METHOD AND APPARATUS FOR RESTORING A JOINT, INCLUDING THE PROVISION AND USE OF A LONGITUDINALLY-ADJUSTABLE AND ROTATIONALLY-ADJUSTABLE JOINT PROSTHESIS

A joint prosthesis for mounting in a first bone and presenting a prosthetic joint surface for engaging an opposing joint surface of a second bone, the joint prosthesis comprising: a sleeve which is adapted for partial disposition in an opening formed in the first bone; a center adapter which is adapted for disposition within the sleeve; and a prosthetic joint surface mounted to the center adapter; wherein the disposition of the center adapter is adjustable, both longitudinally and rotationally, relative to the sleeve, so that the disposition of the prosthetic joint surface is adjustable, both longitudinally and rotationally, relative to the opposing joint surface of the second bone.
Published:

— with international search report (Art. 21(3))
METHOD AND APPARATUS FOR RESTORING A JOINT, INCLUDING
THE PROVISION AND USE OF A LONGITUDINALLY-ADJUSTABLE
AND ROTATIONALLY-ADJUSTABLE JOINT PROSTHESIS

Inventors
Barry T. Bickley
Richard E. Zovich
Aldo M. Zovich

Reference To Pending Prior Patent Applications
This patent application claims benefit of:
(i) pending prior U.S. Provisional Patent Application Serial No. 61/278,782, filed 10/10/2009 by Barry T. Bickley et al. for METHOD AND APPARATUS FOR RESTORING A JOINT, COMPRISING THE PROVISION AND USE OF A LONGITUDINALLY-ADJUSTABLE AND ROTATIONALLY-ADJUSTABLE JOINT PROSTHESIS (Attorney's Docket No. SIM-6 PROV);
and
(ii) pending prior U.S. Provisional Patent Application Serial No. 61/368,424, filed 07/28/2010 by Barry T. Bickley et al. for METHOD AND APPARATUS FOR SIM-0608

The two (2) above-identified patent applications are hereby incorporated herein by reference.

Field Of The Invention

This invention relates to medical procedures and apparatus in general, and more particularly to medical procedures and apparatus for restoring a joint.

Background Of The Invention

Joint replacement surgery seeks to replace portions of a joint with prosthetic components so as to provide long-lasting function and pain-free mobility.

During joint replacement surgery, one or more of the operative elements of the joint are replaced by prosthetic components. More particularly, many joints (e.g., the hip, the shoulder, etc.) comprise a
ball-and-socket construction. During total joint replacement surgery, the head of the bone which provides the ball is replaced by a prosthetic ball-and-stem, and the portion of the bone which provides the socket is replaced by a prosthetic cup, whereby to provide the prosthetic total joint. In a partial joint replacement surgery, only one of the operative elements of the joint may be replaced, e.g., the head of the bone which provides the ball.

The present invention is directed to situations where the head of the bone which provides the ball is replaced by a prosthetic ball-and-stem, or where the head of the bone which provides the socket is replaced by a prosthetic socket-and-stem, as will hereinafter be discussed in further detail. For convenience, the present invention will generally be discussed in the context of replacing the head of a bone with a prosthetic ball-and-stem, although it should be appreciated that the present invention is equally applicable to situations where the head of a bone is replaced by a prosthetic socket-and-stem.
In order to replace the head of a bone with a prosthetic ball-and-stem, the head of the bone is first distracted from its socket so as to expose the head of the bone. Then an osteotomy is performed so as to remove the neck and head of the bone from the remainder of the bone. This action also exposes the intramedullary canal (sometimes hereinafter referred to as "the bone canal") of the bone. Next, the proximal end of the bone canal is prepared to receive the stem of the prosthesis. More particularly, a rasp, reamer, broach, etc. is used to hollow out, clean and enlarge the proximal end of the bone canal so as to create an elongated cavity which will receive the stem of the prosthesis. Finally, the stem of the prosthesis is inserted into the bone canal so that the ball of the prosthesis is appropriately presented to the socket.

Typically, the ball of the prosthesis is manufactured separately from the stem of the prosthesis, with the ball component and the stem component being united at the time of use, although it
is also possible to form the ball integral with the stem at the time of manufacture.

Furthermore, it should also be appreciated that, during the surgery itself, it is common to temporarily position a selected trial stem in the bone, attach a selected trial ball to the positioned trial stem, and then temporarily reduce the joint so as to confirm the joint reconstruction before the actual prosthetic stem is secured in position within the bone.

It will be appreciated that, when replacing the head of a bone with a prosthetic ball-and-stem, the surgeon must consider the position of the prosthetic ball relative to the socket, and that this must be done in both longitudinal and rotational terms.

Specifically, the surgeon must consider (i) the longitudinal position of the prosthetic ball relative to the socket, and (ii) the rotational position of the prosthetic ball relative to the socket. This is necessary because, if either the longitudinal position or the rotational position of the prosthetic ball is "off" (i.e., mispositioned) vis-a-vis the socket, the
ball will not seat properly in the socket and the prosthesis will not function as intended. As a practical matter, these positioning considerations require that a large inventory of prosthetic devices, of differing lengths and with differing angular orientations, must be maintained so that the prosthetic ball can be properly positioned in the patient. However, this is a costly requirement, and failures in inventory re-stocking can result in cancelled surgeries.

Summary Of The Invention

The present invention addresses the aforementioned problems associated with the prior art through the provision and use of a novel longitudinally-adjustable and rotationally-adjustable joint prosthesis.

More particularly, the present invention comprises a new joint prosthesis for replacing the ball of a ball-and-socket joint. This new joint prosthesis comprises (1) a sleeve which is adapted for
disposition in the intramedullary canal of a bone,
(ii) a center adapter which is adapted for disposition
within the sleeve, and (iii) a ball mounted to the
center adapter, wherein the disposition of the center
adapter is adjustable, both longitudinally and
rotationally, relative to the sleeve, so that the
disposition of the ball is adjustable, both
longitudinally and rotationally, relative to the
socket.

Alternatively, the ball of the new prosthesis may
be replaced by a socket, in order that the new
prosthesis may replace the socket of a
ball-and-socket joint. In this case, the disposition
of the socket is adjustable, both longitudinally and
rotationally, relative to the sleeve, so that the
disposition of the socket is adjustable, both
longitudinally and rotationally, relative to the ball.

In one preferred form of the present invention,
there is provided a joint prosthesis for mounting in a
first bone and presenting a prosthetic joint surface
for engaging an opposing joint surface of a second bone, the joint prosthesis comprising:

- a sleeve which is adapted for partial disposition in an opening formed in the first bone;
- a center adapter which is adapted for disposition within the sleeve; and
- a prosthetic joint surface mounted to the center adapter;

wherein the disposition of the center adapter is adjustable, both longitudinally and rotationally, relative to the sleeve, so that the disposition of the prosthetic joint surface is adjustable, both longitudinally and rotationally, relative to the opposing joint surface of the second bone.

In another preferred form of the present invention, there is provided a method for restoring a joint, the method comprising:

- providing a joint prosthesis for mounting in a first bone and presenting a prosthetic joint surface for engaging an opposing joint surface of a second bone, the joint prosthesis comprising:

SIM-0608
a sleeve which is adapted for disposition in an opening formed in the first bone;

a center adapter which is adapted for partial disposition within the sleeve; and

a prosthetic joint surface mounted to the center adapter;

wherein the disposition of the center adapter is adjustable, both longitudinally and rotationally, relative to the sleeve, so that the disposition of the prosthetic joint surface is adjustable, both longitudinally and rotationally, relative to the opposing joint surface of the second bone;

forming an opening in the first bone;

deploying a sleeve in the opening formed in the first bone;

positioning a center adapter partially within the sleeve;

adjusting the longitudinal and rotational position of the center adapter with respect to the sleeve; and
securing the center adapter to the sleeve.

Brief Description Of The Drawings

These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:

Figs. 1-9 are schematic views showing various aspects of a first embodiment of the present invention;

Figs. 10-13 are schematic views showing various aspects of a second embodiment of the present invention;

Figs. 14-20 are schematic views showing various aspects of a third embodiment of the present invention;
Figs. 21-25 are schematic views showing various aspects of a fourth embodiment of the present invention;

Fig. 26 is a schematic views showing various aspects of a fifth embodiment of the present invention;

Figs. 27-29 are schematic views showing various aspects of a sixth embodiment of the present invention; and

Figs. 30-36 are schematic views showing additional aspects of the present invention.

Detailed Description Of The Invention

The present invention is directed at a new joint prosthesis for replacing the ball of a ball-and-socket joint. This new joint prosthesis comprises (i) a sleeve which is adapted for disposition in the intramedullary canal of a bone, (ii) a center adapter which is adapted for disposition within the sleeve, and (iii) a ball mounted to the center adapter, wherein the disposition of the center adapter is

SIM-0608
adjustable, both longitudinally and rotationally, relative to the sleeve, so that the disposition of the ball is adjustable, both longitudinally and rotationally, relative to the socket.

Alternatively, the ball of the new prosthesis may be replaced by a socket, in order that the new prosthesis might replace the socket of a ball-and-socket joint. In this case, the disposition of the socket is adjustable, both longitudinally and rotationally, relative to the sleeve, so that the disposition of the socket is adjustable, both longitudinally and rotationally, relative to the ball.

Looking first at Figs. 1-9, there is shown a new joint prosthesis 5 for replacing the ball of a ball-and-socket joint. Joint prosthesis 5 generally comprises a sleeve 10 (Figs. 1-3) which is adapted for disposition in the intramedullary canal of a bone. Sleeve 10 generally comprises an elongated body 15 having a central lumen 20 (Fig. 2) formed therein, and terminating at its proximal end in a crown 25 having a plurality of peripheral detents 30 formed therein. A
center adapter 35 (Figs. 1, 4 and 5) is adapted for variable disposition within, and extension out of, central lumen 20 of sleeve 10. The disposition of center adapter 35 relative to sleeve 10 is adjustable, both longitudinally and rotationally. More particularly, center adapter 35 comprises an elongated shaft 40 terminating in a head 45. Elongated shaft 40 of center adapter 35 comprises a mount section 50 which comprises a plurality of horizontally-extending slots 55 and a plurality of longitudinally-extending slots 60. A two-piece collar 65 (Figs. 6 and 7), having at least one longitudinally-extending internal rib 70 formed on at least one of the halves of the collar, and having at least one horizontally-extending internal rib 75 formed on at least one of the halves of the collar, and having at least one radially-projecting nib 78, is selectively fitted about crown 25 of sleeve 10 and mount section 50 of center adapter 35, as will hereinafter be discussed. Screws 80 (Fig. 1) are used to selectively hold the
two halves of collar 65 together about crown 25 of sleeve 10 and mount section 50 of center adapter 35.

On account of the foregoing construction, when the two halves of collar 65 are loose, center adapter 35 is able to move both longitudinally and rotationally relative to collar 65, and collar 65 is able to move both longitudinally and rotationally relative to sleeve 10, since longitudinally-extending internal rib 70 of collar 65 will not project into a longitudinally-extending slot 60 of center adapter 35, and horizontally-extending internal rib 75 of collar 65 will not project into a horizontally-extending slot 55 of center adapter 35, and radially-projecting nib 78 of collar 65 will not project into a peripheral detent 30 of crown 25 of sleeve 10. However, when the two halves of collar 65 are tightened about crown 25 of sleeve 10 and mount section 50 of center adapter 35, the collar makes a binding fit with (i) center adapter 35, by virtue of the engagement of the collar's horizontally-extending internal rib 75 with one of the horizontally-extending slots 55 of the

SIM-0608
center adapter, and by virtue of the engagement of the collar's longitudinally-extending internal rib 70 with one of the longitudinally-extending slots 60 of the center adapter, and (ii) sleeve 10, by virtue of the engagement of the collar's radially-projecting nib 78 with one of the peripheral detents 30 on crown 25 of sleeve 10. In this way, by appropriately loosening collar 65 about crown 25 of sleeve 10 and mount section 50 of center adapter 35, the disposition of head 45 of center adapter 35 may be adjusted, both longitudinally and rotationally, relative to sleeve 10; and by appropriately tightening collar 65 about crown 25 of sleeve 10 and mount section 50 of center adapter 35, the disposition of head 45 of center adapter 35 may be fixed relative to sleeve 10.

Ball 85 (Fig. 8) is adapted to be secured to head 45 of center adapter 35. By way of example but not limitation, ball 85 may include a stem 86 for positioning in a recess 87 formed in head 45.

Accordingly, it will be appreciated that, in view of the foregoing construction, the disposition of ball
85 can be adjusted, both longitudinally and rotationally, relative to sleeve 10, and hence the disposition of ball 85 may be adjusted, both longitudinally and rotationally, relative to a bone in which sleeve 10 is disposed. In this way, the present invention provides a new joint prosthesis which permits the disposition of the ball to be adjusted, both longitudinally and rotationally, relative to a socket.

If desired, a cage 90 (Fig. 9) may be mounted to the opposing side of head 45 (Fig. 1). By way of example but not limitation, a screw 91 (Fig. 1) received in a hole 92 (Fig. 9) in cage 95 and a hole 93 (Fig. 5) in head 45 may be used to secure cage 90 to head 45. The provision of a cage on the prosthesis, preferably diametrically opposed to the ball, permits soft tissue or bone to be secured to the prosthesis, e.g., with sutures.

Also, if desired, openings 95 (Fig. 5) may be formed in center adapter 35 (e.g., in head 45), in collar 65 and/or in cage 90, so as to receive a suture
or a suture anchor, or like fastening element, whereby
to permit soft tissue and/or bone to be secured to the joint prosthesis.

In use, sleeve 10 (preferably having collar 65 loosely secured thereto) is disposed in the intramedullary canal of a bone, center adapter 35 (preferably having ball 85 secured thereto) is inserted into central lumen 20 of the sleeve and is moved longitudinally and rotationally as needed so as to present the ball for proper seating in the socket, and then collar 65 is tightened (e.g., with screws 80) so as to secure center adapter 35, and hence ball 85, in the desired longitudinal and rotational position relative to sleeve 10, and hence in the desired longitudinal and rotational position relative to the socket.

Looking next at Figs. 10-13, there is shown an alternative form of the new joint prosthesis for replacing the ball of a ball-and-socket joint. The new joint prosthesis 105 of Figs. 10-13 is generally similar to the joint prosthesis 5 shown in Figs. 1-9,
except that (i) center adapter 35 of Figs. 1-9 is replaced by the center adapter 135 shown in Figs. 10-13, and (ii) collar 65 of Figs. 1-9 is replaced by the hinged collar 165 shown in Figs. 10-13.

More particularly, the center adapter 135 of Figs. 10-13 is substantially the same as the center adapter 35 of Figs. 1-9, except that the mount section 50 of center adapter 35 is replaced by the mount section 150 of center adapter 135. In mount section 150, the horizontally-extending slots 155 (Fig. 12) and the longitudinally-extending slots 160 are effectively superimposed on one another, in the manner shown in Fig. 12.

In addition, the hinged collar 165 of Figs. 10-13 comprises two halves 166 which are hinged together by a pivot pin 167 rising out of sleeve 10. A locking pin 168 (Fig. 10) is used to selectively lock the two halves 166 together. At least one, and preferably both, of the two halves 166 includes longitudinally-extending internal ribs 170 which are formed on a
horizontally-extending internal rib 175. Thus, with the construction shown in Figs. 10-13, the longitudinally-extending internal ribs 170 are effectively superimposed on the horizontally-extending internal ribs 175.

It will be appreciated that, in this form of the invention, when the two halves 166 of collar 165 are separated from one another, the horizontally-extending internal ribs 175 and the longitudinally-extending internal ribs 170 of collar 165 will be separated from the horizontally-extending slots 155 and the longitudinally-extending slots 160 of center adapter 135, and the center adapter will be free to move longitudinally and rotationally relative to the collar, and hence longitudinally and rotationally relative to the sleeve 10 to which the collar is mounted.

It will also be appreciated that, in this form of the invention, when the two halves 166 of collar 165 are locked together with locking pin 168, horizontally-extending internal ribs 175 of collar 165
will seat in horizontally-extending slots 155 in center adapter 135, and longitudinally-extending internal ribs 170 of collar 165 will seat in longitudinally-extending slots 160 of center adapter 135, whereby to lock center adapter 135 longitudinally and rotationally relative to the collar, and hence to the sleeve 10 to which the collar is mounted.

Accordingly, in view of the foregoing construction, the disposition of ball 85 can be adjusted, both longitudinally and rotationally, relative to sleeve 10, and hence may be adjusted, both longitudinally and rotationally, relative to a bone in which sleeve 10 is disposed. In this way, the present invention provides a new joint prosthesis which permits the disposition of the ball to be adjusted, both longitudinally and rotationally, relative to a socket.

Looking next at Figs. 14-20, there is shown another alternative form of the new joint prosthesis for replacing the ball of a ball-and-socket joint. The new joint prosthesis 205 of Figs. 14-20 is

SIM-0608
generally similar to the joint prosthesis 105 shown in Figs. 10-13, except that the collar 165 used in the construction of Figs. 10-13 is replaced by a latched collar 265 as shown in Figs. 14-20.

More particularly, latched collar 265 comprises two halves 266 pivotally mounted to the pivot pin 167 of sleeve 10. The two halves 266 of latched collar 265 are substantially the same as the two halves 166 of hinged collar 165, except that the two halves 266 of latched collar 265 also each comprise a latch mechanism 269 at its free end. Thus, at least one, and preferably both, of the two halves 266 includes a horizontally-extending internal rib 275 carrying a plurality of longitudinally-extending internal ribs 270 thereon. Accordingly, it will be appreciated that with the construction shown in Figs. 14-20, the longitudinally-extending internal ribs 270 are again effectively superimposed on the horizontally-extending internal ribs 275. Latch mechanisms 269 engage one another when the two halves 266 are brought together so that the two halves can catch to one another. A
locking pin 268 (Fig. 14) may be used to secure the
two halves in their closed condition.

It will be appreciated that, in this form of the
invention, when the two halves 266 of collar 265 are
separated from one another, the horizontally- extending
internal ribs 275 and the longitudinally- extending
internal ribs 270 of collar 265 will be separated from
the horizontally- extending slots 155 and the
longitudinally- extending slots 160 of center adapter
135, and the center adapter will be free to move
longitudinally and rotationally relative to the
collar, and hence longitudinally and rotationally
relative to the sleeve 10 to which the collar is
mounted.

It will also be appreciated that, in this form of
the invention, when the two halves 266 of collar 265
are locked together with locking pin 268,
horizontally- extending internal ribs 275 of collar 265
will seat in horizontally- extending slots 155 in
center adapter 135, and longitudinally- extending
internal ribs 270 of collar 265 will seat in
longitudinally-extending slots 160 of center adapter 135, whereby to lock center adapter 135 longitudinally and rotationally relative to the collar, and hence to the sleeve 10 to which the collar is mounted.

Accordingly, in view of the foregoing construction, the disposition of ball 85 can be adjusted, both longitudinally and rotationally, relative to sleeve 10, and hence may be adjusted, both longitudinally and rotationally, relative to a bone in which sleeve 10 is disposed. In this way, the present invention provides a new joint prosthesis which permits the disposition of the ball to be adjusted, both longitudinally and rotationally, relative to a socket.

Looking next at Figs. 21-25, there is shown another alternative form of the new joint prosthesis for replacing the ball of a ball-and-socket joint. The new joint prosthesis 305 of Figs. 21-25 is generally similar to the joint prosthesis 205 shown in Figs. 14-20, except as will hereinafter be discussed.
More particularly, with the joint prosthesis 305 of Figs. 21-25, collar 265 is omitted and the sleeve 10 of Figs. 14-20 is replaced by a new sleeve 310. Sleeve 310 comprises a plurality of horizontally-extending internal ribs 375 (Figs. 23 and 25) which are separated from one another by bands of recessed wall 376. Each of the horizontally-extending external ribs 375 carries a plurality of longitudinally-extending internal ribs 370 (Fig. 23) thereon. A threaded keyway 377 (Fig. 23) is formed in the side wall of sleeve 310. Threaded keyway 377 communicates with central lumen 320 of sleeve 310.

In this form of the invention, the center adapter 135 of Figs. 14-20 is replaced by a new center adapter 335 (Fig. 22). Center adapter 335 is substantially the same as the center adapter 135 of Figs. 14-20, except that center adapter 335 comprises a plurality of horizontally-extending ribs 378 which are separated from one another by bands of recessed wall 379. Thus, the bands of recessed wall 379 essentially comprise horizontally-extending slots in center adapter 335.
Each of the horizontally-extending ribs 378 carries a plurality of longitudinally-extending slots 381 (Fig. 23) thereon.

And in this form of the invention, there is also provided a key lock 382 which is radially movable along threaded keyway 377 via a screw 383.

As a result of this construction, and looking now at Fig. 25, when it is desirable to adjust the position (either longitudinally or rotationally) of center adapter 335 relative to sleeve 310, key lock 382 is backed out along threaded keyway 377, center adapter 335 is moved longitudinally relative to sleeve 310 as desired and then, in order to accommodate rotational adjustment, center adapter 335 is moved slightly longitudinally if and as needed so as to align the horizontally-extending ribs 378 of center adapter 335 with the bands of recessed wall 376 of sleeve 310 and so as to align the bands of recessed wall 379 of center adapter 335 with the horizontally-extending ribs of 375 of sleeve 310, whereupon the rotational position of the center...
adapter may be adjusted vis-a-vis the sleeve. Then center adapter 335 is moved longitudinally slightly, so that the horizontally-extending ribs 378 of the center adapter are aligned with the horizontally-extending ribs 375 of sleeve 310, with the longitudinally-extending internal ribs 370 of sleeve 310 being received within the longitudinally-extending slots 381 of center adapter 335. This action locks center adapter 335 against rotational movement relative to sleeve 310. Then key lock 382 is advanced along threaded keyway 377 via screw 383 until the inner end of the key lock engages one of the bands of recessed wall 379 in center adapter 335. In other words, the distal end of key lock 382 projects into the horizontally-extending slot formed in the center adapter by the band of recessed wall 379 disposed between two adjacent horizontally-extending ribs 378. This action locks center adapter 335 against longitudinal movement relative to sleeve 310, since the inner end of key lock 382 engages the two horizontally-extending ribs.
378 of center adapter 335 which are disposed on either side of key lock.

Accordingly, it will be appreciated that, in view of the foregoing construction, the disposition of ball 85 can be adjusted, both longitudinally and rotationally, relative to sleeve 10, and hence the disposition of ball 85 may be adjusted, both longitudinally and rotationally, relative to a bone in which sleeve 10 is disposed. In this way, the present invention provides a new joint prosthesis which permits the disposition of the ball to be adjusted, both longitudinally and rotationally, relative to a socket.

It is also possible for the prosthesis to provide a socket, rather than a ball, at the free end of the center adapter.

Thus, for example, Fig. 26 shows a novel joint prosthesis 405 which provides a socket 485, rather than the head 45 and ball 85, at the proximal end of center adapter 135. In this respect it should also be appreciated that the joint prosthesis 405 shown in
Fig. 26 comprises the aforementioned center adapter 135 (except modified to include socket 485) in combination with the aforementioned sleeve 310, with key lock 382 being used to selectively lock center adapter 135 to sleeve 310. Thus, in this form of the invention, rotational locking is provided by virtue of the disposition of the longitudinally-extending internal ribs 370 in the longitudinally-extending slots 160 of center adapter 135, and longitudinal locking is provided by virtue of the disposition of the toe of key lock 382 in the horizontally-extending slots 155 in center adapter 135.

By way of further example, Figs. 27-29 show another novel joint prosthesis 405 which provides an alternative form of socket 486 at the distal end of center adapter 135. If desired, a support collar 487 may be provided between the top of sleeve 310 and the bottom of socket 486 so as to provide increased support for the socket element. Furthermore, if desired, this support collar may be formed in two
separate halves, united at the time of use, so as to facilitate deployment at the surgical site.

Example

Intended Use

The device and its associated method of use provide, in one exemplary use, a proximal humerus replacement prosthesis. The purpose of this exemplary device is to replace the humeral head articular surface when the bone is damaged. These situations would include fractures and/or dislocation, aseptic necrosis or various forms of arthritis such as osteoarthritis, rheumatoid arthritis or post traumatic arthritis, failed joint replacement or any other situation where arthrodesis or other reconstructive procedures would not be expected to give a satisfactory outcome.

Design

SIM-0608
The exemplary shoulder prosthesis system includes prosthetic components and instrumentation for the implantation of a modular proximal humerus replacement. Some unique aspects of this system, among others, are that it allows adjustment of the final prosthesis in height and rotation (version), i.e., longitudinally and rotationally, as well as having special features to facilitate re-attachment of bone and soft tissue if that is desired. The height and version (i.e., the longitudinal disposition and the rotational disposition) of the humeral prosthesis are critical factors in performing a shoulder replacement procedure. These variables are particularly difficult to measure in cases of fracture or other situations of distorted anatomy such as aseptic necrosis or fracture malunion. These variables are normally measured through a trialing process. However, in the setting of a fracture, it is very difficult to secure the trial to the shaft of the humerus. Therefore the trial moves and shifts easily, making measurements very inaccurate and hard to
reproduce. Some alterations to the trial as well as holding jigs have been tried with varying degrees of success. Patient size and position also contribute to inaccuracy. Finally there is the difficulty of making measurements based on landmarks that are fairly distant such as the transcondylar axis at the distal humerus and forearm external rotation as references for prosthetic rotation. Adding to the difficulty is the fact that once the final components are placed, either by cementing or in a press-fit fashion, there is no allowance for adjustment. The prosthesis position cannot be changed without significant structural risk to the shoulder bone stock. This causes significant delays in the procedure as the surgeon checks and re-checks the position of the trial, knowing that no changes can be made once the final prosthesis is secured in place.

The shoulder prosthesis system of the present invention, however, has a distinctive mechanism that simplifies the procedure and allows for adjustment of these critical factors with the final prosthesis. The
procedure and method for placement of the shoulder prosthesis follows. The process of describing the procedure will also outline the key design features of the system.

Procedure

The first step in the procedure is to prepare the humeral shaft. This is done by reaming the intramedullary canal to create space for and determine the size of the initial component. This initial component is a tubular sleeve with a flange-like collar at its top end, e.g., the aforementioned sleeve 310. See Fig. 30. Mote that, the tubular sleeve 310 shown in Fig. 30 is substantially the same as the sleeve 310 disclosed above, except that the flange-like collar F shown in Fig. 30 is not circular. More particularly, the flange-like collar F is preferably extended radially outwardly in the portion containing threaded keyway 377, whereby to make the key lock 382 disposed in threaded keyway 377 more easily accessible to the surgeon.
The sleeve will be cemented into place in the same fashion as for all prosthesis of the shoulder. The sleeve is cemented fully seated down to its collar and need only be cemented in a position that allows access to the key lock portion of the collar (described below). The sleeve's collar is preferably protected by a separate cover (not shown) during the cementing procedure in order to prevent cement from getting into the mechanisms on the collar which are used to secure the center adapter to the collar. Once the cement is hardened and all extraneous cement is removed, the protective cover is removed. It is into this sleeve that the prosthesis stem (e.g., the aforementioned center adapter 335) is placed. See Fig. 31.

The sleeve diameter selected determines the corresponding prosthesis stem (e.g., center adapter) that will fit into the sleeve. Therefore, once the reaming is completed and determines the sleeve diameter, that in turn determines the prosthesis stem (e.g., center adapter) that fits the sleeve. No
further trialing is necessary inasmuch as the sleeve and stem (e.g., center adapter) are provided as a matched set.

The upper portion of the sleeve and the shaft of the prosthesis stem (e.g., center adapter) have a mechanism that allows the coupling of the two components but also allows adjustment for both height and rotation. See, for example, Fig. 32, which shows the aforementioned sleeve 310 and the aforementioned center adapter 335. As discussed above, sleeve 310 comprises a plurality of horizontally-extending internal ribs 375 which are separated from one another by bands of recessed wall 376. Each of the horizontally-extending external ribs 375 carries a plurality of longitudinally-extending internal ribs 370 thereon. A threaded keyway 377 is formed in the side wall of sleeve 310. Threaded keyway 377 communicates with central lumen 320 of sleeve 310. As also discussed above, center adapter 335 comprises a plurality of horizontally-extending ribs 378 which are separated from one another by bands of recessed wall
379. Thus, the bands of recessed wall 379 essentially comprise horizontally-extending slots in center adapter 335. Each of the horizontally-extending ribs 378 carries a plurality of longitudinally-extending slots 381 thereon. And as also discussed above, the key lock 382 is radially movable along threaded keyway 377 via a screw 383 so as to secure center adapter 335 in a desired position relative to sleeve 310.

All known current prostheses do not allow any significant adjustment of the prosthesis after the cement has hardened. However, since with the present invention a cylindrical sleeve is installed first, it provides a foundation from which the stem (e.g., center adapter) can be adjusted. It is the aforementioned coupling mechanism between the sleeve and the stem (e.g., center adapter) that allows this adjustment option. This is a tremendous advantage to the surgeon and patient as the position of the articular surface can be optimized rather than having only one chance to estimate the proper position while
cementing in a final prosthesis that is firmly fixed after the cement hardens. From the foregoing disclosure, it will be appreciated that, in one form of the invention, the coupling mechanism entails a series of splines on the shaft of the stem that match into corresponding splines on the upper portion of the sleeve. In one preferred form of the invention, there are three levels of splines within the sleeve to engage three levels of splines on the stem (e.g., center adapter). Engaging three levels of splines creates strength in resisting rotational force and also the top-to-bottom length of this engagement prevents toggle of the stem (e.g., center adapter) within the sleeve as well. These splines on each component are separated by a smooth recessed area. This smooth band is preferably laser-marked black to assist in demonstrating proper positioning of the stem (e.g., center adapter) for adjustment and locking options as described below. It will be appreciated that the distance between the spline bands sets the increment of height change, and
the number of splines determines the increment of rotational adjustment. The coupling mechanism is preferably constructed so that it allows rotational adjustment in 10 degree increments and height adjustment in 4 mm increments. The sleeve has a locking key that is driven by a screw mechanism. As the screw is turned in a clockwise direction, it drives the locking key toward the center of the sleeve. When the stem (e.g., center adapter) is aligned with a dark laser-marked smooth area exposed immediately above the flange-like collar F, this is the locking position. In this position, the splines on the stem (e.g., center adapter) are engaged with the splines on the sleeve and a smooth area is aligned with the entry window of the locking key. As the locking key advances forward, it fits into the smooth area on the shaft of the stem (e.g., center adapter) below the first engaged spline at the top of the sleeve. With the locking key tightened into place, this holds the prosthesis stem (e.g., center adapter) within the sleeve, preventing any superior or inferior
movement of the stem (e.g., center adapter). At the same time, in this position, the splines are engaged as well, locking the prosthesis in rotation.

If adjustment is desired, then the key lock is backed up to disengage the prosthesis stem (e.g., center adapter). The stem can then glide superiorly or inferiorly to adjust the height of the prosthesis. If rotational adjustment is desired, then the stem (e.g., center adapter) is held so one of the splines aligns with the superior rim of the sleeve. This puts the splines in alignment with the smooth bands and thus they do not engage. In this way rotation can be adjusted. When the desired rotation is obtained, then the stem (e.g., center adapter) is moved either superiorly or inferiorly so the splines engage at the desired height. The key lock is advanced, with the stem (e.g., center adapter) held in the locking position, and a laser-marked black smooth band aligned at the top edge of the sleeve.

When the final desired height and rotation are obtained, and the key lock is tightened into place, a
locking cover 500 (Fig. 33) is preferably applied to the sleeve so as to close off keyway 377. This locking cover fits into grooves which are formed within the window for the key lock on the sleeve. See Fig. 33. The locking cover covers the key lock, abutting against it and preventing back-out of the key lock. If the key lock cannot move backward, then the coupling mechanism remains secure. However, even at this stage, the locking cover 500 can be easily removed from the sleeve and allow access to the key lock if needed. The locking cover 500 preferably has scallops at its superior and inferior margins in order to accommodate a flat removal tool. This removal tool can easily lever out the locking cover if further adjustment of the prosthesis is deemed necessary. Therefore the surgeon can make adjustments to the prosthesis position at any time in the procedure and is never at a point where this option is eliminated.

Re-attachment of soft tissue and bone are frequently needed in a joint restoration procedure, particularly in the instance of a fracture. The
greater and lesser tuberosity fragments have the
tendons of the rotator cuff muscles attached to them. They are usually re-attached by suturing them to the prosthesis and the shaft of the bone. However, there is a high failure rate of the tuberosities uniting. Because a prosthesis is made of metal, and while it is often coated with a substance to enhance healing, it is difficult for fractured bone to heal to such a surface. This is made worse by the fact that there is frequently diminished surface area contact between the bone and such a surface. Some prostheses allow for some bone graft to be placed through a window in the prosthesis to facilitate bone-to-bone healing. This has improved tuberosity union rates, confirming that the concept is sound. However, the shape of such a bone plug in a small window on the prosthesis also does not allow enough surface area to allow good opportunity for healing.

To address this issue, the shoulder prosthesis of the present invention preferably has an optional bone cage that can be applied to the back of the
prosthesis, e.g., the cage 90 previously discussed. See Fig. 34. This cage can be packed with bone graft or similar bone substitute and/or osteoconductive material. The windows of the bone cage are shaped and sized to maximize contact of the graft and the native bone being applied. The bone graft could be packed separately in a holding bowl that could stabilize the cage. Once the bone graft is sufficiently packed, it can be compressed with a tamp that is shaped like the back side of the prosthesis in order to ensure proper fit once the cage was applied to the prosthesis. With the graft packing completed, the cage can then be applied to the prosthesis and secured with a screw, e.g., screw 91. Significantly, because the bone cage is preferably shaped so as to follow the contours of the back of the prosthesis stem, the forces on the screw are dispersed. In addition, there is preferably a slight offset between the threaded hole in the prosthesis (e.g., the aforementioned hole 93) and the hole in the back of the bone cage (e.g., the aforementioned hole 92). As the screw fully seats, it
places some tension on the bone cage. This tension, which places a lateral force on the shaft of the screw, will prevent the screw from backing out. The bone cage preferably also has multiple attachment points for suturing of the tuberosities to the prosthesis in order to ensure secure hold and apposition to the graft.

An additional feature that is present to enhance attachment of bone and soft tissue to the prosthesis are optional suture anchors (Fig. 35) that can be placed in threaded holes on the prosthesis stem's head portion, e.g., the threaded holes 395 shown in in Fig. 34. See, for example, Fig. 36., which shows bone anchors (with attached suture) disposed in head 45.

These suture anchors can be placed anteriorly as well as posteriorly. Because the stem (e.g., center adapter) of the prosthesis can be rotated and adjusted at any time, this allows access to the posterior-aspect of the prosthesis for anchoring of the tuberosities in a fracture setting.
Normally, with the prosthesis fixed in place, it is very difficult to access the posterior aspect and all of the anchoring is applied to the anterior accessible aspect. These additional features increase the choices available to the surgeon to achieve bony and soft tissue union in this very difficult reconstructive environment. Because these features are optional, the surgeon can use them at his/her discretion to address the situation at hand.

Applicable Joints

It will be appreciated that the prosthesis of the present invention may be used in a variety of joints within the body, e.g., the elbow, the wrist, the distal radius, proximal radius, hip, etc.

Modifications Of The Preferred Embodiments

It should be understood that many additional changes in the details, materials, steps and arrangements of parts, which have been herein described and illustrated in order to explain the

SIM-0608
nature of the present invention, may be made by those skilled in the art while still remaining within the principles and scope of the invention.
What I Claimed Is:

1. A joint prosthesis for mounting in a first bone and presenting a prosthetic joint surface for engaging an opposing joint surface of a second bone, the joint prosthesis comprising:

 a sleeve which is adapted for partial disposition in an opening formed in the first bone;
 a center adapter which is adapted for disposition within the sleeve; and
 a prosthetic joint surface mounted to the center adapter;

 wherein the disposition of the center adapter is adjustable, both longitudinally and rotationally, relative to the sleeve, so that the disposition of the prosthetic joint surface is adjustable, both longitudinally and rotationally, relative to the opposing joint surface of the second bone.
2. A joint prosthesis according to claim 1 wherein the opening comprises the intramedullary canal of the first bone.

3. A joint prosthesis according to claim 1 wherein the joint surface comprises a convex surface.

4. A joint prosthesis according to claim 3 wherein the joint surface comprises a hemispherical structure.

5. A joint prosthesis according to claim 4 wherein the hemispherical structure comprises the ball of a ball-and-socket joint.

6. A joint prosthesis according to claim 1 wherein the joint surface comprises a concave surface.

7. A joint prosthesis according to claim 6 wherein the joint surface comprises a socket.
8. A joint prosthesis according to claim 7 wherein the socket comprises the socket of a ball-and-socket joint.

9. A joint prosthesis according to claim 1 wherein:

the sleeve comprises a central lumen, a horizontally-extending rib and a longitudinally-extending rib;

the center adapter comprises an elongated shaft sized for partial disposition within the central lumen of the sleeve, a plurality of horizontally-extending slots for selectively receiving the horizontally-extending rib of the sleeve, and a plurality of longitudinally-extending slots for selectively receiving the longitudinally-extending rib of the sleeve;

the center adapter is locked against longitudinal motion vis-a-vis the sleeve when the horizontally-extending rib of the sleeve is disposed

SIM-0608
in one of the horizontally-extending slots of the center adapter; and
the center adapter is locked against rotational motion vis-a-vis the sleeve when the
longitudinally-extending rib of the sleeve is disposed in one of the longitudinally-extending slots of the center adapter.

10. A joint prosthesis according to claim 9 wherein the sleeve comprises a first body and a second body, wherein the first body comprises the central lumen and the second body comprises the horizontally-extending rib and the longitudinally-extending rib, and further wherein the second body is selectively securable to the first body.

11. A joint prosthesis according to claim 10 wherein the first body of the sleeve comprises a crown having a peripheral detent formed therein, wherein the second body of the sleeve comprises a collar having a
nib formed thereon, and further wherein the second body of the sleeve is secured to the first body of the sleeve when the nib is disposed in the peripheral detent.

12. A joint prosthesis according to claim 11 wherein the second body of the sleeve comprises two halves selectively secured together.

13. A joint prosthesis according to claim 10 wherein the longitudinally-extending rib is formed on the horizontally-extending rib.

14. A joint prosthesis according to claim 13 wherein the first body of the sleeve comprises the central lumen and the second body of the sleeve comprises the horizontally-extending rib and a longitudinally-extending rib, and further wherein the second body of the sleeve is selectively securable to the first body.
15. A joint prosthesis according to claim 13 wherein the second body of the sleeve comprises two halves pivotally secured to the first body.

16. A joint prosthesis according to claim 13 wherein the two halves latch to one another.

17. A joint prosthesis according to claim 13 wherein the plurality of horizontally-extending slots of the center adapter and the plurality of longitudinally-extending slots of the center adapter are superimposed upon one another.

18. A joint prosthesis according to claim 9 wherein the sleeve comprises a first body and a second body, wherein the first body of the sleeve comprises the central lumen and a longitudinally-extending rib, and further wherein the second body of the sleeve is selectively securable to the first body of the sleeve and comprises the horizontally-extending rib.
19. A joint prosthesis according to claim 18 wherein the second body of the sleeve comprises a key lock and further wherein the first body of the sleeve comprises a keyway for receiving the key lock.

20. A joint prosthesis according to claim 19 wherein the center adapter comprises a plurality of horizontally-extending ribs which are separated from one another by bands of recessed wall, wherein the bands of recessed wall effectively comprises horizontally-extending slots in the center adapter.

21. A joint prosthesis according to claim 20 wherein the longitudinally-extending slots of the center adapter are superimposed on the plurality of horizontally-extending ribs of the center adapter.

22. A joint prosthesis according to claim 20 wherein the sleeve comprises a plurality of longitudinally-extending ribs which are separated from one another by bands of recessed wall.
23. A joint prosthesis according to claim 1 wherein the joint prosthesis further comprises a cage mounted to the center adapter.

24. A joint prosthesis according to claim 1 wherein the joint prosthesis further comprises an opening for receiving a suture anchor therein.

25. A method for restoring a joint, the method comprising:

- providing a joint prosthesis for mounting in a first bone and presenting a prosthetic joint surface for engaging an opposing joint surface of a second bone, the joint prosthesis comprising:
 - a sleeve which is adapted for disposition in an opening formed in the first bone;
 - a center adapter which is adapted for partial disposition within the sleeve; and
 - a prosthetic joint surface mounted to the center adapter;
wherein the disposition of the center adapter is adjustable, both longitudinally and rotationally, relative to the sleeve, so that the disposition of the prosthetic joint surface is adjustable, both longitudinally and rotationally, relative to the opposing joint surface of the second bone; forming an opening in the first bone; deploying a sleeve in the opening formed in the first bone; positioning a center adapter partially within the sleeve; adjusting the longitudinal and rotational position of the center adapter with respect to the sleeve; and securing the center adapter to the sleeve.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPPC - A61 F 2/36 (201 01)

USPC - 623/23.1 5

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPPC - A61F 228, 2/50, 2/56, 2/38, 2/40 (2010.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

Patbase

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5,906,644 A (POWELL) 25 May 1999 (25.05.1999) entire document</td>
<td>1-3, 25</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,004,476 A (COOK) 02 April 1991 (02.04.1991) entire document</td>
<td>6-8</td>
</tr>
<tr>
<td>Y</td>
<td>US 6,569,203 B1 (KELLER) 27 May 2003 (27.05.2003) entire document</td>
<td>9-10, 18-19</td>
</tr>
<tr>
<td>Y</td>
<td>US 6,893,463 B2 (FELL et al) 17 May 2005 (17.05.2005) entire document</td>
<td>19</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search: 29 November 2010
Date of mailing of the international search report: 09 DEC 2010

Name and mailing address of the ISA/US
Mail Stop PCT; Attn: ISA/US, Commissioner for Patents
PO Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer: Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/2 10 (second sheet) (July 2009)