(51) International Patent Classification: G01N 33/68, 33/74, A61K 39/00, 48/00, A61P 3/04

(21) International Application Number: PCT/US02/00619

(22) International Filing Date: 11 January 2002 (11.01.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
- 60/263,527 24 January 2001 (24.01.2001) US

(71) Applicant: BAYER CORPORATION [US/US]; 100 Bayer Road, Pittsburgh, PA 15205 (US).

(72) Inventor: WU, Linda, H.; 9 Homewood Road, Woodbridge, CT 06525 (US).

(54) Title: REGULATION OF TRANSTHYRETIN TO TREAT OBESITY

(57) Abstract: Reagents that regulate transthyretin and reagents which bind to transthyretin gene products can play a role in preventing, ameliorating, or correcting obesity and related dysfunctions.
REGULATION OF TRANSTHYRETIN TO TREAT OBESITY

This application claims the benefit of and incorporates by reference co-pending provisional application Serial No. 60/263,527 filed January 24, 2001.

TECHNICAL FIELD OF THE INVENTION
The invention relates to the regulation of transthyretin to treat obesity.

BACKGROUND OF THE INVENTION
Obesity and overweight are defined as an excess of body fat relative to lean body mass. An increase in caloric intake or a decrease in energy expenditure or both can bring about this imbalance leading to surplus energy being stored as fat. Obesity is associated with important medical morbidities and an increase in mortality. The causes of obesity are poorly understood and may be due to genetic factors, environmental factors or a combination of the two to cause a positive energy balance. In contrast, anorexia and cachexia are characterized by an imbalance in energy intake versus energy expenditure leading to a negative energy balance and weight loss.

Agents that either increase energy expenditure and/or decrease energy intake, absorption or storage would be useful for treating obesity, overweight, and associated comorbidities. Agents that either increase energy intake and/or decrease energy expenditure or increase the amount of lean tissue would be useful for treating cachexia, anorexia and wasting disorders. There is a need in the art to identify molecules which can be regulated to treat obesity.

SUMMARY OF THE INVENTION
It is an object of the invention to provide reagents and methods for treating obesity. This and other objects of the invention are provided by one or more of the embodiments described below.

One embodiment of the invention is a method of identifying potential anti-obesity agents. A transthyretin is contacted with a test compound. The test compound is identified as a potential anti-obesity agent if it binds to the transthyretin.

Another embodiment of the invention is a method of identifying potential anti-obesity agents. A polynucleotide encoding a transthyretin is contacted with a test compound under
conditions which permit expression of the transthyretin. The test compound is identified as a potential anti-obesity agent if it reduces transcription of the transthyretin relative to expression of the transthyretin in the absence of the test compound.

Yet another embodiment of the invention is a method of identifying potential anti-obesity agents. A transthyretin and a thyroxine are contacted with a test compound under conditions which permit binding of the transthyretin and the thyroxine. The test compound is identified as a potential anti-obesity agent if it reduces binding of the transthyretin and the thyroxine relative to binding of the transthyretin and the thyroxine in the absence of the test compound.

Another embodiment of the invention is a pharmaceutical composition for treating obesity comprising a reagent that specifically binds to transthyretin and a pharmaceutically acceptable carrier.

Yet another embodiment of the invention is a pharmaceutical composition for treating obesity comprising an antibody that specifically binds to transthyretin and a pharmaceutically acceptable carrier.

A further embodiment of the invention is a pharmaceutical composition for treating obesity comprising an antisense oligonucleotide that hybridizes to a polynucleotide encoding transthyretin and reduces expression of the polynucleotide and a pharmaceutically acceptable carrier.

Even another embodiment of the invention is a method of treating obesity. An effective amount of a reagent that decreases binding of transthyretin to thyroxine is administered to a patient in need thereof. Symptoms of the patient’s obesity are thereby decreased.

Still another embodiment of the invention is a method of treating obesity. An effective amount of an antibody that specifically binds to transthyretin and decreases binding of transthyretin to thyroxine is administered to a patient in need thereof. Symptoms of the patient’s obesity are thereby decreased.

Yet another embodiment of the invention is a method of treating obesity. An effective amount of an oligonucleotide that hybridizes to a polynucleotide encoding transthyretin and reduces expression of the polynucleotide is administered to a patient in need thereof. Symptoms of the patient’s obesity are thereby decreased.

Even another embodiment of the invention is a method of identifying potential anti-obesity agents. A cell is contacted with a test compound. The cell comprises a first expression vector, a second expression vector, and a reporter gene. The first expression vector encodes a
first fusion protein comprising a DNA binding domain and either a transthyretin molecule or a thyroxine molecule. The second expression vector encodes a second fusion protein comprising a transcriptional activating domain and either a transthyretin molecule or a thyroxine molecule. If the first fusion protein comprises the thyroxine molecule, the second fusion protein comprises the transthyretin molecule. If the first fusion protein comprises the transthyretin molecule, the second fusion protein comprises the thyroxine molecule. Interaction of the thyroxine and transthyretin molecules reconstitutes a sequence-specific transcriptional activating factor. The reporter gene comprises a DNA sequence to which the DNA binding domain of the first fusion protein specifically binds. Expression of the reporter gene is detected. The test compound is identified as a potential anti-obesity agent if expression of the reporter gene is decreased relative to expression of the reporter gene in the absence of the test compound.

The invention thus provides methods and reagents for treating obesity, as well as methods of identifying potential therapeutic agents for treating obesity.

BRIEF DESCRIPTION OF THE DRAWING

Fig. 1. Transthyretin is down-regulated in lean rat hypothalamus. Fig. 1A, transthyretin expression analyzed using Affymetrix GeneChip A. Fig. 1B, transthyretin expression measured using TaqMan Quantitative PCR.

DETAILED DESCRIPTION OF THE INVENTION

It is a discovery of the present invention that transthyretin, a thyroid hormone-binding protein, can be regulated to treat obesity. Transthyretin is expressed in the hypothalamus and is significantly down-regulated in the hypothalamus of high fat diet-resistant lean rats compared with high fat diet-induced obese or chow-fed rats. Because the hypothalamus is the feeding-control center, it is likely that transthyretin plays a role in controlling body weight and, therefore, can be regulated to treat obesity.

Transthyretin (TTR), also referred to as prealbumin, is a homotetrameric, protein each subunit of which contains 127 amino acids. U.S. Patent 5,744,368. Its secondary, tertiary and quartenary structure has been described (Blake et al., J. Mol. Biol. 121, 339, 1978). The human transthyretin gene has been cloned. Sipe et al., U.S. Patent 4,816,388.
Polypeptides

Transthyretin polypeptides according to the invention comprise at least 6, 8, 10, 12, 15, 20, 25, 50, 75, 100, 125, or 147 contiguous amino acids selected from the amino acid sequences shown in SEQ ID NOS:2, 4, 6, or 8 or biologically active variants thereof, as defined below. A transthyretin polypeptide of the invention therefore can be a portion of a transthyretin protein, a full-length transthyretin protein, or a fusion protein comprising all or a portion of a transthyretin protein.

Biologically Active Variants

Transthyretin polypeptide variants that are biologically active, e.g., retain the ability to bind thyroxine, also are transthyretin polypeptides. Preferably, naturally or non-naturally occurring transthyretin polypeptide variants have amino acid sequences which are at least about 50% identical to an amino acid sequence shown in SEQ ID NOS:2, 4, 6, or 8 or to a fragment thereof. Percent identity between a putative transthyretin polypeptide variant and an amino acid sequence of SEQ ID NOS:2, 4, 6, or 8 is determined using the Blast2 alignment program (Blosum62, Expect 10, standard genetic codes).

Variations in percent identity can be due, for example, to amino acid substitutions, insertions, or deletions. Amino acid substitutions are defined as one for one amino acid replacements. They are conservative in nature when the substituted amino acid has similar structural and/or chemical properties. Examples of conservative replacements are substitution of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine.

Amino acid insertions or deletions are changes to or within an amino acid sequence. They typically fall in the range of about 1 to 5 amino acids. Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immunological activity of a transthyretin polypeptide can be found using computer programs well known in the art, such as DNASTAR software. Whether an amino acid change results in a biologically active transthyretin polypeptide can readily be determined by assaying for thyroxine binding, as described for example, in Moses et al., N. Engl. J. Med. 306, 966, 1982.

Fusion Proteins

Fusion proteins are useful for generating antibodies against transthyretin polypeptide amino acid sequences and for use in various assay systems. For example, fusion proteins can be used to identify proteins that interact with portions of a transthyretin polypeptide. Protein affinity chromatography or library-based assays for protein-protein interactions, such as the
yeast two-hybrid or phage display systems, can be used for this purpose. Such methods are well known in the art and also can be used as drug screens.

A transthyretin polypeptide fusion protein comprises two polypeptide segments fused together by means of a peptide bond. The first polypeptide segment comprises at least 6, 8, 10, 12, 15, 20, 25, 50, 75, 100, 125, or 147 contiguous amino acids of SEQ ID NOS:2, 4, 6, or 8 or of a biologically active variant, such as those described above. The first polypeptide segment also can comprise full-length transthyretin protein.

The second polypeptide segment can be a full-length protein or a protein fragment. Proteins commonly used in fusion protein construction include β-galactosidase, β-glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horseradish peroxidase (HRP), and chloramphenicol acetyltransferase (CAT). Additionally, epitope tags are used in fusion protein constructions, including histidine (His) tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags. Other fusion constructions can include maltose binding protein (MBP), S-tag, Lex a DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP16 protein fusions. A fusion protein also can be engineered to contain a cleavage site located between the transthyretin polypeptide-encoding sequence and the heterologous protein sequence, so that the transthyretin polypeptide can be cleaved and purified away from the heterologous moiety.

A fusion protein can be synthesized chemically, as is known in the art. Preferably, a fusion protein is produced by covalently linking two polypeptide segments or by standard procedures in the art of molecular biology. Recombinant DNA methods can be used to prepare fusion proteins, for example, by making a DNA construct which comprises coding sequences selected from SEQ ID NOS:1, 3, 5, and 7 in proper reading frame with nucleotides encoding the second polypeptide segment and expressing the DNA construct in a host cell, as is known in the art. Many kits for constructing fusion proteins are available from companies such as Promega Corporation (Madison, WI), Stratagene (La Jolla, CA), CLONTECH (Mountain View, CA), Santa Cruz Biotechnology (Santa Cruz, CA), MBL International Corporation (MIC; Watertown, MA), and Quantum Biotechnologies (Montreal, Canada; 1-888-DNA-KITS).
Identification of Species Homologs

Species homologs of the transthyretin polypeptides disclosed herein can be obtained using transthyretin polypeptide polynucleotides (described below) to make suitable probes or primers for screening cDNA expression libraries from other species, such as mice, monkeys, or yeast, identifying cDNAs which encode homologs of transthyretin polypeptide, and expressing the cDNAs as is known in the art.

Polynucleotides

A transthyretin polynucleotide can be single- or double-stranded and comprises a coding sequence or the complement of a coding sequence for a transthyretin polypeptide. Coding sequences for human transthyretin (SEQ ID NOS:2 and 4) are shown in SEQ ID NOS:1 and 3, respectively. A coding sequence for mouse transthyretin (SEQ ID NO:6) is shown in SEQ ID NO:5. A coding sequence for rat transthyretin (SEQ ID NO:8) is shown in SEQ ID NO:7.

Degenerate nucleotide sequences encoding transthyretin polypeptides, as well as homologous nucleotide sequences which are at least about 50, 55, 60, 65, 70, preferably about 75, 90, 96, 98, or 99% identical to the nucleotide sequences shown in SEQ ID NOS:1, 3, 5, or 7 or their complements also are transthyretin polynucleotides. Percent sequence identity between the sequences of two polynucleotides is determined using computer programs such as ALIGN which employ the FASTA algorithm, using an affine gap search with a gap open penalty of -12 and a gap extension penalty of -2. Complementary DNA (cDNA) molecules, species homologs, and variants of transthyretin polynucleotides that encode biologically active transthyretin polypeptides also are transthyretin polynucleotides. Polynucleotide fragments comprising at least 8, 9, 10, 11, 12, 15, 20, or 25 contiguous nucleotides of SEQ ID NOS:1, 3, 5, or 7 or their complements also are transthyretin polynucleotides. These fragments can be used, for example, as hybridization probes or as antisense oligonucleotides.

Identification of Polynucleotide Variants and Homologs

Variants and homologs of the transthyretin polynucleotides described above also are transthyretin polynucleotides. Typically, homologous transthyretin polynucleotide sequences can be identified by hybridization of candidate polynucleotides to known transthyretin polynucleotides under stringent conditions, as is known in the art. For example, using the following wash conditions—2X SSC (0.3 M NaCl, 0.03 M sodium citrate, pH 7.0), 0.1% SDS,
room temperature twice, 30 minutes each; then 2X SSC, 0.1% SDS, 50 °C once, 30 minutes; then 2X SSC, room temperature twice, 10 minutes each—homologous sequences can be identified which contain at most about 25-30% basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.

Species homologs of the transthyretin polynucleotides disclosed herein also can be identified by making suitable probes or primers and screening cDNA expression libraries from other species, such as mice, monkeys, or yeast. Human variants of transthyretin polynucleotides can be identified, for example, by screening human cDNA expression libraries.

It is well known that the T_m of a double-stranded DNA decreases by 1-1.5 °C with every 1% decrease in homology (Bonner et al., J. Mol. Biol. 81, 123 (1973). Variants of human transthyretin polynucleotides or transthyretin polynucleotides of other species can therefore be identified by hybridizing a putative homologous transthyretin polynucleotide with a polynucleotide having a nucleotide sequence of SEQ ID NOS:1, 3, 5, or 7 or the complement thereof to form a test hybrid. The melting temperature of the test hybrid is compared with the melting temperature of a hybrid comprising polynucleotides having perfectly complementary nucleotide sequences, and the number or percent of basepair mismatches within the test hybrid is calculated.

Nucleotide sequences which hybridize to transthyretin polynucleotides or their complements following stringent hybridization and/or wash conditions also are transthyretin polynucleotides. Stringent wash conditions are well known and understood in the art and are disclosed, for example, in Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2d ed., 1989, at pages 9.50-9.51.

Typically, for stringent hybridization conditions a combination of temperature and salt concentration should be chosen that is approximately 12-20 °C below the calculated T_m of the hybrid under study. The T_m of a hybrid between a transthyretin polynucleotide having a nucleotide sequence shown in SEQ ID NOS:1, 3, 5, or 7 or the complement thereof and a polynucleotide sequence which is at least about 50, preferably about 75, 90, 96, or 98% identical to one of those nucleotide sequences can be calculated, for example, using the equation of Bolton and McCarthy, Proc. Natl. Acad. Sci. U.S.A. 48, 1390 (1962):

\[T_m = 81.5 \ °C - 16.6(\log_{10}[Na^+]) + 0.41(\%G + C) - 0.63(\%formamide) - 600/l, \]

where l = the length of the hybrid in basepairs.
Stringent wash conditions include, for example, 4X SSC at 65 °C, or 50% formamide, 4X SSC at 42 °C, or 0.5X SSC, 0.1% SDS at 65 °C. Highly stringent wash conditions include, for example, 0.2X SSC at 65 °C.

Preparation of Polynucleotides

A transthyretin polynucleotide can be isolated free of other cellular components such as membrane components, proteins, and lipids. Polynucleotides can be made by a cell and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated transthyretin polynucleotides. For example, restriction enzymes and probes can be used to isolate polynucleotide fragments, which comprise transthyretin nucleotide sequences. Isolated polynucleotides are in preparations that are free or at least 70, 80, or 90% free of other molecules.

Transthyretin cDNA molecules can be made with standard molecular biology techniques, using transthyretin mRNA as a template. cDNA molecules can thereafter be replicated using molecular biology techniques known in the art and disclosed in manuals such as Sambrook et al. (1989). An amplification technique, such as PCR, can be used to obtain additional copies of polynucleotides of the invention, using either human genomic DNA or cDNA as a template.

Alternatively, synthetic chemistry techniques can be used to synthesize transthyretin polynucleotides. The degeneracy of the genetic code allows alternate nucleotide sequences to be synthesized which will encode a transthyretin polypeptide having, for example, an amino acid sequence shown in SEQ ID NOS:2, 4, 6, or 8 or a biologically active variant thereof.

Extending Polynucleotides

Various PCR-based methods can be used to extend the nucleic acid sequences disclosed herein to detect upstream sequences such as promoters and regulatory elements. For example, restriction-site PCR uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, PCR Methods Appl. 2, 318-322, 1993). Genomic DNA is first amplified in the presence of a primer to a linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer
and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.

Inverse PCR also can be used to amplify or extend sequences using divergent primers based on a known region (Triglia et al., *Nucleic Acids Res.* 16, 8186, 1988). Primers can be designed using commercially available software, such as OLIPO 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, Minn.), to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68-72 °C. The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.

Another method which can be used is capture PCR, which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom et al., *PCR Methods Applic.* 1, 111-119, 1991). In this method, multiple restriction enzyme digestions and ligations also can be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR.

Another method which can be used to retrieve unknown sequences is that of Parker et al., *Nucleic Acids Res.* 19, 3055-3060, 1991). Additionally, PCR, nested primers, and PROMOTERFINDER libraries (CLONTECH, Palo Alto, Calif.) can be used to walk genomic DNA (CLONTECH, Palo Alto, Calif.). This process avoids the need to screen libraries and is useful in finding intron/exon junctions.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. Randomly-primed libraries are preferable, in that they will contain more sequences which contain the 5' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries can be useful for extension of sequence into 5' non-transcribed regulatory regions.

Commercially available capillary electrophoresis systems can be used to analyze the size or confirm the nucleotide sequence of PCR or sequencing products. For example, capillary sequencing can employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) that are laser activated, and detection of the emitted wavelengths by a charge coupled device camera. Output/light intensity can be converted to electrical signal using appropriate software (e.g. GENOTYPER and Sequence NAVIGATOR,
Perkin Elmer), and the entire process from loading of samples to computer analysis and electronic data display can be computer controlled. Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA that might be present in limited amounts in a particular sample.

5

Obtaining Polypeptides

Transthyretin polypeptides can be obtained, for example, by purification from mammalian cells, by expression of transthyretin polynucleotides, or by direct chemical synthesis.

10

Protein Purification

Transthyretin polypeptides can be purified from any cell that expresses the polypeptide, including host cells that have been transfected with transthyretin expression constructs. A purified transthyretin polypeptide is separated from other compounds that normally associate with the transthyretin polypeptide in the cell, such as certain proteins, carbohydrates, or lipids, using methods well-known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis. A preparation of purified transthyretin polypeptides is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS-polyacrylamide gel electrophoresis.

Expression of Polynucleotides

To express a transthyretin polynucleotide, the polynucleotide can be inserted into an expression vector that contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods that are well known to those skilled in the art can be used to construct expression vectors containing sequences encoding transthyretin polypeptides and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook et al. (1989) and in Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1989.

A variety of expression vector/host systems can be utilized to contain and express sequences encoding a transthyretin polypeptide. These include, but are not limited to, microorganisms, such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors, insect cell
systems infected with virus expression vectors (e.g., baculovirus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids), or animal cell systems.

The control elements or regulatory sequences are those non-translated regions of the vector -- enhancers, promoters, 5' and 3' untranslated regions -- which interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, can be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORT1 plasmid (Life Technologies) and the like can be used. The baculovirus polyhedrin promoter can be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO, and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) can be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a nucleotide sequence encoding a transthyretin polypeptide, vectors based on SV40 or EBV can be used with an appropriate selectable marker.

Bacterial and Yeast Expression Systems

In bacterial systems, a number of expression vectors can be selected depending upon the use intended for the transthyretin polypeptide. For example, when a large quantity of a transthyretin polypeptide is needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified can be used. Such vectors include, but are not limited to, multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene). In a BLUESCRIPT vector, a sequence encoding the transthyretin polypeptide can be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of β-galactosidase so that a hybrid protein is produced. pIN vectors (Van Heeke & Schuster, *J. Biol. Chem.* 264, 5503-5509, 1989) or pGEX vectors (Promega, Madison, Wis.) also can be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems can be designed to
include heparin, thrombin, or factor Xa protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.

In the yeast Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH can be used. For reviews, see Ausbel et al. (1989) and Grant et al., Methods Enzymol. 153, 516-544, 1987.

Plant and Insect Expression Systems

If plant expression vectors are used, the expression of sequences encoding transthyretin polypeptides can be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV can be used alone or in combination with the omega leader sequence from TMV (Takamatsu, *EMBO J.* 6, 307-311, 1987). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters can be used (Coruzzi et al., *EMBO J.* 3, 1671-1680, 1984; Broglie et al., *Science* 224, 838-843, 1984; Winter et al., Results Probl. Cell Differ. 17, 85-105, 1991). These constructs can be introduced into plant cells by direct DNA transformation or by pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (e.g., Hobbs or Murray, in McGraw Hill Yearbook of Science and Technology, McGraw Hill, New York, N.Y., pp. 191-196, 1992).

An insect system also can be used to express a transthyretin polypeptide. For example, in one such system Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. Sequences encoding transthyretin polypeptides can be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of transthyretin polypeptides will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses can then be used to infect *S. frugiperda cells* or *Trichoplusia* larvae in which transthyretin polypeptides can be expressed (Engelhard et al., Proc. Nat. Acad. Sci. 91, 3224-3227, 1994).

Mammalian Expression Systems

A number of viral-based expression systems can be used to express transthyretin polypeptides in mammalian host cells. For example, if an adenovirus is used as an expression vector, sequences encoding transthyretin polypeptides can be ligated into an adenovirus transcription/translation complex comprising the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome can be used to obtain a viable virus that is capable of expressing a transthyretin polypeptide in infected host cells (Logan &
Shenk, *Proc. Natl. Acad. Sci. USA*, 81, 3655-3659, 1984). If desired, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, can be used to increase expression in mammalian host cells.

Human artificial chromosomes (HACs) also can be used to deliver larger fragments of DNA than can be contained and expressed in a plasmid. HACs of 6M to 10M are constructed and delivered to cells via conventional delivery methods (*e.g.*, liposomes, polycationic amino polymers, or vesicles).

Specific initiation signals also can be used to achieve more efficient translation of sequences encoding transthyretin polypeptides. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding a transthyretin polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals (including the ATG initiation codon) should be provided. The initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used (see Scharf *et al.*, *Results Probl. Cell Differ.*, 20, 125-162, 1994).

Host Cells

A host cell strain can be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed transthyretin polypeptide in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the polypeptide also can be used to facilitate correct insertion, folding and/or function. Different host cells that have specific cellular machinery and characteristic mechanisms for post-translational activities (*e.g.*, CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC; 10801 University Boulevard, Manassas, VA 20110-2209) and can be chosen to ensure the correct modification and processing of the foreign protein.

Stable expression is preferred for long-term, high-yield production of recombinant proteins. For example, cell lines which stably express transthyretin polypeptides can be transformed using expression vectors which can contain viral origins of replication and/or
endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells can be allowed to grow for 1-2 days in an enriched medium before they are switched to a selective medium. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced transthyretin sequences. Resistant clones of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type. See, for example, Animal Cell Culture, R.I. Freshney, ed., 1986.

Any number of selection systems can be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler et al., Cell 11, 223-32, 1977) and adenine phosphoribosyltransferase (Lowy et al., Cell 22, 817-23, 1980) genes that can be employed in tk or aprt cells, respectively. Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate (Wigler et al., Proc. Natl. Acad. Sci. 77, 3567-70, 1980), npt confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin et al., J. Mol. Biol. 150, 1-14, 1981), and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murray, 1992, supra). Additional selectable genes have been described. For example, trpB allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Natl. Acad. Sci. 85, 8047-51, 1988). Visible markers such as anthocyanins, β-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, can be used to identify transformants and to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes et al., Methods Mol. Biol. 55, 121-131, 1995).

Detecting Expression

Although the presence of marker gene expression suggests that the transthyretin polynucleotide is also present, its presence and expression may need to be confirmed. For example, if a sequence encoding a transthyretin polypeptide is inserted within a marker gene sequence, transformed cells containing sequences that encode a transthyretin polypeptide can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding a transthyretin polypeptide under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the transthyretin polynucleotide.
Alternatively, host cells which contain a transthyretin polynucleotide and which express a transthyretin polypeptide can be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques that include membrane, solution, or chip-based technologies for the detection and/or quantification of nucleic acid or protein. For example, the presence of a polynucleotide sequence encoding a transthyretin polypeptide can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments of polynucleotides encoding a transthyretin polypeptide. Nucleic acid amplification-based assays involve the use of oligonucleotides selected from sequences encoding a transthyretin polypeptide to detect transformants that contain a transthyretin polynucleotide.

A variety of protocols for detecting and measuring the expression of a transthyretin polypeptide, using either polyclonal or monoclonal antibodies specific for the polypeptide, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay using monoclonal antibodies reactive to two non-interfering epitopes on a transthyretin polypeptide can be used, or a competitive binding assay can be employed. These and other assays are described in Hampton et al., SEROLOGICAL METHODS: A LABORATORY MANUAL, APS Press, St. Paul, Minn., 1990) and Maddox et al., J. Exp. Med. 158, 1211-1216, 1983).

A wide variety of labels and conjugation techniques are known by those skilled in the art and can be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding transthyretin polypeptides include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, sequences encoding a transthyretin polypeptide can be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and can be used to synthesize RNA probes in vitro by addition of labeled nucleotides and an appropriate RNA polymerase such as T7, T3, or SP6. These procedures can be conducted using a variety of commercially available kits (Amersham Pharmacia Biotech, Promega, and US Biochemical). Suitable reporter molecules or labels which can be used for ease of detection include radionuclides, enzymes, and fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
Expression and Purification of Polypeptides

Host cells transformed with nucleotide sequences encoding a transthyretin polypeptide can be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The polypeptide produced by a transformed cell can be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode transthyretin polypeptides can be designed to contain signal sequences which direct secretion of soluble transthyretin polypeptides through a prokaryotic or eukaryotic cell membrane or which direct the membrane insertion of membrane-bound transthyretin polypeptide.

As discussed above, other constructions can be used to join a sequence encoding a transthyretin polypeptide to a nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.). Inclusion of cleavable linker sequences such as those specific for Factor Xa or enterokinase (Invitrogen, San Diego, CA) between the purification domain and the transthyretin polypeptide also can be used to facilitate purification. One such expression vector provides for expression of a fusion protein containing a transthyretin polypeptide and 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification by IMAC (immobilized metal ion affinity chromatography, as described in Porath et al., *Prot. Exp. Purif.* 3, 263-281, 1992), while the enterokinase cleavage site provides a means for purifying the transthyretin polypeptide from the fusion protein. Vectors that contain fusion proteins are disclosed in Kroll et al., *DNA Cell Biol.* 12, 441-453, 1993.

Chemical Synthesis

can be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Optionally, fragments of transthyretin polypeptides can be separately synthesized and combined using chemical methods to produce a full-length molecule.

The newly synthesized peptide can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, PROTEINS: STRUCTURES AND MOLECULAR PRINCIPLES, WH Freeman and Co., New York, N.Y., 1983). The composition of a synthetic transthyretin polypeptide can be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; see Creighton, supra). Additionally, any portion of the amino acid sequence of the transthyretin polypeptide can be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins to produce a variant polypeptide or a fusion protein.

Production of Altered Polypeptides

As will be understood by those of skill in the art, it may be advantageous to produce transthyretin polypeptide-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce an RNA transcript having desirable properties, such as a half-life that is longer than that of a transcript generated from the naturally occurring sequence.

The nucleotide sequences disclosed herein can be engineered using methods generally known in the art to alter transthyretin polypeptide-encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the polypeptide or mRNA product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides can be used to engineer the nucleotide sequences. For example, site-directed mutagenesis can be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth.

Antibodies

Any type of antibody known in the art can be generated to bind specifically to an epitope of a transthyretin polypeptide. "Antibody" as used herein includes intact immunoglobulin molecules, as well as fragments thereof, such as Fab, F(ab')2, and Fv, which are capable of binding an epitope of a transthyretin polypeptide. Typically, at least 6, 8, 10, or
12 contiguous amino acids are required to form an epitope. However, epitopes which involve non-contiguous amino acids may require more, e.g., at least 15, 25, or 50 amino acids.

An antibody which specifically binds to an epitope of a transthyretin polypeptide can be used therapeutically, as well as in immunochemical assays, such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art. Various immunoassays can be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays are well known in the art. Such immunoassays typically involve the measurement of complex formation between an immunogen and an antibody that specifically binds to the immunogen.

Typically, an antibody which specifically binds to a transthyretin polypeptide provides a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay. Preferably, antibodies which specifically bind to transthyretin polypeptides do not detect other proteins in immunochemical assays and can immunoprecipitate a transthyretin polypeptide from solution. Most preferably, the antibodies are neutralizing antibodies, which block the binding of thyroxine to transthyretin.

Human transthyretin polypeptides can be used to immunize a mammal, such as a mouse, rat, rabbit, guinea pig, monkey, or human, to produce polyclonal antibodies. If desired, a transthyretin polypeptide can be conjugated to a carrier protein, such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin. Depending on the host species, various adjuvants can be used to increase the immunological response. Such adjuvants include, but are not limited to, Freund's adjuvant, mineral gels (e.g., aluminum hydroxide), and surface active substances (e.g. lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol). Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially useful.

Monoclonal antibodies that specifically bind to a transthyretin polypeptide can be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These techniques include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler et al., Nature 256, 495-497, 1985; Kozbor et al., J. Immunol. Methods 81, 31-42, 1985; Cote et al., Proc. Natl. Acad. Sci. 80, 2026-2030, 1983; Cole et al., Mol. Cell Biol. 62, 109-120, 1984).
In addition, techniques developed for the production of "chimeric antibodies," the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison et al., *Proc. Natl. Acad. Sci. 81*, 6851-6855, 1984; Neuberger et al., *Nature 312*, 604-608, 1984; Takeda et al., *Nature 314*, 452-454, 1985). Monoclonal and other antibodies also can be "humanized" to prevent a patient from mounting an immune response against the antibody when it is used therapeutically. Such antibodies may be sufficiently similar in sequence to human antibodies to be used directly in therapy or may require alteration of a few key residues. Sequence differences between rodent antibodies and human sequences can be minimized by replacing residues which differ from those in the human sequences by site directed mutagenesis of individual residues or by grating of entire complementarity determining regions. Alternatively, humanized antibodies can be produced using recombinant methods, as described in GB2188638B. Antibodies that specifically bind to a transthyretin polypeptide can contain antigen binding sites which are either partially or fully humanized, as disclosed in U.S. 5,565,332.

Alternatively, techniques described for the production of single chain antibodies can be adapted using methods known in the art to produce single chain antibodies that specifically bind to transthyretin polypeptides. Antibodies with related specificity, but of distinct idiotypic composition, can be generated by chain shuffling from random combinatorial immunoglobin libraries (Burton, *Proc. Natl. Acad. Sci. 88*, 11120-23, 1991).

A nucleotide sequence encoding a single-chain antibody can be constructed using manual or automated nucleotide synthesis, cloned into an expression construct using standard recombinant DNA methods, and introduced into a cell to express the coding sequence, as described below. Alternatively, single-chain antibodies can be produced directly using, for example, filamentous phage technology (Verhaar et al., 1995, *Int. J. Cancer 61*, 497-501; Nicholls et al., 1993, *J. Immunol. Meth. 165*, 81-91).
Antibodies which specifically bind to transthyretin polypeptides also can be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi et al., Proc. Natl. Acad. Sci. 86, 3833-3837, 1989; Winter et al., Nature 349, 293-299, 1991).

Other types of antibodies can be constructed and used therapeutically in methods of the invention. For example, chimeric antibodies can be constructed as disclosed in WO 93/03151. Binding proteins which are derived from immunoglobulins and which are multivalent and multispecific, such as the "diabodies" described in WO 94/13804, also can be prepared.

Antibodies according to the invention can be purified by methods well known in the art. For example, antibodies can be affinity purified by passage over a column to which a transthyretin polypeptide is bound. The bound antibodies can then be eluted from the column using a buffer with a high salt concentration.

Antisense Oligonucleotides

Antisense oligonucleotides are nucleotide sequences that are complementary to a specific DNA or RNA sequence. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form complexes and block either transcription or translation. Preferably, an antisense oligonucleotide is at least 11 nucleotides in length, but can be at least 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. Antisense oligonucleotide molecules can be provided in a DNA construct and introduced into a cell as described above to decrease the level of transthyretin gene products in the cell.

Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides can be synthesized manually or by an automated synthesizer, by covalently linking the 5' end of one nucleotide with the 3' end of another nucleotide with non-phosphodiester internucleotide linkages such alkylphosphonates, phosphorothioates, phosphorodithioates, alkylphosphonothioates, alkylphosphonates, phosphoramidates, phosphate esters, carbamates, acetamidate, carboxymethyl esters, carbonates, and phosphate triesters. See Brown, Meth. Mol. Biol. 20, 1-8, 1994; Sonveaux, Meth. Mol. Biol. 26, 1-72, 1994; Uhlmann et al., Chem. Rev. 90, 543-583, 1990.

Modifications of transthyretin gene expression can be obtained by designing antisense oligonucleotides that will form duplexes to the control, 5', or regulatory regions of the transthyretin gene. Oligonucleotides derived from the transcription initiation site, e.g., between
positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using "triple helix" base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or chaperons. Therapeutic advances using triplex DNA have been described in the literature (e.g., Gee et al., in Huber & Carr, MOLECULAR AND IMMUNOLOGIC APPROACHES, Futura Publishing Co., Mt. Kisco, N.Y., 1994). An antisense oligonucleotide also can be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Precise complementarity is not required for successful complex formation between an antisense oligonucleotide and the complementary sequence of a transthyretin polynucleotide. Antisense oligonucleotides which comprise, for example, 2, 3, 4, or 5 or more stretches of contiguous nucleotides which are precisely complementary to a transthyretin polynucleotide, each separated by a stretch of contiguous nucleotides which are not complementary to adjacent transthyretin nucleotides, can provide sufficient targeting specificity for transthyretin mRNA. Preferably, each stretch of complementary contiguous nucleotides is at least 4, 5, 6, 7, or 8 or more nucleotides in length. Non-complementary intervening sequences are preferably 1, 2, 3, or 4 nucleotides in length. One skilled in the art can easily use the calculated melting point of an antisense-sense pair to determine the degree of mismatching which will be tolerated between a particular antisense oligonucleotide and a particular transthyretin polynucleotide sequence.

Antisense oligonucleotides can be modified without affecting their ability to hybridize to a transthyretin polynucleotide. These modifications can be internal or at one or both ends of the antisense molecule. For example, internucleoside phosphate linkages can be modified by adding cholesteryl or diamine moieties with varying numbers of carbon residues between the amino groups and terminal ribose. Modified bases and/or sugars, such as arabinose instead of ribose, or a 3', 5' substituted oligonucleotide in which the 3' hydroxyl group or the 5' phosphate group are substituted, also can be employed in a modified antisense oligonucleotide. These modified oligonucleotides can be prepared by methods well known in the art. See, e.g., Agrawal et al., Trends Biotechnol. 10, 152-158, 1992; Uhlmann et al., Chem. Rev. 90, 543-584, 1990; Uhlmann et al., Tetrahedron. Lett. 215, 3539-3542, 1987.

Ribozymes

2, 605-609, 1992, Couture & Stinchcomb, *Trends Genet.* 12, 510-515, 1996. Ribozymes can be used to inhibit gene function by cleaving an RNA sequence, as is known in the art (e.g., Haseloff *et al.*, U.S. Patent 5,641,673). The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. Examples include engineered hammerhead motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of specific nucleotide sequences.

The coding sequence of a transthyretin polynucleotide can be used to generate ribozymes that will specifically bind to mRNA transcribed from the transthyretin polynucleotide. Methods of designing and constructing ribozymes which can cleave other RNA molecules in trans in a highly sequence specific manner have been developed and described in the art (see Haseloff *et al.* *Nature* 334, 585-591, 1988). For example, the cleavage activity of ribozymes can be targeted to specific RNAs by engineering a discrete “hybridization” region into the ribozyme. The hybridization region contains a sequence complementary to the target RNA and thus specifically hybridizes with the target (see, for example, Gerlach *et al.*, EP 321,201).

Specific ribozyme cleavage sites within a transthyretin RNA target can be identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target RNA containing the cleavage site can be evaluated for secondary structural features which may render the target inoperable. Suitability of candidate transthyretin RNA targets also can be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays. Longer complementary sequences can be used to increase the affinity of the hybridization sequence for the target. The hybridizing and cleavage regions of the ribozyme can be integrally related such that upon hybridizing to the target RNA through the complementary regions, the catalytic region of the ribozyme can cleave the target.

Ribozymes can be introduced into cells as part of a DNA construct. Mechanical methods, such as microinjection, liposome-mediated transfection, electroporation, or calcium phosphate precipitation, can be used to introduce a ribozyme-containing DNA construct into cells in which it is desired to decrease transthyretin expression. Alternatively, if it is desired that the cells stably retain the DNA construct, the construct can be supplied on a plasmid and maintained as a separate element or integrated into the genome of the cells, as is known in the
art. A ribozyme-encoding DNA construct can include transcriptional regulatory elements, such as a promoter element, an enhancer or UAS element, and a transcriptional terminator signal, for controlling transcription of ribozymes in the cells.

As taught in Haseloff et al., U.S. Patent 5,641,673, ribozymes can be engineered so that ribozyme expression will occur in response to factors that induce expression of a target gene. Ribozymes also can be engineered to provide an additional level of regulation, so that destruction of mRNA occurs only when both a ribozyme and a target gene are induced in the cells.

Differentially Expressed Genes

Described herein are methods for the identification of genes whose products interact with transthyretin. Such genes may represent genes that are differentially expressed in disorders including, but not limited to, obesity. Further, such genes may represent genes that are differentially regulated in response to manipulations relevant to the progression or treatment of such diseases. Additionally, such genes may have a temporally modulated expression, increased or decreased at different stages of tissue or organism development. A differentially expressed gene may also have its expression modulated under control versus experimental conditions. In addition, the transthyretin gene or gene product may itself be tested for differential expression.

The degree to which expression differs in a normal versus a diseased state need only be large enough to be visualized via standard characterization techniques such as differential display techniques. Other such standard characterization techniques by which expression differences may be visualized include but are not limited to, quantitative RT (reverse transcriptase), PCR, and Northern analysis.

Identification of Differentially Expressed Genes

To identify differentially expressed genes total RNA or, preferably, mRNA is isolated from tissues of interest. For example, RNA samples are obtained from tissues of experimental subjects and from corresponding tissues of control subjects. Any RNA isolation technique that does not select against the isolation of mRNA may be utilized for the purification of such RNA samples. See, for example, Ausubel et al., ed., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, Inc. New York, 1987-1993. Large numbers of tissue samples may readily be processed using techniques well known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomczynski, U.S. Patent 4,843,155.

The differential expression information may itself suggest relevant methods for the treatment of disorders involving transthyretin. For example, treatment may include a modulation of expression of the differentially expressed genes and/or the gene encoding transthyretin. The differential expression information may indicate whether the expression or activity of the differentially expressed gene or gene product or the transthyretin gene or gene product are up-regulated or down-regulated.

Screening Methods

The invention provides assays for screening test compounds that bind to or modulate the activity of a transthyretin polypeptide or a transthyretin polynucleotide. A test compound preferably binds to a transthyretin polypeptide or polynucleotide. More preferably, a test compound decreases or increases thyroxine binding to transthyretin or decreases transthyretin expression by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the test compound.

Test Compounds

Test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity. The compounds can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, and can be produced recombinantly, or synthesized by chemical methods known in the art. If desired, test compounds can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one-compound" library method, and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer, or small molecule libraries of compounds. See Lam, Anticancer Drug Des. 12, 145, 1997.

High Throughput Screening

Test compounds can be screened for the ability to bind to transthyretin polypeptides or polynucleotides or to affect transthyretin activity or transthyretin gene expression using high throughput screening. Using high throughput screening, many discrete compounds can be tested in parallel so that large numbers of test compounds can be quickly screened. The most widely established techniques utilize 96-well microtiter plates. The wells of the microtiter plates typically require assay volumes that range from 50 to 500 µl. In addition to the plates, many instruments, materials, pipettors, robotics, plate washers, and plate readers are commercially available to fit the 96-well format.

Alternatively, "free format assays," or assays that have no physical barrier between samples, can be used. For example, an assay using pigment cells (melanocytes) in a simple homogeneous assay for combinatorial peptide libraries is described by Jayawickreme et al., Proc. Natl. Acad. Sci. U.S.A. 19, 1614-18 (1994). The cells are placed under agarose in petri dishes, then beads that carry combinatorial compounds are placed on the surface of the agarose. The combinatorial compounds are partially released the compounds from the beads. Active compounds can be visualized as dark pigment areas because, as the compounds diffuse locally into the gel matrix, the active compounds cause the cells to change colors.

Another example of a free format assay is described by Chelsky, "Strategies for Screening Combinatorial Libraries: Novel and Traditional Approaches," reported at the First Annual Conference of The Society for Biomolecular Screening in Philadelphia, Pa. (Nov. 7-10, 1995). Chelsky placed a simple homogenous enzyme assay for carbonic anhydrase inside an agarose gel such that the enzyme in the gel would cause a color change throughout the gel.
Thereafter, beads carrying combinatorial compounds via a photolinker were placed inside the gel and the compounds were partially released by UV-light. Compounds that inhibited the enzyme were observed as local zones of inhibition having less color change.

Yet another example is described by Salmon et al., Molecular Diversity 2, 57-63 (1996). In this example, combinatorial libraries were screened for compounds that had cytotoxic effects on cancer cells growing in agar.

Another high throughput screening method is described in Beutel et al., U.S. Patent 5,976,813. In this method, test samples are placed in a porous matrix. One or more assay components are then placed within, on top of, or at the bottom of a matrix such as a gel, a plastic sheet, a filter, or other form of easily manipulated solid support. When samples are introduced to the porous matrix they diffuse sufficiently slowly, such that the assays can be performed without the test samples running together.

Binding Assays

For binding assays, the test compound is preferably a small molecule that binds to and occupies, for example, a thyroxine binding domain of the transthyretin polypeptide, such that binding of thyroxine to the transthyretin polypeptide is prevented. The location of the thyroxine binding domains of transthyretin is known in the art. See, e.g., Blake & Oatley, Nature 268, 115-20, 1977. Examples of such small molecules include, but are not limited to, small peptides or peptide-like molecules.

In binding assays, either the test compound or the transthyretin polypeptide can comprise a detectable label, such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase. Detection of a test compound that is bound to the transthyretin polypeptide can then be accomplished, for example, by direct counting of radioemmission, by scintillation counting, or by determining conversion of an appropriate substrate to a detectable product.

Alternatively, binding of a test compound to a transthyretin polypeptide can be determined without labeling either of the interactants. For example, a microphysiometer can be used to detect binding of a test compound with a transthyretin polypeptide. A microphysiometer (e.g., Cytosensor™) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between a test compound and a transthyretin polypeptide (McConnell et al., Science 257, 1906-1912, 1992).
Determining the ability of a test compound to bind to a transthyretin polypeptide also can be accomplished using a technology such as real-time Bimolecular Interaction Analysis (BIA) (Sjolander & Urbaniczky, *Anal. Chem.* 63, 2338-2345, 1991, and Szabo et al., *Curr. Opin. Struct. Biol.* 5, 699-705, 1995). BIA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore™). Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.

It may be desirable to immobilize either the transthyretin polypeptide or polynucleotide or the test compound to facilitate separation of bound from unbound forms of one or both of the interactants, as well as to accommodate automation of the assay. Thus, either the transthyretin polypeptide or polynucleotide) or the test compound can be bound to a solid support. Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads including, but not limited to, latex, polystyrene, or glass beads. Any method known in the art can be used to attach the polypeptide or polynucleotide or test compound to a solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached respectively to the polypeptide or polynucleotide or test compound and the solid support. Test compounds are preferably bound to the solid support in an array, so that the location of individual test compounds can be tracked. Binding of a test compound to a transthyretin polypeptide or polynucleotide can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.

In one embodiment, the transthyretin polypeptide is a fusion protein comprising a domain that allows the transthyretin polypeptide to be bound to a solid support. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and the non-adsorbed transthyretin polypeptide; the mixture is then incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components. Binding of the interactants can be determined either directly or indirectly, as described above. Alternatively, the complexes can be dissociated from the solid support before binding is determined.
Other techniques for immobilizing proteins or polynucleotides on a solid support also can be used in the screening assays of the invention. For example, either a transthyretin polypeptide or polynucleotide or a test compound can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated transthyretin polypeptides or polynucleotides or test compounds can be prepared from biotin-NHS (N-hydroxysuccinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.) and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies which specifically bind to a transthyretin polypeptide, polynucleotide, or a test compound, but which do not interfere with a desired binding site, such as the active site of the transthyretin polypeptide, can be derivatized to the wells of the plate. Unbound target or protein can be trapped in the wells by antibody conjugation.

Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies which specifically bind to the transthyretin polypeptide or test compound, enzyme-linked assays which rely on detecting an activity of the transthyretin polypeptide, and SDS gel electrophoresis under non-reducing conditions.

Screening for test compounds which bind to a transthyretin polypeptide or polynucleotide also can be carried out in an intact cell. Any cell which comprises a transthyretin polypeptide or polynucleotide can be used in a cell-based assay system. A transthyretin polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Binding of the test compound to a transthyretin polypeptide or polynucleotide is determined as described above.

In yet another aspect of the invention, a transthyretin polypeptide can be used as a “bait protein” in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent 5,283,317; Zervos et al., Cell 72, 223-232, 1993; Madura et al., J. Biol. Chem. 268, 12046-12054, 1993; Bartel et al., BioTechniques 14, 920-924, 1993; Iwabuchi et al., Oncogene 8, 1693-1696, 1993; and Brent W094/10300), to identify other proteins which bind to or interact with the transthyretin polypeptide and modulate its activity.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. For example, in one construct, polynucleotide encoding a transthyretin polypeptide can be fused to a polynucleotide encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct a DNA sequence that
encodes an unidentified protein ("prey" or "sample") can be fused to a polynucleotide that
codes for the activation domain of the known transcription factor. If the "bait" and the "prey"
proteins are able to interact in vivo to form an protein-dependent complex, the DNA-binding
and activation domains of the transcription factor are brought into close proximity. This
proximity allows transcription of a reporter gene (e.g., LacZ), which is operably linked to a
transcriptional regulatory site responsive to the transcription factor. Expression of the reporter
gene can be detected, and cell colonies containing the functional transcription factor can be
isolated and used to obtain the DNA sequence encoding the protein that interacts with the
transthyretin polypeptide.

In another embodiment, one or two expression vectors encode two fusion proteins. The
first fusion protein comprises a DNA binding domain and either a thyroxine binding domain of
a transthyretin molecule or a transthyretin binding domain of a thyroxine molecule. The
second fusion protein comprises a transcriptional activating domain and either a thyroxine
binding domain of a transthyretin molecule or a transthyretin binding domain of a thyroxine
molecule. If the first fusion protein comprises the thyroxine binding domain, the second fusion
protein comprises the transthyretin binding domain, and vice versa. Optionally, the fusion
proteins can comprise full-length transthyretin and/or full-length thyroxine, respectively.
Interaction of the two binding domains then reconstitutes a sequence-specific transcriptional
activating factor. Expression of a reporter gene comprising a DNA sequence to which the
DNA binding domain of the first fusion protein specifically binds is assayed in the presence of
a test compound. If the test compound decreases expression of the reporter gene relative to
expression of the reporter gene in the absence of the test compound, it is identified as a
potential anti-obesity agent. This method can be carried out in a cell. Optionally, the fusion
proteins and the reporter gene can be used in a cell-free system. Either the test compound or
one of the fusion proteins can be bound to a solid support. Either can be detectably labeled.

Functional Assays

Test compounds can be tested for the ability to increase or decrease the thyroxine
binding activity of a transthyretin polypeptide. Thyroxine binding can be assayed using any of
the binding assays described above.

Binding assays can be carried out after contacting either a purified transthyretin
polypeptide, a cell membrane preparation, or an intact cell with a test compound. A test
compound that decreases thyroxine binding of a transthyretin polypeptide by at least about 10,
preferably about 50, more preferably about 75, 90, or 100% is identified as a potential
therapeutic agent for decreasing transthyretin activity. A test compound which increases thyroxine binding of a transthyretin polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for increasing transthyretin activity.

Gene Expression

In another embodiment, test compounds that increase or decrease transthyretin gene expression are identified. A transthyretin polynucleotide is contacted with a test compound, and the expression of an RNA or polypeptide product of the transthyretin polynucleotide is determined. The level of expression of appropriate mRNA or polypeptide in the presence of the test compound is compared to the level of expression of mRNA or polypeptide in the absence of the test compound. The test compound can then be identified as a modulator of expression based on this comparison. For example, when expression of mRNA or polypeptide is greater in the presence of the test compound than in its absence, the test compound is identified as a stimulator or enhancer of the mRNA or polypeptide expression. Alternatively, when expression of the mRNA or polypeptide is less in the presence of the test compound than in its absence, the test compound is identified as an inhibitor of the mRNA or polypeptide expression.

The level of transthyretin mRNA or polypeptide expression in the cells can be determined by methods well known in the art for detecting mRNA or polypeptide. Either qualitative or quantitative methods can be used. The presence of polypeptide products of a transthyretin polynucleotide can be determined, for example, using a variety of techniques known in the art, including immunochemical methods such as radioimmunoassay, Western blotting, and immunohistochemistry. Alternatively, polypeptide synthesis can be determined in vivo, in a cell culture, or in an in vitro translation system by detecting incorporation of labeled amino acids into a transthyretin polypeptide.

Such screening can be carried out either in a cell-free assay system or in an intact cell. Any cell that expresses a transthyretin polynucleotide can be used in a cell-based assay system. The transthyretin polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Either a primary culture or an established cell line, such as CHO or human embryonic kidney 293 cells, can be used.

Pharmaceutical Compositions

The invention also provides pharmaceutical compositions that can be administered to a patient to achieve a therapeutic effect. Pharmaceutical compositions of the invention can
comprise, for example, a transthyretin polypeptide, transthyretin polynucleotide, ribozymes or antisense oligonucleotides, antibodies which specifically bind to a transthyretin polypeptide, or mimetics, activators, or inhibitors of a transthyretin polypeptide activity. The compositions can be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. The compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones.

In addition to the active ingredients, these pharmaceutical compositions can contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations which can be used pharmaceutically. Pharmaceutically acceptable carriers typically are non-pyrogenic.

Pharmaceutical compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means. Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethyl-cellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents can be added, such as the cross-linked polynvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.

Dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions can contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds can be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Non-lipid polycationic amino polymers also can be used for delivery. Optionally, the suspension also can contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention can be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. The pharmaceutical composition can be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation can be a lyophilized powder which can contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

Further details on techniques for formulation and administration can be found in the latest edition of REMINGTON'S PHARMACEUTICAL SCIENCES (Maack Publishing Co., Easton, Pa.). After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.
Therapeutic Indications and Methods

Transthyretin, particularly human transthyretin, can be regulated to treat obesity. Obesity and overweight are defined as an excess of body fat relative to lean body mass. An increase in caloric intake or a decrease in energy expenditure or both can bring about this imbalance leading to surplus energy being stored as fat. Obesity is associated with important medical morbidities and an increase in mortality. The causes of obesity are poorly understood and may be due to genetic factors, environmental factors or a combination of the two to cause a positive energy balance. In contrast, anorexia and cachexia are characterized by an imbalance in energy intake versus energy expenditure leading to a negative energy balance and weight loss. Agents that either increase energy expenditure and/or decrease energy intake, absorption or storage would be useful for treating obesity, overweight, and associated comorbidities. Agents that either increase energy intake and/or decrease energy expenditure or increase the amount of lean tissue would be useful for treating cachexia, anorexia and wasting disorders.

A transthyretin gene, translated proteins and agents which modulate the gene or portions of the gene or its products are useful for treating obesity, overweight, anorexia, cachexia, wasting disorders, appetite suppression, appetite enhancement, increases or decreases in satiety, modulation of body weight, and/or other eating disorders such as bulimia. Also the transthyretin gene, translated proteins and agents which modulate this gene or portions of the gene or its products are useful for treating obesity/overweight-associated comorbidities including hypertension, type 2 diabetes, coronary artery disease, hyperlipidemia, stroke, gallbladder disease, gout, osteoarthritis, sleep apnea and respiratory problems, some types of cancer including endometrial, breast, prostate, and colon cancer, thrombolic disease, polycystic ovarian syndrome, reduced fertility, complications of pregnancy, menstrual irregularities, hirsutism, stress incontinence, and depression.

This invention further pertains to the use of novel agents identified by the screening assays described above. Accordingly, it is within the scope of this invention to use a test compound identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a modulating agent, an antisense nucleic acid molecule, a specific antibody, ribozyme, or a transthyretin polypeptide binding molecule) can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent. Furthermore, this invention
pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

A reagent which affects transthyretin activity can be administered to a human or animal cell, either in vitro or in vivo, to reduce transthyretin activity. The reagent preferably binds to an expression product of a human transthyretin gene. If the expression product is a protein, the reagent is preferably an antibody. For treatment of human cells ex vivo, an antibody can be added to a preparation of stem cells that have been removed from the body. The cells can then be replaced in the same or another human body, with or without clonal propagation, as is known in the art.

In one embodiment, the reagent is delivered using a liposome. Preferably, the liposome is stable in the animal into which it has been administered for at least about 30 minutes, more preferably for at least about 1 hour, and even more preferably for at least about 24 hours. A liposome comprises a lipid composition that is capable of targeting a reagent, particularly a polynucleotide, to a particular site in an animal, such as a human. Preferably, the lipid composition of the liposome is capable of targeting to a specific organ of an animal, such as the lung, liver, spleen, heart brain, lymph nodes, and skin.

A liposome useful in the present invention comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to deliver its contents to the cell. Preferably, the transfection efficiency of a liposome is about 0.5 μg of DNA per 16 nmole of liposome delivered to about 10⁶ cells, more preferably about 1.0 μg of DNA per 16 nmole of liposome delivered to about 10⁶ cells, and even more preferably about 2.0 μg of DNA per 16 nmol of liposome delivered to about 10⁶ cells. Preferably, a liposome is between about 100 and 500 nm, more preferably between about 150 and 450 nm, and even more preferably between about 200 and 400 nm in diameter.

Suitable liposomes for use in the present invention include those liposomes standardly used in, for example, gene delivery methods known to those of skill in the art. More preferred liposomes include liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to polyethylene glycol. Optionally, a liposome comprises a compound capable of targeting the liposome to a particular cell type, such as a cell-specific ligand exposed on the outer surface of the liposome.

Complexing a liposome with a reagent such as an antisense oligonucleotide or ribozyme can be achieved using methods that are standard in the art (see, for example, U.S. Patent
5,705,151). Preferably, from about 0.1 μg to about 10 μg of polynucleotide is combined with about 8 nmol of liposomes, more preferably from about 0.5 μg to about 5 μg of polynucleotides are combined with about 8 nmol liposomes, and even more preferably about 1.0 μg of polynucleotides is combined with about 8 nmol liposomes.

Determination of a Therapeutically Effective Dose

The determination of a therapeutically effective dose is well within the capability of those skilled in the art. A therapeutically effective dose refers to that amount of active ingredient which increases or decreases transthyretin activity relative to the transthyretin activity which occurs in the absence of the therapeutically effective dose.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs. The animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

Therapeutic efficacy and toxicity, *e.g.*, ED₅₀ (the dose therapeutically effective in 50% of the population) and LD₅₀ (the dose lethal to 50% of the population), can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD₅₀/ED₅₀.

Pharmaceutical compositions that exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
The exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and administration are adjusted to provide sufficient levels of the active ingredient or to maintain the desired effect. Factors that can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts can vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

If the reagent is a single-chain antibody, polynucleotides encoding the antibody can be constructed and introduced into a cell either ex vivo or in vivo using well-established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun," and DEAE- or calcium phosphate-mediated transfection.

Effective in vivo dosages of an antibody are in the range of about 5 μg to about 50 μg/kg, about 50 μg to about 5 mg/kg, about 100 μg to about 500 μg/kg of patient body weight, and about 200 to about 250 μg/kg of patient body weight. For administration of polynucleotides encoding single-chain antibodies, effective in vivo dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 ng, about 1 μg to about 2 ng, about 5 μg to about 500 μg, and about 20 μg to about 100 μg of DNA.

If the expression product is mRNA, the reagent is preferably an antisense oligonucleotide or a ribozyme. Polynucleotides that express antisense oligonucleotides or ribozymes can be introduced into cells by a variety of methods, as described above.

Preferably, a reagent reduces expression of a transthyretin gene or the activity of a transthyretin polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent. The effectiveness of the mechanism chosen
to decrease the level of expression of a transthyretin gene or the activity of a transthyretin polypeptide can be assessed using methods well known in the art, such as hybridization of nucleotide probes to transthyretin-specific mRNA, quantitative RT-PCR, immunologic detection of a transthyretin polypeptide, or measurement of transthyretin activity.

In any of the embodiments described above, any of the pharmaceutical compositions of the invention can be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy can be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents can act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

Any of the therapeutic methods described above can be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

Diagnostic Methods

Transthyretin also can be used in diagnostic assays for detecting diseases and abnormalities or susceptibility to diseases and abnormalities related to the presence of mutations in the nucleic acid sequences that encode the enzyme. For example, differences can be determined between the cDNA or genomic sequence encoding transthyretin in individuals afflicted with a disease and in normal individuals. If a mutation is observed in some or all of the afflicted individuals but not in normal individuals, then the mutation is likely to be the causative agent of the disease.

Sequence differences between a reference gene and a gene having mutations can be revealed by the direct DNA sequencing method. In addition, cloned DNA segments can be employed as probes to detect specific DNA segments. The sensitivity of this method is greatly enhanced when combined with PCR. For example, a sequencing primer can be used with a double-stranded PCR product or a single-stranded template molecule generated by a modified PCR. The sequence determination is performed by conventional procedures using radiolabeled nucleotides or by automatic sequencing procedures using fluorescent tags.

Genetic testing based on DNA sequence differences can be carried out by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized, for example, by high resolution gel electrophoresis. DNA fragments of different sequences can be distinguished on
denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al., Science 230, 1242, 1985). Sequence changes at specific locations can also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (e.g., Cotton et al., Proc. Natl. Acad. Sci. USA 85, 4397-4401, 1985). Thus, the detection of a specific DNA sequence can be performed by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes and Southern blotting of genomic DNA. In addition to direct methods such as gel-electrophoresis and DNA sequencing, mutations can also be detected by in situ analysis.

Altered levels of transthyretin also can be detected in various tissues. Assays used to detect levels of the receptor polypeptides in a body sample, such as blood or a tissue biopsy, derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive binding assays, Western blot analysis, and ELISA assays.

All patents and patent applications cited in this disclosure are expressly incorporated herein by reference. The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples, which are provided for purposes of illustration only and are not intended to limit the scope of the invention.

EXAMPLE 1

Expression of recombinant transthyretin

The *Pichia pastoris* expression vector pPICZB (Invitrogen, San Diego, CA) is used to produce large quantities of recombinant transthyretin polypeptides in yeast. The transthyretin-encoding DNA sequence is derived from SEQ ID NOS:1, 3, 5, or 7. Before insertion into vector pPICZB, the DNA sequence is modified by well known methods in such a way that it contains at its 5'-end an initiation codon and at its 3'-end an enterokinase cleavage site, a His6 reporter tag and a termination codon. Moreover, at both termini recognition sequences for restriction endonucleases are added and after digestion of the multiple cloning site of pPICZ B with the corresponding restriction enzymes the modified DNA sequence is ligated into pPICZB. This expression vector is designed for inducible expression in *Pichia pastoris*, driven by a yeast promoter. The resulting pPICZ/md-His6 vector is used to transform the yeast.
The yeast is cultivated under usual conditions in 5 liter shake flasks and the recombinantly produced protein isolated from the culture by affinity chromatography (Ni-NTA-Resin) in the presence of 8 M urea. The bound polypeptide is eluted with buffer, pH 3.5, and neutralized. Separation of the polypeptide from the His6 reporter tag is accomplished by site-specific proteolysis using enterokinase (Invitrogen, San Diego, CA) according to manufacturer's instructions. Purified transthyretin polypeptide is obtained.

EXAMPLE 2

Identification of test compounds that bind to transthyretin polypeptides

Purified transthyretin polypeptides comprising a glutathione-S-transferase protein and absorbed onto glutathione-derivatized wells of 96-well microtiter plates are contacted with test compounds from a small molecule library at pH 7.0 in a physiological buffer solution. Transthyretin polypeptides comprise an amino acid sequence shown in SEQ ID NOS:2, 4, 6, or 8. The test compounds comprise a fluorescent tag. The samples are incubated for 5 minutes to one hour. Control samples are incubated in the absence of a test compound.

The buffer solution containing the test compounds is washed from the wells. Binding of a test compound to a transthyretin polypeptide is detected by fluorescence measurements of the contents of the wells. A test compound that increases the fluorescence in a well by at least 15% relative to fluorescence of a well in which a test compound is not incubated is identified as a compound which binds to a transthyretin polypeptide.

EXAMPLE 3

Identification of a test compound which decreases transthyretin gene expression

A test compound is administered to a culture of human cells transfected with a transthyretin expression construct and incubated at 37 °C for 10 to 45 minutes. A culture of the same type of cells that have not been transfected is incubated for the same time without the test compound to provide a negative control.

RNA is isolated from the two cultures as described in Chirgwin et al., Biochem. 18, 5294-99, 1979). Northern blots are prepared using 20 to 30 μg total RNA and hybridized with a 32P-labeled transthyretin -specific probe at 65 °C in Express-hyb (CLONTECH). The probe comprises at least 11 contiguous nucleotides selected from the complement of SEQ ID NOS:1, 3, 5, or 7. A test compound that decreases the transthyretin -specific signal relative to the
signal obtained in the absence of the test compound is identified as an inhibitor of transthyretin gene expression.

EXAMPLE 4

Differential expression of transthyretin in obese and lean rats

Transthyretin expression was measured in obese rats (obtained by putting animals on a high fat diet (45%) for 10 weeks), lean rats (resistant to the high fat diet), and control rats (maintained on a chow diet). In one set of experiments, total RNA was isolated from obese (ob), control (c), and lean rat hypothalamus. cRNA probes were made and hybridized to rat GeneChip A (Affymetrix). Data were analyzed using Affymetrix software. The results are shown in FIG. 1A.

In another set of experiments, total RNA was isolated from obese (ob), control (c), and lean rat hypothalamus and treated with DNase. cDNA was made and used as a template for TaqMan PCR analysis. The sequences of the primers for the TaqMan PCR were: forward, 5’GCTACTGCTTTGGCAAGATCCT3’ (SEQ ID NO:9) and reverse, 5’TGTCGTCAGTACCCCGAGAA3’ (SEQ ID NO:10). The sequence of the probe was 5’CCTCCTGGGCTGGTGCCCTGA3’ (SEQ ID NO:11). The results are shown in FIG. 1B.
CLAIMS

1. A method of identifying potential anti-obesity agents, comprising the steps of:
 contacting a transthyretin with a test compound; and
 identifying the test compound as a potential anti-obesity agent if it binds to the
 transthyretin.

2. The method of claim 1 wherein the step of contacting is in a cell.

3. The method of claim 2 wherein the cell is in vivo.

4. The method of claim 2 wherein the cell is in vitro.

5. The method of claim 1 wherein the step of contacting is in a cell-free system.

6. The method of claim 1 wherein either the transthyretin or the test compound is
 bound to a solid support.

7. The method of claim 1 wherein the test compound comprises a detectable label.

8. The method of claim 1 wherein the transthyretin comprises a detectable label.

9. The method of claim 1 wherein the transthyretin comprises the amino acid
 sequence shown in SEQ ID NO:2.

10. The method of claim 1 wherein the transthyretin comprises the amino acid
 sequence shown in SEQ ID NO:4.

11. The method of claim 1 wherein the transthyretin comprises the amino acid
 sequence shown in SEQ ID NO:6.

12. The method of claim 1 wherein the transthyretin comprises the amino acid
 sequence shown in SEQ ID NO:8.

13. A method of identifying potential anti-obesity agents, comprising the steps of:
 contacting a polynucleotide encoding a transthyretin with a test compound under
 conditions which permit expression of the transthyretin; and
 identifying the test compound as a potential anti-obesity agent if it reduces
 expression of the transthyretin relative to expression of the transthyretin in the absence of the
 test compound.

14. The method of claim 13 wherein the step of contacting is in a cell.

15. The method of claim 14 wherein the cell is in vivo.

16. The method of claim 14 wherein the cell is in vitro.

17. The method of claim 13 wherein the step of contacting is in a cell-free system.

18. The method of claim 13 wherein the transthyretin is bound to a solid support.
19. The method of claim 13 wherein the test compound is bound to a solid support.
20. The method of claim 13 wherein the transthyretin comprises the amino acid sequence shown in SEQ ID NO:2.
21. The method of claim 13 wherein the transthyretin comprises the amino acid sequence shown in SEQ ID NO:4.
22. The method of claim 13 wherein the transthyretin comprises the amino acid sequence shown in SEQ ID NO:6.
23. The method of claim 13 wherein the transthyretin comprises the amino acid sequence shown in SEQ ID NO:8.
24. A method of identifying potential anti-obesity agents, comprising the steps of:
 contacting a transthyretin and a thyroxine with a test compound under conditions which permit binding of the transthyretin and the thyroxine; and
 identifying the test compound as a potential anti-obesity agent if it reduces binding of the transthyretin and the thyroxine relative to binding of the transthyretin and the thyroxine in the absence of the test compound.
25. The method of claim 24 wherein the step of contacting is in a cell.
26. The method of claim 25 wherein the cell is in vivo.
27. The method of claim 25 wherein the cell is in vitro.
28. The method of claim 24 wherein the step of contacting is in a cell-free system.
29. The method of claim 24 wherein the transthyretin is bound to a solid support.
30. The method of claim 24 wherein the test compound is bound to a solid support.
31. The method of claim 24 wherein the transthyretin comprises the amino acid sequence shown in SEQ ID NO:2.
32. The method of claim 24 wherein the transthyretin comprises the amino acid sequence shown in SEQ ID NO:4.
33. The method of claim 24 wherein the transthyretin comprises the amino acid sequence shown in SEQ ID NO:6.
34. The method of claim 24 wherein the transthyretin comprises the amino acid sequence shown in SEQ ID NO:8.
35. A pharmaceutical composition for treating obesity, comprising:
 a reagent that specifically binds to transthyretin; and
 a pharmaceutically acceptable carrier.
36. A pharmaceutical composition for treating obesity, comprising:
an antibody that specifically binds to transthyretin; and
a pharmaceutically acceptable carrier.

37. A pharmaceutical composition for treating obesity, comprising:
an antisense oligonucleotide that hybridizes to a polynucleotide encoding
transthyretin and reduces expression of the polynucleotide; and
a pharmaceutically acceptable carrier.

38. Use of a reagent that decreases binding of transthyretin to thyroxine in the
manufacture of a medicament for treating obesity.

39. Use of an antibody that specifically binds to transthyretin and decreases binding
of transthyretin to thyroxine in the manufacture of a medicament for treating obesity.

40. Use of an oligonucleotide that hybridizes to a polynucleotide encoding
transthyretin and reduces expression of the polynucleotide in the manufacture of a medicament
for treating obesity.
<110> Bayer Corporation

<120> Regulation of Transthyretin to Treat Obesity

<130> 002973.00066

<150> 60/263,527

<151> 2001-01-24

<160> 11

<170> FastSEQ for Windows Version 4.0

<210> Homo sapiens

<211> DNA

<213> Homo sapiens

<400> 1

acagaagtcc actcatttct ggccggtggg ctttcctatcg tgtgctctctc ctctgctttg 60
cctgtgttgtt atttggtctct gagarccgcacc ctagaacagac ctagctctcg ctctgctttgt 120
tgtccatgag tgtggtttgag gacacgctgag gacatgctcag ctagctctcg ctctgctttgt 180
tgtccagata gctggtgtgct acaacttgga tcgagacagt gaaaaatggtg tctgcttgaa 240
tggagagct gcctgatggct acaactgga tcgagacagt gaaaaatggtg tctgcttgaa 300
aaatagacac caaatgtaatc tggagaggccct ctccttcctcatt gctcttgactcag 360
aggtggattc cacagcmcaac gactccgctgg cccgccgcta cccctcctgat ggctgctgactg 420
gccctacttgc ctatttccagc cggctgtctg tcaacaatggcc caagctggactgctgactg 480
tccctagtta gccgaagagac gaggagttggattctcattgta accagagta tttttttttttttttt 540
actaaagcag tgttttctac ccatgtgctctgct ggttctagtct gcagggacagc 600
attctcctgta aagggc 615

<210> 2

<211> PRT

<213> Homo sapiens

<400> 2

Met Ala Ser His Arg Leu Leu Leu Leu Leu Cys Leu Ala Gly Leu Val Phe
1 5 10 15
Val Ser Glu Ala Gly Pro Thr Gly Thr Gly Glu Ser Lys Cys Pro Leu
20 25 30
Met Val Lys Val Leu Asp Ala Val Arg Gly Ser Pro Ala Ile Asn Val
35 40 45
Ala Val His Val Phe Arg Lys Ala Ala Asp Asp Thr Trp Glu Pro Phe
50 55 60
Ala Ser Gly Lys Thr Ser Glu Ser Gly Glu Leu His Gly Leu Thr Thr
65 70 75 80
Glu Glu Glu Phe Val Glu Gly Ile Tyr Lys Val Glu Ile Asp Thr Lys
85 90 95
<table>
<thead>
<tr>
<th>100</th>
<th>105</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser</td>
<td>Tyr</td>
<td>Trp</td>
</tr>
<tr>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
<td>Phe</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td>140</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>Pro</td>
<td>Lys</td>
<td>Glu</td>
</tr>
</tbody>
</table>

<210> 3
<211> DNA
<212> Homo sapiens
<213> Homo sapiens

```
<400> 3
acagaagtcc actcattctt gccaggtgct ccctctcatcg ctctgtcttc ctctgccttg 60
cctggcactt atttgtgtct gaggctggcc ctacggtgcc cggagcatcc aagtggtctc 120
tgtatgtcag atgtcttcat gcctgcctag gcgtcctgc ctaaagtatgt gcctgcctag 180
tgctcagaa ggcctgcctag gcagctctgg ccctctcttc ctctggccaa accagttggt 240
cctggagcgc gcagctcagct gcagctcagct gcagctcagct gcagctcagct gcagctcagct 300
aatatatctc acctctatc ccacagctcc ctctcttttct gacgctgcctg ccctctcttc 360
aggtgaatt catcagcaaac gacgctggcc cccgccgcta caccattggc gcctgcctag 420
ggcctctgtct ccctctccac agggctgttc gtcacaaatcc cccagaaatg gggacctctc 480
tccctgccttc cctgaaagcct gcagctgagtc attctcaatc gcacaaagatg tttcatcttttt 540
actataaacc tctttctacc tcattgctat ctgttaagtg ccagggcag ccaataaaac 600
attctctgctga aagggc 615
```

<210> 4
<211> DNA
<212> PRT
<213> Homo sapiens

```
<400> 4
Met Ala Ser His Arg Leu  Leu Leu Leu Leu Leu Cys Leu Ala Gly Leu Val Phe  1  5  10  15
Val Ser Glu Ala Gly Pro Thr Gly Thr Gly Glu Ser Lys Cys Pro Leu  20  25  30
Met Val Lys Val Leu Asp Ala Val Arg Gly Ser Pro Ala Ile Asn Val  35  40  45
Ala Val His Val Phe Arg Lys Ala Ala Asp Asp Thr Trp Glu Pro Phe  50  55  60
Ala Ser Gly Lys Thr Ser Gly Ser Gly Glu Leu His Gly Leu Thr Thr  65  70  75  80
Glu Glu Glu Phe Val Gly Gly Ile Tyr Lys Val Glu Ile Asp Thr Lys  85  90  95
Ser Tyr Trp Lys Ala Leu Gly Ile Ser Pro Phe His Glu His Ala Glu 100 105 110
Val Val Phe Thr Ala Asn Asp Ser Gly Pro Arg Arg Tyr Thr Ile Ala 115 120 125
Ala Leu Ser Pro Tyr Ser Tyr Ser Thr Thr Ala Val Val Thr Asn 130 135 140
Pro Lys Glu
```
145

<210> 5
<211> 1052
<212> DNA
<213> Mouse

<400> 5
acacagatcc acaagctctt gacagggatg cttcccttcg actcttcttc ctttgccctcg 60
tcgacggtgt attttgtctt gaagctggcc ccgagggggtc tggagaatcc aatatgtcttc 120
tgtatggctca agtctcggtgct gttggagcttg gatagctcttg ggtgag tattttttctc 180
tgttcacaaaa gcacccctctg aagcttccttc cctgggagacg cctgcggtgc ggttctctct 240
tcggagactg gcagagcttg accacagatg agaagtttgg aagagaggtc tctccagagtctg 300
aacctgagac caaacagccg tggagacgac cttggttttct cctgctcctt aatccgaggg 360
atgctgcttt ttccagccag ctctcccgatcc atgccagcatta caccatacgaca gccttgtcctc 420
gcccaactcc ttacagccac cagcgctgct ctcgaacacc ccaagactga gacagctccgc 480
ccagacgagg cagagctcttg ccaagacagt gcaatccacat ttgcaaccaaa acctgggtctc 540
tgctctatata accgtctgttt agctcaggg aagcctcgttg aagcatctttt attttcaccac 600
tcgctttattt atcacaacttg tggctttttt ttttttttct cctgtcctctc tttttttttttt 660
aacccaaaaa tttttttaag aatccctaga ggtatcggat caaactttttt aaaaagaaaaa 720
aatctttttt gttgtctggt ttaagccat cttccccgct tggggaaggct catgggtgctc 780
tcctgcaactg tcgtcatgga agatatgctga caagctgtag tggacacacc gttccatgttt 840
ttacagccca aacatacttct acaatgtgctc gttgctatata aagccagcaca atctggaaggg 900
tctctaggtgc cacagtagttct ttcctccagat cttgttccaaa agccctgggtg tcattcacaa 960
tccagaaag tggccaaaaa aacattctcga aatgtgataa tttgggtttt tttttatatc 1020
cctttgctgao cttataaaacc caaatccag gc 1052

<210> 6
<211> 147
<212> PRT
<213> Mouse

<400> 6
Met Ala Ser Leu Arg Leu Phe Leu Leu Cys Leu Ala Gly Leu Val Phe
 1 5 10 15
Val Ser Glu Ala Gly Pro Ala Gly Ala Gly Glu Ser Lys Cys Pro Leu
 20 25 30
Met Val Lys Val Leu Asp Ala Val Arg Gly Ser Pro Ala Val Asp Val
 35 40 45
Ala Val Lys Val Phe Lys Lys Thr Ser Glu Gly Ser Trp Glu Pro Phe
 50 55 60
Ala Ser Gly Lys Thr Ala Glu Ser Gly Glu Leu His Gly Leu Thr Thr
 65 70 75 80
Asp Gly Lys Phe Val Glu Gly Val Tyr Arg Val Glu Leu Asp Thr Lys
 85 90 95
Ser Tyr Trp Lys Thr Leu Gly Ile Ser Pro Phe His Glu Phe Ala Asp
100 105 110
Val Val Phe Thr Ala Asn Asp Ser Gly His Arg His Tyr Thr Ile Ala
115 120 125
Ala Leu Ser Leu Pro Tyr Ser Tyr Ser Thr Thr Ala Val Val Ser Asn
130 135 140
Pro Gln Asn
145

<210> 7
<211> 595
<212> DNA
<213> Rat

<400> 7
tctgacagga tggcttcct tgcctgttc ctccctctgc tgcctggact gatatttgcc 60
tctgagacgt gcctgtgggg tgcctggaga tccagtgtc ctctgctggt caaagtccgt 120
gatcgttcc gggcagccc tgcctgtcgt gttgccgtga aagtgttcaa aaggtcagta 180
gacggaagct gggaggccgt tgcctctggg aagaccggcc agtctggaga gctgacaggg 240
tctcacccag atgagaagtt cagggagg tcgtaacagg tagaactgga caccaaatca 300
tctggaaggg ctctcgtgcct ttccttcatc ctgtaatcgc cagagtgtgt ttctcagcgc 360
aatgactctg gtcctcgca catcaccatc gcagccctgc tcagcccgta ttcctacagc 420
accactagt gtcgctagta caccccaaac tgggcaggcc gccccagag gaccaagatc 480
ttcgcaaaaac atgtgctccc atttgactcg aacaggtgttt cttgcctcat aaccgctttt 540
agacaactcg ggagatgccc tgaacgcttc ttattaaacc accttttattt cattc 595

<210> 8
<211> 147
<212> PRT
<213> Rat

<400> 8
Met Ala Ser Leu Arg Leu Phe Leu Leu Cys Leu Ala Gly Leu Ile Phe
1 5 10 15
Ala Ser Glu Ala Gly Pro Gly Gly Ala Gly Glu Ser Lys Cys Pro Leu
20 25 30
Met Val Lys Val Leu Asp Ala Val Arg Gly Ser Pro Ala Val Asp Val
35 40 45
Ala Val Lys Val Phe Lys Arg Thr Ala Asp Gly Ser Trp Glu Pro Phe
50 55 60
Ala Ser Gly Lys Thr Ala Glu Ser Gly Glu Leu His Gly Leu Thr Thr
65 70 75 80
Asp Glu Lys Phe Thr Glu Val Tyr Arg Val Glu Leu Asp Thr Lys
85 90 95
Ser Tyr Trp Lys Ala Leu Gly Ile Ser Pro Phe His Glu Tyr Ala Glu
100 105 110
Val Val Phe Thr Ala Asn Asp Ser Gly His Arg His Tyr Thr Ile Ala
115 120 125
Ala Leu Leu Ser Pro Tyr Ser Tyr Ser Thr Thr Ala Val Ser Asn
130 135 140
Pro Gln Asn
145

<210> 9
<211> 22
<212> DNA
<213> Rat

<400> 9
gctactgctt tggaagatc ct

<210> 10
<211> 21
<212> DNA
<213> Rat

<400> 10
tgtcgtcagt aacccccaga a

<210> 11
<211> 21
<212> DNA
<213> Rat

<400> 11
cctcctgggc tgggtcctc a