PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/18146
GOGF 9/445, H04Q 3/545 Al
(43) International Publication Date: 13 June 1996 (13.06.96)
(21) International Application Number: PCT/SE95/01452 | (81) Designated States: AU, BR, CA, CN, FI, JP, KR, MX, NO,
SG, US, European patent (AT, BE, CH, DE, DK, ES, FR,
(22) International Filing Date: 4 December 1995 (04.12.95) GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: Published
9404297-5 9 December 1994 (09.12.94) SE With international search report.
9503339-5 27 September 1995 (27.09.95) SE Before the expiration of the time limit Sfor amending the

amendments.

(71) Applicant (for all designated States except US): TELEFON-
AKTIEBOLAGET LM ERICSSON (publ.) {SE/SE]; S-126
25 Stockholm (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HOLTE-ROST, Anna
[SE/SE]; Glanshammarsgatan 213, S-124 72 Bandhagen
(SE). FUCHS, Robert [SE/SE}; Timjansgatan 31, S$-654 47
Uppsala (SE). MARKSTROM, Ulf [SE/SE); Vanadisviigen
32, S-113 46 Stockholm (SE). .

(74) Agents: BJELLMAN, Lennart et al; Dr Ludwig Brann
Patentbyrd AB, P.O. Box 1344, $-751 43 Uppsala (SE).

claims and to be republished in the event of the receipt of

(54) Title: METHOD OF SYNCHRONIZATION ALLOWING STATE TRANSFER

(57) Abstract

The present invention relates to the replacement of software in an operating
computer system, and in particular, to the synchronization of state transfer
between processes within the old software to processes within the new software.

The synchronization of state transfer between processes executing in the old
and the new software comprises the following steps: preparing the old static
process within the old software for a forthcoming shutdown, activating it for the
state transfer; preparing the new static process within the new software to take

over, transferring all resource objects in the old static process to the new static
process; ordering the old static process to remove all services, terminating the
old static process; and committing the new static process to take over, indicating
that the new static process is the sole owner of all the resource objects previously

claimed from the old static process.

applications under the PCT.

AT
AU
BB
BE
BF
BG
B)
BR
BY
CA
CF
CG
CH
Cl
CM
CN
Ccs
cz
DE
DK
ES
F1
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cbte d'lIvoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Iraly

Japan

Kenya

Kyrgystan
Democratic People's Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Sencgal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 96/ :
18146 PCT/SE95/01452

Method of synchronization allowing state transfer

TECHNICAL FIELD OF THE INVENTION

The present invention relates to the replacement of software in
an operating computer system, and in particular, to the synchron-
ijzation of state transfer between processes within an old

software to processes within a new software.

DESCRIPTION OF RELATED ART

One aspect of computer software is that it must be periodically
updated with revisions, additions and/or deletions in order to
continue to provide adequate functionality to the user, to
optimize the software and to correct errors and discrepancies
that arise throughout the life of the software. As new features
are added to software, it is desirable to replace the old
software with the new versions as early as possible in order to
provide the user with the features of the new software.

In certain types of computing systems, such as stand-alone OT
batch processing systems, changing software from one version to
another presents few obstacles. Typically, the computer system is
merely shut down during a period of day when there is little
activity and the maintenance personnel are readily available. The
old software is then simply removed and replaced by the newer
version of the software. Thereafter, the computing system is
restarted and all future data processing is done with the new
version of the software. This procedure, of course, assumes that
the new software has been adeguately tested and debugged on an
off-line system to the point that the software personnel and the
operational management are confident that it will adequately
perform the functions for which it is intended without undue
interruptions that require halting and then re-starting the

entire computing system.

In other types of computing systems, such as modern stored
program control (SPC) telecommunications exchange systems
(commonly referred to in the industry simply as "switches"),
neither the testing of new versions of software nor the changing
of software in the system is as easy as in stand-alone or batch
processing systems. For example, new versions of software cannot
be effectively tested without being placed into actual operation

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
2

processing calls. The software must be tested while in operation
in order to determine whether the software will adequately
function under live operating conditions and whether the new
portions will properly interface with all of the other software
blocks that form a part of an operational SPC switching system.
In addition, telecommunications switching systems are virtually
never out of operation. Ideally, these systems would run
perpetually, without interruption because of the continuous need
for communications services within a community. That is, there is
a continuous flow of telecommunications traffic being processed
through the system even at off hours of the day or night and any
interruption in the operation of the switch results in a non
desired disruption of the telecommunications traffic. Such a
disruption could be extremely damaging to the system's operation
and its effectiveness, as well as its acceptance among users oOr

" costumers of the system.

These real-time requirements of telecommunications exchange
systems place severe constraints on both the testing of enhanced
versions of the software, or portions thereof, containing new or
improved functionality, as well as the substitution of software
containing error corrections or "bug fixes" in the switch without
disrupting existing telecommunications traffic being processed by
the switch. Therefore, integrating new versions of software
components or units into the system using the traditional "edit-
compile-link-load-run" approach is not desirable.

Another problem associated with the replacement of software in a
operating computer system, such as telecommunications switches,
is the state transfer between processes within the old software
to processes within the new software, and especially the
synchronization thereof. A process uses oOr comprises resource
objects, which are object types that handle information on a
hardware resource or an internal data structure. In context of
the present invention it shall be understood that state transfer
is the transfer of the state of a resource object. The state for
a resource object is characterized by being allocated or
deallocated. The state transfer between processes within the old

software to the new software is essential to the users or

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
3

customers of the system, since the state of the resource objects
can be used by and survive several transactions. The states of
the processes change over time, which makes it impossible to in
advance incorporate the states of these processes into the new
version of software, and thus if it is going to survive it has to
be transferred from the old to the new software during the
replacement thereof. What is preferred is a method that provides
the capability to modify or extend the software together with the
state transfer between the old and the new version of software
while the system is in operation, and without any need for

downtime.

Attempts have been made to solve the problems associated with
incorporating new software into operating computer systems. For
example, some advanced on-line operational systems in use today
that do not operate in stand-alone or batch fashion will solve
the problem of replacing old software in a manner that clearly
differs from the method used with stand-alone or batch systems.
However, such systems still replace software manually, although
more transparently than in stand-alone systems, by requiring that
individual users or user groups actively select whether or not to
process using the new or revised version of software. This option
may be exercised by users by modifying the concatenation of
software to be utilized by processes operating under their
individual user-id. The option remains available to users during
a fixed period of time, usually measured in weeks or months, in
which time the software migrates up several levels in the
concatenation structure after successfully operating at each
prior level without any discrepancies. Upon reaching the top
level of the concatenation, the software is declared "oper-
ational" and the older versions are no longer available to users
of the system. Insertion of new software into the system, as well
as its migration up the various levels, is controlled by a
process ©Of configuration management, a manual process of
reporting, approval, tracking software versions at each level and

implementing approved changes.

As with the methods used to update software on batch or stand-

alone systems, there are well known drawbacks to incorporating

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
4 -

new or modified software into a system in this fashion. It is
largely a manual, labour intensive system that is complex and
time consuming. It leaves the control over whether and in what
cases the system will operate with certain new software to the
users with no means of performing gradual, restricted, on-line
use so that errors do not proliferate or immediately affect all
ongoing operations. The method of controlling access to new or
revised software is directly linked and limited to the individual

user executing the software.

Further, this method does not provide any means for transferring
states from the old to the new version of software. Thus, the
state transfer from the old to the new software is lost, which of

course could affect the users in a negative way.

Other attempts to solve at least some of the problems associated
with updating software in operational computer systems have been
made. For example, in U.S. Application serial No. 07/907,294, to
Telefonaktiebolaget L M Ericsson, there is disclosed a method- for
replacing software in an operating computer system. with this
method it is possible to test and change software during actual
operation of the telecommunications switch without disrupting
ongoing telecommunications traffic through the system. This
method, however, is not directed towards transferring states from
the old to the new version of software. Even if this method
recognizes the need for such a state transfer it does not
describe any means for synchronizing the data transfer from the
old to the new software.

Therefore, it would be highly useful within in the telecommunica-
tions industry to be able to test and change software, including
state transfer of processes from the old to the new software,
during actual operation of the telecommunications switch without
disrupting ongoing traffic through the system. The present

invention provides such a method.

SUMMARY OF THE INVENTION
The dynamic behaviour of computing systems such as SPC telecom-
munications switching systems can essentially be described as a

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
5

series of parallel, relatively independent transactions (also
referred to a "threads" or "chain of events") wherein every
transaction consists of a number of related activities. A
transaction typically performs a job that is visible and func-
tionally useful to the external user of the system. In a
telecommunications switching system a typical transaction may be

a call.

Oonline software replacement using the smooth change techniques
with state transfer in accordance with the present invention uses
transaction oriented software together with a memory capable of
storing both old and new software versions at the same time. A
smooth change which transfers states to a new version is accom-
plished by allowing ongoing transactions, i.e, "old traffic", to
run to completion using the old software version. Transactions

" started after the software change has begun, i.e., "new traffic",

will in a gradual and controlled way be run using the new
software version. The processes containing the states which are
to be transferred from the old to the new version of software
are, at the beginning of the software change, in the control of
the old software. By means of different synchronization signals
the new software will be able to access the states of the
processes in control of the old software on an *as needed basis",
so as to finally become the owner of the processes containing the
updated states, given that the testing of the new software
proceeds without any disturbances.

Principal requirements satisfied by the smooth software change
techniques with state transfer of the present invention include
minimal or no user disturbance and a high level of system
availability. Principal characteristics of the present invention
include the facts that: (1) minimal or no disturbance is
experienced by an individual user of the system during 2
transaction (e.g. call) because one and only one software version
controls each specific transaction, i.e. the system uses either
the old or the new software version from the start to the end of
the transaction; (2) no unavailability is experienced by an
individual user of the system because of the software change

since both software versions are used in parallel during the

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
6

change; and (3) no states of the processes within the o0ld
software are lost because of the controlled state transfer
between the old and the new versions of software.

The states of the processes which have to be treated and
transferred by the system can in this context be separated into
two different classes: (1) dynamic processes which are created
and used during a transaction and which are deleted after the
transaction is completed; and (2) static processes which are used
by and survives several transactions, for example in telecom
systems, processes containing states about subscriber numbers
connected to the system or short numbers used by certain sub-

scribers.

A crucial problem associated with online software replacement

" where minimal disturbance is required is that the state of the

old software version has to be transferred to the new software
version. Since both the old and the new software are operating
parallel during the software change there clearly is no need for
transferring dynamic processes, 1i.e. the process will be
completed in the software version in which it was started.
However, to be able to control in which version of the software,
for example a new call, will be executed a selection point has to
be provided to direct the traffic to the appropriate version of

software.

The present invention provides a mechanism to identify which
software version is to be used during system upgrade. Besides
normal traffic test traffic also has to be identified at the
selection point and then be directed to the new version of
software which has to be tested before it executes normal (live)

traffic.

In another aspect, the method of the present invention also
provides means to synchronize the state transfer of static
processes within the old to the new version of software. The
synchronization of state transfer between processes executing in
the old and the new software according to the present invention

comprises the following operations.

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
7

PrepareShutdown is the first operation on a static process
declared in old software, i.e. the software to be replaced due to
system upgrade. This operation prepares the application for a
forthcoming termination of the software to be replaced. After
receiving the PrepareShutdown signal the static process'in the
old software publishes or activates an application specific
interface for the transfer of resource objets (states). A
resource object is an object type whose main purpose is to handle
information on a hardware resource or an internal data structure,
i.e. with the transfer of a resource object the state of such

information is transferred.

After completion of this first operation the static process for
the application within the new software is started and the new
static process is called with test traffic and gets necessary
resources from the old static process through the interface for
state transfer owned by the old static process. If the test
traffic runs without disturbances on the new software normal
traffic will be executed by the new version of software, but the
interface for state transfer is still owned by the old static

process.

If this normal traffic also proceeds without any disturbances a
Takeover signal is applied to the static process within the new
software. With this operation the new software will get the
control of all remaining resources from the old static process
through the interface for state transfer owned by the old static

process.

Thereafter the operation CommitShutdown is applied to the old
static process. The application then removes it's interface for

state transfer published or activated with the operation prepare

shutdown.

At last the operation CommitTakeover 1is applied to the new
version of software. The new static process is informed that the
new software is committed. Processes that are dependent on old

software system parts are terminated.

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
8

If the new software does not function properly the upgrading
procedure may be reversed. If the reversion is made before the
operation TakeOver it is possible to carry out this reversion
without any disturbances for the users. The reversion is carried
out by applying the operation CommitTakeover to the old version
of software instead of the new version of software.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention and further
objects and advantages thereof, reference can now be made to the
following description, taken in conjunction with the accompanying

drawings in which:

FIG. 1 shows a general telecommunications system;

FIG. 2 shows the system architecture in a general tele-
communications system;

FIG. 3 shows a block diagram illustrating an exemplary
procedure for redirecting processing from an old
software unit to a new software unit;

FIG. 4 shows the synchronization during system upgrade
without reversion according to the present inven-
tion;

FIG. 5 shows the synchronization during system upgrade
with reversion according to the present inven-
tion;

FIG. 6 shows the synchronization and state transfer
during system upgrade;

FIG. 7a-7n shows a practical example in which the smooth
system upgrade method is applied on a resource

server.

PREFERRED EMBODIMENT

The method according the present invention for replacement of old
with new software, including state transfer, could, by way of an
example, be used in a SPC telecommunications exchange system,
hereinafter referred to as switch. A general telecommunication
system, including a switch 2, distributed processors 4, applica-
tion software 6, data bases 8 and telephones 10 is depicted in

figure 1. The switch 2 is connected to one Oor more processors 4.

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
9

The processors 4 are also connected to application software 6,
and to databases 8, as known in the art.

To fully understand how the method according the present
invention could be applied in such a system the system architec-
ture, shown i figure 2, will now be described.

The most basic element in this structure is the operating system,
in which the most basic functions are incorporated. The operating
system according to the present invention comprises, for example,
a function called System Upgrade. The System Upgrade function,
which for example could be realized with object oriented
programming, such as C++, is used by the method of the present
invention. The System Upgrade function is closer described in
U.S. Application serial No. 07/907,294, entitled "System for

" changing software during computer operation", to Telefonaktiebol-

aget L M Ericsson, hereby incorporated as reference. On top of
the operating system is the application software, which in this
example is divided in two parts, namely a part common to all
software applications (APP), such as #7 signalling which is a
standard used for communication in telecommunications systems,
and the specific software for each application, such as ISDN,
POTS, GSM, VLL etc.

The software that is most frequently replaced or upgraded, for
example in the above mentioned telecommunication system, is the
application software, such as ISDN, GSM etc. In context of the
present invention it shall be understood that a software
replacement oOr upgrading could be anything from replacing the
whole application software to a small portion thereof.

With the method according to the present invention a new version
of software will co-exist with the old version during upgrading.
In this way it is possible to test new software with test
traffic, while the normal traffic runs on the old version of
software. If a fault occurs which can be associated with the new
software, the upgrade will be reversed and the new software will
be removed. Reversion during system upgrade 1is initiated by

internally detected anomalies within the system upgrade software.

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
10

Fault management can force a reversion and the maintenance
engineer is also given the possibility to break an upgrade and
thereby reversion.

As mentioned above it is typical to replace only part of the
software at a time. The software to be replaced is referred to as
a change unit. In figure 3 there is shown an unchanged software
unit 20 coupled through an addressing mechanism 22, called a
direction point, to an old change unit 12 and a new change unit
14. Unchanged interfaces 16 and 18 link the old change unit 12
and the new change unit 14 to the addressing mechanism 22. Figure
3 jillustrates the case in which there is a change unit in both
the old software version, i.e. there is an old change unit 12,
and in the new version of software, i.e. there is a new change
unit 14. The new change unit 14 is by definition chosen to have

" an interface 16 that is compatible with the existing interface 18

to the unchanged software 20. This means that the unchanged
software is able to cooperate with both the old and the new

software version (change unit).

This aspect of the present invention, i.e., providing for the
dynamic direction or re-direction of transactions, is facilitated
by the introduction and use of direction points. These direction
points consist of the places in the distributed system at which
transactions may be directed in a particular way. The addressing
mechanism 22 as illustrated in figure 3 represents the implemen-
tation of the direction points and the means by which the
system's transactions are individually directed to either the new
or old software version. These direction points are capable of
operating in three different ways. First, they may be triggered
by analysing the function name associated with the traffic being
processed by the system. According to this method of operation,
traffic can be directed to either a new or old software version
of the particular function required to perform the necessary
processing. Second, transactions can be directed to execute a new
or old software version of a program based upon information
supplied as a result of runtime linking of the software.

Two different cases of synchronisation will now be described, one

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
11

without reversion, which implies a successful upgrade and one
when reversion is initiated during the system upgrade. The first
case without reversion is shown in figure 4 and the second case
with reversion is shown in figure 5. In the figures a process is
symbolically shown by a rectangle having cut away corners. A
resource may Own one Or more resource objects. Examples of
resource object are time slots, voice prompting equipment, etc..

Figure 4 shows the different phases of and the synchronization
during a system upgrade without reversion when an old version of

software is replaced by a new version of software.

During phase 1 the old static processes within the old software
are called with a PrepareShutdown signal before the new software
is loaded and new static processes are started. The static

- process within the old software will by means of that signal be

aware of it's forthcoming termination and removal and prepares
for the transfer of states. The old static process publishes or
activates an application defined interface for transferring- the
state of resource objects. With publication is meant defining the
way the process communicates with other processes. This interface
may later be called by the static process within the new version
of software, for allocating resource objects. The old static
process may also inform neighbouring processes, for example a
distributor process, about a forthcoming termination so that
routing can be done towards redundant alternatives, according to
the above mentioned U.S. Application serial No. 07/ 907,294.
During phase 1 all traffic will be handled as usual by the old
version of software. This first phase comes to an end when the

new software has been loaded.

In phase 2 the static processes within the new software are
started in a state different from initial start. Instead the
static processes have to be started in a way that indicates that
there will be a transfer of states between the old and new static
processes within the old respectively the new version of
software. During this phase the new static process receives test
traffic and subsequently normal (live) traffic, if the execution
of test traffic proceeds without any disturbances. The synchron-

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
12

ization of state transfer during test traffic will be described
in greater detail in conjunction with figure 6, which describes
state transfer during system upgrade. During this second phase
normal traffic will first be handled by the o0ld version of
software, simultaneously with the test traffic handled by the new
version of software. Thereafter all "new" traffic initiated after
the test traffic has come to an end will be handled by the new
software. The "old" traffic, i.e. the normal traffic prior to the
ending of the test traffic, will be handled by the old version of
software until it terminates.

Since this example describes the system upgrade without reversion
the test traffic and also the normal traffic executed thereafter
proceeds without any disturbances. Therefore, in phase 3 the
static processes within the new software are ordered to claim all
resource objects of the static processes within the old software
with a Takeover signal. This is the first operation introduced by
the System Upgrade function on static processes declared in the
new software. The application defined interface published or
activated for state transfer is called by this new static process
for transferring the control of resource objects and taking over
all resource objects. During this third phase almost all traffic
will be handled by the new software, except for the remaining old
traffic handled by the old software.

In phase 4 the old processes are ordered to remove all services,
i.e. there are no more resource objects available to the old
processes, with a CommitShutdown signal. There are two different
criteria which could be used regarding the time when this
CommitShutdown signal should be applied to the old processes.
Firstly, this signal can be applied to the old processes when all
of the old traffic handled by the old software has terminated.
This ensures that no ongoing traffic will be disturb during
system upgrade, since the services of the old software not will
be removed until there is no more traffic to handle. Secondly,
this signal can be applied to the old processes after a certain
time has elapsed starting from the time when system upgrade is
initiated. This will often give a much faster upgrading pro-

cedure, but also a risk of loosing some traffic (calls). When the

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
13

services have been removed the interface used for‘transfer of
resource objects is withdrawn. After the CommitShutdown signal
has been given all traffic will be handled by the new version of
software.

Thereafter, in phase 5, the old software is blocked and removed
and in phase 6 the new process now is the sole owner of the
resource objects previously claimed from the old process. This is
indicated by the CommitTakeover signal to the new process. This
signal is sent when the System upgrade function is committed and
the static process will survive the upgrade.

Figure 5 shows the different phases of and the synchronization
during a system upgrade with reversion when an old version of
software is replaced by a new version of software. The main

- difference of this case compared with that of figure 4 is the

receiver of the CommitTakeover signal. In this case the static
process executing in old software is the receiver and the owner
of the resource objects. Reversion could be initiated either by
the operation and maintenance technician or be carried out

automatically.

The reversion during system upgrade can be carried out at any
time prior to the CommitShutdown signal, which is applied to the
old static process as described above in conjunction with figure
4. Depending on in which phase the upgrading procedure is
reversed the result will differ. Referring to figure 5, two
different cases of reversion will be described.

In the first case, shown with an afrow CommitTakeover 1,
reversion is carried out in phase 2, i.e. before the new static
process receives the Takeover signal. During phase 2 first test
traffic and then normal traffic will be handled by the new static
processes. If, during the test traffic period, problems will
arise due to the new software reversion will be initiated by
applying the CommitTakeover signal to the old static processes,
either automatically or by the upgrading engineer. Since the old
static processes at this instance still are the owners of all

resource objects no states of the o0ld static processes will be

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
14

lost due to reversion. The only thing that will happen is that
the test traffic will be halted. The time during test traffic is
the most common and also the most suitable to carry out rever-
sion, since the users not in any way are affected by it.
Reversion can also take place somewhat later in phase 2, i.e. at
the time when the new software starts to execute normal traffic.
If reversion is carried out during this time, still no states of
the old static processes will be lost due to reversion. 1f there
are severe problems with the new software there could be a
problem in executing the ongoing normal traffic, but the new
software will try to handle the normal traffic until it termin-
ates. All normal traffic beginning after reversion, i.e. after
the signal CommitTakeover has been applied to the old static
processes, will be handled by the old software.

In the second case, shown with an arrow CommitTakeover 2,
reversion will be carried out after the signal Takeover has been
applied to the new static processes, i.e. in phase 4. After the
Takeover signal the new software, as described above, has taken
control over all resource objects. A reversion, by applying the
signal CommitTakeover to the old static processes, is possible
but the states in the new static processes that have been changed
during the time between the Takeover signal and the CommitTake-
over signal will be lost.

Reversion could also be done after the signal CommitShutdown has
been applied to the old static processes, but all states will be
lost, since the old software has to be initially started.

Referring to figure 6, the synchronization of state transfer
during system upgrade will be described. The state transfer
interface, which is activated or published during phase 1
described above, must be specified by the application to make it
possible for the new static processes to coordinate and transfer
the control of resource objects from the old processes. In figure
6 and the description below the following generic operations

within that interface will be used.

GetResource, which operation transfers the control of a specific

10

15

20

25

30

WO 96/18146 PCT/SE95/01452
15

resource object from an old static process to a new. This
operation is called when the new static process needs a specific
resource object in control of the old static process.

GetAnyResource, which operation transfers the control of a any
resource object from an old static process to a new. This
operation is called when the new static process needs any
resource object in control of the old static process.

GetAllResources, which operation transfers the control of state
information for all the remaining resource objects in the old
static processes to the new static processes. This operation can
only be carried out after that the new static processes have

received the signal Takeover.

The synchronization and state transfer during system upgrade will
now be described closer in conjunction with figure 6, in which
the upgrading procedure is divided in 8 phases.

Before the upgrading procedure starts traffic will run as normal
on the old software. In phase 1 the old static process 1is
informed about the forthcoming termination due to system upgrade
with the operation PrepareShutdown, after which the application
activates or publishes the interface for state transfer making
the following system upgrade possible, as previously described.
Then in phase 2 the static process for the application within the
new software is started. The port name activated or published in

this phase is the same as for the old software.

Thereafter the new software is ready to receive test traffic in
phase 3. The test traffic can either be computer generated or be
n1ive" traffic preformed by the operation and maintenance
engineer. During the test traffic period the new software will
need resource objects owned by the static processes of the old
version of software. The new static processes get the necessary
resource objects from the old static processes with the operation
GetAnyResource through the interface for state transfer. Even if
the new static processes have access to the resource objects they

are still owned by the old static processes.

10

15

20

25

30

35

WO 96/18146 PCT/SE95/01452
16

I1f the test traffic period proceeds without any disturbances the
new static processes will be called with normal traffic, phase 4,
and get necessary resource objects from the old static processes
by either the operation GetResource or GetAnyResource through the
interface for state transfer. During this period when new traffic
is being handled by the new software the state of the resource
objects that have been claimed by the new static processes, but
still are owned by the old static processes, could change. This
change is transferred back to the o0ld static processes, since
they are the owners of the resource objects. If this is not done
this updated state information would be lost if a reversion
becomes necessary. After this phase reversion without the risk of
loosing state information is not longer possible.

In phase 5 the new static processes are called with the System
Upgrade function TakeOver, which in turn activates the operation
GetAllResources. The new static processes will now have the
control of all the resource objects from the old static pro-
cesses. In phase 6 the old static processes are called with the
operation CommitShutdown and the application removes the
interface activated or published in phase 1. Thereafter, in phase
7, the old static processes will be terminated by the System
Upgrade function. In the last phase 8 the new static processes
are informed by System Upgrade that the new software are
committed. Process dependent on old software system parts will be

terminated.

Below a practical example were the smooth system upgrade method
is applied on a resource server will be described in conjunction
with figures 7a-7n. A resource server is a static process which
controls allocation and deallocations of pool resources. Pool
resources are those resource objects which are mutually equival-
ent, i.e all resource objects within a pool are interchangeable,
for example DTMF-receivers, channels in a route or echo
cancellers. In figure 7 an R will designate an object represent-
ing a pool resource. If the resource is idle it has a 1light
background, as in the left hand side of figure 7a, if the
resource is allocated it is shaded, as in the right hand side of
figure 7a and a resource not in control of the resource server is

10

15

20

25

30

WO 96/18146 PCT/SE95/01452
17

drawn with dashed lines as in the right hand part of figure 7c.

Before activating System Upgrade allocating and deallocating
resources is performed in the normal way, figure 7a. If a
requested resource is impossible to allocate the requesting
process is informed about the lack of resources. This behaviour
is unchanged even if there is an ongoing System Upgrade and the
allocation is done through the interface for state transfer.

The smooth System Upgrade method applied on the resource server
will be described in correspondence to the 8 phases described in

conjunction with figure 6.

As shown in figure 7b the application is informed about a
termination due to System Upgrade. The resource server publishes
the interface for state transfer after receiving the signal
PrepareShutdown, as described above. Thereafter, as shown in
figure 7c, a new resource server is started in phase 2. The
resources in the new resource server are as shown in figure 7c
resources not in control by the resource server. The old resource
server still executes calls for allocating and deallocating

resources as usual.

In phase 3, test traffic is routed against the new resource
server, while normal traffic is routed against the old resource
server, as shown in figure 7d. The control of a resource needed
by the new resource server is fetched via the interface for state
transfer by the operation GetResource. As shown in figure 7e, the
resources requested by the test traffic in figure 7d are

allocated in the new resource server.

After the test traffic has successfully been handled by the new
resource server normal traffic will be directed against the new
resource server in phase 4, shown i figure 7f. The control of a
resource is fetched when needed via the interface for state
transfer with the operation GetAnyResource. There are two
possibilities in phase 4. The resource is allocated and deal-
located from the new resource Server, shown in figures 7g and 7h.

The resource in the lower right corner is allocated in figure 7g

10

15

20

25

30

WO 96/18146 PCT/SE95/01452
18

and returned in figure 7h. The other case is if the resource is
allocated earlier in phase 3 with the old resource server and
then deallocated in the new resource server. In this case the new
resource server requests control of this specific resource
through the interface for state transfer with the operation
GetResource, which is shown i figure 7i. The resource in the
upper left corner is reserved in phase 1, figure 7b, in the old
resource server and returned to the new resource server in phase
4. The control of the resource is requested via the interface for
state transfer with the operation GetResource.

In phase 5, figures 7j and 7k, the control of all remaining
resources are fetched via the interface for state transfer. The
new resource server is called by the System Upgrade function with
the operation Takeover and the remaining resources are fetched

. via the interface for state transfer with the operation GetAll-

Resources, figure 7j. After the GetAllResources operation the new
resource server is in control of all the resources, which is
shown i figure 7k with the transfer of the resource in the lower

left corner to the new resource server.

In phase 6, shown i figure 71, the old resource server is called
from System Upgrade with the operation CommitShutdown, as
previously described in conjunction with figure 6. In phase 7,
shown in figure 7m, the old resource server is terminated by the
System Upgrade function. In the final phase 8 the dynamic process
dependent on the old software system parts are terminated by the
System Upgrade function CommitTakeover.

It is thus believed that the method of the present invention will
be apparent from the foregoing description. While the method
shown and described has been characterized as being preferred, it
will be readily apparent that various changes and modifications
can be made therein without departing from the spirit and the

scope of the invention as defined in the following claims.

10

15

20

25

30

WO 96/18146 PCT/SE95/01452
19

CLAIMS

1. Method of synchronization allowing state transfer of
resource objects from an old static process declared in an old
software version to a new static process declared in a new
software version during the replacement of the old with the new
version of software and without disturbing the ongoing activ-
ities, comprising the steps of

preparing the old static process within the old software for
a forthcoming shutdown, activating it for the state transfer,

preparing the new static process within the new software to
take over, transferring all resource objects in the old static
process to the new static process,

ordering the old static process to remove all services,
terminating the old static process, and

committing the new static process to take over, indicating
that the new static process is the sole owner of all the resource
objects previously claimed from the old static process.

2. Method of synchronization according to claim 1, wherein the
step of preparing the old static process for shutdown comprises
activating or publishing an interface for state transfer.

3. Method of synchronization according to claim 2, wherein the
step of preparing the new static process to take over comprises
allocation and deallocation, through the interface for state
transfer, of certain resource objects in the old static process
needed by the new static process during a period when the new

static process receives test data.

4. Method of synchronization according to claim 3, wherein in
response to a successful processing of test data by the new
software all resource objects are transferred from the old to the

new static process.

5. Method of synchronization according to claim 3, wherein in
response to an unsuccessful processing of test data the new

software is removed and the resource objects remain in control of

the old software.

10

15

20

25

30

WO 96/18146 PCT/SE95/01452
20

6. Method of replacing a old version of software with a new
version of software in a telecommunications system, without
disturbing the ongoing activities, comprising the steps of

preparing the old static process within the old software for
a forthcoming shutdown, activating it for the state transfer,

loading the new software into said telecommunications
system, while the old software processes normal traffic,

testing the new software with test traffic in parallel with
the processing of normal traffic on the o0ld software,

processing new normal traffic with the new software in
parallel with the processing of old normal traffic with the old
software,

preparing the new static process within the new software to
take over, transferring all resource objects in the old static
process to the new static process,

ordering the old static process to remove all services,
terminating the old static process, and

committing the new static process to take over, indicating
that the new static process is the sole owner of all the resource
objects previously claimed from the old static process.

7. The method according to claim 6, wherein the step of
preparing the old static process for shutdown comprises activat-
ing or publishing an interface for state transfer.

8. The method according to claim 6 or 7, wherein the step of
testing the new software. comprises allocation and deallocation,
through the interface for state transfer, of certain resource
objects in the old static process needed by the new static

process during the period of test traffic.

9. Method according to claim 8, wherein in response to a
successful processing of test traffic by the new software all
resource objects are transferred from the old to the new static

process.

WO 96/18146 PCT/SE95/01452
21

10. Method according to claim 8, wherein in response to an
unsuccessful processing of test data the new software will be
removed and the resource objects will remain in control of the

old software.

WO 96/18146 PCT/SE95/01452

1/8

D
2 2| N
10 10
Figure 1
= 7]
2 5 |8 |2
APP

Operating System

Figure 2

WO 96/18146 PCT/SE95/01452

2/8

20

16
—] 14
Figure 3
Process executing Process executing
in old software in new software
PrepareShutdown
—————e -
Phasel
Static
Phase2 ..
Static
Takeover
Phase? @
Static
ComumitShutdown
Phase4 f |
Static Static

|

_ \

Phase5 ' i
Static /,/‘

ComumitTakeover

Phase6
Static

Figure 4

WO 96/18146 PCT/SE95/01452

3/8

Process executing I’rocess executing
in old software : in new software

PrepareShutdown
——
Phasel

Static

.

CommitTakeover 1
Phase2 :

Static Static

Takeover

Phase3 : “I..
Static

CommitTakover 2 . .

Phased . e

Figure 5

WO 96/18146 PCT/SE95/01452
4/8

Process executin;
new software

State transfer
interface

Phase 2

Phase 3

Phase 4

Phase 5

Traffic

CommitShutdown

Phase 6
Normal
Traffic

Phase 7 b
Norxﬁal
Traffic

CommitTakeover
Phase 8 :

Normal
Traffic

Figure 6

WO 96/18146

5/8

Calls for allocating/
deallocating resources

Fig. 7c

Calls for allocating/
deallocating resources

Calls for allocating/
deallocating resources

PCT/SE95/01452

Fig. 7a
Fig. 7b

A new Resource Server is started

New Resource Server

Normal calls for allocating/ Test calls for allocating/

deallocating resources

deallocating resources

WO 96/18146

Fig. 7f

Fig. 7g

6/8

PCT/SE95/01452

New Resource Server

Normal calls for allocating/ Test calls for allocating/

deallocating resources

deallocating resources

New Resource Server

Calls for allocating/
deallocating resources

New Resource Server

Calls for allocating/
deallocating resources

New Resource Server

Calls for allocating /
deallocating resources

WO 96/18146

Fig. 7k

7/8 PCT/SE95/01452

New Resource Server

Calls for allocating /
deallocating resources

New Resource Server

Calls for allocating/
i deallocating resources

New Resource Server

Calls for allocating/
deallocating resources

WO 96/18146

Fig. 71
Fig. 7m
Fig. 7n

8/8

[RrVSR VR PR PRS U e Y

PCT/SE95/01452

New Resource Server

Calls for allocating/
deallocating resources

New Resource Server

Calls for allocating /
deallocating resources

New Resource Server

Calls for allocating/
deallocating resources

1
INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 95/01452

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: GO6F 9/445, H04Q 3/545

According to International Batent Classification

(IPC) or to both national classification and 1PC

B. FIELDS SEARCHED

IPC6: GO6F, H04Q

Minimum documentation searched (classification system followed by classification symbols)

SE,DK,FI,NO classes as above

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Blectronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

13 October 1992 (13.10.92)

Category®| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5155837 A (CHENG-CHUNG LIU ET AL), 1-10

13 October 1992 (13.10.92)
A US 5155847 A (DONALD L KIROUAC ET AL), 1-10

D Further documents are listed in the continuation of Box C.

m See patent family annex.

. Special categories of cited documents:

*A” document defining the general state of the art which is not considered
to be of particular relevance

erlier document but published on or after the international filing date
document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referting 10 an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later than
the priority date claimed

R~
L3 0

0"
»p*

T later document published after the international filing datc or neonis
date and not in conflict with the application hul cuicd Lo undc <
the principle or theory underlying the invenuon

“X” document of particular relevance: the claimed invention cannat »e
considered novel or cannot be considercd to involve an inventive
step when the document is taken alone

“¥* document of particular relevance: the claimed inveairon Cinie by
considered to involve an invenuve step when the b s
combined with one or more other such docureniy, s vt
being obvious o a person skitled i1 Ui

“&” document member of the samc palent oy

Date of the actual completion of the international search

26 April 1996

Date of mailing of the international search repan

29 -04-19%

Name and mailing address of the ISA/

Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM

Facsimile No. +46 8 666 02 86

Authorized officer

Jan Silfverling
Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

01/04/96 |PCT/SE 95/01452
Patent document Publication Patent family Publication
cited in search report date member(s) date
US-A- 5155837 13/10/92 CA-A- 1326302 18/01/94
US-A- 5155847 13/10/92 CA-A- 1310131 10/11/92

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

