Title: COMBINATION THERAPY FOR TREATING, PREVENTING OR MANAGING PROLIFERATIVE DISORDERS AND CANCERS

Abstract: The present invention relates to methods and compositions designed for the treatment, management or prevention of cancer. The methods of the invention comprise the administration of an effective amount of one or more inhibitors of JNK in combination with the administration of an effective amount of one or more other agents useful for cancer therapy. The invention also provides pharmaceutical compositions comprising one or more inhibitors of JNK in combination with one or more other agents useful for cancer therapy. In particular, the invention is directed to methods of treatment and prevention of cancer by the administration of an effective amount of one or more inhibitors of JNK in combination with standard and experimental chemotherapies, hormonal therapies, bone marrow transplants, stem cell replacement therapies, biological therapies/immunotherapies and/or radiation therapies for treatment or prevention of cancer. Also included are methods of treatment of cancer by the administration of one or more inhibitors of JNK in combination with surgery, alone or in further combination with standard and experimental chemotherapies, hormonal therapies, bone marrow transplants, stem cell replacement therapies, biological therapies/immunotherapies and/or radiation therapies.
COMBINATION THERAPY FOR TREATING, PREVENTING OR MANAGING PROLIFERATIVE DISORDERS AND CANCERS

This application claims the benefit of U.S. provisional application 60/362,705, filed March 8, 2002, the contents of which are incorporated by reference herein in their entirety.

1. FIELD OF THE INVENTION
The invention relates to combination therapies for the treatment, prevention or management of a disease or disorder in cancer patients or patients having other proliferative diseases or disorders.

2. BACKGROUND OF THE INVENTION
Jun N-Terminal Kinase (JNK)

The Jun N-terminal kinase (JNK) pathway is activated by exposure of cells to environmental stress or by treatment of cells with pro-inflammatory cytokines and growth factors. Targets of the JNK pathway include the transcription factors c-jun and ATF2 (Whitmarsh A.J., and Davis R.J. J. Mol. Med. 74:589-607, 1996). These transcription factors are members of the basic leucine zipper (bZIP) group that bind as homo- and heterodimeric complexes to AP1 and AP-1-like sites in the promoters of many genes (Karin M., Liu Z.G. and Zandi E. Curr Opin Cell Biol 9:240-246, 1997). JNK binds to the N-terminal region of c-jun and ATF-2 and phosphorylates two sites within the activation domain of each transcription factor (Hibi M., Lin A., Smeal T., Minden A., Karin M. Genes Dev. 7:2135-2148, 1993; Mohit A.A., Martin M.H., and Miller C.A. Neuron 14:67-78, 1995). Three JNK enzymes have been identified as products of distinct genes (Hibi et al, supra; Mohit et al, supra). Ten different isoforms of JNK have been identified. These represent alternatively spliced forms of three different genes: JNK1, JNK2, and JNK3. JNK1 and 2 are ubiquitously expressed in human tissues, whereas JNK3 is selectively expressed in the brain, heart, and testis (Dong, C., Yang, D., Wysk, M., Whitmarsh, A., Davis, R., Flavell, R. Science 270:1-4, 1998). Gene transcripts are alternatively spliced to produce four-JNK1 isoforms, four-JNK2 isoforms, and two-JNK3 isoforms. JNK1 and 2 are expressed widely in mammalian tissues, whereas JNK3 is expressed almost exclusively in the brain.

Selectivity of JNK signaling is achieved via specific interactions of JNK pathway
components and by use of scaffold proteins that selectively bind multiple components of the signaling cascade. JIP-1 (JNK-interacting protein-I) selectively binds the MAPK module, MLK → JNKK1 → JNK. It has no binding affinity for a variety of other MAPK cascade enzymes. Different scaffold proteins are likely to exist for other MAPK signaling cascades to preserve substrate specificity.

Activation of the JNK pathway has been documented in a number of disease settings, providing the rationale for targeting this pathway for drug discovery. In addition, molecular genetic approaches have validated the pathogenic role of this pathway in several diseases. For example, autoimmune and inflammatory diseases arise from the over-activation of the immune system. Activated immune cells express many genes encoding inflammatory molecules, including cytokines, growth factors, cell surface receptors, cell adhesion molecules, and degradative enzymes. Many of these genes are regulated by the JNK pathway, through activation of the transcription factors AP-1 and ATF-2, including TNF-alpha, IL-2, E-selectin, and matrix metalloproteinases such as collagenase-1 (Manning A.M. and Mercurio F., Exp Opin Invest Drugs, 6: 555-567, 1997). Monocytes, tissue macrophages, and tissue mast cells are key sources of TNF-alpha production. The JNK pathway regulates TNF-alpha production in bacterial lipopolysaccharide-stimulated macrophages, and in mast cells stimulated through the FceRII receptor (Swantek J.L., Cobb M.H., Geppert T.D., Mol. Cell. Biol., 17:6274-6282, 1997; Ishizu ka, T., Tereda N., Gerwins, P., Hamelmann E., Oshima A., Fanger G.R., Johnson G.L., and Gelfand E.W., Proc. Nat. Acad. Sci. USA, 94:6358-6363, 1997). Inhibition of JNK activation effectively modulates TNF-alpha secretion from these cells. The JNK pathway therefore regulates production of this key pro-inflammatory cytokine. It is believed that JNK is pro-apoptotic.

Role of JNK in Cancer and Stroke

Acad. Sci USA, 92:11746-11750, 1995). Thus, JNK inhibitors may block transformation and tumor cell growth.

JNK is also believed to partly responsible for cancer and/or tumor resistance to certain chemotherapeutics. The number one cause of cancers refractory against traditional chemo drugs is the upregulation of the mdr1 gene. The mdr1/p-glycoprotein gene has an AP-1 binding site in its promoter and is believed to be stimulated by JNK. Upregulation of JNK activity has also been found in tamoxifen-resistant tumors. DN-Jun inhibits tumor growth in tamoxifen-resistant animals and delays development of tamoxifen-resistant phenotype (Daschner, et al. Breast Cancer Res. 53:229, 1999; Schiff, et al. J. Natl. Cancer Inst. 92:1926, 2000).

Stroke is the 3rd leading cause of death and a leading cause of disability in the U.S. Stroke, along with neurodegenerative diseases, such as Alzheimer’s (AD) and Parkinson’s disease (PD) impose a huge burden on the health care industry by impacting the quality of life of those affected. Loss of neuronal cell populations in stroke, AD, or PD underlies the motor and/or cognitive deficiencies in these patient populations. The mechanism by which neurons die in response to insult has not been fully elucidated; however, activation of the JNK pathway has been implicated as a major signaling pathway for neuronal apoptosis. (For review see Mielke K. and Herdegen T. Prog. Neurobiol. 61:45-60, 2000). There have been a number of conflicting reports as to the role of JNK activity in the regulation of apoptosis. Some studies suggest that activating JNK activity induces phosphorylation of C-Jun protein and protects cells from apoptosis (Potapova, O., Basu, S., Mercola, D., Holbrook, N., J. Biol. Chem. 276:28546-28553, 2001). However, both pro-survival and pro-apoptotic roles of activated JNK activity have also been described (Kolbus, A., Herr, L., Schreiber, M., Piu, F., Beeche, M., Wagner, E.F., Karin, M., 103:897-907, 2000; Wisdom, R., Johnson, R.S., Moore, C., EMBO J., 18:1888-197, 1999). A variety of insults have been shown to activate the JNK pathway in neurons. For example, activation of JNKs and phosphorylation of c-jun has been shown in brains of rats subjected to axotomy or ischemia with reperfusion, where neuronal cell loss was observed (Herdegen T., Claret F.-X., Kallunki, T., Matin-Villaalba A., Winter C., Hunter T. and Karin M. J. Neurosci. 18:5124-5135, 1998). Further, inhibition of the mixed lineage kinase (MLK)-3, an upstream kinase in the JNK pathway, by CEP-1347 prevented motor neuron cell death following growth factor withdrawal in vitro (Maroney A.C., Glicksman M.A., Basma A.N., Walton K.M., Knight Jr. E., Murphy C.A., Bartlett B.A., Finn J.P., Angeles T., Matsuda Y., Neff N.T. and Dionne C.A., J. Neurosci. 18:104-111, 1998), protected cholinergic neurons following excitotoxic injury of the nucleus basalis magnocellularis (Saporito M.S., Brown, E.R.,

Cancer Therapy

Currently, cancer therapy may involve surgery, chemotherapy, hormonal therapy and/or radiation treatment to eradicate neoplastic cells in a patient (see, for example, Stockdale, 1998, “Principles of Cancer Patient Management”, in Scientific American: Medicine, vol. 3, Rubenstein and Federman, eds., Chapter 12, Section IV). Recently, cancer therapy could also involve biological therapy or immunotherapy. All of these approaches pose significant drawbacks for the patient. Surgery, for example, may be contraindicated due to the health of the patient or may be unacceptable to the patient. Additionally, surgery may not completely remove the neoplastic tissue. Radiation therapy is only effective when the neoplastic tissue exhibits a higher sensitivity to radiation than normal tissue, and radiation therapy can also often elicit serious side effects. Hormonal therapy is rarely given as a single agent and although can be effective, is often used to prevent or delay recurrence of cancer after other treatments have removed the majority of the cancer cells. Biological therapies/immunotherapies are limited in number and may produce side effects such as rashes or swellings, flu-like symptoms, including fever, chills and fatigue, digestive tract problems or allergic reactions.

With respect to chemotherapy, there are a variety of chemotherapeutic agents available for treatment of cancer. A significant majority of cancer chemotherapeutics act by inhibiting DNA synthesis, either directly, or indirectly by inhibiting the biosynthesis of the deoxyribonucleotide triphosphate precursors, to prevent DNA replication and concomitant
cell division (see, for example, Gilman et al., Goodman and Gilman's: The Pharmacological Basis of Therapeutics, Eighth Ed. (Pergamon Press, New York, 1990)). These agents, which include alkylating agents, such as nitrosourea, anti-metabolites, such as methotrexate and hydroxyurea, and other agents, such as etoposides, camptothecins, bleomycin, doxorubicin, daunorubicin, etc., although not necessarily cell cycle specific, kill cells during S phase because of their effect on DNA replication. Other agents, specifically colchicine and the vinca alkaloids, such as vinblastine and vincristine, interfere with microtubule assembly resulting in mitotic arrest. Chemotherapy protocols generally involve administration of a combination of chemotherapeutic agents to increase the efficacy of treatment.

Despite the availability of a variety of chemotherapeutic agents, chemotherapy has many drawbacks (see, for example, Stockdale, 1998, “Principles Of Cancer Patient Management” in Scientific American Medicine, vol. 3, Rubenstein and Federman, eds., ch. 12, sect. 10). Almost all chemotherapeutic agents are toxic, and chemotherapy causes significant, and often dangerous, side effects, including severe nausea, bone marrow depression, immunosuppression, etc. Additionally, even with administration of combinations of chemotherapeutic agents, many tumor cells are resistant or develop resistance to the chemotherapeutic agents. In fact, those cells resistant to the particular chemotherapeutic agents used in the treatment protocol often prove to be resistant to other drugs, even those agents that act by mechanisms different from the mechanisms of action of the drugs used in the specific treatment; this phenomenon is termed pleiotropic drug or multidrug resistance. Thus, because of drug resistance, many cancers prove refractory to standard chemotherapeutic treatment protocols.

There is a significant need for alternative cancer treatments, particularly for treatment of cancer that has proved refractory to standard cancer treatments, such as surgery, radiation therapy, chemotherapy, and hormonal therapy. Further, it is uncommon for cancer to be treated by only one method. Thus, there is a need for development of new therapeutic agents for the treatment of cancer and new, more effective, therapy combinations for the treatment of cancer.

There is also a clear need for cancer chemotherapeutics or therapeutic regimens for treating cancer patients while reducing or avoiding the toxicities and/or side effects associated with conventional therapies.

Citations or identification of any reference in Section 2 of this application is not to be construed that such reference is prior art to the present application.
3. SUMMARY OF THE INVENTION

The present invention is based, in part, on the recognition that inhibitors of JNK potentiate and synergize with, enhance the effectiveness of, improve the tolerance of, and/or reduce side effects caused by, other cancer therapies, including conventional and experimental chemotherapies, hormonal therapies, bone marrow transplants, stem cell replacement therapies, biological therapies/immunotherapies and radiation therapies. Thus, the invention encompasses treatment regimens or protocols that provide better therapeutic profiles than current single agent therapies or current combination therapy regimens. Encompassed by the invention are combination therapies that have additive potency or an additive therapeutic effect. The invention also encompasses synergistic combinations where the therapeutic efficacy is greater than additive. Preferably, such combinations also reduce or avoid unwanted or adverse effects. In certain embodiments, the combination therapies encompassed by the invention provide an improved overall therapy relative to administration of either a JNK inhibitor or any other cancer therapy alone. Given the invention, in certain embodiments, doses of existing or experimental cancer therapies can be reduced or administered less frequently which increases patient compliance, improves therapy and reduces unwanted or adverse effects.

In one embodiment, the inhibitor of JNK is a small organic molecule capable of directly inhibiting JNK activity. In another embodiment, the inhibitor of JNK is an antibody or a fragment thereof that immunospecifically binds to JNK or another component of the JNK pathway thus inhibiting JNK activity.

Accordingly, the present invention relates to pharmaceutical compositions and prophylactic and therapeutic regimens designed to prevent, treat, or manage cancer in a patient comprising administering one or more inhibitors of JNK in combination with one or more other cancer therapies other than the administration of a JNK inhibitor. In particular, the present invention provides methods of preventing, treating, or managing cancer in a patient comprising administering to said patient a therapeutically or prophylactically effective of one or more inhibitors of JNK in combination with the administration of a therapeutically or prophylactically effective amount of one or more chemotherapies, hormonal therapies, bone marrow transplants, stem cell replacement therapies, biological therapies/immunotherapies and/or radiation therapies other than the administration of a JNK inhibitor. It is also contemplated that such methods can include the administration of one or more JNK inhibitors in combination with surgery, alone or in combination with the administration of one or more chemotherapies, hormonal therapies, bone marrow transplants, stem cell replacement therapies, biological therapies/immunotherapies and/or
radiation therapies other than the administration of a JNK inhibitor. In certain embodiments, the administration of inhibitors of JNK and the other cancer therapies is a therapeutic or prophylactic regimen or protocol. Such methods and regimens can encompass concurrent, sequential, synchronized or alternating/cyclic administration of the inhibitors of JNK with one or more other cancer therapies.

The present invention is directed to methods of treating or preventing cancer by administering an effective amount of JNK inhibitor to a patient in need thereof (referred to herein as a “patient”), typically a warm-blooded animal (including a human) in combination with one or more anti-cancer agents or radiation therapy or both. Prior to administration, one or more compounds of this invention are typically formulated as a pharmaceutical composition which contains an effective dosage amount of one or more of such compounds in combination with one (or more) pharmaceutically acceptable carrier(s). Conditions that may be treated by the compounds of this invention, or a pharmaceutical composition containing the same, include cancer.

In one embodiment, the JNK inhibitor is 2H-Dibenzo(cd,g) indazol-6-one. In another embodiment, the JNK inhibitor is 3-(4-fluoro-phenyl)-5-(2H-(1,2,4)triazol-3-yl)-1H-indazole. In another embodiment, the JNK inhibitor is 3-(4-(2-Piperidin-1-yl-ethoxy)-cyclohexa-1,5-dienyl)-5-(2H-(1,2,4)triazol-3-yl)-1H-indazole.

These and other aspects of this invention will be evident upon reference to the following detailed description. To that end, certain patent and other documents are cited herein to more specifically set forth various aspects of this invention. Each of these documents are hereby incorporated by reference herein in their entirety.

3.1. Brief Description of the Figures

Figure 1A: Figure 1A shows the effect of JNK inhibitor A (2H-Dibenzo(cd,g) indazol-6-one) in combination with various chemotherapeutic agents on Lewis Lung Carcinoma (LLC) proliferation.

Figure 1B: Figure 1B shows the effect of JNK inhibitor B (3-(4-fluoro-phenyl)-5-(2H-(1,2,4)triazol-3-yl)-1H-indazole) in combination with various chemotherapeutic agents on tumor cell proliferation.
Figure 2: Figure 2 shows the JNK inhibitor B (3-(4-fluoro-phenyl)-5-(2H-(1,2,4)triazol-3-yl)-1H-indazole) in combination with cyclophosphamide, a chemotherapeutic agent on tumor growth.

Figure 3: Figure 3 shows the effect of JNK inhibitor A (2H-Dibenzo(cd,g) indazol-6-one) in combination with a chemotherapeutic agent on the apoptosis of tumor cells.

Figure 4: Figure 4 shows the effect of JNK inhibitor A (2H-Dibenzo(cd,g) indazol-6-one) in combination with a chemotherapeutic agent (CTX) on Lewis Lung Carcinoma proliferation.

Figure 5: Figure 5 shows the effect of JNK inhibitor C (3-(4-(2-Piperidin-1-yl-ethoxy)-cyclohexa-1,5-dienyl)-5-(2H-(1,2,4)triazol-3-yl)-1H-indazole) in combination with a chemotherapeutic agent (camptosar) on human colorectal cancer cell (HCT-116) proliferation.

Figure 6: Figure 6 shows the structure of JNK inhibitors A, B and C.

3.2 Definitions

The terms used herein having the following meaning:

“Alkyl” means a saturated straight chain or branched non-cyclic hydrocarbon having from 1 to 10 carbon atoms. Representative saturated straight chain alkyls include -methyl, -ethyl, -n-propyl, -n-buty1, -n-pentyl, -n-hexyl, -n-heptyl, -n-octyl, -n-nonyl and -n-decyl; while saturated branched alkyls include -isopropyl, -sec-buty1, -isobutyl, -tert-buty1, -isopentyl, 2-methylbutyl, 3-methylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 2,3-dimethylbutyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 2,3-dimethylhexyl, 2,4-dimethylhexyl, 2,5-dimethylhexyl, 2,2-dimethylpentyl, 2,2-dimethylhexyl, 3,3-dimethylpentyl, 3,3-dimethylhexyl, 4,4-dimethylhexyl, 2-ethylpentyl, 3-ethylpentyl, 2-ethylhexyl, 3-ethylhexyl, 4-ethylhexyl, 2-methyl-2-ethylpentyl, 2-methyl-3-ethylpentyl, 2-methyl-4-ethylpentyl, 2-methyl-2-ethylhexyl, 2-methyl-3-ethylhexyl, 2-methyl-4-ethylhexyl, 2,2-diethylpentyl, 3,3-diethylhexyl, 2,2-diethylhexyl, 3,3-diethylhexyl and the like.

An “alkenyl group” means a straight chain or branched non-cyclic
hydrocarbon having from 2 to 10 carbon atoms and including at least one carbon-carbon double bond. Representative straight chain and branched \((C_2-C_{10})\) alkenyls include vinyl, -allyl, -1-butenyl, -2-butenyl, -isobutyl vinyl, -1-pentenyl, -2-pentenyl, -3-methyl-1-butenyl, -2-methyl-2-butenyl, -2,3-dimethyl-2-butenyl, -1-hexenyl, -2-hexenyl, -3-hexenyl, -1-heptenyl, -2-heptenyl, -3-heptenyl, -1-octenyl, -2-octenyl, -3-octenyl, -1-nonynyl, -2-nonynyl, -3-nonynyl, -1-decenyl, -2-decenyl, -3-decenyl and the like. An alkenyl group can be unsubstituted or substituted.

An “alkynyl group” means a straight chain or branched non-cyclic hydrocarbon having from 2 to 10 carbon atoms and including at least one carbon-carbon triple bond. Representative straight chain and branched \((C_2-C_{10})\) alkynyls include -acetylenyl, -propynyl, -1-butylnyl, -2-butylnyl, -1-pentylnyl, -2-pentylnyl, -3-methyl-1-butylnyl, -4-pentylnyl, -1-hexynyl, -2-hexynyl, -5-hexynyl, -1-heptylnyl, -2-heptylnyl, -6-heptylnyl, -1-octynyl, -2-octynyl, -7-octynyl, -1-nonynyl, -2-nonynyl, -8-nonynyl, -1-decynyl, -2-decynyl, -9-decynyl, and the like. An alkynyl group can be unsubstituted or substituted.

“Halogen” means fluorine, chlorine, bromine or iodine.

“Keto” means a carbonyl group \((i.e., C=O)\).

“Acyloxy” means an \(-OC(O)alkyl\) group, wherein alkyl is defined above, including \(-OC(O)CH_3\), \(-OC(O)CH_2CH_3\), \(-OC(O)(CH_2)_2CH_3\), \(-OC(O)(CH_2)_3CH_3\), \(-OC(O)(CH_2)_4CH_3\), \(-OC(O)(CH_2)_5CH_3\), and the like.

“Alkoxyl” means \(-O-(alkyl)\), wherein alkyl is defined above, including \(-OCH_3\), \(-OCH_2CH_3\), \(-O(CH_2)_2CH_3\), \(-O(CH_2)_3CH_3\), \(-O(CH_2)_4CH_3\), \(-O(CH_2)_5CH_3\), and the like.

“Alkoxycarbonylalkoxy” means \(-O-(alkyl)-O-(alkyl)\), wherein each alkyl is independently an alkyl group defined above, including \(-OCH_2OCH_3\), \(-OCH_2CH_2OCH_3\), \(-OCH_2CH(OH)CH_2CH_3\), and the like.

“Alkoxycarbonyl” means \(-C(=O)O-(alkyl)\), wherein alkyl is defined above, including \(-C(=O)O-CH_3\), \(-C(=O)O-CH_2CH_3\), \(-C(=O)O-(CH_2)_2CH_3\), \(-C(=O)O-(CH_2)_3CH_3\), \(-C(=O)O-(CH_2)_4CH_3\), \(-C(=O)O-(CH_2)_5CH_3\), and the like.

“Alkoxycarbonylalkoxy” means \(-(alkyl)-C(=O)O-(alkyl)\), wherein each alkyl is independently defined above, including \(-CH_2C(=O)O-CH_3\), \(-CH_2C(=O)O-CH_2CH_3\), \(-CH_2C(=O)O-(CH_2)_2CH_3\), \(-CH_2C(=O)O-(CH_2)_3CH_3\), \(-CH_2C(=O)O-(CH_2)_4CH_3\), \(-CH_2C(=O)O-(CH_2)_5CH_3\), and the like.

“Alkoxycarbonyl” means \(-(alkyl)-O-(alkyl)\), wherein each alkyl is independently an alkyl group defined above, including \(-CH_2OCH_3\), \(-CH_2OCH_2CH_3\), \(-(CH_2)_2OCH_2CH_3\), \(-(CH_2)_2O(CH_2)_2CH_3\), and the like.

“Aryl” means a carbocyclic aromatic group containing from 5 to 10 ring
atoms. Representative examples include, but are not limited to, phenyl, tolyl, anthracenyl, fluorenyl, indenyl, azulenyl, pyridinyl and naphthyl, as well as benzo-fused carbocyclic moieties including 5,6,7,8-tetrahydronaphthyl. A carbocyclic aromatic group can be unsubstituted or substituted. In one embodiment, the carbocyclic aromatic group is a phenyl group.

"Aryloxy" means -O-aryl group, wherein aryl is as defined above. An aryl group can be unsubstituted or substituted. In one embodiment, the aryl ring of an aryl group is a phenyl group

"Arylalkyl" means -(alkyl)-(aryl), wherein alkyl and aryl are as defined above, including -(CH₂)phenyl, -(CH₂)₂phenyl, -(CH₃)phenyl, -CH(phenyl)_₂, -CH(phenyl)_₃, -(CH₂)tolyl, -(CH₂)anthracenyl, -(CH₂)fluorenyl, -(CH₂)indenyl, -(CH₂)azulenyl, -(CH₂)pyridinyl, -(CH₂)naphthyl, and the like.

"Arylalkyloxy" means -O-(alkyl)-(aryl), wherein alkyl and aryl are defined above, including -O-(CH₂)phenyl, -O-(CH₂)₂phenyl, -O-CH(phenyl)_₂, -O-CH(phenyl)_₃, -O-(CH₂)tolyl, -O-(CH₂)anthracenyl, -O-(CH₂)fluorenyl, -O-(CH₂)indenyl, -O-(CH₂)azulenyl, -O-(CH₂)pyridinyl, -O-(CH₂)naphthyl, and the like.

"Aryloxyalkyl" means -(alkyl)-O-(aryl), wherein alkyl and aryl are defined above, including -CH₂-O-(phenyl), -(CH₂)₂-O-(phenyl), -(CH₂)₃-O-(phenyl), -(CH₂)₂-O-tolyl, -(CH₂)₂-O-anthracenyl, -(CH₂)₂-O-fluorenyl, -(CH₂)₂-O-indeny, -O-(CH₂)O-azulenyl, -(CH₂)O-pyridinyl, -(CH₂)O-naphthyl, and the like.

"Cycloalkyl" means a monocyclic or polycyclic saturated ring having carbon and hydrogen atoms and having no carbon-carbon multiple bonds. Examples of cycloalkyl groups include, but are not limited to, (C₅-C₇)cycloalkyl groups, including cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl, and saturated cyclic and bicyclic terpenes. A cycloalkyl group can be unsubstituted or substituted. In one embodiment, the cycloalkyl group is a monocyclic ring or bicyclic ring.

"Cycloalkyloxy" means -O-(cycloalkyl), wherein cycloalkyl is defined above, including -O-cyclopropyl, -O-cyclobutyl, -O-cyclopentyl, -O-cyclohexyl, -O-cycloheptyl, and the like.

"Cycloalkyloxy" means -O-(alkyl)-(cycloalkyl), wherein cycloalkyl and alkyl are defined above, including -O-CH₂-cyclopropyl, -O-(CH₂)₃-cyclopropyl, -O-(CH₂)₄-cyclopropyl, O-CH₂-cyclobutyl, O-CH₂-cyclopentyl, O-CH₂-cyclohexyl, O-CH₂-cycloheptyl, and the like.

"Aminooalkoxy" means -O-(alkyl)-NH₂, wherein alkyl is defined above, such
as -O-CH₂-NH₂, -O-(CH₂)₂-NH₂, -O-(CH₂)₃-NH₂, -O-(CH₂)₄-NH₂, -O-(CH₂)₅-NH₂, and the like.

“Mono-alkylamino” means -NH(alkyl), wherein alkyl is defined above, such as -NHCH₃, -NHCH₂CH₃, -NH(CH₂)₂CH₃, -NH(CH₂)₃CH₃, -NH(CH₂)₄CH₃, -NH(CH₂)₅CH₃, and the like.

“Di-alkylamino” means -N(alkyl)(alkyl), wherein each alkyl is independently an alkyl group defined above, including -N(CH₃)₂, -N(CH₂CH₃)₂, -N((CH₂)₂CH₃)₂, -N(CH₃)(CH₂CH₃), and the like.

“Mono-alkylaminoalkoxy” means -O-(alkyl)-NH(alkyl), wherein each alkyl is independently an alkyl group defined above, including -O-(CH₂)-NHCH₃, -O-(CH₂)₂-NHCH₂CH₃, -O-(CH₂)-NH(CH₂)₆CH₃, -O-(CH₂)-NH(CH₂)₇CH₃, -O-(CH₂)-NH(CH₂)₈CH₃, -O-(CH₂)-NH(CH₂)₉CH₃, and the like.

“Di-alkylaminoalkoxy” means -O-(alkyl)N(alkyl)(alkyl), wherein each alkyl is independently an alkyl group defined above, including -O-(CH₂)-N(CH₃)₂, -O-(CH₂)-N((CH₂)₂CH₃)₂, -O-(CH₂)-N(CH₃)(CH₂CH₃)₂, and the like.

“Arylamino” means -NH(aryl), wherein aryl is defined above, including -NH(phenyl), -NH(tolyl), -NH(anthracenyl), -NH(fluorenyl), -NH(indenylo), -NH(azulenyl), -NH(pyridinyl), -NH(naphthyl), and the like.

“Arylalkylamino” means -NH-(aryl)-(aryl), wherein alkyl and aryl are defined above, including -NH-CH₂-(phenyl), -NH-CH₂-(tolyl), -NH-CH₂-(anthracenyl), -NH-CH₂-(fluorenyl), -NH-CH₂-(indenyl), -NH-CH₂-(azulenyl), -NH-CH₂-(pyridinyl), -NH-CH₂-(naphthyl), -NH-(CH₂)₂-(phenyl) and the like.

“Alkylamino” means mono-alkylamino or di-alkylamino as defined above.

“Cycloalkylamino” means -NH-(cycloalkyl), wherein cycloalkyl is as defined above, including -NH-cyclopropyl, -NH-cyclobutyl, -NH-cyclopentyl, -NH-cyclohexyl, -NH-cycloheptyl, and the like.

“Carboxyl” and “carboxy” mean -COOH.

“Cycloalkylalkylamino” means -NH-(alkyl)-(cycloalkyl), wherein alkyl and cycloalkyl are defined above, including -NH-CH₂-cyclopropyl, -NH-CH₂-cyclobutyl, -NH-CH₂-cyclopentyl, -NH-CH₂-cyclohexyl, -NH-CH₂-cycloheptyl, -NH-(CH₂)₂-cyclopropyl and the like.

“Aminoalkyl” means -(alkyl)-NH₂, wherein alkyl is defined above, including CH₂-NH₂, -CH₂(CH₂)₂-NH₂, -CH₂(CH₂)₃-NH₂, -CH₂(CH₂)₄-NH₂, -CH₂(CH₂)₅-NH₂ and the like.

“Mono-alkylaminoalkyl” means -(alkyl)-NH(alkyl), wherein each alkyl is independently an alkyl group defined above, including -CH₂-NH-CH₃,
-CH₂-NHCH₃CH₃, -CH₂-NH(CH₂)₂CH₃, -CH₂-NH(CH₂)₃CH₃, -CH₂-NH(CH₂)₄CH₃,
-CH₂-NH(CH₂)₂CH₂, -(CH₂)₂-NH-CH₃, and the like.

“Di-alkylaminooalkyl” means -(alkyl)-N(alkyl)(alkyl), wherein each alkyl is
independently an alkyl group defined above, including -CH₂-N(CH₃)₂, -CH₂-N(CH₂CH₃)₂,
-CH₂-N((CH₂)₂CH₃)₂, -CH₂-N(CH₃)(CH₂CH₃), -(CH₂)₂-N(N(CH₃)₂, and the like.

“Heteroaryl” means an aromatic heterocycle ring of 5- to 10 members and
having at least one heteroatom selected from nitrogen, oxygen and sulfur, and containing at
least 1 carbon atom, including both mono- and bicyclic ring systems. Representative
heteroaryls are triazolyl, tetrazolyl, oxadiazolyl, pyridyl, furyl, benzofuranyl, thiophenyl,
benzothiophenyl, quinolinyl, pyrrolyl, indolyl, oxazolyl, benzoxazolyl, imidazolyl,
benzimidazolyl, thiazolyl, benzothiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, pyridazinyl,
pyrimidinyl, pyrazinyl, triazinyl, cinnolinyl, phthalazinyl, quinazolinyl, pyrimidyl, oxetanyl,
azepinyl, piperazinyl, morpholinyl, dioxanyl, thietanyl and oxazolyl.

“Heteroarylalkyl” means -(alkyl)-(heteroaryl), wherein alkyl and heteroaryl
are defined above, including -CH₃-triazolyl, -CH₂-tetrazolyl, -CH₂-oxadiazolyl, -CH₂-
pyridyl, -CH₂-furyl, -CH₂-benzofuranyl, -CH₂-thiophenyl, -CH₂-benzothiophenyl, -CH₂-
quinolinyl, -CH₂-pyrrolyl, -CH₂-indolyl, -CH₂-oxazolyl, -CH₂-benzoxazolyl,
-CH₂-imidazolyl, -CH₂-benzimidazolyl, -CH₂-thiazolyl, -CH₂-benzothiazolyl, -CH₂-
isoazolyl, -CH₂-pyrazolyl, -CH₂-isothiazolyl, -CH₂-pyridazinyl, -CH₂-pyrimidinyl, -CH₂-
pyrazinyl, -CH₂-triazinyl, -CH₂-cinnolinyl, -CH₂-phthalazinyl, -CH₂-quinazolinyl, -CH₂-
pyrimidyl, -CH₂-oxetanyl, -CH₂-azepinyl, -CH₂-piperazinyl, -CH₂-morpholinyl, -CH₂-
dioxanyl, -CH₂-thietanyl, -CH₂-oxazolyl, -(CH₂)₂-triazolyl, and the like.

“Heterocycle” means a 5- to 7-membered monocyclic, or 7- to 10-membered
bicyclic, heterocyclic ring which is either saturated, unsaturated, and which contains from 1
to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the
nitrogen and sulfur heteroatoms can be optionally oxidized, and the nitrogen heteroatom can
be optionally quaternized, including bicyclic rings in which any of the above heterocycles
are fused to a benzene ring. The heterocycle can be attached via any heteroatom or carbon
atom. Heterocycles include heteroaryls as defined above. Representative heterocycles
include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, hydantoinyl, valerolactamyl,
oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl,
tetrahydroprimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydroprimidinyl,
tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.

“Heterocycle fused to phenyl” means a heterocycle, wherein heterocycle is
defined as above, that is attached to a phenyl ring at two adjacent carbon atoms of the
phenyl ring.

“Heterocycloalkyl” means -(alkyl)-(heterocycle), wherein alkyl and
heterocycle are defined above, including -CH₂-morpholinyl, -CH₂-pyrrolidinonyl, -CH₂-
pyrroloidinyl, -CH₂-piperidinyl, -CH₂-hydantoinyl, -CH₂-valerolactamyl, -CH₂-oxiranyl, -
CH₂-oxetanyl, -CH₂-tetrahydrofuranyl, -CH₂-tetrahydropyranyl, -CH₂-tetrahydropyridinyl, -
CH₂-tetrahydroprimidinyl, -CH₂-tetrahydrothiophenyl, -CH₂-tetrahydrothiopyranyl, -CH₂-
tetrahydroprimidinyl, -CH₂-tetrahydrothiophenyl, -CH₂-tetrahydrothiopyranyl, and the like.

The term “substituted” as used herein means any of the above groups (i.e.,
aryl, arylalkyl, heterocycle and heterocycloalkyl) wherein at least one hydrogen atom of the
moiety being substituted is replaced with a substituent. In one embodiment, each carbon
atom of the group being substituted is substituted with no more that two substituents. In
another embodiment, each carbon atom of the group being substituted is substituted with no
more than one substituent. In the case of a keto substituent, two hydrogen atoms are
replaced with an oxygen which is attached to the carbon via a double bond. Substituents
include halogen, hydroxyl, alkyl, haloalkyl, mono- or di-substituted aminoalkyl,
alkyloxyalkyl, aryl, arylalkyl, heterocycle, heterocycloalkyl, -NR₆R₇, -NR₆C(=O)R₇,
-NR₆C(=O)NR₆R₇, -NR₆C(=O)OR₆, -NR₆SO₃R₆, -OR₆, -C(=O)R₆ C(=O)OR₆ -C(=O)NR₆R₇,
-OC(=O)R₆, -OC(=O)OR₆, -OC(=O)NR₆R₇, -NR₆SO₃R₆, or a radical of the formula -Y-Z-R₆
where Y is alkanediyl, or a direct bond, Z is -O-, -S-, -N(R₄)₂, -C(=O)-, -C(=O)O-
-OC(=O)-, -N(R₆)C(=O)-, -C(=O)N(R₆)- or a direct bond, wherein R₄ and R₆ are the same or
different and independently hydrogen, amino, alkyl, haloalkyl, aryl, arylalkyl, heterocycle,
or heterocycloalkyl, or wherein R₄ and R₆ taken together with the nitrogen atom to which they
are attached form a heterocycle.

“Haloalkyl” means alkyl, wherein alkyl is defined as above, having one or
more hydrogen atoms replaced with halogen, wherein halogen is as defined above,
including -CF₃, -CHF₂, -CH₂F, -CBr₃, -CBr₂Br, -CH₂Br, -CCl₃, -CHCl₂, -CH₂Cl, -Cl₂, -CHI₂,
-CH₂I, -CH₂-CF₃, -CH₂-CF₂, -CH₂-SH₂F, -CH₂-CBr₃, -CH₂-CBr₂Br, -CH₂-CH₂Br,
-CH₂-CCl₃, -CH₂-CHCl₂, -CH₂-CH₂Cl, -CH₂-Cl₂, -CH₂-CH₂I, and the like.

“Hydroxyalkyl” means alkyl, wherein alkyl is as defined above, having one
or more hydrogen atoms replaced with hydroxy, including -CH₂OH, -CH₂CH₂OH, -
(CH₂)₂CH₂OH, -(CH₂)₃CH₂OH, -(CH₂)₄CH₂OH, -(CH₂)₅CH₂OH, -(CH(OH))CH₃, -
CH₂CH(OH)CH₃, and the like.

“Hydroxy” means -OH.

“Sulfonyl” means -SO₃H;
“Sulfonylalkyl” means -SO₂-(alkyl), wherein alkyl is defined above, including -SO₂-CH₃, -SO₂-CH₂CH₃, -SO₂-(CH₂)₂CH₃, -SO₂-(CH₂)₃CH₃, -SO₂-(CH₂)₄CH₃, -SO₂-(CH₂)₅CH₃, and the like.

“Sulfinylalkyl” means -SO-(alkyl), wherein alkyl is defined above, including -SO-CH₃, -SO-CH₂CH₃, -SO-(CH₂)₂CH₃, -SO-(CH₂)₃CH₃, -SO-(CH₂)₄CH₃, -SO-(CH₂)₅CH₃, and the like.

“Thioalkyl” means -S-(alkyl), wherein alkyl is defined above, including -S-CH₃, -S-CH₂CH₃, -S-(CH₂)₂CH₃, -S-(CH₂)₃CH₃, -S-(CH₂)₄CH₃, -S-(CH₂)₅CH₃, and the like.

An “effective amount” when used in connection with a JNK Inhibitor is an amount of the JNK Inhibitor that is useful for treating or preventing a cardiovascular or renal disease.

An “effective amount” when used in connection with another active agent is an amount of the other active agent that is useful for providing the agent’s therapeutic or prophylactic effect.

As used herein, the term "pharmaceutically acceptable salt(s)" refer to salts prepared from pharmaceutically acceptable non-toxic acids or bases including inorganic acids and bases and organic acids and bases. Suitable pharmaceutically acceptable base addition salts for the compound of the present invention include, but are not limited to metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, N,N'-dibenzylethlenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. Suitable non-toxic acids include, but are not limited to, inorganic and organic acids such as acetic, alginic, anthranilic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, formic, fumaric, furoic, galacturonic, gluconic, gluconuronic, glutamic, glycolic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, phosphoric, propionic, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, and p-toluenesulfonic acid. Specific non-toxic acids include hydrochloric, hydrobromic, phosphoric, sulfuric, and methanesulfonic acids. Examples of specific salts thus include hydrochloride and mesylate salts. Others are well-known in the art, see for example, Remington's Pharmaceutical Sciences, 18th eds., Mack Publishing, Easton PA (1990) or Remington: The Science and Practice of Pharmacy, 19th eds., Mack Publishing, Easton PA (1995).

As used herein and unless otherwise indicated, the term “prodrug” means a
a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide a JNK Inhibitor. Examples of prodrugs include, but are not limited to, biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues. In one embodiment, prodrugs are the lower alkyl esters of a carboxylic acid group of a JNK Inhibitor. The carboxylate esters are conveniently formed by esterification. Prodrugs can typically be prepared using well-known methods, such as those described by Burger's Medicinal Chemistry and Drug Discovery 6th ed. (Donald J. Abraham ed., 2001, Wiley) and Design and Application of Prodrugs (H. Bundgaard ed., 1985, Harwood Academic Publishers Gmhh).

Various JNK Inhibitors can contain one or more chiral centers and can exist as racemic mixtures of enantiomers or mixtures of diastereomers. This invention encompasses the use of enantiomers, as well as the use of mixtures of those forms. For example, enantiomers or racemates of a JNK Inhibitor, or mixtures thereof, can be used in the methods of the Invention.

The phrase “modulation of JNK” or “by modulating JNK” means the inhibition or activation, preferably the inhibition, of a protein known as Jun N-terminal kinase (JNK) and all isoforms thereof expressed by JNK 1, JNK 2, and JNK 3 genes (Hibi M., Lin A., Smeal T., Minden A., Karin M. Genes Dev. 7:2135-2148, 1993; Mohit A.A., Martin M.H., and Miller C.A. Neuron 14:67-78, 1995; Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K., Derijard, B. and Davis, R.J. The EMBO J. 15:2760-2770, 1996). The modulation of JNK can be achieved on the mRNA level, protein level and kinase activity level.

“JNK inhibitor” or “inhibitors of JNK” means any molecule that blocks, reduces or retards the phosphorylation of c-Jun or other substrates by JNK or reduces the amount of JNK present in the cell. Inhibition may be either direct or indirect, preferably inhibition is direct. Inhibitors of JNK include, but are not limited to, small organic molecules (preferable with a molecular weight of less than 1000) which are not peptides, proteins, nucleic acids, polypeptides or oligonucleotides; or antibodies or a fragment thereof that immunospecifically binds to JNK or another component of the JNK pathway. In certain embodiments, inhibitors of JNK or another component of the JNK pathway, can inhibit either upstream or downstream. In one embodiment, JNK inhibitor means a compound
capable of inhibiting the activity of JNK \textit{in vitro} or \textit{in vivo}. The JNK inhibitor can be in the form of a or a pharmaceutically acceptable salt, free base, solvate, hydrate, stereoisomer, clathrate or prodrug thereof. Such inhibitory activity can be determined by an assay or animal model well-known in the art. In one embodiment, the JNK inhibitor is a compound of structure (I)-(XX).

"JNK pathway" means any biological molecule which has a direct or indirect effect on the activity of JNK.

"Direct inhibition" means that the JNK inhibitor directly interacts with JNK.

"Indirect inhibition" means that the JNK inhibitor blocks, reduces or retards JNK activity by interacting with a component of the JNK pathway other than JNK.

As used herein, a "therapeutically effective amount" refers to that amount of the therapeutic agent sufficient to destroy, modify, control or remove primary, regional or metastatic cancer tissue. A therapeutically effective amount may refer to the amount of therapeutic agent sufficient to delay or minimize the spread of cancer. A therapeutically effective amount may also refer to the amount of the therapeutic agent that provides a therapeutic benefit in the treatment or management of cancer. Further, a therapeutically effective amount with respect to a therapeutic agent of the invention means that amount of therapeutic agent alone, or in combination with other therapies, that provides a therapeutic benefit in the treatment or management of cancer, including the amelioration of symptoms associated with the disease being treated. Used in connection with an amount of an inhibitor of JNK, the term can encompass an amount that improves overall therapy, reduces or avoids unwanted effects, or enhances the therapeutic efficacy of or synergizes with another therapeutic agent.

As used herein, a "prophylactically effective amount" refers to that amount of the prophylactic agent sufficient to result in the prevention of the recurrence or spread of cancer. A prophylactically effective amount may refer to the amount of prophylactic agent sufficient to prevent the recurrence or spread of cancer or the occurrence of cancer or metastasis in a patient, including, but not limited to, those predisposed to cancer or previously exposed to carcinogens. A prophylactically effective amount may also refer to the amount of the prophylactic agent that provides a prophylactic benefit in the prevention of cancer. Further, a prophylactically effective amount with respect to a prophylactic agent of the invention means that amount of prophylactic agent alone, or in combination with other agents, that provides a prophylactic benefit in the prevention of cancer. Used in connection with an amount of an inhibitor of JNK, the term can encompass an amount that
improves overall prophylaxis or enhances the prophylactic efficacy of or synergizes with another prophylactic or therapeutic agent.

As used herein, the terms “therapies” and “therapy” can refer to any protocol(s), method(s) and or agent(s) that can be used in the prevention, treatment, or management of cancer. In certain embodiments, the terms “therapy” and “therapies” refer to cancer chemotherapy, radiation therapy, hormonal therapy, biological therapy, and/or other therapies useful for the treatment of cancer known to an oncologist skilled in the art.

As used herein, a “therapeutic protocol” refers to a regimen of timing and dosing of one or more therapeutic agents.

As used herein, a “prophylactic protocol” refers to a regimen of timing and dosing of one or more prophylactic agents.

A used herein, a “protocol” includes dosing schedules and dosing regimens. The protocols herein are methods of use. As used herein, “in combination” refers to the use of more than one prophylactic and/or therapeutic agents against a disease or disorder.

As used herein, the phrase “non-responsive/refractory” is used to describe patients treated with currently available cancer therapies such as chemotherapy, radiation therapy, surgery, hormonal therapy and/or biological therapy/immunotherapy wherein the therapy is not clinically adequate to treat the patients such that these patients need additional effective therapy, e.g., remain unsusceptible to therapy. The phrase can also describe patients who respond to therapy yet suffer from side effects, relapse, develop resistance, etc. In various embodiments, “non-responsive/refractory” means that at least some significant portion of the cancer cells are not killed or their cell division arrested. The determination of whether the cancer cells are “non-responsive/refractory” can be made either in vivo or in vitro by any method known in the art for assaying the effectiveness of treatment on cancer cells, using the art-accepted meanings of “refractory” in such a context. In various embodiments, a cancer is “non-responsive/refractory” where the number of cancer cells has not been significantly reduced, or has increased.

As used herein, the phrase “low tolerance” refers to a state in which the patient suffers from side effects from treatment so that the patient does not benefit from and/or will not continue therapy because of the adverse effects.

As used herein, the term “patient” means an animal (e.g., cow, horse, sheep, pig, chicken, turkey, quail, cat, dog, mouse, rat, rabbit or guinea pig), in one embodiment a mammal such as a non-primate and a primate (e.g., monkey, baboon, chimpanzee and
human), and in another embodiment a human. In certain embodiments, the patient is an infant, child, adolescent or adult.

As used herein, the term “adjunctive” is used interchangeably with “in combination” or “combinatorial.” Such terms are also used where two or more therapeutic or prophylactic agents affect the treatment or prevention of the same disease.

As used herein, the term “potentiate” refers to an improvement in the efficacy of a therapeutic agent at its common or approved dose.

As used herein, the phrase “side effects” encompasses unwanted and adverse effects of a prophylactic or therapeutic agent. Adverse effects are always unwanted, but unwanted effects are not necessarily adverse. An adverse effect from a prophylactic or therapeutic agent might be harmful or uncomfortable or risky. Side effects from chemotherapy include, but are not limited to, gastrointestinal toxicity such as, but not limited to, early and late-forming diarrhea and flatulence; nausea; vomiting; anorexia; leukopenia; anemia; neutropenia; asthenia; abdominal cramping; fever; pain; loss of body weight; dehydration; alopecia; dyspnea; insomnia; dizziness, mucositis, xerostomia, and kidney or renal failure, as well as constipation, nerve and muscle effects, temporary or permanent damage to kidneys and bladder, flu-like symptoms, fluid retention, and temporary or permanent infertility. Side effects from radiation therapy include but are not limited to fatigue, dry mouth, and loss of appetite. Other side effects include gastrointestinal toxicity such as, but not limited to, early and late-forming diarrhea and flatulence; nausea; vomiting; anorexia; leukopenia; anemia; neutropenia; asthenia; abdominal cramping; fever; pain; loss of body weight; dehydration; alopecia; dyspnea; insomnia; dizziness, mucositis, xerostomia, and kidney failure. Side effects from biological therapies/immunotherapies include but are not limited to rashes or swellings at the site of administration, flu-like symptoms such as fever, chills and fatigue, digestive tract problems and allergic reactions. Side effects from hormonal therapies include but are not limited to nausea, fertility problems, depression, loss of appetite, eye problems, headache, and weight fluctuation. Additional undesired effects typically experienced by patients are numerous and known in the art. Many are described in the Physicians’ Desk Reference (56th ed., 2002).

As used herein, the terms “manage”, “managing” and “management” refer to the beneficial effects that a patient derives from a prophylactic or therapeutic agent, which does not result in a cure of the disease. In certain embodiments, a patient is administered one or more prophylactic or therapeutic agents to “manage” a disease so as to prevent the progression or worsening of the disease.
As used herein, the terms "prevent", "preventing" and "prevention" refer to the prevention of the recurrence, spread or onset of primary cancer or metastasis in a patient resulting from the administration of a prophylactic or therapeutic agent.

As used herein, the terms "treat", "treating" and "treatment" refer to the eradication, removal, modification, or control of primary, regional, or metastatic cancer tissue that results from the administration of one or more prophylactic or therapeutic agents. In certain embodiments, such terms refer to the minimizing or delay of the spread of cancer resulting from the administration of one or more prophylactic or therapeutic agents to a patient with such a disease.

4. **DETAILED DESCRIPTION OF THE INVENTION**

As mentioned above, the present invention is directed to methods useful for treating, preventing or managing cancer by administering to a patient in need thereof one or more JNK inhibitors in combination with one or more anti-cancer agents and/or radiation therapy.

Representative JNK inhibitors of the present invention include, but are not limited to, indazoles, anilinopyrimidine, isothiazoloanthrones, isoazoloanthrones, isoindolanthrones, pyrazoloanthrones and derivatives thereof.

In certain embodiments, inhibitors of JNK decrease the activity of JNK. In other embodiments, inhibitors of JNK decrease the amount of JNK present in the cell. In other embodiments, inhibitors of JNK decrease the amount of JNK mRNA, or mRNA of another component of the JNK pathway, in the cell.

In one embodiment, the inhibitor of JNK is a small organic molecule capable of inhibiting JNK activity or another component of the JNK pathway. In another embodiment, the inhibitor of JNK is an antibody or a fragment thereof that immunospecifically binds to JNK or another component of the JNK pathway. In another embodiment, the JNK inhibitor is triplex DNA that inhibits DNA transcription or replication of JNK or of another component of the JNK pathway. In another embodiment, JNK or another component of the JNK pathway, is inhibited through viral therapy. In another embodiment, the inhibitor of JNK, or another component of the JNK pathway, is dominant-negative JNK (DN-JNK). In certain embodiments, inhibitors of JNK can inhibit either upstream or downstream of JNK.

In a preferred embodiment, the invention encompasses the use of a JNK inhibitor in combination with a chemotherapeutic agent such as an apoptosis inducing agent to treat, prevent or manage cancer. In a further embodiment, the chemotherapeutic includes, but is not limited to, paclitaxel, irinotecan, camptothecin, cyclophosphamide, 5-fluorouracil,
cisplatin, carboplatin, methotrexate, trimetrexate, Erbitux™, thalidomide, any SelCid™ or IMiD™ compound, in particular Actimid™ or Revimid™.

The present invention is based, in part, on the recognition that inhibitors of JNK potentiate and synergize with, enhance the effectiveness of, improve the tolerance of, and/or reduce side effects caused by, other cancer therapies, including current standard and experimental chemotherapies, hormonal therapies, biological therapies/immunotherapies, bone marrow transplants, stem cell replacement therapies and radiation therapies. Thus, the invention encompasses treatment regimens or protocols that provide better therapeutic profiles than current single agent therapies or current combination therapy regimens.

Encompassed by the invention are combination therapies that have additive potency or an additive therapeutic effect. The invention also encompasses synergistic combinations where the therapeutic ratio is greater than additive. Preferably, such combinations also reduce or avoid unwanted or adverse effects. In certain embodiments, the combination therapies encompassed by the invention provide an improved overall therapy relative to administration of either an inhibitors of JNK or any other cancer therapy alone. Given the invention, in certain embodiments, doses of existing or experimental cancer therapies can be reduced or administered less frequently which increases patient compliance, improves therapy and reduces unwanted or adverse effects. In one embodiment, the cancer is resistant to cancer treatment, such as chemotherapy or radiation therapy.

Accordingly, the present invention relates to pharmaceutical compositions and prophylactic and therapeutic regimens designed to prevent, treat, or manage cancer in a patient comprising administering one or more inhibitors of JNK in combination with one or more other cancer therapies other than the administration of a JNK inhibitor. In particular, the present invention provides methods of preventing, treating, or managing cancer in a patient comprising administering to said patient a therapeutically or prophylactically effective of one or more inhibitors of JNK in combination with the administration of a therapeutically or prophylactically effective amount of one or more chemotherapies, hormonal therapies, biological therapies/immunotherapies, bone marrow transplants, stem cell replacement therapies and radiation therapies other than the administration of a JNK inhibitor. It is also contemplated that such methods can include the administration of one or more JNK inhibitors in combination with surgery, alone or in combination with the administration of one or more chemotherapies, hormonal therapies, biological therapies/immunotherapies, bone marrow transplants, stem cell replacement therapies and radiation therapies other than the administration of a JNK inhibitor. In certain embodiments, the administration of inhibitors of JNK and the other cancer therapies is a
therapeutic or prophylactic regimen or protocol. Such methods and regimens can encompass concurrent, sequential or alternating/cyclic administration of the inhibitors of JNK with one or more other cancer therapies.

In one embodiment, the inhibitor of JNK is administered with another cancer therapy that works by the same mechanism as the inhibitor of JNK. In another embodiment, an inhibitor of JNK is administered with another cancer therapy that works by a different mechanism than the inhibitor of JNK. By example and not by limitation, the cancer therapy can be apoptosis inducing, cytotoxic, antimitotic, anti-angiogenic, a modulator of TNF-alpha, tubulin stabilizing, microtubule formation inhibiting, topoisomerase active, antimetabolite, or DNA interactive agents. In other embodiments, the cancer therapy administered with an inhibitor of JNK is gene based. In other embodiments, the therapy is another antibody that is not an inhibitor of JNK such as Erbitux™.

In other embodiments, the invention encompasses the use of anti-cancer vaccines; or antibodies that immunoreact with Ecr, the RGD-directed adhesion receptor found on the surface of both endothelial and melanoma cells with one or more JNK inhibitors. Similarly, the JNK inhibitor can be used with antibodies which are useful for inhibiting the ability of cells that contain the adhesion receptor to adhere to a subendothelial matrix composed of vitronectin, fibrinogen or von Willebrand factor. Accordingly, the invention encompasses the use of JNK inhibitors with agents that are useful for inhibition of angiogenesis or inhibition of other functions including, but not limited to, cell proliferation, cell attachment, cell migration, granulation tissue development, and/or inflammation.

The methods and compositions of the invention are useful not only in untreated patients but are also useful in the treatment of patients partially or completely refractory to current standard and experimental cancer therapies, including, but not limited to, chemotherapies, hormonal therapies, biological therapies/immunotherapies, bone marrow transplants, stem cell replacement therapies and radiation therapies, and/or surgery. In one embodiment, the methods and compositions of the invention are useful in the treatment of patients with cancer(s) which is refractory against current chemotherapeutic agents. In another embodiment, the methods and compositions of the invention are useful in the treatment of patients with cancer(s) which is refractory against current multidrug therapies. In another embodiment, the methods and compositions of the invention are useful in the treatment of patients with cancer(s) which is refractory against tamoxifen. In a preferred embodiment, the invention provides therapeutic and prophylactic methods for the treatment or prevention of cancer that has been shown to be or may be refractory or non-responsive to therapies other than those comprising administration of JNK inhibitors. In another preferred
embodiment, the invention provides therapeutic and prophylactic methods for the treatment or prevention of cancer that has been shown to be or may be refractory or non-responsive to therapies comprising administration of JNK inhibitors.

Further, the methods of the invention permit the treatment of cancer using lower and/or less frequent doses of chemotherapies, hormonal therapies, biological therapies/immunotherapies, bone marrow transplants, stem cell replacement therapies and radiation therapies to reduce the incidence of unwanted or adverse effects caused by administration of current/conventional agents while maintaining or enhancing the efficacy of treatment. In other embodiments of the invention, lower and/or less frequent doses of JNK inhibitors can be used for the treatment and/or prevention of cancer.

In certain embodiments, the invention provides prophylactic and therapeutic regimen or protocols comprising the administration of an inhibitor of JNK in combination with one or more chemotherapies, hormonal therapies, biological therapies/immunotherapies, bone marrow transplants, stem cell replacement therapies and radiation therapies other than the administration of a JNK inhibitor.

It is contemplated that the methods of treatment also include surgery in combination with the administration of an inhibitor of JNK in combination with one or more chemotherapies, hormonal therapies, biological therapies/immunotherapies, bone marrow transplants, stem cell replacement therapies and radiation therapies other than the administration of a JNK inhibitor.

In other embodiments, the invention provides prophylactic and therapeutic protocols comprising the administration of an inhibitor of JNK in combination with one or more hormonal therapies alone or, optionally, in combination with chemotherapies, hormonal therapies, biological therapies/immunotherapies, bone marrow transplants, stem cell replacement therapies and radiation therapies other than the administration of a JNK inhibitor.

In other embodiments, the invention provides prophylactic and therapeutic protocols comprising the administration of an inhibitor of JNK in combination with one or more biological therapies/immunotherapies alone or, optionally, in combination with chemotherapies, hormonal therapies, biological therapies/immunotherapies, bone marrow transplants, stem cell replacement therapies and radiation therapies other than the administration of a JNK inhibitor.

In yet other embodiments, the invention provides prophylactic and therapeutic protocols comprising the administration of a JNK inhibitor in combination with one or more radiation therapies alone or, optionally, in combination with chemotherapies, hormonal
therapies, bone marrow transplants, stem cell replacement therapies, and/or biological therapies/immunotherapies other than the administration of a JNK inhibitor.

The present invention also contemplates methods of treatment comprising the administration of a JNK inhibitor in combination with surgery alone.

In a specific embodiment, the invention provides prophylactic and therapeutic protocols comprising the administration of a JNK inhibitor in combination with one or more cancer chemotherapeutic agents, such as but not limited to: doxorubicin, epirubicin, cyclophosphamide, 5-fluorouracil, taxanes such as docetaxel and paclitaxel, leucovorin, levamisole, irinotecan, estramustine, etoposide, vinblastine, dacarbazine, nitrosoureas such as carmustine and lomustine, vinca alkaloids, platinum compounds, cisplatin, mitomycin, vinorelbine, gemcitabine, carboplatin, hexamethylmelamine, topotecan, Erbitux™, thalidomide, any SelCid™ or IMiD™ compounds, in particular Actimid™ and Revimid™. Such methods can optionally further comprise the administration of other cancer therapies, such as but not limited to radiation therapy, biological therapies, hormonal therapies and/or surgery other than the administration of a JNK inhibitor.

In another specific embodiment, the invention provides prophylactic and therapeutic protocols comprising the administration of a JNK inhibitor in combination with one or more anti-metastatic agents, including, but not limited to sulphated polysaccharides and sulphaminoheparosansulphates.

In another specific embodiment, the invention provides prophylactic and therapeutic regimens or protocols comprising the administration of a JNK inhibitor in combination with administration of one or more types of radiation therapy, such as external-beam radiation therapy, interstitial implantation of radioisotopes (I-125, palladium, iridium), radioisotopes such as strontium-89, thoracic radiation therapy, intraperitoneal P-32 radiation therapy, and/or total abdominal and pelvic radiation therapy. Such methods can optionally further comprise the administration of other cancer therapies, such as but not limited to chemotherapies, biological therapies/immunotherapies, bone marrow transplants, stem cell replacement therapies, hormonal therapies and/or surgery other than the administration of a JNK inhibitor.

In yet another specific embodiment, the invention provides prophylactic and therapeutic protocols comprising the administration of a JNK inhibitor in combination with one or more biological therapies/immunotherapies or hormonal therapies other than the administration of a JNK inhibitor, such as faslodex, tamoxifen, leuprolide or other LHRH agonists, non-steroidal antiandrogens (flu tamide, nilutamide, bicalutamide), steroidal antiandrogens (cyproterone acetate), anti-inflammatory steroids (dexamethasone), estrogens
(DES, chlorotrianisene, ethinyl estradiol, conjugated estrogens U.S.P., DES-diphosphate),
aromatase inhibitors (e.g., Arimidex®, anastrozole, letrozole and exemestane),
aminoglutethimide, hydrocortisone, flutamide, progesterone, ketoconazole, prednisone,
interferon alpha, interleukin-2, tumor necrosis factor-alpha, and/or melphalan. Such
methods can optionally further comprise the administration of other cancer therapies, such
as but not limited to radiation therapy, chemotherapies, bone marrow transplants, stem cell
replacement therapies and/or surgery.

The invention provides methods of preventing, treating or managing cancer, including, but not limited to, the cancers discussed in Section 4.1.1.1. Specific examples of cancers that can be treated by the methods and compositions of the invention include, but are not limited to, cancer of the head, neck, eye, mouth, throat, esophagus, chest, bone, lung, colon, rectum, stomach, prostate, breast, ovaries, testicles or other reproductive organs, skin, thyroid, blood, lymph nodes, kidney, liver, pancreas, and brain or central nervous system. In particular embodiments, the prophylactic and/or therapeutic protocols are designed to prevent, treat or manage breast cancer. In certain embodiments, the prophylactic and/or therapeutic protocols are designed to prevent, treat, or manage colon cancer. The prophylactic and therapeutic regimens or protocols of the invention are also designed to prevent, treat, or manage prostate cancer. In other embodiments, the prophylactic and/or therapeutic protocols are designed to prevent, treat, or manage melanoma. In other embodiments, the prophylactic and/or therapeutic protocols are designed to prevent, treat, or manage multiple myeloma. In other embodiments, prophylactic and/or therapeutic protocols are designed to prevent, treat, or manage lung cancer. In yet other embodiments, prophylactic and/or therapeutic protocols are designed to prevent, treat, or manage ovarian cancer.

Preferred embodiments encompassed by the invention are methods of delivering one or more inhibitors of JNK as adjunctive therapy in combination with existing and experimental cancer therapies; pharmaceutical compositions and formulas for administration comprising one or more inhibitors of JNK and one or more existing cancer therapies; kits comprising said pharmaceutical compositions; and methods of treating, preventing, and/or managing cancer using the prophylactic or therapeutic protocols and pharmaceutical compositions of the invention. The invention also encompasses the administration of one or more inhibitors of JNK alone to patients refractory to other cancer treatments or that do not tolerate other such treatments because of unwanted or adverse effects.
4.1 Prophylactic/Therapeutic Methods

The present invention encompasses methods for treating, preventing, or managing cancer in a patient comprising administering one or more inhibitors of JNK in combination with one or more other therapeutic agents useful in the treatment, prevention or management of cancer. In certain embodiments, an inhibitor of JNK is administered to a mammal, preferably a human, concurrently with one or more other therapeutic agents useful for the treatment of cancer. The term "concurrently" is not limited to the administration of prophylactic or therapeutic agents at exactly the same time, but rather it is meant that an inhibitor of JNK and the other agent are administered to a mammal in a sequence and within a time interval such that the JNK inhibitor can act together with the other agent to provide an increased benefit than if they were administered otherwise. For example, each prophylactic or therapeutic agent (e.g., chemotherapy, radiation therapy, hormonal therapy or biological therapy) may be administered at the same time or sequentially in any order at different points in time; however, if not administered at the same time, they should be administered sufficiently close in time so as to provide the desired therapeutic or prophylactic effect. Each therapeutic agent can be administered separately, in any appropriate form and by any suitable route. In other embodiments, the JNK inhibitor is administered before, concurrently or after surgery. Preferably the surgery completely removes localized tumors or reduces the size of large tumors. Surgery can also be done as a preventive measure or to relieve pain. In various embodiments, the prophylactic or therapeutic agents are administered less than 1 hour apart, at about 1 hour apart, at about 1 hour to about 2 hours apart, at about 2 hours to about 3 hours apart, at about 3 hours to about 4 hours apart, at about 4 hours to about 5 hours apart, at about 5 hours to about 6 hours apart, at about 6 hours to about 7 hours apart, at about 7 hours to about 8 hours apart, at about 8 hours to about 9 hours apart, at about 9 hours to about 10 hours apart, at about 10 hours to about 11 hours apart, at about 11 hours to about 12 hours apart, no more than 24 hours apart or no more than 48 hours apart. In preferred embodiments, two or more components are administered within the same patient visit.

In other embodiments, the prophylactic or therapeutic agents are administered at about 2 to 4 days apart, at about 4 to 6 days apart, at about 1 week part, at about 1 to 2 weeks apart, or more than 2 weeks apart. In preferred embodiments, the prophylactic or therapeutic agents are administered in a time frame where both agents are still active. One skilled in the art would be able to determine such a time frame by determining the half life of the administered agents.
In certain embodiments, the prophylactic or therapeutic agents of the invention are cyclically administered to a patient. Cycling therapy involves the administration of a first agent for a period of time, followed by the administration of a second agent and/or third agent for a period of time and repeating this sequential administration. Cycling therapy can reduce the development of resistance to one or more of the therapies, avoid or reduce the side effects of one of the therapies, and/or improves the efficacy of the treatment.

In certain embodiments, prophylactic or therapeutic agents are administered in a cycle of less than about 3 weeks, about once every two weeks, about once every 10 days or about once every week. One cycle can comprise the administration of a therapeutic or prophylactic agent by infusion over about 90 minutes every cycle, about 1 hour every cycle, about 45 minutes every cycle. Each cycle can comprise at least 1 week of rest, at least 2 weeks of rest, at least 3 weeks of rest. The number of cycles administered is from about 1 to about 12 cycles, more typically from about 2 to about 10 cycles, and more typically from about 2 to about 8 cycles.

In other preferred embodiments, the JNK inhibitor is administered once a week or every two weeks; chemotherapy is administered daily for several days. In other preferred embodiments, chemotherapy is administered continuously for several days to several weeks. In yet other preferred embodiments, chemotherapy is administered in sessions of a few hours to a few days. It is contemplated that such methods include rest periods of a few weeks where no chemotherapy is administered.

In other preferred embodiments, the JNK inhibitor is administered once a week or every two weeks; radiation therapy is administered daily for several days. In other preferred embodiments, radiation therapy is administered three times per month for up to eight weeks. In yet other preferred embodiments, radiation therapy is administered one day per week for up to eight weeks. It is contemplated that such methods include rest periods of a few days or a few weeks where no radiation therapy is administered.

In other preferred embodiments, the JNK inhibitor is administered once a week or every two weeks; hormonal therapy is administered daily; biological therapy/immunotherapy is administered once a week or every two weeks.

In yet other embodiments, the therapeutic and prophylactic agents of the invention are administered in metronomic dosing regimens, either by continuous infusion or frequent administration without extended rest periods. Such metronomic administration can involve dosing at constant intervals without rest periods. Typically the therapeutic agents, in particular cytotoxic agents, are used at lower doses. Such dosing regimens encompass the chronic daily administration of relatively low doses for extended periods of time. In
preferred embodiments, the use of lower doses can minimize toxic side effects and eliminate rest periods. In certain embodiments, the therapeutic and prophylactic agents are delivered by chronic low-dose or continuous infusion ranging from about 24 hours to about 2 days, to about 1 week, to about 2 weeks, to about 3 weeks to about 1 month to about 2 months, to about 3 months, to about 4 months, to about 5 months, to about 6 months. The scheduling of such dose regimens can be optimized by the skilled oncologist.

In other embodiments, courses of treatment are administered concurrently to a mammal, i.e., individual doses of the therapeutics are administered separately yet within a time interval such that the JNK inhibitor can work together with the other agent or agents. For example, one component may be administered one time per week in combination with the other components that may be administered one time every two weeks or one time every three weeks. In other words, the dosing regimens for the therapeutics are carried out concurrently even if the therapeutics are not administered simultaneously or within the same patient visit.

When used in combination with other prophylactic and/or therapeutic agents, the JNK inhibitor and the prophylactic and/or therapeutic agent can act additively or, more preferably, synergistically. In one embodiment, a JNK inhibitor is administered concurrently with one or more therapeutic agents in the same pharmaceutical composition. In another embodiment, a JNK inhibitor is administered concurrently with one or more other therapeutic agents in separate pharmaceutical compositions. In still another embodiment, a JNK inhibitor is administered prior to or subsequent to administration of another prophylactic or therapeutic agent.

The invention contemplates administration of a JNK inhibitor in combination with other prophylactic or therapeutic agents by the same or different routes of administration, e.g., oral and parenteral. In certain embodiments, when a JNK inhibitor is administered concurrently with another prophylactic or therapeutic agent that potentially produces adverse side effects including, but not limited to, toxicity, the prophylactic or therapeutic agent can advantageously be administered at a dose that falls below the threshold that the adverse side effect is elicited.

The dosage amounts and frequencies of administration provided herein are encompassed by the terms therapeutically effective and prophylactically effective. The dosage and frequency further will typically vary according to factors specific for each patient depending on the specific therapeutic or prophylactic agents administered, the severity and type of cancer, the route of administration, as well as age, body weight, response, and the past medical history of the patient. Suitable regimens can be selected by

28
one skilled in the art by considering such factors and by following, for example, dosages
reported in the literature and recommended in the *Physician’s Desk Reference* (56th ed.,
2002).

In one embodiment, the present invention provides methods of treating or preventing
cancer by administering to a patient in need thereof JNK inhibitors in combination with
anti-cancer agents or radiation therapy, wherein the JNK inhibitors have the following
Illustrative JNK Inhibitors are set forth below.

In one embodiment, the JNK inhibitor has the following structure (I):

![Chemical Structure](image)

(I)

wherein:
A is a direct bond, -(CH₂)₂CH, -(CH₂)₂CH=CH(CH₂)₃CH₂, or -(CH₂)₄C≡C(CH₂)₃CH₂;
R₁ is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally
substituted with one to four substituents independently selected from R₂;
R₂ is -R₃₁, -R₃₂, -(CH₂)₄C(=O)R₅, -(CH₂)₄C(=O)OR₅, -(CH₂)₄C(=O)NR₅R₆,
-(CH₂)₄C(=O)NR₅(CH₂)₄C(=O)R₆, -(CH₂)₄NR₅C(=O)R₆,
-(CH₂)₄NR₅C(=O)NR₅R₇, -(CH₂)₄NR₅R₆, -(CH₂)₄OR₅,
-(CH₂)₄SO₂R₅ or -(CH₂)₄SO₂NR₅R₆;
a is 1, 2, 3, 4, 5 or 6;
b and c are the same or different and at each occurrence independently selected from
0, 1, 2, 3 or 4;
d is at each occurrence 0, 1 or 2;
R₃ is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy,
haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl,
arylalkyl, heterocycle, heterocycloalkyl, -(C(=O)OR₅, -OC(=O)R₅, -
C(=O)NR₅R₆, -(C(=O)NR₅OR₅, -SO₂NR₅R₆, -NR₅SO₂R₅, -CN, -NO₂, -NR₅R₆,
-NR₅C(=O)R₆, -NR₅C(=O)(CH₂)₄OR₅, -NR₅C(=O)(CH₂)₄R₆, -O(CH₂)₄NR₅R₆, or heterocycle fused to phenyl;
R_4 is alkyl, aryl, arylalkyl, heterocycle or heterocycloalkyl, each being optionally substituted with one to four substituents independently selected from R_3, or

R_4 is halogen or hydroxy;

R_5, R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocycloalkyl, wherein each of R_5, R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3; and

R_4 and R_5 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocycloalkyl, or R_8 and R_9 taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R_8, R_9, and R_8 and R_9 taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R_3.

In one embodiment, -A-R_1 is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, $-NR_5C(=O)R_9$, $-C(=O)NR_4R_9$, and $-O(CH_2)_bNR_8R_9$, wherein b is 2 or 3 and wherein R_8 and R_9 are defined above.

In another embodiment, R_2 is $-R_4$, $-(CH_2)_bC(=O)R_9$, $-(CH_2)_bC(=O)OR_9$, $-(CH_2)_bC(=O)NR_8R_9$, $-(CH_2)_bC(=O)NR_9R_8$, $-(CH_2)_bC(=O)NR_9R_8$, $-(CH_2)_bC(=O)NR_9R_8$, $-(CH_2)_bSO_2R_8$ or $-(CH_2)_bSO_2NR_4R_9$,

and b is an integer ranging from 0-4.

In another embodiment, R_2 is $-(CH_2)_bC(=O)NR_8R_9$, $-(CH_2)_bC(=O)NR_9R_8$, 3-triazolyl or 5-tetrazolyl, wherein b is 0 and wherein R_8 and R_9 are defined above.

In another embodiment, R_2 is 3-triazolyl or 5-tetrazolyl.

In another embodiment:

(a) -A-R_1 is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, $-NR_5C(=O)R_9$, $-C(=O)NR_4R_9$, and $-O(CH_2)_bNR_8R_9$, wherein b is 2 or 3; and

(b) R_2 is $-(CH_2)_bC(=O)NR_8R_9$, $-(CH_2)_bNR_5C(=O)R_9$, 3-triazolyl or 5-tetrazolyl, wherein b is 0 and wherein R_3 and R_9 are defined above.

In another embodiment:

(a) -A-R_1 is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, $-NR_5C(=O)R_9$, $-C(=O)NR_4R_9$, and $-O(CH_2)_bNR_8R_9$, wherein b is 2 or 3; and

(b) R_2 is 3-triazolyl or 5-tetrazolyl.

In another embodiment, R_2 is R_4, and R_4 is 3-triazolyl, optionally
substituted at its 5-position with:

(a) a C₁⁻C₄ straight or branched chain alkyl group optionally substituted with a hydroxyl, methylamino, dimethylamino or 1-pyrroldinyl group; or

(b) a 2-pyrroldinyl group.

In another embodiment, R₂ is R₄, and R₄ is 3-triazolyl, optionally substituted at its 5-position with:
methyl, n-propyl, isopropyl, 1-hydroxyethyl, 3-hydroxypropyl, methylaminomethyl, dimethylaminomethyl, 1-(dimethylamino)ethyl, 1-pyrroldinylmethyl or 2-pyrroldinyl.

In another embodiment, the compounds of Structure (I) have Structure (IA) when A is a direct bond, or have Structure (IB) when A is -(CH₂)ₓ⁻:

In other embodiments, the compounds of structure (I) have structure (IC) when A is a -(CH₂)ₓCH=CH(CH₂)c⁻, and have structure (ID) when A is -(CH₂)ₓC=C(CH₂)c⁻:

In further embodiments of this invention, R₁ of structure (I) is aryl or substituted aryl, such as phenyl or substituted phenyl as represented by the following structure (IE):
In another embodiment, \(R_2 \) of structure (I) is \(-(\text{CH}_2)_b\text{NR}_4\text{(C=O)R}_5\). In one aspect of this embodiment, \(b = 0 \) and the compounds have the following structure (II):

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{A-R}_1 \\
\text{O} \\
\text{N} \\
\text{R}_5 \\
\text{R}_6 \\
\end{array}
\]

(II)

Representative \(R_2 \) groups of the compounds of structure (I) include alkyl (such as methyl and ethyl), halo (such as chloro and fluoro), haloalkyl (such as trifluoromethyl), hydroxy, alkoxy (such as methoxy and ethoxy), amino, arylalkyloxy (such as benzyloxy), mono- or di-alkylamine (such as \(-\text{NHCH}_3\), \(-\text{N(CH}_3)_2\) and \(-\text{NHCH}_2\text{CH}_3\), \(-\text{NCH}(=\text{O})\text{R}_4\) wherein \(R_4 \) is a substituted or unsubstituted phenyl or heteroaryl (such as phenyl or heteroaryl substituted with hydroxy, carboxy, amino, alkylester, alkoxy, alkyl, aryl, haloalkyl, halo, \(-\text{CONH}_2\) and \(-\text{CONH} \text{alkyl}\), \(-\text{NH}(\text{heteroarylalkyl})\) (such as \(-\text{NHCH}_3(3-\text{pyridyl})\), \(-\text{NHCH}_2(4-\text{pyridyl})\), heteroaryl (such as pyrazolo, triazolo and tetrazolo), \(-\text{C}(=\text{O})\text{NHR}_6\) wherein \(R_6 \) is hydrogen, alkyl, or as defined above (such as \(-\text{C}(=\text{O})\text{NH}_2\), \(-\text{C}(=\text{O})\text{NHCH}_3\), \(-\text{C}(=\text{O})\text{NH}(\text{H-carboxyphenyl})\), \(-\text{C}(=\text{O})\text{N}(\text{CH}_3)_2\) arylalkenyl (such as phenylvinyl, 3-nitrophenylvinyl, 4-carboxyphenylvinyl), heteroarylalkenyl (such as 2-pyridylvinyl, 4-pyridylvinyl).

Representative \(R_3 \) groups of the compounds of structure (I) include halogen (such as chloro and fluoro), alkyl (such as methyl, ethyl and isopropyl), haloalkyl (such as trifluoromethyl), hydroxy, alkoxy (such as methoxy, ethoxy, n-propyloxy and isobutyloxy), amino, mono- or di-alkylamino (such as dimethylamine), aryl (such as phenyl), carboxy, nitrro, cyano, sulfinylalkyl (such as methylsulfinyl), sulfonylalkyl (such as methylsulfonyl), sulfonamidoalkyl (such as \(-\text{NHSO}_2\text{CH}_3\), \(-\text{NR}_4\text{C}(=\text{O})(\text{CH}_2)_b\text{OR}_6\) (such as \(\text{NHC}(=\text{O})\text{CH}_2\text{OCH}_3\), \(\text{NHC}(=\text{O})\text{R}_4\) (such as \(\text{NHC}(=\text{O})\text{CH}_3\), \(\text{NHC}(=\text{O})\text{CH}_2\text{C}_6\text{H}_5\), \(\text{NHC}(=\text{O})(2-\text{furanyl})\)), and \(-\text{O}(\text{CH}_2)_b\text{NR}_4\text{R}_9\) (such as \(\text{O}(\text{CH}_2)_2\text{N}(\text{CH}_3)_2\)).

The compounds of structure (I) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in United States Application No. 09/910,950, filed July 23, 2001 and International Publication No. WO 02/10137, published February 7, 2002, which are incorporated herein by reference in their entirety (particularly in Examples 1-430, at page 35, line 1 to page 396, line 12).

Further, specific examples of these compounds are found in the application and publication.
In another embodiment, the JNK inhibitor has the following structure (II):

![Chemical Structure](image)

wherein:

R₁ is aryl or heteroaryl optionally substituted with one to four substituents independently selected from R₇;

R₂ is hydrogen;

R₃ is hydrogen or lower alkyl;

R₄ represents one to four optional substituents, wherein each substituent is hydroxy, lower alkyl and lower alkoxy;

R₅ and R₆ are the same or different and independently -R₈₁, -(CH₂)₇C(=O)R₈₂, -(CH₂)₆C(=O)OR₈₃, -(CH₂)₆C(=O)NR₈₄R₈₅, -(CH₂)₅C(=O)NR₈₆R₈₇, -(CH₂)₄C(=O)R₈₈, -(CH₂)₃NR₈₉C(=O)R₈₁₀, -(CH₂)₂NR₈₊C(=O)R₈₁₂, -(CH₂)NR₈₌C(=O)R₈₁₄, -(CH₂)⁻OR₈₁₅, -(CH₂)⁻SO₂R₈₁₆, or -(CH₂)⁻SO₂NR₈₁₇R₈₁₈;

or R₅ and R₆ taken together with the nitrogen atom to which they are attached to form a heterocycle or substituted heterocycle;

R₇ is at each occurrence independently halogen, hydroxy, cyano, nitro, carboxyl, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, aralkyl, heterocycle, substituted heterocycle, heterocyclealkyl, -C(=O)OR₈₁, -OC(=O)R₈₂, -C(=O)NR₈₃R₈₄, -C(=O)NR₈₅OR₈₆, -SO₂R₈₇, -SO₂NR₈₈R₈₉, -NR₈₉SO₂R₈₁₀, -NR₈₉C(=O)R₈₁₁, -NR₈₉C(=O)(CH₂)₇OR₈₁₂, -NR₈₉C(=O)(CH₂)₈R₈₁₃, -O(CH₂)₉NR₈₁₄R₈₁₅, -heterocycle fused to phenyl;

R₈₁, R₉₁ and R₁₀₁ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, aralkyl, heterocycle, heterocyclealkyl;

or R₈₁ and R₉₁ taken together with the atom or atoms to which they are attached to form a heterocycle;
a and b are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4; and c is at each occurrence 0, 1 or 2.

In one embodiment, R₁ is a substituted or unsubstituted aryl or heteroaryl. When R₁ is substituted, it is substituted with one or more substituents defined below. In one embodiment, when substituted, R₁ is substituted with a halogen, sulfone or sulfonamide.

In another embodiment, R₁ is substituted or unsubstituted aryl, furyl, benzofuranyl, thiophenyl, benzothiophenyl, quinolinyl, pyrrolyl, indolyl, oxazolyl, benzoxazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, cinnolinyl, phthalazinyl or quinazolinyl.

In another embodiment R₁ is substituted or unsubstituted aryl or heteroaryl. When R₁ is substituted, it is substituted with one or more substituents defined below. In one embodiment, when substituted, R₁ is substituted with a halogen, sulfone or sulfonamide.

In another embodiment, R₁ is substituted or unsubstituted aryl, preferably phenyl.

When R₁ is a substituted aryl, the substituents are defined below. In one embodiment, when substituted, R₁ is substituted with a halogen, sulfone or sulfonamide.

In another embodiment, R₁ and R₆, taken together with the nitrogen atom to which they are attached form a substituted or unsubstituted nitrogen-containing non-aromatic heterocycle, preferably piperazinyl, piperidinyl or morpholinyl.

When R₃ and R₆, taken together with the nitrogen atom to which they are attached form substituted piperazinyl, piperadinyln or morpholinyl, the piperazinyl, piperadinyln or morpholinyl is substituted with one or more substituents defined below. In one embodiment, when substituted, the substituent is alkyl, amino, alkylamino, alkylether, acyl, pyrroldinyl or piperidinyl.

In one embodiment, R₃ is hydrogen and R₄ is not present, and the compounds have the following structure (IIA):

![IIA](image)

and pharmaceutically acceptable salts thereof.

In a more specific embodiment, R₁ is phenyl optionally substituted with R₇, and having the following structure (IIB):

![IIB](image)
and pharmaceutically acceptable salts thereof.

In still a further embodiment, \(R_5 \) is at the para position of the phenyl group relative to the pyrimidine, as represented by the following structure (IIC):

and pharmaceutically acceptable salts thereof.

The compounds of structure (II) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in United States Application No. 10/004,645, filed December 4, 2001, and International Publication No. WO 02/46170, published June 13, 2002, which are hereby incorporated by reference in their entirety (particularly Examples 1-27 at page 23, line 5 to page 183, line 25). Further, specific examples of these compounds are found in said application and publication.

In another embodiment, the JNK inhibitor has the following structure (III):

wherein \(R_0 \) is \(-O-, -S-, -S(O)-, -S(O)_2-, \text{NH or } -\text{CH}_2-\);
the compound being (i) unsubstituted, (ii) monosubstituted and having a first substituent, or (iii) disubstituted and having a first substituent and a second substituent;

the first or second substituent, when present, is at the 3, 4, 5, 7, 8, 9, or 10 position, wherein the first and second substituent, when present, are independently alkyl, hydroxy, halogen, nitro, trifluoromethyl, sulfonyl, carboxyl, alkoxy carbonyl, alkoxy, aryloxy, aryalkoxy, aryalkyl, cycloalkylalkoxy, cycloalkyl hydroxy, alkoxyalkyl, alkoxyalkoxy, aminoalkoxy, mono-alkylaminoalkoxy, di-alkylaminoalkoxy, or a group represented by formula (a), (b), (c), (d), (e), or (f):

wherein R₃ and R₄ are taken together and represent alkylidene or a heteroatom-containing alkylidene or R₃ and R₄ are independently hydrogen, alkyl, cycloalkyl, aryl, aryalkyl, cycloalkylalkyl, aryloxyalkyl, alkoxyalkyl, aminoalkyl, mono-alkylaminoalkyl, or di-alkylaminoalkyl; and

R₅ is hydrogen, alkyl, cycloalkyl, aryl, aryalkyl, cycloalkylalkyl, alkoxy, alkoxyalkyl, alkoxy carbonylalkyl, amino, mono-alkylamino, di-alkylamino, arylamino, aryloxyalkyl, monoalkylamine, cycloalkylamine, cycloalkylalkylamine, aminoalkyl, monoalkylaminioalkyl, or di-alkylaminoalkyl;

or a pharmaceutically acceptable salt thereof.

In another embodiment, the JNK inhibitor has the following structure (IV):
wherein:

R₁ is selected from hydrogen, C₁⁻⁶ alkyl (optionally substituted by one or two substituents independently selected from halo, amino, C₁⁻⁴ alkylamino, di-(C₁⁻⁴ alkyl)amino, hydroxy, cyano, C₁⁻⁴ alkoxy, C₁⁻⁴ alkoxycarbonyl, carbamoyl, -NHCOC₁⁻⁴ alkyl, trifluoromethyl, phenylthio, phenoxy, pyridyl, morpholino), benzyl, 2-phenylethyl, C₃⁻⁵ alkenyl (optionally substituted by up to three halo substituents, or by one trifluoromethyl substituent, or one phenyl substituent), N-phthalimido-C₁⁻⁴ alkyl, C₃⁻⁵ alkynyl (optionally substituted by one phenyl substituent) and C₃⁻⁶ cycloalkyl-C₁⁻⁶ alkyl; wherein any phenyl or benzyl group in R₁ is optionally substituted by up to three substituents independently selected from halo, hydroxy, nitro, amino, C₁⁻³ alkylamino, di-(C₁⁻³ alkyl) amino, cyano, trifluoromethyl, C₁⁻³ alkyl (optionally substituted by 1 or 2 substituents independently selected from halo, cyano, amino, C₁⁻³ alkylamino, di-(C₁⁻³ alkyl) amino, hydroxy and trifluoromethyl), C₃⁻⁵ alkenyl (optionally substituted by up to three halo substituents, or by one trifluoromethyl substituent), C₃⁻⁵ alkynyl, C₁⁻³ alkoxy, mercapto, C₁⁻³ alkythio, carboxy, C₁⁻³ alkoxycarbonyl;

R₂ is selected from halo, hydroxy, nitro, amino, cyano, mercapto, carboxy, sulphamoyl, formamido, ureido or carbamoyl or a group of structure (IVb):

A-B-C

(IVb)

wherein:

A is C₁⁻⁴ alkyl, C₂⁻⁶ alkenyl, C₁⁻⁶ alkynyl, C₃⁻⁵ cycloalkyl, phenyl, heterocycle or heteroaryl, wherein said C₁⁻⁶ alkyl, C₃⁻⁵ alkynyl are are optionally substituted by one or more substituents selected from halo, nitro, cyano, amino, hydroxy, mercapto, carboxy, formamido, ureido, C₁⁻³ alkylamino, di-(C₁⁻³ alkyl) amino, C₁⁻³ trifluoromethyl, C₃⁻⁸ cycloalkyl, phenyl, heterocycle or heteroaryl; wherein any phenyl, C₃⁻⁸ cycloalkyl,
heterocycle or heteroaryl may be optionally substituted by one or more halo, nitro, cyanoo, hydroxy, trifluoromethyl, tri fluorornetilnoyo, amino, carboxy, carbamoyl, mercapto, formamido, ureido, sulphamoyl, C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, C_{1-4} alkanoyl, C_{1-4} alkanoyloxy, C_{1-4} alkylamino, di-(C_{1-4} alkyl)amino, C_{1-4} alkanoylamino, N-C_{1-4} alkylcarbamoyl, N,N-di-(C_{1-4} alkyl)carbamoyl, C_{1-4} alkythio, C_{1-4} alkylsulphinyl, C_{1-4} alkylsulphonyl and C_{1-4} alkoxy carbonyl;

B is -O-, -S-, -C(O)-, -NH-, -N(C_{1-4} alkyl)-, -C(O)NH-, -C(O)N(C_{1-4} alkyl)-, NHC(O)-, -N(C_{1-4} alkyl)C(O)- or B is a direct bond;

C is C_{1-4} alkyiene or a direct bond;

Q_1 and Q_2 are independently selected from aryl, a 5- or 6-membered monocyclic moiety (linked via a ring carbon atom and containing one to three heteroatoms independently selected from nitrogen, oxygen and sulphur); and a 9- or 10-membered bicyclic heterocyclic moiety (linked via a ring carbon atom and containing one or two nitrogen heteroatoms and optionally containing a further one or two heteroatoms selected from nitrogen, oxygen and sulphur); and one or both of Q_1 and Q_2 is substituted on any available carbon atom with one substituent of the structure (IVa) and Q_2, may optionally be further substituted on any available carbon atom with a substituent of the structure (IVa):

(provided that when present in Q_1 the substituent of formula (IVa) is not adjacent to the -NH-link);

wherein:

- X is -CH_2-, -O-, -NH-, -NR^2- or -S- (wherein R^2 is C_{1-4} alkyl, optionally substituted by one substituent selected from halo, amino, cyano, C_{1-4} alkoxy or hydroxy);

- Y^1 is H, C_{1-4} alkyl or as defined for Z;

- Y^2 is H or C_{1-4} alkyl;

- Z is R^1O-, R^bR^cN-, R^dS-, R^eR^fNRR^g, a nitrogen linked heteroaryl or a nitrogen linked heterocyclic (wherein said heterocycle is optionally substituted on a ring carbon or a ring nitrogen by C_{1-4} alkyl or C_{2-4} alkanoyl) wherein R^a, R^b, R^c, R^d, R^e, R^f and R^g are
independently selected from hydrogen, C\textsubscript{1-4} alkyl, C\textsubscript{2-4} alkenyl, C\textsubscript{3-8} cycloalkyl, and wherein said C\textsubscript{1-4} alkyl and C\textsubscript{2-4} alkenyl are optionally substituted by one or more phenyl;

n is 1, 2 or 3;
m is 1, 2 or 3;

and Q\textsubscript{1} may optionally be substituted on any available carbon atom with up to four substituents independently selected from halo, thio, nitro, carboxy, cyano, C\textsubscript{2-4} alkenyl (optionally substituted by up to three halo substituents, or by one trifluoromethyl substituent), C\textsubscript{2-4} alkynyl, C\textsubscript{1-4} alkanoyl, C\textsubscript{1-4} alkoxy carbonyl, C\textsubscript{1-5} alkyl, hydroxy-C\textsubscript{1-3} alkyl, fluoro-C\textsubscript{1-4} alkyl, amino-C\textsubscript{1-3} alkyl, C\textsubscript{1-4} alkylamino-C\textsubscript{1-3} alkyl, di-(C\textsubscript{1-4} alkyl) amino-C\textsubscript{1-3} alkyl, alkyl, cyano-C\textsubscript{1-4} alkyl, C\textsubscript{2-4} alkanoyloxy-C\textsubscript{1-4} alkyl, C\textsubscript{1-4} alkoxy-C\textsubscript{1-3} alkyl, carboxy-C\textsubscript{1-4} alkyl, C\textsubscript{1-4} alkoxy carbonyl-C\textsubscript{1-4} alkyl, carbamoyl-C\textsubscript{1-4} alkyl, N-C\textsubscript{1-4} alkyl carbamoyl-C\textsubscript{1-4} alkyl, N,N-di-(C\textsubscript{1-4} alkyl)-carbamoyl-C\textsubscript{1-4} alkyl pyrrolidin-1-yl-C\textsubscript{1-3} alkyl, piperidino-C\textsubscript{1-3} alkyl, piperazin-)-yl-C\textsubscript{1-3} alkyl, morpholin-C\textsubscript{1-3} alkyl, thiomorpholin-C\textsubscript{1-3} alkyl, imidazo-1-yl-C\textsubscript{1-3} alkyl, alkylpiperazin-1-yl, morpholin, thiomorpholin, C\textsubscript{1-4} alkylthio, C\textsubscript{1-4} alkylsulphinyl, C\textsubscript{1-4} alkyl sulphonyl, hydroxy C\textsubscript{2-4} alkylthio, hydroxy C\textsubscript{2-4} alkyl sulphinyl, hydroxy C\textsubscript{2-4} alkyl sulphinyl, ureido, N’-(C\textsubscript{1-4} alkyl) ureido, N’-N’-di-(C\textsubscript{1-4} alkyl) ureido, N’-(C\textsubscript{1-4} alkyl)-N’-(C\textsubscript{1-4} alkyl) ureido, N’-N’-di-(C\textsubscript{1-4} alkyl) N-(C\textsubscript{1-4} alkyl) ureido, carbamoyl, N-(C\textsubscript{1-4} alkyl) carbamoyl, N,N-di-(C\textsubscript{1-4} alkyl) carbamoyl, amino, C\textsubscript{1-4} alkylamino, di-(C\textsubscript{1-4} alkyl) amino, C\textsubscript{2-4} alkanoylamino, sulphamoyl, N-(C\textsubscript{1-4} alkyl) sulphamoyl, N,N-di-(C\textsubscript{1-4} alkyl) sulphamoyl;

and also independently, or where appropriate in addition to, the above substituents, Q\textsubscript{1} may optionally be substituted on any available carbon atom with up to two further substituents independently selected from C\textsubscript{3-8} cycloalkyl, phenyl-C\textsubscript{1-4} alkyl, phenyl-C\textsubscript{1-4} alkoxy, phenylthio, phenyl, naphthyl, benzoyl, benzimidazol-2-yl, phenoxy and a 5- or 6-membered aromatic heterocycle (linked via a ring carbon atom and containing one to three heteroatoms independently selected from oxygen, sulphur and nitrogen); wherein said naphthyl, phenyl, benzoyl, phenoxy, 5- or 6-membered aromatic heterocyclic substituents and the phenyl group in said phenyl-C\textsubscript{1-4} alkyl, phenylthio and phenyl-C\textsubscript{1-4} alkoxy substituents may optionally be substituted with up to five substituents independently selected from halo, C\textsubscript{1-4} alkyl and C\textsubscript{1-4} alkoxy;

and Q\textsubscript{2} may optionally be substituted on any available carbon atom with up to four substituents independently selected from halo, hydroxy, thio, nitro, carboxy, cyano, C\textsubscript{2-4} alkenyl (optionally substituted by up to three halo substituents, or by one trifluoromethyl substituent), C\textsubscript{2-4} alkynyl, C\textsubscript{1-5} alkanoyl, C\textsubscript{1-4} alkoxy carbonyl, C\textsubscript{1-5} alkyl, hydroxy-C\textsubscript{1-4} alkyl,
fluoro-C$_{1-4}$ alkyl, amino-C$_{1-3}$ alkyl, C$_{1-4}$ alkylamino-C$_{1-3}$ alkyl, di-(C$_{1-4}$ alkyl)amino-C$_{1-3}$ alkyl, cyano-C$_{1-4}$ alkyl, C$_{2-4}$ alkanoyloxy-C$_{1-4}$ alkyl, C$_{1-4}$ alkoxy-C$_{1-3}$ alkyl, carboxy-C$_{1-4}$ alkyl, C$_{1-4}$ alkoxy-carbonyl-C$_{1-4}$ alkyl, carbamoyl-C$_{1-4}$ alkyl, N-C$_{1-4}$ alkoxy-carbamoyl-C$_{1-4}$ alkyl, N,N-di-(C$_{1-4}$ alkyl)-carbamoyl-C$_{1-4}$ alkyl pyrrolidin-1-yl-C$_{1-3}$ alkyl, piperidino-C$_{1-3}$ alkyl, piperazin-1-yl-C$_{1-3}$ alkyl, morpholino-C$_{1-3}$ alkyl, thiomorpholino-C$_{1-3}$ alkyl, imidazo-1-yl-C$_{1-3}$ alkyl, piperazin-1-yl, morpholino, thiomorpholino, C$_{1-4}$ alkoxy, cyano-C$_{1-4}$ alkoxy, carbamoyl-C$_{1-4}$ alkoxy $N'-(C_{1-4}$ alkoxy-carbamoyl, C$_{1-4}$ alkoxy), N,N-di-(C$_{1-4}$ alkyl)-carbamoyl-C$_{1-4}$ alkoxy, 2-aminoethoxy, 2-C$_{1-4}$ alkylaminoethoxy, 2-di-(C$_{1-4}$ alkyl)aminoethoxy, C$_{1-4}$ alkoxy-carbonyl-C$_{1-4}$ alkoxy, halo-C$_{1-4}$ alkoxy, 2-hydroxyethoxy, C$_{2-4}$ alkanoyloxy-C$_{1-4}$ alkoxy, 2-C$_{1-4}$ alkoxyethoxy, carboxy-C$_{1-4}$ alkoxy, 2-pyrrolidin-1-yl-ethoxy, 2-piperidino-ethoxy, 2-piperazin-1-yl-ethoxy, 2-morpholino-ethoxy, 2-thiomorpholino-ethoxy, 2-imidazo-1-yl-ethoxy, C$_{3-5}$ alkenyloxy, C$_{3-5}$ alkynyloxy, C$_{1-4}$ alkylthio, C$_{1-4}$ alkylsulphinyl, C$_{1-4}$ alkylsulphonyl, hydroxy C$_{2-4}$ alkythio, hydroxy C$_{2-4}$ -alkylsulphinyl, hydroxy C$_{2-4}$ alkylsulphonyl, ureido, N'-(C$_{1-4}$ alkyl)ureido, N,N'-di-(C$_{1-4}$ alkyl)ureido, N'-(C$_{1-4}$ alkyl)-N-(C$_{1-4}$ alkyl)ureido, N,N'-di-(C$_{1-4}$ alkyl)-N-(C$_{1-4}$ alkyl)ureido, carbamoyl, N,N'-di-(C$_{1-4}$ alkyl)carbamoyl, N,N-di-(C$_{1-4}$ alkyl)carbamoyl, amino, C$_{1-4}$ alkyamino, di-(C$_{1-4}$ alkyl)amino, C$_{2-4}$ alkanoylamino, sulphamoyl, N-(C$_{1-4}$ 4alkyl) sulphamoyl, N,N-di-(C$_{1-4}$ alkyl)sulphamoyl, and also independently, or where appropriate in addition to, the above optional substituents, Q$_{2}$ may optionally be substituted on any available carbon atom with up to two further substituents independently selected from C$_{3-5}$ cycloalkyl, phenyl-C$_{1-4}$ alkyl, phenyl-C$_{1-4}$ -alkoxy, phenylthio, phenyl, naphthyl, benzoyl, phenoxy, benzimidazol-2-yl, and a 5- or 6-membered aromatic heterocycle (linked via a ring carbon atom and containing one to three heteroatoms independently selected from oxygen, sulphur and nitrogen); wherein said naphthyl, phenyl, benzoyl, phenoxy, 5- or 6-membered aromatic heterocyclic substituents and the phenyl group in said phenyl-C$_{1-4}$ alkyl, phenylthio and phenyl-C$_{1-4}$ alkoxy substituents may optionally be substituted with one or two substituents independently selected from halo, C$_{1-4}$ alkyl and C$_{1-4}$ alkoxy.

The compounds of structure (IV) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in International Publication No. WO 00/39101, which is incorporated herein by reference in its entirety (particularly at page 2, line 10 to page 6, line 12). Further, specific examples of these compounds can be found in this publication.

In another embodiment, the JNK inhibitor has the following structure (V):
wherein:

Ring A is imidazo(1,2a)pyrid-3-yl or pyrazolo(2,3a)pyrid-3-yl;

R² is attached to a ring carbon and is selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulhamoyl, C₁₋₄ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkylnyl, C₁₋₆ alkoxy, C₁₋₆ alkanoyloxy, N-(C₁₋₄ alkyl)aminog, N,N-(C₁₋₄ alkyl)amino, C₁₋₆ alkanoylamino, N-(C₁₋₄ alkyl)carbamoyl, N,N-(C₁₋₄ alkyl)₂ carbamoyl, C₁₋₆ alkylS(O)₂ wherein a is 0 to 2, C₁₋₆ alkoxy carbonyl, N-(C₁₋₄ alkyl)sulphamoyl, N,N-(C₁₋₄ alkyl)₂ sulphamoyl, phenyl, heterocyclic group, phenylthio or (heterocyclic group)thio; wherein any C₁₋₄ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, phenyl or heterocyclic group may be optionally substituted on carbon by one or more G; and wherein

if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from Q;

m is 0-5; wherein the values of R² may be the same or different;

R¹ is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulhamoyl, C₁₋₃ alkyl, C₂₋₃ alkenyl, C₂₋₃ alkylnyl, C₁₋₃ alkoxy, C₁₋₃ alkanoyl, N-(C₁₋₃ alkyl)amine, N,N-(C₁₋₂ alkyl)₂ amino, C₁₋₃ alkanoylamino, N-(C₁₋₃ alkyl)carbamoyl, N,N-(C₁₋₂ alkyl)₂ carbamoyl, C₁₋₃ alkylS(O)₂ wherein a is 0 to 2, N-(C₁₋₃ alkyl)sulphamoyl or N,N-(C₁₋₃ alkyl)₂ sulphamoyl; wherein any C₁₋₂ alkyl, C₁₋₃ alkyl, C₂₋₃ alkenyl or C₂₋₃ alkynyl may be optionally substituted on carbon by one or more J;

n is 0 to 2; wherein the values of R¹ may be the same or different;

Ring B is phenyl or phenyl fused to a C₅₋₇ cycloalkyl ring;

R³ is halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulhamoyl, C₂₋₆ alkenyl or C₂₋₆ alkynyl;

p is 0-4; wherein the values of R³ may be the same or different;

R⁴ is a group A-E; wherein
A is selected from C₁₋₆ alkyl, phenyl, a heterocyclic group, C₃₋₈ cycloalkyl, phenylC₁₋₆ alkyl, (heterocyclic group)C₁₋₆ alkyl or C₃₋₈ cycloalkyl C₁₋₆ cycloalkyl; which C₁₋₆ alkyl, phenyl, a heterocyclic group, C₃₋₈ cycloalkyl, phenyl C₁₋₆ alkyl, (heterocyclic group) C₁₋₆ alkyl, or C₃₋₈ cycloalkyl-C₁₋₆ cycloalkyl may be optionally substituted on carbon by one or more D; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R;

E is a direct bond or -O-, -C(O)-, -OC(O)-, -C(O)O-, -N(R¹)C(O)-, -C(O)N(R²)-, -N(R³)-, -S(O)₂N(R⁴)- or N(R⁴)SO₂⁻; wherein R¹ is hydrogen or C₁₋₆ alkyl optionally substituted by one or more D and r is 0-2;

D is independently selected from oxo, halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₁₋₆ alkoxy, C₁₋₆ alkanoyl, C₁₋₆ alkanoyloxy, N-(C₁₋₆ alkyl)amino, N,N-(C₁₋₆ alkyl)₂ amino, C₁₋₆ alkanoylamino, N-(C₁₋₆ alkyl)carbamoyl, N,N-(C₁₋₆ alkyl)₂ carbamoyl, C₁₋₆ alkylSO₃⁻ wherein a is 0 to 2, C₁₋₄ alkoxy carbonyl, C₁₋₆ alkoxy carbonylamino, benzylxycarbonylamino, N-(C₁₋₄ alkyl)sulphamoyl and N,N-(C₁₋₆ alkyl)₂ sulphamoyl; wherein any C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl or phenyl may be optionally substituted on carbon by one or more K;

q is 0-2; wherein the values of R⁴ may be the same or different; and wherein p + q ≤ 5;

G, J and K are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methyl carbamoyl, N-ethyl carbamoyl, N-diethyl carbamoyl, N,N-diethyl carbamoyl, N-methyl-N-ethyl carbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, N-methyl sulphamoyl, N-ethyl sulphamoyl, N,N-dimethyl sulphamoyl, N,N-diethyl sulphamoyl or N-methyl-N-ethyl sulphamoyl; and

Q and R are independently selected from C₁₋₄ alkyl, C₁₋₄ alkanoyl, C₁₋₄ alkyl sulphonyl, C₁₋₄ alkoxy carbonyl, carbamoyl, N-(C₁₋₄ alkyl) carbamoyl, N,N-(C₁₋₄ alkyl)₂ carbamoyl, benzyl, benzyloxy carbonyl, benzoyl and phenyl sulphonyl;

or pharmaceutically acceptable in vivo hydrolyzable esters, analogs, hydrolysis products, metabolites, salts, solvates, hydrates, clathrates, polymorphs, stereoisomers, derivatives and precursors thereof.

The compounds of structure (V) can be made using organic synthesis.
techniques known to those skilled in the art, as well as by the methods described in
International Publication No. WO 01/14375, which is incorporated herein by reference in its
entirety (particularly at page 2, line 4 to page 4, line 4). Further, specific examples of these
compounds can be found in this publication.

In another embodiment, the JNK inhibitor has the following structure (VI):

(VI)

wherein:

G is N, CH or C(CN);

ring X is a 5- or 6-membered fused heteroaryl ring which contains 1, 2 or 3
heteroatoms selected from oxygen, sulphur and nitrogen;

m is 0, 1 or 2;

R^1 is hydroxy, halo, trifluoromethyl, cyano, mercapto, nitro, amino, carboxy,
carbamoyl, formyl, sulphamoyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{1-6} alkynyl, C_{1-6} alkoxy, -O-(C_{1-3}
alkyl)-O-, C_{1-6} alkylS(O)_{n}- (wherein n is 0-2), N-C_{1-6} alkylamino, N,N-(C_{1-6} alkyl)_{2} amino, C_{1-6}
alkoxycarbonyl, N-C_{1-6} alky carbamoyl, N,N-(C_{1-6} alkyl)_{2} carbamoyl, C_{2-6} alkanoyl, C_{1-6}
alkanoyloxy, C_{1-6} alkanoylamino, N-C_{1-6} alkylsulphamoyl, N,N-(C_{1-6} alkyl)_{2} sul phamoyl, C_{1-6}
al kylsulphonamido, C_{1-6} alkylsulphonyl-N-(C_{1-6} alkyl) amino, or R^1 is of the Structure (IA):

A- (CH_{2})_{p}- B-

(VIA)

wherein A is halo, hydroxy, C_{1-6} alkoxy, C_{1-6} alkylS(O)_{n}- (wherein n is 0-2), cyano, amino,
N-C_{1-6} alkylamino, N,N-(C_{1-6} alkyl)_{2} amino, carboxy, C_{1-6} alkoxy carbonyl, carbamoyl, N-C_{1-6}
alkyl carbamoyl or N,N-(C_{1-6} alkyl)_{2} carbamoyl, p is 1-6, and B is a bond, oxy, imino, N-(C_{1-6}
al kyl)imino or -C(O)NH-, or R^1 is of the Structure (VIB):

D-E-

(VIB)
wherein D is aryl, heteroaryl or heterocyclyl and E is a bond, C₁₋₆ alkyne, C₁₋₆ alkylenoxy, oxy, imino, N-(C₁₋₆ alkyl)iminio, C₁₋₆ alkylenimino, N-(C₁₋₆ alkyl)-C₁₋₆ alkylenimino, C₁₋₆ alkylenoxy-C₁₋₆ alkyne, C₁₋₆ alkylenimino-C₁₋₆ alkylenoxy, N-(C₁₋₆ alkyl)-C₁₋₆ alkylenimino-C₁₋₆ alkylenoxy, -C(O)NH-, -SO₂NH-, -NHSO₄⁻ or C₂₋₆ alkanoylimino, and any aryl, heteroaryl or heterocyclyl group in a R¹ group may be optionally substituted with one or more groups selected from hydroxy, halo, C₁₋₆ alkyl, C₁₋₆ alkoxy, carboxy, C₁₋₆ alkoxy carbonyl, carbamoyl, N-C₁₋₆ alky carbamoyl, N-(C₁₋₆ alkyl), carbamoyl, C₂₋₆ alkanoyl, amino, N-C₁₋₆ alkylamino and N,N-(C₁₋₆ alkyl) amino, and any heterocyclyl group in a R¹ group may be optionally substituted with one or two oxo or thioxo substituents, and any of the R¹ groups defined hereinbefore which comprises a CH₂ group which is attached to 2 carbon atoms or a CH₃ group which is attached to a carbon atom may optionally be substituted on each said CH₂ or CH₃ group with a substituent selected from hydroxy, amino, C₁₋₆ alkoxy, N-C₁₋₆ alky lamino, N,N-(C₁₋₆ alkyl) amino and heterocyclyl;

R² is hydrogen, halo, C₁₋₆ alkyl, C₁₋₆ alkenyl or C₂₋₆ alkylnyl;
R³ is hydrogen, halo, C₁₋₆ alkyl, C₂₋₆ alkenyl or C₂₋₆ alkylnyl;
R⁴ is hydrogen, hydroxy, C₁₋₆ alkyl, C₁₋₆ alkoxy, amino, N-C₁₋₆ alky lamino, N,N-(C₁₋₆ alkyl), amino, hydroxy-C₂₋₆ alkoxy, C₁₋₆ alkoxy-C₂₋₆ alkoxy, amino-C₂₋₆ alkoxy, N-C₁₋₆ alky lamino-C₂₋₆ alkoxy, N,N-(C₁₋₆ alkyl), amino-C₂₋₆ alkoxy or C₃₋₇ cycloalkyl, or R⁴ is or the Structure (VIC):

\[-K-J\]

(VIC)

wherein J is aryl, heteroaryl or heterocyclyl and K is a bond, oxy, imino, N-(C₁₋₆ alkyl)iminio, oxy-C₁₋₆ alkyleny, imino-C₁₋₆ alkyleny, N-(C₁₋₆ alkyl)iminio-C₁₋₆ alkyleny,

-NHC(O)-, -SO₂NH-, -NHSO₄⁻ or -NHC(O)-C₁₋₆ alkyleny,-

and any aryl, heteroaryl or heterocyclyl group in a R⁴ group may be optionally substituted by one or more groups selected from hydroxy, halo, trifluoromethyl, cyano, mercapto, nitro, amino, carboxy, carbamoyl, formyl, sulphamoyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy, -O-(C₁₋₃ alkyl)-O-, C₁₋₆ alkylS(O)₃⁻ (wherein n is 0-2), N-C₁₋₆ alky lamino, N,N-(C₁₋₆ alkyl)₂ amino, C₁₋₆ alkoxy carbonyl, N-C₁₋₆ alky carbamoyl, N,N-(C₁₋₆ alkyl)₂ carbamoyl, C₂₋₆ alkanoyl, C₁₋₆ alkanoyloxy, C₁₋₆ alkanoylamino, N-C₁₋₆ alky lsul phamoyl, N,N-(C₁₋₆ alkyl)₂ sul phamoyl, C₁₋₆ alky l sulphonylamino and C₁₋₆ alky l sulphonyl-N-(C₁₋₆ alkyl) amino, or any aryl, heteroaryl or heterocyclyl group in a R⁴ group may be optionally substituted with one or more groups of the Structure (VIA¹):

35
\[-B^1 - (\text{CH}_2)_p - A^1\]

(VIA')

wherein A^1 is halo, hydroxy, C$_{1-6}$ alkoxy, cyano, amino, N-C$_{1-6}$ alkylamino,

N,N-(C$_{1-6}$ alkyl)$_2$ amino, carboxy, C$_{1-6}$ alkoxy carbonyl, carbamoyl, N-C$_{1-6}$ alkyl carbamoyl or N,N-(C$_{1-6}$ alkyl)$_2$ carbamoyl, p is 1 - 6, and B1 is a bond, oxy, imino, N-(C$_{1-6}$ alkyl) imino or -NHC(O)-, with the proviso that p is 2 or more unless B1 is a bond or -NHC(O)-, or any aryl, heteroaryl or heterocycl group in a R4 group may be optionally substituted with one or more groups of the Structure (VIB1):

\[-E^1 - D^1\]

(VIB1)

wherein D1 is aryl, heteroaryl or heterocycl and E1 is a bond, C$_{1-6}$ alkylene, oxy-C$_{1-6}$ alkylene, oxy, imino, N-(C$_{1-6}$ alkyl) imino, imino-C$_{1-6}$ alkylene, N-(C$_{1-6}$ alkyl)-iminoC$_{1-6}$ alkylene, C$_{1-6}$ alkylene-oxy-C$_{1-6}$ alkylene, C$_{1-6}$ alkylene-imino-C$_{1-6}$ alkylene, C$_{1-6}$ alkylene-N-(C$_{1-6}$ alkyl)-imino-C$_{1-6}$ alkylene, -NHC(O)-, -NH$_2$, -SO$_2$NH- or -NHC(O)-C$_{1-6}$ alkylene-, and any aryl, heteroaryl or heterocycl group in a substituent on R4 may be optionally substituted with one or more groups selected from hydroxy, halo, C$_{1-6}$ alkyl, C$_{1-6}$ alkoxy, carboxy, C$_{1-6}$ alkoxy carbonyl, carbamoyl, N-C$_{1-6}$ alkyl carbamoyl, N-(C$_{1-6}$ alkyl)$_2$ carbamoyl, C$_{2-6}$ alkanoyl, amino, N-C$_{1-6}$ alkylamino and N,N-(C$_{1-6}$ alkyl)$_2$ amino, and any C$_{3-7}$ cycloalkyl or heterocycl group in a R4 group may be optionally substituted with one or two oxo or thiao substituents, and any of the R4 groups defined hereinbefore which comprises a CH$_2$ group which is attached to 2 carbon atoms or a CH$_3$ group which is attached to a carbon atom may optionally be substituted on each said CH$_2$ or CH$_3$ group with a substituent selected from hydroxy, amino, C$_{1-6}$ alkoxy, N-C$_{1-6}$ alkylamino, N,N-(C$_{1-6}$ alkyl)$_2$ amino and heterocycl;

R3 is hydrogen, halo, trifluoromethyl, cyano, nitro, amino, hydroxy, C$_{1-6}$ alkyl, C$_{2-6}$ alkenyl, C$_{2-6}$ alkynyl, C$_{1-6}$ alkoxy, N-C$_{1-6}$ alkylamino or N,N-(C$_{1-6}$ alkyl)$_2$ amino; q is 0, 1, 2, 3 or 4.

The compounds of structure (VI) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in International Publication No. WO 00/56738, which is incorporated herein by reference in its entirety (particularly at page 3, line 25 to page 6, line 13). Further, specific examples of these compounds can be found in this publication.

In another embodiment, the JNK inhibitor has the following structure (VII):
wherein \(m \) is 0, 1, 2 or 3 and \(R^1 \) group, which may be the same or different, is

- selected from hydroxy, halogen, trifluoromethyl, cyano, mercapto, nitro, amino, carboxy, carbamoyl, formyl, sulphanoyl, \(C_{1-6} \) alkyl, \(C_{1-6} \) alkoxy, \(C_{1-6} \) alkythio, \(C_{1-6} \) alkoxy carbonyl, \(N-C_{1-6} \) alkyl carbamoyl, \(N,N\)-di-(\(C_{1-6} \) alkyl) carbamoyl, \(C_{2-6} \) alkanoyl, \(C_{2-6} \) alkanoyloxy, \(C_{2-6} \) alkanoylamino, \(N-C_{1-6} \) alkyl-\(C_{2-6} \) alkanoylamino, \(N-C_{1-6} \) alkyl sulphanoyl, \(N,N\)-di\((C_{1-6} \) alkyl)sulphanoyl, \(C_{1-6} \) alkanesulphonylamino and \(N-C_{1-6} \) alkanesulphonylamino, or from a

group of the structure:

\[
Q^2 - X^1 -
\]

wherein \(X^1 \) is a direct bond or is selected from O, S, SO, SO_2, N(R^4), CO, CH(OR^4), CON(R^4), N(R^4)CO, SO_2N(R^4), N(R^4)SO_2, OC(R^4)_2, SC(R^4)_2, and N(R^4)C(R^4)_2, wherein each \(R^4 \) is hydrogen or \(C_{1-6} \) alkyl, and \(Q^2 \) is aryl, \(C_{1-6} \) alkyl, heteroaryl-\(C_{1-6} \) alkyl, heterocyclyl

- or heterocyclyl-\(C_{1-6} \) alkyl, or \((R^4 \)) is \(C_{1-3} \) alkyl enedioxy,

and wherein a single pair of adjacent carbon atoms in a \(C_{2-6} \) alkylene chain within a \(R^1 \) substituent is optionally separated by the insertion of a group selected from O, S, SO, SO_2, N(R^3), CO, CH(OR^3), CON(R^3), N(R^3)CO, SO_2N(R^3) and N(R^3)SO_2 wherein \(R^3 \) is hydrogen or \(C_{1-6} \) alkyl,

- and wherein any aryl, heteroaryl or heterocyclyl group within a substituent on \(R^1 \) optionally is substituted with 1,2 or 3 substituents, which may be the same or different, selected from halogeno, trifluoromethyl, cyano, nitro, hydroxy, amino, carboxy, carbamoyl, \(C_{1-6} \) alkyl, \(C_{1-6} \) alkoxy, \(C_{1-6} \) alkythio, \(C_{1-6} \) alkyl sulphiny, \(C_{1-6} \) alkyl sulphonyl, \(C_{1-6} \) alkyl amine, di-(\(C_{1-6} \) alkyl) amine, \(C_{1-6} \) alkoxy carbonyl, \(N-C_{1-6} \) alky carbamoyl, \(N,N\)-di-(\(C_{1-6} \) alkyl) car bamoyl, \(C_{2-6} \) alkanoyl, \(C_{1-6} \) alkanoyloxy, \(C_{1-6} \) alkanoylamino, \(N-C_{1-6} \) alkyl-\(C_{1-6} \) alkanoylamino, \(N-C_{1-6} \) alkyl sulphanoyl, \(N,N\)-di-(\(C_{1-6} \) alkyl)sulphanoyl, \(C_{1-6} \) alkanesulphonylamino and \(N-C_{1-6} \) alkyl-\(C_{1-6} \) alkanesulphonylamino, or from a group of the structure:

\[
-X^2-Q^3
\]
wherein \(X^2 \) is a direct bond or is selected from O and N(R'), wherein R' is hydrogen or C\(_{1-6}\) alkyl, and Q\(^3\) is aryl, aryl-C\(_{1-6}\) alkyl, heteroaryl, heteroaryl-C\(_{1-6}\) alkyl, heterocyclyl or heterocyclyl-C\(_{1-6}\) alkyl, and any group optionally is substituted with 1 or 2 substituents, which may be the same or different, selected from halogeno, trifluoromethyl, cyano, hydroxy, amino, C\(_{1-6}\) alkyl, C\(_{1-6}\) alkoxy, C\(_{1-6}\) alkylamino and di-(C\(_{1-6}\) alkyl)amino, and wherein any heterocyclyl group within a substituent on R' optionally is substituted with 1 or 2 oxo or thioxo substituents, and wherein any CH\(_2\) or CH\(_3\) group within a R\(^1\) substituent optionally is substituted with on each said CH\(_2\) or CH\(_3\) group one or more halogeno or C\(_{1-6}\) alkyl substituents or a substituent selected from hydroxy, cyano, amino, carboxy, carbamoyl, C\(_{1-6}\) alkoxy, C\(_{1-6}\) alkylthio, C\(_{1-6}\) alkysulphinyl, C\(_{1-6}\) alkysulphonyl, C\(_{1-6}\) alkylamino, di-(C\(_{1-6}\) alkyl)amino, C\(_{1-6}\) alkoxy carbonyl, N(-C\(_{1-6}\) alkylcarbamoyl, N-N-di-(C\(_{1-6}\) alkyl)carbamoyl, C\(_{2-6}\) alkanoyl, C\(_{2-6}\) alkanoyloxy, C\(_{2-6}\) alkanoylamino, N-C\(_{1-6}\) alkyl-C\(_{1-6}\) alkanoylamino, N-C\(_{1-6}\) alkyisulphamoyl, N-N-di-(C\(_{1-6}\) alkyl)sulphamoyl, C\(_{1-6}\) alkanesulphonylamino and N-C\(_{1-6}\) alky-C\(_{1-6}\) alkanesulphonylamino;

\[R^3 \] is hydrogen, halogeno or C\(_{1-6}\) alkyl;

\[n \] is 0, 1 or 2 and each R\(^2\) group, which may be the same or different, is selected from hydroxy, halogeno, trifluoromethyl, cyano, mercapto, nitro, amino, carboxy, C\(_{1-6}\) alkoxy carbonyl, C\(_{1-6}\) alkyl, C\(_{1-6}\) alkoxy, C\(_{1-6}\) alkylamino and di-(C\(_{1-6}\) alkyl)amino;

\[p \] is 0, 1, 2, 3 or 4; and

Q\(^1\) is aryl or heteroaryl and Q\(^1\) is optionally substituted with 1, 2 or 3 substituents, which may be the same or different, selected from hydroxy, halogen, trifluoromethyl, cyano, mercapto, nitro, amino, carboxy, carbamoyl, formyl, C\(_{1-6}\) alkyl, C\(_{1-6}\) alkoxy, C\(_{1-6}\) alkylthio, C\(_{1-6}\) alkysulphinyl, C\(_{1-6}\) alkysulphonyl, C\(_{1-6}\) alkylamino, di-(C\(_{1-6}\) alkyl)amino, C\(_{1-6}\) alkoxy carbonyl, N(-C\(_{1-6}\) alkylcarbamoyl, N-N-di-(C\(_{1-6}\) alkyl)carbamoyl, C\(_{2-6}\) alkanoyl, C\(_{2-6}\) alkanoyloxy, C\(_{2-6}\) alkanoylamino, N-C\(_{1-6}\) alkyl-C\(_{1-6}\) alkanoylamino, N-C\(_{1-6}\) alkyisulphamoyl, N-N-di-(C\(_{1-6}\) alkyl)sulphamoyl, C\(_{1-6}\) alkanesulphonylamino and N-C\(_{1-6}\) alky-C\(_{1-6}\) alkanesulphonylamino or with a C\(_{1-3}\) alkylenedioxy group, or from a group of the structure:

\[-X^2 - Q^1\]

wherein X\(^2\) is a direct bond or is selected from O and N(R^8), wherein R^8 is hydrogen or C\(_{1-6}\) alkyl, and Q\(^4\) is aryl, aryl-C\(_{1-6}\) alkyl, heteroaryl, heteroaryl-C\(_{1-6}\) alkyl, heterocyclyl or heterocyclyl-C\(_{1-6}\) alkyl, and any group optionally is substituted with 1 or 2 substituents, which may be the same or different, selected from halogeno, trifluoromethyl, cyano, hydroxy, amino, C\(_{1-6}\) alkyl, C\(_{1-6}\) alkoxy, C\(_{1-6}\) alkylamino and di-(C\(_{1-6}\) alkyl)amino,
and wherein any heterocyclic group within a substituent on Q\(^1\) optionally is substituted with 1 or 2 oxo or thioxo substituents,

and wherein a single pair of adjacent carbon atoms in a C\(_{2-6}\) alkyne chain within a Q\(^1\) substituent is optionally separated by the insertion of a group selected from O, S, SO, SO\(_2\), N(R\(^3\)), CO, CH(OR\(^3\)), CON(R\(^3\)), N(R\(^3\))CO, SO\(_2\)N(R\(^3\)) and N(R\(^3\))SO\(_2\) wherein R\(^3\) is hydrogen or C\(_{1-6}\) alkyl,

and wherein any CH\(_2\) or CH\(_3\) group within a group optionally is substituted on each said CR\(_2\) or CH\(_3\) group with one or more halogen or C\(_{1-6}\) alkyl substituents or a substituent selected from hydroxy, cyano, amino, carboxy, carbamoyl, C\(_{1-6}\) alkoxy, C\(_{1-6}\) alkylthio, C\(_{1-6}\) alkylsulphinyl, C\(_{1-6}\) alkylsulphonyl, C\(_{1-6}\) alkylamino, di-(C\(_{1-6}\) alkyl)amino, C\(_{1-6}\) alkoxy carbonyl, N-C\(_{1-6}\) alkyl carbamoyl, N,N-di-(C\(_{1-6}\) alkyl) carbamoyl, C\(_{1-6}\) alkanoyl, C\(_{1-6}\) alkanoyloxy, C\(_{1-6}\) alkanoylamino, N-C\(_{1-6}\) alkyl-C\(_{1-6}\) alkanoylamino N-C\(_{1-6}\) alkylsulphamoyl, N,N-di-(C\(_{1-6}\) alkyl)sulphamoyl, C\(_{1-6}\) alkanesulphonylamino and N-C\(_{1-6}\) alkyl-C\(_{1-6}\) alkanesulphonylamino.

The compounds of structure (VII) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in International Publication No. WO 01/27089, which is incorporated herein by reference in its entirety (particularly at page 3, line 7 to page 5, line 29). Further, specific examples of these compounds can be found in this publication.

In another embodiment, the JNK inhibitor has the following structure (VIII):

![Structure VIII](image)

wherein:

R\(^1\) is selected from C\(_{1-6}\) alkyl (optionally substituted by one or two substituents independently selected from halo, amino, C\(_{1-4}\) alkylamino, di-(C\(_{1-4}\) alkyl)amino, hydroxy, cyano, C\(_{1-4}\) alkoxy, C\(_{1-4}\) alkoxy carbonyl, carbamoyl, -N\(_2\)CO C\(_{1-4}\) alkyl, trifluoromethyl, phenylthio, phenoxy, pyridyl, morpholino), benzyl, 2-phenylethyl, C\(_{3-5}\) alkenyl (optionally substituted by up to three halo substituents, or by one trifluoromethyl substituent, or one phenyl substituent), N-phthalimido-C\(_{1-4}\) alkyl, C\(_{3-5}\) alkynyl (optionally substituted by one phenyl substituent) and C\(_{3-6}\) cycloalkyl-C\(_{1-6}\) alkyl;
wherein any phenyl or benzyl group of \(R^1 \) is optionally substituted by up to three substituents independently selected from halogeno, hydroxy, nitro, amino, \(C_{1-3} \) alkylamino, di-(\(C_{1-3} \) alkyl)amino, cyano, trifluoromethyl, \(C_{1-3} \) alkyl (optionally substituted by 1 or 2 substituents independently selected from halogeno, cyano, amino, \(C_{1-3} \) alkylamino, di-(\(C_{1-3} \) alkyl)amino, hydroxy and trifluoromethyl), \(C_{1-3} \) alkenyl (optionally substituted by up to three halo substituents, or by one trifluoromethyl substituent), \(C_{1-3} \) alkynyl, \(C_{1-3} \) alkoxy, -SH, -S-\(C_{1-3} \) alkyl, carboxy, \(C_{1-3} \) alkoxy carbonyl;

\(Q_1 \) and \(Q_2 \) are independently selected from phenyl, naphthyl, indanyl and 1,2,3,4-tetrahydronaphthyl;

and one or both of \(Q_1 \) and \(Q_2 \) is substituted on any available carbon atom with one substituent of the structure (VIIIa) and \(Q_2 \) may optionally be substituted on any available carbon atom with further substituents of the structure (VIIIa):

\[
\begin{array}{c}
X \\
(\text{CH}_2)_n \\
\vdots \\
(\text{CH}_2)_m - Z
\end{array}
\]

(VIIIa)

(provided that when present in \(Q_1 \) the substituent of structure (VIIIa) is not adjacent to the -NH-link);

wherein:

\(X \) is CH\(_2\), O, S, NH or NR\(_x\) (wherein R\(_x\) is \(C_{1-4} \) alkyl, optionally substituted by one substituent selected from halo, amino, cyano, \(C_{1-4} \) alkoxy or hydroxy);

\(Y \) is H or as defined for Z;

\(Z \) is OH, SH, NH\(_2\), \(C_{1-4} \) alkoxy, \(C_{1-4} \) alkylthio, -NH \(C_{1-4} \) alkyl, -N(\(C_{1-4} \) alkyl)\(_2\), -NH-C\(_{3-8}\) cycloalkyl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, (optionally substituted in the 4-position by \(C_{1-4} \) alkyl or \(C_{1-4} \) alkanoyl), morpholino or thiomorpholino;

n is 1, 2 or 3;

m is 1, 2 or 3;

\(Q_1 \) and \(Q_2 \) may each optionally and independently be substituted on any available carbon atom with up to four substituents independently selected from halogeno, hydroxy, thio, nitro, carboxy, cyano, \(C_{2-4} \) alkenyl (optionally substituted by up to three halo substituents, or by one trifluoromethyl substituent), \(C_{2-4} \) alkynyl, \(C_{1-4} \) alkanoyl, \(C_{1-4} \) alkoxy carbonyl, \(C_{1-6} \) alkyl, hydroxy-\(C_{1-6} \) alkyl, fluoro-\(C_{1-4} \) alkyl, amino-\(C_{1-3} \) alkyl, \(C_{2-4} \) alkanoyloxy-\(C_{1-4} \)-alkyl, \(C_{1-4} \) alkoxy-\(C_{1-3} \) alkyl, carboxy-\(C_{1-4} \) alkyl, \(C_{1-4} \) alkoxy carbonyl-\(C_{1-4} \),
alkyl, carbamoyl-C₁-alkyl, N-C₁-alkylcarbamoyl-C₁-alkyl, N,N-di-(C₁
alkyl)-carbamoyl-C₁-alkyl, pyrrolidin-1-yl-C₁-alkyl, piperidin-1-yl-C₁-alkyl, piperazin-1-yl-C₁-alkyl, morpholino-C₁-alkyl, thiomorpholino-C₁-alkyl, piperazin-1-yl, morpholino, thiomorpholino, C₁-alkoxy, cyano-C₁-alkoxy, carbamoyl-C₁-alkoxy,
N-C₁-alkylcarbamoyl-C₁-alkoxy, N,N-di-(C₁-alkyl)-carbamoyl C₁-alkoxy
2-aminoethoxy, 2-C₁-alkylaminoethoxy, 2-di-(C₁-alkyl)aminoethoxy,
C₁-alkoxy carbonyl-C₁-alkoxy, halogeno-C₁-alkoxy, 2-hydroxyethoxy, C₂-alkanoyloxy-C₂-alkoxy, 2-C₁-alkoxyethoxy, carboxy-C₁-alkoxy,
C₃-alkenyl oxy, C₃-alkynyl oxy, C₁-alkylthio, C₁-alkylsulphonyl, C₁-alkylsulphonyl,
hydroxy-C₂-alkylthio, hydroxy-C₂-alkylsulphinyl, hydroxy
C₂-alkylsulphinyl, ureido (H₂N-CO-NH-), C₁-alkyl NH-CO-NH-,di-(C₁
alkyl)-N-CO-NH-, C₁-alkyl NH-CO-N(C₁-alkyl), di-(C₁-alkyl)N-CO-N(C₁-alkyl),
carbamoyl, N-(C₁-alkyl)carbamoyl, N,N-di-(C₁-alkyl)carbamoyl, amino, C₁-alkylamino,
di-(C₁-alkyl)amino, C₂-alkanoylamino,
and also independently, or where appropriate in addition to, the above optional
substituents, Q₁ and/or Q₂ may optionally be substituted on any available carbon atom with
up to two further substituents independently selected from C₃-cycloalkyl, phenyl-C₁-alkyl, phenyl-C₁-alkoxy, phenylthio, phenyl, naphthyl, benzoyl, phenoxy, benzimidazol-2-yl and
a 5- or 6-membered aromatic heterocycle (linked via a ring carbon atom and containing one
to three heteroatoms independently selected from oxygen, sulphur and nitrogen); wherein
said naphthyl, phenyl, benzoyl, 5- or 6-membered aromatic heterocyclic substituents and the
phenyl group in said phenyl-C₁-alkyl, phenylthio, phenoxy and phenyl-C₁-alkoxy
substituents may optionally be substituted with up to five substituents independently
selected from halogeno, C₁-alkyl and C₁-alkoxy.

The compounds of structure (VIII) can be made using organic synthesis
techniques known to those skilled in the art, as well as by the methods described in
International Publication No. WO 00/12468, which is incorporated herein by reference in its
entirety (particularly at page 2, line 10 to page 4, line 14). Further, specific examples of
these compounds can be found in this publication.

In another embodiment, the JNK inhibitor has the following structure (IX):

![Structure IX](https://i.imgur.com/xyz.png)
wherein:

X is O, S or NR\(^0\), with R\(^0\) being H or an unsubstituted or substituted C\(_1\)-C\(_6\)-alkyl;

G is an unsubstituted or substituted pyrimidinyl group;

R\(^1\) is selected from the group comprising or consisting of hydrogen, unsubstituted or substituted C\(_1\)-C\(_6\)-alkoxy, unsubstituted or substituted C\(_1\)-C\(_6\)-thioalkoxy, unsubstituted or substituted C\(_1\)-C\(_6\)-alkyl, unsubstituted or substituted C\(_2\)-C\(_6\)-alkenyl, unsubstituted or substituted C\(_2\)-C\(_6\)-alkynyl, primary, secondary or tertiary amino groups, aminoacyl, aminocarbonyl, unsubstituted or substituted C\(_1\)-C\(_6\)-alkoxycarbonyl, unsubstituted or substituted aryI, unsubstituted or substituted heteroaryl, carboxyl, cyano, halogen, hydroxy, nitro, sulfoxyl, sulfanyl, sulfonamide, unsubstituted or substituted hydrazides;

R\(^2\) is selected from the group comprising or consisting of hydrogen, unsubstituted or substituted C\(_1\)-C\(_6\)-alkyl, unsubstituted or substituted C\(_2\)-C\(_6\)-alkenyl, unsubstituted or substituted C\(_2\)-C\(_6\)-alkynyl, unsubstituted or substituted C\(_1\)-C\(_6\)-alkyl-aryl, unsubstituted or substituted aryl or heteroaryl, unsubstituted or substituted C\(_1\)-C\(_6\)-alkyl-heteroaryl, -C(O)-OR\(^3\), -C(O)-R\(^3\), -C(O)-NR\(^3\)R\(^3'\), -(SO\(_2\))R\(^3\), with

R\(^3\) and R\(^3'\) being independently selected from the group comprising or consisting of hydrogen, unsubstituted or substituted C\(_1\)-C\(_6\) alkyl, unsubstituted or substituted C\(_2\)-C\(_6\) alkenyl, unsubstituted or substituted C\(_2\)-C\(_6\) alkynyl, unsubstituted or substituted aryl,

unsubstituted or substituted heteroaryl, unsubstituted or substituted C\(_1\)-C\(_6\)-alkyl aryl, unsubstituted or substituted C\(_1\)-C\(_6\)-alkyl heteroaryl.

The compounds of structure (IX) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in European Patent Publication 1 110 957, filed December 24, 1999 which is incorporated herein by reference in its entirety (particularly at page 19, line 52 to page 21, line 9). Further, specific examples of these compounds can be found in this publication.

In another embodiment, the JNK inhibitor has the following structure (X):

![Structure X](image-url)
wherein:

\[Y \text{ is from } O, \text{NH, N}(R), S, S(O) \text{ or } S(O)_2. \]

\[X \text{ is from } O, \text{NH, or N}(R). \]

R₁ and R₂ are each independently selected from H, a C₁-C₈ straight chain or branched alkyl or alkenyl group, optionally substituted with one to four substituents, each of which is independently selected from NH₂, NHR, N(R)₂, NO₂, OH, OR, CF₃, halo, CN, CO₂H, CONH₂, CONHR, CON(R)₂, COR, SR, S(O)R, S(O)₂R, S(O)₂NH₂, S(O)₂NHR or R; a 5-7 membered aromatic or non-aromatic carbocyclic or heterocyclic ring, optionally substituted with one to four substituents, each of which is independently selected from NH₂, NHR, N(R)₂, NO₂, OH, OR, CF₃, halo, CN, CO₂H, CONH₂, CONHR, CON(R)₂, COR, SR, S(O)R, S(O)₂R, S(O)₂NH₂, S(O)₂NHR or R; or a 9-10 membered bicyclic aromatic or non-aromatic carbocyclic or heterocyclic ring optionally substituted with one to four substituents, each of which is independently selected from NH₂, NHR, N(R)₂, NO₂, OH, OR, CF₃, halo, CN, CO₂H, CONH₂, CONHR, CON(R)₂, COR, SR, S(O)R, S(O)₂R, S(O)₂NH₂, S(O)₂NHR or R.

The compounds of structure (X) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in International Publication No. WO 00/75118, which is incorporated herein by reference in its entirety (particularly at page 8, line 10 to page 11, line 26). Further, specific examples of these compounds can be found in this publication.

In another embodiment, the JNK inhibitor has the following structure (XI):

\[
\text{G} \quad \text{Q-NH-R₁}
\]

(XI)

wherein:

X-Y-Z is selected from one of the following:

\[
\begin{align*}
\text{N-O-} & \quad \text{O-N-} \\
\text{R}^2 & \quad \text{R}^2 \quad \text{R}^3 \quad \text{R}^3 \\
\end{align*}
\]
R₁ is H, CONH₂, T₁(R), or T₁(Ar);
R is an aliphatic or substituted aliphatic group;
n is zero or one;
T is C(=O), CO₂, CONH, S(O)₂, S(O)₂NH, COCH₂, or CH₂;
each R² is independently selected from hydrogen, -R₂, -CH₂OR, -CH₂OH, -CH=O,
-CH₂SR, -CH₂(O)₂R, -CH₂(C=O)R, -CH₂CO₂R, -CH₂CO₂H, -CH₂CN, -CH₂NHR,
-CH₂N(R)₂, -CH=N-OR, -CH=NNHRC, -CH=NNHNCOR, -CH=NNHCO₂R,
-CH=NNHSO₂R, -aryl, -substituted aryl, -CH₂(aryl), -CH₂(substituted aryl), -CH₂NH₂,
-CH₂NHCOR, -CH₂NHCONHRC, -CH₂NHCON(R)₂, -CH₂NRCOR, -CH₂NHCO₂R,
-CH₂CONHRC, -CH₂CON(R)₂, -CH₂SO₂NH₂, -CH₂(heterocyclicyl), -CH₂ (substituted
heterocyclicyl), -(heterocyclicyl), or -(substituted heterocyclicyl);
each R³ is independently selected from hydrogen, R, COR, CO₂R, or S(O)₂R;
G is R or Ar¹;
Ar¹ is aryl, substituted aryl, aralkyl, substituted aralkyl, heterocyclicyl, or substituted
heterocyclicyl, wherein Ar¹ is optionally fused to a partially unsaturated or fully unsaturated
five to seven membered ring containing zero to three heteroatoms;
Q-NH is
\[
\begin{array}{c}
\text{NH} \\
\text{H} \\
\text{A} \\
\text{N} \\
\text{A} \\
\text{NH}
\end{array}
\text{or}
\begin{array}{c}
\text{NH} \\
\text{H} \\
\text{A} \\
\text{N} \\
\text{U} \\
\text{NH}
\end{array}
\]
wherein the H of Q-NH is optionally replaced by R³;
A or N or CR³;
U is CR³, O, S, or NR³;
Ar² is aryl, substituted aryl, heterocyclicyl or substituted heterocyclicyl, wherein Ar² is
optionally fused to a partially unsaturated or fully unsaturated five to seven membered ring
containing zero to three heteroatoms; and
wherein each substitutable carbon atom is Ar², including the fused ring when
present, is optionally and independently substituted by halo, R, OR, SR, OH, NO₂, CN,
NH₂, NHR, N(R)₂, NHCOR, NHCONHR, NHCON(R)₂, NRCOR, NHCO₂R, CO₂R, CO₂H,
COR, CONHR, CON(R)₂, S(O)₂R, SONH₂, S(O)R, SO₂NHR, or NHS(O)₂R, and wherein
each saturated carbon in the fused ring is further optionally and independently substituted by
=O, =S, =NNHR, =NNR₂, =N-OR, =NNHCOR, =NNHCO₂R, =NNHSO₂R, =NNHSO₂R, or
=NR;
wherein each substitutable nitrogen atom in Ar² is optionally substituted by R, COR,
S(O)\textsubscript{2}R, or CO\textsubscript{2}R.

The compounds of structure (XI) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in International Publication No. WO 01/12621, which is incorporated herein by reference in its entirety (particularly at page 8, line 10 to page 10, line 7). Further, specific examples of these compounds can be found in this publication.

In another embodiment, the JNK inhibitor has the following structure (XII) or (XIII):

\begin{align*}
\text{(XII)} & & \text{(XIII)} \\
\end{align*}

wherein:

Y is -(CH\textsubscript{2})\textsubscript{2}Q; -(CO)-Q; -(CO)NH-Q; -(CO)-O-Q; -(SO\textsubscript{2})-Q; or -(SO\textsubscript{2})NH-Q;

Q is a C\textsubscript{1}-C\textsubscript{6} straight chain or branched alkyl or alkenyl group; a 5-7 membered aromatic or non-aromatic carbocyclic or heterocyclic ring; or a 9-14 membered bicyclic or tricyclic aromatic or non-aromatic carbocyclic or heterocyclic ring system, wherein said alkyl, alkenyl, ring or ring system is optionally substituted with one to four substituents, each of which is independently selected from NH\textsubscript{2}, NH-R, N(R)\textsubscript{2}, NO\textsubscript{2}, OH, OR, CF\textsubscript{3}, halo, CN, CO\textsubscript{2}H, C(O)-NH\textsubscript{2}, C(O)-NH-R, C(O)-N(R)\textsubscript{2}, C(O)-R, SR, S(O)-R, S(O)\textsubscript{2}-R, S(O)\textsubscript{2}-NH-R or -R, the heterocyclic ring system and heterocyclic ring containing 1 to 4 heteroatoms, which are independently selected from N, O, S, SO and SO\textsubscript{2};

W is N or C, when W is N, R\textsubscript{8} is a lone pair of electrons, when W is C, R\textsubscript{8} is R\textsubscript{7};

A\textsubscript{1} is N or CR1;
A\textsubscript{2} is N or CR2;
A\textsubscript{3} is N or CR3;
A\textsubscript{4} is N or CR4;

provided that at least one of A\textsubscript{1}, A\textsubscript{2}, A\textsubscript{3} and A\textsubscript{4} must not be N;

R1 is -NHR5, -OR5, -SR5, or -R5;
R2, R3, and R4 are independently selected from -(CO)NH\textsubscript{2}, -(CO)NHR, -(CO)N(R)\textsubscript{2}, -NHR3, -NHCH\textsubscript{2}R3, -OR3, -SR3, -R3, -NH(CO)-R6, -NH(CO)-NHR6, -NH(CO)-NH(CO)R6, -NH(CO)-OR6, -NH(SO\textsubscript{2})-R6, -NH(SO\textsubscript{2})-NHR6, -C(O)OH, -C(O)OR, -(CO)-Q\textsubscript{1}, -(CO)

NH-Q\textsubscript{1}, -(CO) NR-Q\textsubscript{1}, -(CO)-O-Q\textsubscript{1}, -(SO\textsubscript{2})-Q\textsubscript{1} or -(SO\textsubscript{2})NH-Q\textsubscript{1};
R₅ and R₆ are each independently selected from H; N(R)₂, NHOH, NO₂, C(O)OR or halo; a C₁-C₆ straight chain or branched alkyl, alkenyl or alkynyl group; a 5-7 membered aromatic or non-aromatic carbocyclic or heterocyclic ring; or a 9-14 membered bicyclic or tricyclic aromatic or non-aromatic carbocyclic or heterocyclic ring, wherein said alkyl, alkenyl, ring or ring system is optionally substituted with one to four substituents, each of which is independently selected from NH₂, NHR, NHC(O)OR, N(R)₂, NO₂, OH, OR, CF₃, halo, CN, Si(R)₃, CO₂H, COOR, CONH₂, CONHNR, CON(R)₂, COR, SR, S(O)R, S(O)₂R, S(O)₂NHR or R;

R⁷ is H; a C₁-C₆ straight chain or branched alkyl or alkenyl group; a 5-7 membered aromatic or non-aromatic carbocyclic or heterocyclic ring; or a 9-14 membered bicyclic or tricyclic aromatic or non-aromatic carbocyclic or heterocyclic ring; wherein said alkyl, alkenyl, ring or ring system is optionally substituted with one to four substituents, each of which is independently selected from NH₂, NHR, N(R)₂, NO₂, OH, OR, CF₃, halo, CN, CO₂H, CONH₂, CONHNR, CON(R)₂, COR, SR, S(O)R, S(O)₂R, S(O)₂NHR or R;

R is a C₁-C₆ straight chain or branched alkyl or alkenyl group, a 5-7 membered aromatic or non-aromatic carbocyclic or heterocyclic ring, or a 9-10 membered bicyclic aromatic or non-aromatic carbocyclic or heterocyclic ring system; and

Z is CH or N.

The compounds of structure (XII) and structure (XIII) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in International Publication No. WO 00/64872, which is incorporated herein by reference in its entirety (particularly at page 9, line 1 to page 106, line 2). Further, specific examples of these compounds can be found in this publication.

In another embodiment, the JNK inhibitor has the following structure (XIV):

\[
\begin{align*}
\text{Ar}^1 & \quad \text{N} \quad \text{CH}_2 \text{n} \quad \text{Ar}^2 \quad \text{SO}_2 \quad \text{Y} \\
& \quad \text{X} \quad \text{R}^1
\end{align*}
\]

(XIV)

wherein:

Ar¹ and Ar² are independently from each other aryl or heteroaryl,
X is O or S;
R¹ is hydrogen or a C₁-C₆-alkyl group, or R¹ forms a 5-6-membered saturated or unsaturated ring with Ar¹;
n is an integer from 0 to 5;
Y is an optionally substituted 4-12-membered saturated cyclic or bicyclic alkyl containing a nitrogen, which forms a bond with the sulfonyl group of formula XIV.

The compounds of structure (XIV) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in International Publication No. WO 01/23378, published April 5, 2001, which is incorporated herein by reference in its entirety (particularly at page 90, line 1 to page 91, line 11). Further, specific examples of these compounds are found in said publication.

In another embodiment, the JNK inhibitor has the following structure (XV):

```
(XV)
```

wherein:

Z is CH or N;
a is 1 or 2;
b is 1, 2 or 3;
c is 1, 2 or 3;
each R₁ is independently selected from groups of the formula:

```
—(X)ₙ—(CH₂)ₚ—R⁵
```

wherein:

d is 0 or 1;
e is 0 to 6;
X is O, NR₆ or S(O)ₖ where k is 0, 1 or 2;
R₅ is hydrogen, halogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₁₅ cycloalkyl,
heterocyclyl, aryl, heteroaryl, hydroxyl, cyano, nitro, trihalomethyl, NR²R₈, C₆H₄NR²R₈,
C₆H₄(CH₂)NR²R₈, C(O)R³, C(O)NR²R₈, OC(O)R⁷, OC(O)NR²R₈, CO₂R², OCO₂R², SO₂R²,
SO₂NR²R₈, C(=NR²)NR²R₈, NR²(C=NR²)NR²R₈, NHC(O)R⁷ or N(C₁₋₃ alkyl)C(O)R⁷;
each R² is independently selected from hydrogen, cyano, halogen, trihalomethyl,
OC₃₈alkyl, C₃₈alkenyl, C₂₆alkynyl, S(O)₂C₁₆alkyl where g is 0, 1 or 2,
NC₃₈alkyl(C₆alkyl), hydroxyl or nitro;

each R⁴ is independently selected from groups of the formula

---(Y)ₐ---(CH₂)ₖ---R³

wherein:

d is 0 or 1;
e is 0 to 6;

Y is O or S(O)ₖ where k is 0, 1 or 2;

R³ is hydrogen, halogen, C₁₆alkyl, C₂₆alkenyl, C₂₆alkynyl, C₃₁₂cycloalkyl,
heterocyclyl, aryl, heteroaryl, hydroxyl, cyano, nitro, trihalomethyl, phthalimido,
C₆H₄NR⁷R⁸, C₆H₄(CH₂)ₙNR⁷R⁸, C(O)R⁷, C(O)NR⁷R⁸, OC(O)R⁷, OC(O)NR⁷R⁸, CO₂R⁷,
OCO₂R⁷, SO₂R⁷, SO₂NR⁷R⁸ or C(=NR⁷)NR⁷R⁸;

R⁶ is H, C₁₆alkyl, C₂₆alkenyl, aryl, heteroaryl, C₃₁₂cycloalkyl, or heterocyclyl;

R⁷ and R⁸ are each independently H, C₁₆alkyl, C₂₆alkenyl, SO₂C₁₆alkyl, (CH₂)ₘ-
C₃₁₂cycloalkyl, (CH₂)ₘaryl, (CH₂)ₘheterocyclyl, (CH₂)ₘheteroaryl, wherein m = 0, 1 or 2,
or may, together with the nitrogen atom to which they are bound, form a heterocyclyl group;

wherein any of said alkyl, alkenyl and alkynyl groups may be optionally substituted
with up to three members selected from halogen, hydroxyl, oxo, cyano, NR⁷R⁸, C₁₆alkyl,
OC₁₆alkyl, S(O)C₁₆alkyl, S(O)₂C₁₆alkyl and SO₂NR⁷R⁸; and

wherein any of said cycloalkyl, heterocyclyl, aryl, and heteroaryl groups may be
optionally substituted with substituents selected from a group consisting of C₁₆alkyl,
C₁₆alkoxy, C₁₆alkylsulfinyl, C₁₆alkylsulfonyl, C₁₆alkylsulfonyl, hydroxy, oxo, mercapto,
nitro, cyano, halogen, C₁₆perfluoroalkyl, amino optionally substituted by C₁₆alkyl,
carbamoyl optionally substituted by C₁₆alkyl, NR⁷R⁸, carboxy and aminosulfonyl optionally
substituted by C₁₆alkyl.

The compounds of structure (XV) can be made using organic synthesis

techniques known to those skilled in the art, as well as by the methods described in
International Publication No. WO 02/16359, published February 28, 2002, which is
incorporated herein by reference in its entirety (particularly at page 163, line 1 to page 164,
line 25). Further, specific examples of these compounds are found in said application and
publication.

In another embodiment, the JNK inhibitor is:
2-(4-Cyanophenyl)-4-(4-fluorophenyl)-5(4-pyridyl)-1H-imidazole;
1-Methyl-2-(4-methoxyphenyl)-4-phenyl-5-(4-pyridyl)-imidazole;
2-(4-Cyanophenyl)-1-methyl-4-phenyl-5(4-pyridyl)-imidazole;
2-(4-Aminomethylphenyl)-1-methyl-4-phenyl-5-(4-pyridyl)-imidazole;
4-[1-Methyl-4-phenyl-5(4-pyridyl)-imidazol-2-yl]benzoic acid, sodium salt;
2-(4-Acetamidomethylphenyl)-1-methyl-4-phenyl-5-(4-pyridyl)imidazole;
Methyl 4-[methyl-4-phenyl-5-(4-pyridyl)imidazol-2-yl]benzoate;
4-(4-Fluorophenyl)-N-1-hydroxy-2-(4-hydroxyphenyl)-5-(4-pyridyl)imidazole;
4-(4-Fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole;
4-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]benzoic acid;
2-(4-Cyanophenyl)-4-(4-fluorophenyl)-1-N-hydroxy-5-(4-pyridyl)imidazole;
2-(4-Aminomethylphenyl)-4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
2-(4-Cyanophenyl)-4-(4-fluorophenyl)-N-1-hydroxy-5-(4-quinolyl)imidazole;
2-(4-Cyanophenyl)-4-(4-fluorophenyl)-5-(4-quinolyl)-1H-imidazole;
2-(3,5-Dibromo-4-hydroxyphenyl)-4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
Ethyl 4-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazo-2-yl]-benzoate;
2-[3,5-Dime thyl-4-hydroxy (phenyl)]-4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(2-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(4-methylthiophenyl)-5-(4-pyridyl)-1H-imidazole;
Methyl 4-(4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]-benzoate;
4-(4-Fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole;
N,N-Dimethyl-4-[4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]-benzamine;
2-[(4-N,N-Dimethyl)aminomethylphenyl]-4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
2-[4-(Dimethylamino)phenyl]-4(4fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-phenyl-5-(4-pyridyl)-1H-imidazole;
2-[4-(3-Dimethylaminopropoxy)phenyl]-4(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(4-nitrophenyl)-5-(4-pyridyl)-1H-imidazole;
N,N-Dimethyl-4-[2-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]-benzooyloxyacetamnide;
2-(4-Aminophenyl)-4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(4-methanesulfonamidophenyl)-5-(4-pyridyl)-1H-imidazole;
4-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]phenyl-sulfonamide;
N'-Cyano-N-4-[4-(fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]benzylguanidine;
2-[4-(Methanesulfonamido)methylphenyl]-4(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
5
4-(4-Fluorophenyl)-2-(4-methoxyphenyl)-5(4-pyridyl)-1H-imidazole;
2-(4-Amino-3-iodophenyl)-4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
N-Benzyl-N-methyl-4-[4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]benzamide;
2-[4-(N-Benzyl-N-methyl)aminomethylphenyl]-4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-N-1-hydroxy-2-(4-methylthiophenyl)-5-(4-quinolyl)imidazole;
4-(4-Fluorophenyl)-2-(4-methylthiophenyl)-5(4-quinolyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(4-methylsulfanylphenyl)-5-(4-quinolyl)-1H-imidazole;
4-(3-Chlorophenyl)-2-(4-methylsulfanylphenyl)-5-(4-pyridyl)-1H-imidazole;
15
4-(3-Chlorophenyl)-N-1-hydroxy-2-(4-methylthiophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(3-Chlorophenyl)-2-(4-methylthiophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(4-formamidomethylphenyl)-5-(4-pyridyl)-1H-imidazole;
4-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]-benzohydroxamic acid;
20
O-Benzyl-4-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]-benzohydroxamic acid;
4-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]benzamidoxime;
N'-Methyl-N'-cyano-N-[4(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]-benzylguanidine;
25
N-1-Hydroxy-4-(3-methoxyphenyl)-2-(4-methylthiophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(3-ethoxyphenyl)-2-(4-methylthiophenyl)-5-(4-pyridyl)imidazole;
4-(3-Methoxyphenyl)-2-(4-methylsulfanylphenyl)-5-(4-pyridyl)-1H-imidazole;
Morpholino-4-[4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]benzamide;
30
4-(4-Fluorophenyl)-5-[4-(2-methylpyridyl)-2-(4-methylthiophenyl)-1H-imidazole;
4-(4-Fluorophenyl)-5-[4-(2-methylpyridyl)-2-(4-methylsulfanylphenyl)-1H-imidazole;
4-(4-Fluorophenyl)-N-1-hydroxy-5-(4-pyrimidinyl)-imidazole;
4-(4-Fluorophenyl)-2-(4-methylthiophenyl)-5(4 pyrimidinyl)-1H-imidazole;
35
4-(4-Fluorophenyl)-2-(4-methylsulfanylphenyl)-5-(4-pyrimidinyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyrimidinyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(4-Morpholinomethylphenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(4-hydroxymethyl)-5-(4-pyridyl)-1H-imidazole;
4-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]-benzaldehyde;
4-(2-Methoxyphenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole;
N-1-Hydroxy-4-(2-methoxyphenyl)-2-(4-methylthiophenyl)-5-(4-pyridyl)imidazole;
4-(2-Methoxyphenyl)-2-(4-methylthiophenyl)-5-(4-pyridyl)-1H-imidazole;
3-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]phenyl-5-methyl-4,5-dihydro-1,2,4-oxadiazole;
3-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]phenyl-5-methyl-1,2,4-oxadiazole;
4-(3-Aminophenyl)-2-(4-methylthiophenyl)-5-(4-pyridyl)-1H-imidazole;
N-1-Hydroxy-2-(4-methylthiophenyl)-4-(3-nitrophenyl)-5-(4-pyridyl)imidazole;
2-(4-Methylthiophenyl)-4-(3-nitrophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(3-Methanesulfonamidophenyl)-2-(4-methylthiophenyl)-5-(4-pyridyl)-1H-imidazole;
3-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]phenyl-1,2,4-oxadiazol-5(4H)-one;
4-(3-Acetamidophenyl)-2-(4-methylthiophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-1-N-hydroxy-5-[4-(2-methylpyridyl)]-2-(4-methylthiophenyl)-imidazole;
3-[4-(4-Fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]-phenyl-5,5-dimethyl-4,5-dihydro-1,2,4-oxadiazote;
N-Hydroxy-N-1-[4-[4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl]phenyl]-ethylurea;
N-Hydroxy-N-[4-[4-(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazol-2-yl-phenyl]-methyl urea;
4-(3-Methylthiophenyl)-2-(4-morpholinomethylphenyl)-5-(4-pyridyl)-1H-imidazole;
4-(3-Methylsulfinylphenyl)-2-(4-morpholinomethylphenyl)-5-(4-pyridyl)-1H-imidazole;
4-(3-Methanesulfonamidophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole-2-(4-Ethylthiophenyl)-4(4-fluorophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-[4-[4-(methyl-1-piperazinyl)-sulfonyl-phenyl]-5-(4-pyridyl)1H-imidazole;
4-(4-Fluorophenyl)-2-[4-(N-methylmethanesulfonamido)-methylphenyl]-5-(4-pyridyl)-1H-imidazole;
Diethyl-[1-methyl-4-phenyl-5-(4-pyridyl)-imidazol-2-yl]-methoxy
methylphosphonate;

5
4-(4-Fluorophenyl)-2-(4-methylthiophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(3-methylthiophenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(3-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole;
4-(4-Fluorophenyl)-2-(4-methoxyphenyl)-5-(4-pyridyl)imidazole;
4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-1-(N-morpholinopropyl)-5-(4-pyridyl)-imidazole;
4-(4-Fluorophenyl)-2-(4-methylthiophenyl)-1-(N-morpholinopropyl)-5-(4-pyridyl)-imidazole;
4-(4-Fluorophenyl)-2-(4-methylsulfonylphenyl)-1-(N-morpholinopropyl)-5-(4-pyridyl)imidazole;

10

15
4-(4-Fluorophenyl)-1-(methylthio-1-propyl)-2-[(4-N-morpholinomethyl]phenyl]-5-(4-pyridyl)imidazole;
4-(4-Fluorophenyl)-1-(methylsulfinyl-1-propyl)-2-[(4N-morpholinomethyl]phenyl]-5-(4-pyridyl)imidazole; and
4-(4-Fluorophenyl)-1-(methylsulfonyl-1-propyl)-2-[(4-N-morpholinomethyl]phe

20

25

These compounds can be made using organic synthesis techniques known to those
skilled in the art, as well as by the methods described in United States Patent No. 6,288,089,
issued September 11, 2001, which is incorporated herein by reference in its entirety.

Further, specific examples of these compounds are found in the patent.

In another embodiment, the JNK inhibitor has the following structure (XVI):
or pharmaceutically acceptable in vivo hydrolyzable esters, analogs, hydrolysis products, metabolites, salts, solvates, hydrates, clathrates, polymorphs, stereoisomers, derivatives and precursors thereof, wherein:

A is aryl or heteroaryl, each of which optionally substituted by one or more -OR₄, -COR₄, -COOR₄, -CONR₆R₇, -NR₆R₇, -CN, -NO₂, -SO₂R₄, -SO₂NR₆R₇, halogen, perfluoroalkyl, lower alkyl, lower alkyl substituted by (a), halogen, cycloalkyl, and/or heterocycle; cycloalkyl or cycloalkyl substituted by (a), halogen, lower alkyl, and/or heterocycle; heterocycle or heterocycle substituted by (a), halogen, lower alkyl, and/or cycloalkyl;

where (a) is -OR₄, -NR₆R₇, -COR₄, -COOR₄, -OCOR₄, -CONR₆R₇, -CN, -NO₂, -SO₂R₄, or -SO₂NR₆R₇;

R² is hydrogen, -OR₄, -COR₄, -COOR₄, -CONR₆R₇, -NR₆R₇, halogen, -NO₂, -CN, -SO₂NR₆R₇, -SO₂R₄ perfluoroalkyl, lower alkyl, or lower alkyl substituted by -OR₈ and/or -NR₆R₇;

R₄ is hydrogen, lower alkyl or lower alkyl substituted by (b), cycloalkyl and/or heterocycle; cycloalkyl or cycloalkyl substituted by (b), lower alkyl and/or heterocycle; heterocycle or heterocycle substituted by (b), lower alkyl and/or cycloalkyl; where (b) is -OR₅, -COOR₅, -COR₅, -CONR₆R₉, -NR₆R₉, -CN, -NO₂, -SO₂R₅, or -SO₂NR₆R₉;

R₃ is hydrogen, -COR₅, -CONR₆R₉, lower alkyl or lower alkyl substituted by -OR₉, -NR₆R₁₀, -N(OCR₉)R₁₀, -COR₈, -CONR₆R₁₀, and/or-COOR₈;

R₆ and R₇ are each independently hydrogen, -COR₅, -COOR₅, -CONR₆R₉, -SO₂R₅, -SO₂NR₆R₉, lower alkyl or lower alkyl substituted by cycloalkyl (or cycloalkyl substituted by (c), lower alkyl and/or heterocycle), heterocycle (or heterocycle substituted by (c), lower alkyl and/or cycloalkyl), aryl (or aryl substituted by (c), lower alkyl, cycloalkyl and/or heterocycle), or heteroaryl (or heteroaryl substituted by (c), lower alkyl, cycloalkyl and/or heterocycle); or

R₆ and R₇ are each independently cycloalkyl or cycloalkyl substituted by (c), lower alkyl and/or heterocycle; heterocycle (or heterocycle substituted by (c), lower alkyl and/or cycloalkyl), aryl (or aryl substituted by (c), lower alkyl, cycloalkyl and/or heterocycle), or heteroaryl (or heteroaryl substituted by (c), lower alkyl, cycloalkyl and/or heterocycle); where (c) is -OR₅, -COOR₈, -COR₈, -CONR₆R₉, -CN, -NO₂, -SO₂R₅, -SO₂NR₆R₉, -NR₆R₉;
or alternatively, -NR₆R⁷ forms a ring having 3 to 7 atoms, said ring optionally including one or more additional heteroatoms and being optionally substituted by one or more of lower alkyl, -OR, -COR, -COOR, CONR²R³, and -NR³R⁴;

R⁸ is hydrogen, lower alkyl (or lower alkyl substituted by cycloalkyl, heterocycle, aryl, heteroaryl, -OR⁹, -NR⁹R¹⁰, and/or -N(COR⁹)R¹⁰), aryl (or aryl substituted by (d), lower alkyl, cycloalkyl, heterocycle, halogen and/or -SO₂F), heteroaryl (or heteroaryl substituted by (d), lower alkyl, cycloalkyl, heterocycle, halogen and/or -SO₂F), cycloalkyl (or cycloalkyl substituted by (d), lower alkyl, heterocycle and/or aryl), or heterocycle (or heterocycle substituted by (d), lower alkyl, cycloalkyl and/or aryl); where (d) is -OR⁹, -COOR⁹, -COR⁹, -CONR¹⁰R⁹, -NR¹⁰R⁹, -CN, -NO₂, -SO₂R⁹, or -SO₂NR¹⁰R⁹;

R² and R¹⁰ are each independently hydrogen, lower alkyl or aryl; and X is =N- or =CH-.

The compounds of structure (XVI) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in United States Patent No. 6,307,056, issued October 23, 2001, which is incorporated herein by reference in its entirety (particularly at column 63, line 29 to column 66, line 12). Further, specific examples of these compounds are found in the patent.

In another embodiment, the JNK inhibitor has the following structure (XVII):

![Chemical Structure (XVII)](image)

wherein:

R¹ and R² are independently selected from the group consisting of:

hydrogen, -OR⁴, -COR⁴, -COOR⁴, -CONR⁵R⁶, -NR⁵R⁶, lower alkyl which may be substituted by a member of the group (a) consisting of -OR⁴, -NR⁵R⁶, halogen, -COR⁴, -COOR⁴, -OCOR⁴, -CONR⁵R⁶, -CN, -SO₂R⁴, -SO₂NR⁵R⁶; or by cycloalkyl, heterocycle, aryl, and heteroaryl, wherein the cycloalkyl and heterocycle each may be substituted by the group R¹¹ and the aryl and heteroaryl each may be substituted by the group R¹²;
cycloalkyl which may be substituted by a member of the group (a) a defined earlier, or by lower alkyl, heterocycle, aryl, and heteroaryl, wherein the lower alkyl and heterocycle each may be substituted by the group R11 and the aryl and heteroaryl each may be substituted by the group R12;

heterocycle which may be substituted by a member of the group (a) as defined earlier, or by lower alkyl, cycloalkyl, aryl, and heteroaryl, wherein the lower alkyl and cycloalkyl each may be substituted by the group R11 and the aryl and heteroaryl each may be optionally substituted by the group R12;

aryl which maybe substituted by a member of the group (b) consisting of -OR4, -NR3R6, halogen, -NO\textsubscript{2}, perfluoroalkyl, -COR4, -COOR4, -OCOR4, -CONR3R6, -CN, -SO\textsubscript{2}R4, -SO\textsubscript{2}NR3R6; or by lower alkyl, cycloalkyl, heterocycle, aryl, and heteroaryl, and wherein the lower alkyl, cycloalkyl and heterocycle each may be substituted by the group R11 and the aryl and heteroaryl each may be substituted by the group R12;

heteroaryl, which may be substituted by a member of the group (b) as defined earlier, or by lower alkyl, cycloalkyl, heterocycle, aryl, and heteroaryl and wherein the lower alkyl, cycloalkyl and heterocycle each may be optionally substituted by the group R11 and the aryl and heteroaryl each maybe substituted by the group R12, or alternatively, R1 and R2 can form a ring having 5-7 atoms, said ring optionally including one or more heteroatoms and being optionally substituted by a member of the group consisting of -OR8, -COR7, -COOR7, -OCOR7, -CONR3R9, -NR3R3, or lower alkyl which may be substituted by the group R11;

R3 is hydrogen, -OR4, -COR4, -COOR4, -OCOR4, -CONR3R6, halogen, -CN, perfluoroalkyl -NR3R6, or lower alkyl which may be substituted by -OR4, -OCOR4, or -NR3R6;

R4 is hydrogen, lower alkyl which may be substituted by a member of the group(c) consisting of -OR8, -COOR7, -COR7, -CONR3R6, -NR3R6, -SO\textsubscript{2}R7, -SO\textsubscript{2}NR3R6, or by cycloalkyl, heterocycle, aryl, and heteroaryl, and wherein the cycloalkyl and heterocycle each may be substituted by the group R11 and the aryl and heteroaryl each may be substituted by the group R12;

cycloalkyl which may be substituted by a member of the group (c) or by lower alkyl, heterocycle, aryl, and heteroaryl, and wherein the lower alkyl and heterocycle each may be substituted by the group R11 and the aryl and heteroaryl each may be substituted by the group R12;

heterocycle which maybe substituted by a member of the group (c) or by cycloalkyl,
substituted by the group R^{11} and the aryl and heteroaryl each may be substituted by the
group R^{12},
aryl which maybe substituted by a member of the group (d) consisting of-OR^5,
-COOR^7, -COR^7, -CONR^5R^6, -NR^5R^6, -NO_2, halogen, perfluoroalkyl, -SO_2R^7, -SO_2NR^6R^6 or
by lower alkyl, cycloalkyl, heterocycle, aryl, and heteroaryl, and wherein the lower alkyl,
cycloalkyl and heterocycle each may be substituted by the group R^{11} and the aryl and
heteroaryl each may be substituted by the group R^{12}, and
5 heteroaryl which may be substituted by a member of the group (d) or by cycloalkyl,
lower alkyl, heterocycle, aryl, and heteroaryl, and wherein the lower alkyl, cycloalkyl and
heterocycle each may be substituted by the group R^{11} and the aryl and heteroaryl each maybe substituted by the group R^{12};
R^5 and R^8 are each independently hydrogen, -COR^7, -COOR^7, -CONR^5R^9,
lower alkyl which may be substituted by a member of the group (e) consisting of -OR^8,
-COOR^7, -COR^7, -CONR^5R^8, -NR^5R^8, -SO_2R^7, -SO_2NR^6R^2; or by cycloalkyl, heterocycle,
aryl, and heteroaryl, and wherein the cycloalkyl and heterocycle each may be substituted by the
group R^{11} and the aryl and heteroaryl each may be substituted by the group R^{12},
10 cycloalkyl which may be substituted by a member of the group (e) as defined earlier,
or by lower alkyl, heterocycle, aryl, and heteroaryl, and wherein the lower alkyl and
heterocycle each maybe substituted by the group R^{11} and the aryl and heteroaryl each may be
substituted by the group R^{12},
heterocycle which may be substituted by a member of the group (e) as defined
earlier, or by cycloalkyl, lower alkyl, aryl, and heteroaryl, and wherein the cycloalkyl and
lower alkyl each may be substituted by the group R^{11} and the aryl and heteroaryl each maybe substituted by the group R^{12},
20 aryl which may be substituted by a member of the group (f) consisting of OR^8,
-COOR^7, -COR^7, -CONR^5R^6, -NR^5R^6, -NO_2, halogen, perfluoroalkyl, -SO_2R^7, -SO_2NR^6R^5 or
by lower alkyl, cycloalkyl, heterocycle, aryl, and heteroaryl, and wherein the lower alkyl,
cycloalkyl and heterocycle each may be substituted by the group R^{11} and the aryl and
heteroaryl each maybe substituted by the group R^{12}, and
25 heteroaryl which may be substituted by a member of the group (f) as defined earlier,
or by lower alkyl, cycloalkyl, heterocycle, aryl, and heteroaryl, and wherein the lower alkyl,
cycloalkyl and heterocycle each may be substituted by the group R^{11} and the aryl and
heteroaryl each may be substituted by the group R^{12} or alternatively, -NR^5R^6 can form a ring
having 3 to 7 atoms, said ring optionally including one or more additional hetero atoms and
being optionally substituted by lower alkyl, -OR^5, -COR^7, -COOR^7, -CONR^5R^9, or -NR^5R^8;
R is hydrogen or lower alkyl which may be substituted by a member of the group consisting of cycloalkyl, heterocycle, aryl, heteroaryl, -OR, or -NR\textsubscript{3}R; R\textsubscript{1} is hydrogen, -COR\textsubscript{3}, -CONR\textsubscript{2}R\textsubscript{3}, or lower alkyl which may be substituted by R\textsubscript{11}; R\textsubscript{2} and R\textsubscript{3} are each independently hydrogen or lower alkyl; R\textsubscript{11} is -OR\textsubscript{3}, -COR\textsubscript{3}, -COOR\textsubscript{3}, -CONR\textsubscript{2}R\textsubscript{3}, -NR\textsubscript{3}R\textsubscript{1}, -N(COR\textsubscript{3})R\textsubscript{10}, -SO\textsubscript{2}R\textsubscript{3}, or -SO\textsubscript{2}NR\textsubscript{3}R\textsubscript{10}; R\textsubscript{12} is -OR\textsubscript{3}, -COR\textsubscript{3}, -COOR\textsubscript{3}, -OCOR\textsubscript{3}, -CONR\textsubscript{2}R\textsubscript{3}, -NR\textsubscript{3}R\textsubscript{10}, -N(COR\textsubscript{3})R\textsubscript{10}, -SO\textsubscript{2}R\textsubscript{3}, -SO\textsubscript{2}NR\textsubscript{3}R\textsubscript{10}, halogen, -CN, -NO\textsubscript{2}, or perfluoroalkyl; and X is -N- or -C-. The compounds of structure (XVII) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in International Publication No. WO 00/35921, published June 22, 2000, which is incorporated herein by reference in its entirety (particularly at page 23, line 5 to page 26, line 14). Further, specific examples of these compounds are found in this publication.

In another embodiment, the JNK inhibitor has the following structure (XVIII):

![Structure XVIII](image)

wherein:

- R\textsubscript{1} is -F, -Cl, -Br, -OH, -SH, -NH\textsubscript{2}, or -CH\textsubscript{3};
- R\textsubscript{2} is -F, -Cl, -Br, -OH, -SH, -NH\textsubscript{2}, or -CH\textsubscript{3};
- R\textsubscript{3} is -H, -F, -Cl, -Br, -OH, -SH, -NH\textsubscript{2}, -CH\textsubscript{3}, -OCH\textsubscript{3}, or -CH\textsubscript{2}CH\textsubscript{3};
- R\textsubscript{4} is -C\textsubscript{1-4}alkyl optionally substituted with a -C\textsubscript{3-7}cycloalkyl;
- R\textsubscript{5} is -C\textsubscript{1-4}alkyl or -C\textsubscript{3-7}cycloalkyl, wherein the -C\textsubscript{1-4}alkyl is optionally substituted with a phenyl;
X is a bond or an alkyl bridge having 1-3 carbons;
Y is -NH- or -NH$_2$-; and
HETCy is a 4 to 10 membered non-aromatic heterocycle containing at least one N atom, optionally containing 1-2 additional N atoms and 0-10 or S atom, and optionally substituted with -C$_{1,4}$alkyl or -C(O)-O-CH$_2$ phenyl.

The compounds of structure (XVIII) can be made using organic synthesis techniques known to those skilled in the art, as well as by the methods described in International Publication No. WO 01/91749, published December 6, 2001, which is incorporated herein by reference in its entirety (particularly at page 29, lines 1-22). Further, specific examples of these compounds are found in this publication.

In another embodiment, the JNK inhibitor has the following structure (XIX):

![Structure XIX](image)

wherein:

Ht is a heterocyclic ring selected from pyrazol-3-yl, [1,2,4] triazol-3-yl, [1,2,3] triazol-4-yl, or tetrazol-5-yl, said pyrazol-3-yl having R$_3$ and Q R$_4$ substituents, and said [1,2,4] triazol-3-yl or [1,2,3] triazol-4-yl substituted by either R$_3$ or Q R$_4$;

R$_1$ is selected from R, halogen, N(R$_3$)$_2$, OR, NRCOR, NRCOR(R$_3$)$_2$, CON(R$_8$)$_2$,

SO$_2$R, NRSO$_2$R, or SO$_2$N(R$_8$)$_2$;

T is selected from a valence bond or a linker group;

each R is independently selected from hydrogen or an optionally substituted aliphatic group having one to six carbons;

R$_2$ is selected from hydrogen, CN, halogen, aryl, alkyl, heteroaryl, heterocyclyl, an optionally substituted acyclic aliphatic chain group having one to six carbons, or an optionally substituted cyclic aliphatic group having four to ten carbons;

R$_3$ is selected from R, OH, OR, N(R$_5$)$_2$, halogen, or CN;

Q is a valence bond, J, or an optionally substituted C$_{1-4}$ alkylidene chain wherein up to two nonadjacent carbons of the alkylidene chain are each optionally and independently replaced by J;
J is selected from -C(=O)-, -CO₂-, -C(O)C(O)-, -NRCONR₅⁻,
-N(R)N(R₅⁻), -C(=O)NR₅⁻, -NRC(=O)-, -O-, -S-, -SO₂-, -SO₂-, -N(R)O-, -ON(R₅⁻)
,-OC(=O)N(R₅⁻), -N(R)COO-, -SO₂N(R₅⁻), -N(R)SO₅⁻, or -NC(R₅⁻);
R¹ is selected from -R₅⁻, -R⁵⁻, -NH₂, -NHR⁵⁻, -N(R³), or -NR⁵⁻(CH₃)₂N(R³);
each R³ is independently selected from R⁶, R⁷, -(CH₂)₅CH(R⁶)(R⁷), -(CH₂)₃R⁶,
-(CH₂)₃CH(R⁶)₂, -(CH₂)₅CH(R⁷), or -(CH₂)₅R⁷;
y is 0-6;
each R⁶ is an optionally substituted group independently selected from an aliphatic,
aryl, aralkyl, aralkoxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, heterocyclalkyl,
heterocyclicalkyl, or heterocyclicalkoxy, group;
each R⁷ is independently selected from an optionally substituted aliphatic,
hydroxyalkyl, alkoxyalkyl, arlyloxalkyl, or alkoxy carbonyl;
each R⁸ is independently selected from R, or two R⁸ on the same nitrogen atom are
taken together with the nitrogen to form a four to eight membered, saturated or unsaturated
heterocyclic ring having one to three heteroatoms;
and each substitutable ring nitrogen is optionally substituted by R, NR₂, COR,
CO₂(C₁-C₆ optionally substituted alkyl), SO₂(C₁-C₆ optionally substituted alkyl), CONR₂,
and SO₂NR₅⁻ provided that QR⁴ is other than CON(CH₃)b when R¹ and R² are each hydrogen
and when TR² is an unsubstituted phenyl ring attached at the 4-position of the pyrazole ring.

The compounds of structure (XIX) can be made using organic synthesis
techniques known to those skilled in the art, as well as by the methods described in
International Publication No. WO 01/56993, published August 9, 2001, which is
incorporated herein by reference in its entirety (particularly in at page 43 to page 45).

Further, specific examples of these compounds are found in this publication.

In another embodiment, the JNK inhibitor has the following structure (XX):

![XX](image)

The compound of structure (XX) can be made using organic synthesis
techniques known to those skilled in the art, as well as by the methods described in
International Publication No. WO 01/58448, published August 16, 2001, which is
incorporated herein by reference in its entirety (particularly in at page 39).
If the stereochemistry of a structure or a portion of a structure is not indicated with, for example, bold or dashed lines, the structure or portion of the structure is to be interpreted as encompassing all stereoisomers of it.

4.1.1. **Patient Population**

The invention provides methods for treating, preventing, and managing cancer by administrating to a patient a therapeutically or prophylactically effective amount of a JNK inhibitor in combination with one or more other therapeutic agents, or a pharmaceutical composition comprising a JNK inhibitor. The patient is preferably a mammal such as non-primate (e.g., cows, pigs, horses, cats, dogs, rats etc.) and a primate (e.g., monkey such as a cynomolgous monkey and a human). In a preferred embodiment, the patient is a human.

The invention encompasses methods for treating patients on any other treatment useful for the prevention or treatment of cancer. Using the methods of the invention, patients can be treated for the prevention, treatment or management of cancer, including, but not limited to, primary cancers, neoplasms, solid and blood born tumors, metastases, or any disease or disorder characterized by uncontrolled cell growth. The methods and compositions of the invention can be used with one or more conventional or experimental therapies that are used to prevent, manage or treat cancer.

Specific examples of cancers that can be treated by the methods encompassed by the invention include, but are not limited to, cancer of the head, neck, eye, mouth, throat, esophagus, chest, bone, lung, colon, rectum, stomach, prostate, breast, ovaries, kidney, liver, pancreas, and brain. In preferred embodiments, the cancer is breast cancer, colon cancer, prostate cancer, multiple myeloma, melanoma, lung cancer or ovarian cancer. Additional cancers are listed by example and not by limitation in the following section 4.1.1.1.

The methods and compositions of the invention comprise the administration of a JNK inhibitor in combination with one or more other therapeutic agents other than a JNK inhibitor to patients suffering from or expected to suffer from cancer. As used herein, cancer refers to primary or metastatic cancers. Such patients may or may not have been previously treated for cancer. The methods and compositions of the invention may be used as a first line or second line cancer treatment. The invention also comprises the treatment of a patient having cancer and immunosuppressed by reason of having previously undergone other cancer therapies. Included by the invention is also the treatment of patients undergoing other cancer therapies and the methods and compositions of the invention can be used before any adverse effects or intolerance occurs. The invention also encompasses methods for administering a JNK inhibitor to treat or ameliorate symptoms in refractory
patients. In a certain embodiment, that a cancer is refractory to a therapy means that at least some significant portion of the cancer cells are not killed or their cell division arrested. In another embodiment, the cancer is refractory against currently used chemotherapeutic agents. In another embodiment, the cancer is refractory to multi-drug therapies. In another embodiment, the cancer is refractory against tamoxifen. In another embodiment, the cancer is androgen-independent. The determination of whether the cancer cells are refractory can be made either in vivo or in vitro by any method known in the art for assaying the effectiveness of treatment on cancer cells, using the art-accepted meanings of “refractory” in such a context. In various embodiments, a cancer is refractory where the number of cancer cells has not been significantly reduced, or has increased. The invention also encompasses methods for administering a JNK inhibitor to prevent the onset or recurrence of cancer in patients predisposed to having cancer.

In alternate embodiments, the invention provides methods for treating patients cancer by administering a JNK inhibitor in combination with any other treatment or to patients who have proven refractory to other treatments but are no longer on these treatments. In certain embodiments, the patients being treated by the methods of the invention are patients already being treated with chemotherapy, radiation therapy, hormonal therapy, or biological therapy/immunotherapy. Among these patients are refractory patients and those with cancer despite treatment with existing cancer therapies. In other embodiments, the patients have been treated and have no disease activity and a JNK inhibitor is administered to prevent the recurrence of cancer.

In preferred embodiments, the existing treatment is chemotherapy. In particular embodiments, the existing treatment includes administration of chemotherapies including, but not limited to methotrexate, mercaptopurine, thioguanine, hydroxyurea, cytarabine, cyclophosphamide, ifosfamide, nitrosoureas, cisplatin, carboplatin, mitomycin, dacarbazine, procarbazine, etoposides, camptothecins, bleomycin, doxorubicin, idarubicin, daunorubicin, dactinomycin, plicamycin, mitoxantrone, asparaginase, vinblastine, vincristine, vinorelbine, paclitaxel, docetaxel, cetuximab (Erbitux™), thalidomide, any SelCid™ or IMiD™ compounds, in particular CC-4047 (Actimid™) and CC-5013 (Revimid™). Among these patients are patients treated with radiation therapy, hormonal therapy and/or biological therapy/immunotherapy. Also among these patients are those who have undergone surgery for the treatment of cancer.

Alternatively, the invention also encompasses methods for treating patients having radiation therapy. Among these patients are patients treated with chemotherapy, hormonal
therapy and/or biological therapy/immunotherapy. Also among these patients are those who
have undergone surgery for the treatment of cancer.

In other embodiments, the invention encompasses methods for treating patients
having hormonal therapy and/or biological therapy/immunotherapy. Among these patients
are patients treated with chemotherapy and/or radiation therapy. Also among these patients
are those who have undergone surgery for the treatment of cancer.

Additionally, the invention also provides methods of treatment of cancer as an
alternative to chemotherapy, radiation therapy, hormonal therapy, and/or biological
therapy/immunotherapy where the therapy has proven or may prove too toxic, i.e., results in
unacceptable or unbearable side effects, for the patient being treated. The patient being
treated with the methods of the invention may, optionally, be treated with other cancer
treatments such as surgery, chemotherapy, radiation therapy, hormonal therapy or biological
therapy, depending on which treatment was found to be unacceptable or unbearable.

In other embodiments, the invention provides administration of a JNK inhibitor
without any other cancer therapies for the treatment of cancer, but who have proved
refractory to such treatments. In specific embodiments, patients refractory to other cancer
therapies are administered a JNK inhibitor in the absence of cancer therapies.

4.1.1.1 Cancers

Cancers and related disorders that can be treated or prevented by methods and
compositions of the present invention include but are not limited to the following:
Leukemias such as but not limited to, acute leukemia, acute lymphocytic leukemia, acute
myelocytic leukemias such as myeloblastic, promyelocytic, myelomonocytic, monocytic,
erythroleukemia leukemias and myelodysplastic syndrome, chronic leukemias such as but
not limited to, chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia,
hairy cell leukemia; polycythemia vera; lymphomas such as but not limited to Hodgkin's
disease, non-Hodgkin's disease; multiple myelomas such as but not limited to smoldering
multiple myeloma, nonsecretory myeloma, osteosclerotic myeloma, plasma cell leukemia,
solitary plasmacytoma and extramedullary plasmacytoma; Waldenström's
macroglobulinemia; monoclonal gammopathy of undetermined significance; benign
monoclonal gammopathy; heavy chain disease; bone and connective tissue sarcomas such as
but not limited to bone sarcoma, osteosarcoma, chondrosarcoma, Ewing’s sarcoma,
malignant giant cell tumor, fibrosarcoma of bone, chordoma, periosteal sarcoma, soft-tissue
sarcomas, angiosarcoma (hemangiosarcoma), fibrosarcoma, Kaposi’s sarcoma,
leiomyosarcoma, liposarcoma, lymphangiosarcoma, metastatic cancers, neurilemmoma,
rhabdomyosarcoma, synovial sarcoma; brain tumors such as but not limited to, glioma, astrocytoma, brain stem glioma, ependymoma, oligodendroglioma, nonglial tumor, acoustic neurinoma, craniopharyngioma, medulloblastoma, meningioma, pineocytoma, pineoblastoma, primary brain lymphoma; breast cancer, including, but not limited to, adenocarcinoma, lobular (small cell) carcinoma, intraductal carcinoma, medullary breast cancer, mucinous breast cancer, tubular breast cancer, papillary breast cancer, primary cancers, Paget’s disease, and inflammatory breast cancer; adrenal cancer such as but not limited to pheochromocytom and adrenocortical carcinoma; thyroid cancer such as but not limited to papillary or follicular thyroid cancer, medullary thyroid cancer and anaplastic thyroid cancer; pancreatic cancer such as but not limited to, insulinoma, gastrinoma, glucagonoma, vipoma, somatostatin-secreting tumor, and carcinoid or islet cell tumor; pituitary cancers such as but limited to Cushing’s disease, prolactin-secreting tumor, acromegaly, and diabetes insipius; eye cancers such as but not limited to ocular melanoma such as iris melanoma, choroidal melanoma, and ciliary body melanoma, and retinoblastoma; vaginal cancers such as squamous cell carcinoma, adenocarcinoma, and melanoma; vulvar cancer such as squamous cell carcinoma, melanoma, adenocarcinoma, basal cell carcinoma, sarcoma, and Paget’s disease; cervical cancers such as but not limited to, squamous cell carcinoma, and adenocarcinoma; uterine cancers such as but not limited to endometrial carcinoma and uterine sarcoma; ovarian cancers such as but not limited to, ovarian epithelial carcinoma, borderline tumor, germ cell tumor, and stromal tumor; esophageal cancers such as but not limited to, squamous cancer, adenocarcinoma, adenoid cystic carcinoma, mucopidermoid carcinoma, adenosquamous carcinoma, sarcoma, melanoma, plasmacytoma, verrucous carcinoma, and oat cell (small cell) carcinoma; stomach cancers such as but not limited to, adenocarcinoma, fungating (polypoid), ulcerating, superficial spreading, diffusely spreading, malignant lymphoma, liposarcoma, fibrosarcoma, and carcinosarcoma; colon cancers; rectal cancers; liver cancers such as but not limited to hepatocellular carcinoma and hepatoblastoma, gallbladder cancers such as adenocarcinoma; cholangiocarcinomas such as but not limited to pappillary, nodular, and diffuse; lung cancers such as non-small cell lung cancer, squamous cell carcinoma (epidermoid carcinoma), adenocarcinoma, large-cell carcinoma and small-cell lung cancer; testicular cancers such as but not limited to germinal tumor, seminoma, anaplastic, classic (typical), spermatocytic, nonseminoma, embryonal carcinoma, teratoma carcinoma, choriocarcinoma (yolk-sac tumor), prostate cancers such as but not limited to, adenocarcinoma, leiomyosarcoma, and rhabdomyosarcoma; penile cancers; oral cancers such as but not limited to squamous cell carcinoma; basal cancers; salivary gland cancers such as
but not limited to adenocarcinoma, mucoepidermoid carcinoma, and adenoidcystic carcinoma; pharynx cancers such as but not limited to squamous cell cancer, and verrucous; skin cancers such as but not limited to, basal cell carcinoma, squamous cell carcinoma and melanoma, superficial spreading melanoma, nodular melanoma, lentigo malignant melanoma, acral lentiginous melanoma; kidney cancers such as but not limited to renal cell cancer, adenocarcinoma, hypernephroma, fibrosarcoma, transitional cell cancer (renal pelvis and/or uterine); Wilms' tumor; bladder cancers such as but not limited to transitional cell carcinoma, squamous cell cancer, adenocarcinoma, carcinomas. In addition, cancers include myxosarcoma, osteogenic sarcoma, endotheliosarcoma, lymphangioendotheliosarcoma, mesothelioma, synovioma, hemangioblastoma, epithelial carcinoma, cystadenocarcinoma, bronchogenic carcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma and papillary adenocarcinomas (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia and Murphy et al., 1997, Informed Decisions: The Complete Book of Cancer Diagnosis, Treatment, and Recovery, Viking Penguin, Penguin Books U.S.A., Inc., United States of America).

Accordingly, the methods and compositions of the invention are also useful in the treatment or prevention of a variety of cancers or other abnormal proliferative diseases, including (but not limited to) the following: carcinoma, including that of the bladder, breast, colon, kidney, liver, lung, ovary, pancreas, stomach, cervix, thyroid and skin; including squamous cell carcinoma; hematopoietic tumors of lymphoid lineage, including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, Burkitt's lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias and promyelocytic leukemia; tumors of mesenchymal origin, including fibrosarcoma and rhabdomyosarcoma; other tumors, including melanoma, seminoma, teratocarcinoma, neuroblastoma and glioma; tumors of the central and peripheral nervous system, including astrocytoma, glioblastoma multiforme, neuroblastoma, glioma, and schwannomas; solid and blood born tumors; tumors of mesenchymal origin, including fibrosafroma, rhabdomyosarcoma, and osteosarcoma; and other tumors, including melanoma, xeroderma pigmentosum, keratoactanthoma, seminoma, thyroid follicular cancer and teratocarcinoma. It is also contemplated that cancers caused by aberrations in apoptosis would also be treated by the methods and compositions of the invention. Such cancers may include but not be limited to follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis, and
myelodysplastic syndromes. In specific embodiments, malignancy or dysproliferative changes (such as metaplasias and dysplasias), or hyperproliferative disorders, are treated or prevented in the ovary, bladder, breast, colon, lung, skin, pancreas, or uterus. In other specific embodiments, sarcoma, melanoma, or leukemia is treated or prevented.

In preferred embodiments, the methods and compositions of the invention are used for the treatment and/or prevention of breast, colon, ovarian, lung, and prostate cancers and melanoma and are provided below by example rather than by limitation.

4.1.2. Other Prophylactic/Therapeutic Agents

According to the invention, therapy by administration of a JNK inhibitor is combined with the administration of one or more therapies such as, but not limited to, chemotherapies, radiation therapies, hormonal therapies, bone marrow transplants, stem cell replacement therapies and/or biological therapies/immunotherapies.

In a specific embodiment, the methods of the invention encompass the administration of one or more angiogenesis inhibitors such as but not limited to: Angiostatin (plasminogen fragment); antiangiogenic antithrombin III; Angiozyme; ABT-627; Bay 12-9566; Benefin; Bevacizumab; BMS-275291; cartilage-derived inhibitor (CDI); CAI; CD59 complement fragment; CEP-7055; Col 3; Combretastatin A-4; Endostatin (collagen XVIII fragment); Fibronectin fragment; Gro-beta; Halofuginone; Heparinases; Heparin hexasaccharide fragment; HMV833; Human chorionic gonadotropin (hCG); IM-862; Interferon alpha/beta/gamma; Interferon inducible protein (IP-10); Interleukin-12; Kringle 5 (plasminogen fragment); Marimastat; antiinflammatory steroids such as but not limited to dexamethasone; Metalloproteinase inhibitors (TIMPs); 2-Methoxyestradiol; MMI 270 (CGS 27023A); MoAb IMC-1C11; Neovastat; NM-3; Panzem; PI-88; Placental ribonuclease inhibitor; Plasminogen activator inhibitor; Platelet factor-4 (PF4); Prinomastat; Prolactin 16kD fragment; Proliferin-related protein (PRP); PTK 787/ZK 222594; Retinoids; Solimastat; Squalamine; SS 3304; SU 5416; SU6668; SU11248; Tetrahydrocortisol-S; tetrathiomolybdate; thalidomide; Thrombospondin-1 (TSP-1); TNP-470; Transforming growth factor-beta (TGF-b); Vasculostatin; Vasostatin (calreticulin fragment); ZD6126; ZD 6474; farnesyl transferase inhibitors (FTI); and bisphosphonates.

Additional examples of anti-cancer agents that can be used in the various embodiments of the invention, including pharmaceutical compositions and dosage forms and kits of the invention, include, but are not limited to: aciclovir; aclacinomycin; acenazole
hydrochloride; acronine; adozelesin; aldesleukin; altretamine; ambomycin; ametantrone acetate; aminogluthethimide; amsacrine; anastrozole; anthramycin; asparaginase; asperlin; azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirimine; busulfan; cactinomycin; calusterone; caracemide; carbetimer; carboplatin; carmustine; carubicin hydrochloride; carzelesin; cedefingol; chlorambucil; cirolemycin; cisplatin; cladribine; crisnatol mesylate; cyclophosphamide; cytarabine; dacarbazine; dactinomycin; daunorubicin hydrochloride; decitabine; dexormaplatin; dezaguanine; dezaguanine mesylate; diaziquone; docetaxel; doxorubicin; doxorubicin hydrochloride; droloxifene; droloxifene citrate; dromostanolone propionate; duazomycin; edatrexate; efornithine hydrochloride; elsamitracin; enloplatin; enupromate; epipropidine; epiurubicin hydrochloride; erbuloxole; Erbitux™; esorubicin hydrochloride; estramustine; estramustine phosphate sodium; etanidazole; etoposide; etoposide phosphate; etoprine; fadrozole hydrochloride; fazarabine; fenretinide; floxuridine; fludarabine phosphate; fluorouracil; fluorocitabine; fosquidone; fotsricin sodium; gemcitabine; gemcitabine hydrochloride; hydroxyurea; idarubicin hydrochloride; ifosfamide; ilmofosine; ImiDs™; interleukin II (including recombinant interleukin II, or rIL2), interferon -2a; interferon alpha-2b; interferon alpha-n1 ; interferon alpha-n3; interferon beta-1a; interferon gamma-1b; iroplatin; irinotecan hydrochloride; lanreotide acetate; letrozole; leuprolide acetate; liarozole hydrochloride; lometrexol sodium; lomustine; losoxantrone hydrochloride; masoprostol; maytansine; mechlorethamine hydrochloride; megestrol acetate; melengestrol acetate; melphalan; menogaril; mercaptopurine; methotrexate; methotrexate sodium; metoprine; meturedepa; mitidomide; mitocarcin; mitocromin; mitogillin; mitomalcin; mitomycin; mitosper; mitotane; mitoxantrone hydrochloride; mycophenolic acid; nocardazole; nogalarnycin; ormaplatin; oxisuran; paclitaxel; pegasparagase; pemiomycin; pentamustine; peplomycin sulfate; perfosfamide; pipobroman; piposulfan; piroxantrone hydrochloride; plicamycin; plomestane; pofirmider sodium; porfiromycin; prehindustine; procarbazine hydrochloride; puromycin; puromycin hydrochloride; pyrazofurin; riboprine; roglitimid; safingol; safingol hydrochloride; SelCid™; semustine; simtrazene; sparfosate sodium; sparsomycin; spiogeramnium hydrochloride; spiromustine; spirotatin; streptonigrin; streptozocin; sulofemur; talisomycin; tecogalan sodium; tegafur; teloxantrone hydrochloride; temoporf; teniposide; teroxirone; testolactone; thiampirine; thioguanine; temozolomide; temodar; thiotepa; tiazofurin; tirapazamine; toremifene citrate; trestolone acetate; triciribine phosphate; trimetrexate; trimetrexate glucuronate; triptorelin; tubulozole hydrochloride; uracil mustard; uredepa; vaproetide; verteporfin; vinblastine sulfate;
vincristine sulfate; vindesine; vindesine sulfate; vinpepidine sulfate; vinglycinate sulfate; vinleurosine sulfate; vinorelbine tartrate; vinroside sulfate; vinzolidine sulfate; vorozole; zeniplatin; zinostatin; zorubicin hydrochloride. Other anti-cancer drugs include, but are not limited to: 20-epi-1,25 dihydroxyvitamin D3; 5-ethynyluracil; abiraterone; aclarubicin; acylfulvene; adecaplenol; adezelesin; aldesleukin; ALL-TK antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid; amrubucin; amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA; arginine deaminase; asulacrine; atamestane; atrimustine; axinastatin 1; axinastatin 2; axinastatin 3; azasetron; azatoxin; azatyrosine; baccatin III derivatives; balanol; batimastat; BCR/ABL antagonists; benzochlorins; benzoylstaurosphorine; beta lactam derivatives; beta-alethine; betaclamycin B; betulinic acid; bFGF inhibitor; bicalutamide; bisantrene; bisaziridinylsperrmine; bisnafide; bistratene A; bizelesin; breflata; bropirimine; budotitane; buthionine sulfoximine; calcipotriol; calphostin C; camptothecin derivatives; canarypox IL-2; capecitabine; carboxamide-amino-triazole; carboxamidotriazole; CasRest M3; CARN 700; cartilage derived inhibitor; carzelesin; casein kinase inhibitors (ICOS); cell-cycle inhibitors (e.g., flavopiridol A, tryprostatin B, p19ink4D); cyclin-dependent kinase inhibitors (e.g., roscovitine, olomucine and purine analogs); MAP kinase inhibitors (CNI-1493); castanospermine; cecropin B; cetorelrix; chlorins; chloroquinoxaline sulfonamide; cica prost; cis-porphyrin; cladribine; clomifene analogues; clotrimazole; collismycin A; collismycin B; combretastatin A4; combretastatin analogue; conagenin; crambscendin 816; crisnatol; cryptophycin 8; cryptophycin A derivatives; curacin A; cyclopentanthraquinones; cycloplatam; cypermycin; cytarabine ocfosfate; cytolytic factor; cytostatin; dacliximab; decitabine; dehydrodideemin B; deslorelin; dexamethasone; dexifosfamide; dexrazoxane; dexverapamil; diaziquone; didemnin B; didox; diethylnorspermine; dihydro-5-azacytidine; dihydrotaxol, 9-; dioxamycin; diphenyl spiromustine; docetaxel; docosanol; dolasetron; doxifluridine; droloxifene; dronabinol; duocarmycin SA; ebselen; ecomustine; edelfosine; edrecolomab; efornithine; elemene; emetine; epirubicin; epiristeride; estramustine analogue; estrogen agonists; estrogen antagonists; etanidazole; etoposide phosphate; exemestane; fadrozole; fazarabine; fenretinide; filgrastim; finasteride; flavopiridol; flezelaistine; fluasterone; fludarabine; fluorodaunorunicin hydrochloride; forfenimex; formestane; fosfiecin; fotemustine; gadolinium texaphyrin; gallium nitrate; galocitabine; ganirelix; gelatinase inhibitors; gemcitabine; glutathione inhibitors; hepsulfam; heregulin; hexamethylene
bisacetamide; hypericin; ibandronic acid; idarubicin; idoxifene; idramantone; ilomfosine; ilomastat; imidazoacridones; imiquimod; immunostimulant peptides; insulin-like growth factor-1 receptor inhibitor; interferon agonists; interferons; interleukins; iobenguane; iododoxorubicin; ipomeanol, 4-; iroplact; irsgladine; isobengazole; isosomohalicondrin B; itasetron; jasplakinolide; kahalalide F; lamellarin-N triacetate; lanreotide; leinamycin; lenogratrim; lentinan sulfate; leptomstatin; letrozole; leukemia inhibiting factor; leukocyte alpha interferon; leuprolide+estrogen+progesterone; leuprelorin; levamisole; liarozole; linear polyamine analogue; lipophilic disaccharide peptide; lipophilic platinum compounds; lissoclinamide 7; lobaplatin; lombricine; lometrexol; lonidamine; losoxantrone; lovastatin;loxoribine; lurttotecan; lutetium texaphyrin; lysofylline; lytic peptides; maitansine; mannostatin A; marimastat; masprocol; maspin; matrilysin inhibitors; matrix metalloproteinase inhibitors; menogaril; merbarone; meterelin; methioninase; metoclopramide; MIF inhibitor; mifepristone; miltefosine; mirimostim; mismatched double stranded RNA; mitoguazone; mitolactol; mitomycin analogues; mitonafide; mitotoxin fibroblast growth factor-saporin; mitoxantrone; mofarotene; molgramostim; monoclonal antibody, human chorionic gonadotrophin; monophosphoryl lipid A+myobacterium cell wall sk; mopidamol; multiple drug resistance gene inhibitor; multiple tumor suppressor 1-based therapy; mustard anticancer agent; mycaperoxide B; mycobacterial cell wall extract; myriaporone; N-acetyldinaline; N-substituted benzamides; nafarelin; nagrestip; naloxone+pentazocine; napavin; naphterpin; nartogastrin; nedaplatin; nemorubicin;neridronic acid; neutral endopeptidase; nilutamide; nisamycin; nitric oxide modulators; nitroxide antioxidant; nitrullyn; O6-benzylguanine; octreotide; okicenone; oligonucleotides; onapristone; ondansetron; ondansetron; oracin; oral cytokine inducer; ormaplatin; osaterone; oxaliplatin; oxaaunomycin; paclitaxel; paclitaxel analogues; paclitaxel derivatives; palauamine; palmitoylrlhizoxin; pamidronic acid; panaxytriol; panomifene; parabactin; pazelloptine; pegaspartagase; peldesine; pentosan polysulfate sodium; pentostatin; pentrozole; perflubron; perfosfamide; perillyl alcohol; phenazinomycin; phenylacetate; phosphatase inhibitors; picibanil; pilocarpine hydrochloride; pirarubicin; piritrexim; placetin A; placetin B; plasminogen activator inhibitor; platinum complex; platinum compounds; platinum-triamine complex; porfimer sodium; porfiromycin; prednisone; propyl bis-acridone; prostaglandin J2; proteasome inhibitors; protein A-based immune modulator; protein kinase C inhibitor; protein kinase C inhibitors, microalgal; protein tyrosine phosphatase inhibitors; purine nucleoside phosphorylase inhibitors; purpurins; pyrazoloacridine; pyridoxylated hemoglobin polyoxyethylene conjugate; raf antagonists; raltitrexed; ramosetron; retinoic acid (e.g., 9-cis RA); histone deacetylase inhibitors (e.g.,
sodium butyrate, suberoylanilide hydroxamic acid); TRAIL; ras farnesyl protein transferase inhibitors; ras inhibitors; ras-GAP inhibitor; retelliptine demethylated; rhenium Re 186 etidronate; rhizoxin; ribozymes; RII retinamide; rogletimide; rohitukine; romurtide; roquinimex; rubiginone B1; ruboxy; safingol; saintopin; SarCNU; sarpacytol A; sargramostim; Sdi 1 mimetics; semustine; senescence derived inhibitor 1; sense oligonucleotides; signal transduction inhibitors; signal transduction modulators; single chain antigen binding protein; sizofiran; sobuzoxane; sodium borocaptate; sodium phenylacetate; solverol; somatomedin binding protein; sonermin; sparfosic acid; spicamycin D; spiromustine; splenopentin; spongistatin 1; squalamine; stem cell inhibitor; stem-cell division inhibitors; stipiamide; stroemelyn inhibitors; sulfinosine; superactive vasoactive intestinal peptide antagonist; suradista; suramin; swainsonine; synthetic glycosaminoglycans; tallimustine; tamoxifen methiodide; tauromustine; tazarotene; tecogalan sodium; tegafur; tellurapyrylium; telomerase inhibitors; temoporfin; temozolomide; teniposide; tetrachlorodecaoxide; tetrazomine; thaliblastine; thioconaline; thrombopoietin; thrombopoietin mimetic; thymalfasin; thymopoietin receptor agonist; thymotrinan; thyroid stimulating hormone; tin ethyl etiopurpurin; tirapazamine; titanocene bichloride; topsentin; toremifene; totipotent stem cell factor; translation inhibitors; tretinoin; triacetyluridine; triciribine; trimetrexate; triptorelin; tropisetron; turosteride; tyrosine kinase inhibitors; tyrphostins; UBC inhibitors; ubenimex; urogenital sinus-derived growth inhibitory factor; urokinase receptor antagonists; vapreotide; variolin B; vector system, erythrocyte gene therapy; velareosol; veramine; verdins; verteporfin; vinorelbine; vinxaltine; vitaxin; vorozole; zanoteron; zeniplatin; zilascorb; and zinostatin stimalamer. Preferred additional anti-cancer drugs are 5-fluorouracil and leucovorin. These two agents are particularly useful when used in methods employing thalidomide and a topoisomerase inhibitor.

In more particular embodiments, the present invention also comprises the administration of one or more inhibitors of JNK in combination with the administration of one or more therapies such as, but not limited to agents such as those disclosed in Table I, preferably for the treatment of breast, ovary, prostate, colon and lung cancers as described above.

TABLE 1

78
<table>
<thead>
<tr>
<th>Therapeutic Agent</th>
<th>Dose/Administration/Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>doxorubicin hydrochloride (Adriamycin RDF® and Adriamycin PFS®)</td>
<td>Intravenous 60-75 mg/m² on Day 1 21 day intervals</td>
</tr>
<tr>
<td>epirubicin hydrochloride (Ellence™)</td>
<td>Intravenous 100-120 mg/m² on Day 1 of each cycle or divided equally and given on Days 1-8 of the cycle 3-4 week cycles</td>
</tr>
<tr>
<td>fluorouracil</td>
<td>Intravenous How supplied: 5 mL and 10 mL vials (containing 250 and 500 mg fluorouracil respectively) as needed or prescribed</td>
</tr>
<tr>
<td>docetaxel (Taxotere®)</td>
<td>Intravenous 60-100 mg/m² over 1 hour Once every 3 weeks</td>
</tr>
<tr>
<td>paclitaxel (Taxol®)</td>
<td>Intravenous 175 mg/m² over 3 hours Every 3 weeks for 4 courses (administered sequentially to doxorubicin-containing combination chemotherapy)</td>
</tr>
<tr>
<td>tamoxifen citrate (Nolvadex®)</td>
<td>Oral (tablet) 20-40 mg Dosages greater than 20 mg should be given in divided doses (morning and evening) Daily</td>
</tr>
<tr>
<td>leucovorin calcium for injection</td>
<td>Intravenous or intramuscular injection How supplied: 350 mg vial Dosage is unclear from text. PDR 3610</td>
</tr>
<tr>
<td>leuprolide acetate (Luprom®)</td>
<td>Single subcutaneous injection 1 mg (0.2 mL or 20 unit mark) Once a day</td>
</tr>
<tr>
<td>flutamide (Eulexin®)</td>
<td>Oral (capsule) 250 mg (capsules contain 125 mg flutamide each) 3 times a day at 8 hour intervals (total daily dosage 750 mg)</td>
</tr>
<tr>
<td>nilutamide (Nilandron®)</td>
<td>Oral (tablet) 300 mg or 150 mg (tablets contain 50 or 150 mg nilutamide each) 300 mg once a day for 30 days followed by 150 mg once a day</td>
</tr>
<tr>
<td>Therapeutic Agent</td>
<td>Dose/Administration/Formulation</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>bicalutamide (Casodex®)</td>
<td>Oral (tablet) 50 mg (tablets contain 50 mg bicalutamide each) Once a day</td>
</tr>
<tr>
<td>progesterone</td>
<td>Injection USP in sesame oil 50 mg/mL as needed or prescribed</td>
</tr>
<tr>
<td>ketoconazole (Nizoral®)</td>
<td>Cream 2% cream applied once or twice daily depending on symptoms as needed or prescribed</td>
</tr>
<tr>
<td>prednisone</td>
<td>Oral (tablet) Initial dosage may vary from 5 mg to 60 mg per day depending on the specific disease entity being treated. as needed or prescribed</td>
</tr>
<tr>
<td>estramustine phosphate sodium (Emcyt®)</td>
<td>Oral (capsule) 14 mg/kg of body weight (i.e. one 140 mg capsule for each 10 kg or 22 lb of body weight) Daily given in 3 or 4 divided doses</td>
</tr>
<tr>
<td>etoposide or VP-16</td>
<td>Intravenous 5 mL of 20 mg/mL solution (100 mg) as needed or prescribed</td>
</tr>
<tr>
<td>dacarbazine (DTIC-Dome®)</td>
<td>Intravenous 2.4.5 mg/kg Once a day for 10 days. May be repeated at 4 week intervals</td>
</tr>
<tr>
<td>polifeprosan 20 with carmustine implant (BCNU) (nitrosourea) (Gliadel®)</td>
<td>wafer placed in resection cavity 8 wafers, each containing 7.7 mg of carmustine, for a total of 61.6 mg, if size and shape of resection cavity allows as needed or prescribed</td>
</tr>
<tr>
<td>cisplatin</td>
<td>Injection [n/a in PDR 861] How supplied: solution of 1 mg/mL in multidose vials of 50mL and 100mL as needed or prescribed</td>
</tr>
<tr>
<td>mitomycin</td>
<td>Injection supplied in 5 mg and 20 mg vials (containing 5 mg and 20 mg mitomycin) as needed or prescribed</td>
</tr>
<tr>
<td>Therapeutic Agent</td>
<td>Dose/Administration/Formulation</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>gemcitabine HCl</td>
<td>Intravenous For NSCLC- 2 schedules have been investigated and the optimum schedule has not been determined. 4 week schedule- administration intravenously at 1000 mg/m² over 30 minutes on 3 week schedule- Gemzar administered intravenously at 1250 mg/m² over 30 minutes</td>
</tr>
<tr>
<td>(Gemzar®)</td>
<td></td>
</tr>
<tr>
<td>carboplatin</td>
<td>Intravenous Single agent therapy: 360 mg/m² I.V. on day 1 (infusion lasting 15 minutes or longer) Other dosage calculations: Combination therapy with cyclophosphamide, Dose adjustment recommendations, Formula dosing, etc.</td>
</tr>
<tr>
<td>(Paraplatin®)</td>
<td></td>
</tr>
<tr>
<td>ifosamide (Ifev®)</td>
<td>Intravenous 1.2 g/m² daily</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>topotecan hydrochloride (Hyctam®)</td>
<td>Intravenous 1.5 mg/m² by intravenous infusion over 30 minutes daily</td>
</tr>
<tr>
<td>cyclophosphamide</td>
<td>Parenteral or Oral 1-5 mg/kg/day</td>
</tr>
<tr>
<td>irinotecan</td>
<td>Intravenous or Infusion 20-500 mg/m²</td>
</tr>
</tbody>
</table>

The invention also encompasses administration of JNK inhibitors in combination with radiation therapy comprising the use of x-rays, gamma rays and other sources of radiation to destroy the cancer cells. In preferred embodiments, the radiation treatment is administered as external beam radiation or teletherapy wherein the radiation is directed from a remote source. In other preferred embodiments, the radiation treatment is administered as
internal therapy or brachytherapy wherein a radioactive source is placed inside the body close to cancer cells or a tumor mass.

4.3 Pharmaceutical Compositions

The compositions of the invention include bulk drug compositions useful in the manufacture of pharmaceutical compositions (e.g., impure or non-sterile compositions) and pharmaceutical compositions (i.e., compositions that are suitable for administration to a patient) which can be used in the preparation of unit dosage forms. Such compositions comprise a prophylactically or therapeutically effective amount of a prophylactic and/or therapeutic agent disclosed herein or a combination of those agents and a pharmaceutically acceptable carrier. Preferably, compositions of the invention comprise a prophylactically or therapeutically effective amount of JNK inhibitor and/or an anti-cancer agent, and a pharmaceutically acceptable carrier.

In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which a compound of the invention is administered. Such pharmaceutical vehicles can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. The pharmaceutical vehicles can be saline, gum acacia, gelatin, starch paste, talc, keratin, colloidal silica, urea, and the like. In addition, auxiliary, stabilizing, thickening, lubricating and coloring agents may be used. When administered to a patient, the compounds of the invention and pharmaceutically acceptable vehicles are preferably sterile. Water is a preferred vehicle when the compound of the invention is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid vehicles, particularly for injectable solutions. Suitable pharmaceutical vehicles also include excipients such as starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol and the like. The present compositions, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.

The present compositions can take the form of solutions, suspensions, emulsion, tablets, pills, pellets, capsules, capsules containing liquids, powders, sustained-release formulations, suppositories, emulsions, aerosols, sprays, suspensions, or any other form suitable for use. In one embodiment, the pharmaceutically acceptable vehicle is a capsule.
(see e.g., U.S. Patent No. 5,698,155). Other examples of suitable pharmaceutical vehicles are described in "Remington's Pharmaceutical Sciences" by E.W. Martin.

In a preferred embodiment, the compounds of the invention are formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compounds of the invention for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the compositions may also include a solubilizing agent. Compositions for intravenous administration may optionally include a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the compound of the invention is to be administered by infusion, it can be dispensed, for example, with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the compound of the invention is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

Compositions for oral delivery may be in the form of tablets, lozenges, aqueous or oily suspensions, granules, powders, emulsions, capsules, syrups, or elixirs, for example. Orally administered compositions may contain one or more optional agents, for example, sweetening agents such as fructose, aspartame or saccharin; flavoring agents such as peppermint, oil of wintergreen, or cherry; coloring agents; and preserving agents, to provide a pharmaceutically palatable preparation. Moreover, where in tablet or pill form, the compositions may be coated to delay disintegration and absorption in the gastrointestinal tract thereby providing a sustained action over an extended period of time. Selectively permeable membranes surrounding an osmotically active driving compound are also suitable for orally administered compounds of the invention. In these later platforms, fluid from the environment surrounding the capsule is imbibed by the driving compound, which swells to displace the agent or agent composition through an aperture. These delivery platforms can provide an essentially zero order delivery profile as opposed to the spiked profiles of immediate release formulations. A time delay material such as glycerol monostearate or glycerol stearate may also be used. Oral compositions can include standard vehicles such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Such vehicles are preferably of pharmaceutical grade.

Further, the effect of the compounds of this invention may be delayed or prolonged by proper formulation. For example, a slowly soluble pellet of the compound may be
prepared and incorporated in a tablet or capsule. The technique may be improved by making pellets of several different dissolution rates and filling capsules with a mixture of the pellets. Tablets or capsules may be coated with a film which resists dissolution for a predictable period of time. Even the parenteral preparations may be made long-acting, by dissolving or suspending the compound in oily or emulsified vehicles which allow it to disperse only slowly in the serum.

4.2.1 Formulations

Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients.

Thus, the JNK inhibitors or other anti-cancer agents and their physiologically acceptable salts and solvates may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, parenteral or mucosal (such as buccal, vaginal, rectal, sublingual) administration. In a preferred embodiment, local or systemic parenteral administration is used.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the prophylactic or therapeutic agents for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The prophylactic or therapeutic agents may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The prophylactic or therapeutic agents may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the prophylactic or therapeutic agents may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the prophylactic or therapeutic agents may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

The invention also provides that a prophylactic or therapeutic agent is packaged in a hermetically sealed container such as an ampoule or sachette indicating the quantity. In one embodiment, the prophylactic or therapeutic agent is supplied as a dry sterilized lyophilized powder or water free concentrate in a hermetically sealed container and can be reconstituted, e.g., with water or saline to the appropriate concentration for administration to a patient.

In a preferred embodiment of the invention, the formulation and administration of various chemotherapeutic, biological/immunotherapeutic and hormonal therapeutic agents
are known in the art and often described in the *Physician's Desk Reference, 56th ed.* (2002). For instance, in certain specific embodiments of the invention, the therapeutic agents of the invention can be formulated and supplied as provided in Table 1.

In other embodiments of the invention, radiation therapy agents such as radioactive isotopes can be given orally as liquids in capsules or as a drink. Radioactive isotopes can also be formulated for intravenous injections. The skilled oncologist can determine the preferred formulation and route of administration.

The compositions may, if desired, be presented in a pack or dispenser device that may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

In certain preferred embodiments, the pack or dispenser contains one or more unit dosage forms containing no more than 5 mg/mL of a JNK inhibitor and no more than the recommended dosage formulation as determined in the *Physician's Desk Reference (56th ed.* 2002, herein incorporated by reference in its entirety) for a particular cancer therapy.

4.4 **Routes of Administration**

Methods of administering a prophylactic or therapeutic agent of the invention include, but are not limited to, parenteral administration (*e.g.*, intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous), epidural, and mucosal (*e.g.*, intranasal, rectal, vaginal, sublingual, buccal or oral routes). In a specific embodiment, prophylactic or therapeutic agents of the invention are administered intramuscularly, intravenously, or subcutaneously. The prophylactic or therapeutic agents may also be administered by infusion or bolus injection and may be administered together with other biologically active agents. Administration can be local or systemic. The JNK inhibitors or other biologically active agents and their physiologically acceptable salts and solvates may also be administered by inhalation or insufflation (either through the mouth or the nose). In a preferred embodiment, local or systemic parenteral administration is used.

In specific embodiments, it may be desirable to administer one or more compounds of the invention locally to the area in need of treatment. This may be achieved, for example, and not by way of limitation, by local infusion during surgery, topical application, *e.g.*, in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a
porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. In one embodiment, administration can be by direct injection at the site (or former site) of an atherosclerotic plaque tissue.

Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent, or via perfusion in a fluorocarbon or synthetic pulmonary surfactant. In certain embodiments, the compounds of the invention can be formulated as a suppository, with traditional binders and vehicles such as triglycerides.

In another embodiment, the compounds of the invention can be delivered in a vesicle, in particular a liposome (see Langer, 1990, Science 249:1527-1533; Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.).

4.5 Dosages

The amount of the composition of the invention which will be effective in the treatment, prevention or management of cancer can be determined by standard research techniques. For example, the dosage of the composition which will be effective in the treatment, prevention or management of cancer can be determined by administering the composition to an animal model such as, e.g., the animal models disclosed herein or known
to those skilled in the art. In addition, *in vitro* assays may optionally be employed to help identify optimal dosage ranges.

Selection of the preferred effective dose can be determined (e.g., via clinical trials) by a skilled artisan based upon the consideration of several factors which will be known to one of ordinary skill in the art. Such factors include the disease to be treated or prevented, the symptoms involved, the patient’s body mass, the patient’s immune status and other factors known by the skilled artisan to reflect the accuracy of administered pharmaceutical compositions.

The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the cancer, and should be decided according to the judgment of the practitioner and each patient’s circumstances. Effective doses may be extrapolated from dose-response curves derived from *in vitro* or animal model test systems.

The general range of effective administration rates of the compounds of this invention are from about 0.001 mg/day to about 3000 mg/day, more preferably from about 0.001 mg/day to 2500 mg/day, more preferably from about 0.001 mg/day to 1500 mg/day, more preferably from about 0.001 mg/day to 750 mg/day, more preferably from about 0.001 mg/day to 250 mg/day, more preferably from about 0.001 mg/day to 75 mg/day, more preferably from about 0.001 mg/day to 50 mg/day, more preferably from about 0.001 mg/day to 25 mg/day, more preferably from about 0.001 mg/day to 10 mg/day, more preferably from about 0.001 mg/day to 1 mg/day. Of course, it is often practical to administer the daily dose of compound in portions, at various hours of the day. However, in any given case, the amount of compound administered will depend on such factors as the solubility of the active component, the formulation used, subject condition (such as weight), and/or the route of administration.

For antibodies, the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient’s body weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient’s body weight, more preferably 1 mg/kg to 10 mg/kg of the patient’s body weight. Generally, human and humanized antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible.

For other cancer therapeutic agents administered to a patient, the typical doses of various cancer therapeutics known in the art are provided in Table 1. Given the invention, certain preferred embodiments will encompass the administration of lower dosages in
combination treatment regimens than dosages recommended for the administration of single agents.

Cancer therapies and their dosages, routes of administration and recommended usage are known in the art and have been described in such literature as the *Physician’s Desk Reference* (56th ed., 2002).

The invention provides for any method of administering lower doses of known prophylactic or therapeutic agents than previously thought to be effective for the prevention, treatment, management or amelioration of cancer. Preferably, lower doses of known anti-cancer therapies are administered in combination with lower doses of JNK inhibitors.

4.6 Kits

The invention provides a pharmaceutical pack or kit comprising one or more containers filled with JNK inhibitor and one or more other prophylactic or therapeutic agents useful for the treatment of a cancer. The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

The present invention provides kits that can be used in the above methods. In one embodiment, a kit comprises a JNK inhibitor, in one or more containers, and one or more other prophylactic or therapeutic agents useful for the treatment of cancer, in one or more containers. In certain preferred embodiments, the other prophylactic or therapeutic agent is a chemotherapeutic. In certain preferred embodiments, the prophylactic or therapeutic agent is a biological or hormonal therapeutic. In an alterative embodiment, a kit comprises a JNK inhibitor and one or more other prophylactic or therapeutic agents useful for the treatment of cancer, in one or more containers.

5. EXAMPLES

The following examples are offered by way of illustration, not limitation.

5.1 JNK Inhibitor A and JNK Inhibitor B in Combination Therapy using Lewis Lung Carcinoma (LLC)

This experiment was performed *in vitro* to determine the effect on Lewis Lung Carcinoma (LLC) proliferation of combination treatment with JNK inhibitor A and JNK.
inhibitor B (JNK inhibitor A = ((2H-Dibenzo(cd,g)indazol-6-one)); JNK inhibitor B = (3-(4-fluoro-phenyl)-5-(2H-(1,2,4)triazol-3-yl)-1H-indazole)) and anti-cancer agents. The results are illustrated in Figures 1 A and 1 B.

LLC cells were grown in DMEM with 10% FBS. Cells were subsequently treated on the second day with either DMSO, JNK inhibitor A (3 μM, 10 μM or 30 μM), JNK inhibitor B (1 μM, 3 μM, or 10 μM), or a chemodrug (i.e., doxorubicin, 5-fluorouridine (5-FU), cisplatin or paclitaxel) (concentrations ranging from 0.001 μM to 10 μM) or a combination of JNK inhibitor A or JNK inhibitor B with a chemodrug. Cell proliferation was measured at 48 hours after treatment by Alamar Blue fluorescence.

Treatment of cells with a combination of JNK inhibitor A or JNK inhibitor B and a chemodrug resulted in increased killing of cells relative to treatment with JNK inhibitor A or JNK inhibitor B or a chemodrug alone.

5.2 Combination of JNK inhibitor B and Cyclophosphamide Blocks Lewis Lung Carcinoma (LLC) Tumor Growth

This experiment was performed to determine if JNK inhibitors will enhance the antitumor effects of cyclophosphamide (CTX) in combination treatment. Results are illustrated in Figure 2.

Lewis Lung Carcinoma (LLC) tumors were injected into C57BL/6 mice (50 mice, 10/group), 1x106 cells in 0.1ml Matrigel. Tumors were treated the day after inoculation by administration of vehicle alone (0.5%CMC/0.25% Tween 80), cyclophosphamide (CTX, 50 mg/kg, ip, q3d), SPC2 (75mg/kg, ip, b.i.d.) or CTX in combination with JNK inhibitor B. Tumor volume was recorded over a period of 17 days. Tumor volume was calculated by the formula: mm³ = (L x W²)/2. In the CTX / JNK inhibitor B combination group, 7/10 animals had no measurable tumors at the end of the study.

These results demonstrate the additive if not synergistic effect on tumor reduction by combination treatment with a JNK inhibitor and anti-cancer agent.

5.3 JNK Inhibitor A Potentiates Chemotherapeutic Induction of Apoptosis

The following experiment was performed to determine the effectiveness of combination treatment with JNK inhibitor A and a chemodrug on apoptosis. The results are illustrated in Figure 3.

MiaPaCa cells (100,000/well) were plated in 6 well plates. Following overnight incubation, vehicle or taxol was added alone for the first 7 hours, washed out, and then JNK
inhibitor A or vehicle were added for the remainder of the experiment. After 48 hours, each sample was trypsinized, stained with DiOC6 and analyzed by flow cytometry on a Coulter Epics flow cytometer using FlowJo software.

The results demonstrate the effect on MiaPaCa cell apoptosis by combination treatment with JNK inhibitor A and taxol as compared to treatment with taxol alone.

5.4 **Combination of JNK inhibitor A and Cyclophosphamide Blocks Lewis Lung Carcinoma (LLC) Tumor Growth**

The following experiment was performed to determine the effectiveness of combination treatment with JNK inhibitor A and cyclophosphamide. The results are illustrated in Figure 4.

Tumor cells were cultured under normal conditions, harvested with trypsin, washed with PBS then resuspended, 1x107 cells/ml in Matrigel (Collaborative). C57BL/6 mice (female, 18-20g, Charles River) were lightly anesthetized using Isofluorane then inoculated, subcutaneously, under the right flank with 0.1ml Matrigel containing 1x106 tumor cells. Mice were randomized into treatment groups immediately after cell inoculation. After 3 days tumor growth treatment began. Mice were administered vehicle alone (DMSO), cyclophosphamide (CTX), JNK inhibitor A or CTX in combination with JNK inhibitor A. Tumor volumes were determined by caliper measurement. Tumor volume was calculated by the formula: \(mm^3 = (L \times W^2)/2 \). Values are mean ± sem, \(N = 10 \).

This study demonstrates the antitumor effects of JNK inhibitor A in combination with cyclophosphamide in C57BL/6 mice bearing Lewis lung carcinoma. Tumor inhibition resulting from JNK inhibitor A treatment in combination with cyclophosphamide was significantly less \((p=0.05)\) than that seen with cyclophosphamide alone. This result indicates that JNK inhibitors can be used in combination with cyclophosphamide and other chemotherapeutic drugs to enhance their efficacy.

5.5 **Combination of JNK Inhibitor C and Camptosar Blocks Lewis Lung Carcinoma (LLC) Tumor Growth**

The following experiment was performed to determine the effectiveness of combination treatment with JNK inhibitor C (JNK inhibitor C = (3-(4-(2-Piperidin-1-yl-ethoxy)-cyclohexa-1,5-dienyl)-5-(2H-(1,2,4)triazol-3-yl)-1H-indazole)) and Camptosar. The results are illustrated in Figure 5.

CB17 SCID mice were inoculated subcutaneously with HCT-116 human colorectal cancer cells. On day 8, mice bearing tumors of 100 mm³ were segregated into groups and
administered i.p. with vehicle (citrate buffer), JNK inhibitor C (15 mg/kg), JNK inhibitor C (30 mg/kg), JNK inhibitor C (15 mg/kg) + Camptosar (1.5 mg/kg), Camptosar (1.5 mg/kg) or Camptosar (10 mg/kg). The tumors were measured twice a week and volumes calculated. The dosing regimen for the compound JNK inhibitor C was b.i.d and for Camptosar was q4d. The arrows indicate the dosing days of JNK inhibitor C and Camptosar. The tumor growth in the group treated with JNK inhibitor C in combination with Camptosar was significantly slower than that of either treatments alone. This demonstrates the synergistic effect of combination therapy with JNK inhibitor C and Camptosar.
What Is Claimed Is:

1. A method for preventing, treating or managing cancer in a patient in need thereof, said method comprising administering to said patient a prophylactically or therapeutically effective amount of one or more JNK inhibitors and a prophylactically or therapeutically effective amount of another chemotherapeutic agent.

2. The method of claim 1 wherein the chemotherapeutic agent is an apoptosis inducing agent.

3. The method of claim 1 wherein the chemotherapeutic agent is an anti-angiogenic agent.

4. The method of claim 1 wherein the chemotherapeutic agent is a cytotoxic agent.

5. The method of claim 1 wherein the chemotherapeutic agent is an antimetabolite.

6. The method of claim 1 wherein the chemotherapeutic agent is an antimitotic agent.

7. The method of claim 1 wherein the chemotherapeutic agent is a modulator of TNF-alpha.

8. The method of claim 1 wherein the chemotherapeutic agent is a tubulin stabilizing agent.

9. The method of claim 1 wherein the chemotherapeutic agent is a microtubule formation inhibiting agent.

10. The method of claim 1 wherein the chemotherapeutic agent is a topoisomerase inhibitor.

11. The method of claim 1 wherein the chemotherapeutic agent is an anti-
metastatic agent.

12. The method of claim 1 wherein the chemotherapeutic agent is a DNA interactive agent.

13. The method of claim 12 wherein the DNA interactive agent is a DNA alkylating agent.

14. The method of claim 12 wherein the DNA interactive agent is a DNA intercalating agent.

15. The method of claim 1 wherein the patient is a human.

16. The method of claim 1 wherein the chemotherapeutic agent is paclitaxel, irinotecan, cyclophosphamide, 5-fluorouracil, cisplatinum, carboplatin, methotrexate, doxorubicin, thalidomide, cetuximab, CC-4047 and CC-501.

17. A method for increasing the efficacy of cancer chemotherapeutic agents which comprises administering to a patient in need thereof a therapeutically effective amount one or more JNK inhibitors.

18. The method of claim 17 wherein the patient has undergone cancer treatment.

19. The method of claim 17 wherein the patient is undergoing cancer treatment.

20. The method of claim 1 or 17 wherein the cancer is resistant to cancer treatment.

21. The method of claim 1 or 17, wherein the JNK inhibitor is a small organic molecule.

22. The method of claim 1, wherein the JNK inhibitor is:
wherein:

A is a direct bond, -(CH₂)ₙ₋₁, -(CH₂)ₙCH=CH(CH₂)ₙ₋₁, or -(CH₂)ₙC≡C(CH₂)ₙ₋₁;

R₁ is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally
substituted with one to four substituents independently selected from R₃;

R₂ is -R₃, -R₄, -(CH₂)ₙC(=O)R₅, -(CH₂)ₙC(=O)OR₅, -(CH₂)ₙC(=O)NR₃R₆,
-(CH₂)ₙC(=O)NR₃(CH₂)ₙC(=O)R₆, -(CH₂)ₙNR₃C(=O)R₆,
-(CH₂)ₙNR₃C(=O)NR₄R₇, -(CH₂)ₙNR₃R₆, -(CH₂)ₙOR₅,
-(CH₂)ₙSO₂R₆ or -(CH₂)ₙSO₂NR₃R₆;

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from
0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

R₃ is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy,
haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl,
substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted
heterocycle, heterocycloalkyl, substituted heterocycloalkyl, -C(=O)OR₈,
-OC(=O)R₈, -C(=O)NR₈R₉, -C(=O)NR₈OR₉, -SO₂NR₈R₉, -NR₈SO₂R₉, -CN,
-NO₂, -NR₈R₉, -NR₈C(=O)R₉, -NR₈C(=O)(CH₂)ₙOR₉, -NR₈C(=O)(CH₂)ₙR₉,
-O(CH₂)ₙNR₈R₉, or heterocycle fused to phenyl;

R₄ is alkyl, aryl, arylalkyl, heterocycle or heterocycloalkyl, each being optionally
substituted with one to four substituents independently selected from R₃, or
R₄ is halogen or hydroxy;

R₅, R₆ and R₇ are the same or different and at each occurrence independently
hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocycloalkyl, wherein
each of R₅, R₆ and R₇ are optionally substituted with one to four substituents
independently selected from R₃; and

R₈ and R₉ are the same or different and at each occurrence independently hydrogen,
alyl, aryl, arylalkyl, heterocycle, or heterocycloalkyl, or R₈ and R₉ taken
together with the atom or atoms to which they are bonded form a
heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a
heterocycle are optionally substituted with one to four substituents
independently selected from R₇;
or a pharmaceutically acceptable salt thereof.

23. The method of claim 1, wherein the JNK inhibitor is:

wherein:

R₁ is aryl or heteroaryl optionally substituted with one to four substituents
independently selected from R₇;
R₂ is hydrogen;
R₃ is hydrogen or lower alkyl;
R₄ represents one to four optional substituents, wherein each substituent is
the same or different and independently selected from halogen,
hydroxy, lower alkyl and lower alkoxy;
R₅ and R₆ are the same or different and independently -R₈, -(CH₂)nC(=O)R₉,
-(CH₂)mC(=O)OR₉, -(CH₂)mC(=O)NR₉R₁₀,
-(CH₂)nC(=O)NR₉(CH₂)mC(=O)R₁₀, -(CH₂)nNR₉C(=O)R₁₀,
(CH₂)nNR₁₀C(=O)NR₉R₁₀, -(CH₂)nNR₉R₁₀, -(CH₂)nOR₉,
-(CH₂)nSO₂R₉ or -(CH₂)nSO₂NR₉R₁₀;
or R₅ and R₆ taken together with the nitrogen atom to which they are attached
to form a heterocycle or substituted heterocycle;
R₇ is at each occurrence independently halogen, hydroxy, cyano, nitro,
carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl,
sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, aralkyl, substituted
aryl, heterocycle, substituted heterocycle, heterocyclealkyl,
substituted heterocyclealkyl, -C(=O)OR₈, -OC(=O)R₈, -C(=O)NR₈R₉,
-C(=O)NR₈OR₉, -SO₂R₉, -SO₂NR₉R₉, -NR₈SO₂R₉, -NR₈R₉,
-NR₈C(=O)R₉, -NR₈C(=O)(CH₂)nOR₉, -NR₈C(=O)(CH₂)nR₉,
-O(CH₂)ₙNR₉R₉, or heterocycle fused to phenyl;
R₆, R₉, R₁₀ and R₁₁ are the same or different and at each occurrence
independently hydrogen, alkyl, substituted alkyl, aryl, substituted
aryl, aralkyl, substituted arylalkyl, heterocycle, substituted
heterocycle, heterocyclealkyl or substituted heterocyclealkyl;
or R₉ and R₁₀ taken together with the atom or atoms to which they are
attached to form a heterocycle or substituted heterocycle;
a and b are the same or different and at each occurrence independently
selected from 0, 1, 2, 3 or 4; and
c is at each occurrence 0, 1 or 2;
or a pharmaceutically acceptable salt thereof.

24. The method of claim 1, wherein the JNK inhibitor is:

![Chemical structure](image)

wherein R₀ is -O-, -S-, -S(O) -, -S(O)₂-, NH or -CH₂-;
the compound being (i) unsubstituted, (ii) monosubstituted and having a first
substituent, or (iii) disubstituted and having a first substituent and a second substituent;
the first or second substituent, when present, is at the 3, 4, 5, 7, 8, 9, or 10
position, wherein the first and second substituent, when present, are independently alkyl,
hydroxy, halogen, nitro, trifluoromethyl, sulfonyl, carboxyl, alkoxycarbonyl, alkoxy, aryl,
aryloxy, aryalkyloxy, aryalkyl, cycloalkylalkyloxy, cycloalkyloxy, alkoxyalkyl,
alkoxyalkoxy, aminoalkoxy, mono-alkylaminoalkoxy, di-alkylaminoalkoxy, or a group
represented by formula (a), (b), (c), (d), (e), or (f):
wherein R_3 and R_4 are taken together and represent alkylidene or a heteroatom-containing alkylidene or R_3 and R_4 are independently hydrogen, alkyl, cycloalkyl, aryl, arylalkyl, cycloalkylalkyl, aryloxyalkyl, alkoxyalkyl, aminoalkyl, monoalkylaminoalkyl, or di-alkylaminoalkyl; and

R_3 is hydrogen, alkyl, cycloalkyl, aryl, arylalkyl, cycloalkylalkyl, alkoxy, alkoxyalkyl, alkoxy carbonylalkyl, amino, mono-alkylamino, di-alkylamino, arylamino, arylalkylamino, cycloalkylamino, cycloalkylalkylamino, aminoalkyl, monoalkylaminoalkyl, or di-alkylaminoalkyl;

or a pharmaceutically acceptable salt thereof.

25. A method of reducing or preventing one or more adverse effects or toxicities associated with the administration of a chemotherapeutic agent or radiation therapy comprising administering to a patient in need thereof a therapeutically effective amount of one or more JNK inhibitors.

26. A method of reducing the dosage or frequency of administration of a chemotherapeutic agent or radiation therapy comprising administering a therapeutically effective amount one or more JNK inhibitors to a patient in need thereof.

27. A method of increasing the anti-tumor activity of a chemotherapeutic agent radiation therapy comprising administering a therapeutically effective amount one or more
JNK inhibitors to a patient in need thereof.

28. A method of increasing the selective cytotoxicity of a chemotherapeutic agent comprising the administration of a therapeutically effective amount one or more JNK inhibitors to a patient in need thereof.

29. The method of claim 26, wherein the chemotherapeutic agent is paclitaxel.

30. The method of claim 26, wherein the chemotherapeutic agent is cyclophosphamide.

31. The method of claim 1, wherein said cancer is the of head, neck, eye, mouth, throat, esophagus, chest, bone, lung, colon, rectum, stomach, prostate, breast, ovaries, testicles or other reproductive organs, skin, thyroid, blood, lymph nodes, kidney, liver, pancreas, brain or central nervous system.

32. The method of claims 17, 24, 25, 26 or 27, wherein said patient has cancer of the head, neck, eye, mouth, throat, esophagus, chest, bone, lung, colon, rectum, stomach, prostate, breast, ovaries, testicles or other reproductive organs, skin, thyroid, blood, lymph nodes, kidney, liver, pancreas, brain or central nervous system.

33. A method of treating cancer in a refractory patient which comprises administering to said patient a therapeutically effective amount of one or more JNK inhibitors.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
- IPC(7): A61K 81/40, 81/40, 81/415, 81/425, 81/505, 81/519

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,P</td>
<td>WO 02/046170 A2 (SIGNAL PHARMACEUTICALS, INC.) 13 June 2002 (13.06.02), see the entire document, especially page 23, lines 10-33.</td>
<td>1-21, 23, 25-33</td>
</tr>
<tr>
<td>Y,P</td>
<td></td>
<td>22, 24</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 08 JULY 2005

Date of mailing of the international search report: 13 AUG 2003

Authorized officer: FREDERICK KRASS

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks:
- Box PCT
- Washington, D.C. 20231

Facsimile No.: (708) 305-9280

Telephone No.: (703) 505-1255

Form PCT/ISA/101 (second sheet) (July 1998)*