wO 2007/074343 A2 |10 NI 00 0 00O OO 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O O D 000

International Bureau

(43) International Publication Date
5 July 2007 (05.07.2007)

(10) International Publication Number

WO 2007/074343 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/GB2006/004946

(22) International Filing Date:

28 December 2006 (28.12.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

0526519.4 28 December 2005 (28.12.2005) GB
0600417.0 10 January 2006 (10.01.2006) GB
0602033.3 1 February 2006 (01.02.2006) GB

(71) Applicant (for all designated States except US): LEVEL
5 NETWORKS INCORPORATED [US/US]; 840 West
California Ave, Suite 240, Sunnyvale, CA 94086 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): POPE, Steven
[GB/GB]; 25 Greville Road, Cambridge, Cambridges
CB1 3QJ (GB). RIDDOCH, David [GB/GB]; 68 Tenison
Road, Cambridge CB1 2DW (GB).

(74) Agents: SLINGSBY, Philip, Roy et al.; Page White &
Farrer, Bedford House, John Street, London WCIN 2BF
(GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: PROCESSING RECEIVED DATA

271~ ~32
22~ 40 37 ~33
23—~ 25\[# 38 ~34 [~30
24~ —1 [~35
~ 20 29 S
26—~ —~—36

(57) Abstract: A method for controlling the processing of data in a data processor, the data processor being connectable to a further
device over a data link, the method comprising the steps of: receiving data at an element of the data processor; if a set interval has
elapsed following the receipt of the data, determining whether processing of the received data in accordance with a data transfer
protocol has begun, and, if it has not, triggering such processing of the received data by a protocol processing element; sensing
conditions pertaining to the data link; and setting the interval in dependence on the sensed conditions.

WO 2007/074343 PCT/GB2006/004946

COMBINED PCT DEC06

The present application relates to data processing systems and discloses three
distinct inventive concepts which are described below in Sections A to C of the
description.

Claims 1 to 25 relate to the description in Section A, claims 26 to 53 relate to the
description in Section B, and claims 54 to 90 relate to the description in Section C.

In the appended drawings, figures 1 to 5 relate to the description in Section A, figures
6 to 12 relate to the description in Section B, and figures 13 to 18 relate to the
description in Section C.

: Embodiments of each of the inventions described herein may include any one or
more of the features described in relation to the other inventions.

Where reference numerals are used in a Section of the description they refer only to
the figures that relate to the description in that Section.

WO 2007/074343 PCT/GB2006/004946

SECTION A
PROCESSING RECEIVED DATA

This invention relates to a method and apparatus for controlling the processing of
data in a data processor.

In data networks it is important to enable efficient and reliable transfer of data
between devices. Data can only reliably be transferred over a connection between
two devices at the rate that a bottleneck in the connection can deal with. For
example, a switch in a TCP/IP configured connection may be able to pass data at a
speed of 10Mbps while other elements of the connection can pass data at, say,
100Mbps. The lowest data rate determines the maximum overall rate for the
connection which, in this example, would be 10 Mbps. If data is transmitted between
two devices at a higher speed, packets will be dropped and will subsequently need to
be retransmitted. If more than one link is combined over a connector such as a
switch, then the buffering capacity of the connector needs to be taken into account in
determining maximum rates for the links, otherwise data loss could occur at the

connector.

Figure 1 shows the architecture of a typical networked computing unit 1. Block 6
indicates the hardware domain of the computing unit. In the hardware domain the
unit includes a processor 2 which is connected to a program store 4 and a working
memory 5. The program store stores program code for execution by the processor 2
and could, for example, be a hard disc. The working memory could, for example, be
a random access memory (RAM) chip. The processor is connected via a network
interface card (NIC) 2 to a network 10. Although the NIC is conventionally termed a
card, it need not be in the form of a card: it could for instance be in the form of an
integrated circuit or it could be incorporated into the hardware that embodies the
processor 2. In the software domain the computing unit implements an operating
system 8 which supports an application 9. The operating system and the application
are implemented by the execution by the processor 3 of program code such as that
stored in the program store 4.

WO 2007/074343 PCT/GB2006/004946

When the computing unit receives data over the network, that data may have to be
passed to the application. Conventionally the data does not pass directly to the
application. One reason for this is that it may be desired that the operating system
polices interactions between the application and the hardware. As a result, the
application may be required to interface with the hardware via the operating system.
Another reason is that data may arrive from the network at any time, but the
application cannot be assumed always to be receptive to data from the network. The
application could, for example, be de-scheduled or could be engaged on another task
when the data arrives. It is therefore necessary {o provide an input mechanism
(conventionally an input/output (1/0O) mechanism) whereby the application can access
received data.

Figure 2 shows an architecture employing a standard kernel TCP transport (TCPk).
The operation of this architecture is as follows.

On packet reception from the network, interface hardware 101 (e.g. a NIC) transfers
data into a pre-allocated data buffer (a) and invokes an interrupt handler in the
operating system (OS) 100 by means of an interrupt line (step i). The interrupt
handler manages the hardware interface. For example, it can indicate available
buffers for receiving data by means of post() system calls, and it can pass the
received packet (for example an Ethernet packet) and identify protocol information. If
a packet is identified as destined for a valid protocol e.g. TCP/IP it is passed (not
copied) to the appropriate receive protocol processing block (step ii).

TCP receive-side processing then takes place and the destination port is identified
from the packet. If the packet contains valid data for the port then the packet is
engaged on the port's data queue (step iii) and the port is marked as holding valid
data. Marking could be performed by means of a scheduler in the OS 100, and it
could involve awakening a blocked process such that the process will then respond
o the presence of the data.

WO 2007/074343 PCT/GB2006/004946

4

In some circumstances the TCP receive processing may require other packets to be
transmitted (step iv), for example where previously transmitted data needs to be
retransmitted or where previously enqueued data can now be transmitted, perhaps
because the TCP transmit window (discussed below) has increased. In these cases
packets are enqueued with the OS Network Driver Interface Specification (“NDIS”)
driver 103 for transmission.

In order for an application to retrieve data from a data buffer it must invoke the OS
Application Program Interface (API) 104 (step v), for example by means of a call such
as recv(), select() or poll(). These calls enable the application to check whether data
for that application has been received over the network. A recv() call initially causes
copying of the data from the kernel buffer to the application’s buffer. The copying
enables the kernel of the OS to reuse the buffers which it has allocated for storing
network data, and which have special attributes such as being DMA accessible. The
copying can also mean that the application does not necessarily have to handle data
in units provided by the network, or that the application needs to know a priori the
final destination of the data, or that the application must pre-allocate buffers which
can then be used for data reception.

It should be noted that on the receive side there are at least two distinct threads of
control which interact asynchronously: the up-cali from the interrupt and the system
call from the application (described in co-pending applicaton W02005/074611).
Many operating systems will also split the up-call to avoid executing too much code
at interrupt priority, for example by means of “soft interrupt” or “deferred procedure

call” techniques.

The send process behaves similarly except that there is usually one path of
execution. The application calls the operating system APl 104 (e.g. using a send()
call) with data to be transmitted (step vi). This call copies data into a kernel data
buffer and invokes TCP send processing. Here protocol is applied and fully formed
TCP/IP packets are enqueued with the interface driver 103 for transmission.

WO 2007/074343 PCT/GB2006/004946

5

If successful, the system call returns with an indication of the data scheduled (by the
hardware 101) for transmission. However there are a number of circumstances
where data does not become enqueued by the network interface device. For
example the transport protocol may queue pending acknowledgements from the
device to which it is transmitting, or pending window updates (discussed below), and
the device driver 103 may queue in software pending data transmission requests to
the hardware 101.

A third flow of control through the system is generated by actions which must be
performed on the passing of time. One example is the triggering of retransmission
algorithms. Generally the operating system 100 provides all OS moduiles with time
and scheduling services (typically driven by interrupts triggered by the hardware
clock 102), which enable the TCP stack to implement timers on a per-connection
basis. Such a hardware timer is generally required in a user-level architecture, since
then data can be received at a NIC without any thread of an application being aware
of that data. In addition to a hardware timer of this type, timers can be provided
(typically in software) to ensure that protocol processing advances.

The setting of a software timer for ensuring the advance of protocol processing can
impact on the efficiency of data transfer over the network. The timer can for example
be instructed by a transport protocol library of the application to start counting when a
new packet is delivered from the NIC to the transport protocol library. On expiry of a
timeout, the timer causes an event to be delivered to an event queue in the kernel,
for example by issuing an event from the NIC 101, the event identifying an event
queue in the OS. At the same time as the event is delivered, an interrupt is
scheduled to be delivered to the OS. According to the interrupt moderation rules in
force, an interrupt is raised and the OS will start to execute device driver code to
process events in the event queue. Thus, the software timer can be arranged to
trigger protocol processing of data received at the data processor over the network,
or to trigger protocol processing of data for transmission over the network. Such a
timer preferably causes the kernel to be invoked relatively soon (for example within
250ms) after the receipt of data at the NIC.

WO 2007/074343 PCT/GB2006/004946

Figure 3a illustrates a conventional synchronous I/O mechanism. An application 32
running on an OS 33 is supported by a socket 50 and a transport library 36. The
transport library has a receive buffer 51 allocated to it. The buffer could be an area
of memory in the memory 5 shown in figure 1. When data is received by the NIC 31
it writes that data to the buffer 51. When the application 32 wants to receive the data
it issues a receive command (recv) to the transport library via the socket 50. In
response, the transport library transmits to the application a message that includes
the contents of the buffer. This involves copying the contents of the buffer into the
message and storing the copied contents in a buffer 52 of the application. In
response to obtaining this data, the application may cause messages to be issued,
such as an acknowledgement to the device which transmitted the data. A problem
with this 1/0O mechanism is that if the application fails to service the buffer often
enough then the buffer 51 can become full, as a consequence of which no more data

can be received.

Figure 3b illustrates a conventional asynchronous I/O mechanism. This mechanism
avoids the overhead of copying the data by transferring ownership of buffers between
the transport library and the application. Before data is to be received, the
application 32 has a set of buffers (B1-Bs) allocated to it. It then passes ownership of
those buffers to the transport library 36 by transmitting to the transport library one or
more post() commands that specify those buffers. When data is received it is written
into those buffers. When the application wants to access the data it takes ownership
of one or more of the buffers back from the transport library. This can be done using
a gather() command that specifies the buffers whose ownership is to be taken back.
The application can then access those buffers directly to read the data. A problem
with this I/O arrangement is that the amount of data that is collected when the
gather()command is executed could be very large, if a large amount of buffer space
has been allocated to the transport library, and as a result the application may need
considerable time to process that data.

WO 2007/074343 PCT/GB2006/004946

7

Thus, with both of these mechanisms problems can arise if the application services
the buffers at too fast or too slow a rate. If the buffers are serviced too infrequently
then they can become full (in which case the reception of data must be suspended)
or the amount of data that is returned to the application when the buffers are serviced
could be very large. However, if the buffers are serviced too frequently then there
will be excessive communication overheads between the application and the
transport library as messages are sent between the two. One way of addressing
these problems is to arrange for the transport library to set a timer that, on reaching a
timeout, triggers the operating system to assist in processing any received data. This
is particularly useful in the case of a user-level network architecture, where the
transport library is normally driven by synchronous I/O calls from the application. The
timer could, for example, run on the NIC. This mechanism can improve throughput
but it has the disadvantage that it involves interrupts being set to activate the
operating system to process the data. Processing interrupts involves overhead, and
there may also only be a limited number of interrupts available in the system.

There is therefore a need for a mechanism which can increase the efficiency with

which data can be protocol processed.

According to the present invention there is provided a method for controlling the
processing of data in a data processor, the data processor being connectable to a
further device over a data link, the method comprising the steps of: receiving data at
an element of the data processor; if a set interval has elapsed following the receipt of
the data, determining whether processing of the received data in accordance with a
data transfer protocol has begun, and, if it has not, triggering such processing of the
received data by a protocol processing element; sensing conditions pertaining to the
data link; andsetting the interval in dependence on the sensed conditions.

The data processor may be connectable to the data link by means of an interface. A
timer could reside on the interface, and the said interval could suitably be measured
by the timer. The interface could suitably be implemented in hardware.

WO 2007/074343 PCT/GB2006/004946

8

The step of determining may comprise determining whether processing of the
received data by code at user level has begun.

The said protocol processing element is preferably an operating system.

The received data could comprise data received at the data processor over the data
link, optionally by means of an asynchronous fransmission.

The received data could also comprise data to be transmitted over the data link,
optionally by means of an asynchronous transmission over the data link.

The step of triggering processing may comprise issuing an interrupt, preferably to the
operating system.

The said element could be a transport library associated with an application running
on the data processor.

The method could further comprise the step of in response to receiving the data,
sending an instruction from the said element to the timer. The step of sending an
instruction to the timer could comprise triggering the timer directly from the said
element via a memory mapping onto the said interface.

The step of setting the interval may comprise reducing the interval if the sensed
conditions are indicative of an increase in data rate over the data link.

Buffer space could be allocated to the data link for storing data received at the data
processor over the data link, and the protocol could be a protocol that employs a
receive window in accordance with which a transmitter of data according to the
protocol will transmit no further traffic data once the amount of data defined by the
receive window has been transmitted and is unacknowledged by the receiver, and
the step of setting the interval could comprise reducing the interval in response to
sensing that the size of the buffer space allocated to the data link is greater than the

WO 2007/074343 PCT/GB2006/004946

9

size of the receive window. The method could also comprise the step of varying the
size of the buffer space allocated to the data link in response to a request from a
consumer of the traffic data. The consumer could be an application running on the
data processor.

The step of sensing conditions could comprise sensing the presence in a transmit
buffer of data to be transmitted over the data link.

The step of setting the interval could comprise reducing the interval in response to
sensing in a transmit buffer data to be transmitted over the data link.

The step of setting the interval could comprise reducing the interval in response to
sensing that a congestion mode of the protocol is in operation over the data link.

The protocol could suitably be TCP.

According to a second aspect of the present invention there is provided apparatus for
controlling the processing of data in a data processor, the data processor being
connectable to a further device over a data link, the apparatus comprising: an
element arranged to receive data; and a control entity arranged to, if a set interval
has elapsed following the receipt of data, determine whether processing of the
received data in accordance with a data transfer protocol has begun, and, if it has
not, trigger such processing of the received data by a protocol processing element;
wherein the control entity is further arranged to sense conditions pertaining to the
data link and set the interval in depend dependence on the sensed conditions.

According to a third aspect of the present invention there is provided a control entity
for use with a data processor, the data processor being connectable to a further
device over a data link, and comprising an element arranged to receive data, the
control entity being arranged to: if a set interval has elapsed following the receipt of
data by the said element, determine whether processing of the received data in
accordance with a data transfer protocol has begun, and, if it has not, trigger such

WO 2007/074343 PCT/GB2006/004946

10

processing of the received data by a protocol processing element; and sense
conditions pertaining to the data link and set the interval in dependence on the
sensed conditions.

The present invention will now be described by way of example with reference to the
accompanying drawings.

In the drawings:

figure 1 shows the architecture of a computing system;

figure 2 is a schematic representation of a prior art data transfer architecture;

figure 3a shows a data processing system arranged for synchronous data
transfer;

figure 3b shows a data processing system arranged for asynchronous data
transfer;

figure 4 illustrates a typical flow of data transmitted in accordance with the
TCP protocol; and

figure 5 shows schematically a pair of data processing devices communicating
over a data link.

In the present system the entity that is to process received data, which could for
example be an application or part of the operating system, is capable of varying the
minimum threshold frequency with which it services the receive buffer(s) in
dependence on conditions that may be taken as indicative of changes in the rate at
which data is being received. In this way the entity can service the buffers more
quickly when data is expected to be received in greater volume, and more slowly
when little data is expected to be received.

TCP is a common example of a transport protocol, and a discussion of the TCP
windows technique will now be given. According to the TCP protocol, each time a
certain amount of data is transmitted from one device to another over a network, the
transmitting device must await an acknowledgement from the receiving device before
sending further data. A TCP window is the amount of unacknowledged data a

WO 2007/074343 PCT/GB2006/004946

11

sender can send on a particular connection before it must await an
acknowledgement from the receiver. To give a simple example, the window could be
specified as 10 octets (or bytes). Thus, once 10 bytes have been sent by a sender,
no further transmission will be permitted until the sender receives an
acknowledgement from the receiver that at least some of those 10 bytes have been
received. If the acknowledgement indicates, for example, that all 10 bytes have been
safely received then the sender is able to transmit a further 10 bytes. If the
acknowledgement indicates that only the first 2 bytes have been received then the
sender may transmit 2 further bytes and must then await further acknowledgement.

The TCP window mechanism provides congestion control for a network. The window
is generally fixed for a connection according to the properties of the bottleneck in the
connection at a given time to ensure that data cannot be sent at a greater rate than
the bottleneck can handle without losing data.

A receiver in a network advertises a receive window to devices with which it has
network connections, so that the devices can configure themselves accordingly. The
sender's send window will be set equal to the receiver's receive window for a
particular connection. As an example, the size of the receive window (in bytes) could
simply be the size of the buffer space on a receiving device’s network interface minus
the amount of data currently stored in the buffer.

Window announcements from a receiver can include an acknowledgement of
previously sent data. This is an efficient arrangement since it can enable two items
of information to be sent in one message.

It is commonly desirable for transmission and reception over a network to be in a
steady-state condition whereby packets are periodically sent from a sender and
acknowledgements (which may be accompanied by window announcements) are
periodically sent from a receiver. This is an efficient mode of data transfer since data
packets can be continually in transit over the network.

WO 2007/074343 PCT/GB2006/004946

12

The window size for a particular network connection can be varied in response to
changes within the connection; for example, it could be increased if more buffer
space becomes available at the receiver. Changes in window size are indicated to a
sender by means of window announcements.

The flow rate of data according to the TCP protocol may be ramped, as illustrated in
figure 4. In general, the receive window will initially be defined to be relatively small.
If a transmitting application has a large amount of data to be sent, evidenced by the
fact that the receiver is receiving data at the maximum rate permitted by the
window/acknowledgement technique, in other words if the connection is “busy”, then
the receiver may wish to permit a greater rate of transmission over the connection by
increasing its receive window. Typically, the window will be increased in a stepwise
manner for as long as the transmitter continues to transmit at the maximum rate and
until packet drop is detected. When packet drop is detected, the window will be
decreased (typically halved) in order to avoid further loss of data, and this will be
advertised in the next window announcement sent by the receiver. In the exemplary
flow shown in figure 4, the shaded regions are where flow rate is increasing and thus
fast window increase is desirable so that the transfer rate can be increased

accordingly.

It was noted above that the TCP window may be halved suddenly when packet drop
is detected. Packet drop may be detected as an absence of an acknowledgement
from the receiving device at the transmitting device. Typically, after a predetermined
time interval, if no acknowledgement is received at the transmitter then the
transmitter will commence retransmission of the packets which have not yet been
acknowledged. The absence of an acknowledgement may be due to data actually
having been lost over the network connection, or it may be due to a delay in the
connection such that the data has not been received at the receiver within the
predetermined time interval, causing the transmitter to timeout and commence

retransmission.

WO 2007/074343 PCT/GB2006/004946

13

Considering transmission from a transmitting device, if a send queue associated with
a transmitting application is not permitted adequate CPU time then protocol
processing of data waiting in the queue cannot occur sufficiently fast for the send
queue to be emptied and the data to be sent to the network interface for transmission
over the network. If data is awaiting processing and no data is ready to be sent then
it is possible that the connection may go idle. Additionally, send queues may
become full such that they cannot accept new data. Similarly, for a receiving device
it is important that incoming data can be processed at the rate at which it is being
received. Regular and timely processing of buffered incoming data is therefore
important. In general, timely protocol processing of waiting data is desirable to
achieve efficient data transfer over a data link. This is especially true for
asynchronous transmission, since large chunks of data tend to be delivered, whereas

in synchronous transmission the chunks tend to be smaller.

Additionally, the overall transfer rate of data can be improved by enabling an
increasing window to reach its maximum size as quickly as possible. This can be
achieved by dedicating more CPU time to flows which are accelerating than to flows
which are constant or increasing.

In the discussion of figure 2 above, it was noted that timers may be used to ensure
that queues of data are permitted regular attention. In respect of issuing interrupts
following timeouts, the inventors of the present invention have appreciated that a
long timeout can reduce CPU overhead since it can reduce the number of spurious
interrupts. However, a long timeout can be inappropriate in asynchronous
transmission mode since it can cause protocol processing to proceed at too slow a
rate.

The provision of timeouts for ensuring protocol processing is particularly important in
a system incorporating a user-level protocol stack, such as that described in co-
pending PCT application number PCT/GB05/001525. In such a system protocol
processing (such as TCP processing) generally takes place within the context of an
application thread. If the transport library is not given sufficient CPU time (for

WO 2007/074343 PCT/GB2006/004946

14

example because the thread is performing another operation or is de-scheduled)
then by means of a timeout and an interrupt a component of the OS can be engaged
to carry out the required protocol processing on behalf of the user-level stack. The
question of how fo determine an optimal length for a timeout is thus relevant in this
envionment. It is therefore proposed by the inventors to provide a means of
adjusting timeouts dynamically according at least to the behaviour of an application
to or from which data is being sent over the network.

In one instance, it may be desirable to provide a timer at a transmitting device, and to
cause the timer to start each time data is delivered to an element of the device at
which protocol processing must be performed to enable subsequent transmission of
the data over the network. When the timer times out, the operating system or user-
level code could be triggered to perform protocol processing of the delivered data.
This could ensure that data could flow at an acceptable rate from the transmitting
device over the network.

In another instance, it may be desirable to provide a timer at a receiving device, and
to cause the timer to start each time data is delivered from the network to an element
of the device at which protocol processing must be performed for the data to be
made available to a consumer, such as an application running on the receiving
device. In this instance, when the timer times out, the operating system or user-level
code could be triggered to perform protocol processing of the received data. This
could ensure that incoming data could be processed at the rate at which it is being
received over the network.

The element of the transmitting device could be a transport library or any buffer in
which data is stored pending processing to prepare the data for transmission by a
network protocol. The element of the receiving device could be a transport library or
any buffer in which data is stored following receipt over a network pending
processing to enable the data to be read by a consumer.

WO 2007/074343 PCT/GB2006/004946

15

When the rate of data transmission over a network is ramping up it is desirable to
ramp up the size of the TCP window as fast as possible in accordance with the TCP
algorithms to keep pace with the amount of data that needs to be sent so that data
does not back up at the transmitter. This can be achieved by reducing the timeout on
the timer in the transmitting device so that data can be sent at the maximum rate (as
defined by the current size of the window), thus triggering window announcements as
frequently as possible. More generally, it is desirable to respond as quickly as
possible to changes in flow rate.

It will be understood that embodiments of the invention can successfully be applied to
both synchronous and asynchronous arrangements.

In general, embodiments of the invention support an algorithm for determining an
appropriate timeout length for the present conditions in the connection. The
conditions could include the presence or recent occurrence of congestion, the
amount of data which an application wishes to send or receive, the amount of other
activity in the network, or any other aspect of the network which is relevant to the flow

of data over a connection.

Depending on the detected conditions, it could be appropriate to modify the length of
the timeout at the receiver or at the transmitter, or at both. The timer could suitably
be implemented in hardware, for example at a network interface, or it could be
implemented in software. The timer could suitably be arranged to receive
instructions to start timing from an element of a data processor at which protocol
processing is required. The element could suitably be a transport library.

In one embodiment, a mechanism can be implemented whereby events issued by a
transport library can be batched together such that only one interrupt is raised for
multiple events. This can avoid a high overhead on the CPU.

Figure 5 illustrates a pair of data processing devices communicating over a data link.
In the present example device 20 is transmitting data and the other device 30 is

WO 2007/074343 PCT/GB2006/004946

16

receiving that data. However, the devices could communicate bi-directionally. The
devices could be in direct communication or could communicate indirectly over a
network (e.g. via one or more routers).

In this example the protocol in use by the devices is TCP (transmission control
protocol) over Ethernet, but the present invention is suitable for use with other
protocols.

Device 20 comprises a data store 21 that stores the data that is to be transmitted.
Under the control of an application 22 supported by an operating system 23 and
running on a processing unit 24 data from the data store 21 is passed to a NIC 25 for
fransmission to device 30. Once data has been passed to the NIC for transmission it
waits in a send queue. When the NIC is able to transmit more data it takes data from
the send queue, encapsulates it in accordance with the protocols that are in use, and
transmits it. The send queue may be embodied by a dedicated buffer for outgoing
data, or it may be embodied by the storing by the NIC of the addresses of other
buffers from which it is to retrieve data for transmission. The NIC 25 performs
protocol processing either alone or in conjunction with a transport library 26 running
on the processing unit 24.

Device 30 comprises a NIC 31 that is connected to a data link 40 by which it can
receive data from NIC 25. The data is destined for an application 32 that is
supported by an operating system 33 and runs on a processing unit 34. The device
further includes a data store 35 for storing received data, in which one or more
buffers can be defined, and a transport library 36 which comprises a set of processes
that run on the processing unit and can have state associated with them for
performing certain networking functions and for assisting in interfacing between the
NIC and the application. Co-pending applications PCT/IB05/002639 and
WO02005/086448 describe examples of such a transport library having such
functions. The NIC 31 performs protocol processing either alone or in conjunction
with the transport library 36.

WO 2007/074343 PCT/GB2006/004946

17

The protocol processing functions that are carried out by the transmitter and the
receiver include implementing flow and congestion control. As is well known, TCP
provides a number of flow and congestion control functions. One function involves
the TCP receive window described above.

When the application 32 is to receive data it requests from the operating system 33
that buffer space is allocated to it for storing that data in the period between it having
been received at the NIC 25 and it being accepted by the application for processing.
The buffer can be allocated by the operating system 33 or by the transport library 36.
Typically the application will maintain a certain amount of receive buffer space for
normal usage. However, a well-designed application will, if it requests a substantial
amount of data over the network or learns that it is about to be sent a substantial
amount of data over the network, request additional receive buffer space to
accommodate that data.

In this context there are numerous situations that are indicative of a potential or
ongoing change in the volume data flow over the link between the devices 20 and 30.
These include, but are not limited to:

1. A sudden increase or decrease in the receive buffer allocated to a particular
application, or in total to all the applications running on the receiving device. This
could indicate a change in flow because, as explained above, a well-designed
application will be expected to modify its allocated buffer space in anticipation of
receiving more or less data. It should be noted that the amount of allocated buffer
space therefore provides an indirect means of signalling between the application
layer and lower layers of the protocol stack. Such an increase could be defined by
an increase or decrease in allocated receive buffer space of more than a
predetermined amount or more than a predetermined proportion over a
predetermined time. Alternatively, such an increase could be indicated by the
relative sizes of the TCP receive window for a link and the posted receive buffer size

for the application to which that link relates. For example, such an increase could be

WO 2007/074343 PCT/GB2006/004946

18

deemed fo have taken place when the posted receive buffer size exceeds the TCP
receive window.

2. That the send queue of the transmitter for a particular link is not empty, or has
remained not empty for greater than a predetermined period of time. This may be
indicative of congestion on the data link between the transmitter and the receiver.
However, it may also be indicative of data having been received at the receiver and
not having been protocol processed so that an acknowledgement for that data can be
sent o the transmitter.

3. That TCP congestion mode is operating: i.e. that the TCP receive window is
reducing (backing off), or subsequently increasing.

Analogous situations will arise under protocols other than TCP and can be sensed in
an analogous way. For example, any distributed transport protocol such as SCTP
has algorithms similar to the TCP receive window algorithm. The sliding window
mechanism is cohmonly used. Other protocols (often used in conjunction with
hardware) such as Infiniband and some ATM link-layer schemes expose credits to
the system. The thresholds or rate of change of such credits can be used as
indicators of a change in flow rate.

In the present system the NIC 31 implements one or more timers such as timer 37.
These timers consist of a counter that is decremented periodically when clocked by a
clock 38. The clock could run on the NIC, or the NIC itself could be clocked from the
remainder of the data processing device to which it is attached. An initial value is
loaded into the timer. When the timer reaches zero the NIC performs an action
stored in its state memory 41 in relation to that timer.

One use of such timers is for allowing the NIC 31 to signal the operating system 36 to
process data that is waiting in a receive buffer. This will now be described in more
detail.

WO 2007/074343 PCT/GB2006/004946

19

When the device 30 is being configured for reception of data by an application
running on it, the application will request one or more areas in memory 35 fo be
allocated to it for use as receive buffers 39. It then signals the NIC to inform it that
the link is to be established and to inform it which receiver buffer(s) are to be used
with that link. The buffer allocation and the signalling may be done via the operating
system 33 and/or the transport library 36.

When data is received over the network by NIC 31, the NIC identifies which data link
that data relates to. This may be indicated by the port number on which the data was
received and/or by the source address of the data. The NIC then stores the data in a
receive buffer corresponding to that data link.

Since the traffic data components of the received data cannot be identified until
protocol processing has been done, the received fraffic data cannot be passed to the
receiving application until protocol processing has been completed. It is preferred
that at least some of the protocol processing that is to be performed on the received
data is performed downstream of the NIC, for example by the operating system or
the transport library of the receiving device 30. This has been found to permit many
potential performance enhancements. The protocol processing that is performed
downstream of the NIC can conveniently include the generation of or the triggering of
acknowledgement messages for received data. A mechanism whereby this can be
done will be described below.

When data has been received by the NIC and written to a receive buffer the
operating system or the transport library is to perform protocol processing on that
data. Either of these may be instructed by the receiving application to perform the
protocol processing. Alternatively either of them may be triggered by a timer that
runs separately from the application. Having such a timer running separately from
the application is advantageous because it allows the timer to continue to run even if
the application becomes de-scheduled. It is preferred that the timer is a timer such
as timer 37 running on the NIC. Such a timer can be configured (e.g. by the
application or the transport library) when the data link is set up. Conveniently, the

WO 2007/074343 PCT/GB2006/004946

20

transport library signals the NIC during establishment of the link to have the NIC
allocate one of its timers for use with the link. To do this the transport library informs
the NIC of the initial value of the timer and the function that is to be performed when
the timer reaches zero. The initial value is stored by the NIC in memory 41, and the
NIC is arranged to automatically reset the timer to the value stored in that field when
it has reached zero. The function may be to instruct the operating system to perform
protocol processing for any data received for that link and for which protocol
processing has not yet been performed. The function is also stored in association
with the respective timer in memory 41 so that it can be recalled and actioned by the
NIC when the timer reaches zero. Once the timer has been set up it will continually
decrement, and then trigger (for example) the operating system to perform protocol
processing each time it reaches zero.

In the present system at least one of the entities implements an algorithm that
manages the interval over which the timer 37 operates. The interval is altered in
dependence on sensed conditions, particularly communication conditions in the
transmitter and/or the receiver for the link with which the timer is associated. Most
preferably, the interval over which the timer operates is reduced when the entity in
question senses conditions that are indicative of an increase in data rate. = Most
preferably, the interval over which the timer operates is increased when the entity in
question senses conditions that are indicative of a decrease in data rate. Some
specific examples are as follows.

1. The interval can be reduced in response to an increase or decrease in the receive
buffer allocated to a particular application, or in total to all the applications running on
the receiving device. This may be detected in the conditions described above, and
most preferably when the posted receive buffer size for the link in question exceeds
the size of the TCP receive window for that link. In the opposite conditions the
interval can be increased.

2. The interval can be reduced if the transmitter's send queue for the link in question
is not empty, or has remained non-empty for a certain period of time. In the opposite

condition the interval can be increased.

WO 2007/074343 PCT/GB2006/004946

21

3. The interval can be increased when congestion mode is operating and/or the

transmission scheme is backing off. In the opposite conditions the interval can be
increased.

Altering the timer interval can most conveniently be done by altering the initial value
for the timer that is stored in memory 41. The new value will be applied to the timer
when it is next reset. However, it could also be advantageous to alter the current
value of the timer's counter. The latter method is useful where the interval over
which the timer operates is being reduced from a high value to a significantly lower
value.

The entity that applies the algorithm to cause the timer interval to be altered could be
the NIC, the operating system, the transport library or the application, or another
entity. It is preferred that it is applied by the transport library since it can
communicate directly with the NIC.

The timers on the NIC run outside the scope of scheduling by the main CPU 34 on
the device 30, and outside the scope of scheduling by the operating system of the
device 30. As a result they can be expected to run continually independently of the
load or processing demands on the device 30.

The event that is triggered by the expiry of the timer could be a compound event in
which the operating system is triggered to perform a number of functions. For
example, the entity that executes the algorithm could be arranged to detect that
multiple links are using timers that are set to the same value, and in response to that
to group those links so as to use a single timer that triggers protocol processing for
all those links using a single interrupt. This saves on interrupts.

The entity that is to perform protocol processing on being triggered by the timer is
preferably arranged so that when it is triggered it checks whether protocol processing
is already being performed on received data for the respective link, and if it is to not
perform protocol processing in response to the trigger. It may conveniently detect

WO 2007/074343 PCT/GB2006/004946

22

whether protocol processing is being performed by the presence of a flag that any
device performing protocol processing on the system is arranged to sent and unset.

The applicant hereby discloses in isolation each individual feature described herein
and any combination of two or more such features, o the extent that such features or
combinations are capable of being carried out based on the present specification as
a whole in the light of the common general knowledge of a person skilled in the art,
irrespective of whether such features or combinations of features solve any problems
disclosed herein, and without limitation to the scope of the claims. The applicant
indicates that aspects of the present invention may consist of any such individual
feature or combination of features. In view of the foregoing description it will be
evident to a person skilled in the art that various modifications may be made within
the scope of the invention.

WO 2007/074343 PCT/GB2006/004946

23

SECTION B
DATA BUFFERING

This invention relates to the buffering of data, for example in the processing of data
units in a device bridging between two data protocols.

Figure 6 shows in outline the logical and physical architecture of a bridge 1 for
bridging between data links 2 and 3. In this example link 2 carries data according to
the Fibrechannel protocol and link 3 carries data according to the ISCSI (Internet
Small Computer Serial Interface) protocol over the Ethernet protocol (known as
ISCSI-over-Ethernet). The bridge comprises a Fibrechannel hardware interface 4, an
Ethernet hardware interface 5 and a data processing section 6. The interfaces link
the data processing section to the respective data links 2 and 3. The data
processing section implements a series of logical protocol layers: a Fibrechannel
driver 7, a Fibrechannel stack 8, a bridge/buffer cache 9, an ISCSI stack 10, a TCP
(transmission control protocol) stack 11 and an Ethernet driver 12. These layers
convert packets that have been received in accordance with one of the protocols into
packets for transmission according to the other of the protocols, and buffer the

packets as necessary to accommodate flow control over the links.

Figure 7 shows the physical architecture of the data processing section 6. The data
processing section 6 comprises a data bus 13, such as a PCI (personal computer
interface) bus. Connected to the data bus 13 are the Ethernet hardware interface 5,
the Fibrechannel hardware interface 4 and the memory bus 14. Connected to the
memory bus 14 are a memory unit 15, such as a RAM (random access memory)
chip, and a CPU (central processing unit) 16 which has an integral cache 17.

The example of an ISCSl-over-Ethemet packet being received and translated to
Fibrechannel will be discussed, in order to explain problems of the prior art. The
structure of the Ethernet packet is shown in figure 8. The packet 30 comprises an
Ethernet header 31, a TCP header 32, an ISCSI| header 33 and ISCSI traffic data 34.

WO 2007/074343 PCT/GB2006/004946

24

Arrows 20 to 22 in figure 7 illustrate the conventional manner of processing an
incoming Ethernet packet in this system. The Ethernet packet is received by
Ethernet interface 5 and passed over the PCl and memory buses 12, 13 to memory
14 (step 20), where it is stored until it can be processed by the CPU 15. When the
CPU is ready to process the Ethernet packet it is passed over the memory bus to the
cache 16 of the CPU. (Step 21). The CPU processes the packet to perform protocol
processing and re-encapsulate the data for transmission over Fibrechannel. The
Fibrechannel packet is then passed over the memory bus and the PCJ bus to the
Fibrechannel interface 4 (step 22), from which it is transmitted. [t will be appreciated
that this process involves passing the entire Ethernet packet three times over the
memory bus 13. These bus traversals slow down the bridging process.

It would be possible to pass the Ethernet packet directly from the Ethernet interface 5
to the CPU, without it first being stored in memory. However, this would require the
CPU to signal the Ethernet hardware to tell it to pass the packet, or alternatively for
the CPU and the Ethernet hardware to be synchronised, which would be inefficient
and could also lead to poor cache performance. in any event, this is not readily
possible in current server chipsets.

An alternative process is illustrated in figure 9. Figure 9 is analogous to figure 7 but
shows different process steps. In step 23 the received Ethernet packet is passed
from the Ethernet hardware to the memory 14. When the CPU is ready to process
the packet only the header data is passed to the CPU. (Step 24). The CPU process
the header data, forms a Fibrechannel header and transmits the Fibrechannel header
to the Fibrechannel interface. (Step 25). Then the traffic data 34 is passed to the
Fibrechannel hardware (step 26), which mates it with the received header to form a
Fibrechannel packet for transmission. This method has the advantage that the traffic
data 34 traverses the memory bus only twice. However, this method is not
straightforward to implement, since the CPU must be capable of arranging for the
traffic data to be passed from the memory 14 to the Fibrechannel hardware in step
26. This is problematic because the CPU would conventionally have received only
the headers for that packet, without any indication of where the packet was located in

WO 2007/074343 PCT/GB2006/004946

25

memory, and so it would have no knowledge of where the traffic data is located in the
memory. As a result, the CPU would be unable to inform the bridging entity that is to
transmit that data onwards of what data is to be transmitted. Furthermore, if that
transmitting entity is to be implemented in software then it could be implemented at
user level, for example as an application, or as part of the operating system kernel. If
it is implemented at user level then it would not conventionally be able to access
physical memory addresses, being restricted instead to accessing memory via virtual
memory addresses. As a result, it could not access the packet data in memory
directly via a physical address. Alternatively, if the transmitting entity is implemented
in the kernel then for software abstraction and engineering reasons it would be
preferable for it to interface with the network at a high level of abstraction, for
instance by way of a sockets API (application programming interface). As a result, it
would be preferred that it does not access the packet data in memory directly via a
physical address.

One way of addressing this problem is to permit the Ethernet hardware 5 to access
the memory 14 by RDMA (remote direct memory access), and for the Ethernet
hardware to be allocated named buffers in the memory. Then the Ethernet hardware
can write the traffic data of each packet to a specific named buffer and through the
RDMA interface with the bridging application (e.g. uDAPL) indicate to the application
the location / identity of the buffer which has received data. The CPU can access
the data by means of reading the buffer, for example by means of a post() instruction
having as its operand the name of the buffer that is to be read. The Fibrechannel
hardware can then be passed a reference to the named buffer by the application and
so (also by RDMA) read the data from the named buffer. The buffer remains
allocated to the Ethernet hardware during the reading step(s).

One problem with this approach is that it requires the Ethernet hardware to be
capable of accessing the memory 14 by RDMA, and to include functionality that can
handle the named buffer protocol. If the Ethernet hardware is not compatible with
RDMA or with the named buffer protocol, or if the remainder of the system is not

WO 2007/074343 PCT/GB2006/004946

26

configured to communicated with the Ethernet hardware by RDMA then this method
cannot be used. Also, RDMA typically involves performance overheads.

Analogous problems arise when bridging in the opposite direction: from Fibrechannel
to ISCSI, and when using other protocols.

There is therefore a need to improve the processing of data units in bridging
situations.

According to one aspect of the present invention there is provided a method for
bridging between a first data link carrying data units of a first data protocol and a
second data link for carrying data units of a second protocol by means of a bridging
device, the first and second protocols being such that data units of each protocol
include protocol data and traffic data and the bridging device comprising a first
interface entity for interfacing with the first data link, a second interface entity for
interfacing with the second data link, a protocol processing entity and a memory
accessible by the first interface entity, the second interface entity and the protocol
processing entity, the method comprising: receiving by means of the first interface
entity data units of the first protocol, and storing those data units in the memory;
accessing by means of the protocol processing entity the protocol data of data units
stored in the memory and thereby performing protocol processing for those data units
under the first protocol; and accessing by means of the second interface entity the
traffic data of data units stored in the memory and thereby transmitting that traffic
data over the second data link in data units of the second data protocol.

According to a second aspect of the present invention there is provided a bridging
device for bridging between a first data link carrying data units of a first data protocol
and a second data link for carrying data units of a second protocol, the first and
second protocols being such that data units of each protocol include protocol data
and traffic data and the bridging device comprising: a first interface entity for
interfacing with the first data link, a second interface entity for interfacing with the
second data link, a protocol processing entity and a memory accessible by the first

WO 2007/074343 PCT/GB2006/004946

27

interface entity, the second interface entity and the protocol processing entity; the
first interface entity being arranged to receive data units of the first protocol, and
storing those data units in the memory; the protocol processing entity being arranged
to access the protocol data of data units stored in the memory and thereby perform
protocol processing for those data units under the first protocol; and the second
interface entity being arranged to access the traffic data of data units stored in the
memory and thereby transmit that traffic data over the second data link in data units
of the second data protocol.

According to a third aspect of the present invention there is provided a data
processing system comprising: a memory comprising a plurality of buffer regions; an
operating system for supporting processing entities running on the data processing
system and for restricting access to the buffer regions to one or more entities; a first
interface entity running on the data processing system whereby a first hardware
device may communicate with the buffer regions; and an application entity running on
the data processing system; the first interface entity and the application entity being
configured to, in respect of a buffer region to which the operating system permits
access by both the interface entity and the application entity, communicate
ownership data so as to indicate which of the first interface entity and the application
entity may access the buffer region and to access the buffer region only in
accordance with the ownership data.

According to a fourth aspect of the present invention there is provided a method for
operating a data processing system comprising: a memory comprising a plurality of
buffer regions; an operating system for supporting processing entities running on the
data processing system and for restricting access to the buffer regions to one or
more entities; a first interface entity running on the data processing system whereby
a first hardware device may communicate with the buffer regions; and an application
entity running on the data processing system; the method comprising, in respect of a
buffer region to which the operating system permits access by both the interface
entity and the application entity, communicating ownership data by means of the first
interface entity and the application entity so as to indicate which of the first interface

WO 2007/074343 PCT/GB2006/004946

28

entity and the application entity may access the buffer region and to access the
buffer region only in accordance with the ownership data.

According to a fifth aspect of the present invention there is provided a protocol
processing entity for operation in a bridging device for bridging between a first data
link carrying data units of a first data protocol and a second data link for carrying data
units of a second protocol by means of a bridging device, the first and second
protocols being such that data units of each protocol include protocol data and traffic
data and the protocol processing entity being arranged to cause a processor of the
bridging device to perform protocol processing for data units stored in the memory
without it accessing the traffic data of those units stored in the memory. The protocol
processing entity may be implemented in software. The software may be stored on a

data carrier.

The protocol processing entity may be arranged to perform protocol processing for
the data units stored in the memory without it accessing the traffic data of those units
stored in the memory.

The first protocol may be such that protocol data of a data unit of the first protocol
includes check data that is a function of the traffic data of the data unit. The method
may then comprise: applying the function by means of the first entity to the content of
a data unit of the first protocol received by the first interface entity to calculate first
check data; transmitting the first check data to the protocol processing entity; and
comparing by means of the protocol processing entity the first check data calculated
for a data unit with the check data included in the protocol data of that data unit.

The memory may comprise a plurality of buffer regions. The first interface entity, the
second interface entity and the protocol processing entity may each be arranged to
access a buffer region only when they have control of it. The method may then
comprise: the first interface entity storing a received data unit of the first protocol in a
buffer of which it has control and subsequently passing control of that buffer to the
protocol processing entity; the protocol processing entity passing control of a buffer

WO 2007/074343 PCT/GB2006/004946

29

to the second interface entity when it has performed protocol processing of the or
each data unit stored in that buffer; and the second interface entity passing control of
a buffer to the first interface entity when it has transmitting the traffic data contained
in that buffer over the second data link in data units of the second data protocol.

The method may comprise: generating by means of the protocol processing entity
protocol data of the second protocol for the data units to be transmitted under the
second protocol; communicating that protocol data to the second interface entity; and
the second interface entity including that protocol data in the said data units of the
second protocol.

The second protocol may be such that protocol data of a data unit of the second
protocol includes check data that is a function of the traffic data of the data unit. The
method may then comprise: applying the function by means of the second interface
entity to the content of a data unit of the second protocol to be transmitted by the
second interface entity to calculate first check data; combining that check data with
protocol data received from the protocol processing entity to form second protocol
data; and the second interface entity including the second protocol data in the said

data units of the second protocol.

One of the first and second protocols may be TCP. One of the first and second
protocols may be Fibrechannel. The first and second protocols may be the same.

The first and second interface entities may each communicate with the respective
data link via a respective hardware interface.

The first and second interface entities may each communicate with the respective
data link via the same hardware interface.

The protocol processing may comprise terminating a link of the first protocol.

WO 2007/074343 PCT/GB2006/004946

30

The protocol processing may comprise: inspecting the traffic data of the first protocol;
comparing the traffic data of the first protocol with one or more pre-set rules; and if
the traffic data does not satisfy the rules preventing that traffic data from being
transmitted by the second interface entity.

The data processing system may comprise a second interface entity running on the
data processing system whereby a second hardware device may communicate with
the buffer regions. The first and second interface entities and the application entity
may be configured to, in respect of a buffer region to which the operating system
permits access by the first and second interface entities and the application entity,
communicate ownership data so as to indicate which of the first and second interface
entities and the application entity may access each buffer regions and to access
each buffer region only in accordance with the ownership data.

The first interface entity may be arranged to, on receiving a data unit, store that data
unit in a buffer region that it may access in accordance with the ownership data and
to subsequently modify the ownership data such that the application entity may
access that buffer region in accordance with the ownership data. The application
entity may be arranged to perform protocol processing on data unit(s) stored in a
buffer region that it may access in accordance with the ownership data and to
subsequently modify the ownership data such that the second interface entity may
access that buffer region in accordance with the ownership. data. The second
interface entity may be arranged to transmit at least some of the content of data
unit(s) stored in a buffer region that it may access in accordance with the ownership
data and to subsequently modify the ownership data such that the application entity
may access that buffer region in accordance with the ownership data.

The present invention will now be described by way of example with reference to the
accompanying drawings. In the drawings:
Figure 6 shows in outline the logical and physical architecture of a bridge.
Figure 7 shows the architecture of the bridge of figure 6 in more detail,
illustrating data transfer steps.

WO 2007/074343 PCT/GB2006/004946

31

Figure 8 shows the structure of an ISCSI-over-Ethernet packet.

Figure 9 shows the architecture of the bridge of figure 6, illustrating alternative
data transfer steps.

Figure 10 illustrates the physical architecture of a bridging device.

Figure 11 illustrates the logical architecture of the bridging device of figure 10.

Figure 12 shows the processing of data in the bridging device of figure 10.

in the bridging device described below, data units of a first protocol are received by
interface hardware and written to one or more receive buffers. In the example
described below, those data units are TCP packets which encapsulate I1SCSI
packets. The TCP and ISCSI header data is then passed to the entity that performs
protocol processing. The header data is passed to that entity without the traffic data
of the packets, but with information that identifies the location of the traffic data within
the buffer(s). The protocol processing entity performs TCP and ISCSI protocol
processing. |If protocol processing is successful then it also passes the data
identifying the location of the traffic data in the buffers to an interface that will be used
for transmitting the outgoing packets. The interface can then read that data, form
one or more headers for transmitting it as data units of a second protocol, and
transmit it. In bridging between the data links that carry the packets of the respective
protocols, the bridging device receives data units of one protocol and transmits data
units of another protocol which include the traffic data contained in the received data

units.

Figure 10 shows the physical architecture of a device 40 for bridging between an
ISCSl-over-Ethernet data link 41 and a Fibrechannel data link 42. The device
comprises an Ethernet hardware interface 43, a Fibrechannel hardware interface 44
and a central processing section 45. The hardware interfaces link the respective
data links to the central processing section 45 via a bus 46, which could be a PClI
bus. The central processing section comprises a CPU 47, which includes a cache
47a and a processing section 47b, and random access memory 48 which are linked
by a memory bus 49 to the PCI bus. A non-volatile storage device 50, such as a
hard disc, stores program code for execution by the CPU.

WO 2007/074343 PCT/GB2006/004946

32

Figure 11 shows the logical architecture provided by the central processing section
45 of the bridging device 40. The CPU provides four main logical functions: an
Ethernet transport library 51, a bridging application 52, a Fibrechannel transport
library 53 and an operating system kernel 54. The transport libraries, the bridging
application and the operating system are implemented in software which is executed
by the CPU. The general principles of operation of such systems are discussed in
WO 2004/025477.

Areas of the memory 48 are allocated for use as buffers 55, 56. These buffers are
configured in such a way that the interface that receives the incoming data can write
to them, the bridging application can read from them, and the interface that transmits
the outgoing data can read from them. This may be achieved in a number of ways.
In a system that is configured not to police memory access any buffer may be
accessible in this way. In other operating systems they may be set up as anonymous
memory: i.e. memory that is not mapped to a specific process; so that they can be
freely accessed by both interfaces. Another approach is to implement a further
process, or a set of instructions calls, or an API that is able to act as an intermediary
to access the buffers on behalf of the interfaces.

The present example will be described with reference to a system in which the
operating system allocates memory resources to specific processes and restricts
other processes from accessing those resources. The transport libraries 51, 53 and
the bridging application 52 are implemented in a single process, by virtue of them
occupying a common instruction space. As a result, a buffer allocated to any of
those three entities can be accessible to the other two. (Under a normal operating
system (OS), OS-allocated buffers are only accessible if the OS chooses for them to
be). The interfaces 43, 44 should be capable of writing to and reading from the
buffers. This can be achieved in a number of ways. For example, each transport
libraries may implement an AP through which the respective interface can access
the buffers. Alternatively, the interface could interact directly with the operating
system to access the buffers. This may be convenient where, in an alternative

WO 2007/074343 PCT/GB2006/004946

33

embodiment, one of the transport libraries is implemented as part of the operating
system and derives its ability to access the buffers through its integration with the
operating system rather than its sharing of an instruction space with the bridging
application.

Each buffer is identifiable by a handle that acts as a virtual reference to the buffer.
The handle is issued by the operating system when the buffer is allocated. An entity
wishing to read from the buffer can issue a read call to the operating system
identifying the buffer by the handle, in response to which the operating system will
return the content of the buffer or the part of buffer cited in the read call. An entity
wishing to write to the buffer can issue a write call to the operating system identifying
the buffer by the handle, in response to which the operating system will write data
supplied with the call to the buffer or to the part of buffer cited in the write call. As a
result, the buffers need not be referenced by a physical address, and can hence be
accessed by user-level entities under operating systems that fimit the access of user-
level entities to physical memory.

The transport libraries and the bridging application implement a protocol to allow
them to cooperatively access the buffers that are allocated to the instruction space
that they share. In this protocol each of those entities maintains an “owned buffer”
list of the buffers that it has responsibility for. Each entity is arranged to access only
those buffers currently included in its owned buffer list. Each entity can pass a
“handover” message to one of the other entities. The handover message includes
the handle of a buffer. On fransmitting the handover message (or alternatively on
acknowledgement of the handover message), the entity that transmitted the
handover message deletes the buffer mentioned in the message from its owned
buffer list. On receipt of a handover message an entity adds the buffer mentioned in
the message to its owned buffer list. This process allows the entities to cooperatively
assign control of each buffer between each other, independently of the operating
system. The entity whose owned buffer list includes a buffer is also responsible for
the administration of that buffer: for example for returning the buffer to the operating
system when it is no longer required. Buffers that are subject to this protocol will be

WO 2007/074343 PCT/GB2006/004946

34

termed “anonymous buffers” since the operating system does not discriminate
between the entities of the common instruction space in policing access to those
buffers.

The operation of the device for bridging packets from the Ethernet interface to the
Fibrechannel interface will now be explained. The device operates in an analogous
way to bridge packets in the opposite direction.

At the start of operations the bridging application 52 requests the operating system
54 to aliocate blocks of memory for use by the bridging system as buffers 55. The
operating system allocates a set of buffers accordingly and passes handles to them
to the application. These buffers can then be accessed directly by the bridging
application and the transport libraries, and can be accessed by the interfaces by
means of the anonymous APls implemented by the respective transport libraries.

One or more of the buffers are passed to the incoming transport library 51 by means
of one or more handover messages. The transport library adds those buffers to its
owned buffer list. The transport library maintains a data structure that permits it to
identify which of those buffers contains unprocessed packets. This may be done by
queuing the buffers or by storing a flag indicating whether each buffer is in use. On
being passed a buffer the incoming transport library notes that buffer as being free.
The data structure preferably indicates the order in which the packets were received,
in order that that information can be used to help prioritise their subsequent
processing. Multiple packets could be stored in each buffer, and a data structure
maintained by the Ethernet transport library to indicate the location of each packet.

Referring to figure 12, as Ethernet packets are received Ethernet protocol processing
is performed by the Ethemet interface hardware 43, and the Ethernet headers are
removed from the Ethernet packets, leaving TCP packets in which ISCSI packets are
encapsulated. Each of these packets is written by the Ethernet hardware into one of
the buffers 55. (Step 60). This is achieved by the Ethernet hardware issuing a buffer
write call to the APl of the Ethernet transport library, with the TCP packet as an

WO 2007/074343 PCT/GB2006/004946

35

operand. In response to this call the transport library identifies a buffer that is
included in its owned buffer list and that is free to receive a packet. It stores the
received packet in that buffer and then modifies its data structure to mark the buffer
as being occupied.

Thus, at least some of the protocol processing that is to be performed on the packet
can be performed by the interface (43, in this example) that received the incoming
packet data. This is especially efficient if that interface includes dedicated hardware
for performing that function. Such hardware can also be used in protocol processing
for non-bridged packets: for example packets sent to the bridge and that are to
terminate there. One example of such a situation is when an administrator is
transmitting data to control the bridging device remotely. The interface that receives
the incoming packet data has access to both the header and the traffic data of the
packet. As a result, it can readily perform protocol processing operations that require
knowledge of the traffic data in addition to the header data. Examples of these
operations include verifying checksum data, CRC (cyclic redundancy check) data or
bit-count data. In addition to Ethernet protocol processing the hardware could
conveniently perform TCP protocol processing of received packets.

The application 52 runs continually. Periodically it makes a call, which may for
example be “recv()” or “complete()” to the transport library 51 to initiate the protocol
processing of any Ethernet packet that is waiting in one of the buffers 55. (Step 61).
The recv()/complete() call does not specify any buffer. In response to the
recv()/complete() call the transport library 51 checks its data structure to find whether
any of the buffers 55 contain unprocessed packets. Preferably the transport library
identifies the buffer that contains the earliest-received packet that is still
unprocessed, or if the buffer is capable of prioritising certain traffic then it may bias its
identification of a packet based on that prioritisation. If an unprocessed packet has
been identified then the transport library responds to the recv()/complete() call by
returning a response message to the application (step 62), which includes:

- the TCP and ISCSI headers of the identified packet, which may collectively
be considered to constitute a header or header data of the packet;

WO 2007/074343 PCT/GB2006/004946

36

- the handle of the buffer in which the identified packet is stored;

- the start point within that buffer of the traffic data block of the packet; and

- the length of the traffic data block of the packet.
By means of the headers the application can perform protocol processing on the
received packet. The other data collectively identifies the location of the traffic data
for the packet. The response message including a buffer handle is treated by the
incoming transport library and the bridging application as handing that buffer over to
the bridging application. The incoming transport library deletes that buffer handle
from its owned buffer list as one of the buffers 55, and the bridging application adds
the handle to its owned buffer list.

It will be noted that by this message the application has received the header of the
packet and a handle to the traffic data of the packet. However, the fraffic data itself
has not been transferred. The application can now perform protocol processing on
the header data.

The protocol processing that is to be performed by the application may involve
functions that are to be performed on the traffic data of the packet. For example,
ISCSI headers include a CRC field, which needs to be verified over the traffic data.
Since the application does not have access to the traffic data it cannot
straightforwardly perform this processing. Several options are available. First, the
application could assume that that CRC (or other such error-check data) is correct.
This may be a useful option if the data is delay-critical and need not anyway be re-
transmitted, or if error checking is being performed in a lower-level protocol. Another
option is for the interface to calculate the error-check data over the relevant portion of
the received packet and to store it in the buffer together with the packet. The error
check data can then be passed to the application in the response message detailed
above, and the application can simply verify whether that data matches the data that
is included in the header. This requires the interface to be capable of identifying data
of the relevant higher-level protocol (e.g. ISCSI) embedded in received packets of a
lower-leve! protocol (e.g. Ethernet or TCP), and to be capable of executing the error-
check algorithm appropriate to that higher-level data. Thus, in this approach the

WO 2007/074343 PCT/GB2006/004946

37

execution of the error-check algorithm is performed by a different entity from that
which carries out the remainder of the protocol processing, and by a different entity
from that which verifies the error-check data.

Not all of the headers of the packet as received at the hardware interface need be
passed in the response message that is sent to the application, or even stored in the
buffer. If protocol processing for one or more protocols is performed at the interface
then the headers for those protocols can be omitted from the response and not
stored in the buffer. However, it may still be useful for the application to receive the
headers of one or more protocols for which the application does not perform protocol
processing. One reason for this is that it provides a way of allow the application to
calculate the outgoing route. The outgoing route could be determined by the
Fibrechannel transport library 53 making use of system-wide route tables that could ,
for example, be maintained by the operating system. The Fibrechannel transport
library 53 can look up a destination address in the route tables so as to resolve it to
the appropriate outgoing FC interface.

The application is configured in advance to perform protocol processing on one or
more protocol levels. The levels that are to be protocol processed by the application
will depend on the bridging circumstances. The application is configured to be
capable of performing such protocol processing in accordance with the specifications
for the protocol(s) in question. In the present example the application performs
protocol processing on the ISCSI header. (Step 63).

Having performed protocol processing on the header as received from the incoming
transport library, the application then passes a send() command to the Fibrechannel
transport library (step 65). The send() command includes as an operand the handle
of the buffer that inciudes the packet in question. It may also include data that
specifies the location of the traffic data in the buffer, for example the start point and
length of the traffic data block of the packet. The send() command is interpreted by
the buffering application and by the outgoing transport library as handing over that
buffer to the outgoing transport library. Accordingly, the bridging application deletes

WO 2007/074343 PCT/GB2006/004946

38

that buffer handle from its owned buffer list, and the outgoing transport library adds
the handle to its owned buffer list, as one of the buffers 56.

The Fibrechannel transport library then reads the header data from that buffer (step
66) and using the header alone (i.e. without receiving the traffic data stored in the
buffer) it forms a Fibrechannel header for onward transmission of the corresponding
traffic data (step 67).

The Fiberchannel transport library then provides that header and the traffic data to
the Fibrechannel interface, which combines them into a packet for tfransmission (step
68). The header and the traffic data could be provided to the Fiberchannel interface
in a number of ways. For example, the header could be written into the buffer and
the start location and length of the header and the traffic data could be passed to the
Fiberchannel interface. Conveniently the header could be written to the buffer
immediately before the traffic data, so that only one set of start location and length
data needs to be transmitted. If the outgoing header or header set is longer than the
incoming header or header set this may require the incoming interface to write the
data to the buffer in such a way as to leave sulfficient free space before the traffic
data to accommodate the outgoing header. The Fiberchannel interface could then
read the data from the buffer, for example by DMA (direct memory access).
Alternatively, the header could be transmitted to the Fiberchannel interface together
with the start location and length of the traffic data and the interface could then read
the traffic data, by means of an API cali to the transport library, and combine the two
together. Alternatively, both the header and the traffic data could be transmitted to
the Fiberchannel interface. The header and the start/length data could be provided
to the Fiberchannel interface by being written to a queue stored in a predefined set of
memory locations, which is polied periodically by the interface.

The outgoing header might have to include calculated data, such as CRCs, that is to
be calculated as a function of the traffic data. In this situation the header as formed
by the transport library can include space (e.g. as zero bits) for receiving that
calculated data. The outgoing hardware interface can then calculate the calculated

WO 2007/074343 PCT/GB2006/004946

39

data and insert it into the appropriate location in the header. This avoids the
outgoing transport library having to access the traffic data.

Once the Fibrechannel packet has been transmitted for a particular incoming packet
the buffer in which the incoming packed had been stored can be re-used. The
Fibrechannel transport library hands over ownership of the buffer to the Ethernet
transport library. Accordingly, the Fiberchannel transport library deletes that buffer
handle from its owned buffer list, and the Ethernet transport library adds the handle

to its owned buffer list, marking the buffer as free for storage of an incoming packet.

As indicated above, the buffers in which the packets are stored are implemented as
anonymous buffers. When a packet is received the buffer that is to hold that packet
is owned by the incoming hardware and/or the incoming transport library. When the
packet comes to be processed by the bridging application ownership of the buffer is
transferred to the bridging application. Then when the packet comes to be
transmitted ownership of the buffer is transferred to the outgoing hardware and/or the
outgoing transport library. Once the packet has been transmitted ownership of the
buffer can be returned to the incoming hardware and/or the incoming transport
library. In this way the buffers can be used efficiently, and without problems of
access control. The use of anonymous buffers avoids the need for the various
entities to have to support named buffers. This is especially significant in the case of
the incoming and outgoing hardware since it may not be possible to modify pre-
existing hardware to support named buffers. It may also not be economically viable to
use such hardware since it requires significant additional complexity —~ namely the
ability to fully perform complex protocol processing e.g. to support TCP and RDMA
(iWARP) protocol processing. This would in practice require a powerful CPU to be
embedded in the hardware, which would make the hardware excessively expensive.

Once each layer of protocol processing is completed for a packet the portion of the
packet's header that relates to that protocol is no longer required. As a result, the
memory in which that portion of header was stored can be used to store other data
structures. This will be described in more detail below.

WO 2007/074343 PCT/GB2006/004946

40

When a packet is received the incoming hardware and/or transport library should
have one or more buffers in its ownership. It selects one of those buffers for writing
the packet to. That buffer may include one or more other received packets, in which
case the hardwarel/library selects suitable free space in the buffer for accommodating
the newly received packet. Preferably it attempts to pack the available space
efficiently. There are various ways to aim at this: one is to find a space in a buffer
that most closely matches the size of the received packet, whilst not being smaller
than the received packet. The space in the buffer may be managed by a data
structure stored in the buffer itself which provides pointers to the start and end of the
packets stored in the buffer. If the buffer includes multiple packets then ownership of
the buffer is passed to the application when any of those is to be protocol processed
by the application. When the packet has been transmitted the remaining packets in
the buffer remain unchanged but the data structure is updated to show the space
formerly occupied by the packet as being vacant.

If the TCP and ISCSI protocol processing is unsuccessful then the traffic data of the
packet may be dropped. The data need not be deleted from the buffer: instead the
anonymous buffer handle can simply passed back to the Ethernet transport library for

reuse.

This mechanism has the consequence that the traffic data needs to pass only twice
over the memory bus: once from the Ethernet hardware to memory and once from
memory to the Fibrechannel hardware. It does not need to pass through the CPU; in
particular it does not need to pass through the cache of the CPU. The same
approach could be used for other protocols; it is not limited to bridging between
Ethernet and Fibrechannel.

The transport libraries and the application can run at user level. This can improve
reliability and efficiency over prior approaches in which protocol processing is
performed by the operating system. Reliability is improved because the machine can

continue in operation even if a user-level process fails.

WO 2007/074343 PCT/GB2006/004946

41

The transport libraries and the application are configured programmatically so that if
their ownership list does not include the identification of a particular buffer they will
not access that buffer.

If the machine is running other applications in other address spaces then the named
buffers for one application are not accessible to the others. This feature provides for
isolation between applications and system integrity. This is enforced by the

operating system in the normal manner of protecting applications’ memory spaces.

The received data can be delivered directly from the hardware to the ISCSI stack,
which is constituted by the Ethernet transport library and the application operating in
cooperation with each other. This avoids the need for buffering received data on the
hardware, and for transmitting the data via the operating system as in some prior
implementations.

The trigger for the passing of data from the buffers to the CPU is the polling of the
transport library at step 61. The polling can be triggered by an event sent by the
Ethernet hardware to the application on receipt of data, a timer controlled by the
application, by a command from a higher level process or from a user, or in response
to a condition in the bridging device such as the CPU running out of headers to
process. This approach means that there is no need for the protocol processing to
be triggered by an interrupt when data arrives. This economises on the use of
interrupts.

The bridging device may be implemented on a conventional personal computer or
server. The hardware interfaces could be provided as network interface cards (NICs)
which could each be peripheral devices or built into the computer. For example, the
NICs could be provided as integrated circuits on the computer’'s motherboard.

When multiple packets have been received the operations in figure 12 can be
combined for multiple packets. For example, the response data (at step 62) for

WO 2007/074343 PCT/GB2006/004946

42

multiple packets can be passed to the CPU and stored in the CPU’'s cache awaiting
processing.

There may be limitations on the size of the outgoing packets that mean that the traffic
data of an incoming packet cannot be contained in a single outgoing packet. In that
case the traffic data can be contained in two or more outgoing packets, each of
whose headers is generated by the transport library of the outgoing protocol.

Since the packets are written to contiguous blocks of free space in the buffers 54, as
packets get removed from the buffers 54 gaps can appear in the stream of data in
the buffers. If the received packets are of different lengths then those gaps might not
be completely filled by new received data. As a result the buffers can become
fragmented, and therefore inefficiently utilised. To mitigate this, as soon as the
header of a received packet has been passed to the CPU for processing the space
occupied by that header can be freed up immediately. That space can be used to
allow a larger packet to be received in a gap in memory preceding that header.
Alternatively that space can be used for various data constructs. For example, it can
be used to store a linked-list data structure that allows packets to be stored
discontiguously in the buffer. Alternatively, it could be used to store the data
structure that indicates the location of each packet and the order in which it was
received. Fragmentation may also be reduced by performing a defragmentation
operation on the content of a buffer, or by moving packets whose headers have not
been passed to the CPU for processing from one buffer to another. One preferred
fragmentation algorithm is to check from time to time for buffers that contain less data
than a pre-set threshold level. The data in such a buffer is moved out to another
buffer, and the data structure that indicates which packet is where is updated
accordingly.

In a typical architecture, when the Ethernet packet headers are read to the CPU for
processing by the bridging application they will normally be stored in a cache of the
CPU. The headers will then be marked as “dirty” data. Therefore, in normal
circumstances they would be flushed out of the cache and written back to the buffer

WO 2007/074343 PCT/GB2006/004946

43

so as to preserve the integrity of that memory. However, once the headers have
been processed by the bridging application they are not needed any more, and so
writing them back to the buffer is wasteful. Therefore, efficiency can be increased by
taking measures to prevent the CPU from writing the headers back to memory. One
way to achieve this is by using an instruction such as the wbinv (write-back
invalidate) instruction which is available on some architectures. This instruction can
be used in respect of the header data stored in the cache to prevent the bridging
application from writing that dirty data back to the memory. The instruction can
conveniently be invoked by the bridging application on header data that is stored in
the cache when it completes processing of that header data. At the same point, it
can arrange for the space in the buffer(s) that was occupied by that header data to
be marked as free for use, for instance by updating the data directory that indicates
the buffer contents.

The principles described above can be used for bridging in the opposite direction:
from Fibrechannel to ISCSI, and when using other protocols. Thus the references
herein to Ethernet and Fibrechannel can be substituted for references to other
incoming and outgoing protocols respectively. They could also be used for bridging
between links that use two identical protocols. In the apparatus of figure 10 the
software could be configured to permit concurrent bridging in both directions. If the
protocols are capable of being operated over a common data link then the same
interface hardware could be used to provide the interface for incoming and for
outgoing packets.

The anonymous buffer mechanism described above could be used in applications
other than bridging. In general it can be advantageous wherever multiple devices
that have their own processing capabilities are to process data units in a buffer, and
where one of those devices is to carry out processing on only a part of each data
unit. In such situations the anonymous buffer mechanism allows the devices or their
interfaces to the buffer to cooperates so that the entirety of each data unit need not
pass excessively through the system. One examples of such an application is a
firewall in which a network card is to provide data units to an application that is to

WO 2007/074343 PCT/GB2006/004946

44

inspect the header of each data unit and in dependence on that header either block
or pass the data unit. In that situation, the processor would not need to terminate a
link of the incoming protocol to perform the required processing: it could simply
inspect incoming packets, compare them with pre-stored rules and allow them to
pass only if they satisfy the rules. Another example is a tape backup application
where data is being received by a computer over a network, written o a buffer and
then passed to a tape drive interface for storage. Another example is a billing system
for a telecommunications network, in which a network device inspects the headers of
packets in order to update billing records for subscribers based on the amount or
type of traffic passing to or from them.

The applicant hereby discloses in isolation each individual feature described herein
and any combination of two or more such features, to the extent that such features or
combinations are capable of being carried out based on the present specification as
a whole in the light of the common general knowledge of a person skilled in the art,
irrespective of whether such features or combinations of features solve any problems
disclosed herein, and without limitation to the scope of the claims. The applicant
indicates that aspects of the present invention may consist of any such individual
feature or combination of features. In view of the foregoing description it will be
evident to a person skilled in the art that various modifications may be made within
the scope of the invention.

WO 2007/074343 PCT/GB2006/004946

45

SECTIONC
VIRTUALISATION SUPPORT

This invention relates to supporting virtual instances of data processing entities,
particularly hardware devices.

It is normal for a computer to have just a single operating system (OS) running at any
one time. That operating system provides support to one or more user-level
applications running on the computer. The support provided by the operating system
typically includes providing the applications with protocols whereby the applications
can communicate with hardware components of the computer. Those components
could include input/output (I/O) devices such as a keyboard, a display or a network
interface. The protocols can be provided in the form of libraries of procedures that
can be called by the applications and which, when executed, communicate with the
hardware in the desired way.

Another arrangement, which is illustrated in figure 13, involves running multiple
operating systems 1 on a single computer 2. This arrangement has been
implemented for example by the IBM 360 and more recently by VMware and Xen.
Each operating system supports a respective set of applications 3, which
communicate with their operating system in the normal way. Each operating system
functions independently of the others, so a supervisory entity or hypervisor 4 is used
to manage the operating systems and their interactions with the hardware 5. The
hypervisor performs functions such as scheduling the operations of each operating
system and ensuring that when the hardware needs to communicate with a particular
one of the operating systems its messages are directed correctly. Therefore the
hypervisor is itself a form of operating system.

The latter function of the hypervisor is especially significant when the hardware
needs to initiate communications with an operating system or even with directly with
a user-level entity such as an application. Such communications must be directed to
the right one of the operating systems and/or to the right one of the applications.

WO 2007/074343 PCT/GB2006/004946

46

One example of a hardware configuration in which this could arise is the one
described in WO 2004/025477. In that configuration the network interface hardware
can pass data that has been received over the network to a buffer at its own
initiation, rather than having to wait for the operating system or the application to
request any received data. The buffer can be owned by the operating system or the
application, so the operating system or the application can access the data stored in
the buffer.

Figure 14 illustrates the manner in which network hardware is conventionally
configured for operation in a system running multiple operating systems. In figure 14
like components have the same reference numbers as in figure 13. In the
arrangement of figure 14 the network hardware 6 implements two virtual network
interfaces 7 and 8. Each of those virtual interfaces is operated by common hardware
components of the network hardware 6, but each has its own state which is stored in
a respective region of state memory 9 of the hardware. Included in the state of each
virtual network interface is its MAC (medium access control) address, which it uses in
the network 10 to which the interface is connected. Each virtual interface has a
different MAC address. This allows the network hardware to identify which of the
virtual interfaces an incoming packet should be directed to, by means of the MAC
address specified in an incoming data packet. For this purpose a filter 12 is
implemented in the network hardware. When an incoming packet arrives the filter 12
checks its content, identifies the destination MAC address that it specifies and directs
it to the appropriate virtual network interface based on that MAC address. Each
operating system 1 has its own instance of a driver 11 for communicating with the
respective virtual interface.

WO 2004/025477 describes a network interface that, when implemented on a
platform that that has a single operating system and one or more applications, can
advantageously deliver data received over the network directly to a buffer owned by
the operating system or the application. There may be multiple buffers that are
capable of receiving the data: the operating system could have one or more buffers
for receiving the data, as could the or each application. In a typical configuration

WO 2007/074343 PCT/GB2006/004946

47

there could be one buffer allocated for each communication path or channel that is in
use. The network card is therefore expected to direct received data to the
appropriate one of those buffers. This can be done by the NIC using a look-up table
that is pre-configured to store the address of each buffer and the port humber
associated with that buffer The NIC can store the virtual interface associated with
the host::port information. The data in a received TCP packet contains the host::port
information which when looked up determines the virtual interface to which data
should be directed. Each virtual interface is associated with a set of buffers and
according to information from the recipient application or operating system the NIC is
able to determine which of the buffers it should next deliver data into. The network
card can then look up the appropriate buffer when data is received on a particular
port. Data received on other ports (for example a request from a remote terminal to
establish a connection to the local machine) can be sent to a default virtual interface,
which is normally associated with the operating system kernel. The kernel can then
decide how to handle that data.

When the system described in WO 2004/025477 is implemented on a platform that
has multiple operating systems the approach described above cannot be readily
implemented. The look-up table does not take account of the MAC address to which
data has been directed, so it cannot distinguish between data sent on the same port
but to different operating systems or to applications supported by different operating
systems. Therefore, the efficiency advantages that stem from filtering and directing
incoming data at the network hardware cannot be achieved in that scenario.

There is therefore a need for an improved way of arranging an interface to receive
and direct incoming data.

According to one aspect of the present invention there is provided a computer
system comprising: hardware including a data interface for interfacing between the
computer system and a data source; a memory; a first operating system capable of
communicating with the hardware; and a second operating system capable of
supporting a user-level application and being configured to communicate with the

WO 2007/074343 PCT/GB2006/004946

48

hardware via the first operating system, the second operating system being capable
of allocating a region of the memory for use as a buffer by such a user-level
application; wherein the data interface is configurable to associate a predetermined
data format with a region of the memory that has been allocated for use as a buffer
by a user-level application supported by the second operating system so as to, on
subsequently receiving from the data source a data message of that format,
automatically store data of that message in that region of the memory without it
passing via the first or second operating systems.

According fo a second aspect of the present invention there is provided a computer
system comprising: hardware including a data interface for interfacing between the
computer system and a data source; a memory; a first operating system capable of
communicating with the hardware; and a second operating system capable of
supporting a user-level application; wherein at least one of the first and second
operating systems is arranged to detect that data of a first data message received by
the data interface from the data source has been directed to a destination via the first
operating system, and in response to detecting that to configure the data interface to
direct data of subsequent data messages having a data format in common with the
first data message to that destination without it passing via the second operating
system.

According to a third aspect of the present invention there is provided a data interface
that is capable of operation in a computer system according to the first or second
aspects of the present invention. Such a data interface is preferably configurable to
associate a predetermined data format with a region of the memory of the computer
system external to the data interface that has been allocated for use as a buffer by a
user-level application supported by the second operating system so as to, on
subsequently receiving from the data source a data message of that format,
automatically store data of that message in that region of the memory without it
passing via the first or second operating systems.

WO 2007/074343 PCT/GB2006/004946

49

According to a fourth aspect of the present invention there is provided a computer
program for acting as a driver for communicating with a data interface in a computer
system according to the first or second aspects of the present invention. Preferably
the computer program is such as to provide an operating system with functionality to,
in response to detection in response to detection that data of a first data message
received by the data interface from the data source has been directed to a
destination via another operating system, configure the data interface to direct data
of subsequent data messages having a data format in common with the first data
message to that destination without it passing via the second operating system. The

computer program may be stored on a data carrier.

According to a fifth aspect of the present invention there is provided a method for
operating a computer system comprising hardware including a data interface for
interfacing between the computer system and a data source, a memory, a first
operating system capable of communicating with the hardware; and a second
operating system capable of supporting a user-level application and being configured
to communicate with the hardware via the first operating system, the second
operating system being capable of allocating a region of the memory for use as a
buffer by such a user-level application; the method comprising: configuring the data
interface to associate a predetermined data format with a region of the memory that
has been allocated for use as a buffer by a user-level application supported by the
second operating system; and the data interface on subsequently receiving from the
data source a data message of that format, automatically storing data of that
message in that region of the memory without it passing via the first or second
operating systems.

According to a sixth aspect of the present invention there is provided a method for
operating a computer system comprising: hardware including a data interface for
interfacing between the computer system and a data source; a memory; a first
operating system capable of communicating with the hardware; and a second
operating system capable of supporting a user-level application; the method
comprising: detecting by means of at least one of the first and second operating

WO 2007/074343 PCT/GB2006/004946

50

systems that data of a first data message received by the data interface from the
data source has been directed to a destination via the first operating system; and in
response to detecting that configuring the data interface by means of that operating
system to direct data of subsequent data messages having a data format in common
with the first data message to that destination without it passing via the second
operating system.

Preferably the first operating system is capable of serving as an interface between
multiple further operating systems and the hardware.

Preferably the first operating system is a hypervisor. Preferably the second operating
system is an operating system that provides direct application support, such as
Windows or Linux.

The data interface may be a network interface. The data source may be a data
network.

Preferably the data interface has access to a data store for storing a plurality of
indications of respective data formats and corresponding to each one an indication of
a destination, and the data interface is arranged to, on receiving a data message
from the data source identify whether the format of the data message matches a data
format an indication of which is stored in the data store, and if it does to pass data of
that message to that destination.

Preferably the data format is at least partially defined by a destination address.
Preferably the address is an internet layer address. Preferably the address is an IP

(internet protocol) address.

Preferably the data format is at least partially defined by a data port, such as a TCP
port.

Preferably the data message is a data packet.

WO 2007/074343 PCT/GB2006/004946

51

Preferably the data interface is configurable automatically by the first operating
system to associate the predetermined data format with the region of the memory
that has been allocated for use as a buffer by a user-level application supported by
the second operating system.

Preferably the data interface is configurable automatically by the second operating
system to associate the predetermined data format with the region of the memory
that has been allocated for use as a buffer by a user-level application supported by
the second operating system.

Preferably the data interface is arranged to, on receiving a data message from the
data source identify whether it is configured to associate the format of that message
with a region of the memory and if it has to automatically store data of that message
in that region of the memory without it passing via the first or second operating
systems.

Preferably one of the first operating system, the second operating system and the
data interface is arranged to deconfigure the data interface from associating a
message format with a region of the memory when a pre-set time has elapsed from
when the interface was configured to associate that message format with that region
of the memory.

Preferably one of the first operating system, the second operating system and the
data interface is arranged to deconfigure the data interface from associating a
message format with a region of the memory in response to sensing that data traffic
conditions match one or more predefined criteria. The said traffic criteria may include
the criterion that the flow of received data of the message format is below a pre-set
amount in a pre-set time.

Preferably the second operating system is arranged to perform the step of
configuring the data interface to direct data of subsequent data messages having a

WO 2007/074343 PCT/GB2006/004946

52

data format in common with the first data message only when it detects that the flow

of received data of that data format is above a pre-set amount in a pre-set time.

Preferably the second operating system is arranged to perform the step of
configuring the data interface to direct data of subsequent data messages having a
data format in common with the first data message only for data formats of one or
more pre-set types.

The said pre-set types may each be defined by respective port numbers or ranges of
port numbers.

The present invention will now be described by way of example with reference to the
accompanying drawings. In the drawings:

figure 13 shows the architecture of a computer system supporting multiple
operating systems;

figure 14 shows the configuration of a network interface for operation in the
system of figure 13;

figure 15 shows the architecture of a computer system supporting multiple
operating systems; and

figures 16 to 18 show communication flows in the system of figure 15.

In the system to be described below, the network interface is capable of directing
received data o a particular receive buffer in dependence on destination information
(e.g. MAC address) to which that data has been transmitted. Furthermore, the
system is arranged to automatically configure the network interface to direct the data
in that way. In a platform that has multiple operating systems managed by a
hypervisor, the hypervisor may be arranged to automatically configure the network
interface. If the system is para-virtualised then an operating system or a part of it
may be arranged to automatically configure the network interface.

NICs conventionally do not support directing incoming traffic to a particular consumer
of data based on destination MAC addresses since that is not normally required in a

WO 2007/074343 PCT/GB2006/004946

53

single-operating-system environment. The following description sets out a method
by which such NICs can be configured to efficiently support multiple-operating-
system environments, and also a method by which enhanced NICs that do support
filtering of incoming data based on destination MAC addresses can be configured.

The present example will be described with reference to a network that uses TCP/IP
over Ethernet. However, the present invention is not limited to use with these and is
applicable to networks that use other protocols.

Figure 15 shows a data processing device 20 connected to a network 21 by a data
link 22. A further data processor 23 is also connected to the network and can
communicate with the data processor 20 over the network. Figure 15 illustrates the
components of data processor 20 in the hardware domain (24) and the software
domain (25). In the hardware domain it comprises a network interface 26, a central
processor 27 (e.g. a CPU), a working memory 28 (e.g. RAM) and a program store 29
(e.g. a hard disc). These are interconnected by a bus 30. In the software domain it
comprises an operating system 31 and applications 32. These are provided by the
execution by processor 27 of suitable program code stored in the program store 29.
The operating system supports the applications by, for example, managing the
applications’ access to hardware components of the system. For this purpose, the
operating system includes a set of drivers 33 for communication with the network
interface 26.

The data processor 20 could be a general-purpose computer.

The operating system 31 and applications 32 are in a first environment 34. In the
system illustrated in figure 15 multiple such environments are supported, as
illustrated at 35 and 36. Each environment has a respective operating system that
operates independently of the other operating systems and its own user-level
application(s) that operate independently of applications in others of the
environments. The operation of the environments is managed by hypervisor 37.
The basic functions of the hypervisor could be analogous to those employed in

WO 2007/074343 PCT/GB2006/004946

54

known multi-operating-system arrangements such as IBM 360 or VMware or Xen.
The hypervisor interfaces between the operating systems and the hardware so as to
allow each operating system to function correctly without conflicting with the other
operating systems on the hardware platform 20.

The network interface 26 may be termed a network interface card (NIC). However, it
need not take the form of a card. It could be a stand-alone external device or it could
be integrated on to a motherboard of the data processor 20 or even integrated into
an integrated circuit on which the processor 27 is implemented. The network
interface card comprises a processor 38, a program store 39 and a working memory
40. The processor 38 executes code stored in the siore 39 to perform networking
functions, and uses the memory 40 as a temporary store for incoming or outgoing
data, and to store working data such as look-up tables that are configured during
operation.

The network interface 26 is capable of automatically delivering received data directly
to buffers owned by an intended recipient of the data, for instance to a user-level
buffer. The network interface could perform protocol proceeding on received data
before storing it in the appropriate buffer. However, it is preferred that protocol
processing is performed by the operating system 31 and/or at user level by transport
library 41 after the network interface has delivered the data to the appropriate buffer.

The operating system 31, a user-level transport library 41 and the network interface
26 itself can cooperate to configure a table 43 in the network interface so as to cause
the network interface to deliver data to a recipient’'s buffer in a single-operating-
system environment. To this end the fransport library 41 provides a routine that can
be called by any application 32 that wishes to receive data. The process of
configuration of table 43 and its use for receiving data in a single-operating system
environment are illustrated in figure 16. When an application calls the routine in the
transport library (step 70) the transport library arranges with the operating system for
the allocation of one or more buffers 42 in memory 28 in which received data can be
stored (step 71), and transmits a message to the network interface 26 to inform it of

WO 2007/074343 PCT/GB2006/004946

55

the location of the buffer(s) and the TCP port number that will be associated with the
buffer(s) (step 72). The TCP port number and/or other address bits of an incoming
packet will allow the network interface to identify incoming traffic that is to be directed
to the buffer(s). Where more than one contiguous memory buffer is allocated to the
application those buffers they form a pool that can be used for receiving incoming
‘data. In the present description data will for simplicity be described as being
delivered to a buffer, but in practice it could be delivered to a discontinuous region of
memory formed by a pool of buffers, all of which are owned by a particular
destination application as a virtual interface. The network interface is informed of the
address of the default virtual interface when the system is first configured. The
network interface is arranged to, on subsequently receiving such a message,
configure a look-up filter table 43 in memory 40 to hold the location of the buffer and
the parameters (step 73). In practice the filter table 43 could be split into a first table
that maps patterns of address bits to virtual interfaces and a second table that maps
virtual interfaces to the physical addresses of the buffers that they are associated
with and ownership information indicating which virtual interface has the right to
deliver data onto that buffer.. When incoming data is received from the network (step
74) the network interface checks its characteristics against the parameters stored in
filter table 43 (step 75). If the data matches a set of stored parameters the network
interface directs that data to the buffer 50 whose location is stored in association with
those parameters (step 76). The network interface is also arranged to direct
incoming data that does not match any of the parameters stored in the table to a
default location, which is conveniently the operating system in order that the
operating system can process that data.

The network interface is capable of operating so as to support multiple MAC
addresses, and in a multi-operating-system environment as illustrated in figure 15 it
operates under the control of the hypervisor to use a different MAC address for
communications to or from each operating system. When one of the operating
systems begins to request network services the hypervisor allocates a MAC address
to that operating system, stores in a table 44 the pairing of that MAC address with
that operating system, and instructs the network interface to configure itself to

WO 2007/074343 PCT/GB2006/004946

56

support that additional MAC address. When data is to be transmitted from that
operating system the hypervisor instructs the network interface to transmit it from the
appropriate MAC address. The hypervisor may also need to instruct the NIC to
operate in a “promiscuous” mode, so that it will accept data directed to multiple MAC
addresses.

In its default configuration, in order that received data is directed to the appropriate
location the network intetface forwards received packets to the hypervisor. The
hypervisor identifies the destination MAC address in each packet, looks it up in table
44 and forwards the packet to the appropriate operating system. It would be possible
for the network interface to be configured to do this. However, this would require the
NIC to perform filtering based on the MAC address, which is not desirable. The
reason for this is that that capability is not required in a single-OS system, and
additionally providing support for choosing a destination based on MAC address
would require the table 43 (which is conveniently provided as a content-addressable
memory or RAM based hash table) to be larger. This would be expected to make it
slower to look up data in the table or to take up excessive amounts of memory on the
NIC. Since all incoming traffic is fililered against the filter table 43 it is desirable to

keep operation of the table as simple and quick as possible.

The present system therefore provides other mechanisms for configuring the table 43
in a system such as that of figure 15 that has multiple operating systems running
side-by-side. These mechanisms are illustrated in figures 17 and 18. In the present
system, the network interface can be configured by these mechanisms to direct data
directly to the appropriate receive buffer, without the intervention of the hypervisor to
route each item of incoming data. This can provide a significant improvement in
efficiency, since the amount of processing that the hypervisor is required to perform
is significantly reduced.

When the system is fully virtualised the operating systems and the applications are
unaware that they are running in a multi-OS environment. In this situation the

WO 2007/074343 PCT/GB2006/004946

57

mechanism of figure 17 can be used. In a para-virtualised environment either
mechanism can be used.

When an application wishes to be able to receive data it calls the routine in the
transport library in the same way as if it were in a single-OS system. The transport
library obtains a buffer for the data to be received and signals the hypervisor with the
details of the connection (including buffer location and port number) in the way that it
would normally signal the network interface in a single-OS system. The hypervisor
then stores the filtering parameters (e.g. port number) against the address of the
appropriate buffer in a table 45 that is specific to that operating system. The tables
44 and 45 could be integrated with each other. Table 45 may also indicate other
locations to which data could be delivered. For example it could indicate a default
location for each environment, which could conveniently be the operating system of
that environment.

Figure 17 shows the signalling in one configuration mechanism. In this mechanism
the hypervisor is arranged to configure the NIC’s filter table 43 when it has to forward
received network data to an operating system. Once the table has been
appropriately configured, any further data of the same nature can be forwarded by
the network interface without the intervention of the hypervisor.

Figure 17 shows signalling between the network interface 26, the hypervisor 37, an
operating system 31 supported by the hypervisor and the buffer 50 of an application
running on that operating system. At step 100 a TCP/IP data packet is received by
the network interface. The network interface checks whether that packet matches
any of the rows in filter table 43 (step 101), and since it does not it forwards the
packet to the hypervisor. (Step 102). The hypervisor analyses the packet to identify
its destination MAC address and looks that address up in table 44 to identify which of
the operating systems it is supporting has been allocated that MAC address. It then
looks up in the appropriate one of the tables 45 to identify which destination
corresponds to the destination port of the received packet (step 103), and it forwards
the packet to that destination (step 104). The destination could be the operating

WO 2007/074343 PCT/GB2006/004946

58

system 31 or a buffer 50. The hypervisor is configured so as to then automatically
send a configuration message to the NIC (step 105) to cause the NIC to configure its
table 43 so that future packets having the same destination IP address and port as
that previously received packet will be forwarded directly by the NIC to that buffer. In
response to that message the NIC configures table 43 accordingly (step 106). This
will avoid the need for such packets to be handled by the hypervisor, reducing load
on the system.

When such a packet is subsequently received (step 110) the NIC checks its details
against the filter table 43, finds a match and retrieves the destination stored in the
table (step 111) and then automatically forwards the packet to that destination. This
subsequent operation bypasses the hypervisor.

The hypervisor may automatically configure the table 43 in this way in response to
the need to forward any received packets to a destination. Alternatively, in some
situations it may be preferable for it to configure the table only after it has received a
predetermined amount of data (e.g. a certain number of incoming packets) to a
particular IP address or to a particular combination of IP address and port number.

This first configuration mechanism is transparent to the operating systems and the
applications.

The second configuration mechanism can be used if the system is a para-virtualised
system: that is one in which entities in one of the environments 34 to 36 can have
knowledge of the fact that they are running in a muitiple-OS system. In this
mechanism the table 43 of the NIC can be configured by one of the operating
systems or by an application running on that operating system.

Figure 18 shows signalling in the second mechanism. At step 200 a TCP/IP data
packet is received by the network interface. The network interface fails to match the
packet in table 43 (step 201) and forwards it to the hypervisor. (Step 202). The
hypervisor analyses the packet to identify its destination MAC address and looks that

WO 2007/074343 PCT/GB2006/004946

59

address up in table 44 to identify which of the operating systems it is supporting has
been allocated that MAC address. (Step 202). It then looks up in the tables 44, 45 to
identify where to direct the received packet. (Step 203). In this example the table 45
indicates that the packet is to be sent to operating system 31. The hypervisor
forwards the packet to that operating system. (Step 204). The operating system
processes the packet, for example by storing it so it is accessible by an application or
by protocol-processing it. The operating system also sends a configuration message
to the NIC (step 205) to cause the NIC to configure its table 43 so that future packets
having the same destination IP address and port as that packet will be forwarded
directly by the NIC to that operating system or to the appropriate buffer. In response
to that message the NIC configures table 43 accordingly (step 206). This will avoid
the need for such packets to be handled by the hypervisor, reducing load on the
system. Subsequent operation is as in steps 110 to 112 of figure 17. In this
configuration the transport library is unused.

The operating system 31 may automatically configure the table 43 in this way in
response to detecting certain pre-programmed traffic flow conditions. These may
include traffic flows greater than a set volume in a set period of time to a particular
port. [t may advantageously monitor particular port numbers that are known to be
used by high-performance applications. Which ports those are will depend on the
use to which the host computer is being put. In this way the operating system can
arrange for all packets to a particular high-priority application, such as a database
application, to be accelerated. Alternatively, in some situations it may be preferable
for it to configure the table only after it has received a predetermined amount of data
(e.g. a certain number of incoming packets) to a particular IP address or to a
particular combination of IP address and port number. It may then automatically
deconfigure the table to delete a particular stored combination of data format and
buffer address. It may do so in response to detecting conditions such as that the
combination has been in place for a pre-set time, or that less data than a set
threshold (of data volume or number of packets) has been received in a pre-set time.
That threshold may be very low, so that the deconfiguration takes place only if no
data of the respective type has been received in a certain time.

WO 2007/074343 PCT/GB2006/004946

60

Entries in the table 43 may be deleted automatically after a pre-set period of time.
This can help to avoid the table 43 growing too large and to take account of the
possibility of the destination buffers or IP addresses changing. The hypervisor and/or
the operating systems could be configured to signal the NIC to delete entries in the
table 43 when they become out-of-date.

The multiple operating systems could be multiple instances of a single type of
operating system or they could each be different operating systems.

In the data is preferably received as packets and forwarded in the same packetised
form. However, the traffic data could be extracted from received packets by the NIC
and forwarded to the hypervisor or elsewhere together with a representation of the
routing data (e.g. IP address and port) that is needed for identifying the destination of
data. This could involve partial or full protocol processing being performed by the
NIC.

The data could be conveyed over the network by a protocol other than TCP/IP over
Ethernet. Any suitable networking protocol can be used. Instead of MAC addresses,
IP addresses and ports analogous identifiers at similar levels of the protocol that is in
use can be employed for identifying the required destination of received data.

The functions performed by the hypervisor or the operating system in the
mechanisms illustrated in figures 17 and 18 could be performed by the core (kernel)
of the hypervisor or the operating system or by a driver of the hypervisor or operating
system that allows it to communicate with the NIC.

The applicant hereby discloses in isolation each individual feature described herein
and any combination of fwo or more such features, to the extent that such features or
combinations are capable of being carried out based on the present specification as
a whole in the light of the common general knowledge of a person skilled in the art,
irrespective of whether such features or combinations of features soive any problems

WO 2007/074343 PCT/GB2006/004946

61

disclosed herein, and without limitation to the scope of the claims. The applicant
indicates that aspects of the present invention may consist of any such individual
feature or combination of features. In view of the foregoing description it will be
evident to a person skilled in the art that various modifications may be made within

the scope of the invention.

WO 2007/074343 PCT/GB2006/004946

62

CLAIMS

1. A method for controlling the processing of data in a data processor, the data
processor being connectable to a further device over a data link, the method
comprising the steps of:

receiving data at an element of the data processor;
if a set interval has elapsed following the receipt of the data, determining whether
processing of the received data in accordance with a data transfer protocol has
begun, and, if it has not, triggerihg such processing of the received data by a protocol
processing element;

sensing conditions pertaining to the data link; and

setting the interval in dependence on the sensed conditions.

2. A method according to claim 1 wherein the data processor is connectable to the
data link by means of an interface.

3. A method according to claim 2 wherein a timer resides on the interface, and the
said interval is measured by the timer.

4. A method according to claim 2 or claim 3 wherein the interface is implemented in

hardware.

5. A method according to any preceding claim wherein the step of determining
comprises determining whether processing of the received data by code at user level
has begun.

6. A method according to any preceding claim wherein the said protocol processing
element is an operating system.

7. A method according to any preceding claim wherein the received data comprises
data received at the data processor over the data link.

WO 2007/074343 PCT/GB2006/004946

63

8. A method according to claim 7 wherein the received data comprises data received

at the data processor by means of an asynchronous transmission over the data link.

9. A method according to any of claims 1 to 6 wherein the received data comprises
data to be transmitted over the data link.

10. A method according to claim 9 wherein the received data comprises data to be

transmitted by means of an asynchronous transmission over the data link.

11. A method according to any preceding claim wherein the step of triggering
processing comprises issuing an interrupt.

12. A method according to claim 11 as dependent on claim 6 wherein the step of
triggering processing comprises issuing an interrupt to the operating system.

13. A method according to any preceding claim wherein the said element is a
transport library associated with an application running on the data processor.

14. A method according to claim 2 or any of claims 3 to 13 as dependent on claim 2,
further comprising the step of in response to receiving the data, sending an

instruction from the said element to the timer.

15. A method according to claim 14 wherein the step of sending an instruction to the
timer comprises triggering the timer directly from the said element via a memory
mapping onto the said interface.

16. A method according to any preceding claim wherein the step of setting the
interval comprises reducing the interval if the sensed conditions are indicative of an
increase in data rate over the data link.

17. A method according to claim 16 wherein buffer space is allocated to the data link
for storing data received at the data processor over the data link, and the protocol is

WO 2007/074343 PCT/GB2006/004946

64

a protocol that employs a receive window in accordance with which a transmitter of
data according to the protocol will transmit no further traffic data once the amount of
data defined by the receive window has been transmitted and is unacknowledged by
the receiver, and wherein the step of setting the interval comprises reducing the
interval in response to sensing that the size of the buffer space allocated to the data
link is greater than the size of the receive window.

18. A method according to claim 17 further comprising the step of varying the size of
the buffer space allocated to the data link in response to a request from a consumer
of the traffic data.

19. A method according to claim 18 wherein the consumer is an application running
on the data processor.

20. A method according to any preceding claim wherein the step of sensing
conditions comprises sensing the presence in a transmit buffer of data to be
transmitted over the data link.

21. A method according to claim 20 wherein the step of setting the interval
comprises reducing the interval in response to sensing in a transmit buffer data to be
transmitted over the data link.

22. A method according to any preceding claim wherein the step of varying the
predetermined value comprises reducing the predetermined value in response to
sensing that a congestion mode of the protocol is in operation over the data link.

23. A method according to any preceding claim wherein the protocol is TCP.

24. Apparatus for controlling the processing of data in a data processor, the data
processor being connectable to a further device over a data link, the apparatus
comprising:

an element arranged to receive data; and

WO 2007/074343 PCT/GB2006/004946

65

a control entity arranged to, if a set interval has elapsed following the receipt
of data, determine whether processing of the received data in accordance with a data
transfer protocol has begun, and, if it has not, trigger such processing of the received
data by a protocol processing element;

wherein the control entity is further arranged to sense conditions pertaining to
the data link and set the interval in dependence on the sensed conditions.

25. A control entity for use with a data processor, the data processor being
connectable to a further device over a data link, and comprising an element arranged
to receive data, the control entity being arranged to:

if a set interval has elapsed following the receipt of data by the said element,
determine whether processing of the received data in accordance with a data transfer
protocol has begun, and, if it has not, trigger such processing of the received data by
a protocol processing element; and

sense conditions pertaining to the data link and set the interval in dependence

on the sensed conditions.

26. A method for bridging between a first data link carrying data units of a first data
protocol and a second data link for carrying data units of a second protocol by means
of a bridging device, the first and second protocols being such that data units of each
protocol include protocol data and traffic data and the bridging device comprising a
first interface entity for interfacing with the first data link, a second interface entity for
interfacing with the second data link, a protocol processing entity and a memory
accessible by the first interface entity, the second interface entity and the protocol
processing entity, the method comprising:

receiving by means of the first interface entity data units of the first protocol,
and storing those data units in the memory;

accessing by means of the protocol processing entity the protocol data of data
units stored in the memory and thereby performing protocol processing for those data
units under the first protocol; and

WO 2007/074343 PCT/GB2006/004946

66

accessing by means of the second interface entity the traffic data of data units
stored in the memory and thereby transmitting that traffic data over the second data
link in data units of the second data protocol.

27. A method as claimed in claim 26, wherein the protocol processing entity is
arranged to perform protocol processing for the data units stored in the memory
without it accessing the traffic data of those units stored in the memory.

28. A method as claimed in claim 27, wherein the first protocol is such that protocol
data of a data unit of the first protocol includes check data that is a function of the
traffic data of the data unit, and the method comprises:

applying the function by means of the first entity to the content of a data unit of
the first protocol received by the first interface entity to calculate first check data;

transmitting the first check data to the protocol processing entity; and

comparing by means of the protocol processing entity the first check data
calculated for a data unit with the check data included in the protocol data of that
data unit.

29. A method as claimed in any of claims 26 to 28, wherein:

the memory comprises a plurality of buffer regions;

the first interface entity, the second interface entity and the protocol
processing entity are each arranged to access a buffer region only when they have
control of it; and the method comprises:

the first interface entity storing a received data unit of the first protocol in a
buffer of which it has control and subsequently passing control of that buffer to the
protocol processing entity; |

the protocol processing entity passing control of a buffer to the second
interface entity when it has performed protocol processing of the or each data unit
stored in that buffer; and

the second interface entity passing control of a buffer to the first interface
entity when it has transmitting the traffic data contained in that buffer over the second
data link in data units of the second data protocol.

WO 2007/074343 PCT/GB2006/004946

67

30. A method as claimed in any of claims 26 to 29, comprising:

generating by means of the protocol processing entity protocol data of the
second protocol for the data units to be transmitted under the second protocol;

communicating that protocol data to the second interface entity; and

the second interface entity including that protocol data in the said data units of
the second protocol.

31. A method as claimed in claim 30, wherein the second protocol is such that
protocol data of a data unit of the second protoco! includes check data that is a
function of the traffic data of the data unit, and the method comprises:

applying the function by means of the second interface entity to the content of
a data unit of the second protocol to be transmitted by the second interface entity to
calculate first check data;

combining that check data with protocol data received from the protocol
processing entity to form second protocol data; and

the second interface entity including the second protocol data in the said data
units of the second protocol.

32. A method as claimed in any of claims 26 to 31, wherein one of the first and
second protocols is TCP.

33. A method as claimed in any of claims 26 to 32, wherein one of the first and
second protocols is Fibrechannel.

34. A method as claimed in any of claims 26 to 32, wherein the first and second
protocols are the same.

35. A method as claimed in any of claims 26 to 34, wherein the first and second
interface entities each communicate with the respective data link via a respective
hardware interface.

WO 2007/074343 PCT/GB2006/004946

68

36. A method as claimed in any of claims 26 to 35, wherein the first and second
interface entities each communicate with the respective data link via the same
hardware interface.

37. A method as claimed in any of claims 26 to 36, wherein the protocol processing
comprises terminating a link of the first protocol.

38. A method as claimed in any of claims 26 to 37, wherein the protocol processing
comprises:

inspecting the traffic data of the first protocol;

comparing the traffic data of the first protocol with one or more pre-set rules;
and

if the traffic data does not satisfy the rules preventing that traffic data from
being transmitted by the second interface entity.

39. A bridging device for bridging between a first data link carrying data units of a
first data protocol and a second data link for carrying data units of a second protocol,
the first and second protocols being such that data units of each protocol include
protocol data and traffic data and the bridging device comprising:

a first interface entity for interfacing with the first data link, a second interface
entity for interfacing with the second data link, a protocol processing entity and a
memory accessible by the first interface entity, the second interface entity and the
protocol processing entity;

the first interface entity being arranged to receive data units of the first
protocol, and storing those data units in the memory;

the protocol processing entity being arranged to access the protocol data of
data units stored in the memory and thereby perform protocol processing for those
data units under the first protocol; and

the second interface entity being arranged to access the traffic data of data
units stored in the memory and thereby transmit that traffic data over the second data
link in data units of the second data protocol.

WO 2007/074343 PCT/GB2006/004946

69

40. A data processing system comprising:

a memory comprising a plurality of buffer regions;

an operating system for supporting processing entities running on the data
processing system and for restricting access to the buffer regions to one or more
entities;

a first interface entity running on the data processing system whereby a first
hardware device may communicate with the buffer regions; and

an application entity running on the data processing system;
the first interface entity and the application entity being configured to, in respect of a
buffer region to which the operating system permits access by both the interface
entity and the application entity, communicate ownership data so as to indicate which
of the first interface entity and the application entity may access the buffer region and
to access the buffer region only in accordance with the ownership data.

41. A data processing system as claimed in claim 40, wherein the data processing
system comprises a second interface entity running on the data processing system
whereby a second hardware device may communicate with the buffer regions and
the first and second interface entities and the application entity are configured to, in
respect of a buffer region to which the operating system permits access by the first
and second interface entities and the application entity, communicate ownership data
so as to indicate which of the first and second interface entities and the application
entity may access each buffer regions and to access each buffer region only in
accordance with the ownership data.

42. A data processing system as claimed in claim 41, wherein:

the first interface entity is arranged to, on receiving a data unit, store that data
unit in a buffer region that it may access in accordance with the ownership data and
to subsequently modify the ownership data such that the application entity may
access that buffer region in accordance with the ownership data;

the application entity is arranged to perform protocol processing on data
unit(s) stored in a buffer region that it may access in accordance with the ownership

WO 2007/074343 PCT/GB2006/004946

70

data and to subsequently modify the ownership data such that the second interface
entity may access that buffer region in accordance with the ownership data; and

the second interface entity is arranged to transmit at least some of the content
of data unit(s) stored in a buffer region that it may access in accordance with the
ownership data and to subsequently modify the ownership data such that the
application entity may access that buffer region in accordance with the ownership
data.

43. A data processing system as claimed in any of claims 40 to 42, wherein the said
protocol processing is protocol proceeding in accordance with a first protocol and
system is arranged so that the second interface entity can transmit the said content
in accordance with a second protocol.

44. A data processing system as claimed in claim 43, wherein one of the first and
second protocols is TCP.

45. A data processing system as claimed in claims 43 or 44, wherein one of the first
and second protocols is Fibrechannel.

46. A data processing system as claimed in any of claims 43 to 45, wherein the first

and second protocols are the same.

47. A data processing system as claimed in any of claims 43 to 46, wherein the
protocol processing comprises terminating a link of the first protocol.

48. A method as claimed in any of claims 43 to 46, wherein the protocol processing
comprises:

inspecting the traffic data of the first protocol;

comparing the traffic data of the first protocol with one or more pre-set rules;
and

if the traffic data does not satisfy the rules preventing that traffic data from
being transmitted by the second interface entity.

WO 2007/074343 PCT/GB2006/004946

71

49. A data processing system as claimed in any of claims 41 to 48, wherein the first
and second interface entities are each configured to communicate with a respective
data link via a respective hardware interface.

50. A data processing system as claimed in any of claims 41 to 48, wherein the first
and second interface entities are each configured to communicate with the respective
data link via the same hardware interface.

51. A method for operating a data processing system comprising:

a memory comprising a plurality of buffer regions;

an operating system for supporting processing entities running on the data
processing system and for restricting access to the buffer regions 1o one or more
entities;

a first interface entity running on the data processing system whereby a first
hardware device may communicate with the buffer regions; and

an application entity running on the data processing system;
the method comprising, in respect of a buffer region to which the operating system
permits access by both the interface entity and the application entity, communicating
ownership data by means of the first interface entity and the application entity so as
to indicate which of the first interface entity and the application entity may access the
buffer region and to access the buffer region only in accordance with the ownership
data.

52. A protocol processing entity for operation in a bridging device for bridging
between a first data link carrying data units of a first data protocol and a second data
link for carrying data units of a second protocol by means of a bridging device, the
first and second protocols being such that data units of each protocol include protocol
data and ftraffic data and the protocol processing entity being arranged to cause a
processor of the bridging device to perform protocol processing for data units stored
in the memory without it accessing the traffic data of those units stored in the
memory.

WO 2007/074343 PCT/GB2006/004946

72

53. A data carrier carrying software defining a computer program for implementing a
protocol processing entity as claimed in claim 52.

54. A computer system comprising:

hardware including a data interface for interfacing between the computer
system and a data source;

a memory;

a first operating system capable of communicating with the hardware; and

a second operating system capable of supporting a user-level application and
being configured to communicate with the hardware via the first operating system,
the second operating system being capable of allocating a region of the memory for
use as a buffer by such a user-level application;
wherein the data interface is configurable to associate a predetermined data format
with a region of the memory that has been allocated for use as a buffer by a user-
level application supported by the second operating system so as to, on
subsequently receiving from the data source a data message of that format,
automatically store data of that message in that region of the memory without it

passing via the first or second operating systems.

55. A computer system as claimed in claim 54, wherein the first operating system is
capable of serving as an interface between multiple further operating systems and
the hardware.

56. A computer system as claimed in claim 55, wherein the first operating system is
a hypervisor.

57. A computer system as claimed in any of claims 54 to 56, wherein the data
interface is a network interface and the data source is a data network.

58. A computer system as claimed in any of claims 54 to 57, wherein the data
interface has access to a data store for storing a plurality of indications of respective

WO 2007/074343 PCT/GB2006/004946

73

data formats and corresponding to each one an indication of a destination, and the
data interface is arranged to, on receiving a data message from the data source
identify whether the format of the data message matches a data format an indication
of which is stored in the data store, and if it does to pass data of that message to that
destination.

59. A computer system as claimed in any of claims 54 fo 58, wherein the data format
is at least partially defined by a destination address.

60. A computer system as claimed in claim 59, wherein the address is an internet
layer address.

61. A computer system as claimed in claim 60, wherein the address is an IP (internet
protocol) address.

62. A computer system as claimed in any of claims 54 to 61, wherein the data format
is at least partially defined by a data port.

63. A computer system as claimed in any of claims 54 to 62, wherein the data
message is a data packet.

64. A computer system as claimed in any of claims 54 to 63 wherein the data
interface is configurable automatically by the first operating system to associate the
predetermined data format with the region of the memory that has been allocated for
use as a buffer by a user-level application supported by the second operating
system.

65. A computer system as claimed in any of claims 54 to 64 wherein the data
interface is configurable automatically by the second operating system to associate
the predetermined data format with the region of the memory that has been allocated
for use as a buffer by a user-level application supported by the second operating
system.

WO 2007/074343 PCT/GB2006/004946

74

66. A computer system as claimed in any of claims 54 to 65, wherein the data
interface is arranged to, on receiving a data message from the data source identify
whether it is configured to associate the format of that message with a region of the
memory and if it has to automatically store data of that message in that region of the
memory without it passing via the first or second operating systems.

67. A computer system as claimed in any of claims 54 to 66, wherein one of the first
operating system, the second operating system and the data interface is arranged to
deconfigure the data interface from associating a message format with a region of
the memory when a pre-set time has elapsed from when the interface was configured
to associate that message format with that region of the memory.

68. A computer system as claimed in any of claims 54 to 67, wherein one of the first
operating system, the second operating system and the data interface is arranged to
deconfigure the data interface from associating a message format with a region of
the memory in response to sensing that data traffic conditions match one or more
predefined criteria.

69. A computer system as claimed in of claims 54 to 68, wherein the said traffic
criteria include the criterion that the flow of received data of the message format is
below a pre-set amount in a pre-set time.

70. A computer system comprising:

hardware including a data interface for interfacing between the computer
system and a data source;

a memory;

a first operating system capable of communicating with the hardware; and

a second operating system capable of supporting a user-level application;
wherein at least one of the first and second operating systems is arranged to detect
that data of a first data message received by the data interface from the data source
has been directed to a destination via the first operating system, and in response to

WO 2007/074343 PCT/GB2006/004946

75

detecting that to configure the data interface to direct data of subsequent data
messages having a data format in common with the first data message to that
destination without it passing via the second operating system.

71. A computer system as claimed in claim 70, wherein the first operating system is
capable of serving as an interface between multiple further operating systems and
the hardware.

72. A computer system as claimed in claim 71, wherein the first operating system is
a hypervisor.

73. A computer system as claimed- in any of claims 70 to 72, wherein the data
interface is a network interface and the data source is a data network.

74. A computer system as claimed in any of claims 70 fo 73, wherein the data
interface has access to a data store for storing a plurality of indications of respective
data formats and corresponding to each one an indication of a destination, and the
data interface is arranged to, on receiving a data message from the data source
identify whether the format of the data message matches a data format an indication
of which is stored in the data store, and if it does to pass data of that message to that
destination.

75. A computer system as claimed in any of claims 70 to 74, wherein the data format
is at least partially defined by a destination address.

76. A computer system as claimed in claim 75, wherein the address is an internet
layer address.

77. A computer system as claimed in claim 76, wherein the address is an IP (internet
protocol) address.

WO 2007/074343 PCT/GB2006/004946

76

78. A computer system as claimed in any of claims 54 to 77, wherein the data format
is at least partially defined by a data port.

79. A computer system as claimed in any of claims 54 to 78, wherein the data

message is a data packet.

80. A computer system as claimed in any of claims 70 to 79, wherein the data
interface is arranged to, on receiving a data message from the data source identify
whether it is configured to associate the format of that message with a region of the
memory and if it has to automatically store data of that message in that region of the
memory without it passing via the first or second operating systems.

81. A computer system as claimed in any of claims 70 to 80, wherein one of the first
operating system, the second operating system and the data interface is arranged to
deconfigure the data interface from associating a message format with a region of
the memory when a pre-set time has elapsed from when the interface was configured
to associate that message format with that region of the memory.

82. A computer system as claimed in of claims 70 fo 81, wherein one of the first
operating system, the second operating system and the data interface is arranged to
deconfigure the data interface from associating a data format with a region of the
memory in response to sensing that data traffic conditions match one or more
predefined criteria.

83. A computer system as claimed in claim 82, wherein the said traffic criteria
include the criterion that the flow of received data of the data format is below a pre-

set amount in a pre-set time.

84. A computer system as claimed in any of claims 70 to 83, wherein the second
operating system is arranged to perform the step of configuring the data interface to
direct data of subsequent data messages having a data format in common with the

WO 2007/074343 PCT/GB2006/004946

77

first data message only when it detects that the flow of received data of that data

format is above a pre-set amount in a pre-set time.

85. A computer system as claimed in any of claims 70 to 84, wherein the second
operating system is arranged to perform the step of configuring the data interface to
direct data of subsequent data messages having a data format in common with the
first data message only for data formats of one or more pre-set types.

86. A computer system as claimed in claim 85, wherein the said pre-set types are
each defined by respective port numbers or ranges of port numbers.

87. A data interface that is capable of operation in a computer system as claimed in
any of claims 54 to 86, and is configurable to associate a predetermined data format
with a region of the memory of the computer system external to the data interface
that has been allocated for use as a buffer by a user-level application supported by
the second operating system so as to, on subsequently receiving from the data
source a data message of that format, automatically store data of that message in
that region of the memory without it passing via the first or second operating
systems.

88. A computer program for acting as a driver for communicating with a data
interface in a computer system as claimed in any of claims 54 to 87, the computer
program being such as to provide an operating system with functionality to, in
response to detection in response to detection that data of a first data message
received by the data interface from the data source has been directed to a
destination via another operating system, configure the data interface to direct data
of subsequent data messages having a data format in common with the first data
message to that destination without it passing via the second operating system.

89. A method for operating a computer system comprising hardware including a data
interface for interfacing between the computer system and a data source, a memory,
a first operating system capable of communicating with the hardware; and a second

WO 2007/074343 PCT/GB2006/004946

78

operating system capable of supporting a user-level application and being configured
to communicate with the hardware via the first operating system, the second
operating system being capable of allocating a region of the memory for use as a
buffer by such a user-level application;
the method comprising:

configuring the data interface to associate a predetermined data format with a
region of the memory that has been allocated for use as a buffer by a user-level
application supported by the second operating system; and

the data interface on subsequently receiving from the data source a data
message of that format, automatically storing data of that message in that region of
the memory without it passing via the first or second operating systems.

90. A method for operating a computer system comprising: hardware including a
data interface for interfacing between the computer system and a data source; a
memory; a first operating system capable of communicating with the hardware; and a
second operating system capable of supporting a user-level application;
the method comprising:

detecting by means of at least one of the first and second operating systems
that data of a first data message received by the data interface from the data source
has been directed to a destination via the first operating system; and

in response to detecting that configuring the data interface by means of that
operating system to direct data of subsequent data messages having a data format in
common with the first data message to that destination without it passing via the
second operating system.

PCT/GB2006/004946

WO 2007/074343

10

>IN

> O

=

TCP
packet
flow rate

SUBSTITUTE SHEET (RULE 26)

PCT/GB2006/004946

WO 2007/074343

2/9

X1 13M0vd Xy 13OV
(1
N o ,
(DIN) IHYMAYVH an MO0TD INIL Jm<mm
FHVMAEVH JOVAYTLINI FHOMLIN FUVMAHVH T™—20!
M
HIAINA IDIAIC wmom_\%mm m‘vm_mﬂm/wwww
Al |
ININONI. (1))]
y |
AL
ONISSIOOHd | | ONISSI0Ud “im |+ oL
aN3S doL JAIIOTY dOL N
()
- _m:m:azy - 00
Sy3d4nd viva SYI44Ng VIVA ~—l e ININD|
| wviva |
wAdOD. \Sv IO
(1A) \ \ IdY WALSAS ONILVHIO 4~ pp
_ \ 7 ”
()aNn3s ()AD3H

uAdOOu

- 2OId

t
'

SUBSTITUTE SHEET (RULE 26)

WO 2007/074343

3/9

PCT/GB2006/004946

FIG. 3a FIG. 3b
D'\'B1
recv() < % ~ 32 [~B> 32
APP_\ [J~Bs APP
/
50—~{[SOCKET | copy 50—~ SOCKET |
\
\ .§57 H’\—51 36
T.L. T.L.
—~—33 —~—33
0.S. 0.S.
—~—31 —~—31
NIC NIC
FIG. 5
2~ —~32
22—~ 40 . ~33
23—~ 25\—['/%———%%38 —~—34 [~—30
3T~—1\y4 |
24—~ 1 [~35 ,
20 39"
26—~ N ~—36

SUBSTITUTE SHEET (RULE 26)

WO 2007/074343

o™ .k

=

1

i

I

T
T
—>>

J\m

PCT/GB2006/004946

22 20
FIG. 8

31 32 .33 34
S

SUBSTITUTE SHEET (RULE 26)

PCT/GB2006/004946

WO 2007/074343
5/9
1(6 17 1(5
FIG. 9 7] P
(24 14
™ AS _____ S L3 5
25 =rl::::::::’_J S
4 <____-)__:‘|":::"S:::i_ij _______ -
1T 13 (B
26 23
FIG. 10
45
/
4¥b 4,7a 458
47"\\' (/ : _—40
43 49 44
41 S | l S | S 42
3) - |
46
!
50
5(4 52
iy (
FIG. 11)) 40
43 44
31_ | / \ | _4S2_
[L—~55 56—] |
((
)]
51 53

SUBSTITUTE SHEET (RULE 26)

WO 2007/074343

6/9

PCT/GB2006/004946

FIG 12
TRANSPORT TRANSPORT
ETH. H/W LIBRARY APP LIBRARY F/C. H/W
43 51 52 53 44
RECEIVED
PACKETS 61
S recv()g
60
HEADERS ETC. if
62
PROTOCOL
PROCESSOR
send()
DATA S 65
66
FORM
HEADER
PACKET
67

SUBSTITUTE SHEET (RULE 26)

WO 2007/074343 PCT/GB2006/004946

7/9

FIG. 13
3 ’\——{ Q }~—-/\3

11—~1] —~— 1~ 11
/—T | 8
—
) |
12 9

(&)

10

SUBSTITUTE SHEET (RULE 26)

WO 2007/074343 PCT/GB2006/004946

8/9
FIG. 15
27
L, 20~ [
3)8/ | [H31
| O0HH-F32
39_9 o | 7 Ih
2 — [(H~50 | // (
| 41
22 @ 2/8 E' I:H;l 343536
[] » §44// 45
30 R
j 29 !
23 |
24 25 '
FIG. 16
24 31 71 41 780 32 50
72)
{
75 -
S ™

SUBSTITUTE SHEET (RULE 26)

WO 2007/074343 PCT/GB2006/004946

99
FIG. 17
00 26 37 31 50
101
02 —103
}~104
110 ~—106
111
— b~ 112
FIG 18
26 37 31 50
200/— ~—~201
J oNA
(VAV
202 L/~2034 S -
|~206 205

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings

