US 20150095812A1

a2y Patent Application Publication o) Pub. No.: US 2015/0095812 A1l

a9 United States

Birck et al.

43) Pub. Date: Apr. 2, 2015

(54) EXTENSIBLE AND CONTEXT-AWARE

COMMANDING INFRASTRUCTURE

61/905,111, filed on Nov. 15, 2013, provisional appli-
cation No. 61/905,243, filed on Nov. 17, 2013, provi-
sional application No. 61/905,114, filed on Nov. 15,

(71) Applicant: Microsoft Corporation, Redmond, WA 2013, provisional application No. 61/905,116, filed on
us) Nov. 15, 2013, provisional application No. 61/905,
p pp
. 129, filed on Nov. 15, 2013, provisional application
(72) Inventors: Andrew Birck, Seattle, WA (US); Brad No. 61/905,105, filed on Nov. 15, 2013, provisional
Olenick, Redmond, WA (US); Leon application No. 61/905,247, filed on Nov. 17, 2013,
Ezequiel Wethls Issaquah, WA (US); provisional application No. 61/905,101, filed on Nov.
Nafisa Bhojawala, Seattle, WA (US); 15, 2013, provisional application No. 61/905,119,
Stephen Michael Danton, Seattle, WA filed on Nov. 15, 2013.
(US); Jonathan Lucero, Bellevue, WA L . .
(US): Dina-Marie Ledonna Supino, Publication Classification
Seattle, WA (US); Jesse David
. . 51) Int.CL
Francisco, Lake Stevens, WA (US); (
Vishal R. Joshi, Redmond, WA (US); GOG6F 3/0484 (2006.01)
Karandeep Singh Anand, Redmond, (52) US.CL
WA (US); William J. Staples, Duvall, CPC i GO6F 3/0484 (2013.01)
WA (US), Madhur JOShi, Kirkland, WA USPC et 715/762
(US); Julio O. Casal, Redmond, WA (57) ABSTRACT
(83)’ Jonah Bush Sterling, Seattle, WA Computing systems in which multiple non-context-sensitive
Us) or core commands may be initiated from each of a number of
) different user interface contexts. There are also multiple con-
(21) Appl. No.: 14/231,873 text-sensitive mechanism for visualizing the commands
o depending on which of the multiple possible user interface
(22) Filed: Apr. 1,2014 contexts that the commands appear. At least some embodi-
s ments described herein also related to the presentation of
Related U.S. Application Data dialogs at various stages of the command lifecycle without
(60) Provisional application No. 61/905,128, filed on Now. the system needing to know the underlying operations of the
15, 2013, provisional application No. 61/884,743, command, and allowing the developer to specity when dia-
filed on Sep. 30, 2013, provisional application No. logs are to appear in that lifecycle.
7
APP App-1 Running Free
ITHE STORE. Stop \ Largebror APP-1 Free
Restart Nt |y stop Free
:;'EE ™ Stop " Glory - Restart Free
Command
- ™ / e
A Ungin
Restart
SEARCH Command
B Websites ﬂ
NOT\F[\—(‘Z—:\JT\ONS app-1 Delete "
Command
- LApp-1 /
»
= Stop
JOURNEYS Restart / Overview
,w 5 o
BLLNG X o RUNNING WEBSITE QUICK START

US 2015/0095812 A1

Apr. 2,2015 Sheet 1 of 11

Patent Application Publication

| ainbi4

S[ejOA-UON

801
sjeuuey)
UORBIUNWLWOY

SIhejoA

iz
A1owsy

007
waysAg Bunndwon

i

(s)Jossa00.d

41
feidsig

US 2015/0095812 A1

Apr. 2,2015 Sheet2 of 11

Patent Application Publication

062 1

04¢ A

Z ainbi4
$101J9 pue s)senbsy
Buuonuop
SN 1583 INOILYIOT
9914 :30OI
10U’ Sa)Isqamalnze’ | ajisieyjouesisiyy/:dny
LHVLS ¥OIND ONINNMY | (- |
sneys
MBIAIBAQD
122 €1z 2ie 112 222
\ y 3\ A
ﬂ f { (
eee O . —Vu
SANYWINOD THOW 1¥V1S3Y doLs ISMOY
311Sg3IM
A |oJisIayjouesisiy}
00

- 0€¢

-0

US 2015/0095812 A1

Apr. 2,2015 Sheet 3 of 11

Patent Application Publication

0L€

¢ ainbi4

Si013 pue s)senbay

Buuojuop

LHVLS M2IND

SN1Se3 :NOILYOO
92l4 :JAON
JeUsa)isqamalnze’ | s)isIayjouesisiyy/dny

ONINNNY | (- |

SNEIS

MBINBAQ

X A

vee

w

SANVIWINOD H3mM34

€lc

£27 ~— Q E)\E

3714084 HSINMaNd 1353 EIENE(C

2z~
ISMOYE

3LISgam
JajisIayjouesIsiy}

Ol
O
™

-0l

Patent Application Publication

400
APP-1
412 > Stop
413 > Restart
414 ~> Delete
421~ | X Unpin
Figure 4
500
522 > Browse
512 > Stop
513 > Restart
514 Delete
523 > Reset Publish Profile
52 Unpin
= Mini
= Small
m Wide

Figure 5

JIN

Apr. 2,2015 Sheet4 of 11 US 2015/0095812 A1

- Commands 510

- System Commands 530

US 2015/0095812 A1

V9 ainbl4

y—

y—

[

(=]

"o

= 93l4 'JJ0NW

2 18U'S8]ISGamaINze a)isqambulispuem/.dny

wn

W LHYLIS MOIND 3LI1SgaM ONINNNY 4 (-

=

o

%

=

g sMels
MBIAIBAQ

=

S

=

2

E M OI

m 4197130 18VLS3IY dOl1S

om

2 311S93IM

Am % |-ddy

=

2

~

=W

Patent Application Publication

Apr. 2,2015 Sheet 6 of 11

US 2015/0095812 A1

oL

ulM

APP-1

2 (@ WEBSITE LARGEBROOK
APP-1
'HE STORE Stop

Restart
Delete
/Q Unpin

-~° Personalize

Figure 6B

Patent Application Publication

Apr. 2,2015 Sheet 7 of 11

US 2015/0095812 A1

NAME STATUS MODE
App-1 Running Free
Largebro APP-1 Free
North Stop Free
Glory Restart Free

Delete

,52 Unpin

Figure 6C

NAME STATUS MODE
App-1 Running Free
Largebro APP-1 Free
North Stop Free
Glory Restart Free

Delete

52 Unpin

Figure 6D

US 2015/0095812 A1

Apr. 2,2015 Sheet 8 of 11

Patent Application Publication

L1YV1S ¥0IND 3LISEIM

@34 300N

Inze: Buniepuemy:dny

ONINNNY ‘

smels

MIIAIBAQ

o

mm._mL/M% L

- &<

uidun WA\

v

2

|RIRa
9314 Helssy bo_w
o014 doig l YuoN
93l L-ddV poigafise
9314 Buuuny |-ddy
Eleleld] EIINAR JAVN

/ ainbi4

PUBLULOD
ale8Q

\

PUBLUWOD
Jejsay

PUBLUWIOY
dojs

whn X ONITIIE
R -
EEL
versey SAINENOr
\ doig =
\ \.&2 HOWV3S
&
S/ |-ddy
| -dde SNOLLYOLLON
il
S)ISqe/n m
HOYv3S
szjeuosiRd 570
uidup) w@
apaq
/':Swmw_
dois JHOLS FH]
1-ddv
&L
MOOHGIOUYT EF_.m_maw;
JH
\)/,O
S

Patent Application Publication Apr. 2,2015 Sheet 9 of 11 US 2015/0095812 A1

800
803
813
812
Success
é -
None (\ Pending
811
801 802
814

604

Figure 8

US 2015/0095812 A1

Apr. 2,2015 Sheet 10 of 11

Patent Application Publication

6 94nb14

SYNOH 61 NI $1353d | INIL NdD SOIM1IN H3HIO

L dNOH | /SILNNIN 6}

HNOH | / SALNNIA 8

das |oouen

paddois aq [Im 21SqapL Buuapuepn, SIS Gam JNoA

aysgapn buuepuepy doig

soe 11d3

/

W
A)NIT 1YVISFY dOLS 3ISMON

“Q m

JLISGIM ONIHFANYM

US 2015/0095812 A1

Apr. 2,2015 Sheet 11 of 11

Patent Application Publication

paAeS Usag SeH Wa)| ayL

[aouR)

Buineg

04 24nbi4

aloub|| [Aney

PaINQ) SeH JOLT Uy

R

ON

SO

£ BABS 0] JUBM NOA 0Q

|

US 2015/0095812 Al

EXTENSIBLE AND CONTEXT-AWARE
COMMANDING INFRASTRUCTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of each of the

following provisional patent applications, and each of the

following provisional patent applications are incorporated

herein by reference in their entirety:

[0002] 1. U.S. Provisional Application Ser. No. 61/905,
114, filed Nov. 15, 2013;

[0003] 2. U.S. Provisional Application Ser. No. 61/884,
743, filed Sep. 30, 2013;

[0004] 3. U.S. Provisional Application Ser. No. 61/905,
111, filed Nov. 15, 2013;

[0005] 4. U.S. Provisional Application Ser. No. 61/905,
243, filed Nov. 17, 2013;

[0006] 5. U.S. Provisional Application Ser. No. 61/905,
116, filed Nov. 15, 2013;

[0007] 6. U.S. Provisional Application Ser. No. 61/905,
129, filed Nov. 15, 2013;

[0008] 7. U.S. Provisional Application Ser. No. 61/905,
105, filed Nov. 15, 2013;

[0009] 8. U.S. Provisional Application Ser. No. 61/905,
247, filed Nov. 17, 2013;

[0010] 9. U.S. Provisional Application Ser. No. 61/905,
101, filed Nov. 15, 2013;

[0011] 10. U.S. Provisional Application Ser. No. 61/905,
128, filed Nov. 15, 2013; and

[0012] 11. U.S. Provisional Application Ser. No. 61/905,
119, filed Nov. 15, 2013.

BACKGROUND

[0013] Computing systems and networks have transformed
the way we work, play, and communicate. Computing sys-
tems obtain there functionality by executing commands on
computing resources accessible to the computing system.
Commands might be, for instance, initiated by a user. In that
case, the user interfaces with a visualization of the command,
thereby causing corresponding operations on the computing
asset. During various stages of the lifecycle of a command,
the user may be presented with dialogs that ask for confirma-
tion, inform of success or failure, or inform of progress of the
command.

BRIEF SUMMARY

[0014] At least some embodiments described herein relate
to computing systems in which multiple non-context-sensi-
tive or core commands may be initiated from each of a num-
ber of different user interface contexts. There are also mul-
tiple context-sensitive mechanism for visualizing the
commands depending on which of the multiple possible user
interface contexts that the commands appear. At least some
embodiments described herein also related to the presentation
of'dialogs at various stages of the command lifecycle without
the system needing to know the underlying operations of the
command, and allowing the developer to specify when dia-
logs are to appear in that lifecycle.

[0015] This summary is provided to introduce a selection of
concepts in a simplified form that are further described below
in the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-

Apr. 2,2015

jectmatter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Inorder to describe the manner in which the above-
recited and other advantages and features of the invention can
be obtained, a more particular description of the invention
briefly described above will be rendered by reference to spe-
cific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

[0017] FIG. 1 abstractly illustrates an example computing
system in which the principles described herein may be
employed;

[0018] FIG. 2illustrates a user interface element in the form
of'a blade, and in which commands are displayed in a com-
mand bar;

[0019] FIG. 3 illustrates a user interface that represents
modifications to the user interface that would occur if the user
selects the command bar expansion control of FIG. 2;
[0020] FIG. 4 illustrates an example context menu that
represents another example of a context-sensitive mechanism
for visualizing controls;

[0021] FIG. 5 illustrates an extended example context
menu that represents another example of a context-sensitive
mechanism for visualizing controls;

[0022] FIGS. 6A through 6D illustrates various visualiza-
tions of the same commands across different user interface
contexts;

[0023] FIG. 7 illustrates that the commands within FIGS.
6A through 6D are indeed the same;

[0024] Even though the user experience for displaying the
commands and the context where the command is displayed
may be different, the actual command is the same as illus-
trated in FIG. 7;

[0025] FIG. 8 illustrates a life-cycle that the system may be
aware of for all commands, whether built-in or extrinsic;
[0026] FIG. 9 illustrates an example of a dialog that may
appear upon initiating a stop website command; and

[0027] FIG. 10 illustrates that each stage in a life cycle of a
command can surface a different dialog, with the application
developer indicating whether the corresponding dialog is to
appear at each stage in the state machine.

DETAILED DESCRIPTION

[0028] Commanding is a common way of describing
behavior in a system, whether distributed or otherwise. Each
command represents a unit of functionality that can be appli-
cable to an asset within the system, to the system itself, or to
any arbitrary artifact. Commands can be provided by the
system (i.e., built-in commands) or by other parties (extrinsic
commands).

[0029] In accordance with the principles described herein,
commands are provided consistently in an entire system, even
though the system itself may be operating a number of dif-
ferent applications composed by entirely different parties.
Furthermore, the embodiments described herein help security
by running commands in the right isolation mode, such that
harmful (but not necessarily malicious) code does not com-

US 2015/0095812 Al

promise the system. Preferably, the command should not
block the user interface so they should run asynchronously.
As far as the user experience, the embodiments described
herein allow commands to be surfaced following the same
patterns (e.g. command bar; context menu; etc.) (i.e., also
referred to herein as a context-sensitive mechanism for visu-
alization) and provide interactivity options to the users (e.g.
dialogs) so they can participate in the operation and also
understand the operation’s status and result.

[0030] The principles described herein may be imple-
mented using a computing system. For instance, the users
may be engaging with the system using a client computing
system. The executable logic supporting the system and pro-
viding visualizations thereon may also be performed using a
computing system. The computing system may even be dis-
tributed. Accordingly, a brief description of a computing sys-
tem will now be provided.

[0031] Computing systems are now increasingly taking a
wide variety of forms. Computing systems may, for example,
be handheld devices, appliances, laptop computers, desktop
computers, mainframes, distributed computing systems, or
even devices that have not conventionally been considered a
computing system. In this description and in the claims, the
term “computing system” is defined broadly as including any
device or system (or combination thereof) that includes at
least one physical and tangible processor, and a physical and
tangible memory capable of having thereon computer-ex-
ecutable instructions that may be executed by the processor.
The memory may take any form and may depend on the
nature and form of the computing system. A computing sys-
tem may be distributed over a network environment and may
include multiple constituent computing systems. An example
computing system is illustrated in FIG. 1.

[0032] As illustrated in FIG. 1, in its most basic configura-
tion, a computing system 100 typically includes at least one
processing unit 102 and memory 104. The memory 104 may
be physical system memory, which may be volatile, non-
volatile, or some combination of the two. The term “memory”
may also be used herein to refer to non-volatile mass storage
such as physical storage media. If the computing system is
distributed, the processing, memory and/or storage capability
may be distributed as well. As used herein, the term “execut-
able module” or “executable component” can refer to soft-
ware objects, routines, or methods that may be executed on
the computing system. The different components, modules,
engines, and services described herein may be implemented
as objects or processes that execute on the computing system
(e.g., as separate threads).

[0033] In the description that follows, embodiments are
described with reference to acts that are performed by one or
more computing systems. If such acts are implemented in
software, one or more processors of the associated computing
system that performs the act direct the operation of the com-
puting system in response to having executed computer-ex-
ecutable instructions. For example, such computer-execut-
able instructions may be embodied on one or more computer-
readable media that form a computer program product. An
example of such an operation involves the manipulation of
data. The computer-executable instructions (and the manipu-
lated data) may be stored in the memory 104 of the computing
system 100. Computing system 100 may also contain com-
munication channels 108 that allow the computing system
100 to communicate with other message processors over, for
example, network 110.

Apr. 2,2015

[0034] The computing system 100 also includes a display
112 on which a user interface, such as the user interfaces
described herein, may be rendered. Such user interfaces may
be generated in computer hardware or other computer-repre-
sented form prior to rendering. The presentation and/or ren-
dering of such user interfaces may be performed by the com-
puting system 100 by having the processing unit(s) 102
execute one or more computer-executable instructions that
are embodied on one or more computer-readable media. Such
computer-readable media may form all or a part of a computer
program product.

[0035] Embodiments described herein may comprise or
utilize a special purpose or general-purpose computer includ-
ing computer hardware, such as, for example, one or more
processors and system memory, as discussed in greater detail
below. Embodiments described herein also include physical
and other computer-readable media for carrying or storing
computer-executable instructions and/or data structures.
Such computer-readable media can be any available media
that can be accessed by a general purpose or special purpose
computer system. Computer-readable media that store com-
puter-executable instructions are physical storage media.
Computer-readable media that carry computer-executable
instructions are transmission media. Thus, by way of
example, and not limitation, embodiments of the invention
can comprise at least two distinctly different kinds of com-
puter-readable media: computer storage media and transmis-
sion media.

[0036] Computer storage media includes RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
tangible medium which can be used to store desired program
code means in the form of computer-executable instructions
or data structures and which can be accessed by a general
purpose or special purpose computer.

[0037] A “network”is defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry or
desired program code means in the form of computer-execut-
able instructions or data structures and which can be accessed
by a general purpose or special purpose computer. Combina-
tions of the above should also be included within the scope of
computer-readable media.

[0038] Further, upon reaching various computer system
components, program code means in the form of computer-
executable instructions or data structures can be transferred
automatically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
module (e.g., a “NIC”), and then eventually transferred to
computer system RAM and/or to less volatile computer stor-
age media at a computer system. Thus, it should be under-
stood that computer storage media can be included in com-
puter system components that also (or even primarily) utilize
transmission media.

[0039] Computer-executable instructions comprise, for
example, instructions and data which, when executed at a

US 2015/0095812 Al

processor, cause a general purpose computer, special purpose
computer, or special purpose processing device to perform a
certain function or group of functions. The computer execut-
able instructions may be, for example, binaries, intermediate
format instructions such as assembly language, or even
source code. Although the subject matter has been described
in language specific to structural features and/or method-
ological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to
the described features or acts described above. Rather, the
described features and acts are disclosed as example forms of
implementing the claims.

[0040] Those skilled in the art will appreciate that the
invention may be practiced in network computing environ-
ments with many types of computer system configurations,
including, personal computers, desktop computers, laptop
computers, message processors, hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main-
frame computers, mobile telephones, PDAs, pagers, routers,
switches, and the like. The invention may also be practiced in
distributed system environments where local and remote
computer systems, which are linked (either by hardwired data
links, wireless data links, or by a combination of hardwired
and wireless data links) through a network, both perform
tasks. In a distributed system environment, program modules
may be located in both local and remote memory storage
devices.

[0041] In accordance with principles described herein, a
user interface element (often called herein a “part”) repre-
sents a basic unit of the user interface. Each of at least some
of the parts are associated with corresponding controls that
the user may interact with to thereby cause the system to
execute respective commands. The execution of the com-
mand may, for instance, return data to project via the corre-
sponding part. The parts may incorporate extrinsic com-
mands that implement given contracts, and may reason about
them.

[0042] In accordance with the principles described herein,
commands (also called hereinafter “non-context-sensitive
commands” or “core commands™) can be associated with
resources in the system (such as a website, database, an arbi-
trary artifact, the system itself, or a piece of the user inter-
face). This association may be persistent, such that when that
resource is displayed in different user interface contexts, the
non-context-sensitive commands associated with that
resource are still available, but displayed using the right con-
text-sensitive mechanism. For instance, the context-sensitive
mechanism for visualizing these core commands may be a
user experience form factor appropriate for the context in
which the part is displayed. Consistency may also be further
achieved by having the same context-visualization mecha-
nism used to display the commands of any user interface
element that is displayed in a particular user interface context.
Commands are thus offered to the user via a well-defined
experience that is consistent across the entire system.

[0043] The system provides a set of abstractions through a
portal that enable application developers to create commands.
A command encapsulates an action in the system. The com-
position tree describes structure and the commands describe
behavior. Commands provide a well-defined surface that the
system can reason about to support units of behavior. Com-
mands can be system commands (built-in) and custom com-
mands (provided by the application developer). Commands

Apr. 2,2015

are offered to the user via a well-defined experience that is
consistent across the entire system. This experience is built-in
and cannot be redefined by application developers. Applica-
tion developers can only contribute with new commands, but
not with new ways of exposing those commands to the user.
Thus, the manner of exposing commands (the command
experience) is governed by the system.

[0044] Commands provide application developers and
users a consistent model across applications (sometimes
referred to as “extensions”) compatible with browser capa-
bilities and scalable to all parties to describe behavior in the
system. The command may have affinity with portal assets
which can make them available everywhere that asset is pre-
sented if so desired

[0045] The user interface may be a rich in allowing differ-
ent user interface elements to be presented in entirely differ-
ent contexts. For instance, as will be described further below,
the user interface might include different contexts such as a
favorites area, a blade, and hubs. These represent different
places where user interface elements (also called herein
“parts”) can be displayed. The commands associated with a
given asset can be available in all of these different contexts,
enabling taking action on a resource in the way that is more
convenient (and in addition new commands can be added to
accommodate the specifics of each context in case is needed).
[0046] Commands can be associated with different
resources in the system. For instance, the resource might be a
portion of the user interface itself, such as a part. As another
example of a portion of the user interface may be what will be
referred to herein as a “blade”. A blade is a user interface
element that may be placed on a canvas that extends in an
extendible direction (such as horizontally). For substantially
all of a particular range of the canvas in the dimension of the
extendible dimension, the blade may occupy substantially all
of'the canvas in the dimension perpendicular to the extendible
direction of the canvas. The resource might also be associated
with an actual asset in the system, such as a website, database,
virtual machine, and so forth. Blades or other parts can be also
associated with assets creating a transitive relationship
between the commands and its container if so desired.
[0047] Commands are visualized through different con-
text-sensitive mechanisms, depending on the user interface
context in which the associated part is displayed. Each con-
text-sensitive mechanism supports a particular user experi-
ence. For instance, FIG. 2 illustrates a user interface element
200 in the form of a blade. The blade is associated with an
asset in the form of a website (called “thisisanothersitel” in
the user interface element 200 of FIG. 2). Commands are
presented in a command bar 210 at the top of the blade in this
context. Thus, the command bar 210 represents a context-
sensitive mechanism for visualizing commands when the
commands are displayed in the context of a blade.

[0048] In FIG. 2, the command bar 210 is illustrated as
visualizing three non-context-sensitive commands including
the start command 211, the stop command 212, and the restart
command 213. The start command 211 is deemphasized as
not selectable since the web site has already running as evi-
denced within the status window 230. As will be seen from the
subsequent windows, the command 211, 212 and 213 are
“non-context-sensitive” in that regardless of the user inter-
face context in which the non-context-sensitive commands
are displayed, at least the selectable non-context-sensitive
commands (in this case stop command 212 and the restart
command 213) will still be displayed.

US 2015/0095812 Al

[0049] The command bar 210 also includes an overflow
control 221 (also called hereinafter a “command bar expan-
sion control 221”) that is presented when there are more
commands associated with the blade than the blade can dis-
play in the available space. FIG. 3 illustrates a user interface
300 that represents modifications to the user interface 200 that
would occur if the user selects the command bar expansion
control 221. Note that the command bar 210 is augmented to
be an augmented command bar 310 that shows a second row
of commands. For instance, a non-context-sensitive delete
command 214 is illustrated in the second row.

[0050] The selectable non-context-sensitive commands
212 through 214 may be presented regardless of where com-
mands appears in the user interface context. For instance,
when the user interface element is associated with a resource,
the non-context sensitive commands may be basic commands
associated with the resource that the user might like to initiate
regardless of the user interface context in which the resource
is presented. For instance, a user might like to start, stop,
restart, or delete a web site from any one of a number of
different user interface contexts.

[0051] Referring againto FIGS. 2 and 3, the command bars
210 and 310 also include context-sensitive commands. For
instance, there is an overflow indicator 221 (hereinafter
referred to as a “command bar expand command” 221). Fur-
thermore, there is a browse command 222, which is related to
the underlying asset (e.g., the web site), but which is specific
to a presentation in a particular user interface context. For
instance, a user might like to browse to the web site when the
web site is associated with the blade (since there is more space
available to usefully browse), but the user might not be so
interested in browsing if they are working in the context of a
smaller user interface portion that is associated with that web
site. Another context-sensitive command is illustrated as the
reset publish profile command 223 in FIG. 3. FIG. 3 illus-
trates another context-sensitive command in the form of a
command bar collapse control 224, which when selected
returns the user interface 300 to that of the user interface 200
of FIG. 2.

[0052] In one embodiment, context-sensitive commands
including one or more of 1) non-selectable non-context-sen-
sitive commands (such as the start command 211), 2) com-
mands that are associated with an underlying resource, but
which are not to be performed in every user interface context
(such as the browse command 222 and the reset publish
profile command 223), and 3) and commands that are asso-
ciated with the user interface element itself, but not the under-
lying resource (such as the overflow indicator 221 or com-
mand bar expansion command).

[0053] FIGS. 2 and 3 illustrate user interface elements
when web commands are associated with a blade, which is
one example of a user interface context. However, web com-
mands may be displayed in other user interface contexts. For
instance, suppose that the web commands are in a smaller
user interface part that is within the favorites area, within an
activity pane or grid. In those user interface contexts, the
active context sensitive commands may be displayed in a
context menu. FIG. 4 illustrates an example context menu
400.

[0054] The context menu 400 again visualizes the active
non-context-sensitive commands, including the stop com-
mand 412 (corresponds to stop command 212 of FIG. 2), the
restart command 413 (corresponding to the restart command
213 of FIG. 2), and the delete command 414 (corresponding

Apr. 2,2015

to the delete command 214 of FIG. 3). Because the state of the
underlying resource (i.e., the web site) was persisted, the
system recognized that the start command is not a selectable
command given the current state of the resource. Thus, when
accessing commands for that same web site via another user
interface context, the active non-context-sensitive commands
are again displayed. The context menu 400 also includes a
single context-sensitive command in the form of an unpin
command 421, which would remove the associated user inter-
face element from the user interface context.

[0055] Inthis example, the blade user interface element 200
is one example of a user interface context with the command
bar 210 being an associated context-sensitive visualization
for the commands. The context menu 400 is another example
of the associated context-sensitive visualization for the com-
mands, which is associated with other user interface contexts
(such as smaller parts, favorites areas, grids, activity panes,
and so forth).

[0056] FIG. 5illustrates another user interface element 500
that represents a more extended context menu. This user
interface element 500 might appear when accessing com-
mands to operate on the web site from yet another user inter-
face context. Accordingly, the user interface element 500
represents yet a third example context-sensitive mechanism
for visualizing the web commands.

[0057] The user interface element 500 again displays the
non-context sensitive commands including the stop com-
mand 512 (corresponding to the stop command 212 and 412
in FIGS. 2 and 4, respectively), the restart command 513
(corresponding to the restart command 213 and 413 in FIGS.
2 and 4, respectively, and the delete command 514 (corre-
sponding to the delete command 214 and 414 in FIGS. 3 and
4, respectively). Note that the underlying resource is the web
site, and the state of the web site has been preserved. Accord-
ingly, the start command 511 (corresponding to the start com-
mand 211 of FIG. 2) is displayed, but in deemphasized form.
The browse command (corresponding to browse command
222 of FIG. 2), and the reset publish profile command 523
(corresponding to the reset publish profile command 223 of
FIG. 2), are also displayed, even though they are context-
sensitive commands.

[0058] The commands 511 through 514, 522 and 523 are
application commands 510 (also referred to herein as “extrin-
sic commands”) being offered by application developers and
not underlying system. The extended context menu 500 also
includes system commands 530, such as an unpin command
531, and size selection commands 522 through 524. Such
system commands 530 are offered by the system regardless of
the underlying resource, so long as the commands were
selected within the given user interface context that generated
the extended context menu 500.

[0059] The built-in commands provide general infrastruc-
ture services (pin/unpin parts, resizing parts, restoring layout,
and so forth) and are general in that they apply across all usage
domains. Commands provided by application developers are
domain specific. For instance, an example set of extrinsic
commands for a web site application might include “start”,
“stop”, “delete website” and so forth.

[0060] Commands are authored by application developers
by leveraging a set of artifacts (interfaces and bases classes
provided by the system) that expose the command contract to
the application developers. This allows the application devel-
oper to provide the actual behavior of the command (what
happens when the command is executed), provide dialogs

US 2015/0095812 Al

(which are optional) that will display at different moments of
the command’s life cycle, and influence the command life-
cycle.

[0061] The non-context-sensitive commands can follow a
resource in multiple contexts. For example, commands asso-
ciated with a website can be present in the website’s blade
(see FIG. 6A), in the website startboard part (see FIG. 6B),
when the website is displayed in a grid (see FIG. 6C), in the
notifications panel, when the website is part of a search result
(see FIG. 6D) or anywhere the website is surfaced. Note that
the status of the underlying resource is considered in each of
FIGS. 6 A through 6D, in that a start command is not offered
given that the web site has already started. Furthermore, note
that the stop command, the restart command, and the delete
command are offered regardless of the user interface context
in which the commands and associated resource are visual-
ized. Each of FIGS. 6A through 6B illustrate the non-context-
sensitive commands being displayed via a different context-
sensitive mechanism as a result of being in a different user
interface context. Even though the user experience for dis-
playing the commands and the context where the command is
displayed may be different, the actual command is the same as
illustrated in FIG. 7.

[0062] FIG. 8 illustrates a life-cycle 800 that the system
may be aware of for all commands, whether built-in or extrin-
sic. The life-cycle 800 may be tracked by, for example, a
command state tracking module, which may be a single mod-
ule or a collection of modules.

[0063] Before the command is initiated, there is no opera-
tion, which is the none state 801 in FIG. 8. When the com-
mand is initiated, the state transitions 811 to a pending state
802. In the pending state, the command is in process, and the
results are pending. If the command is cancelled (transition
812), then the operation ends transitioning to the None state
801. If the operation completes and is successful (transition
813), the result is success (the “Success” state 803 in FIG. 8).
Otherwise, if the operation is not successful (transition 814),
the result is failure (the “Failure” state 804 in FIG. 4). The
system understands this lifecycle even without understanding
what specifically the underlying operation(s) of the command
are doing.

[0064] The developer can specify whether or not con-
strained user interface elements (or dialogs) are to appear at
each of the transition 811 through 814 for each command.
Accordingly, when making a transition 811 through 814, the
system can check to determine whether a dialog is to appear
as part of the transition. For instance, such dialogs could ask
users for confirmations, inform of progress, or inform of the
result of an operation, all depending on which transition 811
through 814 is being made, and what the resource associated
with the command is.

[0065] FIG.9 illustrates an example of a dialog 900. In this
example, the system is aware that the user has selected a stop
command. The system may then track the overall lifecycle
800 ofthe stop command even though the system might not be
aware of all that is involved in stopping the web site. The
system is also aware of the resource type being operated upon
(i.e., a web site) as well as an identifier for that resource
(“Wandering”™).

[0066] Immediately upon receiving the stop command, the
stop command begins transitioning (as represented by tran-
sition 811) from the Non state 801 to the Pending state 802.
However, as part of this transition, the author verifies that the
browser developer has not indicated that a dialog is to appear

Apr. 2,2015

at this point for this type of resource (e.g., website), and/or
that the web site developer has not indicated that a dialog is to
appear at this point for that particular resource (e.g., the
“Wandering website”). The browser developer and/or the
website author may also specify a dialog template in cases in
which there are multiple templates that could be used for that
transition and resource type.

[0067] Here, the system verifies that a dialog is to appear,
and thus presents dialog 900. The dialog 900 may be gener-
ated knowing nothing more than which transition is involved
(and potentially also a dialog template to use which may also
be specified by the developer). The dialog 900 may then
populate the dialog template using the name of the resource
(e.g., “Wandering” website), and then present the dialog to
the user. Thus, the presentation of dialogs may be consistent
throughout the system regardless of the command being
executed, or the resource being operated upon, even without
the system knowing the specifics of the underlying operations
that support the command.

[0068] These dialogs are data-driven and extremely con-
strained to provide a uniform user experience across applica-
tions. Dialogs include confirmation (with yes/no buttons),
show progress (deterministic and non-deterministic), show
success, and show failure (with a retry button). Application
developers can configure the command to surface the dialogs
at certain points in the lifecycle of the operation.

[0069] As illustrated in FIG. 10, each stage in the life cycle
can surface a different dialog, with the application developer
indicating whether the corresponding dialog is to appear at
each stage in the state machine.

[0070] In some cases, the portal can provide abstractions
that application developers can use to create intrinsic com-
mands that the system will recognize (at least to the point of
being able to track the state machine of FIG. 10). An example
can be extensible abstractions for “Save” and “Discard” com-
mands that when used in forms are subject to the validation
state and changes to the underlying form.

[0071] Commands are executed asynchronously by the sys-
tem. Commands provided by application authors are
executed leveraging the system’s isolation model to ensure
that they do not compromise the overall portal (as the execu-
tion is isolated within the application that owns the com-
mand).

[0072] The application developer creates a small set of
commands that are available in multiple contexts. All capa-
bilities for his commands (execution logic, dialogs, and so
forth) are preserved and the necessary user experience is
adapted to the constraints of where the command is rendered.
This makes possible that users can interact with a resource at
any place in the user interface. There is no single location
where “actions” can be executed but rather any place in the
portal allows rich interactions with resources.

[0073] Accordingly, a system has been described that pro-
vides consistency in how commands are visualized, as well as
how dialogs associated with the command lifecycle are visu-
alized. This is true regardless of there being user interface
elements of different applications within the system.

[0074] The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be consid-
ered in all respects only as illustrative and not restrictive. The
scope ofthe invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes

US 2015/0095812 Al

which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed is:

1. A computer program product comprising one or more
computer-readable storage media having thereon computer-
executable instructions that are structured such that, when
executed by one or more processors of a computing system,
cause the computing system to instantiate and/or operate the
following:

a plurality of non-context-sensitive commands that may be
initiated from each of a plurality of user interface con-
texts; and

a plurality of context-sensitive mechanisms for visualizing
the plurality of non-context-sensitive commands
depending on which of the plurality of user interface
contexts in which the plurality non-context sensitive
commands appear.

2. The computer program product in accordance with claim

1, the plurality of non-context-sensitive commands being
associated with a resource upon which each of the plurality of
non-context-sensitive commands acts when selected.

3. The computer program product in accordance with claim
1, the one or more computer-readable storage media having
thereon computer-executable instructions that are structured
such that, when executed by one or more processors of a
computing system, cause the computing system to further
instantiate and/or operate the following:

one or more context-sensitive commands visualized with
the plurality of non-context-sensitive commands, but
which may differ depending on which of the plurality of
user interface contexts in which the plurality of non-
context-sensitive commands appear.

4. The computer program product in accordance with claim

1, the different contexts in the user interface including a first
set of one or more contexts associated with a first application,
and a second set of one or more contexts associated with a
second application.

5. The computer program product in accordance with claim
4, the first set of one or more contexts associated with the first
application including a first context of a particular context
type, and the second set of one or more contexts associated
with the second application also including a second context
also of the same particular context type.

6. The computer program product in accordance with claim
5, any context of the particular context type being associated
with a particular context-sensitive mechanism for visualizing
the plurality of non-context-sensitive commands, such that
the mechanism for visualizing the plurality of non-context-
sensitive commands is the same in the first context of the
particular context type and associated with the first applica-
tion as the mechanism for visualizing the plurality of non-
context-sensitive commands in the second context of the par-
ticular context type and associated with the second
application.

7. The computer program product in accordance with claim
1, the plurality of non-context-sensitive commands being a
first plurality of non-context-sensitive commands, the one or
more computer-readable storage media further having
thereon computer-executable instructions that are structured
such that, when executed by one or more processors of the
computing system, cause the computing system to instantiate
and/or operate the following:

a second plurality of non-context-sensitive commands that

may be initiated from each of the plurality of user inter-

Apr. 2,2015

face contexts; the plurality of context-sensitive mecha-
nisms also for visualizing the second plurality of non-
context-sensitive commands,

such that for a given user interface context, the same con-

text-sensitive mechanism is used to visualize the first
plurality of non-context-sensitive commands as would
be used to visualize the second plurality of non-context-
sensitive commands in that given user interface context.

8. The computer program product in accordance with claim
1, the plurality of non-context-sensitive commands being
selectable from a user interface element, the execution of at
least one of the plurality of non-context-sensitive commands
resulting in a change in data displayed in the user interface
element.

9. The computer program product in accordance with claim
1, the plurality of context-sensitive mechanisms being intrin-
sic to a system, and not alterable by applications running
within the system.

10. A method for executing a command from a user inter-
face element, the method comprising:

an act of initiating the command; and

an act of tracking the command at a plurality of stages;

for each of the plurality of stages, determining whether a

dialog is indicated as to be displayed, and if so, display-
ing a dialog for the corresponding stage that is consistent
across a plurality of commands.

11. The method in accordance with claim 10, the method
being performed by a command state tracking module, and
the command being a first command, the method further
comprising:

an act of initiating a second command; and

an act of tracking the second command at a plurality of

stages of the second command that are the same as the
plurality of stages of the first command;

for each of the plurality of stages of the second command,

determining whether a dialog is indicated as to be dis-
played, and if so, displaying a dialog for the correspond-
ing stage that is consistent across a plurality of com-
mands.

12. The method in accordance with claim 11, the first and
second commands both being intrinsic commands.

13. The method in accordance with claim 11, the first and
second commands both being extrinsic commands.

14. The method in accordance with claim 11, one of the
first and second commands being an extrinsic command, and
the other of the first and second commands being an intrinsic
command.

15. The method in accordance with claim 10, wherein the
act of determining whether a dialog is to be displayed is
performed at least at each transition between the plurality of
stages.

16. The method in accordance with claim 15, the determi-
nation of whether or not to display a dialog being provided by
a developer.

17. The method in accordance with claim 15, the act of
displaying the dialog performed at each transition being a
function of the transition.

18. The method in accordance with claim 10, the act of
displaying the dialog being a function of a resource that is
being operated upon.

19. A computer program product comprising one or more
computer-readable storage media having thereon computer-
executable instructions that are structured such that, when
executed by one or more processors of a computing system,

US 2015/0095812 Al

cause the computing system to perform a method for execut-
ing a command from a user interface element, the method
comprising:
an act of initiating the command; and
an act of tracking the command at a plurality of stages;
for each of the plurality of stages, an act of determining
whether a dialog is indicated as to be displayed, and if so,
displaying a dialog for the corresponding stage that is
consistent across a plurality of commands.
20. The computer program product in accordance with
claim 19, the plurality of commands including a plurality of
extrinsic commands and a plurality of intrinsic commands.

#* #* #* #* #*

Apr. 2,2015

