surface film 200 includes at least three layers wherein layer 202 is a printable layer comprising of polypropylene elastomer, layer 204 is a core layer, and layer 206 is the laminating layer adjacent to the core layer. The inner polyethylene (PE) layer 502 is adjacent to the second bond layer 404. Due to the presence of the barrier layer 302, in the laminate 100, the laminate exhibits excellent barrier and product keeping properties throughout the designated shelf life.

[0023] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C. The outer surface or the printable layer of the barrier laminate soft and mat finish, good for print decoration. Inner surface of the laminate is smooth for easy heat sealability.

[0024] In another implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant, wherein the printable layer comprises of polypropylene elastomer, high density polyethylene (HDPE), anti-block additive and the colorant in a blend ratio in the range of 26:70:2:2 to 60:25:5:10; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C. The aforementioned ratio range provides for laminates with balanced mechanical properties, granular texture and easy process ability due to machine direction forward movement.

[0025] In yet another implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant, wherein the printable layer comprises of polypropylene elastomer, high density polyethylene (HDPE), anti-block additive and the colorant in a blend ratio of 45:45:5:5; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent
to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0026] The surface film 200 includes at least three layers wherein the top layer is a printable layer comprising of polypropylene elastomer 202. A printable layer essentially consisting of soft polymer mono-material in single layer will not have easy forwarding movement on the machine direction. Hence, it is essential to have a stiffer supporting layer or core layer such as HDPE enriched blended polymer. For the laminating layer, i.e., the layer adjacent to core layer, it is essential to maintain linear enriched polymer combination to facilitate stronger bond with subsequent extrusion lamination layers. Colorant can be added in to the outer skin and core polymer layers according to the required color shade.

[0027] In one implementation, the polypropylene elastomer has semi crystallinity having vicat softening temperature [A50(50°C/h 10N] about 80°C. The high density polyethylene (HDPE) has a density in the range of 0.96 to 0.965. In one implementation, the high density polyethylene (HDPE) has a density in the range of 0.961 to 0.965. The thickness of the printable layer comprising of polypropylene elastomer can be in the range of 20 to 50 microns.

[0028] As described above, the printable layer comprising of polypropylene elastomer 202 is a blend of two different thermoplastic polymer, i.e., polypropylene elastomer and high density polyethylene (HDPE), an anti-block additive and a colorant. The soft and velvet touch barrier laminate features a soft touch and feel surface layer with the help of two different thermoplastic polymer alloying, co-extruding the polymer alloy with a stiffer thermoplastic polymeric base and a thermoplastic polymeric layer with low seal initiation temperature.

[0029] Anti-block additives are inorganic particles, such as ground silica, and help in separating otherwise sticky layers while tightly wound in a coiler (roll) form. Anti-block additives also help in forwarding the sticky web or film against smooth metal surface. Inorganic particles basically create a tiny air pocket around it and provide an air cushion to the sticky web or film to roll over the smooth metal or filmic surface. In one implementation, anti-block additive can have a particle size in the range of 10 to 30 microns. In another implementation, the anti-block additive can be selected from the group consisting of ground silica, silicas, aluminosilicates, and metal
aluminosilicates. In another implementation, the anti-block additive can be ground silica, wherein the particle size of the ground silica is in a range of 10 mic to 30 mic.

[0030] The colorant may be chosen depending upon the desired color to be imparted to the laminate. The colorant can selected from the group consisting of titanium dioxide (TiO₂), zinc sulfide (ZnS), zinc oxide (ZnO), barium sulfate (BaSO₄), carbon black and calcium carbonate (CaCO₃). Colorants could be inorganic pigments, such as titanium dioxide, calcium carbonate, barium sulphate, carbon black etc. in pulvarised form. In one implementation the colorant can have a particle size in the range of 10 to 30 microns. Colourants can be introduced in the printable layer in a form of Master Batch. In one implementation, the colorant can be in the form of master batch with linear polyethylene carrier and having pigment concentration from 50% to 75%, wherein the pigment loading percentage is 3% to 8% with respect to outer polyethylene layer.

[0031] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer, wherein the core layer comprises of a blend of at least two polyethylene polymers and a colorant; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) a inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0032] The core layer that is adjacent to the printable layer can be a blend of high density polyethylene, linear low density polyethylene, and a colorant. The blend ratio of high density polyethylene, linear low density polyethylene, and the colorant can be in the range of 50:45:5 to 80:10:10 respectively. The core layer can have a thickness in the range of 20 to 50 microns. The core layer can be a blend of metallocene linear low density polyethylene (mLLDPE) with HDPE to provide low Seal Initiation Temperature (low SIT) in order to create affinity to couple with printable layer and the laminating layer. A high ratio of HDPE in the core layer can make the film very stiff and resilient to easy squeeze as well as inert to bond with adjacent coextruded polymeric layers.

[0033] In another implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable
layer, wherein the core layer comprises of a blend of at least two polyethylene polymers and a
colorant with a blend ratio in the range of 90:10 to 95:5; (c) a laminating layer adjacent to the
core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer
is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer
adjacent to the second bond layer which is in contact with the barrier layer; wherein said
polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0034] In another implementation, the soft and velvet touch barrier laminate includes: (a) a
printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable
layer, wherein the core layer comprises of a blend of at least two polyethylene polymers and a
colorant with a blend ratio of 95:5; (c) a laminating layer adjacent to the core layer; (d) a barrier
layer between first and second bond layers, wherein the first bond layer is between the
laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the
second bond layer which is in contact with the barrier layer; wherein said polypropylene
elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0035] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable
layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer,
wherein the at least two polyethylene polymers is selected from the group consisting of linear
low density polyethylene (LLDPE), low density polyethylene (LDPE), metallocene linear low
density polyethylene (mLLDPE), high density polyethylene (HDPE) and medium low density
polyethylene (MDPE); (c) a laminating layer adjacent to the core layer; (d) a barrier layer
between first and second bond layers, wherein the first bond layer is between the laminating
layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond
layer which is in contact with the barrier layer, wherein said polypropylene elastomer has Vicat
softening temperature in the range of 60°C to 90°C.

[0036] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable
layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer,
wherein the at least two polyethylene polymers is a blend of high density polyethylene (HDPE)
and metallocene linear low density polyethylene (mLLDPE) in the ratio of 3:2 to 1:1.1; (c) a
laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond
layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0037] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer, wherein the core layer comprises of a blend of at least two polyethylene polymers and a colorant, wherein the colorant is selected from the group consisting of titanium dioxide (TiO₂), zinc sulfide (ZnS), zinc oxide (ZnO), barium sulfate (BaSO₄), calcium carbonate (CaCO₃), and combinations thereof; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C. In one implementation, the colorant present in the core layer can be present in the form of master batch with linear polyethylene carrier and having pigment concentration from 50% to 75%, wherein the pigment loading percentage is 3% to 8% with respect to outer polyethylene layer.

[0038] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer, wherein the core layer has a thickness in the range of 20 to 50 microns; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0039] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer, wherein the core layer comprises of a blend of at least two polyethylene polymers and a colorant; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner
polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0040] In another implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer, wherein the core layer comprises of a blend of at least two polyethylene polymers and a colorant with a blend ratio in the range of 90:10 to 95:5; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0041] In another implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer, wherein the core layer comprises of a blend of at least two polyethylene polymers and a colorant with a blend ratio of 95:5; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0042] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer, wherein the core layer comprises of a blend of at least two polyethylene polymers and a colorant, wherein the at least two polyethylene polymers is selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), metalloocene linear low density polyethylene (mLLDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE); (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond
layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0043] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer, wherein the core layer comprises of a blend of at least two polyethylene polymers and a colorant, wherein the at least two polyethylene polymers is a blend of high density polyethylene (HDPE) and metallocene linear low density polyethylene (mLLDPE) in the ratio of 3:2 to 1:1.1; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0044] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer, wherein the core layer comprises of a blend of at least two polyethylene polymers and a colorant, wherein the colorant is selected from the group consisting of titanium dioxide (TiO₂), zinc sulfide (ZnS), zinc oxide (ZnO), barium sulfate (BaSO₄), calcium carbonate (CaCO₃), and combinations thereof; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0045] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer, wherein the core layer has a thickness in the range of 20 to 50 microns; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the
second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0046] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer, wherein the laminating layer comprises of a blend of atleast two polymers selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), metallocene linear low density polyethylene (mLLDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE); (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0047] The laminating layer of the soft and velvet touch barrier laminate can be laminated with an article. The printable layer and the laminating layer thickness can be kept symmetrical to make the coextruded film 200 lay flat with minimal curling. Lay flat film is easy to laminate in secondary process and generates negligible stress in the formed articles. The laminating layer can be a blend of linear low density polyethylene, and high density polyethylene. The blend ratio of linear low density polyethylene, and high density polyethylene can be 50:50 to 80:20. In one implementation, the laminating layer can be a blend of linear low density polyethylene, high density polyethylene, and low density polyethylene in the ratio range of 70:20:10 to 60:20:20. Addition of LDPE improves processibility in conventional co-extrusion machines.

[0048] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer, wherein the at least two polymers of laminating layer are linear low density polyethylene (LLDPE), and high density polyethylene (HDPE) with a blend ratio in the range of 50:50 to 80:20; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.
In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer, wherein the at least two polymers of laminating layer are linear low density polyethylene (LLDPE), and high density polyethylene (HDPE) with a blend ratio of 70:30; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

In another implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer, wherein the laminating layer has a thickness in the range of 20 to 50 microns; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer, wherein the laminating layer comprises of a blend of at least two polymers selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), metallocene linear low density polyethylene (mLLDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE); (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer, wherein the at least two polymers of laminating layer are linear low
density polyethylene (LLDPE), and high density polyethylene (HDPE) with a blend ratio in the range of 50:50 to 80:20; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0053] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer, wherein the at least two polymers of laminating layer are linear low density polyethylene (LLDPE), and high density polyethylene (HDPE) with a blend ratio of 70:30; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0054] In another implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer, wherein the laminating layer has a thickness in the range of 20 to 50 microns; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0055] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer, wherein the core layer has a thickness in the range of 20 to 50 microns; (c) a laminating layer adjacent to the core layer, wherein the laminating layer has a thickness in the range of 20 to 50 microns; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer.
layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0056] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the bond layer is selected from the group consisting of ethylene acrylic acid (EAA), maleic anhydride grafter; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0057] The bond layer comprises of first bond layer and second bond layer. The first bond layer acts as bond between the laminating layer of the surface film and the barrier layer whereas second bond layer acts as bond between barrier layer and inner polyethylene (PE) layer. The thickness of the bond layers can be in the range of 25 micron to 50 micron.

[0058] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the bond layer is selected from the group consisting of ethylene acrylic acid (EAA), maleic anhydride grafter; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0059] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the bond layer has a thickness in the range of 25 to 50 microns; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0060] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE); (b) a core layer
adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the bond layer is selected from the group consisting of ethylene acrylic acid (EAA), maleic anhydride grafter; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0061] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE); (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the bond layer has a thickness in the range of 25 to 50 microns; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0062] The barrier layer comprises of a barrier material, such as metal foil or multilayer high oxygen barrier film. The metal foil can be soft annealed aluminum foil having thickness from 6 micron to 30 micron. In one implementation, the soft and velvet touch barrier laminate includes a metal foil as the barrier layer, wherein the metal foil is soft annealed foil with surface tension 72 dyne/cm that adheres excellently with the surface film 200 and the inner polyethylene (PE) layer through the bond layers comprising of ethylene acrylic acid co-polymer (EAA) with about 7% acrylic acid. The metal foil can be laminated to EAA by 'extrusion lamination'.

[0063] Multilayer high oxygen barrier film or the non-metal multilayer barrier film includes at least five layers including a core barrier layer made up of EVOH, Nylon 6, or amorphous Nylon. In one implementation, the core barrier layer is EVOH. Thickness of the core barrier layer can be in the range of 5 micron to 25 micron. On either side of the core barrier layer, maleic anhydride grafted copolymer can be co-extruded along with two or multiple polyethylene skin layers make it up to 5, 7 or 9 layers. The barrier layer fabrication can be achieved by multilayer cast or multilayer blown film process. Multilayer high oxygen barrier film with less than 5 layers will not have adequate product shelf life. The multilayer high oxygen barrier film thickness can be in the range of 60 to 150 microns. In one implementation, the soft and velvet touch barrier laminate includes multilayer high oxygen barrier film as the barrier layer affixed the surface film 200 and
the inner polyethylene layer through bond layers. In one implementation, the barrier layer includes ethylene vinyl alcohol (EVOH) as the core barrier layer with thickness in the range of 10 to 25 microns. In another implementation, the barrier layer includes ethylene vinyl alcohol (EVOH) as the core barrier layer with thickness of 15 microns. The soft and velvet touch barrier laminate with EVOH as the core barrier layer can be fabricated by blown bubble process and can have 5 to 7 layers in the barrier film. In one implementation, the barrier layer can be fabricated by placing maleic anhydride (MA) grafted PE copolymer TIE on either side of the EVOH layer followed by medium density LLDPE on the side of MA grafted TIE Layer. In another implementation, the barrier layer can be fabricated by placing Nylon6 (PA6) on either side of the EVOH layer or followed by MA grafted TIE and then outer PE skin. EVOH and PA6 has affinity to bond with each other and does not require any additional bond or TIE layer.

[0064] The bond layers are the extrusion lamination bond layer and consist of 7 to 12 MFI low density polyethylene. In one implementation, the bond layer is a blend of 70% LDPE with 7 MFI (density 0.918g/cc) and 30% mLLDPE with 7 to 19 MFI (density 0.91 g/cc).

[0065] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is selected from the group consisting of metal foil barrier film and non-metal multilayer barrier film; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0066] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is a metal foil barrier film with a thickness of 6 micron to 30 micron; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.
In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is aluminum foil with a thickness of 6 micron to 30 micron; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is aluminum foil and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is selected from the group consisting of metal foil barrier film and non-metal multilayer barrier film; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is a metal foil barrier film with a thickness of 6 micron to 30 micron; and (e) an inner polyethylene
(PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0071] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is aluminum foil with a thickness of 6 micron to 30 micron; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0072] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is aluminum foil; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0073] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is a non-metal multilayer barrier film comprising of at least five layers selected from the group consisting of ethylene vinyl alcohol (EVOH), polyethylene terephthalate polymer (PET), nylon 6 and amorphous nylon; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0074] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein
the barrier layer is a non-metal multilayer barrier film of at least of five layers; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0075] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is a non-metal multilayer barrier film of five to nine layers; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0076] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is a non-metal multilayer barrier film of five to nine layers, wherein the non-metal multilayer barrier film is selected from the group consisting of ethylene vinyl alcohol (EVOH), polyethylene terephthalate polymer (PET), nylon 6 and amorphous nylon; and (e) a inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0077] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the non-metal multilayer barrier layer has a thickness of 60 micron to 150 micron; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.
[0078] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is a non-metal multilayer barrier film of five to nine layers, wherein the non-metal multilayer barrier film is selected from the group consisting of ethylene vinyl alcohol (EVOH), polyethylene terephthalate polymer (PET), nylon 6 and amorphous nylon, wherein the non-metal multilayer barrier layer has a thickness of 60 micron to 150 micron; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0079] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is a non-metal multilayer barrier film comprising of at least five layers selected from the group consisting of ethylene vinyl alcohol (EVOH), polyethylene terephthalate polymer (PET), nylon 6 and amorphous nylon; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0080] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is a non-metal multilayer barrier film of at least five layers; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0081] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block
additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is a non-metal multilayer barrier film of five to nine layers; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0082] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is a non-metal multilayer barrier film of five to nine layers, wherein the non-metal multilayer barrier film is selected from the group consisting of ethylene vinyl alcohol (EVOH), polyethylene terephthalate polymer (PET), nylon 6 and amorphous nylon; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0083] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the non-metal multilayer barrier layer has a thickness of 60 micron to 150 micron; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0084] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is
a non-metal multilayer barrier film of five to nine layers, wherein the non-metal multilayer barrier film is selected from the group consisting of ethylene vinyl alcohol (EVOH), polyethylene terephthalate polymer (PET), nylon 6 and amorphous nylon, wherein the non-metal multilayer barrier layer has a thickness of 60 micron to 150 micron; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0085] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer, wherein the barrier layer is between the co-extruded maleic anhydride grafter and the adjacent polyethylene layers; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0086] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer, wherein the inner polyethylene layer comprises of at least two layers of polymers selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE); wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0087] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer, wherein the inner polyethylene layer comprises of at least two layers of polymers
selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE), wherein the inner polyethylene layer comprises of at least three layers of polymers, wherein medium low density polyethylene (MDPE) layer is flanked by linear low density polyethylene (LLDPE) layers on both sides; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0088] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer, wherein the inner polyethylene layer has a thickness in the range of 50 to 100 micron; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0089] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer, wherein the inner polyethylene layer comprises of at least two layers of polymers selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE); wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0090] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer.
layer, wherein the inner polyethylene layer comprises of at least two layers of polymers selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE), wherein the inner polyethylene layer comprises of at least three layers of polymers, wherein medium low density polyethylene (MDPE) layer is flanked by linear low density polyethylene (LLDPE) layers on both sides; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0091] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer, wherein the inner polyethylene layer has a thickness in the range of 50 to 100 micron; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0092] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant, wherein the printable layer is surface printed; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer; wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0093] In one implementation, the soft and velvet touch barrier laminate includes: (a) a printable layer comprising of polypropylene elastomer, high density polyethylene (HDPE), an anti-block additive; and a colorant, wherein the printable layer is surface printed; (b) a core layer adjacent to the printable layer; (c) a laminating layer adjacent to the core layer; (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer, the inner polyethylene (PE) layer is the product contact layer;
wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

[0094] The linear low density polyethylene (LLDPE) layers can have density in the range of 0.92g/cc to 0.935g/cc. The medium density polyethylene (MDPE) layer has density in the range of 0.93g/cc to 0.945g/cc.

[0095] The printable layer of the soft and velvet touch barrier laminate can be surface printed.

[0096] In one implementation, the soft and velvet touch barrier laminate includes: a printable layer comprising of polypropylene elastomer with a Vicat softening temperature in the range of 60°C to 90°C; high density polyethylene (HDPE); an anti-block additive; and a colorant, and having a thickness of 20 to 50 microns; a core layer comprising a blend of high density polyethylene (HDPE), metallocene linear low density polyethylene (mLLDPE), and colorant, and having a thickness of 20 to 50 microns; a laminating layer comprising a blend of at least two polymers selected from the group of linear low density polyethylene (LLDPE), low density polyethylene (LDPE) and high density polyethylene (HDPE) having a thickness of 20 to 50 microns, a bond layer having a thickness of 25 to 50 microns; an aluminum foil layer having a thickness of 6 to 30 microns; a bond layer having a thickness of 25 to 50 microns; and an inner polyethylene layer comprising of at least two layers having a thickness of 50 to 100 microns.

[0097] In one implementation, the soft and velvet touch barrier laminate includes: a printable layer comprising of polypropylene elastomer with a Vicat softening temperature in the range of 60°C to 90°C; high density polyethylene (HDPE); an anti-block additive; and a colorant, and having a thickness of 20 to 50 microns; a core layer comprising a blend of high density polyethylene (HDPE), metallocene linear low density polyethylene (mLLDPE), and colorant, and having a thickness of 20 to 50 microns; a laminating layer comprising a blend of at least two polymers selected from the group of linear low density polyethylene (LLDPE), low density polyethylene (LDPE) and high density polyethylene (HDPE) having a thickness of 20 to 50 microns, a first bond layer having a thickness of 25 to 50 microns; at least a five layer film with a non-metal barrier layer having a thickness of 60 to 150 microns; a second bond layer having a thickness of 25 to 50 microns; and an inner polyethylene layer having a thickness of 50 to 100 microns.

[0098] In one implementation, the soft and velvet touch barrier laminate includes: a printable layer comprising of polypropylene elastomer with a Vicat softening temperature about 80°C;
high density polyethylene (HDPE); ground silica; and a colorant in a blend ratio of 20:70:2:8 to 60:25:5:10, and having a thickness of 20 to 50 microns; a core layer comprising a blend of high density polyethylene (HDPE), metallocene linear low density polyethylene (mLLDPE), and colorant in a blend ratio of 50:45:5 to 80:10:10, and having a thickness of 20 to 50 microns; a laminating layer comprising a blend of at least two polymers selected from the group of linear low density polyethylene (LLDPE), low density polyethylene (LDPE) and high density polyethylene (HDPE) having a thickness of 20 to 50 microns, a first bond layer having a thickness of 25 to 50 microns; a five to seven layer non-metal multilayer barrier film with EVOH as the core barrier layer having a thickness of 60 to 150 microns; a second bond layer having a thickness of 25 to 50 microns; and an inner polyethylene layer comprising of at least two layers of polymers selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE) having a thickness of 50 to 100 microns. In one implementation, the soft and velvet touch barrier laminate includes: a printable layer comprising of polypropylene elastomer with a Vicat softening temperature about 80°C; high density polyethylene (HDPE); ground silica with particle size of 30 microns; and black with a particle size of 30 microns in a blend ratio of 20:70:2:8 to 60:25:5:10, and having a thickness of 20 to 50 microns; a core layer comprising a blend of high density polyethylene (HDPE), metallocene linear low density polyethylene (mLLDPE), and colorant in a blend ratio of 50:45:5 to 80:10:10, and having a thickness of 20 to 50 microns; a laminating layer comprising a blend of at least two polymers selected from the group of linear low density polyethylene (LLDPE), low density polyethylene (LDPE) and high density polyethylene (HDPE) having a thickness of 20 to 50 microns, a first bond layer having a thickness of 25 to 50 microns; a five to seven layer non-metal multilayer barrier film with EVOH as the core barrier layer having a thickness of 60 to 150 microns; a second bond layer having a thickness of 25 to 50 microns; and an inner polyethylene layer comprising of at least two layers of polymers selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE) having a thickness of 50 to 100 microns. In one implementation, the soft and velvet touch barrier laminate has a thickness in the range of 250 to 500 microns.
In another implementation, the soft and velvet touch barrier laminate includes a printable layer comprising of polypropylene elastomer with a Vicat softening temperature in the range of 60°C to 90°C; high density polyethylene (HDPE); an anti-block additive; and a colorant, and having a thickness of 20 to 50 microns; a core layer comprising a blend of high density polyethylene (HDPE), metallocene linear low density polyethylene (mLLDPE), and colorant, and having a thickness of 20 to 50 microns; a laminating layer comprising a blend of at least two polymers selected from the group of linear low density polyethylene (LLDPE), low density polyethylene (LDPE) and high density polyethylene (HDPE) having a thickness of 20 to 50 microns; a bond layer having a thickness of 25 to 50 microns; an aluminium foil layer having a thickness of 6 to 30 microns; a bond layer having a thickness of 25 to 50 microns; and an inner polyethylene layer comprising of at least two layers having a thickness of 50 to 100 microns.

In one implementation, the soft and velvet touch barrier laminate can be readily formed into articles with soft and velvet touch. Articles of the present disclosure may be fabricated in a variety of configurations which take advantage of the properties of the soft and velvet touch barrier laminate.

Examples

The disclosure will now be illustrated with working examples, which is intended to illustrate the working of disclosure and not intended to take restrictively to imply any limitations on the scope of the present disclosure. Other examples are also possible which are within the scope of the present disclosure.

Example 1

Process for preparing surface film

Printable layer

The printable layer comprises of polypropylene elastomer with semi crystallinity having Vicat softening temperature [A50(50°C/h 10N] about 80°C, high density polyethylene with a density of 0.965, black master batch with a particle size of 30 microns, 60% loading with respect to polyethylene carrier and 40 MFI, and ground silica with particle size of 30 microns. The aforementioned materials are vacuum sucked from their independent storage container and weighed through gravimetric feeder and poured in to the extruder (A) hopper. The weight
percentage of Polypropylene elastomer, High density polyethylene, colorant and anti-block additive are 45:45:6:4.
The core layer

[00103] The core layer includes two basic polymers namely high density polyethylene and linear low density polymer and black Master batch as defined above. All the three inputs are vacuum sucked from their independent storage container and weighed through gravimetric feeder and poured in to the extruder (B) hopper. The weight percentage of High density polyethylene, linear low density polyethylene and colorant are 46:46:8.
The laminating layer

[00104] The laminating layer includes two polymers blend namely Linear low density polymer and Low density polyethylene. Both the inputs are vacuum sucked from their independent storage container and weighed through gravimetric feeder and poured in to the extruder (C) hopper. The weight percentage of linear low density polymer and Low density polyethylene are 80:20.

[00105] All the Extruders are having Hoppers, Groove barrel Feed section, compression, metering and mixing section followed by Screen Pack, Adapter and multichannel DIE. Extruder (A), (B) and (C) layer ratio was maintained at 1:1:1 respectively but depending upon the laminate resilience, the range could be 1:2:1 or 1:3:1.

[00106] The polymer blends gets channelized through multilayer stack circular DIE and during the passage of the molten polymer layers through the longer die-lip the polymer layers get bonded with each other thus do not require and additional bond or Tie polymer layer. Moreover, the polymers have been selected in such a manner that all the polymers and its blends irrespective of individual extruder, has an affinity to adhere or bond with each other. Hot polymer melt, at the exit of the Die-lip, gets inflated by pressurized air to give shape and size of the desired bubble dimension and the Lay-flat width of the multilayer film. Bubble at the exit of the Circular Die-lip is very hot but gets cool through Dual lip Cold Air jets from outside the bubble. At the same time the inner bubble cooler (IBC) also cool down the bubble from inside (surface). Partially cooled bubble travel upward (of about 15 meters height) and gets cooled down further by exchanging heat with the atmospheric temperature. Entire length of the bubble kept straight with the help of segmented Teflon coated guide rollers, collapsing frame and eventually passed through a 'NIP" rollers. NIP roller consists of a Silicone Rubberized roll and
Water cooled steel roll. Collapsed bubble at the exit of the NIP roll gets flattened, travel downstream towards slitter rewinder. On the way, the flattened bubble, specifically to the outer surface, gets Corona treatment to enhance the polymer surface energy to 46 dyne/cm. treated bubble then cut open at the edges, separated and coiled individually at the A and B core. Coiled film linear length and reel diameter is maintained according to the secondary process (lamination) requirement.

Process of making Barrier Layer:
The soft and velvet touch barrier laminate with non-metal multilayer barrier film as the barrier layer can be prepared following the aforementioned bubble blown process. However, in this case, there will be min. of 5 extruders- 5 layer or (preferably) 7 extruders and 7 layers bubble process.

5 layer- 5 extruders bubble process: Extruders are named as A,B,C,D & E. While extruder C is dedicated to process barrier polymers such as Nylon6, Amorphous Nylon or EVOH, Extruder B and D are dedicated to process TIE polymer such as Maleic anhydride grafted PE co-polymer. Layer A & E (both are skin layers) are always kept for processing LLDPE, LDPE and suitable blend of LLDPE and LDPE to gain desired film strength, elasticity and processing efficiency. LLDPE could be selected from a new generation metallocene LLDPE with density range 0.920 to 0.942 g/cc. LDPE could be selected from a density range of 0.92 to 0.933 g/cc. Layer thickness of the polymer layers are as follows,

<table>
<thead>
<tr>
<th>Extruders</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYMER</td>
<td>LLDPE+LDPE</td>
<td>TIE</td>
<td>EVOH</td>
<td>TIE</td>
<td>LLDPE+LDPE</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>20</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>20</td>
<td>79</td>
</tr>
</tbody>
</table>

7 layer- 7 extruders bubble process: Extruders named as A,B,C,D,E,F & G. While extruder C,D &E have been dedicated to process barrier polymers such as Nylon6, Amorphous Nylon or EVOH. For optimum performance, Extruder C & E extruded with EVOH, 32% ethylene content and Extruder D extruded with Nylon6. Extruder B and F dedicated to process TIE polymer such as Maleic anhydride grafted PE co-polymer. Layer A & F (both are skin layers) are always kept for processing LLDPE, LDPE and suitable blend of LLDPE and LDPE to gain desired film strength and processing efficiency. LLDPE could be a new generation metallocene LLDPE with
density range 0.920 to 0.942 g/cc. LDPE could be selected from a density range of 0.92 to 0.933 g/cc. Layer thickness of the polymer layers are as follows,

<table>
<thead>
<tr>
<th>Extruders</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYMER</td>
<td>LLDPE+LDPE</td>
<td>TIE</td>
<td>EVOH</td>
<td>NYLON6</td>
<td>EVOH</td>
<td>TIE</td>
<td>LLDPE+LDPE</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>20</td>
<td>12</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>12</td>
<td>20</td>
<td>79</td>
</tr>
</tbody>
</table>

[00107] The soft and velvet touch barrier laminate with metal foil barrier film as the barrier layer was prepared by using aluminum foil of thickness 12 microns and was extruded with ethylene acrylic co-polymer to bond the metal foil with surface film 200 and inner multilayer PE film. Metal foil based laminate structure will be as follows,

<table>
<thead>
<tr>
<th>Layer configuration</th>
<th>Print layer</th>
<th>Bond layer</th>
<th>Barrier</th>
<th>Bond layer</th>
<th>Sealant Layer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer combination</td>
<td>Soft feel outer layer, 200</td>
<td>LLDPE+ EAA, 402</td>
<td>Aluminum foil</td>
<td>LLDPE+ EAA , 404</td>
<td>LLDPE +LDPE, 502</td>
<td></td>
</tr>
<tr>
<td>Thickness (mic)</td>
<td>130</td>
<td>30</td>
<td>12</td>
<td>30</td>
<td>70</td>
<td>272</td>
</tr>
</tbody>
</table>

[00108] Process of making the inner polythene layer: The inner polyethylene layer is made of three layers. The middle layer is made out polymer such as Medium density polyethylene, blend of HDPE and LLDPE(50:50 ratio) whereas the outer layers are a blend of linear low density polyethylene with minority blend of low density polyethylene. Bubble blown process is used to prepare the inner polyethylene layer.

Properties of Soft feel Mat Black Color laminate with EVOH barrier core with a barrier film of five layers

<table>
<thead>
<tr>
<th>Test</th>
<th>Measurement Standard</th>
<th>Instrument used</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Sore hardness-D’ of the soft feel layer i.e. Print layer</td>
<td>ASTM D2240</td>
<td>Durometer</td>
<td>60±5</td>
</tr>
<tr>
<td>‘Ra’ value of the soft feel layer i.e. Print layer</td>
<td>ISO 1997</td>
<td>Mitutoyo SJ210</td>
<td>0.85±5μ</td>
</tr>
<tr>
<td>Test</td>
<td>Measurement Standard</td>
<td>Instrument used</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>‘Sore hardness-D’ of the soft feel layer i.e. Print layer</td>
<td>ASTM D2240</td>
<td>Durometer</td>
<td>75±5</td>
</tr>
<tr>
<td>‘Ra’ value of the soft feel layer i.e. Print layer</td>
<td>ISO 1997</td>
<td>Mitutoyo SJ210</td>
<td>0.34±5μ</td>
</tr>
<tr>
<td>Gloss value of the laminate surface (soft & Mat) layer</td>
<td>ASTM D523</td>
<td>GLOSS METER</td>
<td>At 20°: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At 60°: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At 85°: 0.3</td>
</tr>
<tr>
<td>Static COF (Soft feel/Print side to metal)</td>
<td>ASTM D 1894-78</td>
<td>LLOYDS LR5K PLUS</td>
<td>MD: 0.2±0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TD: 0.15±0.05</td>
</tr>
<tr>
<td>Kinetic COF (Soft feel/Print side to metal)</td>
<td>ASTM D 1894-78</td>
<td>LLOYDS LR5K PLUS</td>
<td>MD: 0.10±0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TD: 0.08±0.05</td>
</tr>
</tbody>
</table>

Properties of standard Black laminate (without soft feel polymer addition on the outer print layer)

[00109] A laminate was prepared following the above mentioned procedure with EVOH as the core barrier layer and the barrier film with five layers. The surface film layer was prepared without the polypropylene elastomer. The weight percentage of HDPE, LLDPE, and carbon black are in the ratio of 50:40: 10. All other layers remain the same.

<table>
<thead>
<tr>
<th>Test</th>
<th>Measurement Standard</th>
<th>Instrument used</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Sore hardness-D’ of the soft feel layer i.e. Print layer</td>
<td>ASTM D2240</td>
<td>Durometer</td>
<td>75±5</td>
</tr>
<tr>
<td>‘Ra’ value of the soft feel layer i.e. Print layer</td>
<td>ISO 1997</td>
<td>Mitutoyo SJ210</td>
<td>0.34±5μ</td>
</tr>
<tr>
<td>Gloss value of the laminate surface (soft & Mat) layer</td>
<td>ASTM D523</td>
<td>GLOSS METER</td>
<td>At 20°: 0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At 60°: 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At 85°: 0.8</td>
</tr>
<tr>
<td>Static COF (Soft feel/Print side to metal)</td>
<td>ASTM D 1894-78</td>
<td>LLOYDS LR5K PLUS</td>
<td>MD: 0.10±0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TD: 0.12±0.05</td>
</tr>
<tr>
<td>Kinetic COF (Soft feel/Print side to metal)</td>
<td>ASTM D 1894-78</td>
<td>LLOYDS LR5K PLUS</td>
<td>MD: 0.09±0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TD: 0.08±0.05</td>
</tr>
</tbody>
</table>

Example 2
Article containing the laminate

[00110] Jumbo soft-mat multilayer laminate slit in to container specific diameter and running length of 600 to 100 meters. For example, for container diameter 'D', the slit width(W) will be
\((\pi \times D) + 5! \). In case of 35mm dia container, slit width will be,

\[W \text{ (in mm)} = (\pi \times D) + 5 \text{. Or } (3.142 \times 35) + 5 \text{ or } 114.97. \]

[00111] Where, 5mm is the constant value used as standard for all across the container slit width calculation. Out of this 5mm, 1.2 mm is kept for container side seam overlap and remaining 3.8mm is maintain for side trim with 1.9mm on each side.

[00112] Container diameter specific Slit reels are then printed with customer given graphic design by using Gravure, Flexograpthic, Letterpress, Rotary screen, foil blocking or combination of multiple printing technology said above. once the printing is completed, the printed web goes through a varnish over coat and get cured by intense UV rays at the last print station. Printed and varnish cured web then winded or coiled on the rewinder shaft. Printed and varnish cured web is kept at room temperature for 8 to 24 hours before it is taken for container formation.

[00113] Container forming processes involve web tension control unit, container formation unit, sizing unit, shoulder forming unit and capping unit. Entire process is controlled by statistical process control computer or SPCC.

[00114] Printed web is mounted on the container body forming unit and adjust the web tension in accordance to web thickness and web width. Web is threaded through the container body forming mandrel, a long Stainless steel hollow cylinder fitted with Internal and external High frequency energy coil, water circulation system to keep the unit cool and rubberized carrier belt to assist uniform web forwarding through the container seaming unit. Once the initial parameter is set and QA inspection is done, computer takes charge of the complete operation and gradually speeds up to the set production speed (between 20 pes/ min. to 500pcs/min.)

[00115] High frequency side sealing or welding process are as follows,

a. 5KW High frequency (HF) generator induces the power in to 1 set of magnetic steel band, call internal and external steel band. During web threading, both the edges are placed in between the magnetic steel band and then pressed uniformly with the help of insulated metal block which is water circulated (to keep the welding area cool) and exert hydraulic pressure to get desired weld/ seam compression. In ESSEL specific process, we maintain seam compression in between 12 %to 30%. Depending upon the line speed, HF generator power and hydraulic
pressure get automatically adjusted with the help of high speed SPC computers. Side seam compression is calculated with the formula as follows,

i. Side seam compression (in %) = (Av. web thickness X2)-thickness of the seam (post welding) / (Av. web thickness X2)%.

ii. For example, if the web thickness is 400 micron, and post seam welding, seam thickness is 560 micron, seam compression (%) will be ((400*2)-(560))/(400*2)% or 30%

b. Post side seaming, container body robotically transferred to the container heading unit, where plasticized HDPE, density range between 0.946 g/cc to 0.965g/cc and MFI between 1.2 to 3.5 g/10 min.(@ 190°C / 2.16kg), in doughnut form is thrown into a mould, locked with the container body and compressed to get composite container with body and head including threads at the orifice end. Post compression, container head gets cooling while remaining compressed in the mould and eventually transfer to the auto capping unit where desired closure is either screwed or push fit to the container head.

[00116] Post production, the containers are checked by Quality for its dimensions, color shades-including graphics and text details. Innovation team check the container in terms of it’s intrinsic properties as follows,
<table>
<thead>
<tr>
<th>Property</th>
<th>MD</th>
<th>TD</th>
</tr>
</thead>
<tbody>
<tr>
<td>THICKNESS</td>
<td>Mic.</td>
<td>404.66</td>
</tr>
<tr>
<td>TEAR STRENGTH (LLOYDS)</td>
<td>Kg/80m</td>
<td>4.38</td>
</tr>
<tr>
<td>STIFFNESS</td>
<td>mg</td>
<td>816.92</td>
</tr>
<tr>
<td>TENSILE STRENGTH</td>
<td>Kg / cm²</td>
<td>5.24</td>
</tr>
<tr>
<td>ELONGATION</td>
<td>%</td>
<td>327.50</td>
</tr>
<tr>
<td>YOUNGS MODULUS</td>
<td>Mpa</td>
<td>465.37</td>
</tr>
<tr>
<td>COF Print</td>
<td>Matt Surface / Metal</td>
<td>0.227</td>
</tr>
<tr>
<td>TUBE RESILIENCE</td>
<td>gms</td>
<td>758</td>
</tr>
<tr>
<td>TUBE BOUNCE BACK</td>
<td>gms</td>
<td>205</td>
</tr>
<tr>
<td>OPACITY</td>
<td>%</td>
<td>0.00</td>
</tr>
<tr>
<td>OPTICAL PROPERTIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>L</td>
<td>27.35</td>
<td>27.80</td>
</tr>
<tr>
<td>a</td>
<td>0.05</td>
<td>-0.02</td>
</tr>
<tr>
<td>b</td>
<td>-0.17</td>
<td>-0.07</td>
</tr>
</tbody>
</table>

Although the subject matter has been described in considerable detail with reference to certain examples and implementations thereof, other implementations are possible. As such, the spirit and scope of the appended claims should not be limited to the description of the preferred examples and implementations contained therein.
I/We Claim:

1. A soft and velvet touch barrier laminate comprising:
 (a) a printable layer comprising of polypropylene elastomer;
 (b) a core layer adjacent to the printable layer;
 (c) a laminating layer adjacent to the core layer;
 (d) a barrier layer between first and second bond layers, wherein the first bond layer is between the laminating layer and the barrier layer; and
 (e) an inner polyethylene (PE) layer adjacent to the second bond layer which is in contact with the barrier layer;

 wherein said polypropylene elastomer has Vicat softening temperature in the range of 60°C to 90°C.

2. The laminate as claimed in claim 1, wherein the printable layer further comprises of
 high density polyethylene (HDPE)
 an anti-block additive; and
 a colorant.

3. The laminate as claimed in claim 2, wherein the printable layer comprises of polypropylene elastomer, high density polyethylene (HDPE), anti-block additive and the colorant in a blend ratio in the range of 26:70:2:2 to 60:25:5:10.

4. The laminate as claimed in claim 2, wherein the anti-block additive is selected from the group consisting of ground silica, silicas, aluminosilicates, and metal aluminosilicates, preferably ground silica.

5. The laminate as claimed in claim 2, wherein the colorant is selected from the group consisting of titanium dioxide (TiO₂), zinc sulfide (ZnS), zinc oxide (ZnO), barium sulfate (BaSO₄), carbon black and Calcium Carbonate (CaCO₃).

6. The laminate as claimed in claim 1, wherein the printable layer has a thickness in the range of 20 to 50 microns.
7. The laminate as claimed in claim 1, wherein the core layer comprises of a blend of at least two polyethylene polymers and a colorant.

8. The laminate as claimed in claim 1, wherein the core layer comprises of a blend of at least two polyethylene polymers and a colorant with a blend ratio in the range of 90:10 to 95:5.

9. The laminate as claimed in claim 7, wherein the at least two polyethylene polymers is a blend of high density polyethylene (HDPE) and metallocene linear low density polyethylene (mLLDPE) in the ratio of 3:2 to 1:1.1.

10. The laminate as claimed in claim 1, wherein the core layer has a thickness in the range of 20 to 50 microns.

11. The laminate as claimed in claim 1, wherein the laminating layer comprises of a blend of atleast two polymers selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), metallocene linear low density polyethylene (mLLDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE).

12. The laminate as claimed in claim 11, wherein the at least two polymers of laminating layer are linear low density polyethylene (LLDPE), and high density polyethylene (HDPE) with a blend ratio in the range of 50:50 to 80:20, preferably 70:30.

13. The laminate as claimed in claim 1, wherein the laminating layer has a thickness in the range of 20 to 50 microns.

14. The laminate as claimed in claim 1, wherein the bond layer is selected from the group consisting of ethylene acrylic acid (EAA), maleic anhydride grafter (MA grafter).

15. The laminate as claimed in claim 1, wherein the barrier layer is selected from the group consisting of metal foil barrier film or non-metal multilayer barrier film.

16. The laminate as claimed in claim 15, wherein the metal foil barrier layer has a thickness of 6 micron to 30 micron.
17. The laminate as claimed in claim 15, wherein the non-metal multilayer barrier film is selected from the group consisting of ethylene vinyl alcohol (EVOH), polyethylene terephthalate polymer (PET), nylon 6 and amorphous nylon.

18. The laminate as claimed in claim 15, wherein the non-metal multilayer barrier layer is at least of five layered film.

19. The laminate as claimed in claim 15, wherein the non-metal multilayer barrier layer has a thickness of 60 micron to 150 micron.

20. The laminate as claimed in claim 1, wherein the inner polyethylene layer comprises of atleast two layers of polymers selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE) and medium low density polyethylene (MDPE).

21. The laminate as claimed in claim 20, wherein the inner polyethylene layer comprises of at least three layers of polymers, wherein medium low density polyethylene (MDPE) layer is flanked by linear low density polyethylene (LLDPE) layers on both sides.

22. The laminate as claimed in claim 1, wherein the inner polyethylene layer has a thickness in the range of 50 to 100 micron.

23. The laminate as claimed in claim 1, wherein the bond layer has a thickness in the range of 25 to 50 micron.

24. The laminate as claimed in claim 1, wherein said laminate has a thickness in the range of 250 to 500 microns.

25. A laminate comprising:
 a printable layer comprising of polypropylene elastomer with a Vicat softening temperature in the range of 60°C to 90°C; high density polyethylene (HDPE); an anti-block additive; and a colorant, and having a thickness of 20 to 50 microns;
a core layer comprising a blend of high density polyethylene (HDPE), metallocene linear low density polyethylene (mLLDPE), and colorant, and having a thickness of 20 to 50 microns;

a laminating layer comprising a blend of at least two polymers selected from the group of linear low density polyethylene (LLDPE), low density polyethylene (LDPE) and high density polyethylene (HDPE) having a thickness of 20 to 50 microns

a bond layer having a thickness of 25 to 50 microns;

an aluminum foil layer having a thickness of 6 to 30 microns;

a bond layer having a thickness of 25 to 50 microns; and

an inner polyethylene layer comprising of at least two layers having a thickness of 50 to 100 microns.

26. A laminate as claimed in claim 1 comprising:

a printable layer comprising of polypropylene elastomer with a Vicat softening temperature in the range of 60°C to 90°C; high density polyethylene (HDPE);
an anti-block additive; and a colorant, and having a thickness of 20 to 50 microns;

a core layer comprising a blend of high density polyethylene (HDPE), metallocene linear low density polyethylene (mLLDPE), and colorant, and having a thickness of 20 to 50 microns;

a laminating layer comprising a blend of at least two polymers selected from the group of linear low density polyethylene (LLDPE), low density polyethylene (LDPE) and high density polyethylene (HDPE) having a thickness of 20 to 50 microns

a bond layer having a thickness of 25 to 50 microns;
at least a five layer film with a non-metal barrier layer having a thickness of 60 to 150 microns;

a bond layer having a thickness of 25 to 50 microns; and
an inner polyethylene layer having a thickness of 50 to 100 microns.

27. A article made of the laminate as claimed in any of the claims 1 to 21
28. A process of manufacturing the laminate tube container from the said laminate as claimed in claim 1.
29. The process as claimed in claim 23, wherein the process is a multilayer cast or multilayer blown film process.
Figure 1
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION NO.
PCT/IN2016/050160

A. CLASSIFICATION OF SUBJECT MATTER

INV. B32B7/12 B32B15/085 B32B27/08 B32B27/20 B32B27/30
B32B27/32 B32B27/34 B32B27/36 B32B27/30

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B32B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

X Further documents are listed in the continuation of Box C.
X See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"Z" document member of the same patent family

Date of the actual completion of the international search
5 September 2016

Date of mailing of the international search report
14/09/2016

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Yi l di rim, Zeynep

Form PCT/ISA/210 (second sheet) (April 2006)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 6872438 B1</td>
<td>29-03-2005</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103764395 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2729304 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013011669 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013009403 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008118554 A1</td>
</tr>
<tr>
<td>WO 2016079368 A1</td>
<td>26-05-2016</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2014134430 A1</td>
<td>15-05-2014</td>
<td>NONE</td>
</tr>
</tbody>
</table>