This invention relates to an opener, and more particularly to a can and bottle opener.

The object of the invention is to provide an opener which will simultaneously form air holes and a flow opening upon proper manipulation of the opener.

A still further object of the invention is to provide an opener which includes means for simultaneously forming a plurality of air holes in a can at the same time that the flow opening or flow hole is formed in the can, and wherein the opener also includes a means which is adapted to be used for removing caps from bottles or the like.

A further object of the invention is to provide a can and bottle opener which is extremely simple and inexpensive to manufacture.

Other objects and advantages will be apparent during the course of the following description.

In the accompanying drawings, forming a part of this application, and in which like numerals are used to designate like parts throughout the same,

Figure 1 is a side elevational view illustrating the can and bottle opener of the present invention.

Figure 2 is a top plan view of the opener of the present invention.

Figure 3 is a front elevational view of the opener.

Figure 4 is a rear elevational view of the opener.

Referring in detail to the drawings, the numeral 10 indicates the opener of the present invention, and the opener 10 includes a body member 11 which has a pair of spaced parallel arms 12 extending from one end thereof. Arranged at right angles with respect to each arm 12 is a prong 13, and the pair of prongs 13 are also arranged in spaced parallel relation with respect to each other, the free ends of the prongs 13 being pointed as at 14.

Extending transversely across the tops of the arms 12 and secured thereto is a saddle 15. The numeral 16 indicates a tooth which is arranged angularly with respect to the arms 12, and the tooth 16 includes a downwardly extending tip 17, the tooth 16 having a substantially triangular shape. Arranged in spaced relation with respect to the tooth 16 and adapted to coat therewith is a lug 18 which is provided with an upwardly facing tip 19.

The opener 10 is further provided with means for removing a cap from a bottle or the like, and this means is indicated generally by the numeral 20. This means comprises an offset curved portion 21 which has a strengthening or reinforcing rib 22 extending therearound. The numeral 23 indicates a finger which is adapted to coat with the curved offset portion 21, and the finger 23 is provided with a curved tip 24.

From the foregoing, it is apparent that there has been provided an opener which is constructed so that with one movement of the opener, air holes as well as a pouring opening can be simultaneously formed. Thus, by arranging the opener 10 so that the lug 18 has its portion 19 engaging the bead or rim of a can, and then by pressing down on the saddle 15, it will be seen that the pointed ends 14 of the prongs 13 will pierce the top of the can so as to form a pair of air vents or holes. At the same time, this downward pressure on the saddle 15 will cause the pointed end 17 of the tooth 16 to pierce the opposite portion of the can top so that the tooth 16 will form a pouring opening or flow opening in the top of the can. Then, when the can opener is removed, it will be seen that the lid of the can will have two openings adjacent each other which are formed by the prongs 13, and these two openings will define air vents or air openings. Furthermore, there will have been formed a pouring opening due to the provision of the triangular shaped tooth 16.

When the opener is to be used for removing a cap or top from a bottle, the portion 20 of the opener 10 is used. Thus, the portion 20 can be arranged so that the finger 23 has its tip 24 engaged beneath the bottle top, so that the finger 23 will coat with the curved offset portion 21 whereby when the can opener is properly moved, the top can be conveniently lifted from the bottle.

The parts can be made of any suitable material and in different shapes or sizes. Since the members 13 and 16 will simultaneously form the three holes or openings in the can top, it will be seen that the steps of forming the air vents and pouring openings are accomplished simultaneously so that it is only necessary to operate the can opener once in order to form the necessary openings in the top of the can.

The tip 19 of the lug 18 is adapted to grip under the edge or bead of the can, and the tooth 16 will form a V-shaped slot in the top of the can which can be used as a flow opening. The prongs 13 form the air holes in the top of the can.

The opener of the present invention is adapted to be used for opening containers such as cans which contain liquids, such as fruit juices, beer or the like, and an important advantage of the present invention is that the two air holes are created or formed with the same motion which creates the flow hole so as to eliminate the necessity of puncturing the flow hole and air holes separately.

The saddle 15 is used for applying pressure with the heel of one hand while lifting the body member with the other hand. Furthermore, the saddle 15 serves to keep the air hole prongs 13 properly aligned. The air hole prongs and saddle can be made in different sizes to conform to cans of different sizes. The rib 22 prevents distortion of the body when stamping out the bottle opener and a similar rib may be formed to govern the flow hole opener. The parts such as the parts 16, 18 and 23 may be stamped out from the main portion of the body member.

Minor changes in shape, size and rearrangement of details coming within the field of invention claimed may be resorted to in actual practice, if desired.

I claim:

1. In an opener, a body member, a pair of spaced parallel arms on one end of said body member, a pair of spaced parallel prongs arranged at right angles with respect to said arms and extending therefrom, the free ends of said prongs being pointed, a saddle extending transversely across said arms and secured thereto, a tooth extending from said body member and arranged angularly with respect to said arms, said tooth having a triangular shape and having its outer end pointed, and a lug spaced from said tooth, said lug extending from said body member.

2. In an opener, a body member, a pair of spaced parallel arms on one end of said body member, a pair of spaced parallel prongs arranged at right angles with respect to said arms and extending therefrom, the free ends of said prongs being pointed, a saddle extending...
3. An opener comprising a body member, arms extending from said body member, a tooth extending from said body member and arranged angularly with respect to said arms, a lug spaced from said tooth, having a downwardly curved tip on its outer end. No references cited.

4. An opener comprising a body member, arms extending from said body member, a saddle extending transversely across said arms and secured thereto, a tooth extending from said body member and arranged angularly with respect to said arms, and a lug spaced from said tooth, having a downwardly curved tip on its outer end. No references cited.