
JP 5039130 B2 2012.10.3

10

20

(57)【特許請求の範囲】
【請求項１】
　データ処理システムにおけるデータ処理の方法であって、データ処理システムが、
　信号グループ名によって信号グループを指定する少なくとも１つのエントリを含むデー
タ・セットを入力として受け取るステップと、
　前記データ・セットの受け取りに応答して、
　　前記データ・セット内の前記少なくとも１つのエントリを処理して、前記信号グルー
プ名を識別するステップと、
　　前記識別された信号グループ名に対応する信号グループに含まれる信号の信号名を、
シミュレーション結果を含むイベント・トレース・ファイルに関連付けられた信号グルー
プ情報から決定するステップと、
　　前記複数の信号のインスタンスに関連付けられた前記イベント・トレース・ファイル
からの１以上のシミュレーション結果を、プレゼンテーションに含めるステップと、
　リネームから関連する信号名が保護されることになる特定の信号を識別する保護指示を
受け取るステップと、
　前記保護指示に応答して、前記プレゼンテーションにおいて前記関連する信号名によっ
て前記信号を識別するステップと
　を実行することを含む、前記方法。
【請求項２】
　前記信号グループが第１の信号グループを備えており、

(2) JP 5039130 B2 2012.10.3

10

20

30

40

50

　前記第１の信号グループが、前記複数の信号をメンバとして集合的に有する第２および
第３の信号グループを備えている、
　請求項１に記載の方法。
【請求項３】
　前記データ・セットは、信号インスタンス化識別子、信号グループ・インスタンス化識
別子、及び、参照有効範囲コマンドを含み、
　前記データ処理システムが、
　前記データ・セット内の参照有効範囲コマンドを解釈して、前記インスタンス化識別子
又は信号グループ・インスタンス化識別子の中からユーザに提示する識別子を選択するス
テップ
　をさらに実行することを含む、請求項１又は２に記載の方法。
【請求項４】
　データ処理システムに、請求項１～３のいずれか一項に記載の方法の各ステップを実行
させるコンピュータ・プログラム。
【請求項５】
　データ処理システムに、請求項１～３のいずれか一項に記載の方法の各ステップを実行
させるコンピュータ・プログラムを記録したコンピュータ読み取り可能な記録媒体。
【請求項６】
　データ処理システムであって、
　プロセッサと、
　前記プロセッサに結合されたデータ・ストレージと
　を備えており、
　前記データ・ストレージが、
　　前記データ処理システムに、請求項１～３のいずれか一項に記載の方法の各ステップ
を実行させるプログラム・コード
　を含む、前記データ処理システム。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、一般に、デジタル・デバイス、モジュール、およびシステムのシミュレート
に関し、具体的には、デジタル・デバイス、モジュール、およびシステムのコンピュータ
・シミュレーションに関する。
【背景技術】
【０００２】
　デジタル設計の論理的正確さの検証、および、必要であれば設計のデバッグは、ほとん
どのデジタル設計プロセスにおいて非常に重要なステップである。論理ネットワークは、
実際にネットワークを構築すること、またはコンピュータ上でネットワークをシミュレー
トすることの、いずれかによってテストされる。論理ネットワークが非常に複雑になるに
つれて、設計が実際に構築される前に設計をシミュレートすることが必要になってきてい
る。これは特に、集積回路の製造にかなりの時間を必要とし、ミスの訂正にかなりのコス
トがかかることから、設計が集積回路として実装される場合に当てはまる。デジタル設計
シミュレーションの目的は、設計の論理的正確さの検証である。
【０００３】
　従来の電子コンピュータ支援設計（ＥＣＡＤ）システムによってサポートされる典型的
な自動設計プロセスでは、設計者は、ＶＨＤＬなどのハードウェア記述言語（ＨＤＬ）を
使用して高水準の記述を入力し、様々な回路ブロックおよびそれらの相互接続の表現を生
成する。ＥＣＡＤシステムは、設計記述を、シミュレーションに最適なフォーマットにコ
ンパイルする。次にシミュレータを使用して、回路レイアウトを展開するのに先立って設
計の論理的正確さを検証する。
【０００４】

(3) JP 5039130 B2 2012.10.3

10

20

30

40

50

　シミュレータとは、典型的には、デジタル表現、または回路のシミュレーション・モデ
ル、およびデジタル・システムの入力を表現する入力刺激（input stimuli）のリスト（
すなわちテストケース）で動作する、ソフトウェア・ツールである。シミュレータは、回
路の応答の数値表現を生成し、これが、値のリストとしてディスプレイ画面上に表示され
るか、または、しばしば別のソフトウェア・プログラムによってさらに解釈され、グラフ
の形でディスプレイ画面上に提示される可能性がある。シミュレータは、シミュレーショ
ン用に特別に設計された、汎用コンピュータまたは通常は汎用コンピュータに接続された
他の電子装置上で、実行可能である。全体として汎用コンピュータ上のソフトウェア内で
実行するシミュレータを、以下では「ソフトウェア・シミュレータ」と呼ぶ。特別に設計
された電子装置の支援を受けて実行されるシミュレータを、以下では「ハードウェア・シ
ミュレータ」と呼ぶ。
【０００５】
　通常、ソフトウェア・シミュレータは非常に多くの計算を実行し、ユーザの観点からゆ
っくりと動作する。性能を最適化するために、シミュレーション・モデルのフォーマット
は、シミュレータが非常に効率良く使用するように設計される。ハードウェア・シミュレ
ータは、本質的に、回路記述を備えるシミュレーション・モデルが特別に設計されたフォ
ーマットで通信されることを必要とする。いずれの場合も、以下ではシミュレーション実
行可能モデルと呼ばれる、ＨＤＬ記述からシミュレーション・フォーマットへの変換が必
要である。
【０００６】
　シミュレータによるシミュレーション実行可能モデルへのテストケースの適用の結果は
、本明細書では「全イベント・トレース」（ＡＥＴ）と呼ばれる。ＡＥＴは、シミュレー
ション実行可能モデル内の信号あるいはストレージ要素またはその両方の論理値を含む。
ＡＥＴビューアは、再検討および分析のためにＡＥＴのコンテンツによってユーザに提示
するために使用することができる。
【０００７】
　大規模なシミュレーション実行可能モデルの場合、莫大な量のデータがＡＥＴに存在す
ることになり、それらのすべてがユーザに関係する訳ではないことを理解されよう。した
がって従来のＡＥＴビューアでは、ユーザは、ユーザが表示したいシミュレーション実行
可能モデル内の信号を指定する入力／出力（Ｉ／Ｏ）リストを入力することができる。こ
れに応答して、従来のＡＥＴビューアは、Ｉ／Ｏリスト内で識別されたシミュレーション
実行可能モデル内の信号のみをユーザに提示する。
【発明の開示】
【発明が解決しようとする課題】
【０００８】
　本発明は、特に複雑なシミュレーション実行可能モデルの場合、Ｉ／Ｏリストの（たと
えばキーボードを利用した）ユーザ入力が退屈で時間のかかるものであることを理解して
いる。したがって本発明は、シミュレーション処理のための方法、システム、およびプロ
グラム製品を提供する。
【課題を解決するための手段】
【０００９】
　本発明は、データ処理システムにおけるデータ処理の方法であって、データ処理システ
ムが、
　信号グループ名によって信号グループを指定する少なくとも１つのエントリを含むデー
タ・セットを入力として受け取るステップと、
　前記データ・セットの受け取りに応答して、
　　前記データ・セット内の前記少なくとも１つのエントリを処理して、前記信号グルー
プ名を識別するステップと、
　　前記識別された信号グループ名に対応する信号グループに含まれる信号の信号名を、
シミュレーション結果を含むイベント・トレース・ファイルに関連付けられた信号グルー

(4) JP 5039130 B2 2012.10.3

10

20

30

40

50

プ情報から決定するステップと、
　　前記複数の信号のインスタンスに関連付けられた前記イベント・トレース・ファイル
からの１以上のシミュレーション結果を、プレゼンテーションに含めるステップと、
　リネームから関連する信号名が保護されることになる特定の信号を識別する保護指示を
受け取るステップと、
　前記保護指示に応答して、前記プレゼンテーションにおいて前記関連する信号名によっ
て前記信号を識別するステップと
　を実行することを含む、前記方法を提供する。
【００１０】
　例示的方法によれば、所定の信号グループ名によって信号グループを指定する少なくと
も１つのエントリを含むデータ・セットが、データ処理システムによって受け取られる。
このデータ・セットの受け取りに応答して、信号グループ名を識別するためにデータ・セ
ット内のエントリが処理される。信号グループのメンバである複数の信号の信号名を特定
するために、シミュレーション結果を含むイベント・トレース・ファイルに関連付けられ
た信号グループ情報にアクセスする。その後、当該複数の信号のインスタンスに関連付け
られたイベント・トレース・ファイルからのシミュレーション結果が、シミュレーション
結果のプレゼンテーションに含められる。
　本発明のすべての目的、特徴、および利点は、以下の詳細な説明で明らかになろう。
【００１１】
　本発明の新規な機能であるとみなされる特徴は、添付の特許請求の範囲に示される。し
かしながら、本発明それ自体、ならびに好ましい使用モード、それらの他の目的および利
点は、添付の図面に関して例示的実施形態の以下の詳細な説明を参照することによって、
最も良く理解されるであろう。
【発明を実施するための最良の形態】
【００１２】
　次に図面を参照すると、また特に図１を参照すると、これによって本発明が有利に使用
できる、データ処理システム１０の絵画図が示されている。図に示されるように、データ
処理システム１０は、１つまたは複数のノード１３が接続されたワークステーション１２
を備える。ワークステーション１２は、好ましくは、ニューヨーク州アーモンクのインタ
ーナショナル・ビジネス・マシーンズ（ＩＢＭ）（登録商標）コーポレーションから入手
可能なＰＯＷＥＲライン・コンピュータ・システムのうちの１つなどの、高性能マルチプ
ロセッサ・コンピュータを備える。ワークステーション１２は、好ましくは、本発明の方
法およびシステムに従ってデジタル回路設計を開発および検証するために使用可能なＥＣ
ＡＤシステムを備えるソフトウェア・アプリケーションを格納するための、不揮発性およ
び揮発性の内部ストレージを含む。図に示されるように、ノード１３は、ディスプレイ・
デバイス１４、キーボード１６、およびマウス２０を含む。ワークステーション１２内で
実行されるＥＣＡＤソフトウェア・アプリケーションは、好ましくは、デジタル回路設計
者がキーボード１６およびマウス２０を使用して対話することが可能なグラフィック・ユ
ーザ・インターフェース（ＧＵＩ）を、ディスプレイ・デバイス１４のディスプレイ画面
２２内に表示する。したがって、キーボード１６およびマウス２０を利用して適切な入力
を実行することによって、デジタル回路設計者は、以下でより詳細に説明する方法に従っ
てデジタル回路設計を開発および検証することができる。
【００１３】
　図２は、データ処理システム１０を示すより詳細なブロック図である。図に示されるよ
うに、データ処理システム１０は、従来のマイクロプロセッサなどの１つまたは複数の中
央処理ユニット（ＣＰＵ）、および、システム相互接続２６を介して相互接続された、い
くつかの他の構成要素を含む。図２には示されていないが、ＣＰＵ　２４などのＣＰＵは
、通常、コンピュータ・メモリ内のデータおよびプログラム・ストレージを編成し、この
データおよび他の情報をコンピュータ・システムの様々な部分間で転送する、制御ユニッ
トを含む。ＣＰＵは一般に、加算、比較、乗算などの算術的および論理的演算を実行する

(5) JP 5039130 B2 2012.10.3

10

20

30

40

50

、１つまたは複数の演算論理ユニットも含む。
【００１４】
　データ処理システム１０は、ランダム・アクセス・メモリ（ＲＡＭ）２８、読み取り専
用メモリ（ＲＯＭ）３０、ディスプレイ・デバイス１４の接続をサポートするディスプレ
イ・アダプタ３２、および周辺デバイス（たとえばディスクおよびテープ・ドライブ３３
）を接続するためのＩ／Ｏアダプタ３４を、さらに含む。データ処理システム１０は、デ
ータ処理システム１０を通信ネットワークに接続するための通信アダプタ４２と、キーボ
ード１６、マウス２０、スピーカ３８、マイクロフォン４０、あるいは他のユーザ・イン
ターフェース・デバイスまたはそれらすべてを、システム相互接続２６に接続するための
、ユーザ・インターフェース・アダプタ３６とを、さらに含む。
【００１５】
　当業者であれば理解されるように、データ処理システム１０は、ＲＡＭ　２８、ＲＯＭ
　３０、磁気ディスク、磁気テープ、または光ディスク（最後の３つはディスクおよびテ
ープ・ドライブ３３内に配置される）などの、任意の好適なコンピュータ読み取り可能媒
体に常駐可能な、オペレーティング・システム（たとえばＡＩＸ）および１つまたは複数
の他のプログラムの制御の下で動作する。
【００１６】
　シミュレートされたデジタル回路設計モデルは、以下で設計エンティティと呼ばれる、
少なくとも１つ、通常は多くの、サブユニットからなる。図３は、その内部に本発明の方
法およびシステムが実装可能な、例示的設計エンティティ３００のブロック図である。設
計エンティティ３００は、エンティティ名、エンティティ・ポート、および設計エンティ
ティ３００によって実行される機能の表現という、いくつかの構成要素によって定義され
る。所与のモデル内の各エンティティは、各エンティティのＨＤＬ記述で宣言された固有
名（図３には明示的に図示せず）を有する。さらに各エンティティは、通常、ポートと呼
ばれる、エンティティ外部の信号へのいくつかの信号相互接続を含む。これらの外部信号
は、全体設計内の他のエンティティに接続している全体設計または信号の主入力／出力（
Ｉ／Ｏ）とすることができる。
【００１７】
　通常、ポートは、入力ポート、出力ポート、および双方向ポートという、３つの別個の
タイプのうちの１つに属するものと分類される。設計エンティティ３００は、設計エンテ
ィティ３００内に信号を搬送するいくつかの入力ポート３０３を有するものとして示され
る。入力ポート３０３は入力信号３０１に接続される。加えて、設計エンティティ３００
は、設計エンティティ３００外部へ信号を搬送するいくつかの出力ポート３０６を含む。
出力ポート３０６は出力信号３０４のセットに接続される。双方向ポート３０５は、設計
ポート３００の内部および外部へ信号を搬送するために使用される。双方向ポート３０５
は、双方向信号３０９のセットに接続される。設計エンティティ３００などのエンティテ
ィは、３つすべてのタイプのポートを含む必要がなく、悪くすると、まったくポートを含
まない。エンティティ・ポートの外部信号への接続を実施するために、「ポート・マップ
」と呼ばれるマッピング技法が使用される。ポート・マップ（図３には明示的に図示せず
）は、エンティティ・ポート名とエンティティが接続された外部信号との間の指定された
対応関係からなる。シミュレーション・モデルを構築する場合、ＥＣＡＤソフトウェアを
使用し、ポート・マップ指定に従って、外部信号をエンティティの適切なポートに接続す
る。
【００１８】
　最後に、設計エンティティ３００は、設計エンティティ３００によって実行される１つ
または複数の機能を記述した本体部分３０８を含む。デジタル設計の場合、本体部分３０
８は、他のエンティティのインスタンス化に加えて、論理ゲート、ストレージ要素などの
相互接続を含む。他のエンティティ内にエンティティをインスタンス化することによって
、全体設計の階層記述が達成される。たとえばマイクロプロセッサは、同一機能ユニット
の複数インスタンスを含む場合がある。したがって、マイクロプロセッサそれ自体は、し

(6) JP 5039130 B2 2012.10.3

10

20

30

40

50

ばしば単一エンティティとしてモデル化されることになる。マイクロプロセッサ・エンテ
ィティ内では、任意の重複する機能エンティティの複数のインスタンス化が存在すること
になる。
【００１９】
　次に図４を参照すると、本発明の好ましい実施形態で使用可能な例示的シミュレーショ
ン・モデル３２９の概略図が示されている。シミュレーション・モデル３２９は、複数の
階層的な設計エンティティを含む。視覚的に単純かつ明瞭にするために、シミュレーショ
ン・モデル３２９内のエンティティを相互接続するポートおよび信号の多くは明示的に示
されていない。いかなるモデルにおいても、唯一のエンティティがいわゆる「最上位エン
ティティ」である。最上位エンティティ３２０は、シミュレーション・モデル３２９内の
すべての他のエンティティを包含するエンティティである。すなわち、最上位エンティテ
ィ３２０は、設計内のすべての下位（descendant）エンティティを直接または間接的にイ
ンスタンス化する。シミュレーション・モデル３２９は、ＦＸＵエンティティ３２１の２
つのインスタンスである３２１ａおよび３２１ｂを直接インスタンス化する、最上位エン
ティティ３２０からなる。各インスタンス化は、エンティティ名および固有のインスタン
ス化名を含む関連記述を有する。最上位エンティティ３２０の場合、記述３１０は「ＴＯ
Ｐ：ＴＯＰ」とラベル表示される。記述３１０は、コロンに先行する「ＴＯＰ」としてラ
ベル表示されたエンティティ名３１２を含み、コロンに続く「ＴＯＰ」としてラベル表示
されたインスタンス化名３１４も含む。
【００２０】
　ＦＸＵエンティティ３２１のインスタンス化３２１ａおよび３２１ｂで示されるように
、特定のエンティティを複数回インスタンス化することが可能である。インスタンス化３
２１ａおよび３２１ｂは、それぞれ、インスタンス化名ＦＸＵ０およびＦＸＵ１を備えた
、ＦＸＵエンティティ３２１の別個のインスタンス化である。最上位エンティティ３２０
は、シミュレーション・モデル３２９の階層内の最高レベルにある。下位エンティティを
インスタンス化するエンティティは、以下では、下位エンティティの「上位（ancestor）
」と呼ばれる。したがって、最上位エンティティ３２０は、ＦＸＵエンティティ・インス
タンス化３２１ａおよび３２１ｂを直接インスタンス化する上位である。シミュレーショ
ン・モデル階層の任意の所与のレベルで、すべてのインスタンス化のインスタンス化名が
固有でなければならない。
【００２１】
　ＦＸＵエンティティ３２１のインスタンス化３２１ａ内では、エンティティＡ　３２５
およびエンティティＢ　３２６の単一インスタンス・エンティティ３２５ａおよび３２６
ａが、それぞれ直接インスタンス化される。同様に、同じＦＸＵエンティティのインスタ
ンス化３２１ｂは、それぞれエンティティＡ　３２５およびエンティティＢ　３２６のイ
ンスタンス化３２５ｂおよび３２６ｂを含む。同様に、インスタンス化３２６ａおよびイ
ンスタンス化３２６ｂはそれぞれ、エンティティＣ　３２７の単一インスタンスを、それ
ぞれエンティティ３２７ａおよび３２７ｂとして直接インスタンス化する。
【００２２】
　インスタンス化されたすべてのエンティティが、別個または複合的にかかわらず固有の
エンティティ名を有し、任意の所与のレベルの階層のインスタンス化名が互いに固有であ
ると想定すると、他のエンティティ内にエンティティをネストすることは、任意レベルの
複雑さまで続行することができる。各エンティティは、エンティティを記述するために必
要な情報を含む１つまたは複数のＨＤＬファイルから構築される。
【００２３】
　各エンティティのインスタンス化との関連付けが、いわゆる「インスタンス化識別子」
である。所与のインスタンス化のインスタンス化識別子は、最上位エンティティ・インス
タンス化名から始まるエンクロージング・エンティティ・インスタンス化名からなる文字
列である。たとえば、ＦＸＵエンティティ３２１のインスタンス化３２１ａ内にあるエン
ティティＣ　３２７のインスタンス化３２７ａのインスタンス化識別子は、「ＴＯＰ．Ｆ

(7) JP 5039130 B2 2012.10.3

10

20

30

40

50

ＸＵ０．Ｂ．Ｃ」である。この識別子は、シミュレーション・モデル内の各インスタンス
化を固有に識別する働きをする。
【００２４】
　例示的シミュレーション・モデル３２９内では、様々な信号がインスタンス化される（
たとえば信号Ｅ、Ｆ０、Ｆ１、Ｇ、Ｈ０、Ｈ１、Ｌ、Ｍ、Ｎ、Ｐ、およびＱ）。各信号は
、関連する信号名（たとえば「Ｍ」）と、好ましい実施形態では最上位レベル・エンティ
ティ・インスタンス化名から始まり信号名で終わる、エンクロージング・エンティティ・
インスタンス化名からなる文字列である、信号インスタンス化識別子とを有する。したが
って、ＦＸＵエンティティ３２１のインスタンス化３２１ａ内にある信号Ｍのインスタン
ス化識別子は「ＴＯＰ．ＦＸＵ０．Ａ．Ｍ」である。このインスタンス化識別子は、シミ
ュレーション・モデル内の各信号インスタンス化を固有に識別する働きをする。たとえば
信号Ｐ（０．．４）などの信号は、マルチビット信号ベクトルとすることができることに
留意されたい。また、いくつかの信号（たとえば信号ＴＯＰ．ＦＸＵ０．Ｅ、ＴＯＰ．Ｆ
ＸＵ１．Ｅ、ＴＯＰ．ＦＸＵ０．Ｇ、ＴＯＰ．ＦＸＵ１．Ｇ）は、設計エンティティの境
界線を越えると（それぞれ、信号ＴＯＰ．ＦＸＵ０．Ｆ０、ＴＯＰ．ＦＸＵ１．Ｆ１、Ｔ
ＯＰ．ＦＸＵ０．Ｈ０、ＴＯＰ．ＦＸＵ１．Ｈ１として）リネームされることにも留意さ
れたい。
【００２５】
　次に図５を参照すると、本発明の好ましい実施形態で実装可能なモデル構築プロセスの
流れ図が示されている。このプロセスは、１つまたは複数の設計エンティティＨＤＬソー
ス・コード・ファイル３４０、および、潜在的には、ＨＤＬコンパイラ３４２の以前のラ
ンから入手可能な、以下では「プロト・ファイル」３４５と呼ばれる１つまたは複数の設
計エンティティ中間フォーマット・ファイル３４５で始まる。ＨＤＬコンパイラ３４２は
、シミュレーション・モデルの最上位エンティティで始まり、完全なシミュレーション・
モデルを記述するすべてのＨＤＬまたはプロト・ファイルを介して再帰的に進行する、Ｈ
ＤＬファイル３４０を処理する。
【００２６】
　コンパイル・プロセス中の各ＨＤＬファイル３４０について、ＨＤＬコンパイラ３４２
は、以前にコンパイルされたプロト・ファイルが使用可能であり整合性を持つかどうかを
判別するために、プロト・ファイル３４５を検査する。こうしたファイルが使用可能であ
り整合性を持つ場合、ＨＤＬコンパイラ３４２はその特定のファイルを再コンパイルせず
、むしろ現存のプロト・ファイルを参照することになる。使用可能なこうしたプロト・フ
ァイルがなく、プロト・ファイルが整合性を持たない場合、ＨＤＬコンパイラ３４２は当
該のＨＤＬファイル３４０を明示的に再コンパイルし、その後のコンパイルで使用するた
めにプロト・ファイル３４４を作成する。こうしたプロセスは、以下では「増分コンパイ
ル」と呼ばれ、シミュレーション実行可能モデル３４８を作成するプロセスを大幅にスピ
ードアップすることができる。ＨＤＬコンパイラ３４２によっていったん作成されると、
プロト・ファイル３４４は、その後のコンパイルでプロト・ファイル３４５として働くよ
うに使用可能である。
【００２７】
　プロト・ファイル３４４に加えて、ＨＤＬコンパイラ３４２は、コンピュータ・システ
ム１０のメモリ４４内に、設計エンティティ・プロト・データ構造３４１および設計エン
ティティ・インスタンス・データ構造３４３という、２つのデータ構造セットも作成する
。設計エンティティ・プロト・データ構造３４１および設計エンティティ・インスタンス
・データ構造３４３は、シミュレーション実行可能モデル３４８のコンテンツのメモリ・
イメージとして働く。データ構造３４１および３４３は、メモリ４４を介して、データ構
造３４１および３４３をシミュレーション実行可能モデル３４８に処理するモデル構築ツ
ール３４６へと渡される。
【００２８】
　以下では、各エンティティが単一のＨＤＬファイルによって記述されるものと想定され

(8) JP 5039130 B2 2012.10.3

10

20

30

40

50

る。本発明が実施される規則または特定のＨＤＬに応じて、この制約が必要な可能性があ
る。しかしながら、特定の環境では、または特定のＨＤＬについては、複数のＨＤＬファ
イルを使用することによってエンティティを記述することができる。当業者であれば、エ
ントリが複数のＨＤＬファイルによって記述できる場合に、本発明を実施するために必要
な拡張を理解されよう。さらに、各エンティティについて、エンティティ名と、エンティ
ティを表すＨＤＬファイルの名前およびそのエンティティのプロト・ファイルの名前の両
方との間に、直接の対応関係があるものと想定される。
【００２９】
　以下の説明では、所与のエンティティに対応するＨＤＬソース・コード・ファイルは、
エンティティ名の後に「．ｖｈｄｌ」を付けて呼ばれることになる。たとえば、最上位エ
ンティティ３２０を記述するＨＤＬソース・コード・ファイルは、ＴＯＰ．ｖｈｄｌと呼
ばれることになる。このラベル表示規則は、単なる表記上の便宜として働くものであり、
本発明の適用可能性をＶＨＤＬ以外のＨＤＬに限定するものと解釈すべきではない。
【００３０】
　図４に戻ると、各エンティティが、１つまたは複数の他のエンティティを直接または間
接的にインスタンス化できることがわかる。たとえば、ＦＸＵエンティティは、Ａエンテ
ィティ３２５およびＢエンティティ３２６を直接インスタンス化する。さらにＢエンティ
ティ３２６はＣエンティティ３２７を直接インスタンス化する。したがって、ＦＸＵエン
ティティ３２１は、Ａエンティティ３２５、Ｂエンティティ３２６、およびＣエンティテ
ィ３２７を、直接または間接的にインスタンス化する。他のエンティティによって直接ま
たは間接的にインスタンス化されるそうしたエンティティを、以下では「下位」と呼ぶ。
最上位エンティティ３２０の下位は、ＦＸＵエンティティ３２１、Ａエンティティ３２５
、Ｂエンティティ３２６、およびＣエンティティ３２７である。各エンティティが下位の
固有セットを有すること、ならびに、エンティティがインスタンス化されるごとに、エン
ティティの固有インスタンスおよびその下位が作成されることがわかる。シミュレーショ
ン・モデル３２９内では、ＦＸＵエンティティ３２１は、最上位エンティティ３２０によ
って、ＦＸＵ：ＦＸＵ０　３２１ａおよびＦＸＵ：ＦＸＵ１　３２１ｂの２回インスタン
ス化される。ＦＸＵエンティティ３２１の各インスタンス化は、ＦＸＵ、Ａ、Ｂ、および
Ｃエンティティのインスタンスの固有セットを作成する。
【００３１】
　各エンティティについて、「部品表」またはＢＯＭと呼ばれるものを定義することがで
きる。ＢＯＭは、エンティティそれ自体およびエンティティの下位の日付および時刻スタ
ンプを有する、ＨＤＬファイルのリストである。再度図５を参照すると、エンティティの
コンパイル後、エンティティのＢＯＭはプロト・ファイル３４４に格納される。したがっ
て、ＨＤＬコンパイラ３４２がＨＤＬファイル３４０の中の特定のＨＤＬソース・コード
・ファイルをコンパイルする場合、もしもあれば、エンティティおよびエンティティの下
位を構成するＨＤＬファイル３４０をリスト表示するＢＯＭを含むプロト・ファイル３４
４が生成される。ＢＯＭは、ＨＤＬファイルがコンパイルされていたときにコンピュータ
・システム１０のディスク／テープ３３上に出現するたびに参照された、ＨＤＬファイル
のそれぞれについての日付および時刻スタンプも含む。
【００３２】
　エンティティまたはエンティティの下位を構成するいずれかのＨＤＬファイルが後に変
更された場合、プロト・ファイル３４４は不整合としてフラグが立てられ、以下でより詳
細に説明するように、ＨＤＬコンパイラ３４２は後続の再コンパイルでＨＤＬファイル３
４０を再コンパイルすることになる。たとえば図４に戻ると、ＦＸＵエンティティ３２１
のＢＯＭによって参照されるＨＤＬファイルは、それぞれ適切な日付および時刻スタンプ
を備えた、ＦＸＵ．ｖｈｄｌ、Ａ．ｖｈｄｌ、Ｂ．ｖｈｄｌ、およびＣ．ｖｈｄｌである
。最上位エンティティ３２０のＢＯＭによって参照されるファイルは、適切な日付および
時刻スタンプを備えた、ＴＯＰ．ｖｈｄｌ、ＦＸＵ．ｖｈｄｌ、Ａ．ｖｈｄｌ、Ｂ．ｖｈ
ｄｌ、Ｃ．ｖｈｄｌ、およびＦＰＵ．ｖｈｄｌである。

(9) JP 5039130 B2 2012.10.3

10

20

30

40

50

【００３３】
　図５に戻ると、ＨＤＬコンパイラ３４２は、コンピュータ・システム１０のメイン・メ
モリ４４内にシミュレーション・モデルの構造のイメージを作成する。このメモリ・イメ
ージは、「プロト」データ構造３４１および「インスタンス」データ構造３４３という構
成要素からなる。プロトとは、モデル内の各エンティティについて、エンティティのポー
トに関する情報、エンティティの本体コンテンツ、およびエンティティによって直接イン
スタンス化された他のエンティティへの参照のリストを含む、データ構造のことである（
以下では、「プロト」という用語は、前述のメモリ内データ構造を言い表すために利用さ
れ、「プロト・ファイル」という用語は、中間フォーマット・ファイル３４４を記述する
ために利用される）。したがってプロト・ファイル３４４は、ＨＤＬコンパイラ３４２に
よって生成されるメモリ内プロト・データ構造のディスク上表現である。
【００３４】
　インスタンス・データ構造とは、モデル内のエンティティの各インスタンスについて、
インスタンスのインスタンス名、インスタンスが参照するエンティティの名前、および、
エンティティを外部信号と相互接続するために必要なポート・マップ情報を含む、データ
構造のことである。コンパイル時に、各エンティティはプロト・データ構造を１つだけ有
することになるが、エンティティの複数のインスタンス化の場合、各エンティティは１つ
または複数のインスタンス・データ構造を有することができる。
【００３５】
　モデルを効率よく増分的にコンパイルするために、ＨＤＬコンパイラ３４２は、プロト
・ファイル３４５が使用可能であり、それらのエンティティおよびそれらの下位を構成す
るＨＤＬソース・ファイルと整合性を持つ場合、モデルの連続エンティティがこうしたフ
ァイルから考慮およびロードされる、再帰的コンパイル方法に従う。既存のプロト・ファ
イル３４５からロードできない各エンティティの場合、ＨＤＬコンパイラ３４２はエンテ
ィティの下位を再帰的に検査し、プロト・ファイル３４５から使用可能なそれらの下位エ
ンティティをロードし、プロト・ファイル３４５と不整合なそれらの下位について、必要
に応じてプロト・ファイル３４４を作成する。ＨＤＬコンパイラ３４２のメイン制御ルー
プに関する擬似コードが、以下に示される（擬似コードの右側のライン番号は擬似コード
の一部ではなく、単に表記上の便宜としての働きをする）。
【数１】

【００３６】
　コンパイラ３４２が初期に呼び出された場合、プロト・データ構造３４１またはインス
タンス・データ構造３４３がコンピュータ・システム１０のメモリ４４内に存在する。メ
イン制御ループである、ルーチンｐｒｏｃｅｓｓ＿ＨＤＬ＿ｆｉｌｅ（）（ライン５）が
呼び出され、パラメータ「ｆｉｌｅ」によって、最上位エンティティの名前が渡される。
アルゴリズムは第１に、現在のエンティティに関するプロト・データ構造がメモリ４４内
に存在するかどうかを、ルーチンｐｒｏｔｏ＿ｌｏａｄｅｄ（）（ライン１５）を使用し
て判別する。いかなるプロト・データ構造もメモリ４４にロードされることなくプロセス

(10) JP 5039130 B2 2012.10.3

10

20

30

40

50

が開始されるため、最上位エンティティに関するプロト・データ構造は、決してメモリ内
に存在しないことに留意されたい。メモリ４４内に合致するプロト・データ構造が存在す
る場合、現在のエンティティおよび現在のエンティティの下位に関するインスタンス・デ
ータ構造があれば、必要に応じて、ルーチンｃｒｅａｔｅ＿ｉｎｓｔａｎｃｅ（）（ライ
ン７５）によって、メモリ４４内に作成される。
【００３７】
　しかしながら、合致するプロト・データ構造がメモリ４４内に存在しない場合、制御は
ライン２０に渡され、ここでルーチンｅｘｉｓｔｓ＿ｐｒｏｔｏ＿ｆｉｌｅ（）は、エン
ティティに関するプロト・ファイルが存在するかどうかを判別するために、プロト・ファ
イル３４５を検査する。合致するプロト・ファイルが存在する場合、および存在する場合
にのみ、プロト・ファイル３４５が整合性を持つかどうかを判別するために、ルーチンｃ
ｈｅｃｋ＿ｂｏｍ（）が呼び出される。プロト・ファイルが整合性を持つかどうかを判別
するために、プロト・ファイルに関するＢＯＭが検査される。ルーチンｃｈｅｃｋ＿ｂｏ
ｍ（）は、ＨＤＬソース・コード・ファイルに関する日付または時刻スタンプが変更され
たかどうか、あるいは、ＨＤＬソース・コード・ファイルが削除されたかどうかを判別す
るために、ＢＯＭ内にリスト表示された各ＨＤＬソース・コード・ファイルを検査する。
ＢＯＭ内の任意のファイルに対していずれかの状態が発声した場合、プロト・ファイルは
不整合であり、ルーチンｃｈｅｃｋ＿ｂｏｍ（）は失敗する。しかしながら、ｃｈｅｃｋ
＿ｂｏｍ（）が成功した場合、制御はライン２５に渡され、ここでルーチンｌｏａｄ＿ｐ
ｒｏｔｏ（）はプロト・ファイルおよび任意の下位プロト・ファイルをメモリ４４内にロ
ードし、現在のエンティティおよび、あれば現在のエンティティの下位に関するプロト・
データ構造３４１を作成する。ｐｒｏｃｅｓｓ＿ＨＤＬ＿ｆｉｌｅ（）の構造は、いった
んプロト・ファイルが整合性を持つとして検証されると、その下位プロト・ファイルもす
べて整合性を持つことを保証する。
【００３８】
　プロト・ファイルが実在しないか、または不整合である場合、制御はライン３５に渡さ
れ、ここでルーチンｐａｒｓｅ＿ＨＤＬ＿ｆｉｌｅ（）は、現在のエンティティに関する
ＨＤＬソース・コード・ファイルをロードする。ルーチンｐａｒｓｅ＿ＨＤＬ＿ｆｉｌｅ
（）（ライン３５）は、構文上の正確さについてＨＤＬソース・コード・ファイルを検査
し、もしもあれば、どちらの下位エンティティが現在のエンティティによってインスタン
ス化されるかを決定する。ライン４０、４５、および５０は、現在のエンティティによっ
て呼び出される下位エンティティを処理するために、ルーチンｐｒｏｃｅｓｓ＿ＨＤＬ＿
ｆｉｌｅ（）が再帰的に呼び出されるループを構成する。このプロセスでは、現在のエン
ティティのすべての下位のプロト・データ構造３４１およびプロト・データ・ファイル３
４４を作成する縦型様式（depth-first fashion）で、現在のエンティティのすべての下
位のトラバースを再帰的に繰り返す。下位エンティティが処理されると、制御はライン５
５に渡され、ここでルーチンｃｒｅａｔｅ＿ｐｒｏｔｏ（）によって、メモリ４４内に現
在のエンティティに対して新しいプロト・データ構造が作成される。次に、制御はライン
６０に渡され、ここで、関連するＢＯＭを含む新しいプロト・ファイル３４４がルーチン
ｗｒｉｔｅ＿ｐｒｏｔｏ＿ｆｉｌｅ（）によってディスク３３に書き込まれる。最終的に
、制御はライン７５に渡され、ここでルーチンｃｒｅａｔｅ＿ｉｎｓｔａｎｃｅ（）は、
現在のエンティティおよび必要に応じて任意の下位エンティティに対してインスタンス・
データ構造３４３を作成する。このようにして、ｐｒｏｃｅｓｓ＿ＨＤＬ＿ｆｉｌｅ（）
（ライン５）は、プロト・データ構造３４１およびインスタンス・データ構造３４３から
なるモデルのメモリ内イメージを作成するシミュレーション・モデル全体を、再帰的に処
理する。
【００３９】
　さらに図５に示されるように、さらに本発明は、シミュレーション実行可能モデル３４
８のシミュレートの結果を表示する際に注目される可能性が高い特定の信号を識別する、
１つまたは複数の信号グループ指示３５０を、設計者が設計エンティティＨＤＬファイル

(11) JP 5039130 B2 2012.10.3

10

20

30

40

50

３４０内に含められるようにする。信号グループ指示３５０に対する例示的なセマンティ
クスについて、図１２～図１３を参照しながら以下で説明する。前述の処理に加えて、Ｈ
ＤＬコンパイラ３４２は、任意の便利なデータ構造（たとえばリンク付きリスト、テーブ
ルなど）を使用する注目される信号の信号インスタンス化識別子を表す信号グループ情報
（ＳＧＩ）４００を生成するために、好ましくは信号グループ指示３５０を処理する。モ
デル構築ツール３４６は、次に、オプションで何らかのフォーマットの追加変換を使用し
て、信号グループ情報（ＳＧＩ）４００をシミュレーション実行可能モデル３４８内に配
置する。
【００４０】
　ここで図６を参照すると、本発明の好ましい実施形態で実装可能な、コンパイル済みデ
ータ構造を表すブロック図が示されている。メモリ４４は、シミュレーション・モデル３
２９内で参照されるエンティティそれぞれについて１つの、プロト・データ構造３６１を
含む。加えて、シミュレーション・モデル３２９におけるインスタンス化はインスタンス
・データ構造３６２によって示される。インスタンス・データ構造３６２は、シミュレー
ション・モデル３２９内のエンティティのインスタンス化の階層的性質を示すポインタに
よって接続される。最終的に、メモリ４４はＳＧＩ　４００を含む。図５のモード構築ツ
ール３４６は、シミュレーション実行可能モデル３４８を生成するために、メモリ４４の
コンテンツをメモリ・データ構造に処理する。
【００４１】
　次に図７を参照すると、本発明に従って設計をシミュレートし、シミュレーション結果
を表示するためのプロセスの流れ図が示されている。図に示されるように、図５のプロセ
スによってシミュレーション実行可能モデル３４８が取得されると、デジタル設計の動作
をシミュレートするためのテストケース４０２を利用してシミュレーション実行可能モデ
ル３４８をシミュレートするために、ソフトウェアあるいはハードウェアまたはその両方
のシミュレータ４０４が使用される。シミュレーション時には、全イベント・トレース（
ＡＥＴ）ファイル４０６が、テストケース４０２に対するシミュレーション実行可能モデ
ル３４８の応答を表すデータを記録する。ＡＥＴファイル４０６内のデータは、経時的に
シミュレーション実行可能モデル３４８ならびにＳＧＩ４００内の様々な信号あるいはス
トレージ要素またはその両方の値を含む。
【００４２】
　ＡＥＴファイル４０６のコンテンツを再検討するために、ユーザは一般に、本明細書で
はＡＥＴビューア４１０と呼ばれる、別個のまたは一体化されたビューア・プログラムを
採用する。たとえばユーザは、ＡＥＴファイル４０６からのデータを、ディスプレイ画面
２２内にグラフィカル・フォーマットで、またはハードコピー・フォーマットで提示する
ように、ＡＥＴビューア４１０に要求することができる。前述のようにユーザは、データ
・セット（本明細書ではＩ／Ｏリスト４０８と呼ばれる）内に注目する信号を指定するこ
とによって、ＡＥＴビューア４１０によるデータのプレゼンテーションを、注目する特定
の信号に有利に限定することができる。
【００４３】
　図８に示されるように、従来技術に従った従来のＩ／Ｏリスト５００は、それぞれが注
目する信号のうちの１つの信号インスタンス化識別子を示す大量のエントリを含むリスト
であり、この場合は図４のＦＸＵインスタンス化３２１ａ内のすべての信号を備える。し
たがって、図８で与えられた簡略化された例から理解されるように、従来技術では、ユー
ザは、潜在的に大量の信号インスタンス化識別子のそれぞれを、キーボード１６を使用し
て入力しなければならない。信号インスタンス化識別子を手動でキー入力するこの従来の
技法は、退屈でエラーの起こりやすいものである。
【００４４】
　加えて、一部のシミュレータ４０４は、設計エンティティの境界線をより高水準の設計
エンティティへと越境する下位設計エンティティ内の信号の信号名を保護しない。その代
わりに、ＡＥＴファイルにおける信号の重複をなくすために、こうしたシミュレータ４０

(12) JP 5039130 B2 2012.10.3

10

20

30

40

50

４は、その内部に出現する最高位設計エンティティ内のその信号名によってのみ、ＡＥＴ
ファイル内の信号を識別する。したがって、信号名を保護しないシミュレータ４０４が採
用される場合、ユーザは、信号が出現する最高水準設計エンティティからの信号の信号名
を採用する信号インスタンス化識別子を利用して、Ｉ／Ｏリスト５００内に信号を指定し
なければならない。たとえば、図８のエントリ５０２と図９のＩ／Ｏリスト５００’の対
応するエントリ５０４とを比較することでわかるように、信号名を保護しないシミュレー
タ４０４のユーザは、参照番号５０２で示されるような信号インスタンス化識別子ＦＸＵ
．Ｅではなく、参照番号５０４で示されるような信号インスタンス化識別子Ｆ０を利用し
なければならない。理解されるように、作業が主に下位設計エンティティに関連するＡＥ
Ｔビューア４１０のユーザは、ユーザが精通している低水準設計エンティティをインスタ
ンス化する、より高水準の設計エンティティ内で使用される信号名を決定すること、また
は容易に想起することが、困難な可能性がある。
【００４５】
　従来のＩ／Ｏリスト５００または５００’の代わりに、本発明は、ＡＥＴビューア４１
０のユーザが、図１０に従って、１つまたは複数の改良されたＩ／Ｏリスト４０８を利用
してＡＥＴファイル４０６からのデータのプレゼンテーションを代わりにフィルタリング
できるようにする。図１０に示されるように、Ｉ／Ｏリスト４０８は、１つまたは複数の
エントリを含むリストである。図８または図９に示されるような従来の信号インスタンス
化識別子を含むゼロまたはそれ以上のエントリに加えて、エントリ５１０などのＩ／Ｏリ
スト４０８のエントリは、ＳＧＩ４００内の情報に対応する信号グループ・インスタンス
化識別子によって、注目する１つまたは複数の信号のグループを識別することができる。
【００４６】
　図に示されるように、信号グループ・インスタンス化識別子は、信号インスタンス化識
別子と同様に形成され、最高位エンティティ・インスタンス化名から始まり、括弧付きコ
ンテンツが別の信号グループ名前空間のメンバであることを示す１対の山括弧（「＜」お
よび「＞」）によって囲まれた信号グループ名で終わる、エンクロージング・エンティテ
ィ・インスタンス化名の文字列からなる。したがって、ＦＸＵエンティティ・インスタン
ス化３２１ａ内で注目する６つの信号は、信号インスタンス化識別子をＩ／Ｏリスト４０
８内に個々に入力するのではなく、単一エントリ「ＦＸＵ０．＜ＦＸＵ＿Ｇｒｏｕｐ＞」
によって簡単に識別することができる。前述のように、信号グループＦＸＵ＿Ｇｒｏｕｐ
を備える個々の信号は、設計エンティティＨＤＬファイル３４０内の信号グループ指示３
５０を利用して指定される。
【００４７】
　次に、図１２を参照すると、本発明に従った設計エンティティＨＤＬファイル３４０ａ
の例示的実施形態が示される。当業者であれば理解されるように、設計エンティティＨＤ
Ｌファイル３４０ａは、この場合は設計エンティティＦＸＵ　３２１である、設計エンテ
ィティを記述する従来のＨＤＬソース・コードを含む。従来のＨＤＬソース・コードは、
ポート・マップ６００および信号割り当てステートメント６０２を含む。加えて、設計エ
ンティティＨＤＬファイル３４０ａは、本発明に従った信号グループ指示３５０（図５）
を含む従来のＨＤＬコメントを含む。
【００４８】
　設計エンティティＨＤＬファイル３４０ａでは、信号グループ指示３５０は、信号グル
ープ宣言６１０および信号保護指示６２０という、２つの異なるタイプの信号グループ指
示を含む。信号グループ宣言６１０は「－－！！Ｓｉｇｎａｌ　Ｇｒｏｕｐ　ｓｉｇｎａ
ｌ＿ｇｒｏｕｐ＿ｎａｍｅ；」の形のＨＤＬコメントで始まり、「－－！！ＥＮＤ　Ｓｉ
ｇｎａｌ　Ｇｒｏｕｐ　ｓｉｇｎａｌ＿ｇｒｏｕｐ＿ｎａｍｅ；」の形のＨＤＬコメント
で終わるが、ここでｓｉｇｎａｌ＿ｇｒｏｕｐ＿ｎａｍｅは所与のターゲット設計エンテ
ィティに対して固有の信号グループ名（この例ではＦＸＵ＿Ｇｒｏｕｐ）である。信号グ
ループ宣言６１０の最初と最後の間に、注目する１つまたは複数の信号の信号名が、ＡＥ
Ｔビューア４１０によって所望のプレゼンテーション順にリスト表示される。この実施形

(13) JP 5039130 B2 2012.10.3

10

20

30

40

50

態では、信号名はターゲット設計エンティティ（たとえばＦＸＵ設計エンティティ３２１
）に関して指定される。本発明の少なくとも一部の実施形態は、設計エンティティ階層内
で、次に高位の階層を示すために、慣用構文「．．＼」を利用して、ターゲット設計エン
ティティに関してより上位の信号名を指定することができる。
【００４９】
　ユーザは、好ましくは、信号グループ宣言６１０内の信号のプレゼンテーションに関し
て、追加の属性をさらに指定することができる。たとえば、ユーザは、信号の所望の色、
波形またはバイナリ信号表現のデフォルト、非整列ビット・ベクトルの所望の位置合わせ
などを指定することができる。したがって、信号グループ宣言６１０のステートメント６
１２では、ユーザは５ビット信号ベクトルＢ．Ｃ．Ｐ（０．．４）の左位置合わせを指定
している。
【００５０】
　さらに図１３の設計エンティティＨＤＬファイル３４０ｂに示されるように、信号グル
ープ宣言６３０などの信号グループ宣言も、好ましくは、ユーザが任意の正当な深さまで
ネストされた信号グループを指定できるようにする。より大規模な信号グループの一部を
含むネストされた信号グループを指定するために、ユーザは、山括弧（すなわち「＜」お
よび「＞」）に囲まれた信号グループを備えたネストされた信号グループのインスタンス
化識別子を参照する信号グループ宣言内に、ステートメントを含めるだけである。山括弧
を使用することで、ＨＤＬコンパイラ３４２は、信号の名前空間と信号グループ名との間
を区別することができる。
【００５１】
　再度図１２を参照すると、信号保護指示６２０を利用して、特定のリネームされた信号
（たとえば信号Ｇ）を保存するために、デフォルトでは、リネームされた信号より低位の
信号名を保存しないことをシミュレータ４０４に指示する。したがって、シミュレータ４
０４がデフォルトではリネームされた信号の低位の名前を保護しないものと想定すると、
ＡＥＴファイル４０６は、信号インスタンス化識別子ＴＯＰ．ＦＸＵ０．ＧおよびＴＯＰ
．ＦＸＵ１．Ｇに関するデータを含むことになる。図９に関して上記で述べたように、精
通した信号名を保護するための機能により、ユーザが、保護された信号Ｇの信号データを
表示するために、精通していない可能性のある信号インスタンス化識別子ＴＯＰ．ＦＸＵ
１．Ｈ０およびＴＯＰ．ＦＸＵ１．Ｈ１をＩ／Ｏリストに入力する必要がなくなる。
【００５２】
　次に図１４～図１６を参照すると、本発明に従った、ＡＥＴビューア４１０がＩ／Ｏリ
スト４０８を処理する際に使用する例示的プロセスの高水準論理流れ図が示される。論理
流れ図として、動作は順番ではなく論理的に示され、示された動作の多くは並行して、ま
たは代替順で実行することができる。
【００５３】
　図に示されるように、プロセスは図１４のブロック７００で始まり、その後、ユーザが
Ｉ／Ｏリスト４０８の参照有効範囲、すなわち、参照によりすべての他のＩ／Ｏリスト・
エントリが解析されるシミュレーション実行可能モデル３４８の有効範囲に入ったか否か
の判別を示す、ブロック７０２へと進む。デフォルトでは、参照有効範囲は、シミュレー
ション実行可能モデル３４８内の最上位設計エンティティ・インスタンス、たとえば図４
の最上位設計エンティティ・インスタンスである。一実施形態では、ユーザは「Ｓｃｏｐ
ｅ　ｌｉｍｉｔ：ｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ０．［ｄｅｓｉｇｎ＿ｅｎｔｉｔｙ］
．ｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ１」の形の参照有効範囲をさらに限定するコマンドを
入力することが可能であり、ここでｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ０およびｉｎｓｔａ
ｎｃｅ＿ｓｔｒｉｎｇ１はオプションの設計エンティティ・インスタンス文字列であり（
ｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ０は最上位設計エンティティ・インスタンスで始まる）
、角括弧で囲まれたｄｅｓｉｇｎ＿ｅｎｔｉｔｙはオプションの設計エンティティ名であ
る。正当な参照有効範囲コマンドは、３つのオプション・フィールド、ｉｎｓｔａｎｃｅ
＿ｓｔｒｉｎｇ０、［ｄｅｓｉｇｎ＿ｅｎｔｉｔｙ］、およびｉｎｓｔａｎｃｅ＿ｓｔｒ

(14) JP 5039130 B2 2012.10.3

10

20

30

40

50

ｉｎｇ１のうちの少なくとも１つを含む。参照有効範囲コマンドは、たとえばコマンド行
を介してＡＥＴビューア４１０に、またはＩ／Ｏリスト４０８内に送ることができる。Ｉ
／Ｏリスト４０８に挿入された場合、参照有効範囲コマンドは、好ましくはそのＩ／Ｏリ
スト４０８内のすべてのエントリに適用される。
【００５４】
　ブロック７０２で示されるように、ユーザが異なる参照有効範囲を入力していない場合
、ブロック７０４で示されるように、ＡＥＴビューア４１０はデフォルトで、参照有効範
囲をシミュレーション実行可能モデル３４８の最上位設計エンティティ・インスタンスに
設定する。その後、プロセスはページ連結子Ａを通って図１５へと進む。ＡＥＴビューア
４１０がブロック７０２で、ユーザが異なる参照有効範囲を入力したものと判別した場合
、ＡＥＴビューア４１０は、ブロック７１０で、参照有効範囲コマンドが括弧付き構文（
たとえば［ｄｅｓｉｇｎ＿ｅｎｔｉｔｙ］）を含むか否かを判別するために参照有効範囲
コマンドをさらに解析する。含まない場合、プロセスは、参照有効範囲コマンドによって
指定された設計エンティティ・インスタンスがシミュレーション実行可能モデル３４８内
に存在するか否かを、ＡＥＴビューア４１０が判別することを示す、ブロック７１３に進
む。存在しない場合、プロセスはブロック７１５でエラー終了する。存在する場合、プロ
セスはブロック７１３からブロック７２０へと渡され、ここでＡＥＴビューア４１０は、
参照有効範囲を、参照有効範囲コマンドのｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ０フィールド
内に指定された特定の設計エンティティ・インスタンスに設定する。たとえば、図４のシ
ミュレーション実行可能モデル３２９を想定すると、参照有効範囲コマンド「Ｓｃｏｐｅ
　ｌｉｍｉｔ：ＴＯＰ．ＦＸＵ０」は、参照有効範囲をＦＸＵ設計エンティティ３２１の
インスタンス３２１ａに設定する。この参照有効範囲の場合、図１０のＩ／Ｏリスト４０
８のエントリ５１０は＜ＦＸＵ＿Ｇｒｏｕｐ＞として簡略化することができる。その後、
プロセスはページ連結子Ａを通って図１５へと進む。
【００５５】
　ブロック７１０に戻ると、参照有効範囲コマンドが括弧付き構文を採用しているとの決
定に応答して、ＡＥＴビューア４１０は次に、ブロック７１２で、名前付き設計エンティ
ティがシミュレーション実行可能モデル３４８内に存在するか否かを判別する。存在しな
い場合、プロセスはブロック７１４でエラー終了する。しかしながら、指定された設計エ
ンティティがシミュレーション実行可能モデル３４８内に存在する場合、ＡＥＴビューア
４１０は、存在する場合はｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ０で定義されるシミュレーシ
ョン実行可能モデル３４８の一部分に存在する設計エンティティのすべてのインスタンス
を識別するために、シミュレーション実行可能モデル３４８を再帰的に検索する。ブロッ
ク７１８で示されるように、指定された設計エンティティのインスタンスが指定された有
効範囲内に存在しない場合、プロセスはブロック７１４でエラー終了する。ＡＥＴビュー
ア４１０がブロック７１８で、指定された有効範囲内に、指定された設計エンティティの
少なくとも１つのインスタンスの位置が突き止められたものと判別した場合、さらにＡＥ
Ｔビューア４１０は、ブロック７２２で、指定された有効範囲内に設計エンティティの単
一のインスタンスのみが見つけられたかどうかを判別する。見つけられた場合、プロセス
はブロック７２０へと渡され、ここでＡＥＴビューア４１０は、設計エンティティの単一
のインスタンスを参照有効範囲として設定する。その後、プロセスはページ連結子Ａを通
って図１５へと進む。
【００５６】
　ＡＥＴビューア４１０が、ブロック７２２で、指定された有効範囲内に指定された設計
エンティティの複数のインスタンスが見つけられたものと判別した場合、ＡＥＴビューア
４１０は、たとえばディスプレイ画面２２内に表示されるグラフィカル・メニューを介し
て選択するために、設計エンティティ・インスタンスのリストをユーザに提示する（ブロ
ック７２４）。その後ＡＥＴビューア４１０は、ブロック７２６で示されるように、所望
の参照範囲を定義する複数の設計エンティティ・インスタンスのうちの１つを指定するユ
ーザ入力を受け取る。たとえば、図４のシミュレーション実行可能モデル３２９および図

(15) JP 5039130 B2 2012.10.3

10

20

30

40

50

１１のＩ／Ｏリスト４０８’を想定すると、図１１の参照番号５１２で与えられた参照有
効範囲コマンド「Ｓｃｏｐｅ　ｌｉｍｉｔ：［ＦＸＵ］」は、ＡＥＴビューア４１０に、
シミュレーション実行可能モデル３２９内でＦＸＵインスタンス３２１ａおよび３２１ｂ
の位置を突き止めさせ、インスタンス３２１ａおよび３２１ｂのインスタンス識別子を選
択のためにユーザに提示させる。有利なことに、ＦＸＵインスタンス３２１ａおよび３２
１ｂのどちらが注目される、ユーザによって選択されるかに関わらず、信号グループは、
図１１のＩ／Ｏリスト４０８’のエントリ５１２に示されるように＜ＦＸＵ＿Ｇｒｏｕｐ
＞として指定することができる。その後プロセスは、これまでに説明したブロック７２０
に渡される。
【００５７】
　次に図１５を参照すると、プロセスはページ連結子Ａで始まり、その後ブロック７３０
へと進んで、ＡＥＴファイル４０６のプレゼンテーションを構築するために、ＡＥＴビュ
ーア４１０が１つまたは複数のＩ／Ｏリスト４０８内の各エントリを処理する、処理ルー
プを提示する。ブロック７３０でＡＥＴビューア４１０が、Ｉ／Ｏリスト内のすべてのエ
ントリが処理されたものと決定した場合、プロセスは以下で説明するブロック７３２へと
渡される。しかしながら、Ｉ／Ｏリスト４０８内に、処理されるべき少なくとも１つのエ
ントリが残っている場合、プロセスはブロック７４０へと進み、ここでＡＥＴビューア４
１０は第１または次の信号識別エントリへと移動して、エントリの作業有効範囲を参照有
効範囲へと初期化する。Ｉ／Ｏリスト４０８内の信号識別エントリは、参照有効範囲に関
して処理され（すなわち参照有効範囲によって暗に限定され）、以下の形を取り、
　ｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ２．［ｄｅｓｉｇｎ＿ｅｎｔｉｔｙ＊］．ｉｎｓｔａ
ｎｃｅ＿ｓｔｒｉｎｇ３．ｓｉｇｎａｌｓ
　上式で、ｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ２およびｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ３
はオプションの設計エンティティ・インスタンス文字列であり、
　角括弧（すなわち「［」および「］」）で囲まれたｄｅｓｉｇｎ＿ｅｎｔｉｔｙはオプ
ションの設計エンティティ名であり、
　＊は、指定された有効範囲内のすべてのｄｅｓｉｇｎ＿ｅｎｔｉｔｙインスタンスを示
すオプションのユニバーサル演算子であり、
　ｓｉｇｎａｌｓは、信号名、山括弧（すなわち「＜」および「＞」）で囲まれた信号グ
ループ名、または指定された有効範囲内のすべての信号グループを示す空の山括弧を指定
する、必須パラメータである。
【００５８】
　図１５に示されるプロセスは、ブロック７４０からブロック７４２へと進み、ここでＡ
ＥＴビューア４１０は、現在の信号識別エントリが先行設計エンティティ・インスタンス
修飾子（たとえばｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ２）を有するかどうかを判別する。有
さない場合、プロセスは以下で説明するブロック７５２へと渡される。有する場合、プロ
セスはブロック７４２からブロック７４４へと進み、ここでＡＥＴビューア４１０は、シ
ミュレーション実行可能モデル３４８の参照有効範囲内に指定された設計エンティティ・
インスタンスが存在するか否かを判別する。存在しない場合、プロセスはブロック７４６
でエラー終了する。存在する場合、プロセスはブロック７５０へ進む。ブロック７５０は
、現在の有効範囲を、設計エンティティ・インスタンス修飾子によって定義された有効範
囲を参照有効範囲に追加することによって形成された有効範囲に設定する。次に、ＡＥＴ
ビューア４１０は、ブロック７５２で、Ｉ／Ｏリスト４０８の信号識別エントリ内の次の
フィールドが、角括弧に囲まれたｄｅｓｉｇｎ＿ｅｎｔｉｔｙ修飾子であるか否かを判別
する。括弧付き修飾子でない場合、プロセスはページ連結子Ｂを通って図１６へと進む。
括弧付き修飾子である場合、信号識別エントリの処理はブロック７５４へと続く。
【００５９】
　ブロック７５４は、ＡＥＴビューア４１０が、指定された設計エンティティ名に合致す
るエンティティ名を有する現在の有効範囲内で、すべての設計エンティティ・インスタン
スの位置を突き止めるために、シミュレーション実行可能モデル３４８を再帰的に検索す

(16) JP 5039130 B2 2012.10.3

10

20

30

40

50

ることを示す。その後ＡＥＴビューア４１０は、ブロック７５６で、何らかのこうした設
計エンティティ・インスタンスが存在するか否かを判別する。存在しない場合、処理はブ
ロック７４６でエラー状態で終了する。存在する場合、さらにＡＥＴビューア４１０は、
ブロック７６０で、括弧付き構文が、指定された有効範囲内へのすべての設計エンティテ
ィ・インスタンスの包含を示すアスタリスクを含むか否かを判別する。含む場合、ＡＥＴ
ビューア４１０は、エントリの作業有効範囲を、ブロック７５４で突き止められた１つま
たは複数の設計エンティティ・インスタンスまで狭める（ブロック７６１）。その後プロ
セスは、ページ連結子Ｂを通って図１６へと進む。
【００６０】
　ブロック７６０に戻ると、否定の決定に応答して、プロセスはブロック７６２へと進み
、ここでＡＥＴビューア４１０は、単一の設計エンティティ・インスタンスがブロック７
５４で発見されたかどうかを判別する。発見された場合、ブロック７６４で、作業有効範
囲は単一の設計エンティティ・インスタンスに設定される。その後プロセスは、ページ連
結子Ｂを通って図１６へと進む。これに対して、ブロック７６２でＡＥＴビューア４１０
が、ブロック７５４で複数の設計エンティティ・インスタンスが発見されたものと決定し
た場合、ＡＥＴビューア４１０は、たとえばディスプレイ画面２２内に表示されるグラフ
ィカル・メニューを介して選択するために、設計エンティティ・インスタンスのリストを
ユーザに提示する（ブロック７７０）。その後、ＡＥＴビューア４１０は、ブロック７７
２で示されるように、所望の作業有効範囲を定義する複数の設計エンティティ・インスタ
ンスのうちの１つまたは複数を指定するユーザ入力を受け取る。その後、プロセスはブロ
ック７６４に渡され、ここでＡＥＴビューア４１０は、ユーザの選択に従って１つまたは
複数の作業有効範囲を確立する。その後プロセスは、ページ連結子Ｂを通って図１６へと
進む。
【００６１】
　次に図１６を参照すると、プロセスはページ連結子Ｂで開始され、その後ブロック７７
４へ進み、ここでさらにＡＥＴビューア４１０は、エントリが作業有効範囲を制限するた
めの他のインスタンス修飾子（たとえばｉｎｓｔａｎｃｅ＿ｓｔｒｉｎｇ３）を含むかど
うかを判別するために、信号識別エントリを解析する。含まない場合、プロセスは以下で
説明するブロック７８０へ渡される。含む場合、ＡＥＴビューア４１０は、ブロック７７
６で、指定された設計エンティティ・インスタンスが存在するか否かを判別する。存在し
ない場合、プロセスはブロック７８６でエラー終了する。指定された設計エンティティ・
インスタンスが存在する場合、ＡＥＴビューアは、現在の信号識別エントリの作業有効範
囲を、第２のインスタンス修飾子によって示された設計エンティティ・インスタンスまで
狭める（ブロック７７８）。その後、プロセスはブロック７８０に渡される。
【００６２】
　ブロック７８０で、さらにＡＥＴビューア４１０は、エントリの終端ｓｉｇｎａｌｓフ
ィールドが単一の信号名または信号グループ名を含むかどうかを判別するために、Ｉ／Ｏ
リスト４０８の信号識別エントリを解析する。ｓｉｇｎａｌｓフィールドが信号名を含む
場合、次にＡＥＴビューア４１０は、ブロック７８１で、指定された信号が作業有効範囲
内に存在するかどうかを判別する。存在しない場合、プロセスはブロック７８６でエラー
状態で終了する。存在する場合、ＡＥＴビューア４１０は、指定された信号をＡＥＴファ
イル４０６のプレゼンテーションに追加する（ブロック７８２）。その後プロセスは、ペ
ージ連結子Ｃを介して図１５のブロック７３０に戻る。
【００６３】
　再度ブロック７８０を参照すると、信号識別エントリのｓｉｇｎａｌｓフィールドが信
号名を含まないとの決定に応答して、プロセスはブロック７８３へ渡され、ここでＡＥＴ
ビューア４１０は、ｓｉｇｎａｌｓフィールドが空の山括弧を含むかどうかを判別する。
含む場合、ＡＥＴビューア４１０は、ブロック７８４に示されるように、作業有効範囲内
にある設計エンティティ・インスタンス内のすべての信号グループ・インスタンスの位置
を再帰的に突き止める。ＡＥＴビューアがブロック７８５で、何も存在しないと決定した

(17) JP 5039130 B2 2012.10.3

10

20

30

40

50

場合、プロセスはブロック７８６でエラー終了する。これに対して、ＡＥＴビューア４１
０がブロック７８５で、１つまたは複数の信号グループが存在すると決定した場合、ＡＥ
Ｔビューア４１０は、個々の信号がＳＧＩ　４００からの信号グループを備えることを決
定し、ブロック７９０で、すべてのこうした信号をプレゼンテーションに追加する。その
後プロセスは、ページ連結子Ｃを通って図１５に戻る。
【００６４】
　ブロック７８３に戻り、ＡＥＴビューア４１０が、Ｉ／Ｏリスト４０８の信号識別エン
トリのｓｉｇｎａｌｓフィールドが空の山括弧を含まないが、その代わりに山括弧内に信
号グループ名を指定するものと決定した場合、プロセスはブロック７８７に渡される。ブ
ロック７８７で、ＡＥＴビューア４１０は、作業有効範囲内にある設計エンティティ・イ
ンスタンス内の指定された信号グループ・インスタンスのインスタンスの位置を再帰的に
突き止める。ブロック７８８によって表されるように、信号グループ・インスタンスの位
置が突き止められない場合、プロセスはブロック７８６でエラー状態で終了する。別の方
法として、名前付き信号グループの少なくとも１つのインスタンスの位置が突き止められ
た場合、プロセスはブロック７９０へと進み、以前に説明したブロックへと続く。
【００６５】
　以上説明してきたように、本発明は、シミュレーション結果をプレゼンテーション用に
処理するための方法、システム、およびプログラム製品を提供する。本発明によれば、シ
ミュレーション結果のプレゼンテーションをフィルタリングするために必要なユーザ入力
の量は、所定の信号グループの使用、およびオプションで有効範囲コマンドの使用によっ
て、大幅に削減される。加えて、信号リネームが存在する中で信号名が保護されることに
なる信号を設計者が指定できるようにする信号保護指示のサポートを通じて、シミュレー
ション結果の理解しやすさが向上する。
【００６６】
　以上、本発明について、好ましい実施形態を参照しながら具体的に説明してきたが、当
業者であれば、本発明の趣旨および範囲を逸脱することなく、形式および細部における様
々な変更が実行可能であることを理解されよう。たとえば、本発明の諸実施形態のうちの
１つは、図１および図２で説明されたように全体として構成される１つまたは複数のコン
ピュータ・システムの、ランダム・アクセス・メモリ２８または不揮発性ストレージ内に
常駐するプログラム・コードを使用して、実装可能である。プログラム・コードのセット
は、ユーザによって所望された場合、コンピュータ・システム１０によって要求されるま
で、ディスク・ドライブ３３またはＣＤ－ＲＯＭなどの他のコンピュータ読み取り可能ス
トレージ・デバイス内、あるいは他のコンピュータのデータ・ストレージ内に格納するこ
と、および、ローカル・エリア・ネットワークまたはインターネットなどのワイド・エリ
ア・ネットワークを介して伝送することが可能である。コンピュータ使用可能媒体内で具
体化されたプログラム・コードは、コンピュータ・プログラム製品と呼ぶことができる。
【００６７】
（１）データ処理システムにおけるデータ処理の方法であって、
　所定の信号グループ名によって信号グループを指定する少なくとも１つのエントリを含
むデータ・セットを入力として受け取るステップと、
　前記データ・セットの受け取りに応答して、
　前記信号グループ名を識別するために、前記データ・セット内の前記エントリを処理す
るステップと、
　前記信号グループのメンバである複数の信号の信号名を決定するために、シミュレーシ
ョン結果を含むイベント・トレース・ファイルに関連付けられた信号グループ情報にアク
セスするステップと、
　前記複数の信号のインスタンスに関連付けられた前記イベント・トレース・ファイルか
らのそれらのシミュレーション結果を、プレゼンテーションに含めるステップと、
を有する、方法。
（２）シミュレーション実行可能モデル内でインスタンス化された設計エンティティを記

(18) JP 5039130 B2 2012.10.3

10

20

30

40

50

述するＨＤＬソース・コード・ファイルを参照して前記信号グループ内の前記信号名のメ
ンバシップを確立するステップをさらに有する、（１）に記載の方法。
（３）前記信号グループが第１の信号グループを備え、前記第１の信号グループが、前記
複数の信号をメンバとして集合的に有する第２および第３の信号グループを備える、（１
）または（２）に記載の方法。
（４）リネームから関連する信号名が保護されることになる特定の信号を識別する保護指
示を受け取るステップと、
　前記保持指示に応答して、プレゼンテーションにおいて前記関連する信号名によって前
記信号を識別するステップと、
をさらに有する、（１）、（２）、または（３）に記載の方法。
（５）前記シミュレーション実行可能モデル内の設計エンティティ・インスタンスに関し
て、参照有効範囲を示す有効範囲コマンドを入力として受け取るステップと、
　前記有効範囲コマンドの受け取りに応答して、前記参照有効範囲に関する前記データ・
セット内の前記少なくとも１つのエントリを解釈するステップと、
をさらに有する、（１）から（４）のいずれか一つに記載の方法。
（６）前記シミュレーション実行可能モデル内に複数の設計エンティティ・インスタンス
を有する設計エンティティ名を、エントリ内で識別するために、前記データ・セット内の
前記エントリを処理するステップと、
　前記設計エンティティ名の識別に応答して、ユーザの選択のために、前記複数の設計エ
ンティティ・インスタンスのインスタンス識別子を提示するステップと、
　前記インスタンス識別子のうちの１つのユーザ選択に応答して、前記信号グループに属
する信号のインスタンスが位置する有効範囲を狭めるステップと、
をさらに有する、（１）から（５）のいずれか一つに記載の方法。
（７）コンピュータ読み取り可能媒体と、
　前記コンピュータ読み取り可能媒体内のプログラム・コードと、を備えるプログラムで
あって、前記プログラム・コードがデータ処理システムに、
　　所定の信号グループ名によって信号グループを指定する少なくとも１つのエントリを
含むデータ・セットを入力として受け取るステップと、
　　前記データ・セットの受け取りに応答して、
　　前記信号グループ名を識別するために、前記データ・セット内の前記エントリを処理
するステップと、
　　前記信号グループのメンバである複数の信号の信号名を決定するために、シミュレー
ション結果を含むイベント・トレース・ファイルに関連付けられた信号グループ情報にア
クセスするステップと、
　　前記複数の信号のインスタンスに関連付けられた前記イベント・トレース・ファイル
からのそれらのシミュレーション結果を、プレゼンテーションに含めるステップと、
を含む方法を実行させる、プログラム。
（８）前記方法が、シミュレーション実行可能モデル内でインスタンス化された設計エン
ティティを記述するＨＤＬソース・コード・ファイルを参照して前記信号グループ内の前
記信号名のメンバシップを確立するステップをさらに含む、（７に記載のプログラム。
（９）前記信号グループが第１の信号グループを備え、前記第１の信号グループが、前記
複数の信号をメンバとして集合的に有する第２および第３の信号グループを備える、（７
）または（８）に記載のプログラム。
（１０）前記方法が、
　リネームから関連する信号名が保護されることになる特定の信号を識別する保護指示を
受け取るステップと、
　前記保持指示に応答して、プレゼンテーションにおいて前記関連する信号名によって前
記信号を識別するステップと、
をさらに含む、（７）、（８）、または（９）に記載のプログラム。
（１１）前記方法が、

(19) JP 5039130 B2 2012.10.3

10

20

30

40

50

　前記シミュレーション実行可能モデル内の設計エンティティ・インスタンスに関して、
参照有効範囲を示す有効範囲コマンドを入力として受け取るステップと、
　前記有効範囲コマンドの受け取りに応答して、前記参照有効範囲に関する前記データ・
セット内の前記少なくとも１つのエントリを解釈するステップと、
をさらに含む、（７）から（１０）のいずれか一つに記載のプログラム。
（１２）前記方法が、
　前記シミュレーション実行可能モデル内に複数の設計エンティティ・インスタンスを有
する設計エンティティ名を、エントリ内で識別するために、前記データ・セット内の前記
エントリを処理するステップと、
　前記設計エンティティ名の識別に応答して、ユーザの選択のために、前記複数の設計エ
ンティティ・インスタンスのインスタンス識別子を提示するステップと、
　前記インスタンス識別子のうちの１つのユーザ選択に応答して、前記信号グループに属
する信号のインスタンスが位置する有効範囲を狭めるステップと、
をさらに含む、（７）から（１１）のいずれか一つに記載のプログラム。
（１３）プロセッサと、
　前記プロセッサに結合されたデータ・ストレージと、を備える、データ処理システムで
あって、前記データ・ストレージが、前記データ処理システムに、
　　所定の信号グループ名によって信号グループを指定する少なくとも１つのエントリを
含むデータ・セットを入力として受け取るステップと、
　　前記データ・セットの受け取りに応答して、
　　前記信号グループ名を識別するために、前記データ・セット内の前記エントリを処理
するステップと、
　　前記信号グループのメンバである複数の信号の信号名を決定するために、シミュレー
ション結果を含むイベント・トレース・ファイルに関連付けられた信号グループ情報にア
クセスするステップと、
　　前記複数の信号のインスタンスに関連付けられた前記イベント・トレース・ファイル
からのそれらのシミュレーション結果を、プレゼンテーションに含めるステップと、
を含む方法を実行させる、プログラム・コードを含む、データ処理システム。
（１４）前記方法が、シミュレーション実行可能モデル内でインスタンス化された設計エ
ンティティを記述するＨＤＬソース・コード・ファイルを参照して前記信号グループ内の
前記信号名のメンバシップを確立するステップをさらに含む、（１３）に記載のデータ処
理システム。
（１５）前記信号グループが第１の信号グループを備え、前記第１の信号グループが、前
記複数の信号をメンバとして集合的に有する第２および第３の信号グループを備える、（
１３）または（１４）に記載のデータ処理システム。
（１６）前記方法が、
　リネームから関連する信号名が保護されることになる特定の信号を識別する保護指示を
受け取るステップと、
　前記保持指示に応答して、プレゼンテーションにおいて前記関連する信号名によって前
記信号を識別するステップと、
をさらに含む、（１３）、（１４）、または（１５）に記載のデータ処理システム。
（１７）前記方法が、
　前記シミュレーション実行可能モデル内の設計エンティティ・インスタンスに関して、
参照有効範囲を示す有効範囲コマンドを入力として受け取るステップと、
　前記有効範囲コマンドの受け取りに応答して、前記参照有効範囲に関する前記データ・
セット内の前記少なくとも１つのエントリを解釈するステップと、
をさらに含む、（１３）から（１６）のいずれか一つに記載のデータ処理システム。
（１８）前記方法が、
　前記シミュレーション実行可能モデル内に複数の設計エンティティ・インスタンスを有
する設計エンティティ名を、エントリ内で識別するために、前記データ・セット内の前記

(20) JP 5039130 B2 2012.10.3

10

20

30

エントリを処理するステップと、
　前記設計エンティティ名の識別に応答して、ユーザの選択のために、前記複数の設計エ
ンティティ・インスタンスのインスタンス識別子を提示するステップと、
　前記インスタンス識別子のうちの１つのユーザ選択に応答して、前記信号グループに属
する信号のインスタンスが位置する有効範囲を狭めるステップと、
をさらに含む、（１３）から（１７）のいずれか一つに記載のデータ処理システム。
【図面の簡単な説明】
【００６８】
【図１】本発明に従ったデータ処理システムを示す絵画図である。
【図２】図１に示されたデータ処理システムの代表的なハードウェア環境を示す図である
。
【図３】本発明の教示に従ったデジタル設計エンティティを示す簡易ブロック図である。
【図４】本発明の教示に従ったシミュレーション・モデルを示す概略図である。
【図５】本発明の教示に従ったモデル構築プロセスを示す流れ図である。
【図６】本発明の教示に従った設計を表すシミュレーション・モデル・データ構造を示す
ブロック図である。
【図７】シミュレーション実行可能モデルのシミュレーションおよびシミュレーションの
結果をユーザに提示することを示す流れ図である。
【図８】従来技術に従った第１の従来のＩ／Ｏリストを示す図である。
【図９】従来技術に従った第２の従来のＩ／Ｏリストを示す図である。
【図１０】本発明に従った例示的Ｉ／Ｏリストを示す図である。
【図１１】本発明に従った例示的Ｉ／Ｏリストを示す図である。
【図１２】本発明に従った、信号グループ記述子を含む例示的設計エンティティＨＤＬフ
ァイルを示す図である。
【図１３】本発明に従った、ネストされた信号グループ記述子を含む例示的設計エンティ
ティＨＤＬファイルを示す図である。
【図１４】本発明に従った、ＡＥＴビューアがＡＥＴファイルのプレゼンテーションを生
成するためにＩ／Ｏリストを処理する際に使用する例示的プロセスを示す、高水準論理流
れ図の一部である。
【図１５】本発明に従った、ＡＥＴビューアがＡＥＴファイルのプレゼンテーションを生
成するためにＩ／Ｏリストを処理する際に使用する例示的プロセスを示す、高水準論理流
れ図の一部である。
【図１６】本発明に従った、ＡＥＴビューアがＡＥＴファイルのプレゼンテーションを生
成するためにＩ／Ｏリストを処理する際に使用する例示的プロセスを示す、高水準論理流
れ図の一部である。

(21) JP 5039130 B2 2012.10.3

【図１】 【図２】

【図３】 【図４】

(22) JP 5039130 B2 2012.10.3

【図５】 【図６】

【図７】 【図８】

(23) JP 5039130 B2 2012.10.3

【図９】 【図１０】

【図１１】 【図１２】

(24) JP 5039130 B2 2012.10.3

【図１３】 【図１４】

【図１５】 【図１６】

(25) JP 5039130 B2 2012.10.3

10

20

フロントページの続き

(74)代理人 100086243
 弁理士　坂口　博
(72)発明者 ボボク、ガボール
 アメリカ合衆国１２３０９　ニューヨーク州ニスカユナ　ホーソーン・ロード　１３４５
(72)発明者 レスナー、ウォルフガング
 アメリカ合衆国７８７２６　テキサス州オースティン　チェストナット・リッジ・ロード　１０７
 １７
(72)発明者 ウィリアムズ、デレク、エドワード
 アメリカ合衆国７８７１７　テキサス州オースティン　スレイト・クリーク・トレイル　９４０６

 審査官 松浦　功

(56)参考文献 特開平１１－０６６１１４（ＪＰ，Ａ）
 特開平０３－１１６２７６（ＪＰ，Ａ）
 特開平０５－１５１３０４（ＪＰ，Ａ）
 特開平０５－３４２２９６（ＪＰ，Ａ）
 小林優，Ｖｅｒｉｌｏｇ－ＨＤＬによるＦＰＧＡ回路設計の実際，Ｉｎｔｅｒｆａｃｅ，ＣＱ出
 版株式会社，１９９６年　５月　１日，第２２巻，第４号，ｐｐ．１２８－１３７
 藤谷つぐみ，パソコン上で動作するＶｅｒｉｌｏｇ　ＨＤＬ　－　ＳＩＬＯＳIII，インターフ
 ェース，ＣＱ出版株式会社，１９９３年１２月　１日，第１９巻，第１２号，ｐｐ．１８４－１
 ８８

(58)調査した分野(Int.Cl.，ＤＢ名)
 G06F 17/50
 Google Scholar

	biblio-graphic-data
	claims
	description
	drawings
	overflow

