970027754 A2 I 0O 000 0 RO A A

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 December 2008 (31.12.2008)

L IR
PO |00 00 0

(10) International Publication Number

WO 2009/002754 A2

(51) International Patent Classification:
GOG6F 12/00 (2006.01)

(21) International Application Number:
PCT/US2008/067145

(22) International Filing Date: 16 June 2008 (16.06.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/823,162 27 June 2007 (27.06.2007) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: MAGRUDER, Michael M.; One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
DETLEFS, David; One Microsoft Way, Redmond,
Washington 98052-6399 (US). DUFFY, John Joseph;
One Microsoft Way, Redmond, Washington 98052-6399
(US). GRAEFE, Goetz; One Microsoft Way, Redmond,
Washington 98052-6399 (US). GROVER, Vinod K.; One

Microsoft Way, Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW,BY, BZ, CA,
CH, CN, CO,CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— without international search report and to be republished
upon receipt of that report

(54) Title: HANDLING FALSELY DOOMED PARENTS OF NESTED TRANSACTIONS

106 100

REMOVABLE
STORAGE "
COMPUTING DEVICE -108
v NON-REMOVABLE
STORAGE N
104 L SORAGE
v
| evsTem MEMORY -0 OUTPUT DEVICE(S
SYSTEM MEMORY P (S) A
VOLATILE PROCESSING UNIT
INPUT DEVICE(S) <112 115
NON-VOLATILE 14 y
OTHER ¥ | OTHER
COMMUNICATION ¢, | COMPUTERS/
200 CONNECTION(S) APPLICATIONS
TRANSACTIONAL
MEMORY
APPLICATION

FIG.1

(57) Abstract: [029] Various technologies and techniques are disclosed for detecting falsely doomed parent transactions of nested
& children in transactional memory systems. When rolling back nested transactions, a release count is tracked each time that a write
& lock is released due to rollback for a given nested transaction. For example, a write abort compensation map can be used to track
the release count for each nested transaction. The number of times the nested transactions releases a write lock is recorded in their
respective write abort compensation map. The release counts can be used during a validation of a parent transaction to determine if
a failed optimistic read is really valid. If an aggregated release count for the nested children transactions accounts for the difference

in version numbers exactly, then the optimistic read is valid.

10

15

20

25

30

WO 2009/002754 PCT/US2008/067145

HANDLING FALSELY DOOMED PARENTS
OF NESTED TRANSACTIONS
BACKGROUND
[001] Software transactional memory (STM) is a concurrency control mechanism
analogous to database transactions for controlling access to shared memory in
concurrent computing. A transaction in the context of transactional memory is a
piece of code that executes a series of reads and writes to shared memory. STM is
used as an alternative to traditional locking mechanisms. STM allows concurrent
programs to be written more simply. A transaction specifies a sequence of code
that is supposed to execute as if it were executing in isolation. This illusion of
isolation is achieved by fine-grained locking of objects, and by executing in a mode
that allows the side-effects of the transaction to be rolled back if the transaction is
discovered to be in conflict with some other transaction. We say that a data access
1s “transacted” if the code generated for that access has been moditied to include
support for these locking and rollback mechanisms.
[002] Many STM systems support nested transactions, allowing efficient
composition of different components authored using transactions. A nested
transaction is considered closed if it its effects are part of the same isolation
boundary as its containing, or parent, transaction. When a closed nested transaction
commits, its effects do not become visible to the rest of the system. Instead, its
effects become part of the parent transaction, still in progress, and will become
visible to the rest of the system only when the parent transaction finally commits.
When a nested transaction rolls back, its temporary effects are undone and the state
of the parent transaction is restored to the point that the nested transaction began.
[003] STM systems that use in-place writes and optimistic reads use a version
number associated with each lockable region of memory to indicate when changes
are made to shared data. A reading transaction will optimistically record the
version number of the memory (object, cache line, etc.) but not otherwise lock the
data. The transaction may commit if the version number does not change over the
life of the transaction. Writing transactions increment the version number when

releasing their write locks, either for commit or rollback. The version number must

10

15

20

25

30

WO 2009/002754 PCT/US2008/067145

be increased during rollback because the writing transaction temporarily updated
data in-place. These updates are visible to the reading transaction, and it must be
notified that it cannot commit, having potentially read inconsistent data.
[004] Nested transactions that write data not yet written by the parent must
increment version numbers on rollback just like non-nested (top-level) transactions.
However, consider the case where a parent transaction optimistically reads a
variable X and a nested child transaction writes to variable X for the first time. The
parent will record the version number of X in its log, say, version V1. The nested
transaction will begin and acquire a write lock on X. If the nested transaction
commits, then there are no problems: the write lock is not released and is
transferred to the parent and the parent remains consistent, able to commit.
However, if the nested transaction rolls back, for whatever reason, it must release
the write lock and increment the version number for X to V2. The parent will
appear to be inconsistent at commit time. The version of X is V2, but the parent
read it at V1 and has no record of who changed the version number to V2. It
appears that the parent has conflicted with another transaction, but in fact it was a
nested child transaction that caused the version number increase, and this 1s not
actually a conflict. The parent has been doomed by its child’s rollback operation.
This problem causes STM systems to experience spurious re-executions of parent
transactions.

SUMMARY
[005] Various technologies and techniques are disclosed for detecting falsely
doomed parent transactions of nested children in transactional memory systems.
When rolling back nested transactions, a release count is tracked each time that a
write lock is released for a given nested transaction. For example, a write abort
compensation map can be used to track the release count for each lock released for
each nested transaction that rolls back. The number of times the nested transactions
release a write lock is recorded in their respective write abort compensation map.
The release counts can be used during a validation of a parent transaction to

determine if an apparently invalid optimistic read is really valid.

10

15

20

25

30

WO 2009/002754 PCT/US2008/067145

[006] In one implementation, while processing a parent transaction log, any write
abort compensation maps seen for nested child transactions are aggregated into an
aggregated write abort compensation map in the parent. If the optimistic read
tailed to validate due to a version number mismatch, then the aggregated write
abort compensation map is consulted to retrieve a particular variable’s write lock
release count for the nested child transactions. If a difference in version numbers
exactly matches the write lock release count for the nested child transactions, then
the optimistic read 1s valid.
[007] This Summary was provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[008] Figure 1 is a diagrammatic view of a computer system of one
implementation.
[009] Figure 2 is a diagrammatic view of a transactional memory application of
one implementation operating on the computer system of Figure 1.
[010] Figure 3 is a high-level process flow diagram for one implementation of the
system of Figure 1.
[011] Figure 4 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in creating and maintaining write abort
compensation maps.
[012] Figure 5 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in aggregating write abort compensation
maps during transaction rollback.
[013] Figure 6 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in using write abort compensation maps
during transaction validation to avoid falsely dooming parents of nested

transactions.

10

15

20

25

30

WO 2009/002754 PCT/US2008/067145

DETAILED DESCRIPTION
[014] The technologies and techniques herein may be described in the general
context as a transactional memory system, but the system also serves other
purposes in addition to these. In one implementation, one or more of the
techniques described herein can be implemented as features within a framework
program such as MICROSOFT® .NET Framework, or from any other type of
program or service that provides platforms for developers to develop software
applications. In another implementation, one or more of the techniques described
herein are implemented as features with other applications that deal with
developing applications that execute in concurrent environments.
[015] In one implementation, a transactional memory system is provided that
allows the false dooming of parent transactions of nested child transactions to be
detected and avoided. The term “doomed” as used herein is meant to include
transactions that will later be rolled back because they have performed one or more
optimistic reads on one or more variables that have subsequently been written by
other transactions. When attempting to commit such a transaction, the failed
optimistic reads will cause the transaction to roll back and re-execute. The term
“falsely doomed” as used herein is meant to include any transaction that appears to
be doomed due to a failed optimistic read, but that is actually not doomed because
the optimistic read was actually valid due to operations performed by nested
transactions. The term “nested transaction” as used herein is meant to include any
transaction whose effects are enclosed within the isolation boundary of another
transaction. The transaction that encloses the nested transaction is called the
“parent” of the nested transaction, and the nested transaction is typically called the
“child”. The number of times each nested child releases a write lock 1s tracked in
per-lock release counts. In one implementation, these counts are tracked in a write
abort compensation map. The term “write abort compensation map” as used herein
1s meant to include a data structure that stores the per-lock release counts for each
lock that each nested child releases. Multiple write abort compensation maps can

be aggregated into an aggregate map during transaction validation or roll back.

10

15

20

25

30

WO 2009/002754 PCT/US2008/067145

[016] When validating a parent transaction, if an optimistic read fails validation,
then the current aggregate write abort compensation map is consulted to see if the
difference in version numbers in a transactional memory word exactly matches the
aggregate release count of the nested child transactions for that object or memory
region. If so, then the optimistic read is actually valid and the parent should not be
talsely doomed. The term transactional memory word as used herein is meant to
include a data structure provided for each transaction that tracks various
information about the given transaction, such as lock status and version number.
For example, the TMW can include a version number and a list/count and/or
indicator of readers. In one implementation, the list/count and/or indicator of
readers can include a count of the number of readers accessing the particular value
at a given point in time. In another implementation, the list/count and/or indicator
of readers can include a list of the particular readers (e.g. pessimistic) accessing the
particular value at a given point in time. In yet another implementation, the
list/count and/or indicator of readers is simply a flag or other indicator to indicate
that there are one or more readers accessing the particular value at a given point in
time. These are just examples, and the use of the term TMW herein is meant to
cover a variety of mechanisms for tracking transaction statuses.

[017] As shown in Figure 1, an exemplary computer system to use for
implementing one or more parts of the system includes a computing device, such as
computing device 100. In its most basic configuration, computing device 100
typically includes at least one processing unit 102 and memory 104. Depending on
the exact configuration and type of computing device, memory 104 may be volatile
(such as RAM), non-volatile (such as ROM, flash memory, etc.) or some
combination of the two. This most basic configuration is illustrated in Figure 1 by
dashed line 106.

[018] Additionally, device 100 may also have additional features/functionality.
For example, device 100 may also include additional storage (removable and/or
non-removable) including, but not limited to, magnetic or optical disks or tape.
Such additional storage is illustrated in Figure 1 by removable storage 108 and non-

removable storage 110. Computer storage media includes volatile and nonvolatile,

10

15

20

25

30

WO 2009/002754 PCT/US2008/067145

removable and non-removable media implemented in any method or technology for
storage of information such as computer readable instructions, data structures,
program modules or other data. Memory 104, removable storage 108 and non-
removable storage 110 are all examples of computer storage media. Computer
storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or
other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store the
desired information and which can accessed by device 100. Any such computer
storage media may be part of device 100.

[019] Computing device 100 includes one or more communication connections
114 that allow computing device 100 to communicate with other
computers/applications 115. Device 100 may also have input device(s) 112 such as
keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s)
111 such as a display, speakers, printer, etc. may also be included. These devices
are well known in the art and need not be discussed at length here. In one
implementation, computing device 100 includes transactional memory application
200. Transactional memory application 200 will be described in further detail in
Figure 2.

[020] Turning now to Figure 2 with continued reference to Figure 1, a
transactional memory application 200 operating on computing device 100 is
illustrated. Transactional memory application 200 is one of the application
programs that reside on computing device 100. However, it will be understood that
transactional memory application 200 can alternatively or additionally be embodied
as computer-executable instructions on one or more computers and/or in different
variations than shown on Figure 1. Alternatively or additionally, one or more parts
of transactional memory application 200 can be part of system memory 104, on
other computers and/or applications 115, or other such variations as would occur to
one in the computer software art.

[021] Transactional memory application 200 includes program logic 204, which is

responsible for carrying out some or all of the techniques described herein.

10

15

20

25

30

WO 2009/002754 PCT/US2008/067145

Program logic 204 includes logic for creating a write abort compensation map
(WACM) when a nested transaction rolls back and releases a write lock for the first
time 206 (as described below with respect to Figure 4); logic for recording in each
entry in the WACM, the number of times a nested transaction released the write
lock in a given transactional memory word 208 (as described below with respect to
Figure 4); logic for holding WACM in parent’s transaction log 210 (as described
below with respect to Figure 4); logic for using and updating same WACM if a
particular nested transaction re-executes and rolls back again 212 (as described
below with respect to Figure 4); logic for aggregating WACM’S as appropriate 214
(as described below with respect to Figure 5); logic for using WACM’s during
transaction validation to determine if failed optimistic read 1s really valid or invalid
216 (as described below with respect to Figure 6); and other logic for operating the
application 220.

[022] Turning now to Figures 3-6 with continued reference to Figures 1-2, the
stages for implementing one or more implementations of transactional memory
application 200 are described in further detail. In some implementations, the
processes of Figures 3-6 are at least partially implemented in the operating logic of
computing device 100. Figure 3 is a high level process flow diagram for
transactional memory application 200. The process begins at start point 240. Any
write lock released during nested transaction rollback has the potential to doom the
parent transduction (stage 242). When rolling back a transaction, each time that a
version number is increased is remembered (stage 244). The system tracks this
information for each nested transaction that rolls back (stage 246). During
transaction validation, the system uses this information to determine whether a
particular optimistic read that failed validation is actually valid because the
difference was due to re-execution nested children (stage 248). These stages are
described in further detail in Figures 4-6. The process ends at end point 250.

[023] Figure 4 illustrates one implementation of the stages involved in creating
and maintaining write abort compensation maps. The process begins at start point
270 with creating a write abort compensation map (WACM) that is keyed by a

unique lock identifier when a nested transaction rolls back and releases a write lock

10

15

20

25

30

WO 2009/002754 PCT/US2008/067145

for the first time (stage 272). Each entry in the WACM records the number of
times the nested transaction released a write lock on a given transactional memory
word (stage 274).

[024] The WACM is held in a parent transaction’s log and is ordered after all
optimistic reads made by the parent at the start of the nested transaction (stage
276). If a particular nested transaction re-executes and rolls back again, the system
uses the same WACM and updates it with any new write lock release (stage 278).
If the nested transaction acquires a lock again that it acquired on a previous
execution, the count for that transactional memory word is incremented in the
WACM (stage 280). The process ends at end point 282.

[025] Figure 5 illustrates one implementation of the stages involved in aggregating
WACM’S during transaction rollback. The process begins at start point 290 with a
nested transaction that was also the parent of many nested children over time
possibly having multiple WACM’s dispersed throughout its log (stage 292). If
multiple WACM’S are encountered during transaction rollback, then all WACM’S
due to the nested children are aggregated into a single WACM and placed in the
parent’s log (stage 294). The process ends at end point 296.

[026] Figure 6 illustrates one implementation of the stages involved in using
WACM’S during transaction validation to avoid falsely dooming parents of nested
transactions. The process begins at start point 310 with aggregating any WACM
seen as optimistic read entries are processed into a temporary WACM for the
validation process while processing the parent’s log in reverse (stage 312). If the
optimistic read failed to validate due to a version number mismatch (decision point
314), then the temporary WACM is consulted, using the TWM address as a key
(stage 316). If there is a matching entry on that TMW address (decision point 318),
then the system calculates whether the count associated with the entry matches the
difference in the version number exactly (decision point 320). If the count matches
the difference in the version number exactly (decision point 320), then the
optimistic read is valid and the difference was due solely to re-executing the nested

children (stage 322). If not, then the optimistic read is invalid and is due to

10

WO 2009/002754 PCT/US2008/067145

commit/rollback of the other transactions (stage 324). The stages are repeated for
the entire parent log (decision point 326). The process ends at end point 328.

[027] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features and acts described
above are disclosed as example forms of implementing the claims. All equivalents,
changes, and modifications that come within the spirit of the implementations as
described herein and/or by the following claims are desired to be protected.

[028] For example, a person of ordinary skill in the computer software art will
recognize that the examples discussed herein could be organized differently on one
or more computers to include fewer or additional options or features than as

portrayed in the examples.

10

15

20

25

30

WO 2009/002754 PCT/US2008/067145

What is claimed is:
1. A method for avoiding falsely doomed parent transactions of nested children
in a transactional memory system comprising the steps of:

when rolling back nested transactions, tracking a release count each time
that a write lock is released (206) ; and

during validation of a parent transaction, using the release count to determine

whether an optimistic read that failed validation is actually valid (216).
2. The method of claim 1, wherein the failed validation is actually valid if a
difference in version numbers exactly matches the release count (320).
3. The method of claim 1, wherein the release count is tracked in a write abort
compensation map (274).
4, The method of claim 3, wherein the write abort compensation map is created
for each of the nested transactions (272).
S. The method of claim 4, wherein the write abort compensation map is created
for a respective one of the nested transactions when the respective one first rolls
back and releases a write lock (272).
6. The method of claim 4, wherein the write abort compensation map for each
of the nested transactions are aggregated into an aggregate write abort
compensation map (312).
7. The method of claim 6, wherein the aggregate write abort compensation map
is used while processing a transaction log of the parent transaction to determine if
the optimistic read that failed is really valid (312).
8. The method of claim 7, wherein the transaction log of the parent is
processed in a reverse order (312).
0. A computer-readable medium having computer-executable instructions for
causing a computer to perform the steps recited in claim 1 (200).
10. A computer-readable medium having computer-executable instructions for
causing a computer to perform steps comprising:

creating a write abort compensation map for a nested transaction (206);

recording in the write abort compensation map a number of times the nested

transaction releases a write lock (208); and

10

10

15

20

25

WO 2009/002754 PCT/US2008/067145

using the write abort compensation map during a validation of a parent
transaction to determine if a failed optimistic read is really valid (216).
11. The computer-readable medium of claim 10, wherein the write abort
compensation map is created when the nested transaction rolls back and releases a
write lock for a first time (272).
12. The computer-readable medium of claim 10, wherein the failed optimistic
read is really valid if a difference in version numbers exactly matches the number
of times the nested transaction released the write lock (320).
13. The computer-readable medium of claim 10, wherein the write abort
compensation map is held in transaction log of the parent transaction (276).
14. The computer-readable medium of claim 13, wherein the write abort
compensation map is ordered after all optimistic reads made by the parent
transaction at a start of the nested transaction (276).
15. The computer-readable medium of claim 10, wherein the write abort
compensation map is aggregated with other write abort compensation maps
encountered for other nested children to form an aggregated write abort
compensation map during parent transaction rollback (294).
16. The computer-readable medium of claim 15, wherein the aggregated write
abort compensation map is placed in a transaction log of the parent transaction
(294).
17. The computer-readable medium of claim 16, wherein the aggregated write
abort compensation map is placed in the transaction log of the parent transaction
when processing the transaction log of the parent in a reverse order (312).
18. A method for using write abort compensation maps during transaction
validation to avoid falsely dooming parents of nested transactions comprising the
steps of:

while processing a parent log, aggregating any write abort compensation
maps seen in nested child transactions into an aggregated write abort compensation

map (312);

11

10

WO 2009/002754 PCT/US2008/067145

if an optimistic read failed to validate due to a version number mismatch
(314), then consulting the aggregated write abort compensation map to retrieve a
write lock release count for the nested child transactions (316); and

if a difference in version numbers exactly matches the write lock release
count for the nested child transactions (320), then the optimistic read is valid (322).
19. The method of claim 18, wherein if the difference in version numbers does
not exactly match the write release count for the nested child transactions, then the
optimistic read is invalid (324).
20. A computer-readable medium having computer-executable instructions for

causing a computer to perform the steps recited in claim 18 (200).

12

106

/ /
REMOVABLE
STORAGE

COMPUTING DEVICE " 108

NON-REMOVABLE

STORAGE
104 A 110
N

: e 102 OUTPUT DEVICE(S

SYSTEM MEMORY S S
VOLATILE PROCESSING UNIT
INPUT DEVICE(S) <112
\
NON-VOLATILE 114
OTHER g
COMMUNICATION <:$
200 CONNECTION(S)
. TRANSACTIONAL
MEMORY
APPLICATION

FIG. 1

115

/

OTHER
COMPUTERS/
APPLICATIONS

9/1

¥SLT00/600T O

SY1.90/8002SN/LDd

TRANSACTIONAL MEMORY APPLICATION
200

PROGRAM LOGIC
204

LOGIC FOR CREATING WRITE ABORT COMPENSATION MAP (WACM) WHEN NESTED TRANSACTION ROLLS
BACK AND RELEASES WRITE LOCK FOR FIRST TIME
206

LOGIC FOR RECORDING IN EACH ENTRY IN WACM THE NUMBER OF TIMES NESTED TRANSACTION
RELEASED WRITE LOCK ON GIVEN TMW
208

LOGIC FOR HOLDING WACM IN PARENT'S TRANSACTION LOG
210

LOGIC FOR USING AND UPDATING SAME WACM IF PARTICULAR NESTED TRANSACTION RE-EXECUTES AND
ROLLS BACK AGAIN
212

LOGIC FOR AGGREGATING WACM'S AS APPROPRIATE
214

LOGIC FOR USING WACM'S DURING TRANSACTION VALIDATION TO DETERMINE IF FAILED OPTIMISTIC READ
IS REALLY VALID OR INVALID
216

OTHER LOGIC FOR OPERATING THE APPLICATION
220

FIG. 2

9/¢

¥SLT00/600T O

SY1.90/8002SN/LDd

WO 2009/002754 PCT/US2008/067145

3/6

START
240

ANY WRITE LOCK RELEASE DURING NESTED TRANSACTION
ROLLBACK HAS THE POTENTIAL TO DOOM THE PARENT TRANSACTION
242

i

WHEN ROLLING BACK A TRANSACTION, REMEMBER EACH TIME THAT
A VERSION NUMBER IS INCREASED
244

l

TRACK THIS INFORMATION FOR EACH NESTED TRANSACTION THAT
ROLLS BACK
246

l

DURING TRANSACTION VALIDATION, USE INFORMATION TO
DETERMINE WHETHER PARTICULAR OPTIMISTIC READ THAT FAILED
VALIDATION IS ACTUALLY VALID BECAUSE DIFFERENCE WAS DUE TO
RE-EXECUTING NESTED CHILDREN
248

END
250

FIG. 3

WO 2009/002754 PCT/US2008/067145

4/6

START
270

WHEN NESTED TRANSACTION ROLLS BACK AND RELEASES WRITE LOCK FOR
THE FIRST TIME, CREATE WACM THAT IS KEYED BY A UNIQUE LOCK
IDENTIFIER
272

i

EACH ENTRY IN WACM RECORDS NUMBER OF TIMES NESTED TRANSACTION
RELEASED WRITE LOCK ON GIVEN TMW
274

i

WACM IS HELD IN PARENT TRANSACTION'S LOG AND IS ORDERED AFTER ALL
OPTIMISTIC READS MADE BY PARENT AT THE START OF THE NESTED
TRANSACTION
276

'

IF PARTICULAR NESTED TRANSACTION RE-EXECUTES AND ROLLS BACK
AGAIN, USE SAME WACM AND UPDATE IT WITH ANY NEW WRITE LOCK
RELEASES
278

i

IF NESTED TRANSACTION ACQUIRES LOCK AGAIN THAT IT ACQUIRED ON A
PREVIOUS EXECUTION, INCREMENT COUNT FOR THAT TMW IN THE WACM
280

END

282
FIG. 4

WO 2009/002754 PCT/US2008/067145

5/6

START
290

NESTED TRANSACTION THAT WAS PARENT OF MANY NESTED
CHILDREN POSSIBLY HAVING MULTIPLE WACM'S IN ITS LOG
292

|

IF MULTIPLE WACM'S ARE ENCOUNTERED DURING TRANSACTION
ROLLBACK, THEN ALL WACM’'S DUE TO NESTED CHILDREN ARE
AGGREGATED INTO A SINGLE WACM AND PLACED IN PARENT’S

LOG
294

END
296

FIG. 5

WO 2009/002754

6/6

START
310

WHILE PROCESSING THE PARENT'S LOG IN REVERSE, AGGREGATE
ANY WACM SEEN INTO A TEMPORARY WACM FOR THE VALIDATION
PROCESS
312

v

OPTIMISTIC READ FAIL TO VALIDATE DUE TO NO

PCT/US2008/067145

VERSION NUMBER MISMATCH? 314

iYES

CONSULT TEMPORARY WACM, USING TMW ADDRESS AS KEY
316

v

IS THERE A MATCHING ENTRY? NO
318

i YES

NO DOES COUNT ASSOCIATED WITH ENTRY MATCH
THE DIFFERENCE IN VERSION NUMBERS EXACTLY?
320

i YES

OPTIMISTIC READ IS VALID AND DIFFERENCE WAS DUE SOLELY TO
RE-EXECUTING NESTED CHILDREN
322

OPTIMISTIC READ IS INVALID AND DUE TO COMMIT/ROLLBACK OF

> THE OTHER TRANSACTIONS
324
MORE OF THE PARENT LOG TO PROCESS?
YES 320
NO
END

FIG. 6 328

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

