Title: SYSTEMS AND METHODS FOR HYDROGEN FUEL STORAGE AND HYDROGEN POWERED VEHICLES

Abstract: A storage system for storing hydrogen and providing controlled release of hydrogen gas includes a container having an outer wall defining an interior. The interior is configured to contain liquid lithium hydride, and a portion of the outer wall includes a thermally insulating layer. The storage system also includes a temperature control system configured to maintain the interior at a temperature such that the lithium hydride decomposes to produce hydrogen gas at a substantially equilibrium state.
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
SYSTEMS AND METHODS FOR HYDROGEN FUEL STORAGE AND HYDROGEN POWERED VEHICLES

BACKGROUND

[0001] Vehicles such as cars, aircraft, etc. often use petroleum-based fuels to power the vehicle. In order to reduce the amount of potentially environmentally harmful emissions due to the use of such vehicles, fuels such as hydrogen are being introduced as alternatives to the traditional petroleum-based fuels.

SUMMARY

[0002] One embodiment relates to a storage system for storing hydrogen and providing controlled release of hydrogen gas, comprising a closable container having an outer wall defining an interior, the interior configured to contain liquid lithium hydride, a portion of the outer wall comprising a thermally insulating layer; and a temperature control system configured to maintain the interior at a temperature such that the lithium hydride decomposes to produce hydrogen gas at a substantially equilibrium state.

[0003] Another embodiment relates to a power generation system, the system comprising a fuel storage system comprising a thermally insulated container defining an interior configured to contain liquid lithium hydride; and a temperature control system configured to selectively maintain the interior at a temperature such that the lithium hydride decomposes to produce hydrogen gas; and a combustion engine fluidly coupled to the fuel storage system and configured to receive hydrogen gas from the fuel storage system and use the hydrogen gas as fuel to generate power.

[0004] Another embodiment relates to a fuel cell system, comprising a fuel storage system comprising a thermally insulated container defining an interior configured to contain liquid lithium hydride; a temperature control system configured to selectively maintain the interior at a temperature such that the lithium hydride decomposes to produce hydrogen gas; and a fuel cell fluidly coupled to the fuel storage system and configured to
receive hydrogen gas from the fuel storage system and use the hydrogen gas as fuel to produce electricity.

[0005] Another embodiment relates to a propulsion system for a vehicle, comprising a fuel storage system comprising a thermally insulated container defining an interior configured to contain liquid lithium hydride; a temperature control system configured to selectively maintain the interior at a temperature such that the lithium hydride decomposes to produce hydrogen gas; and a propulsion device fluidly coupled to the fuel storage system and configured to receive hydrogen gas from the fuel storage system and use the hydrogen gas as fuel to propel the vehicle.

[0006] Another embodiment relates to a method of storing hydrogen for use in a power generation system, comprising providing a storage container comprising an outer wall defining an interior; providing an amount of lithium hydride within the interior; heating the lithium hydride such that the lithium hydride decomposes to produce hydrogen gas; and selectively releasing the hydrogen gas from the interior for use in the propulsion system.

[0007] Another embodiment relates to a method of providing hydrogen gas for use in a propulsion system, the method comprising storing an amount of lithium hydride in an interior of a thermally insulated container; heating the interior of the container such that the lithium hydride decomposes to produce hydrogen gas; and directing the hydrogen gas to a propulsion system.

[0008] Another embodiment relates to an energy conversion system comprising a fuel system configured to store liquid lithium hydride and produce hydrogen gas; and a hydrogen gas powered energy conversion mechanism coupled to the fuel system and configured to receive hydrogen gas from the fuel system; wherein a portion of heat generated by the energy conversion mechanism is transferred back to the fuel system and to the lithium hydride.

[0009] Another embodiment relates to a storage system for storing hydrogen and providing controlled release of hydrogen gas, comprising a first container configured to contain liquid lithium hydride; a second container fluidly coupled to the first container and configured to receive liquid lithium hydride from the first container, the second container
including an outlet port configured to enable removal of hydrogen gas from the second container; and a temperature control system configured to maintain the interior of the second container at a temperature such that the lithium hydride within the second container decomposes to produce the hydrogen gas.

Another embodiment relates to a method of storing hydrogen for use in an energy generation system, comprising storing an amount of lithium hydride within a first container; transferring a portion of the lithium hydride from the first container to a second container; heating the lithium hydride within the second container such that the lithium hydride within the second container decomposes to produce hydrogen gas; and selectively releasing the hydrogen gas from the second container.

The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.

BRIEF DESCRIPTION

FIG. 1 is a schematic side view of a vehicle having a propulsion system according to one embodiment.

FIG. 2 is a schematic representation of a storage system usable with the propulsion system of FIG. 1 according to one embodiment.

FIG. 3 is a schematic representation of a portion of a storage system according to another embodiment.

FIG. 4 is a schematic representation of a portion of an energy dissipation system according to one embodiment.

FIG. 5 is a cross-section view of a sidewall of a container according to one embodiment.

FIG. 6 is a cross-section view of a sidewall of a container according to another embodiment.
[0018] FIG. 7 is a schematic representation of a storage system usable with the propulsion system of FIG. 1 according to another embodiment.

[0019] FIG. 8 is a schematic representation of a propulsion system according to one embodiment.

[0020] FIG. 9 is a schematic representation of a propulsion system according to another embodiment.

[0021] FIG. 10 is a schematic perspective view of a vehicle having a propulsion system according to another embodiment.

[0022] FIG. 11 is a block diagram illustrating a method of storing hydrogen and producing hydrogen gas according to one embodiment.

[0023] FIG. 12 is a block diagram illustrating a method of storing hydrogen and producing hydrogen gas according to another embodiment.

DETAILED DESCRIPTION

[0024] In the following detailed description, reference is made to the accompanying drawings, which form a part thereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.

[0025] Referring to the figures generally, various embodiments disclosed herein relate to utilizing a hydrogen storage system in connection with a hydrogen-powered propulsion system and/or vehicle. By providing a "fuel tank" (i.e., a hydrogen storage system) containing lithium hydride (LiH), hydrogen gas can be provided to a number of propulsion systems, including, but not limited to, combustion engines such as automobile internal combustion engines, gas turbines, hydrogen fuel cells, electric motors, etc.

[0026] Generally, hydrogen gas is produced as a result of an equilibrium process where, in a first reaction (i.e., a forward reaction), lithium hydride (LiH) decomposes into lithium (Li) and hydrogen gas (H₂) due to the dissociation of lithium hydride molecules, and in a
second reaction (i.e., a reverse reaction), hydrogen gas and lithium react to form lithium hydride. Symbolically, these reactions can be expressed as: $2\text{LiH} \leftrightarrow 2\text{Li} + \frac{3}{2} \text{H}_2$. This process is typically carried out at relatively high temperatures, such as temperatures greater than 650 degrees Celsius. This process results in a mixture of lithium and lithium hydride (typically in a liquid state) and hydrogen gas. As the lithium hydride is heated, the production of hydrogen gas increases. In a sealed environment, the production of hydrogen gas would continue until a state of equilibrium is reached based on the amount of hydrogen gas and lithium present. By venting, or releasing, a portion of the hydrogen gas (e.g., as fuel for a vehicle propulsion system, etc.), the decomposition of the lithium hydride, and therefore the production of hydrogen gas, can be made to continue so long as sufficient temperatures are maintained.

[0027] To accommodate the high temperatures involved in storing hydrogen and producing hydrogen gas in this manner, various embodiments herein provide a thermally insulated storage container (e.g., a super-insulated tank, etc.) that provides a sufficient "thermal package" for storing the lithium hydride in a vehicle such as an automobile, train, aircraft, etc. Such thermal packaging enables utilizing lithium hydride at sufficiently high temperatures where the lithium hydride decomposes to produce hydrogen gas at relatively low pressures (e.g., at or around ambient pressure). A temperature control system may be used to maintain the lithium hydride at a controllable temperature corresponding to equilibrium gas pressures (e.g., between 1MPa and 10MPa).

[0028] Referring now to FIG. 1, vehicle 10 is shown according to one embodiment. Vehicle 10 may include a wide variety of vehicles, including ground vehicles (e.g., wheeled vehicles, such as automobiles, trains, etc.), aircraft, etc. Vehicle 10 includes propulsion system 12 (e.g., a drive system, etc.) having fuel storage system 14 (e.g., a fuel tank or container, an insulated fuel storage system, etc.) and drive mechanism 16 (e.g., a propulsion device, etc.). During operation of vehicle 10, drive mechanism 16 receives fuel from fuel storage system 14 via fuel supply line 22, and propels vehicle 10 by way of, for example, wheels 18 (e.g., in the case of a wheeled vehicle). In some embodiments, as discussed in further detail below, at least a portion of the heat generated by drive mechanism 16 can be returned to fuel storage system 14 to, for example, facilitate maintaining the interior of a fuel storage container at a desired elevated temperature.
Referring to FIG. 2, fuel storage system 14 is shown in greater detail according to one embodiment. It should be understood that while the term "fuel storage system" may be used, the various embodiments herein are equally applicable to storage systems generally. As shown in FIG. 2, storage system 14 includes container 24 (e.g., a tank, reservoir, etc.), temperature control system 26 (e.g., a heating and/or cooling system, etc.), pressure control system 28 (e.g., a vacuum system, a pressurization system, etc.), and energy dissipation system 30 (e.g., a "smart" energy dissipation system, an energy absorbing member, etc.). Temperature control system 26 and pressure control system 28 are operatively coupled to container 24 to control the temperature and pressure within the interior of container 24 and/or within the structure of container 24 itself (e.g., within one or more sidewalls of the container). Energy dissipation system 30 is configured to protect container 24 from undesirable impact forces, etc. that may result from, for example, an automobile accident or similar event.

According to one embodiment, container 24 includes one or more sidewalls 32 that form an outer wall and define interior 36. Sidewalls 32 can define any appropriate shape for container 24, including a cube, cylinder, or another suitable shape. Furthermore, the size of container 24 and the volume of interior 36 can be varied to suit a particular application or vehicle. At least a portion of sidewalls 32 of container 24 include insulating layer 34 (e.g., a thermally insulating layer or layers, etc.). As discussed in greater detail below, insulating layer 34 may include a variety of materials, including one or more vacuum layers, aerogels, combinations thereof, and/or other insulating layers or materials suitable for the high temperature applications disclosed herein.

Referring to FIG. 5, a configuration of sidewall 32 is shown according to one embodiment as being a multi-walled, vacuum-insulated wall structure. As shown in FIG. 5, sidewall 32 includes inner wall 58, outer wall 60, and one or more middle or intermediate walls 62. Inner wall 58 is configured to face material (e.g., lithium hydride, lithium, hydrogen, etc.) contained within interior 36. Outer wall 60 is configured to provide an outer surface for container 24. Intermediate wall 62 divides the space between inner wall 58 and outer wall 60 into one or more intermediate spaces 64, 66.

Walls 58, 60, 62 can be made of any suitable material, including a variety of metals. In one embodiment, walls 58, 60, 62 are gas and liquid impermeable such that
inner wall 58 can contain liquid and gas materials, and such that a vacuum environment can be generated within one or more of intermediate spaces 64, 66. Generating such a vacuum environment provides the thermally insulating properties necessary to contain a liquid such as lithium hydride at the necessary operating temperatures of 650 degrees Celsius or more.

[0033] In order to generate a vacuum environment within intermediate spaces 64, 66, one or more pressure ports 68, 70 can be provided that extend into intermediate spaces 64, 66. For example, as shown in FIG. 5, first pressure port 68 extends into intermediate space 64, and second pressure port 70 extends into intermediate space 66. First and second pressure ports 68, 70 form part of a fluid connection between intermediate spaces 64, 66 and pressure control system 28. As discussed in greater detail below, pressure control system 28 is operable to vary the vacuum levels within intermediate spaces 64, 66 to desired levels. Furthermore, pressure control system 28 may utilize fluid connections with intermediate spaces 64, 66 via pressure ports 68, 70 to "vent" intermediate spaces 64, 66, and enable heat to be released from intermediate spaces 64, 66, and therefore sidewall 32.

[0034] According to various alternative embodiments, the thicknesses of walls 58, 60, 62, and the shapes and/or sizes of intermediate spaces 64, 66 may be varied to suit a particular application. For example, in one embodiment, walls 58, 60, 62 and intermediate spaces 64, 66 are configured to enable safe use of container 24 to store liquid lithium hydride within a vehicle structure such as an automobile, aircraft, etc. In yet further embodiments, more or fewer intermediate spaces may be utilized relative to those shown in FIG. 5. For example, additional intermediate walls may be provided, or one or more of the intermediate spaces may be further divided into "sub-spaces."

[0035] Referring to FIG. 6, a configuration of sidewall 32 is shown according to another embodiment as having multiple layers of insulative material. As shown in FIG. 6, sidewall 32 includes inner wall 72 and outer wall 74. Inner wall 72 is configured to face material (e.g., lithium hydride, lithium, hydrogen etc.) contained within interior 36 of container 24. Outer wall 74 is configured to provide an outer surface for container 24. Insulating layer 76 (e.g., a thermally insulating layer, insulating member, etc.) is provided within intermediate space 75 between inner wall 72 and outer wall 74.
[0036] As shown in FIG. 6, multiple insulating layers 76 can be provided within intermediate space 75 between inner wall 72 and outer wall 74. For example, in one embodiment, three insulating layers 76 can be provided between inner wall 72 and outer wall 74. In one embodiment, layers 76 can comprise MLI (multilayer insulation) designed to reduce thermal radiation transport between inner wall 72 and outer wall 74. The MLI can include a large number (e.g., 100 or more) layers 76. When using MLI insulation, intermediate space 75 can be evacuated, removing as much gas as possible, thereby reducing its effect on thermal conductivity. The individual layers 76 within the MLI insulation may not form a set of complete, gas-tight, enclosures, but instead may allow any residual gas within intermediate space 75 to travel between the layers, and hence permit it to be more readily removed from intermediate space 75. Layers 76 can be made up of loose material, such as a loose insulation, or alternatively, layers 76 can be made up of one or more discrete insulating structures. For example, according to one embodiment, insulating layer 76 can be or include one or more insulating sections that can be fitted between inner wall 72 and outer wall 74. In one embodiment, insulating layer 76 is a solid, low-density, porous material with relatively low thermal conductivity, such as an aerogel made of a silica or similar material. Aerogel structures provide relatively good thermal insulation because they are composed largely of gas (being a low density, porous material), which limits the conduction of heat (particularly if the aerogel is made of a material having a low thermal conductivity), and because they have an internal lattice structure that prevents significant air circulation, thereby inhibiting convective heat transfer.

[0037] Walls 72, 74 can be made of any suitable material, including a variety of metals. In one embodiment, walls 72, 74 are gas and liquid impermeable such that inner wall 72 can contain liquid and gas materials, and such that a low or high pressure environment can be generated within intermediate space 75. In order to control the pressure within intermediate spaces 75, pressure port 78 can extend through outer wall 74 and into intermediate space 75. Pressure port 78 provides fluid communication between intermediate space 75 and, for example, pressure control system 28. Pressure control system 28 is operable to vary the pressure level within intermediate space 75 to desired levels. Furthermore, pressure control system 28 may utilize fluid connections with intermediate space 75 via pressure port 78 to “vent” intermediate space 75, and enable
heat to be released from intermediate space 75, and therefore sidewall 32. In some embodiments (e.g., when using MLI or aerogel insulation) intermediate space 75 may be evacuated and sealed, without post-evacuation use of pressure port 78. In some embodiments, a "getter" material may be placed within, or fluidly coupled to, intermediate space 75 to absorb any residual gas that might be introduced (e.g., by outgassing from walls 72, 74, or from insulating layers 75) after initial evacuation of gas from intermediate space 75.

[0038] According to various alternative embodiments, the thicknesses of walls 72, 74 and the shapes and/or sizes of intermediate space 75 may be varied to suit a particular application. For example, in one embodiment, walls 72, 74 and intermediate space 75 are configured to enable safe use of container 24 to store liquid lithium hydride within a vehicle structure such as an automobile, aircraft, etc. In yet further embodiments, more or fewer intermediate spaces may be utilized relative to those shown in FIG. 6. For example, one or more intermediate walls may be provided, or the intermediate space may be further divided into "sub-spaces."

[0039] According to some embodiments, sidewall 32 may include a combination of the features shown in FIGS. 5 and 6. For example, sidewall 32 may include walls such as inner and outer walls 58, 72 and 60, 74, and may include any combination of intermediate walls, such as intermediate wall 62 shown in FIG. 5, relatively open, intermediate spaces that are provided with a vacuum environment, such as intermediate spaces 64, 66 shown in FIG. 5, and/or intermediate spaces that are filled with an thermally insulating material, such as insulating layer 76 used in connection with intermediate space 75 shown in FIG. 6. Furthermore, various other materials, walls, insulating materials, etc. may be used instead of or in addition to those illustrated in FIGS. 5 and 6 according to various alternative embodiments. For example, additional insulating layers may be provided to the outside of outer walls 60, 74, additional thermally insulating material may be provided at various locations between the inner and outer walls, etc. All such features and combinations of features are to be understood to be within the scope of the present disclosure.

[0040] Referring back to FIG. 2, container 24 is configured to contain various materials that chemically react with each other in order to produce a gaseous fuel usable in various drive and/or propulsion systems or other devices. For example, in one embodiment,
container 24 is configured to contain first material 38 (e.g., a metal hydride such as lithium hydride) that decomposes to produce second material 40 (e.g., a metal such as lithium, etc.) and third material 42 (e.g., a gas such as hydrogen gas, etc.). The reverse of this reaction may also occur within container 24 (e.g., such that hydrogen gas and lithium react to form lithium hydride). As such, materials 38, 40 may be in a liquid state within container 24 while material 42 is in a gaseous state within container 24. According to various alternative embodiments, other materials (e.g., other metal hydrides, metals, etc.) in other states (i.e., solid, liquid, gas) may be contained within container 24.

[0041] According to one embodiment, container 24 contains lithium hydride that decomposes into lithium and hydrogen gas. Port 44 provides fluid communication between interior 36 and supply line 22 (e.g., a fuel supply line, etc.) such that hydrogen gas can be directed from interior 36 to drive mechanism 16. In some embodiments, port 44 includes valve 45 that is operable to control the amount of hydrogen gas permitted to leave interior 36 of container 24. Port 44 and valve 45 may be made of any material (e.g., metal, etc.) suitable for fluid transportation of materials such as hydrogen gas. One or more outlets or ports 97 may further be provided and enable one or more of adding material (e.g., lithium hydride, hydrogen gas, etc.) or removing material (e.g., lithium, etc.) to/from interior 36.

[0042] According to one embodiment, sidewalls 32 define a generally unitary interior space without dividers, etc. According to an alternative embodiment, interior 36 is divided into separate interior spaces by one or more dividers 46, 48 (e.g., wall structures, dividing members, etc.), as shown in FIG. 2. While interior 36 is shown in FIG. 2 as being divided by dividers 46, 48 into three generally equally-sized rectangular interior spaces, in other embodiments interior 36 can be divided into more or fewer interior spaces, interior spaces having different shapes and/or sizes from those shown in FIG. 2, or interior spaces having different shapes and/or sizes from one another.

[0043] According to various alternative embodiments, interior 36 can be sized to suit a particular vehicle application. For example, container 24 may be used in connection with a drive system (e.g., either a hydrogen based internal combustion engine or a hydrogen fuel cell and electric motor). As such container 24 and interior 36 can be sized to provide a desired approximate driving range (e.g., 100 miles, 200 miles, etc.) based on the capacity
of container 24. Similarly, in the case of aircraft or other vehicles, the size of container 24 and interior 36 can be varied to provide a desired travel capability prior to needing to refill/recharge container 24 with a renewed supply of lithium hydride and/or other materials.

[0044] Referring to FIG. 3, according to one embodiment, one or more capsules (e.g., pellets, packages, etc.) shown as capsules 52, 54, 56 can be provided within interior 36 to contain at least a portion of a material such as lithium hydride. For example, capsules 52, 54, 56 can be configured such that the capsules retain liquid lithium hydride and lithium, but are at least partially permeable to hydrogen gas so as to permit the hydrogen gas produced within capsules 52, 54, 56 to escape from capsules 52, 54, 56 and be vented from interior 36 via port 44 as required, for example, for operation of a drive mechanism. Capsules 52, 54, 56 can be made of any suitable material capable of containing the lithium and/or lithium hydride and permitting release of hydrogen gas. Capsules 52, 54, 56 can alternatively be made to accommodate other metal hydrides according to various alternative embodiments.

[0045] Referring again to FIG. 2, temperature control system 26 is configured to monitor and control the temperature of interior 36 of container 24 and the material(s) contained therein (e.g., lithium hydride, lithium, hydrogen gas, etc.). As also discussed above, the process of lithium hydride decomposing to produce lithium and hydrogen gas requires relatively high operating temperatures (e.g., the temperature of interior 36 of container 24) typically of greater than 650 degrees Celsius. Temperature control system 26 is operable to maintain interior 36 at a desired temperature during, for example, operation of a vehicle such as an automobile, an aircraft, or other vehicle or device.

[0046] In order to monitor the temperatures of container 24 and interior 36, temperature control system 26 in one embodiment includes one or more temperature sensors. For example, as shown in FIG. 2, temperature control system 26 includes first temperature sensor 82 and second temperature sensor 84. First temperature sensor 82 is provided within interior 36 of container 24, and is configured to provide an indication of a temperature of interior 36 and/or the materials contained therein. Second temperature sensor 84 is provided on or within sidewall 32 and is configured to provide an indication of a temperature of one or more portions (e.g., an internal wall, an exterior wall, an
insulating layer or portion, etc.) of sidewall 32. Based on receiving the sensed temperature of interior 36 from first temperature sensor 82 and the sensed temperature of one or more portions of sidewall 32 from second temperature sensor 84, temperature control system 26 determines whether additional heating or cooling is required to maintain interior 36 at a desired operating temperature.

[0047] According to one embodiment, temperature control system 26 includes one or more heating elements or heating members 86. As shown in FIG. 2, heating members 86 can extend into interior 36 of container 24 to deliver heat to interior 36 and material(s) stored therein, including, for example, lithium hydride, lithium, and/or hydrogen gas. For example, in one embodiment, heating member 86 can circulate a heated fluid that delivers heat to interior 36. Alternatively, heating member 86 can be a substantially solid member that is heated (e.g., resistively) to elevated temperatures and then releases heat to material within interior 36 (e.g., via conduction, convection, etc.). In some embodiments, multiple heating members 86 may be utilized.

[0048] Similarly, temperature control system 26 can include one or more cooling elements or cooling members 88. As shown in FIG. 2, cooling members 88 can extend into interior 36 of container 24 to absorb heat from interior 36 and material(s) stored therein, including, for example, lithium, lithium hydride, and/or hydrogen gas. For example, in one embodiment, cooling member 88 can circulate a cooled fluid that absorbs heat from interior 36. Alternatively, cooling member 88 can be a substantially solid member that is cooled to relatively lower temperatures and then absorbs heat from interior 36 (e.g., via conduction, convection, etc.). In some embodiments, multiple cooling members 88 may be utilized. As discussed in greater detail below, in some embodiments, cooling members 88 may form part of a passivation system for storage system 14 (e.g., to passivate lithium, lithium hydride, etc.). In further embodiments, temperature control system 26 is configured to activate vent portion 95 (see FIG. 2). Vent portion 95 includes a portion of the insulating material surrounding interior 36, such that by moving vent portion 95, heat transfer away from interior 36 can be controlled. Vent portion 95 can take any suitable size or shape, and multiple vent portions 95 can be utilized. In some embodiments, temperature control system 26 can cool interior 36 by controllably increasing the rate of heat transport through insulating layer 34. This can be done, for example, by moving insulation away from a portion of the wall thereby increasing the heat.
transport. In another example, gas can be introduced into interior 36, thereby increasing the rate of heat transport. Vent portion 95 can later be used to remove this gas to lower the heat transport rate again.

[0049] According to one embodiment, temperature control system 26 is configured to reuse, or recycle, at least a portion of the heat released by operation of a propulsion system or other device such as a combustion engine, fuel cell, or electric motor. For example, as shown in FIGS. 1-2, return line 20 (e.g., a waste heat conduit, etc.) can be configured so as to deliver at least a portion of heat produced by one or more portions of a propulsion system or other device back to temperature control system 26 and/or container 24 such that the "waste heat" is used to maintain the elevated temperatures within container 24. In one embodiment, return line 20 circulates a fluid that carries heat between the propulsion or other device and temperature control system 26 and/or container 24. Other methods may be used to recycle waste heat according to various alternative embodiments.

[0050] In one embodiment, temperature control system 26 is configured such that all or a portion of temperature control system can be thermally de-coupled from (e.g., substantially insulated from, etc.) all or a portion of container 24 and/or interior 36 during periods when production of hydrogen gas is not required (e.g., during periods of non-use of a vehicle, etc.). For example, one or more components of temperature control system 26 positioned generally outside of container 24 can be configured to be moveable relative to and/or disconnected from one or more components of temperature control system 26 positioned generally inside of container 24 along, for example, joint or coupling portion 89. In some embodiments, a portion of an insulating material or layer such as insulating layer 76 may be configured to cover any apertures, etc. that may enable thermal leakage from container 24 upon disconnection of the components. In other embodiments, thermally decoupling a portion of temperature control system may comprises closing one or more valves 91 to prevent, for example, further transfer of heat via circulation of a heating/and or cooling fluid through container 24. Thermally decoupling all or a portion of temperature control system 26 may, among other things, limit heat loss from interior 36 during periods of non-use of a vehicle or other device that utilizes, for example, hydrogen gas produced within interior 36 of container 24.
According to a further embodiment, temperature control system 26 can include one or more passivation mechanisms configured to passivate one or more materials (e.g., lithium, lithium hydride, and/or hydrogen gas) within container 24 in the event of, for example, an automobile crash, an expected crash, etc., as a result of which damage to container 24 and/or other components of storage system 14 is likely. For example, one or both of heating member 86 and cooling member 88 can include a chemical delivery and/or releasing member configured to release a chemical (e.g., a "hydrogen getter" such as solid lithium, etc.), for example, within container 24, where the chemical is configured to react with / passivate one or more materials such as lithium, lithium hydride, hydrogen gas, etc. For example, the chemical may be chosen to minimize the oxidation rate of lithium, or lithium hydroxide if exposed to the atmosphere (e.g., by using carbon powder or liquid hydrocarbons to form lithium-carbon compounds). Further, cooling member 88 can deliver a coolant, such as water, to cool (e.g., quench, etc.) container 24 and/or any materials contained therein. In one embodiment, cooling member 88 can comprise pipes through which water is flowed, absorbing heat from the material within container 24 by boiling. The resultant vapor can then be vented to the atmosphere. Further, a quenching system can be configured to solidify all or a part of the lithium or lithium hydride. Other forms of passivation may be used according to various alternative embodiments.

Referring further to FIG. 2, pressure control system 28 is configured to monitor and control the pressure level with interior 36 and/or sidewall(s) 32 of container 24. In one embodiment, control of pressure within interior 36 can be used to control (via controlling the recombination rate of hydrogen with lithium) the equilibrium dissociation temperature of the lithium hydride. In order to monitor the pressures of container 24 and interior 36, pressure control system 28 in one embodiment includes one or more pressure sensors. For example, as shown in FIG. 2, pressure control system 28 includes first pressure sensor 92 and second pressure sensor 93. First pressure sensor 92 is provided within interior 36 of container 24, and is configured to provide an indication of a pressure of interior 36. Second pressure sensor 93 is provided within sidewall 32 and is configured to provide an indication of a pressure of one or more intermediate spaces (e.g., such as the intermediates spaces shown in FIGS. 5-6, etc.) of sidewall 32. Based on receiving the sensed pressure of interior 36 from first pressure sensor 92 and the sensed pressure of one
or more portions of sidewall 32 from second pressure sensor 93, pressure control system 28 determines whether variations in pressure are required.

[0053] According to one embodiment, one or more pressure lines such as pressure lines 96, 98 extend from pump 94 into interior 36 and/or within sidewall 32. Pump 94 can be a pressure pump, so as to provide an increase in pressure in a desired region, and/or a vacuum pump, so as to provide a decrease in pressure in a desired region. Any suitable type pump may be used. As shown in FIG. 2, in one embodiment, pressure line 96 extends from pump 94 to interior 36, and pressure line 98 extends from pump 94 to one or more intermediate spaces of sidewall 32. In some embodiments, one or more of ports 68, 70, and 78 shown in FIGS. 5-6 may be fluidly coupled to pump 94 via pressure line 98. One or more valves 102, 104 can be provided in pressure lines 96, 98 to control the flow of air, etc. into and out of interior 36 and sidewall 32. Pump 94 is also fluidly coupled to an environment exterior to storage system 14 by way of vent line 100. Vent line 100 provides a means for drawing gas (e.g., air) from, and exhausting gas to, the exterior environment. For example, should pump 94 be used to generate a vacuum within an interior space within sidewall 32, gas pulled from the interior space can be exhausted from pump 94 to the exterior environment via vent line 100.

[0054] Referring now to FIGS. 2 and 4, energy dissipation system 30 is shown in greater detail according to an one embodiment. Energy dissipation system 30 is configured to surround all or a portion of container 24 and provide protection to container 24 from undesirable forces, etc. (e.g., in the event of an automobile crash, etc.). Energy dissipation system 30 includes one or more energy absorbing members 106, 108 that may be positioned at various locations adjacent to or around container 24. Energy absorbing members 106, 108 are intended to absorb energy that may damage or otherwise interfere with the operation of fuel storage system 14.

[0055] Energy absorbing members 106, 108 can be configured to absorb energy by deformation such that energy that would otherwise be transmitted to container 24 or other components of storage system 14 is instead used to deform the energy absorber. As such, the energy absorbing members may define one or more crumple zones, or crush spaces, having structures intended to deform in the case of an impact, etc. Alternatively, one or more of the energy absorbing members, such as energy absorbing member 108, may be a
deployable (e.g., expandable, inflatable, etc.) energy absorber (e.g., similar to an air bag
device, etc.) that is configured to expand, inflate, etc. upon receiving a control signal from
control line 110. Control line 110 may form part of a vehicle safety system or other
system intended to detect potential collisions, impacts, etc. as a result of sensing various
parameters associated with a vehicle, such as accelerations, decelerations, etc.

[0056] In one embodiment, energy dissipation system 30 can surround all or a part of
container 24, temperature control system 26, and/or pressure control system 28. Further,
in some embodiments, all or a portion of energy dissipation system 30 can be positioned
adjacent one or more portions of container 24. In yet further embodiments, all or a portion
of energy dissipation system 30 can be integrated into container 24. For example, in one
embodiment, energy dissipation system 30 can be at least partially integrated into sidewall
32 of container 24. Energy dissipation system 30 can in one embodiment be an aerogel
material or other low density structure to provide both thermal insulating and energy
absorbing properties.

[0057] Referring now to FIG. 7, fuel storage system 714 is shown according to one
embodiment. As shown in FIG. 7, storage system 714 includes container 724 (e.g., a tank,
reservoir, etc.), temperature control system 726 (e.g., a heating and/or cooling system,
etc.), pressure control system 728 (e.g., a vacuum system, a pressurization system, etc.),
energy dissipation system 730 (e.g., a "smart" energy dissipation system, an energy
absorbing member, etc.), decomposition chamber 750, and may include optional storage
chamber 760. Temperature control system 726 and pressure control system 728 are
operatively coupled to container 724 and decomposition chamber 750 to control the
temperature and pressure within the interior of container 724 and decomposition chamber
750 and/or within the structure of container 724 or decomposition chamber 750 itself (e.g.,
within one or more sidewalls of the container or the decomposition chamber). Energy
dissipation system 730 is configured to protect container 24 and decomposition chamber
750 from undesirable impact forces, etc. that may result from, for example, an automobile
accident or similar event, and can include any of the features discussed with respect to
energy dissipation system 30.

[0058] According to one embodiment, container 724 includes one or more sidewalls 732
that form an outer wall and define interior 736. Sidewalls 732 can define any appropriate
shape for container 724, including a cube, cylinder, or another suitable shape. Furthermore, the size of container 724 and the volume of interior 736 can be varied to suit a particular application or vehicle. Decomposition chamber 750 is in fluid communication with container 724. In one embodiment, a passage 755 (e.g., pipe, conduit, etc.) extends between container 724 and decomposition chamber 750. Passage 755 may include pumps, gates or valves to control the movement of material between container 724 and decomposition chamber 750. In some embodiments, the material in container 724 (e.g., lithium hydride) is a liquid. In some embodiments, the material in container 724 (e.g., lithium hydride) is a solid (e.g., chunks or pellets) and passage 755 may be or include a gravity feed, a conveyor belt, etc. for transport of the solid. In some embodiments, the material in container 724 is a slurry (e.g., pellets of lithium hydride in a liquid lithium carrier fluid) and both components are transported via passage 755 into decomposition chamber 750. Decomposition chamber 750 includes one or more sidewalls 752 that form an outer wall and define interior 756. Sidewalls 752 can define any appropriate shape for chamber 750 including a cube, cylinder, or another suitable shape. In one embodiment, decomposition chamber 750 may be configured as a continuation of passage 755 with a cross-section that is substantially similar to passage 755. At least a portion of sidewalls 732 and/or sidewalls 752 can include insulating layer 734 or 754 (e.g., a thermally insulating layer or layers, etc.). Insulating layer 734 and 754 may include a variety of materials, including one or more vacuum layers, aerogels, combinations thereof, and/or other insulating layers or materials suitable for the high temperature applications disclosed herein.

[0059] Container 724 and decomposition chamber 750 are configured to contain various materials that chemically react with each other in order to produce a gaseous fuel usable in various drive and/or propulsion systems or other devices (e.g., stationary devices, etc.). Container 724 provides a reservoir to hold the bulk of the material (e.g., lithium hydride). A portion of this material is then transferred to and transformed in decomposition chamber 750 to produce the gaseous fuel (e.g., hydrogen gas). The use of decomposition chamber 750 allows the amount of gaseous fuel produced to be controlled independent of the conditions and properties (e.g., temperature, pressure, volume etc.) of chamber 724. For example, in one embodiment, container 724 is configured to contain first material 38 (e.g., a metal hydride such as lithium hydride). First material 38 is transported (e.g., pumped)
from container 724 to decomposition chamber 750, in which first material 38 decomposes to produce second material 40 (e.g., a liquid metal such as lithium, etc.) and third material 42 (e.g., a gas such as hydrogen gas, etc.). The reverse of this reaction may also occur within decomposition chamber 750 (e.g., such that hydrogen gas and lithium react to form lithium hydride). As such, materials 38, 40 may be in a liquid state within decomposition chamber 750 while material 42 is in a gaseous state within decomposition chamber 750. According to various alternative embodiments, other materials (e.g., other metal hydrides, metals, etc.) in other states (i.e., solid, liquid, gas) may be contained within container 724 or decomposition chamber 750. Furthermore, while in some embodiments container 724 and decomposition chamber 750 are separated and fluidly coupled by one or more passages, in other embodiments, container 724 and chamber 750 can be adjacent one another and share one or more sidewalls, insulting layers, etc.

[0060] According to one embodiment, decomposition chamber 750 contains lithium hydride that decomposes into lithium and hydrogen gas. Port 744 provides fluid communication between interior 756 of decomposition chamber 750 and supply line 722 (e.g., a fuel supply line, etc.) such that hydrogen gas can be directed from interior 756 to a drive system, propulsion system, or other device. In some embodiments, port 744 includes valve 745 operable to control the amount of hydrogen gas permitted to leave interior 756 of decomposition chamber 750. Port 744 and valve 745 may be made of any material (e.g., metal, etc.) suitable for fluid transportation of materials such as hydrogen gas.

[0061] According to one embodiment, lithium remaining after the decomposition of lithium hydride is transported from decomposition chamber 750. Port 748 provides fluid communication between interior 756 of decomposition chamber 750 and container 724 via return passage 758. In some embodiments, port 748 includes a valve to control the flow of material through port 748. Lithium or a mixture of lithium and lithium hydride can be directed to container 724 through return passage 758 to mix with the material contained therein.

[0062] According to an alternative embodiment, port 748 may provide fluid communication between interior 756 of decomposition chamber 750 and storage chamber 760 via passage 762. As such, lithium may be collected in storage chamber 760 instead of being returned to container 724. Lithium may be emptied from storage chamber 760
through outlet line 764 via port 766. In some embodiments, port 766 includes a valve to
control the flow of lithium from storage chamber 760. In some embodiments, fuel storage
system 714 may include both passage 758 between decomposition chamber 750 and
container 724 and passage 762 between decomposition chamber 750 and storage chamber
760. A valve may be provided to direct material from interior 756 of decomposition
chamber 750 either back to container 724 or to storage chamber 760.

[0063] According to various alternative embodiments, interiors 736 and 756 can be sized
to suit a particular vehicle or other non-vehicle application. For example, container 724
may be used in connection with a drive system (e.g., either a hydrogen based internal
combustion engine or a hydrogen fuel cell and electric motor). As such container 724 and
interior 736 can be sized to provide a desired approximate driving range (e.g., 100 miles,
200 miles, etc.) based on the capacity of container 724. Similarly, decomposition chamber
750 and interior 756 may be configured to allow for a desired rate of production of the
gaseous fuel. Further, in the case of aircraft or other vehicles, the size of container 724
and interior 736, and of decomposition chamber 750 and interior 756, can be varied to
provide a desired travel capability prior to needing to refill/recharge container 724 with a
renewed supply of lithium hydride and/or other materials (e.g., hydrogen gas, etc.).

[0064] Temperature control system 726 is configured to monitor and control the
temperature of interior 736 of container 724, interior 756 of decomposition chamber 750,
and the material(s) contained therein (e.g., lithium hydride, lithium, hydrogen gas, etc.).
As also discussed above, the process of lithium hydride decomposing to produce lithium
and hydrogen gas requires relatively high operating temperatures (e.g., the temperature of
interior 756 of decomposition chamber 750) of greater than 650 degrees Celsius.
Temperature control system 726 is operable to maintain interior 756 at a desired
temperature during, for example, operation of a vehicle such as an automobile, an aircraft,
or other vehicle or device. Temperature control system 726 may be further configured to
maintain interior 736 at a temperature at which the material (e.g., lithium hydride) remains
stable and does not decompose. Temperature control system 726 may include a variety of
temperature sensors provided in various locations in fuel storage system 714, such as
within sidewall 732, interior 736, sidewall 752, and/or interior 756. Temperature control
system 726 determines whether additional heating or cooling is required to maintain
interior 736 and interior 756 at a desired operating temperature. Temperature control
system 726 may include one or more heating elements or heating members, and one or
more cooling elements or cooling members extending into interior 736 or interior 756. Temperature control system 726 may actively control the thermal conductivity of
insulating layer 734 or 754. For example, temperature control system 726 may include
any of the features of temperature control system 26, including heating members 86 and/or
cooling members 88.

[0065] In one embodiment, fuel storage system 714 includes a heat recycling system,
shown as heat exchanger loop 770. Heat exchanger loop 770 (e.g., a counter-flow heat
exchanger) is configured to re-use, or recycle, at least a portion of the heat absorbed by the
material (e.g., lithium or lithium hydride) in decomposition chamber 750 before it returns
to container 724 or is delivered to storage chamber 760. Heat exchanger loop 770
transfers the heat from the material in return passage 758 or passage 762 to the material in
passage 755 to pre-heat the material before it reaches decomposition chamber 750.

[0066] Other methods may be used to recycle waste heat according to various alternative
embodiments. According to one embodiment, temperature control system 726 is
configured to re-use, or recycle, at least a portion of the heat released by operation of a
propulsion system or other device such as a combustion engine, fuel cell, or electric motor.
For example fuel storage system 714 may include a return line 720 (e.g., a waste heat
conduit, etc.) that is configured to deliver at least a portion of heat produced by one or
more portions of a propulsion system or other device back to temperature control system
726 and/or decomposition chamber 750 such that the "waste heat" is used to maintain the
elevated temperatures within decomposition chamber 750.

[0067] Referring now to FIG. 8, a configuration of propulsion system 12 is shown
according to one embodiment. As shown in FIG. 8, propulsion system 12 includes fuel
storage system 14 coupled to combustion engine 112 via fuel line 22. Storage system 14,
as discussed above, is configured to provide a supply of hydrogen gas to combustion
engine 112. Combustion engine 112 can be an internal combustion engine such as an
automobile internal combustion engine, a gas turbine (e.g., for use in aircraft or other
applications), or any other type of combustion engine adapted to use the gaseous fuel (e.g.,
hydrogen gas) provided by storage system 14.
Referring further to FIG. 8, in some embodiments return line 20 is configured to transfer at least a portion of the heat generated by operation of combustion engine 112 back to storage system 14 to, for example, assist in maintaining the required elevated temperatures within container 24. Furthermore, control line 110 can provide control signals to storage system 14, and more specifically, energy dissipation system 30, so as to deploy one or more energy absorbing members such as energy absorbing members 108 shown in FIG. 4.

Referring now to FIG. 9, a configuration of propulsion system 12 is shown according to another embodiment. As shown in FIG. 9, propulsion system 12 includes fuel storage system 14 coupled to fuel cell 114 via fuel line 22. Storage system 14, as discussed above, is configured to provide a supply of hydrogen gas to fuel cell 114. Fuel cell 114 is in turn coupled to electric motor 116. In operation, fuel cell 114 uses hydrogen gas supplied by storage system 14 to generate electricity, which is provided to electric motor 116. Electric motor 116 can be used to power an automobile or other vehicles, or be used in a variety of non-vehicle applications.

Referring further to FIG. 9, in some embodiments return line 20 is configured to transfer at least a portion of the heat generated by operation of fuel cell 114 and/or electric motor 116 back to storage system 14 to, for example, assist in maintaining the required elevated temperatures within container 24. Furthermore, control line 110 can provide control signals to storage system 14, and more specifically, energy dissipation system 30, so as to deploy one or more energy absorbing members such as energy absorbing members 108 shown in FIG. 4.

Referring now to FIG. 11, a method 300 of storing hydrogen and producing hydrogen gas is illustrated according to one embodiment. At 302, a thermally insulated storage container is provided. The thermally insulated storage container may include any of the features of the storage containers discussed herein. Lithium hydride is provided within the container (304), and heated to produce hydrogen gas (306). As discussed above, because of the relatively high temperatures required to use lithium hydride for the storage of hydrogen and the production of hydrogen gas, the thermally insulated container can include various temperature and pressure control features intended to enable safe use of the storage container in vehicle propulsion and other applications. The produced
hydrogen gas is selectively released from the container (308). In some embodiments, the hydrogen gas is directed to a propulsion system (310), such as a vehicle propulsion system.

[0072] Referring now to FIG. 12, a method 400 of storing hydrogen and producing hydrogen gas is illustrated according to one embodiment. At 402, a thermally insulated storage container is provided. The thermally insulated storage container may include any of the features of the storage containers discussed herein. A thermally insulated decomposition chamber in fluid communication with the storage container is provided (404). Lithium hydride is provided within the container (406). A portion of the lithium hydride is transferred to the decomposition chamber (408) and is subsequently heated to produce hydrogen gas (410). As discussed above, because of the relatively high temperatures required to use lithium hydride for the storage of hydrogen and the production of hydrogen gas, the thermally insulated decomposition chamber can include various temperature and pressure control features intended to enable safe use of the decomposition chamber in vehicle propulsion and other applications. The produced hydrogen gas is selectively released from the decomposition chamber (412). In some embodiments, the hydrogen gas is directed to a propulsion system (414), such as a vehicle propulsion system.

[0073] While FIG. 1 shows propulsion system 12 being used in connection with an automobile, it should be understood that according to various other embodiments, propulsion system 12 and/or storage system 14 may be used in connection with various other vehicles, and/or in other non-vehicle applications. For example, as shown in FIG. 10, propulsion system 212 sharing all or some of the features of propulsion system 12 is shown used with aircraft 210. Propulsion system 212 includes storage system 214 that provides fuel (e.g., hydrogen gas) to propulsion device, shown as gas turbine 216. Other applications for propulsion systems 12, 212 and storage systems 14, 214 are possible according to various other embodiments.

[0074] The various propulsion and storage systems disclosed herein may provide various advantages over more traditional systems. For example, some conventional storage systems for hydrogen rely on compressing hydrogen gas, which requires significantly greater storage pressures. The storage system disclosed herein can typically operate at
pressures at or near ambient pressure. Furthermore, the use of hydrogen in a propulsion system is often more environmentally friendly than the use of other fuels, such as gasoline.

[0075] The present disclosure contemplates methods, systems, and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a machine, the machine properly views the connection as a machine-readable medium.

Thus, any such connection is properly termed a machine-readable medium. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.

[0076] Although the figures may show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps and decision steps.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
WHAT IS CLAIMED IS:

1. A storage system for storing hydrogen and providing controlled release of hydrogen gas, comprising:
 a closable container having an outer wall defining an interior, the interior configured to contain liquid lithium hydride, a portion of the outer wall comprising a thermally insulating layer;
 a temperature control system configured to maintain the interior at a temperature such that the lithium hydride decomposes to produce hydrogen gas at a substantially equilibrium state; and
 an outlet port configured for removal of the hydrogen gas.

2. The system of claim 1, wherein the thermally insulating layer comprises multiple layers having a vacuum environment provided between adjacent layers.

3. The system of claim 2, further comprising a pressure control system having a vacuum source coupled to the thermally insulating layer via a pressure port and configured to generate the vacuum environment between the adjacent layers.

4. The system of claim 1, wherein the thermally insulating layer comprises an aerogel.

5. The system of claim 1, wherein the outer wall defines a unitary interior space.

6. The system of claim 1, wherein the outer wall defines a plurality of interior spaces configured to contain the liquid lithium hydride.

7. The system of claim 1, wherein the port extends through the outer wall and is in fluid communication with the interior to enable controlled release of the produced hydrogen gas from the interior.

8. The system of claim 1, further comprising a plurality of encapsulating members configured to encapsulate the liquid lithium hydride, a portion of each of the plurality of encapsulating members being permeable to the hydrogen gas at the temperature.
9. The system of claim 1, wherein a portion of the temperature control system is reconfigurable between a thermally conductive relationship with the liquid lithium hydride and a thermally insulated relationship with the liquid lithium hydride.

10. The system of claim 1, wherein the temperature control system comprises a passivation system configured to passivate at least one of the liquid lithium hydride, the hydrogen gas, and liquid lithium produced during production of the hydrogen gas.

11. The system of claim 10, wherein the passivation system comprises a chemical releasing member configured to release a chemical to react with at least one of the lithium hydride, the hydrogen gas, and the lithium.

12. The system of claim 10, wherein the passivation system comprises a cooling member extending into the interior and configured to cool at least one of the lithium hydride, the hydrogen gas, and the lithium.

13. The system of claim 12, wherein the cooling member is configured to carry a liquid coolant.

14. The system of claim 13, wherein the liquid coolant is water.

15. The system of claim 1, further comprising a cooling port fluidly connecting an interior of the container with an exterior environment.

16. The system of claim 15, wherein the cooling port enables the release of heat from the interior of the container with an external environment.

17. The system of claim 1, wherein the temperature control system is configured to move a portion of the thermally insulating layer to provide increased heat loss from the interior of the container.

18. The system of claim 1, wherein the temperature control system is configured to vary a portion of the thermally insulating layer to modulate heat loss from the interior of the container.

19. The system of claim 1, wherein the temperature control system is configured to provide a substantially constant amount of heat to the interior.
20. The system of claim 1, wherein the temperature control system is configured to vary the amount of heat provided to the interior of the container.

21. The system of claim 1, wherein the temperature control system comprises a heating member configured to deliver heat to the interior of the storage container.

22. The system of claim 1, wherein the temperature control system comprises a cooling member configured to remove heat from the interior of the storage container.

23. The system of claim 1, further comprising an energy dissipation system coupled to the container.

24. The system of claim 23, wherein the energy dissipation system comprises an aerogel.

25. The system of claim 23, wherein the energy dissipation is configured to receive an input from a vehicle safety system and activate an energy dissipation member in response to receiving the input.

26. The system of claim 1, wherein the storage system is usable in a vehicle.

27. The system of claim 26, wherein the vehicle is a ground vehicle.

28. The system of claim 27, wherein the vehicle is an automobile.

29. The system of claim 26, wherein the vehicle is an aircraft.

30. The system of claim 1, wherein the system is configured to provide hydrogen gas to a combustion engine.

31. The system of claim 1, wherein the system is configured to provide hydrogen gas to a hydrogen fuel cell.

32. The system of claim 1, further comprising liquid lithium hydride within the interior.

33. The system of claim 1, further comprising one or more sensors configured to sense a condition of the interior.
34. The system of claim 33 wherein the sensor is configured to measure temperature.

35. The system of claim 33, wherein the sensor is configured to measure pressure.

36. The system of claim 33, wherein the temperature control system is configured to receive data from the sensor.

37. The system of claim 33, wherein the temperature control system is configured to be responsive to data from the sensor.

38. The system of claim 1, further comprising one or more sensors configured to measure an amount of material within the interior.

39. The system of claim 1, further comprising one or more sensors configured to measure an amount of hydrogen removed via the port.

40. The system of claim 1, wherein the interior is further configured to contain liquid lithium.

41. The system of claim 40, wherein the interior comprises a first compartment configured to contain liquid lithium hydride and a second compartment configured to contain liquid lithium.

42. The system of claim 1, wherein the temperature control system is further configured to maintain the interior at a temperature such that the liquid lithium hydride is in a substantially equilibrium state with hydrogen gas and with liquid lithium.

43. The system of claim 1, further comprising a port configured for addition of lithium hydride into the interior.

44. The system of claim 1, further compromising a port configured for removal of lithium from the interior.

45. The system of claim 1, further comprising a port configured for addition of hydrogen gas into the interior.
46. The system of claim 1, wherein the temperature control system is further configured to maintain the interior at a temperature such that the pressure is a specified value.

47. The system of claim 1, wherein the temperature control system is further configured to maintain the interior at a temperature such that the removal rate of hydrogen through the port is a specified value.

48. An power generation system, the system comprising:
 a fuel storage system comprising:
 a thermally insulated container defining an interior configured to contain liquid lithium hydride; and
 a temperature control system configured to selectively maintain the interior at a temperature such that the lithium hydride decomposes to produce hydrogen gas; and
 a combustion engine fluidly coupled to the fuel storage system and configured to receive hydrogen gas from the fuel storage system and use the hydrogen gas as fuel to generate power.

49. The system of claim 48, wherein the container comprises a sidewall having a thermally insulating layer.

50. The system of claim 49, wherein the thermally insulating layer comprises an aerogel.

51. The system of claim 49, wherein the sidewall defines a unitary interior space.

52. The system of claim 49, wherein the sidewall defines a plurality of interior spaces configured to contain the liquid lithium hydride.

53. The system of claim 49, further comprising a port extending through the sidewall and being in fluid communication with the interior to enable controlled release of the produced hydrogen gas from the interior.
54. The system of claim 53, further comprising a controllable valve configured to control flow of the hydrogen gas through the port.

55. The system of claim 54 wherein the valve is configured to be responsive to hydrogen demand from the combustion engine.

56. The system of claim 48, further comprising a plurality of encapsulating members configured to encapsulate the liquid lithium hydride, a portion of each of the plurality of encapsulating members being permeable to the hydrogen gas.

57. The system of claim 48, wherein a portion of the temperature control system is reconfigurable between a thermally conductive relationship with the liquid lithium hydride and a thermally insulated relationship with the liquid lithium hydride.

58. The system of claim 48, wherein the temperature control system comprises a passivation system configured to passivate the liquid lithium hydride.

59. The system of claim 58, wherein the passivation system comprises a chemical releasing member configured to release a chemical to react with the lithium hydride.

60. The system of claim 58, wherein the passivation system comprises a cooling member extending into the interior and configured to cool the lithium hydride.

61. The system of claim 60, wherein the cooling member is configured to carry a liquid coolant.

62. The system of claim 61, wherein the liquid coolant is water.

63. The system of claim 49, wherein the thermally insulating layer comprises multiple layers having a vacuum environment between layers.

64. The system of claim 48, further comprising a pressure control system, wherein the pressure control system comprises a pressure sensor configured to monitor a pressure within the interior.

65. The system of claim 62, wherein the pressure control system is configured to vary the pressure within the interior based upon sensing the pressure within the interior.
66. The system of claim 48, further comprising an energy dissipation system coupled to the container.

67. The system of claim 66, wherein the energy dissipation system comprises an aerogel.

68. The system of claim 48, wherein the vehicle is a ground vehicle.

69. The system of claim 68, wherein the vehicle is an automobile.

70. The system of claim 68, wherein the vehicle is a train.

71. The system of claim 48, wherein the vehicle is an aircraft.

72. A fuel cell system, comprising:

 a fuel storage system comprising:

 a thermally insulated container defining an interior configured to contain liquid lithium hydride;

 a temperature control system configured to selectively maintain the interior at a temperature such that the lithium hydride decomposes to produce hydrogen gas; and

 a fuel cell fluidly coupled to the fuel storage system and configured to receive hydrogen gas from the fuel storage system and use the hydrogen gas as fuel to produce electricity.

73. The system of claim 72, wherein the container comprises a sidewall having a thermally insulating layer.

74. The system of claim 73, wherein the thermally insulating layer comprises an aerogel.

75. The system of claim 73, wherein the sidewall defines a unitary interior space.

76. The system of claim 73, wherein the sidewall defines a plurality of interior spaces configured to contain the liquid lithium hydride.
77. The system of claim 73, further comprising a port extending through the sidewall and being in fluid communication with the interior to enable controlled release of the produced hydrogen gas from the interior.

78. The system of claim 77, further comprising a controllable valve configured to control flow of the hydrogen gas through the port.

79. The system of claim 78, wherein the valve is configured to be responsive to hydrogen demand from the fuel cell.

80. The system of claim 72, further comprising a plurality of encapsulating members configured to encapsulate the liquid lithium hydride, at least a portion of each of the plurality of encapsulating members being permeable to the hydrogen gas.

81. The system of claim 72, wherein a portion of the temperature control system is reconfigurable between a thermally conductive relationship with the liquid lithium hydride and a thermally insulated relationship with the liquid lithium hydride.

82. The system of claim 72, wherein the temperature control system comprises a passivation system configured to passivate the liquid lithium hydride.

83. The system of claim 82, wherein the passivation system comprises a chemical releasing member configured to release a chemical to react with the lithium hydride.

84. The system of claim 82, wherein the passivation system comprises a cooling member extending into the interior and configured to cool the lithium hydride.

85. The system of claim 84, wherein the cooling member is configured to carry a liquid coolant.

86. The system of claim 85, wherein the liquid coolant is water.

87. The system of claim 73, wherein the thermally insulating layer comprises multiple layers having a vacuum environment between layers.
88. The system of claim 72, further comprising a pressure control system, wherein the pressure control system comprises a pressure sensor configured to monitor a pressure within the interior.

89. The system of claim 88, wherein the pressure control system is configured to vary the pressure within the interior based upon sensing the pressure within the interior.

90. The system of claim 72, further comprising an energy dissipation system coupled to the container.

91. The system of claim 90, wherein the energy dissipation system comprises an aerogel.

92. The system of claim 72, wherein the vehicle is a ground vehicle.

93. The system of claim 92, wherein the vehicle is an automobile.

94. The system of claim 92, wherein the vehicle is a train.

95. The system of claim 72, wherein the vehicle is an aircraft.

96. A propulsion system for a vehicle, comprising:

 a fuel storage system comprising:
 a thermally insulated container defining an interior configured to contain liquid lithium hydride;
 a temperature control system configured to selectively maintain the interior at a temperature such that the lithium hydride decomposes to produce hydrogen gas; and
 a propulsion device fluidly coupled to the fuel storage system and configured to receive hydrogen gas from the fuel storage system and use the hydrogen gas as fuel to propel the vehicle.

97. The system of claim 96, wherein the propulsion device comprises a combustion engine.

98. The system of claim 96, wherein the propulsion device comprises a fuel cell coupled to an electric motor.
99. The system of claim 96, wherein the container comprises a sidewall having a thermally insulating layer.

100. The system of claim 99, wherein the thermally insulating layer comprises an aerogel.

101. The system of claim 99, wherein the sidewall defines a unitary interior space.

102. The system of claim 99, wherein the sidewall defines a plurality of interior spaces configured to contain the liquid lithium hydride.

103. The system of claim 99, further comprising a port extending through the sidewall and being in fluid communication with the interior to enable controlled release of the produced hydrogen gas from the interior.

104. The system of claim 103, further comprising a controllable valve configured to control flow of the hydrogen gas through the port.

105. The system of claim 104, wherein the valve is configured to be responsive to hydrogen demand from the propulsion device.

106. The system of claim 96, further comprising a plurality of encapsulating members configured to encapsulate the liquid lithium hydride, at least a portion of each of the plurality of encapsulating members being permeable to the hydrogen gas.

107. The system of claim 96, wherein at least a portion of the temperature control system is reconfigurable between a thermally conductive relationship with the liquid lithium hydride and a thermally insulated relationship with the liquid lithium hydride.

108. The system of claim 96, wherein the temperature control system comprises a passivation system configured to passivate the liquid lithium hydride.

109. The system of claim 108, wherein the passivation system comprises a chemical releasing member configured to release a chemical to react with the lithium hydride.
110. The system of claim 108, wherein the passivation system comprises a cooling member extending into the interior and configured to cool the lithium hydride.

111. The system of claim 96, wherein the cooling member is configured to carry a liquid coolant.

112. The system of claim 111, wherein the liquid coolant is water.

113. The system of claim 99, wherein the thermally insulating layer comprises multiple layers having a vacuum environment between layers.

114. The system of claim 96, further comprising a pressure control system, wherein the pressure control system comprises a pressure sensor configured to monitor a pressure within the interior.

115. The system of claim 114, wherein the pressure control system is configured to vary the pressure within the interior based upon sensing the pressure within the interior.

116. The system of claim 96, further comprising an energy dissipation system coupled to the container.

117. The system of claim 116, wherein the energy dissipation system comprises an aerogel.

118. The system of claim 96, wherein the vehicle is a ground vehicle.

119. The system of claim 118, wherein the vehicle is an automobile.

120. The system of claim 118, wherein the vehicle is a train.

121. The system of claim 96, wherein the vehicle is an aircraft.

122. A method of storing hydrogen for use in a power generation system, comprising:
 providing a storage container comprising an outer wall defining an interior;
 providing an amount of lithium hydride within the interior;
 heating the lithium hydride such that the lithium hydride decomposes to produce hydrogen gas; and
selectively releasing the hydrogen gas from the interior for use in the power generation system.

123. The method of claim 122, wherein the outer wall includes a thermally insulating layer, the thermally insulating layer comprising multiple layers.

124. The method of claim 123, further comprising generating a vacuum environment between the adjacent layers.

125. The method of claim 122, wherein the outer wall includes a thermally insulating layer, the thermally insulating layer comprising an aerogel.

126. The method of claim 122, wherein the outer wall defines a unitary interior space.

127. The method of claim 122, wherein the outer wall defines a plurality of interior spaces configured to contain the liquid lithium hydride.

128. The method of claim 122, further comprising releasing the produced hydrogen gas from the interior via control of a valve.

129. The method of claim 128, further comprising controlling the valve in response to hydrogen requirements of the power generation system.

130. The method of claim 122, further comprising providing a plurality of encapsulating members configured to encapsulate the liquid lithium hydride, a portion of each of the plurality of encapsulating members being permeable to the hydrogen gas.

131. The method of claim 122, further comprising providing a temperature control system for heating the lithium hydride; and reconfiguring the temperature control system between a thermally conductive relationship with the liquid lithium hydride and a thermally insulated relationship with the liquid lithium hydride.

132. The method of claim 122, wherein the temperature control system comprises a passivation system configured to passivate at least one of the liquid lithium
hydride, the hydrogen gas, and liquid lithium produced during production of the hydrogen gas.

133. The method of claim 132, wherein the passivation system comprises a chemical releasing member configured to release a chemical to react with at least one of the lithium hydride, the hydrogen gas, and the lithium.

134. The method of claim 132, wherein the passivation system comprises a cooling member extending into the interior and configured to cool at least one of the lithium hydride, the hydrogen gas, and the lithium.

135. The method of claim 134, wherein the cooling member is configured to carry a liquid coolant.

136. The method of claim 135, wherein the liquid coolant is water.

137. The method of claim 122, further comprising providing at least one cooling port fluidly connecting an interior of the storage container with an exterior environment.

138. The method of claim 137, further comprising releasing heat from the interior of the storage container to the external environment via the at least one cooling port.

139. The method of claim 122, further comprising providing a substantially constant amount of heat to the interior.

140. The method of claim 139, further comprising selectively reducing the temperature of the interior by releasing heat from the thermally insulating layer.

141. The method of claim 122, further comprising varying the amount of heat provided to the interior of the container.

142. The method of claim 122, further comprising delivering heat to the interior of the storage container by way of at least one heating member.

143. The method of claim 122, further comprising providing an energy dissipation system coupled to the container.
144. The method of claim 143, wherein the energy dissipation system comprises an aerogel.

145. The method of claim 143, further comprising receiving an input from a vehicle safety system and activating an energy dissipation member in response to receiving the input.

146. The method of claim 122, wherein the storage system is usable in a vehicle.

147. The method of claim 146, wherein the vehicle is a ground vehicle.

148. The method of claim 147, wherein the vehicle is an automobile.

149. The method of claim 146, wherein the vehicle is an aircraft.

150. The method of claim 122, further comprising providing the hydrogen gas to a combustion engine.

151. The method of claim 122, further comprising providing the hydrogen gas to a hydrogen fuel cell.

152. A method of providing hydrogen gas for use in a propulsion system, the method comprising:
 storing an amount of lithium hydride in an interior of a thermally insulated container;
 heating the interior of the container such that the lithium hydride decomposes to produce hydrogen gas; and
 directing the hydrogen gas to a propulsion system.

153. The method of claim 152, wherein the hydrogen gas is directed to the propulsion system at a rate based upon requirements of the propulsion system.

154. The method of claim 152, further comprising controlling the pressure of the interior of the container responsive to a desired lithium hydride decomposition rate.

155. The method of claim 152, further comprising controlling the temperature of the interior of the container responsive to a desired lithium hydride decomposition rate.
156. The method of claim 152, further comprising providing heat to the interior at a substantially constant rate.

157. The method of claim 152, further comprising maintaining the temperature of interior at a substantially constant temperature.

158. The method of claim 152, further comprising selectively directing heat away from the interior to cool the interior.

159. The method of claim 152, wherein heating the interior comprises heating the interior to a temperature of at least 650 degrees Celsius.

160. The method of claim 152, wherein heating the interior comprises heating the interior to a temperature of at least 700 degrees Celsius.

161. The method of claim 152, further comprising generating a vacuum within a sidewall of the thermally insulated container.

162. The method of claim 161, wherein the sidewall comprises a plurality of separate interior spaces, wherein generating a vacuum within the sidewall comprises generating a vacuum within each of the plurality of separate interior spaces.

163. The method of claim 152, further comprising encapsulating at least a portion of the lithium hydride within a capsule provided within the interior.

164. The method of claim 163, wherein the capsule is permeable by hydrogen gas.

165. The method of claim 152, wherein directing the hydrogen gas to a propulsion system comprises directing the hydrogen gas to an internal combustion engine.

166. The method of claim 152, wherein directing the hydrogen gas to a propulsion system comprises directing the hydrogen gas to a gas turbine.

167. The method of claim 152, wherein directing the hydrogen gas to a propulsion system comprises directing the hydrogen gas to a hydrogen fuel cell coupled to an electric motor.
168. The method of claim 152, wherein heating the interior comprises directing a portion of the heat generated by the propulsion system back to the interior.

169. An energy conversion system comprising:
 a fuel system configured to store liquid lithium hydride and produce hydrogen gas;
 a hydrogen gas powered energy conversion mechanism coupled to the fuel system and configured to receive hydrogen gas from the fuel system;
 wherein a portion of heat generated by the energy conversion mechanism is transferred back to the fuel system and to the lithium hydride.

170. The system of claim 169, further comprising a fuel line fluidly coupling the fuel system and the energy conversion mechanism,

171. The system of claim 170, wherein the fuel line comprises a valve configured to control the release of hydrogen gas from the fuel system.

172. The system of claim 169, wherein the fuel system comprises a super-insulated container configured to contain the liquid lithium hydride.

173. The system of claim 172, wherein the container comprises a multi-layer vacuum insulation wall structure.

174. The system of claim 172, wherein the container comprises an aerogel insulating layer.

175. The system of claim 172, wherein the container comprises an insulating layer, a portion of the insulating layer being moveable to provide increased transfer of heat away from the liquid lithium hydride through the container.

176. The system of claim 169, wherein the fuel system comprises a container coupled to a pressure control system, the container configured to contain the liquid lithium hydride, and the pressure control system configured to control the pressure of the liquid lithium hydride.

177. The system of claim 169, wherein the fuel system comprises a container coupled to a temperature control system, the container configured to contain the liquid
lithium hydride, and the temperature control system configured to control the temperature of the liquid lithium hydride.

178. The system of claim 177, wherein the temperature control system comprises a heating member extending into an interior of the container and configured to provide heat to the liquid lithium hydride.

179. The system of claim 177, wherein the temperature control system comprises a passivation system configured to passivate at least one of the liquid lithium hydride, liquid lithium, and hydrogen gas.

180. The system of claim 179, wherein the passivation system is configured to cool the interior of the container.

181. The system of claim 179, wherein the passivation system is configured to provide a chemical to the interior of the container, the chemical configured to react with at least one of the lithium hydride, the lithium, and the hydrogen.

182. The system of claim 169, wherein at least a portion of the container comprises an energy absorbing material.

183. The system of claim 169, wherein the energy conversion mechanism is usable to propel a vehicle.

184. The system of claim 183, wherein the vehicle is an automobile.

185. The system of claim 183, wherein the vehicle is an aircraft.

186. The system of claim 169, wherein the energy conversion mechanism comprises a combustion engine.

187. The system of claim 169, wherein the energy conversion mechanism comprises a gas turbine.

188. The system of claim 169, wherein the energy conversion mechanism comprises a hydrogen fuel cell.
189. A storage system for storing hydrogen and providing controlled release of hydrogen gas, comprising:

 a first container configured to contain lithium hydride;
 a second container fluidly coupled to the first container and configured to receive lithium hydride from the first container, the second container including an outlet port configured to enable removal of hydrogen gas from the second container; and
 a temperature control system configured to maintain the interior of the second container at a temperature such that the lithium hydride within the second container decomposes to produce the hydrogen gas.

190. The system of claim 189, wherein the temperature control system is configured to supply heat to the second container.

191. The system of claim 189, wherein at least a portion of a wall of the first container is thermally insulated.

192. The system of claim 189, wherein at least a portion of a wall of the second container is thermally insulated.

193. The system of claim 189, wherein the first container is configured to contain solid lithium hydride.

194. The system of claim 189, wherein the first container is configured to contain liquid lithium hydride.

195. The system of claim 189, wherein the interior of the second container is maintained at a higher temperature than the interior of the first container.

196. The system of claim 189, wherein the volume of the interior of the second container is less than the volume of the interior of the first container.

197. The system of claim 189, wherein the lithium hydride decomposes to further produce liquid lithium, and wherein the second container comprises an outlet configured to enable removal of the liquid lithium from the second container.

198. The system of claim 197, wherein the outlet is fluidly coupled to at least one of the first container and a storage container by a lithium transport conduit.
199. The system of claim 198, wherein the outlet is fluidly coupled to the first container.

200. The system of claim 198, wherein the outlet is fluidly coupled to the storage container.

201. The system of claim 198, wherein the first container and the second container are fluidly coupled by a lithium hydride transport conduit.

202. The system of claim 201, wherein the lithium hydride transport conduit and the lithium transport conduit are thermally coupled by a thermal coupling.

203. The system of claim 202, wherein the thermal coupling is configured to transfer heat from the lithium transport conduit to the lithium hydride transport conduit.

204. The system of claim 189, further comprising a pressure control system configured to control the pressure within at least one of the first container and the second container.

205. The system of claim 189, further comprising an energy dissipation system coupled to at least one of the first container and the second container.

206. The system of claim 189, wherein the storage system is usable in a vehicle.

207. The system of claim 206, wherein the vehicle is a ground vehicle.

208. The system of claim 207, wherein the vehicle is an automobile.

209. The system of claim 206, wherein the vehicle is an aircraft.

210. The system of claim 189, wherein the system is configured to provide hydrogen gas to a combustion engine.

211. The system of claim 210, wherein the temperature control system is configured to receive heat generated by the combustion engine.

212. The system of claim 189, wherein the system is configured to provide hydrogen gas to a hydrogen fuel cell.
213. A method of storing hydrogen for use in a power generation system, comprising:

storing an amount of lithium hydride within a first container;

transferring a portion of the lithium hydride from the first container to a second container;

heating the lithium hydride such that the lithium hydride within the second container decomposes to produce hydrogen gas; and

selectively releasing the hydrogen gas from the second container.

214. The method of claim 213, further comprising maintaining the interior of the second container is at a higher temperature than the interior of the first container.

215. The method of claim 213, wherein the volume of the interior of the second container is less than the volume of the interior of the first container.

216. The method of claim 213, wherein the lithium hydride decomposes to further produce liquid lithium, and wherein the second container comprises an outlet configured to enable removal of the liquid lithium from the second container.

217. The method of claim 216, further comprising transferring heat from the liquid lithium to the lithium hydride.

218. The method of claim 216, further comprising transferring liquid lithium from the second container to at least one of the first container and a storage container.

219. The method of claim 218, further comprising transferring liquid lithium to the first container.

220. The method of claim 218, further comprising transferring liquid lithium to the storage container.

221. The method of claim 213, further comprising controlling the pressure within at least one of the first container and the second container.

222. The method of claim 213, further comprising providing an energy dissipation system coupled to at least one of the first container and the second container.
223. The method of claim 213, further comprising delivering hydrogen gas to a propulsion system for a vehicle.

224. The method of claim 223, wherein the vehicle is a ground vehicle.

225. The method of claim 224, wherein the vehicle is an automobile.

226. The method of claim 223, wherein the vehicle is an aircraft.

227. The method of claim 213, further comprising providing the hydrogen gas to a combustion engine.

228. The method of claim 227 further comprising transferring heat generated by the combustion engine to the lithium hydride.

229. The method of claim 213, further comprising providing the hydrogen gas to a hydrogen fuel cell.
302 PROVIDE THERMALLY INSULATED STORAGE CONTAINER

304 PROVIDE LITHIUM HYDRIDE WITHIN CONTAINER

306 HEAT LITHIUM HYDRIDE TO PRODUCE HYDROGEN GAS

308 SELECTIVELY RELEASE HYDROGEN GAS FROM CONTAINER

310 DIRECT HYDROGEN GAS TO PROPULSION SYSTEM

FIG. 11
1. PROVIDE THERMALLY INSULATED STORAGE CONTAINER

2. PROVIDE THERMALLY INSULATED DECOMPOSITION CHAMBER

3. PROVIDE LITHIUM HYDRIDE WITHIN CONTAINER

4. TRANSFER A PORTION OF THE LITHIUM HYDRIDE TO THE DECOMPOSITION CHAMBER

5. HEAT LITHIUM HYDRIDE TO PRODUCE HYDROGEN GAS

6. SELECTIVELY RELEASE HYDROGEN GAS FROM DECOMPOSITION CHAMBER

7. DIRECT HYDROGEN GAS TO PROPULSION SYSTEM

FIG. 12
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
F17C ll/00(2006.01)i, COIB 3/08(2006.01)i, H01M 8/06(2006.01)i, B60K 15/10(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F17C 11/00; COIB 3/00; F17C 1/00; F17C 3/08; COIB 3/08; H01M 8/06; B60K 15/10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: hydrogen, storage, lithium hydride, heating

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 2008-075697 A (NIPPON OIL CORP) 03 April 2008 See paragraphs [0033]-[0042], claims 1-5, and figure 1.</td>
<td>1,2,4,16,19-22,26-63,68-87,92-113,118-121,3,17,18,23-25,64-67,88-91,114-117</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 2007-170604 A (TAIHEIYO CEMENT CORP) 05 July 2007 See paragraph [0036] and figures 1-3, 7.</td>
<td>5,6,8,51,52,56,75,76,80,101,102,106</td>
</tr>
<tr>
<td>A</td>
<td>US 2010-0326992 AI (DE RANGO PATRICIA et al.) 30 December 2010 See paragraph [0034]-[0070] and figures 1, 2.</td>
<td>1-121</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search 27 January 2015 (27.01.2015)
Date of mailing of the international search report 28 January 2015 (28.01.2015)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheungsar-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea

Facsimile No. +82 42 472 3473

Authorized officer
PARK, Sang Hyun

Telephone No. +82-42-481-5434

Form PCT/ISA/210 (second sheet) (January 2015)
Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
Group 1: claims 1-47 relate to a storage system.
Group 2: claims 48-71 relate to a power generation system.
Group 3: claims 72-95 relate to a fuel cell system.
Group 4: claims 96-121 relate to a propulsion system.
Group 5: claims 122-151 relate to a method of storing hydrogen.
Group 6: claims 152-168 relate to a method of providing hydrogen gas.
Group 7: claims 169-188 relate to an energy conversion system.
Group 8: claims 189-212, relate to a storage system.

1. ☑ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☑ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of any additional fees.

3. ☑ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 1-121

4. ☑ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
☒ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
☒ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 04-545469 B2</td>
<td>15/09/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-615240 B2</td>
<td>19/01/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-615908 B2</td>
<td>19/01/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-703126 B2</td>
<td>15/06/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-711644 B2</td>
<td>29/06/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-729674 B2</td>
<td>20/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-754174 B2</td>
<td>24/08/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-095869 A</td>
<td>14/04/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-126273 A</td>
<td>19/05/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-154232 A</td>
<td>16/06/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-279418 A</td>
<td>13/10/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-281047 A</td>
<td>13/10/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-281115 A</td>
<td>13/10/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-291227 A</td>
<td>20/10/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006-007064 A</td>
<td>12/01/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006-008441 A</td>
<td>12/01/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006-0127304 Al</td>
<td>15/06/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009-0121184 Al</td>
<td>14/05/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7537748 B2</td>
<td>26/05/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005-014165 Al</td>
<td>17/02/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006-104079 Al</td>
<td>05/10/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008-035696 Al</td>
<td>27/03/2008</td>
</tr>
<tr>
<td>JP 2007-170604 A</td>
<td>05/07/2007</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US 2010-0326992 Al</td>
<td>30/12/2010</td>
<td>AT529685 T</td>
<td>15/11/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008-339797 Al</td>
<td>02/07/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2708647 Al</td>
<td>02/07/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN101910703 A</td>
<td>08/12/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN103759134 A</td>
<td>30/04/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK2235424 T3</td>
<td>06/02/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2235424 A2</td>
<td>06/10/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2235424 BI</td>
<td>19/10/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES2377272 T3</td>
<td>26/03/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR2924787 Al</td>
<td>12/06/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR2924787 BI</td>
<td>12/02/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL206312 A</td>
<td>27/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL206312 DO</td>
<td>30/12/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05-529752 B2</td>
<td>25/06/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011-508855 A</td>
<td>17/03/2011</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2011-508855 T</td>
<td>17/03/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2009-080975 A2</td>
<td>02/07/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2009-080975 A3</td>
<td>20/08/2009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (January 2015)