wo 2013/002978 A2 || I 0F V00000 O 0 00 R0 O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

3 January 2013 (03.01.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/002978 A2

(51
eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification: Not classified
International Application Number:
PCT/US2012/041043

International Filing Date:

6 June 2012 (06.06.2012)
Filing Language: English
Publication Language: English
Priority Data:
13/169,024 27 June 2011 (27.06.2011) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: FRIES, Robert; c/o Microsott Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). PARTHAS-
ARATHY, Srivatsan; c/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). SANGHVI, Ashvinkumar;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). RAMARATHINAM, Aravind; ¢/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). GRIER, Mi-

(8D

(84)

chael; ¢/o0 Microsott Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(34

Title: HOST ENABLED MANAGEMENT CHANNEL

(57) Abstract: A logical communication path is provided between a target

228

VM-host
map
220

180 ¢

application [—----~—

logical
connection

236 190

FIG. 4

virtual machine (VM) and a host or application communicating with the
VM. The target VM runs on a hypervisor host that has a hypervisor and a
proxy agent. The hypervisor manages execution of the VM. A mapping is
maintained indicating which VMs execute on which hosts. When the host or
application is to send a message or packet to the target VM, the mapping is
consulted and the hypervisor host hosting the target VM is identified. The
message or packet, which may identify the target VM, is transmitted to the
hypervisor host. A proxy agent at the hypervisor host selects a communica-
tion channel between the hypervisor and the target VM. The hypervisor then
passes the message or packet through the selected channel to the target VM.

WO 2013/002978 A2 |IIIWAK 00N VAT SO AR AR A

Declarations under Rule 4.17: Published:
— as to applicant’s entitlement to apply for and be granted — without international search report and to be republished
a patent (Rule 4.17(ii)) upon receipt of that report (Rule 48.2(g))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

10

15

20

25

30

WO 2013/002978 PCT/US2012/041043

HOST ENABLED MANAGEMENT CHANNEL
BACKGROUND

[0001] In the field of machine virtualization, virtual machines (VMs) have network
functionality. That is, VMs may implement a network protocol stack to communicate via
a network with other VMs or physical machines. For instance, virtualization hosts (e.g.,
Hyper-V (TM) hosts) may form part of a virtualization fabric that hosts guest VMs, where
a Fabric Controller manages the virtualization fabric (as used in this Background “host”
may refer to a Fabric Controller, for example, or any other computer). However, for
various reasons, there may be no network connectivity between a host on a network and a
VM, even though there is network connectivity between the host and a machine running
the VM (to referred to as the “VM host”). For example, the VM might be on a Virtual
Private Network (VPN) to which the host does not belong and the VM's network address
may not be valid on the host's network. A firewall might block access to the VM from the
hosts' network while allowing access on the VM host's network. A VM might simply be
on a different network than the host that might need to communicate with the VM.
[0002] In some circumstances, it is desirable to communicate with a VM using a
standard protocol such as HTTP (Hypertext Transfer Protocol), SOAP (Simple Object
Access Protocol), WMI (TM) (Windows Management Instrumentation), the WS-
Management protocol (transporting WMI calls over a SOAP based protocol via HTTP),
and so forth. For example, in some data centers or clouds, VMs might have network
agents or services running thereon that perform management functions (such as applying
patches to a guest operating system, handling cloud fabric tasks, etc.), perhaps with one or
more communication channels for control (e.g., WMI over HTTP) or data (BITS via
HTTP). These management services or agents are controlled by a management
application (¢.g., a Fabric Controller), running on a controller host, for example. The
management application sends packets, for example HTTP packets, to the VM's network
address and the HTTP packets are delivered to the management agent. The management
agents may perform functions in response to information in the payloads of the packets.
However, when the management application does not have network connectivity to the
VM, it is unable to invoke the management agents on the VM.
[0003] Techniques to enable communication with VMs via communication channels

between hypervisors and the VMs are discussed below.

10

15

20

25

30

WO 2013/002978 PCT/US2012/041043

SUMMARY
[0004] The following summary is included only to introduce some concepts discussed in
the Detailed Description below. This summary is not comprehensive and is not intended
to delineate the scope of the claimed subject matter, which is set forth by the claims
presented at the end.
[0005] A logical communication path is provided between a target virtual machine
(VM) and a host or application communicating with the VM. For example, a path
between virtualization host and a VM. The target VM runs on a hypervisor host that has a
hypervisor and a proxy agent (e.g., an HTTP proxy). The hypervisor manages execution
of the VM. A mapping is maintained indicating which VMs execute on which hosts.
When the host or application is to send a message or packet to the target VM, the mapping
is consulted and the hypervisor host hosting the target VM is identified. The message or
packet, which may identify the target VM, is transmitted to the hypervisor host. A proxy
agent at the hypervisor host selects a communication channel between the hypervisor and
the target VM. The hypervisor then passes the message or packet through the selected
channel to the target VM.

[0006] Many of the attendant features will be explained below with reference to the
following detailed description considered in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present description will be better understood from the following detailed

description read in light of the accompanying drawings, wherein like reference numerals

are used to designate like parts in the accompanying description.

[0008] Figure 1 shows an example virtualization layer.

[0009] Figure 2 shows processes and interactions of virtualization a layer in relation to

virtual machines and virtual machine images.

[0010] Figure 3 shows an example of an application communicating with an agent

running on a guest operating system hosted by a VM.

[0011] Figure 4 shows an overview of a logical communication path between

application and a VM,

[0012] Figure 5 shows a client host initiating a connection with a VM.

[0013] Figure 6 shows a hypervisor host handling a packet from client host.
DETAILED DESCRIPTION

[0014] Embodiments discussed below relate to using internal communication channels

on a VM/hypervisor host to allow external network communication. Discussion will begin

10

15

20

25

30

WO 2013/002978 PCT/US2012/041043

with an overview of virtualization technology and virtualization layers (to also be referred
to as hypervisors). An example of network communication between an application and a
VM will be described next. An overview of a logical communication path using private
channels on a hypervisor host will be explained. Finally, details of such a communication
path will be described in detail, including an application at one end of the communication
path and a hypervisor host (VM host) at another end of the communication path.

Machine Virtualization

[0015] Figure 1 shows an example virtualization layer 100. A computer 102 has
hardware 104, including a central processing unit (CPU) 106, memory 108, a network
interface 110, non-volatile storage 112, and other components not shown, such as a bus, a
display adapter, etc. The virtualization layer 100 manages and facilitates execution of
virtual machines 114. Although not shown in Figure 1, cach virtual machine 114 typically
has an associated virtual disk image and a guest operating system. For brevity, the
operating system and perhaps application software of a virtual machine 114 will
sometimes be referred to as a guest, which is stored and executed from the virtual disk
image associated with the virtual machine 114. For convenience, the term “hypervisor”
will be used herein to refer to the various forms of virtualization layers. Moreover, as will
be discussed below, virtual machines 114 are used to host elements of distributed
applications.

[0016] The virtualization layer 100 may be of any variety of known or future
implementations, such as Hyper-V Server (TM), VMWare ESX Server (TM), Xen, Oracle
VM (TM), etc. The architecture of the virtualization layer may a hosted type, with a
virtual machine monitor (VMM) running on a host operating system, or a bare-metal type
with a hypervisor or the like running directly on the hardware 104 of the computer 102,
As used herein, the term “virtual machine” refers to a system-type virtual machine that
simulates any specific hardware architecture (e.g., x86) able to run native code for that
hardware architecture; to the guest, the virtual machine may be nearly indistinguishable
from a hardware machine. Virtual machines discussed herein are not abstract or process-
type virtual machines such as Java Virtual Machines.

[0017] The virtualization layer 100 performs the basic function of managing the virtual
machines 114 and sharing of the hardware 104 by both itself and the virtual machines 114.
Any of a variety of techniques may be used to isolate the virtual machines 114 from the
hardware 104. In one embodiment, the virtualization layer may provide different isolated

environments (i.e., partitions or domains) which correspond to virtual machines 114.

10

15

20

25

30

WO 2013/002978 PCT/US2012/041043

Some of the virtualization layer 100 such as shared virtual device drivers, inter virtual
machine communication facilities, and virtual machine management APIs (application
programming interfaces), may run in a special privileged partition or domain, allowing for
a compact and efficient hypervisor. In other embodiments, functionality for virtual
machine management and coherent sharing of the hardware 104 may reside in a
monolithic on-the-metal hypervisor.

[0018] Figure 2 shows processes and interactions of virtualization layer 100 in relation
to virtual machines 114 and virtual machine images 140. The virtualization layer 100
performs a process 142 of starting and executing a virtual machine 114, possibly
according to corresponding virtual machine configuration parameters. When a virtual
machine 114 (VM) is started, the virtualization layer identifies an associated virtual
machine image 140. In practice, any virtual machine image 140 can be used by any
virtual machine 114. The virtual machine image 140 may be a specially formatted file
(e.g., a VHD) on a file system 141 of the virtualization layer 100. The virtualization layer
100 loads the identified virtual machine image 140. The started virtual machine 114
mounts and reads the virtual machine image 140, perhaps seeking a master boot record or
other boot information, and boots a guest operating system which begins executing.
[0019] The virtualization layer 100 manages execution of the virtual machine 114,
handling certain calls to the guest's kernel, hypercalls, etc., and coordinating the virtual
machine 114's access to the underlying hardware 104. As the guest and its software run,
the virtualization layer 100 may maintain state of the guest on the virtual disk image 140;
when the guest, or an application run by the guest, writes data to “disk,” the virtualization
layer 100 translates the data to the format of the virtual disk image 140 and writes to the
image.

[0020] The virtualization layer 100 may perform a process 144 for shutting down the
virtual machine 114. When an instruction is received to stop the virtual machine 114, the
state of the virtual machine 114 and its guest is saved to the virtual disk image 140, and
the executing virtual machine 114 process (or partition) is deleted. A specification of the
virtual machine 114 may remain for a later restart of the virtual machine 114,

Overview of Communication to a Virtual Machine

[0021] Figure 3 shows an example of an application 180 communicating with an agent
182 running on a guest operating system (guest 184), hosted by a VM 186. The
application 180, which may be a management application, for example, runs on a client

host 188, which may be an ordinary computer with a network interface card (NIC) 189 to

10

15

20

25

30

WO 2013/002978 PCT/US2012/041043

allow communication via a network 190. The client host 188 has a protocol stack
comprised of various protocol implementations, including an application protocol
implementation 192 (implemented by the application 180), a transport protocol
implementation 194, and a network protocol implementation 196.

[0022] The guest 184 also has implementations of the above-mentioned protocols, as
does hypervisor 196 on hypervisor host 198. The hypervisor host 198 is a computer
running the hypervisor 196, which manages execution of the VM 186. The agent 182
(also referred to as “guest agent 182”) resides on the guest 184 and may implement the
same application protocol implemented by the application 180. The application 180 and
guest agent 182 may be any variety of software, for instance background network services,
interactive applications, executables, components of larger applications or suites, and so
forth. In one embodiment, the application 180 is a virtual machine management
application that manages VMs, and the agent 182 performs management functions in
accordance with communications with the application 180.

[0023] Execution of the VM 186 is managed by the hypervisor 196, which may manage
other VMs not shown in Figure 3. In a case where direct connectivity between client host
188 and VM 186 is possible, the application 180 and agent 182 communicate via the
network 190 as follows. The application 180 forms an application message according to
the application protocol 192 (e.g., an HTTP packet or message). The application 180
requests its local operating system to send the message to the network address (e.g., HTTP
address) of the hypervisor host 198. The protocol stack of the local operating system
opens a connection to the hypervisor host 198, encapsulates the application 180's message
in a transport payload and the transport payload within a network packet 202. The
network header thercof (which contains the network address of the hypervisor host 198) is
routed through the network 190 to the hypervisor host 198. The hypervisor host 192 may
pass the packet 202 to the VM 186 and in turn to the guest 184 and guest agent 182.
Along the way, various payloads are extracted by the respective protocol implementations,
and the guest agent 182 receives the transmitted application message (e.g., “command
foo”). The process is similar but reversed when the guest agent 182 transmits an
application message to the application 192.

E-YS

[0024] Asused herein, the terms “client,” “client host,” “application,” and “agent,”
“hypervisor,” and “hypervisor host” are used in their broadest senses. The particular
platforms and software that communicate using techniques described herein are of minor

significance. In fact, it may be notable that existing application-level software and

10

15

20

25

30

WO 2013/002978 PCT/US2012/041043

protocols may use the communication techniques described below without significant
modification (if any), in particular at the end that is communicating with a VM via a
network (e.g., application 180). Moreover, while the HTTP, IP (Internet Protocol), and
TCP/UDP (Transmission Control protocol/Universal Datagram Protocol) protocols are
sometimes mentioned for illustration, the communication techniques described below may
work with any standard networking protocols or versions thereof (e.g., SOCKS).
Furthermore, for brevity, “HTTP,” will is deemed to refer to versions or variants of HTTP
as well as HTTPs (HTTP Secure).

Logical Communication Path, Application and Hypervisor Embodiments

[0025] Figure 4 shows an overview of a logical communication path 220 between
application 180 and VM 186. A proxy agent 222 on the hypervisor host 198 bridges the
client host 188 with the VM 186. It may be assumed that the VM 186 and the client host
188 have the necessary networking components (e.g., protocol stacks) to communicate,
but are unable to communicate directly. For example, the network 190 may be unable to
route network packets between them (e.g., either may be unaddressable on the network
190). However, at the client host 188, a network packet 223 may be directed to a network
address of the virtualization layer (an address of the hypervisor host 198). When the
packet 223 is received, the proxy agent 222 determines that the packet 223 is meant to be
received by the VM 186 and causes the virtualization layer (hypervisor) to pass the packet
through a private or local communication channel 224 to the VM 186.

[0026] In one embodiment, a VM-host map 226 contains information indicating which
VMs reside on which hypervisor hosts. The client host 188 may use a known identifier of
the VM 186 (possibly known by the application 180) to look up the network address of the
hypervisor host 198 in the VM-host map 226. The identifier may be added to the packet
223 for use by the proxy agent 22. The client host 188 sends the packet 223 to the looked-
up network address of the hypervisor host 198, which the network 190 uses to route 226
the packet 223 to the hypervisor host 198. As mentioned above, the proxy agent 222 uses
the identifier of the VM 186 (e.g., from an HTTP CONNECT header) to cause the
virtualization layer to pass the packet 223 to the VM 186.

[0027] Figure 5 shows client host 188 initiating a connection with VM 186. The client
host 188 has access to the VM-host map 226. The client host 188 performs a process 250
for communicating with the VM 186. At step 252, a request 254 is received to
communication with the particular VM 186, perhaps as part of the logic of application
180, or possibly received from an external entity. At step 256 an identifier of the VM 186

10

15

20

25

30

WO 2013/002978 PCT/US2012/041043

(e.g., “VM1” in Figure 5) is used to lookup the host on which VM 186 resides; hypervisor
host 186. The lookup may return a network address or network hostname of the
hypervisor host 198 (as used herein “network address” is assumed to include both numeric
addresses as well as hostnames that can be resolved to numeric addresses). At step 258
packet 223 is formed, including the substantive payload (e.g., an application-protocol
message). In an embodiment where HTTP is used, the packet 223 formed at step 258 is an
HTTP packet and the hypervisor host's network address is included in the HTTP header.
At step 260 the packet 223 is transmitted to the network 190 using the hypervisor's
network address (“network addr1” in Figure 5,” for example “128.1.2.37).

[0028] In one embodiment, process 250 may be performed fully or partly by the
application 180. In another embodiment, the application 180 may act as a proxy or service
for other applications that are to communicate with VM 186. Those applications pass the
application 180 a VM identifier and a message body and the application 180 builds a
packet for the body, adds the VM identifier, and transmits the packet to the corresponding
hypervisor host. In yet another embodiment, rather than maintaining a lookup table (VM-
host map 226), the VM identifiers may be globally unique hostnames registered with a
DNS (Domain Name Service) server (possibly with local or limited scope to avoid
conflicts) that maps to the network addresses of the hypervisor hosts that correspond to the
VMs. In which case, when an application or client host wishes to communicate with a
VM, it looks up the VM's identifier (e.g., a “fake” DNS name) via the local DNS server to
obtain the correct hypervisor host's network address.

[0029] The form of the VM identifiers is not important as long as the proxy agent 222
and the client hosts/applications share the same names. The system may use any
convention for naming VMs, for example a custom URI (Universal Resource Identifier)
format such as “host#:vm#.”

[0030] Figure 6 shows hypervisor host 198 handling packet 223 from client host 188.
The proxy agent 222 operates in conjunction with the virtualization layer or hypervisor
192 to perform process 280. At step 282 the hypervisor host 198 receives packet 223,
which includes the VM identifier (e.g., “VM1,” “host]:VM1,” etc.) of the target VM; VM
186. The proxy agent 222 extracts the VM identifier, and at step 283 looks up the VM
identifier in a channel table 284. The channel table 283 maps communication channels
224, 224A to respective VMS 186, 186A. Each communication channel 224, 224A may
have a pair of communication end points, including a hypervisor-side end point 286 and a

VM-side end point 288 (in one embodiment the VM-side end point 286 is a virtual NIC of

10

15

20

25

30

WO 2013/002978 PCT/US2012/041043

the VM 186). If step 283 discovers no communication channel, a step 290 is performed
and a new channel is created. A reference to the new channel is then added to the channel
table 284. Note that a virtual NIC, or management NIC, may be a virtual bus network
adapter connected to an internal network switch to which the host and VMs are connected;
VMs having automatic internal IP addresses (e.g., in the 169 range). In one embodiment,
an ACL (access control list) is maintained in association with the internal network switch
to prevent each of the guest VMs from communicating with each other without
permission; host-to-VM communication is allowed but VM-VM communication is
disallowed absent explicit permission in the ACL.

[0031] Having identified the correct communication channel 224 for the packet 223, at
step 292 the hypervisor 192 and/or proxy agent 222 passes the packet 223 to
communication channel 224. In turn, the VM 186 performs process 294. At step 296 the
guest 184 receives the packet 223. At step 298, based on the packet 223, the guest 184
passes the packet 223 to the guest agent 182, which proceeds to service the substantive
content of the packet 223 (e.g., executes “command foo”). For example, the application-
protocol type of the packet 223 (e.g. HTTP) might be mapped by the guest to a port
number that the guest agent 182 listens on. That is, the guest agent 182 may listen on
specific ports (e.g., a designated WS-Management port 5986 for management, a BITS port
8114 for data, etc.). The proxy agent 222 (e.g., HTTP proxy) listens on the same ports
(5986, 8114) of the external IP addresses (of the hypervisor host 186). The proxy agent
222 then forwards any incoming traffic onto the corresponding ports in the guest VMs,
thus allowing multiplexing of various control and data traffic onto the guest VMs.

[0032] Regarding the communication channels, in one embodiment the communication
channels are based on the same network and/or transport protocols used to deliver the
packet 223 to the hypervisor host 198. In effect, a communication channel may be a
limited private network connection between the hypervisor host 192 and the VM 186. In
another embodiment, the proxy agent 222 may look into the packet 223 and change header
information or otherwise modify the packet 223 before forwarding the packet 223 to the
VM 186.

[0033] In effect, from the viewpoint of application 180 and guest agent 182, the two are
able to exchange application-level communications using ordinary network
communication protocols and addresses, much as they might when a VM is directly
accessible or addressable from the client host 188. With regard to receiving packets, the

proxy agent 222 functions much as known proxies function.

10

15

20

25

WO 2013/002978 PCT/US2012/041043

[0034] As mentioned above, communications may also originate from within the guest
or guest 184 agent 182 and be passed through the communication channel and
virtualization layer to the proxy agent 222. For example, the guest agent 182 may be
configured with a network address of client host 188. The proxy agent 222 in turn
transmits the guest-originated packet to the client host 188.

[0035] In one embodiment, in order to provide visibility of VMs, hypervisor hosts (hosts
on which VMs execute) may self-register a VM when a VM is created. For example, a
hypervisor host might add a new entry to VM-host mapping table 226 for a new VM,
identifying the host and the new VM.

Conclusion

[0036] Embodiments and features discussed above can be realized in the form of
information stored in volatile or non-volatile computer or device readable media. This is
deemed to include at least media such as optical storage (e.g., compact-disk read-only
memory (CD-ROM)), magnetic media, flash read-only memory (ROM), or any current or
future means of storing digital information. The stored information can be in the form of
machine executable instructions (e.g., compiled executable binary code), source code,
bytecode, or any other information that can be used to enable or configure computing
devices to perform the various embodiments discussed above. This is also deemed to
include at least volatile memory such as random-access memory (RAM) and/or virtual
memory storing information such as central processing unit (CPU) instructions during
execution of a program carrying out an embodiment, as well as non-volatile media storing
information that allows a program or executable to be loaded and executed. The
embodiments and features can be performed on any type of computing device, including

portable devices, workstations, servers, mobile wireless devices, and so on.

10

15

20

25

30

WO 2013/002978 PCT/US2012/041043

CLAIMS

1. A method of providing network connectivity between a target virtual machine
(VM) running on a first host and an application running on a second host, the method
comprising:

receiving, via a network at the first host, a connection request initiated by the
application, the request comprising information identifying the target VM;

forming a communication channel between a hypervisor managing the VM and the
target VM; and

passing the request to the target VM through the channel.
2. A method according to claim 1, wherein the communication channel is accessible
to only the hypervisor and the target VM such that another VM on the first host cannot use
the communication channel to communicate with the target VM without authorization.
3. A method according to claim 1, wherein the packets comprise Internet Protocol
packets, wherein the first host has a first Internet Protocol (IP) address, the second host has
a second IP address, and the target VM has a third IP address, wherein the network is
unable to route packets from the second IP address of the second host to the third IP
address of the VM.
4. A method according to claim 3, further comprising sending packets from the
second host to the first host by the second host addressing the packets to the first IP
address.
5. A method according to claim 4, wherein the packets comprise payloads
conforming to an application-level protocol, the method further comprising delivering the
payloads to an agent executing on the VM after the packets have been received by the VM
through communication channel.
6. A method according to claim 1, wherein the communication channel comprises an
internal network switch of the hypervisor and a virtual network interface card provided by
the hypervisor and assigned to the target VM.
7. A method according to claim 1, wherein the hypervisor and the proxy agent on the
first host cooperate to allow the second host to communicate with the target VM using a
standard network protocol.
8. One or more computer-readable storage media storing information to enable a
computer to perform a process, the process comprising:

executing a virtual machine (VM) and a guest operating system on the VM,

wherein the VM comprises an implementation of a network-level protocol and an

10

10

15

20

25

30

WO 2013/002978 PCT/US2012/041043

implementation of a transport protocol, and wherein execution of the VM is managed by a
hypervisor on the computer;

executing a proxy agent on the computer; and

receiving packets at the computer, the packets conforming to a protocol and having
been addressed and sent to a network address of the computer using a network protocol,
wherein the proxy agent determines that the VM is to receive the packets, and in response
the hypervisor passes the packets to the VM through a private communication channel
(224) between the VM and the hypervisor.
9. One or more computer-readable storage media according to claim 8, wherein the
VM implements the network protocol and has a network address according to the network
protocol, a host that transmitted the packets to the computer via the network does not have
direct connectivity, via the network and the network protocol, with the network address of
the VM.
10. One or more computer-readable storage media according to claim 8, the process
further comprising maintaining, at the computer, channel information indicating which
VMs correspond to which VMs managed by the hypervisor.
11. A method wherein a first host comprises a virtualization layer managing execution
of virtual machines (VMs) on the first host, the method comprising:

establishing a communication channel between the virtualization layer and a VM
comprising one of the VMs on the first host, the communication channel having a first end
point in the virtualization layer and a second end point in the VM;

receiving packets at the first host from a second host via a network; and

enabling indirect network connectivity between the second host and the VM by a
proxy agent executing on the first host causing the virtualization layer to pass the packets
through one of the communication channels to the VM.
12. A method according to claim 11, the method further comprising maintaining
association information associating communication channels between the virtualization
layer and the VMs, respectively, and when a packet is handled by the proxy agent the
proxy agent uses the association information to select a communication channel that will
carry the packet to one of the VM,
13. A method according to claim 12, wherein the proxy agent comprises a hypertext
transfer protocol (HTTP).
14. A method according to claim 13, wherein the packets comprise HTTP headers that
comprise identifiers that identify the VMs, and the proxy agent reads the HTTP headers,

11

WO 2013/002978 PCT/US2012/041043

extracts the identifiers, and uses the identifiers to select which channels to receive the
packets.

15. A method according to claim 11, wherein a guest operating system of the VM
implements a transport protocol and a network protocol to allow connectivity to the guest
operating system via a network address of the guest, wherein the second host is unable to
directly connect to the VM using the network protocol and the network address via the
network, the wherein the method further comprises the second host addressing the packets

to a network address of the first host.

12

WO 2013/002978 PCT/US2012/041043

1/6
102
114
virtual virtual virtual virtual
machine machine machine machine
virtualization — T 100

i

1041 CPU MEM NIC STORAGE
/ / / AN
AR
106 108 110 112
RELATED ART

FIG. 1

WO 2013/002978 PCT/US2012/041043

2/6

142

100
144 — start VM;

identify associated

receive instruction to :
VM image;

stop VM; virtualization

layer load VM image with

guest OS and other

/I> software;

manage execution of
VM with executing
guest OS;

save state of VM to
VM image;

delete/stop executing
VM:;

VM

RELATED ART

FIG. 2

WO 2013/002978

= client host

application

application protocol

A

ransport protocol

3/6

PCT/US2012/041043

hypervisor host :::;

186 184

guest

agent/service

application protocol

transport protocol

network protocol

transport protocol

network protocol

network header

network payload

transport header

transport payload

application header

application payload
"command foo"

FIG. 3

Related Art

WO 2013/002978

PCT/US2012/041043
4/6
226
VM-host
map
i 198
220 —
188
180 \S
application €+--——~—- logical ———__ VM
\ connection
224—
v\
223 virtualization
layer
\
226 190 222

FIG. 4

WO 2013/002978

PCT/US2012/041043

5/6
VM-host mapping table
VM ID host address 226
VM1 network addr1
VM2 network addr1 254
VM3 network addr?2
VM4 network addr2 [targetVM: VM1]
VM5 network addr3
VM-N | network addr-N 250
k A
\ receive requestto | 252
\\ communicate with a
) \ VM identified by VM ID
client host \
188 \]
‘| lookupVMbyIDto |[236
find network address
180 of host hosting the VM
application - v
258
form packet including
; VM ID
//
network ; \
protocgl stack /)
/ transmit packet to
/ proxy agent using the 260
// network address
//
/
¥
'Y ' ™
host network address 223

targetVM: VM ID

FIG. 5

WO 2013/002978

PCT/US2012/041043
6/6
223
(host network address)
targetVM: VM ID
280
\ S x«
JaN : . 282
~~ receive packet with VM
ID
' 283
ﬁ — : lookupupVM IDin |=
: A channel table
hypervisor 222 \7; y 260
192 proxy agent >\ if no channel, create |<=
R new channel to VM,
e B else use channel in
VMID | channel ID v
VM1 channel-1 : 292
] : pass connection
VM- hannelo i request through new/
b= P (Jezs) identified channel
/ ‘l i
\

294
receive packet on 236
channel
298
based on packet (e.g.,

i port number) pass to
VM-p [/ VM1\ guest agent

186A 184

186 182

FIG. 6

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - claims
	Page 13 - claims
	Page 14 - claims
	Page 15 - drawings
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings

