005/024719 A1 |V 0001 0 O 00 00 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
17 March 2005 (17.03.2005)

AT 0 0 O

(10) International Publication Number

WO 2005/024719 A1l

(51) International Patent Classification’: GO6N 5/02,
GO6F 15/18, GO6N 5/04
(21) International Application Number:
PCT/US2004/028624

(22) International Filing Date:
2 September 2004 (02.09.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/500,196 4 September 2003 (04.09.2003) US

(71) Applicant and
(72) Inventor: HAMILTON, David, James [US/US]; 13756
Bridlewood Drive, Gainesville, VA 20155 (US).

(74) Agent: POMERANCE, Brenda; Law Office of Brenda
Pomerance, 260 West 52 Street Ste 27B, New York, NY
10019 (US).

(81)

(84)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: EXPERT SYSTEM WITH SIMPLIFIED LANGUAGE

Input 60

SEL
Rule Set 10

/

SEL5

ey

Appl'n 40

Output 70

SEE
Decision Logs 50

o (57) Abstract: An inference engine (20) comprises a computer software program (20) for evaluating rules (10) written in accordance
with a rule language syntax having a small number of BNF productions, a small number of terminal symbols, and being English-like.
The rule language syntax enables a rule to be called from another rule, and the computer software program supports a predefined

API (30) for communication with an external program (40).

WO 2005/024719 A1 [0 A00OH0 0T 000 0O

— before the expiration of the time limit for amending the Fortwo-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

1

EXPERT SYSTEM WITH SIMPLIFIED LANGUAGE
BACKGROUND OF THE INVENTION

The present invention relates to expert systems, and more particularly, is directed to a
language, inference engine and application programming interface having simplified
functionality.

An expert system comprises a set of rules, usually representing industry specific
knowledge, and a rules engine for executing the rules.

A rule engine may be viewed as a sophisticated if/then statement interpreter. The
if/then statements that are interpreted are called rules. The "if" portions of rules contain
conditions such as "shoppingCart.totalAmount > $100". The "then" portions of rules contain
actions such as "recommendDiscount(5%)". The inputs to a rule engine are a ruleset and
some data objects. The outputs from a rule engine are determined by the inputs and may
include the originally inputted data objects with possible modifications, new data objects and
side effects such as "sendMail('"Thank you for shopping")."

Known expert systems include: OPS5 from Carnegie Mellon University; ART and
ART-IM from Inference Corporation; CLIPS (C Language Integrated Production System)
from NASA; Eclipse from The Haley Enterprise, Inc.; Blaze Advisor from Fair Isaac
Corporation; JESS (Java Expert System Shell) from Sandia National Laboratories;
Al:ExpertSystem::Simple from Peter Hickman, XML-based rule language, Tcl/Tk expshell.

Most Expert System languages are robust. The term robust is used here to mean that
the language can support the implementation of large, real-world rule sets. These same
languages, however, become unwieldy with size and, in some cases, must be augmented
with rule set development tools. An example of rule set development tools can be found in
the “Blaze Advisor” product from Fair Isaac. These tools comprise a set of software
programs that enable a human user to view and update rules, and that automatically create
charts showing the processing steps in a user-defined sequence, such as processing a loan
application. Since a practical application typically contains thousands of rules, tools are
needed to help manage the rule sets.

Backus Naur Form (BNF) is a formal notation to describe the syntax of a

programming language. M. Marcotty & H. Ledgard, The World of Programming

10

15

20

25

) WO 2005/024719 PCT/US2004/028624

2

Languages, Springer-Verlag, Berlin 1986., pages 41 and following. See also:
http://cui.unige.ch/db-research/Enseignement/ analyseinfo/AboutBNF.html.

Each statement in BNF form is referred to as a “production” and the number of
productions in a language is an indication of the complexity of the language. FIG. 1 shows
CLIPS expressed in BNF. Since the JESS language is very similar to the language defined
by the CLIPS expert system shell, which in turn is a highly specialized form of LISP, the
characteristics of JESS are similar to the characteristics of CLIPS. FIG. 2 shows Blaze
Advisor expressed in BNF. CLIPS has 74 BNF productions. Blaze Advisor has 57 BNF
productions.

A terminal symbol is an element in a BNF statement that is not defined in terms of
other elements. The number of terminal symbols in a language is another indication of the
complexity of the language. CLIPS has 37 terminal symbols. Blaze Advisor has 120
terminal symbols.

The syntax of a language reférs to the rules governing the formation of statements in
the language, which are described using BNF. While programmers can adapt to a syntax
optimized for a computer, such as the LISP-like syntax of CLIPS or the proprietary syntax of
Blaze Advisor, most humans are used to thinking in English-like syntax and find the
computer-optimized syntaxes to be burdensome.

Accordingly, CLIPS, JESS and Blaze Advisor are seen to be complicated languages
that are burdensome for non-programmers to use. As a practical matter, the complexity of
the languages necessitates use of a rule development toolkit. In turn, this makes use of the
product feasible only for those prepared to invest the time in learning to use the toolkit, and
actually using the toolkit frequently enough to remember its nuances.

Thus, there is a need for an expert system that is less oﬁerous to use.

SUMMARY OF THE INVENTION

In accordance with an aspect of this invention, there is provided an inference engine,
comprising a computer software program for evaluating rules written in accordance with a
rule language syntax having a small number of BNF productions, a small number of terminal

symbols, and being English-like.

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

3

In a further aspect of this invention, the rule language syntax enables a rule to be
called from another rule, and the computer software program supports a predefined API for
communication with an external program.

It is not intended that the invention be summarized here in its entirety. Rather,
further features, aspects and advantages of the invention are set forth in or are apparent from
the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a BNF definition of the C Language Integrated Production System (CLIPS)
language;

Fig. 2 is a BNF definition of Blaze Advisor language;

Fig. 3 is a diagram showing the conceptual architecture of the expert system
components according to the present invention;

Fig. 4 is a diagram showing the physical configuration in which an expert system
according to the present invention operates;

Fig. 5 is a diagram showing the software architecture for application server 120;

Figs. 6A and 6B are BNF definitions of respective versions of a Simple Expert
Language;

Figs. 7A-TH are flowcharts showing different state machines for the Expert Engine;

Fig. 8 is a detailed description of the customer service scenario for example 1;

Fig. 9 is a flowchart for the application workflow of example 1;

Fig. 10 is program code showing the operation of the VRU workflow expressed in
SEL 5;

Fig. 11 is program code showing an example of rules encoded in SEL 35;

Fig. 12 is program code showing the rules of Fig. 11 organized into hierarchical files,
and how these files are included in another file;

Fig. 13 shows program code in SEL 5 for solving the golfer problem; Fig. 14 shows
program code in JESS for solving the golfer problem; and

Figs. 15A-15B are attribute data diagrams.

DETAILED DESCRIPTION
The Expert System described herein includes three components: an Expert Language,

an Expert Engine and an Expert Application Programming Interface (API).

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

4

The Expert Language enables business knowledge to be represented in a form that a
computer can readily process, referred to as a rule set. The Expert Language is used by
humans to create rule sets.

The Expert Engine performs pattern matching between data presented and a rule set
to determine which rules should be executed, and executes these rules. The Expert Engine is
built in accordance with the Expert Language and is used by external computer programs.
The Expert Engine is an instance of an inference engine.

The Expert API enables external computer programs to use the Expert Engine.
Attributes passed to the Expert Engine via the Expert API from external computer programs
are referred to as business attributes.

An embodiment of the Expert System, referred to as the Simple Expert System, will
now be discussed.

Fig. 3 shows the conceptual architecture of the Simple Expert System. Simple
Expert Language (SEL) 5 serves as a platform for creating rule set 10. Rule set 10 includes
business rules and/or workflow rules. A business rule represents industry specific
knowledge. A workflow rule relates to the order of the process flow for performing work.
Application program 40 communicates, via Simple Expert API 30, with Simple Expert
Engine (SEE) 20 to cause SEE 20 to execute appropriate rules in rule set 10 in dependance
on input 20. SEE 20 generates decision logs 50 that identify its step by step activity. SEE
20’s execution of rule set 10 generates output 70.

Fig. 4 shows the physical architecture of the Simple Expert System. Database server
100 is a general purpose computer programmed to store and provide data. Server 100 stores
input 20 and output 70. Server 100 also stores rule set 10 and decision log 50. In some
cases, server 100 stores different instances of rule set 10, for different applications, and
correspondingly different instances of decision log 50. Server 10 is coupled to application
server 120.

Application server 120 is a general purpose computer programmed to execute
software programs residing thereon. Server 120 executes application program 40 and SEE
20. In some cases, server 120 stores different instances of application program 40, for
different applications, and each of these instances of program 40 interacts with SEE 20.

Only one version of SEE 20 is needed for different instances of program 40, and is invoked

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

5

by the instances of program 40 using different instances of rule set 10. Server 120 is
coupled to database server 100 and to firewall 130.

Firewall 130 is a general purpose computer programmed to filter external network
traffic from application server 120 and web server 140, so that only desired traffic is
presented to servers 120 and 140. Firewall 130 is coupled to servers 120, 140 and external
network 150.

Web server 140 is a general purpose computer programmed to interact with remote
browsers using a request/response type of protocol. For some requests, web server 140
sends a message to program 40, waits for a response from program 40, and uses the response
from program 40 to respond to the browser’s request. Web server 140 is coupled to firewall
130.

External network 150 may be the Internet or may be an intranet. External network
150 is coupled to user computers 160. Each user computer 160 is a general purpose
computer programmed and is operative to execute a browser program, which sends requests
via network 150 to server 140, and receives responses therefrom.

Fig. 5 shows the software architecture from the viewpoint of application server 120.
Application server 120 executes an operating system used by application 40 and SEE 20.

Simple Expert Language

Fig. 6A is a BNF definition of SEL 5. SEL 5 is seen to have 13 BNF productions
and 25 terminal symbols.

Since SEL 5 is compact, having a limited number of BNF productions and terminal
symbols, it is readily learned and used by a non-programmer.

SEL 5 has an English-like structure. Specifically, statements have an antecedent and
a consequence. An antecedent is the term “if” followed by an expression. A consequence is
the term “then” followed by an expression. An expression has two ids, each being a value or
a variable name, and a Boolean-type operator.

Since SEL 5 is an English-like rule language, SEL 5 does not require the use of rule
set development tools to be effective. SEL 5 uses Boolean operators which are familiar
logic constructs even for non-programmers. Thus, the rules themselves are sufficiently
comprehensible by a non-programmer that the non-programmer can directly read and update

the rules.

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

6

Although it may be possible to use a subset of constructs of a Prior Art Expert
System to form the basis of a "simple" rule set implementation, the rule set still will not be
clear. An implementation that is not clear will necessitate the use of programmers to author
and maintain the rule sets, making them more expensive to implement and maintain.

SEL 5 facilitates representing knowledge as modules. Specifically, a rule id may be
referenced in the antecedent or consequence of another rule. The rule id returns a value to
the parent rule. Thus, antecedent clauses of rules may utilize attribute values set by
consequences of different rules.

SEL 5 has a hierarchical structure. Specifically, SEL 5 has an include mechanism to
facilitate the partitioning of rule sets across multiple files, shown as the keyword “file” in
Fig. 6A. Accordingly, libraries of common rules sets can readily be implemented.

The rule-referencing ability of SEL 5, combined with its hierarchical structure,
enables SEL 5 to handle large rule sets that are structured in a manner that a human can
readily comprehend. Common sets of rules can be grouped together. Thus, do not need to
be re-coded over and over again.

The hierarchical structure of SEL 5 combined with its compact size make SEL 5 easy
to learn, and result in straightforward rule sets. In contrast, languages such as CLIPS, Jess,
and Blaze Advisor have complex rule set, and~are relatively difficult to learn, so that
specialized knowledge engineers are required. SEL 5 can be effectively used by non-
programmers, saving the expense of hiring knowledge engineers and avoiding information
loss between the expert and the knowledge engineer.

SEL 5 supports internal attribute values. Internal attributes are attributes used in
such a way as to not be set by the external application via the API. The syntax for internal
attribute definition is identical to the syntax of input and output attribute definition . They
are only internal attributes because of semantic interpretation, i.e. how they are used.
Internal attributes are represented in byte code as attributes whose values are set by rules and
not via the APL. Internal attribute values are never passed in or passed back out of the expert
engine, but are only used internally during inferencing. Groups of rules can be enabled or
disabled by setting internal attribute values between inference engine states.

Internal attributes are used to establish hierarchies of rules to facilitate large rule sets.

Large rule sets are grouped into two or more smaller rule sets of similar type. The order of

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

7

evaluation is top down. A higher-level rule evaluation determines which lower level sets of
rules are enabled. This is done through the use of internal attributes.

For example, in a customer service application, two types of rules could be used.
One would be used to govern the customer interaction for a product under warranty, and
another set used if the product is not under warranty. An internal attribute would be set by a
higher-level rule that determined whether or not the product was under warranty. Based on
the value of the internal attribute, one or the other lower-level sets of rules would be enabled.

The internal attribute mechanism of SEL 5 further improves its ability to support
modular rule sets. Since SEL 5 supports modular knowledge, SEL 5 is robust.

Fig. 6B is a BNF definition of SEL 6. SEL 6 is seen to have 13 BNF productions and
25 terminal symbols. SEL 6 is similar to SEL 5, except that some of the terminal symbols
and some of the keywords have different names.

Other embodiments of the Simple Expert Language will be apparent to those of
ordinary skill in the art. A SEL according to the present invention has a small number of
BNF productions, generally under about 20, and a small number of terminal symbols,
generally under about 30.

Simple Expert Engine

SEE 20 performs the pattern matching of the rules to data as defined by the SEL
instruction set. It is effectively the virtual machine that runs the bytecode of the SEL. All
decisions made by SEE 20 are logged for audit and future reference purposes.

Fig. 7A is a flowchart showing the state machine for SEE 20. SEE 20 can be
represented as a state machine since all of the rule antecedents are evaluated prior to
performing any of the rule consequences. Order of rule evaluation is not important. In
addition, SEE 20 performs both forward-chaining and backward-chaining. In forward-
chaining, all of the attribute values are presented simultaneously to the engine prior to
inferencing, so order of attribute evaluation is not important. In backward-chaining,
however, where attribute values are being interactively requested, order is important. For
backward-chaining, attribute order is specified via SEL 5. An instance of specifying the
order of evaluating attributes is shown in Fig. 11, discussed below, specifically the
numerical order in the “eval attr { ...}” statement. In Fig. 6A, the relevant keyword is

“eval”.

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

8

At step 205 of Fig. 7A, the internal attribute values are set by external program 40 in
accordance with SEAPI 30. This step enables more modularization of rule sets. For
example, a first set of rules can apply for one customer while a second set of rules can apply
for another customer.

At step 210, SEE 20 disables all rules.

At step 215, SEE 20 enables only rules whose input attribute values have changed
from the previous pass. For the first iteration, all rules having input attribute values
depending on the input data are enabled.

At step 220, SEE 20 evaluates enabled rules and marks as fired or not-fired based on
antecedent conditions. This is performed across all rules that should be evaluated, i.e.,
enabled. Consequences are only performed for those rules that have been marked as having
fired. Thus it can be seen that the order of evaluation of these rules is not important during
forward-chaining inferencing. In other words, evaluating an enabled rule is done to decide
whether to look further at the rule, while marking a rule as fired or not-fired is done to
determine whether or not its consequence should be performed.

At step 225, SEE 20 performs the consequences of rules marked as fired during the
instant iteration of the flowchart of Fig. 7A.

At step 230, SEE 20 determines if any rules are marked as enabled. If so, processing
returns to step 210. If no rules are marked as enabled, then processing proceeds to step 235.

At step 235, SEE 20 returns the results of its activity to external program 40 in
accordance with SEAPI 30.

Other embodiments of the Simple Expert Engine will now be described.

Fig. 7B is a flowchart of the expert engine using the Rete algorithm, referred to as
SEE 21. The Rete algorithm is described in various documents including the original paper
by Charles L. Forgy, “Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern
Match Problem,” Artificial Intelligence 19 (1982): 17-37. Order of rule evaluation is
important in this embodiment in that the resultant pattern matching network will be different
depending on the order of rule specification.

At step 250, the internal attribute values are set by external program 40 in accordance

with SEAPI 30. This step enables more modularization of rule sets. For example, a first set

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

9

of rules can apply for one customer while a second set of rules can apply for another
customer.

At step 255, SEE Zi enables or disables rules based on attribute values.

At step 260, SEE 21 evaluates enabled rules and performs consequences based on
antecedent conditions.

At step 265, SEE 21 enables or disables rules based on attribute values.

At step 270, SEE 21 determines if any rules are marked as enabled. If so, processing
returns to step 250. If no rules are marked as enabled, then processing proceeds to step 275.

At step 275, SEE 21 returns the results of its activity to external program 40 in
accordance with SEAPI 30.

Fig. 7C is a flowchart of the expert engine using the “rules finding facts” algorithm,
referred to as SEE 22, as described in the book by Ernest Friedman-Hill, “Jess in Action:
Rule-Based Systems in Java,” Manning Publications Co. (2003): p135-136, is an inefficient
embodiment of the Inference Engine. This algorithm simply evaluates every rule and
performs the associated action iteratively until no further action is required. The inefficiency
is in the fact that every rule is evaluated each pass which becomes combinatorially explosive
in terms of computation time required to process large rule sets.

At step 290, the internal attribute values are set by external program 40 in accordance
with SEAPI 30. This step enables more modularization of rule sets. For example, a first set
of rules can apply for one customer while a second set of rules can apply for another
customer.

At step 292, SEE 22 evaluates all rules and marks as fired or not-fired based on
antecedent conditions.

At step 294, SEE 22 performs the consequence of any rule newly marked as fired
during this iteration

At step 296, SEE 22 determines if any rules are newly marked as fired. If so,
processing returns to step 290. If no rules are marked as fired, then processing proceeds to
step 298.

At step 298, SEE 22 returns the results of its activity to external program 40 in
accordance with SEAPI 30.

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

10

The differences between the SEE 20 (SEE), SEE 21 (Rete), and SEE 22 (rules
finding facts) are as follows. SEE 22 evaluates all of the rules each pass and performs the
associated actions. SEE 21 evaluates only enabled rules and performs the associated action
for each rule before evaluating the next rule. SEE 20 evaluates only enabled rules but does
not perform any associated actions until all of the rules have been evaluated.

SEE 20 and SEE 21 are more efficient than SEE 22 because they only evaluate
enabled subsets of rules.

SEE 20 and SEE 22 are state-based and do not have a rule order-of-evaluation
dependency. SEE 21 is not state-based and does have a rule order-of-evaluation
dependency.

Figs. 7D-7F provide detail for a first embodiment of Fig. 7A, while Figs. 7G-7H
provide detail for a second embodiment of Fig. 7A. Fig. 15A shows an attribute data
diagram for the first embodiment. Fig. 15B shows an attribute data diagram for the second
embodiment.

Fig. 7D provides detail for the first embodiment of Fig. 7A, step 215, which is
concerned with enabling only those rules with input attribute value changes from a previous
pass.

At step 330, the first rule is selected. At step 335, a list of relevant attribute objects
in the rule’s antecedent is acquired. At step 340, the first of these attributes is selected. At
step 350, it is checked whether the previous pass attribute value is equal to the current pass
attribute value. If not, then at step 345, the rule is enabled and processing continues at step
370. If so, then at step 360, it is checked whether there are any more attributes. If so, at step
355, the next attribute is selected and processiné returns to step 350. If there are no more
attributes for this rule, then at step 370, it is checked whether there are any more rules. If so,
at step 365, the next rule is selected and processing returns to step 335. If there are no more
rules, then processing is complete.

This first embodiment stores, for each attribute object, the previous and current value
of the attribute object. It is believed that no other rules engine does this. Advantages of
storing the previous and current values for an attribute object include: reduced search time,
ease in locating changed attribute values, and the system’s state is distributed into each

object.

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

11

Fig. 7E provides detail for the first embodiment of Fig. 7A, step 220, which is
concerned with evaluating enabled rules and marking them as fired on no-fired based on the
rule’s antecedent condition.

At step 375, the first rule is selected. At step 380, it is checked whether the rule was
enabled during processing of Fig. 7D. If not, that is, there was no change, then at step 385,
the rule is marked as not-fired and processing continues at step 400. If the rule was enabled,
that is, there was a change in at least one attribute value, then at step 390. it is checked
whether the rule’s antecedent condition evaluates to true. If not, processing continues at step
385. If the rule’s antecedent condition evaluates to true, then at step 395, the rule is marked
as fired. At step 400, it is checked whether there are any more rules. If so, at step 405, the
next rule is selected and processing continues at step 380. When there are no more rules,
processing is complete.

Fig. 7F provides detail for the first embodiment of Fig. 7A, step 225, which is
concerned with performing the consequence of each enabled rules marked as fired during
this pass.

At step 410, the first rule is selected. At step 415, it is checked whether the rule was
marked as fired during processing of Fig. 7E. If not, then processing continues at step 425.
If the rule was marked as fired, then at step 420, the rule’s consequence is performed. At
step 425, it is checked whether there are any more rules. If so, then at step 430, the next rule
is selected and processing continues at step 415. If there are no more rules, then processing
is complete.

Fig. 7G provides detail for the second embodiment of Fig. 7A, steps 215, 220 and
225.

In the first embodiment, the steps of Fig. 7A are performed in the order of the first
step for all rules, the next step for all rules and so on. In the second embodiment, the steps
of Fig. 7A are performed in the order of, for the first rule, all steps, then for the second rule,
all steps, and so on. Depending on the tradeoff between processing speed and memory cost,
one or the other embodiments will be most optimal.

At step 435, the first rule is selected. At step 440, a list of relevant attribute objects
in the rule antecedent is acquired. At step 445, the first attribute is selected. At step 455, it

is determined whether the previous pass attribute value is equal to the current value. If not,

10

15

20

25

30

WO 2005/024719 PCT/US2004/028624

12

then at step 450, the rule is enabled and processing continues at step 470. If the previous
pass attribute value is equal to the current value, then at step 465, it is determined whether
there are any more attributes. If so, at step 460, the next attribute is selected and processing
returns to step 455. If there are no more attributes, processing continues at step 470.

At step 460, it is determined whether the rule is enabled. If not, processing continues
at step 490. If the rule is enabled, then at step 480, it is determined whether the antecedent
condition evaluates to true. If so, then at step 475, the rule’s consequence is performed, and
processing continues at step 490. If the antecedent condition does not evaluate to true, then
processing continues at step 490.

At step 490, it is determined whether there are any more rules. If so, at step 485, the
next rule is selected and processing continues at step 440. If not, then processing is
complete.

Fig. 7H provides detail for the second embodiment of Fig. 7A, step 230, which is
concerned with determining whether any rules are enabled.

At step 495, the first rule is selected. At step 500, it is determined whether the rule is
enabled. Ifnot, processing continues at step 515. If the rule is enabled, then at step 503, the
future value is assigned to the current value. At step 515, it is determined whether there are
any more rules. If so, then at step 510, the next rule is selected and processing continues at

step 500. Ifnot, then processing is complete.

Simple Expert API
SEAPI 30 conforms to a subset of the Java Rule Engine API standard currently being
developed by the Java Community Process. www.jcp.org/jsr/detail/94.jsp

Example 1: Customer Service Interaction
An example will now be discussed in which a human has a problem with a product,
calls a support telephone number for the product’s supplier, and encounters a voice response
unit (VRU) whose purpose is to ensure that only qualified product purchasers can talk to a

technical support representative. The human interacts with the VRU. The VRU determines

10

15

20

25

WO 2005/024719 PCT/US2004/028624

13

that the caller is a qualified product purchaser and forwards the human’s call to a technical
support representative (TSR). The TSR interacts with the caller to find a problem resolution.

Fig. 8 shows a step-by-step event log of the scenario for example 1.

To use business rules in an application requires an ordered processing mechanism
called a workflow.

Fig. 9 is a flowchart for the application workflow of example 1 utilizing SEE 20 to
perform both the evaluation of Business rules and Workflow rules within the Application’s
implementation. At step 305, external program 40 sets the business attributes to an initial
state.)

At step 310, program 40 runs SEE 20 with business rules. This step is done to
compare the data presented with the business rules. At step 315, SEE 20 performs
application actions based on business attribute values. This step amounts to performing
appropriate ones of the consequences based on the data presented.

At step 320, program 40 runs SEE 20 with workflow rules. This step is done to
figure out what to do next, such as when a computer is having a structured dialog with a
user, and needs to figure out how to respond based on the user’s input. At step 325,
program 40 tests if the interaction is at an end. Typically, “end interaction” is a value
associated with an attribute. If not, processing returns to step 305. If so, processing is
complete.

Fig. 10 shows the operation of the VRU workflow expressed in SEL 5. Each of the
attributes “state” and “next” can have one of the values: “vru”, “human”, “exit”. The three
workflow rules shown in Fig. 10 describe the next source of input, and when the VRU
routine should exit.

Fig. 11 shows an example of rules encoded in SEL 5 for the VRU’s operation.

Fig. 12 shows the rules of Fig. 11 organized into hierarchical files, specifically, the
“language rules” file and the “fee” file, and also shows how these files are included in a
“customer service” file. Fig. 12 demonstrates how SEL 5 supports representing knowledge

in modular form.

10

15

20

WO 2005/024719 PCT/US2004/028624

14

Example 2: Math Class Problem
This example, from the book by Ernest Friedman-Hill, “Jess in Action: Rule-Based
Systems in Java,” Manning Publications Co. (2003): p4-8, contrasts te use of SEL with the
Jess Rule Language to solve a non-intuitively obvious problem with a limited set of rules.
The problem is: in what order will four golfers tee off, and what color are each
golfer’s pants? The facts given are:

1. A foursome of golfers is standing at a tee, in a line from left to right. Each golfer
wears different colored pants; one is wearing red pants. The golfer to Fred’s
immediate right is wearing blue pants.

2. Joe is second in line.

3. Bob is wearing plaid pants.

4. Tom isn’t in position one or four, and he isn’t wearing the hideous orange pants.

Fig. 13 shows program code in SEL 5 for solving the golfer problem. The code is seen
to be English-like such that a non-programmer human can translate the statements into
English, while being sufficiently definite that a computer can execute the code. Note that, at
the conclusion of the program, values are assigned to attributes, and an external program is
assumed to either use the values or display them to a human.

Fig. 14 shows program code in JESS for solving the golfer problem. The code is not
English like, so a non-programmer cannot understand it. Note that the JESS program code is
responsible for outputting the values, via “printout” statements. A programmer would
consider this more powerful than SEL 5, as the output can be specified directly by JESS;

however, the cost is that a non-programmer cannot directly modify the code.

5

10

WO 2005/024719

Comparison of SEL 5 and Other Rule Languages

15

Table 1 compares SEL to CLIPS, JESS AND Blaze Advisor.

PCT/US2004/028624

TABLE 1
EXPERT SYSTEM SEL CLIPS Jess Blaze Advisor
ATTRIBUTES
Rule Language
Implementation SEL 5 CLIPS | Jess Rule Language Structured Rule
Language
Potential Embodiments 2+ 1 1 1
Terminal Symbols 25 37 37+ 120
BNF Productions 13 74 74+ 57
Built-in Functions 0 176 32
Syntax Style | simple/clear | LISP-like LISP-like complex/proprietary
Inference Engine
Implementation: SEE Rete Rete proprietary
Potential Embodiments 3+ 1 | 1
Performance 20x+ Ix 20x
API
Implementation | standard proprietary/ proprietary
standard
Potential Embodiments 2+ 2 1

The 2+ Rule Language potential embodiments for SEL include SEL 5 and other

languages having different syntax, but with the structured English style and other features of
SEL 5, as shown in Figs. 6A and 6B.

The 3+ Inference Engine potential embodiments are "SEE," "Rete," "rules finding

facts," as shown in Figs. 7A-7C, and any other inference engine implementation that can

"run" the rules in a fashion consistent with the objective of the Simple Expert System.
The 2+ API potential embodiments are the "Java Rule Engine API" standard

currently being discussed and another as-yet-undefined API standard.

WO 2005/024719 PCT/US2004/028624

16

Although illustrative embodiments of the present invention, and various
modifications thereof, have been described in detail herein with reference to the
accompanying drawings, it is to be understood that the invention is not limited to these
precise embodiments and the described modifications, and that various changes and further
modifications may be effected therein by one skilled in the art without departing from the

scope or spirit of the invention as defined in the appended claims.

10

WO 2005/024719 PCT/US2004/028624

17

What is claimed is;

1. An inference engine, comprising:

a computer software progrém for evaluating rules written in accordance with a rule
language syntax having a small number of BNF productions, a small number of terminal
symbols, and being English-like.

2. The inference engine of claim 1, wherein the rule language syntax enables a
rule to be called from another rule.

3. The inference engine of claim 1, wherein the computer software program

supports a predefined API for communication with an external program.

WO 2005/024719

FIG.1 CLIPS
CLIPS Program

<CLIPS-program> ::= <construct>*
<construct> ::= <deftemplate-construct> |
<deffacts-construct> |
<defrule-construct> |
<defmodule-construct>
Deftemplate Construct
<deftemplate-construct> ::= (deftemplate <name>
[<comment>]
<slot-definition>*)
<slot-definition> = <single-slot-definition> |
<multislot-definition>
<single-slot-definition> ::= (slot <slot-name>
<slot-attribute>*)
<slot-name> = <gymbol>
<multislot-definition> ::= (multislot <slot-name>
<slot-attribute>*)
<slot-attribute> 1= <type-attribute> |
<allowed-constant-attribute> |
<range-attribute>]
<cardinality-attribute> |
<default-attribute>

<type-attribute> = (type <type-specification>)
<type-specification> ;= <allowed-type>+| ?VARIABLE
<allowed-type> :=SYMBOL | STRING | LEXEME |

INTEGER | FLOAT | NUMBER
<allowed-constant-attribute>

.= (allowed-symbols <symbol-list>) |
(allowed-strings <string-list>) |
(allowed-lexemes <lexeme-list> |
(allowed-integers <integer-list>) |
(allowed-floats <float-list>) |
(allowed-numbers <number-list>) |
(allowed-values <value-list>)

<symbol-list> = <symbol>+ |?VARIABLE
<string-list> i=<string>+ |?VARIABLE
<lexeme-list> =<lexeme>+ | 7VARIABLE
<integer-list> 1= <integer>+ | 7VARIABLE
<float-list> u=<float>+ |?VARIABLE
<number-list> = <number>+ |?VARIABLE
<value-list> .= <constant>+ | 7VARIABLE
<range-attribute> == (range <range-specification>
<range-specification>)

<range-specification> ::= <number> | ?VARIABLE
<cardinality-attribute> ::= (cardinality <cardinality-
specification>
<cardinality-specification>)
<cardinality-specification> ::= <integer> | ZVARIABLE
<default-attribute> = (default <default-item>) |
(default-dynamic <expression>*)
<default-item> :=9DERIVE | 7NONE | <expression>*
Deffacts Construct
(deffacts-construct> = (deffacts <name> [<comment>]
<RHS-pattern>*)
Defrule Construct
<defrule-construct> ::= (defrule <name> [<comment>]
{<declaration>]
<conditional-element>*
=>
<expression>*)
<declaration> .= (declare <rule-property>+)
<rule-property> 1= (salience <integer-expression>) |
(auto-focus <boolean-symbol>)
<boolean-symbol> = TRUE| FALSE
<conditional-element> ::= <pattern-CE> |
<assigned-pattern-CE> |
<test-CE>
<not-CE> |
<and-CE>]
<or-CE>]
<logical-CE>]

PCT/US2004/028624

1/26

<exists-CE>]
<forall-CE>
<pattern-CE> ::= <ordered-pattern-CE> |
<template-pattern-CE>
<assigned-pattern-CE> ::= <single-field-variable> <-

<pattern-CE>
<test-CE> <= (test <function-call>)
<not-CE> .= (not <conditional-element>)
<and-CE> = (and <conditional-element>+)
<or-CE> .= (or <conditional-element>+)
<logical-CE> .= (logical <conditional-element>+)
<exists-CE> .= (exists <conditional-element>+)
<forall-CE> ::= (forall <conditional-element>
<conditional-element>+)
<ordered-pattern-CE> ::= (<symbol> <constraint>+)
<template-pattern-CE> ;= (<deftemplate-name <LHS-
slot>*)
<LHS-slot> = <single-field-LHS-slot> |

<multifield-LHS-slot>
<single-field-LHS-slot> ::= (<slot-name> <constraint>)
<multifield-LHS-slot> ::= (<slot-name> <constraint>*)
<constraint> =7 $? | <connected-constraint>
<connected-constraint> ::= <single-constraint> |

<single-constraint> & <connected-

constraint>|
<single-constraint> | <connected-constraint>
<single-constraint> = <term> | ~<term>
<term> = <constant> |

<variable> |
<function-call> |
=<function-call>
Fact Specification
<RHS-pattern> ;1= <ordered-RHS-pattern> |
<template-RHS-pattern>
<ordered-RHS-pattern> ::= (<symbol> <RHS-field>+)
<template-RHs-pattern> ::= (<deftemplate-name> <RHS-
slot>*)
<RHS-slot> .= <single-field-RHS-slot> |
<multifield-RHS-slot>
<single-field-RHS-slot> ::= (<slot-name> <RHS-field>)
<multifield-RHS-slot> ::= (<slot-name> <RHS-field>*)

<RHS-field> = <variable> |
<constant> |
<function-call>

<deftemplate-name> ;= <symbol>

Varlables and Expressions

<single-field-variable> ::= ?7<variable-symbol>

<multifield-variable> ::= $?<variable-symbol>

<variable> 1= <single-field-variable> |
<multifield-variable>

<function-call> 1= (<function-name> <expression>*) |

<special-function-call>

<special-function-call> ::= (assert <RHS-pattern>+)]
(modify <expression> <RHS-slot>+) |
(duplicate <expression> <RHS-slot>+) |
(bind <single-field-variable> <expression>)

<expression> 1= <constant> |
<variable> |
<function-call>

Data Types

<symbol> = A valid symbol

<string> .= A valid string

<float> = A valid float

<integer> = A valid integer

<number> = <float> | <integer>

<lexeme> := <symbol> | <string>

<constant> = <number> | <lexeme>

<comment> 1= <string>

<variable-symbol> ::= A <symbol> beginning with an

alphabetic character
<function-name> ::= <symbol>
<name> 1= <symbol>

WO 2005/024719

PCT/US2004/028624

FIG. 2 Blaze Advisor (page 1 of 4)

Reference: “Advisor Rules Syntax”, Blaze Software, 1999, Pages 1-57 (“This document
describes the syntax you use to write an Advisor rulebase. Syntax represents the laws of a
language. In Advisor, the language you use is the Advisor Structured Rule Language

(SRL).”)

Rulebase
Object_Model [Rulesets]...[Event_Rules]...[Functions]...

Class_Definition

a[n] className is a[n] parent_className [with
Property_Declaration_List]
[Initialize_Statement]

Object Declaration

objectName is a[n] className [with Property_Declaration_List]
[Initialize_Statement]

objectName is an association from className | interfaceName |
Primitive_Type to className | interfaceName | Primitive_Type
[with Property_Declaration_List]

[initially { it[key] = value,

it[key] = value,

|

objectName is a[n] array of className | interfaceName |
Primitive_Type [with Property_Declaration_List]
[initially { it.append(value) | it.inseri(value),

it.append(value) | it.insert(value),

H

objectName is a[n] fixed array of className | interfaceName |
Primitive_Type [with Property Declaration_List]
[initially { it[key] = value,

it[key] = value,

3

Property_Declaration_List

{ Property_Declaration [, Property Declaration] ... }
Property_Declaration

afn] propertyName : a[n] Primitive_Type

afn] propertyName : a[n] enumerationName

or

a[n] enumerationName

a[n] propertyName : some className | interfaceName
or

some className | interfaceName

a[n] propertyName : some association from className |
interfaceName |

Primitive_Type to className | interfaceName | Primitive_Type
a[n] propertyName : some [fixed] array of className |
interfaceName |

Primitive_Typé

Initialize Statement
initially { propertyName = Primary_Expression [, propertyName

Primary_Expression] ... }
initially { Method_Call | Execute_Function | Create_Statement }
where Statement is one of the statements listed below.

Enumeration_Declaration
a[n] enumerationName is one of { itemName , itemName [,
itemName] ... } .

Pattern_Declaration
patternName is any className | interfaceName [in
collectionName]

[such that it. propertyName Comparison_Operator
Primary_Expression

[and | or it. propertyName Comparison_Operator
Primary_Expression]] .

Variable_Declaration

variableName is a[n] Primitive_Type

[initially true | false | unavailable | null | value J .
variableName is a[n] enumerationName

[initially enumerationltemName] .

variableName is some className | interfaceName
[initially objectExpression] .

variableName is some association from className |
interfaceName |

Primitive_Type to className | interfaceName | Primitive_Type
[initially objectExpression] .

variableName is some [fixed] array of className |
interfaceName |

Primitive_Type [initially objectExpression] .

Primitive_Type
boolean | integer | real | string | timestamp | date | time | duration

| money

Ruleset_Definition
ruleset rulesetName [for { Parameter_Declarations }]

[returning a[n] Primitive_Type] className} interfaceName]
is { Ruleset_Body Definition return [Primary_Expression] }

Ruleset Body Definition
[Object_Declaration] [Pattern_Declaration]
[Variable_Declaration]

Rule_Definition [Rule_Definition] ...
[Property Event Rule | Object_Event Rule |
External_Event_Rule]

Rule_Definition
[rule ruleName [Rule_Priority] is] Rule_Body_Definition .

Rule_Priority
at priority n | at immediate priority [n]

Rule Body_Definition
if Boolean_Expression then Statement_Block

[else Statement_Block]

Property Event Rule

[event rule ruleName is]

whenever the propertyName of className is changed | needed
do { Statement_Block }[.]

or

[event rule ruleName is]

whenever a[n] className.propertyName is changed | needed
do { Statement Block }[.]

Object Event Rule

{event rule ruleName is]

whenever a[n] className is created | initialized | deleted
do { Statement_Block }[.]

External Event Rule
[event rule ruleName is]

WO 2005/024719

FIG. 2 Blaze Advisor (page 2 of 4)

whenever a[n] className occurs
do { Statement_Block }[.]

Is_Changed_Property Operators
old propertyName
new propertyName

Raw_Operator
raw Expression

Expressions

Primary_Expression

Boolean_Expression | Comparison_Expression
Numeric_Expression |

Quantified_Expression | Literal_Value

Boolean_Expression

true | false

Comparison_Expression

not Boolean_Expression

Boolean_Expression and Boolean_Expression
Boolean_Expression or Boolean_Expression

Comparison Expression

Primary_Expression Comparison_Operator Primary_Expression
Primary_Expression Comparison_Operator Literal_Value
where the two primary expressions are of compatible datatypes.

Numeric_Expression
Property_Value | value

Numeric_Expression Numeric_Operator Numeric_Expression
where both Property_Value and value evaluate to numeric
values.

Quantified_Expression

at least n className [such that Boolean_Expression] satisfy
Boolean_Expression

at most n className [such that Boolean_Expression] satisfy
Boolean_Expression

every className [such that Boolean_Expression] satisfies
Boolean_Expression

exactly n className [such that Boolean_Expression] satisfies
Boolean_Expression

or

at least n elementTypeName in collectionName [such that
Boolean_Expression]

satisfy Boolean_Expression

at most n elementTypeName in collectionName [such that
Boolean_Expression]

satisfy Boolean_Expression

every elementTypeName in collectionName [such that
Boolean_Expression]

satisfies Boolean_Expression

exactly n elementTypeName in collectionName [such that
Boolean_Expression]

satisfies Boolean_Expression

Literal_Value
true | false | unavailable | unknown | available | known | null |
value

Property_Value
variableName | objectExpression. propertyName

or
the propertyName of objectExpression | variableName
or

the propertyName [of the objectPropertyName] of
objectExpression |

variableName

Default_Property_Value

PCT/US2004/028624

Indexed_Property_Value

Default_Property Value
objectExpression.$value
or
objectExpression.$object

Indexed_Property Value
objectExpression. propertyName[index]

Statement_Block

Statement

or

{ Statement [, Statement]... }

Statement

Apply_Ruleset | Assignment_Statement |
Compound_Assignment_Statement |

Create_Statement | Delete_Statement | Execute_Function |
Method_Call |

Case_Selection | If_Then_Else | For_Each | While_Do |
Until Do

Apply_Ruleset

apply rulesetName [with { Parameter_Bindings }]
Statements

or

rulesetName(Argument_List)

Assignment_Statement
Property_Value = Primary_Expression | true | false | unavailable

null | value

Built In

calendar()

currencies()

events()

executeAgent()

exit()

print("Literal Value")

print(Property_Value)

print(Property_Value "Literal_Value")
print([Property_Value] "" Property_Value ...)
print(Property_Value as a siring)
promptBoolean(" Your prompt text here.")
promptinteger(" Your prompt text here.")
promptReal(" Your prompt text here.")
promptString(" Your prompt text here.")
promptEnumerationltem(enumName, " Your prompt text
here.") as an enumName

promptObject(className, " Your prompt text here.") as a
className

ignore(patternName)

objectMapper()

Compound Assignment_Statement
Property_Value += Primary_Expression | value

Property_Value -= Primary_Expression | value
Property_Value *= Primary_Expression | value
Property_Value /= Primary_Expression | value

Create Statement
a[n] className [Initialize Statement]}

elete Statement

delete objectExpression
delete objectExpression. propertyName
delete the propertyName of objectExpression

Execute_Function
execute functionName [with { Parameter_Bindings }]
or

WO 2005/024719 PCT/US2004/028624

4/26
FIG. 2 Blaze Advisor (page 3 of 4) Comparison_Qperator

is|<>]<|>|<=|>=

functionName(Argument_List) Compound_Assignment Operator
== k=] /=
Method_Call
className. methodName (Argument_List) Numeric_Operator
objectExpression. methodName (Argument_List) +]-1*]/|div]mod
Functions . Keywords
Function_Definition a, an
function functionName [for { Parameter_Declarations }] array
[returning afn] Primitive_Type| className | interfaceName | association from
collectionName] Xxx to Xxx
is { Statement_Block [return Primary_Expression] } fixed array
initially
Parameter Declarations is a, is an
parameterName : a[n] Primitive_Type | className | is any
interfaceName | is one of
some association from className to className | is some
some [fixed] array of className | Primitive_Type it, he, she
[, parameterName : a[n] Primitive_Type | className | some
interfaceName | such that
some association from className to className | with
some [fixed] array of className | Primitive_Type] apply
at immediate
priority
Parameter Bindings at least...
parameterName = Primary_Expression [, parameterName = satisfy...
Primary_Expression)... at most...
satisfy...
Argument List at priority
[Primary_Expression {, Primary_Expression]...] does not apply
every... satisfy...
Case_Selection exactly...
select Primary_Expression satisfy....
case Primary_Expression : Statement_Block for
case Primary_Expression : Statement Block if
is
otherwise : Statement_Block is changed
is needed
For_Each return
for each className | interfaceName [such that returning
Boolean_Expression] rule
do Statement_Block ruleset
for each elementTypeName in collectionName [such that the ... of ...
Boolean_Expression] then
do Statement_Block do
event rule
If Then_Else is changed
if Boolean_Expression then Statement_Block [else is created
Statement_Block] is deleted
is initialized
While Do is needed
Until Do new
while Boolean_Expression do Statement_Block oceurs
until Boolean_Expression do Statement_Block old
raw
Try_Catch Finally_Statement whenever
try Statement Block case
catch a[n] exceptionclassName with Statement_Block do
[finally Statement_Block] for each
in
Throw_Statement otherwise
throw exceptionExpression select
until
Operators while
Assignment_Operator execute
= function
return
Boolean_Operator returning
not | or | and catch

finally

WO 2005/024719

5/26
FIG. 2 Blaze Advisor (page 4 of 4)

throw
iy
and
as
delete
div
mod
not
or

is

<>

4=
*=

/=

Builtin Methods
calendar

ceil

currencies
debugString
events
executeAgent
exit

floor
garbageCollect
ignore .
objectMapper
Datatypes
print
promptBoolean
promptObject
promptEnumerationitem
promptinteger
promptReal
promptString
round

stop

truncate
boolean

date

duration
integer

money

object

real

string

time
timestamp

PCT/US2004/028624

WO 2005/024719 PCT/US2004/028624

6/26
FIG. 3

Input 60

Output 70

oz

Appl'n 40

SEL

Rule Set 10
/ SEL 5 :

SEE
Decision Logs 50

WO 2005/024719

Browser 160

Web Server 140
Browser Handler

—————> Firewall 130

7126
FIG. 4

Internet or Intranet 150

Internal LAN

PCT/US2004/028624

App Server 120
Web GUI

program
40

Database Server 100

SEL Rule Set 10

SEE Decision Log 50
Application I/O Data 60, 70

WO 2005/024719 PCT/US2004/028624

8/26

FIG.5

Inout 60 | External » Output 70

Application

SEL
Rule Set 10

SEE
Decision Logs 50

WO 2005/024719

<SEL rule_set> ::==

I

<statement>

I

<block>

<phrase> =

<antecedent> ::=

<consequence> =

<expression> =

<operator> =

<list> u=

<comment> u=

<key_word> =

<id>

l

<character> :=

9/26
FIG. 6A

<statement>*

(<key word> <id> <block>) |
<comment>

CC{CC <phrase>+ CC}” |
<list>

(<id> <list>) |
(<antecedent> <consequence>)

if <expression>+
then <expression>+
(<id> <operator> <id>)

and |
or |

GG:” I
“099|
CG>33]
GC<)) I
GC>=73l

gz
cc(cc <id>+ 44):9

(“//” <character>* eoln) |
“/*” <character>* “*/”

attr |
eval |
rule |
file |
fired

<a-z|A-Z|0-9 |« ">+

<any_ascii_character_except eoln>

PCT/US2004/028624

WO 2005/024719 PCT/US2004/028624

10/26
FIG. 6B

<SEL _rule_set> ::= <statement>*

<statement> = (<key_word> <id> <block>) |
<comment>

ii

<block> “[“ <phrase>+ “]” I

<]ist>

li

<phrase> (<id> <list>) |

(<antecedent> <consequence>)
<antecedent> ::= if <expression>+
<consequence> ::= then <expression>+
<expression> = (<id> <operator> <id>)

<operator> = and]|
or |
eq |
ne |
gt |
It |
ge |
le

<list> = “(“ <id>+ cc)n

<comment> = (“//” <character>* eoln) |
“/*” <character>* “*/”

<key word> = variable |
order_of eval |
business_rule |
persistance |
fired

<id>

I

<a-z|A-Z]0-9|% ">+

<character> = <any ascii_character_except eoln>

WO 2005/024719 PCT/US2004/028624

11/26
FIG. 7A

\ 4
r set attr vals via api

I 205

A 4
PI disable all rules

| 210

A 4
I enable only those rules with input attr val changes from previous pass I 215

v
I eval enabled rules and mark as fired or not-fired based on antecedent condition I 290

v

I perform consequence of each enabled rule marked as fired this pass I 795

yes

any rules
enabled?

230

l return attr vals via api |

235

WO 2005/024719 PCT/US2004/028624

12/26
FIG. 7B

h 4
| set atfr vals via api I 250
h 4
| enable/disable rules based on attr vals | 255
260
v

N

eval enabled rule and perform conseauence based on antecedent condition

'

enable/disable rules based on attr vals 265

yes any more rules

enabled? 270

l return attr vals via api I 275

WO 2005/024719

yes

PCT/US2004/028624
13/26
FIG. 7C
A 4
I set attr vals via api —| 290
2
v 92
—PI; eval all rules and mark as fired or not-fired based on antecedent condition l
\ 4
l perform consequence of each rule newly marked as fired this pass |
294

any rules newly

marked as fired? 296

I return attr vals via api I 298

WO 2005/024719

PCT/US2004/028624

14/26
FIG. 7D

A 4
select first rule 330

h 4

acquire list of relevant attribute objects in rule antecedent

!

select first attribute 340

335

is previous pass
attribute value

355

L select next
attribute

select next

rule

365

enable rule

equal to current?

any more

attributes? 360

370

no

345

WO 2005/024719

15/26
FIG. 7TE

select first rule

yes

does antecede

fo true?

condition evaluate

is rule enabled?
38

nt

mark rule as fired

select next rule

no

405

395

es
y any more rules?

PCT/US2004/028624

375

mark rule as
not-fired

390

385

400

WO 2005/024719

16/26
FIG. 7F

select first rule

did rule fire?

yes

v

perform rule conseguence

select next rule

430

no

es
y any more rules?

PCT/US2004/028624

410

no

415

420

425

WO 2005/024719 PCT/US2004/028624
17/26
FIG. 7G
| select first rule 435
P acquire list of relevant attribute obiects in rule antecedent 440
select first attribute 445
is previous pass
attribute value enable rule
equal to current?
435 450
460
any more
SZ[;%S{? attributes?
465
is rule enabled? 4
470
yes
475
does antecedent yes
condition evaluate perform rule
to true? consequence
480
no
485
- select next rule

490

WO 2005/024719

18/26
FIG. TH

\ 4
select first rule 495

PCT/US2004/028624

no

is rule enabled?

505

perform attribute future value to current value assignments

select next
rule

no

510

515

WO 2005/024719

PCT/US2004/028624

19/26

FIG. 8 Example 1

I received printer by mail.

T unpacked printer.

I noticed loose plastic parts inside printer.
I printed first test page fine.

1 printed second test page, which caused paper jam.

I diagnosed problem with printer as page eject
levers broken off.

I decided that I needed a replacement printer.

I checked vendor warranty coverage

I found vendor CS phone number in printer doc.
I called vendor.

VRU answered.

VRU asked, if English speaking to stay online or
hit 1 for Spanish.

I waited.

VRU asked for product name.

I answered with product name.

VRU asked if I owned product less than one year.
I answered yes.

VRU said to please wait.

1 waited.

Human answered.

Human asked for phone number.

I answered with phone number.

Human asked for last name.

I answered with last name.

Human asked for first name.

I answered with first name.

Human asked if I wanted to receive telemarketing
calls, spam, and/or junk mail.

I answered no.

Human asked for product name.

I answered with product name of printer.

Human asked for product serial number.

1 answered with product serial number.

Human asked for problem description.

I answered that the page eject levers had broken off
and I described my approach to diagnosing the
problem.

Human agreed that printer is damaged and covered
under warranty.

Human checked on resolution options.

Human stated four resolution option choices: return
then receive paying cost of shipping, receive then
return with credit card collateral for free, 2 day
shipping for more money, one day shipping for
even more money.

I chose second option to receive then return with
credit card collateral for free.

Human asked for shipping address.

I answered with shipping address.

Human asked for credit card number.

I answered with credit card number.

Human requested credit card authorization.
Human stated that credit card authorization was
successful.

Human gave me customer service order number.

I confirmed by reading back customer service order
number.

Human gave me case ID.

1 confirmed by reading back case ID.

Human asked if I had any other questions.

I answered no.

Human said thank you for calling CS.

I said thank you.

We ended call.

WO 2005/024719 PCT/US2004/028624
20/26
FIG. 9
———>I set Business attrs to initial state I 305
| run SEE with Business rules I 310
I perform Application actions based on Business atir vals I 315
| run SEE with Workflow rules I 320
no
end

interaction?

WO 2005/024719

21/26
FIG. 10

/I Work Flow State Machine Example

attr state (vru human exit)
attr next (vru human exit)
attr action (get_vru_resp involve_human end_interaction)

rule next_state_vru {
if state = vru and
action = get_vru_resp
then next =vru
}
rule next_state_human {
if state = vru and
action = involve _human
then next =human
3
rule next_state_exit {
if (state = vruor
state =human) and
action =end_interaction
then next =exit

PCT/US2004/028624

WO 2005/024719

PCT/US2004/028624

22/26

FIG. 11 Example 1

/I SEL: Example 1 - Customer Service Interaction
/* Example 1 Subset:

1 called vendor.

VRU answered.

VRU asked, if English speaking to stay online or
hit 1 for Spanish.

I waited.

VRU asked for product name.

1 answered with product name.

VRU asked if I owned product less than one year.
I answered yes.

VRU said to please wait.

1 waited.

Human answered. */

attr lang_spoken {

ask (If you speak Spanish, please
press 1.

If you speak English, please stay

on the line.)

val (1 null)
3
attr lang_use (english spanish)
attr prod name {

ask (What is the name of the product that
you purchased?)

val (printer null)

attr human (yes no)

attr purch_under_year ago {

ask (Did you purchase the product under
one year ago?)

val (yes no)

}
attr support_free (yes no)

eval attr {

1 (lang_spoken)

2 (prod_name)

3 (purch_under_year_ago)
}

rule lang_use_set_english {
if lang_spoken = null
then lang_use = english

}

rule lang_use_set_spanish {
if lang_spoken =1
then lang_use = spanish

3

5

rule human_involvement determination {
if prod_name = printer
then human =yes

rule support_fee determination {
if purch_under year ago = yes
then support_free = yes

WO 2005/024719 PCT/US2004/028624

23/26
FIG. 12

FILE: “LanguageRules.sel”

attr lang_spoken {
ask (If you speak Spanish, please
press 1.
If you speak English, please stay
on the line.)
val (1 null)
}
attr lang_use (english spanish)
rule lang_use_set_english {
if lang_spoken = null
then lang_use = english

}
rule lang_use_set spanish §
if lang_spoken =1
then lang_use = spanish
}

FILE: “Fee.sel”

attr purch_under_year ago {

ask (Did you purchase the product under
one year ago?)

val (yes no)
}

attr support_free (yes no)

rule support_fee determination {
if purch_under_year_ago = yes
then support_free = yes

FILE: “CustomerServicelnteraction.sel”

//this command includes files “LanguageRules.sel”
and “Fee.sel” inline
eval file (LanguageRules Fee)

attr prod_name {

ask (What is the name of the product that
you purchased?)

val (printer null)

attr human (yes no)

eval attr {
1 (lang_spoken)
2 (prod_name)
3 (purch_under_year ago)

}
rule human_involvement_determination {

if prod_name = printer
and

(support_fee_determination =
fired or //reference to rule id
suport_free = yes)
/fattribute set prior
then human = yes
}

WO 2005/024719

24/26

FIG. 13 Example 2 SEL
attr name (fred joe bob tom)
attr position (1234
attr color (red blue plaid orange)
attr position_plus_one_color (red blue plaid orange)
attr joe_position (true false)
attr bob_color (true false)

attr tom_position_color (true false)
attr name_position_color (true false)

rule fred_position_plus_one_color_correct {

if name = fred and
position_plus one color = blue
then fred position plus_one_color = true
3
rule joe_position_correct {

if name =joe and
position =2
then joe_position = true

rule bob_color_correct {
if name =bob and
color = plaid
then bob_color = true

3
rule tom_position_color_correct {
if name = tom and
(position <1 and
position <>4) and
color <> orange
then tom_position_color = true
}
rule name_position_color_correct {
if fred position_plus_one_color = true and
joe_position = true and
bob_color = true and
tom_position_color =true
then name_position_color = true

PCT/US2004/028624

WO 2005/024719

25/26
FIG. 14 Example 2 JESS

(deftemplate pants-color (slot of) (slot is))
(deftemplate position (slot of) (slot is))
(defrule find-solution
;rule 1 — Fred’s position plus one color
(position (of Fred) (is 7p1))
(pants-color (of Fred) (is ?c1))
(position (of 7n&~Fred)
(is ?p&: (eq ?p (+ 7p1 1))
(pants-color (of 7n&~Fred)
(is blue&~?cl))
;rule 2 - Joe’s position
(position (of Joe) (is ?p2&2&2~7p1))
(pants-color (of Joe) (is 7c2&~7c1))
;rule 3 — Bob’s pants color
(position (of Bob)
(is 7p3&~?pl&~?p&~7p2))
(pants-color (of Bob&~7n)
(is plaid&?c3&~?c1 &~7¢c2))
;rule 4 — Tom’s position and pants color
(position (of Tomé&~?n)
(is ?p4&~1&~4&~7p1&~?p2&~7p3))
(pants-color (of Tom)
(is ?c4&~orange&~blue&~?7c1&~?c2&~?c3))
=
(printout t Fred “ “ ?p1 “ “ ?¢1 crlf)
(printout t Joe ““ ?p2 ““ ?c2 crlf)
(printout t Bob ““ ?p3 “ “ ?¢3 crlf)
(printout t Tom “ “ ?p4 * “ ?c4 crlf crlf))

PCT/US2004/028624

WO 2005/024719

26/26
FIG. 15A
object type attribute
string type name
object type previous value
object_type current value
FIG. 15B
object type attribute
string type name
object type previous_value
object type current value

object type future calue

PCT/US2004/028624

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US04/28624

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : GO6N 5/02; GO6F, 15/18; GO6N, 5/04

USCL . 706/47, 14, 60
According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 706/47, 14, 60

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
USPTO East, US-PGPUB, USPAT, EPO, JPO, DEWENT, IBM, IEEE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of docurmnent, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US PUB 2002/0120917 Al (Abrari et al) 29 August 2002 (29.08.2002), Abstract, Figures 1-3
2, 6, Paragraphs 0017, 0031, 0040, 0048, 0050.
X US 5,485,544 A (Nonaka et al) 16 January 1996 (16.01.1996), Abstract, column 7, lines 1-3

{1-14, column 7, lines 60-63, column 8, lines 49-54.

l:l Further documents are listed in the continuation of Box C. |:I See patent family annex.

* Special categories of cited documents: . “T" later document published after the intemational filing date or priority
date and not in conflict with the application but cited to understand the
“A" document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevince
X" document of particular relevance; the claimed vention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone

*L" document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of wnother citation or other special reason (as “y" document of particular relevance; the claimed invention camnot be

specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“Q" docuiment referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P" document published prior to the intemational filing date but later than the “&” document member of the same patent family
priority date claimed
Date of the actual completion of the international search Datg, ilgku'ljnﬁ(}t\l Lh?ﬁijgatiorml search report

06 January 2005 (06.01.2005)
Name and mailing address of the ISA/US Authorized officer < f el
& W lphelle £S0on—

Mail Stop PCT, Attn: ISA/US Jos B
Commissioner for Patents oseph P. Hirl
P.O. Box 1450
Alexandria, Virginia 223 13-1450 Telephone No. 571-272-3685

Facsimile No. (703) 305-3230

Form PCT/ISA/210 (second sheet) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

