发明名称
具有复合鞋带构造的防水透气性鞋

摘要
提供一种全鞋透气性提高和吸湿性降低的鞋制品。所述鞋制品包括具有下部和上部的鞋帮；将所述上部和下部连接在一起的机构，包括一个覆盖物，和外部鞋底。
1. 一种防水透气性鞋制品，其包括：

具有上部和下部的鞋帮，所述上部具有包括最内层、至少一层中间层和最外层的叠层，并且所述下部也具有包括最内层、至少一层中间层和最外层的叠层，所述上部的最外层包含与所述下部的最外层不同的材料；

用于将所述下部连接至所述上部的连接件；

用于覆盖所述下部叠层的最外层的可透气保护性覆盖物；和

与所述鞋帮相连的外部鞋底；

其中所述上部的最外层与所述下部的保护性覆盖物相比耐磨性更高，所述上部叠层的最外层与所述下部叠层的最外层相比耐磨性更高。

2. 如权利要求 1 所述的制品，其特征在于，所述连接件连接所述上部的最内层和下部的最内层。

3. 如权利要求 1 所述的制品，其特征在于，所述连接件是条带、密封剂或缝线。

4. 如权利要求 1 所述的制品，其特征在于，所述连接件是超声粘结、缝合密封或热粘结。

5. 如权利要求 1 所述的制品，其特征在于，所述上部叠层的最内层包括织造织物或非织造织物。

6. 如权利要求 5 所述的制品，其特征在于，所述织造织物是针织织物。

7. 如权利要求 1 所述的制品，其特征在于，所述上部叠层的至少一层中间层包括至少一层薄膜。

8. 如权利要求 7 所述的制品，其特征在于，所述至少一层薄膜是含氟聚合物、聚氨酯、聚酯或它们的组合。

9. 如权利要求 7 所述的制品，其特征在于，所述至少一层薄膜是微孔聚合物。

10. 如权利要求 9 所述的制品，其特征在于，所述至少一层薄膜是微孔聚四氟乙烯。

11. 如权利要求 1 所述的制品，其特征在于，所述上部叠层的最外层包括织造织物、非织造织物、皮革、穿孔橡胶、聚合物网材、不连续图案的不透气性材料，或它们的组合。

12. 如权利要求 11 所述的制品，其特征在于，所述织造织物是针织织物，所述皮革是合成皮革。

13. 如权利要求 11 所述的制品，其特征在于，所述下部叠层的最内层包括织造织物或非织造织物。

14. 如权利要求 13 所述的制品，其特征在于，所述织造织物是针织织物。

15. 如权利要求 1 所述的制品，其特征在于，所述下部叠层的至少一层中间层包括至少一层薄膜。

16. 如权利要求 15 所述的制品，其特征在于，所述至少一层薄膜是含氟聚合物、聚氨酯、聚酯或它们的组合。

17. 如权利要求 15 所述的制品，其特征在于，所述至少一层薄膜是至少一种微孔聚合物。

18. 如权利要求 17 所述的制品，其特征在于，所述至少一种微孔聚合物是微孔聚四氟乙烯。

19. 如权利要求 1 所述的制品，其特征在于，所述下部叠层的最外层包括织造织物、非
织造物、皮革、穿孔橡胶、聚合物网材、不连续图案的不透气性材料，或它们的组合。

20. 如权利要求 19 所述的制品，其特征在于，所述织造物是针织织物，所述皮革是合成皮革。

21. 如权利要求 1 所述的制品，其特征在于，所述上部叠层的湿气渗透速率大于 1100g/m²/24 小时。

22. 如权利要求 1 所述的制品，其特征在于，所述下部叠层的湿气渗透速率大于 2200g/m²/24 小时。

23. 如权利要求 1 所述的制品，其特征在于，所述防水透气性鞋制品的全靴湿气渗透速
率大于或等于 8.75 克/小时。

24. 如权利要求 1 所述的制品，其特征在于，所述外部鞋底通过垫圈、注塑或胶接与所
述鞋帮连接。

25. 如权利要求 1 所述的制品，其特征在于，所述制品进行吸水性测试时，其吸收的水
量小于 40 克。

26. 如权利要求 1 所述的制品，其特征在于，所述保护性覆盖物是皮革。

27. 如权利要求 1 所述的制品，其特征在于，所述上部叠层在耐磨性测试中经过高达约
1500 次循环后仍保持完整。

28. 如权利要求 1 所述的制品，其特征在于，所述下部叠层在耐磨性测试中经过高达约
250 次循环后仍保持完整。

29. 一种防水透气性鞋制品，其包括：

具有上部和下部的鞋帮，所述上部具有包括最内层、至少一层中间层和最外层的叠层，
并且所述下部也具有包括最内层、至少一层中间层和最外层的叠层，所述上部的最外层包
含的材料与所述下部的最外层不同；

用于将所述下部与所述上部连接的条带、密封剂、缝线、超声粘结、缝合密封或热粘
结；

用于覆盖所述下部叠层的最外层的可透气保护性覆盖物；和

与所述鞋帮相连的外部鞋底；

其中所述上部的最外层与所述下部的保护性覆盖物相比耐磨性更高，所述上部叠层
的最外层与所述下部叠层的最外层相比耐磨性更高。
具有复合鞋帮构造的防水透气性鞋

背景技术
[0001] 为得到防水透气性鞋已作出了多种尝试。制作这种鞋的早期尝试包括制作具有经处理使鞋帮耐水的鞋帮材料（即皮革）以及由橡胶制成的鞋底的鞋子。但是，构造这种类型的鞋子时会出现几个问题。鞋帮材料进行处理以使其具有耐水性时，会损失鞋帮材料的透气性，从而使得穿着者感觉这种鞋子不舒适。此外，防水鞋底和鞋帮之间的连接区域成为渗漏的主要来源，这是因为已知的方式不能有效地使所述连接区域防水。

[0002] 得到舒适的防水鞋的另一种方法是在鞋子中使用防水插入件（insert）或足套（bootie）。如果该防水插入件由合适的材料构造，它则具有可渗透水蒸汽的额外优点，这样鞋子在穿着时鞋内即时累积的水蒸汽是有限的。在鞋类领域，同时防水且可渗透水蒸汽的材料通常被称为“功能”材料。这种示例性的功能材料是一种微孔的膨胀聚氟乙烯薄膜材料，可购自马里兰州埃尔克顿的W.L.戈尔和 Associates, Inc.，商品名 Gore-TEX®。也已开发出其它的功能材料，也是本领域已知的。

[0003] 其它方法包括通过包覆工艺将防水可透气性衬垫材料固定在鞋帮内侧并将衬垫材料密封至防水垫圈或内底。已有多种不同的尝试在衬垫材料连接防水垫圈或内底的区域提供持久的防水密封或连接。这些尝试取得了不同程度的成功。

[0004] 形成这种防水透气性鞋时经常出现的一个问题是衬垫或足套的插入经常导致鞋子不合脚（即，由于衬垫插入已固定大小的鞋帮导致鞋子挤脚（smaller fit））和/或衬垫或足套和鞋帮材料之间的连接变差，这也导致鞋子内侧的外观不理想（即衬垫变皱或从鞋帮脱离）。

[0005] 另一个可能导致的问题是在潮湿条件下使用时，足套的外层和鞋帮之间可能存留水，导致鞋子可感知的重量增加。这会使得穿着者不舒适，特别是在寒冷的天气中，潮湿的鞋子会产生对流热损失时这种感觉更明显。

[0006] 因此，仍需要重量轻并且能保持高度耐久性和透气性的鞋子。

[0007] 发明概述

[0008] 描述一种具有复合鞋帮构造的防水透气性鞋。对具有包括上部（superior compartment）10 和下部 20 的鞋帮的防水透气性鞋制品提供所述复合构造。所述鞋帮的上部可以包括叠层 11，所述叠层具有最内层 12、至少一层中间层 13 和最外层 14。所述鞋帮的下部可以包括叠层 21，所述叠层具有最内层 22、至少一层中间层 23 和最外层 24。所述鞋帮的最外层的组成材料可以与下部的最外层不同。鞋制品还可以包括用于将所述上部与下部连接的连接件 40，用于覆盖所述下部最外层的透气性保护覆盖物 50 和与所述鞋帮连接的外部鞋底 60。

[0009] 在一个实施方式中，所述连接件连接所述上部的最内层和所述下部的最内层。所述连接件可以与所述上部和/或下部的外层和中间层接触。所述连接件也可与所述上部和/或下部的外层接触。所述连接件可以是条带、密封剂、缝线等，或它们的组合。或者，所述连接件可以是超声粘结、缝合密封、热粘结等，或它们的组合。此外，所述外部鞋底可以通过垫圈、注入模制、胶接（cement）或条带等与所述鞋帮连
接。

[0010] 在一个实施方式中，所述上部叠层的最内层可以包括织造、针织或非织造的织物。所述叠层的至少一层中间层包括至少一层薄膜。较佳地，所述薄膜可以是微孔聚合物，优选微孔聚四氟乙烯。或者，所述薄膜可以是含氟聚合物、聚氨酯、聚酯或它们的组合。所述叠层的最外层可以是针织织物、非织造物、皮革、合成皮革、穿孔橡胶、聚合物网材、不连续图案的不透气性材料等，或它们的组合。

[0011] 在另一个实施方式中，所述下部叠层的最内层可以是织造、针织或非织造的织物。所述叠层的至少一层中间层包括至少一层薄膜。较佳地，所述薄膜可以是微孔聚合物，优选微孔聚四氟乙烯。或者，所述薄膜可以是含氟聚合物、聚氨酯、聚酯或它们的组合。所述叠层的最外层可以是针织织物、非织造物、皮革、合成皮革、穿孔橡胶、聚合物网材、不连续图案的不透气性材料等，或它们的组合。所述下部中还包括保护性覆盖物，优选皮革。

[0012] 在一个实施方式中，所述上部的最外层与所述下部的保护性覆盖物相比耐磨性更高，所述叠层的最外层与所述下部的保护性覆盖物相比耐磨性更高。与现有技术不同，重要的是这使得使用者能够舒适地使用透气性的下部透气性更好。此外，这种构造能够使得所述上部中上部最外层裸露处的耐磨性更高，透气性较小。此外，这种流线型的构造相对于现有技术的足套构造具有优势，这是因为它重量更轻（使用更少的材料），由于能存留材料的材料层较少，不容易吸收额外的重量。然而，在一个实施方式中，本发明的复合构造包括上 / 下位置彼此相关的两个三层叠层，其中所述上部的最外层是鞋帮的最外层，而在很多情况下，现有技术的鞋构造包括鞋帮（可以包括叠层）和处于横向位置的另外的足套。

[0013] 另外，为此在本发明的一个实施方式中，所述上部叠层的湿气渗透速率大于 1100g/m²/24 小时，所述下部叠层的湿气渗透速率大于 2200g/m²/24 小时。另外，全靴 (whole boot) 湿气渗透速率大于或等于 8.75 克 / 小时，优选大于或等于 10 克 / 小时，更优选大于或等于 12 克 / 小时。此外，对于耐磨性，所述上部叠层在耐磨性测试中经过高达约 1500 个循环，更优选经过 2500 个循环仍保持完整 (intact)，所述下部叠层在耐磨性测试中经过高达约 250 个循环，更优选经过 400 个循环仍保持完整。对于吸湿性测试，所述鞋制品进行吸湿性测试时吸收入小于 40 克水，优选小于 30 克水，更优选小于 20 克水。

[0014] 本发明的另一个方面提出具有包括上部 10 和下部 20 的鞋帮的防水透湿性鞋。所述鞋帮的上部可以包括叠层 11，所述叠层具有最内层 12、至少一层中间层 13 和最外层 14。所述鞋帮的下部可以包括叠层 21，所述叠层具有最内层 22、至少一层中间层 23 和最外层 24。所述鞋帮的最外层的组成材料可以与下部的最外层不同。所述鞋制品还可以包括用于将所述上部与下部连接的条带、密封剂、缝线、超声波粘结、缝合密封、热粘结等，用于覆盖所述下部最外层的透透气性保护覆盖物 50 和与所述鞋帮连接的外部鞋底 60。

[0015] 附图简述

[0016] 图 1 是具有下部和上部复合构造的防水透湿性鞋制品的立体图和截面图。

[0017] 定义

[0018] 防水鞋 - 将鞋子放置在一张吸水纸上。用室温水填充所述鞋子内部至高度约为 30 毫米（在鞋子的鞋跟区域从内底开始测量）。使水在该鞋子中保持至少两个小时。在两小时后时间结束时对吸水纸和鞋子的鞋帮进行检查，确定水是否渗透到吸水纸上或鞋帮外侧。
如果没有水渗透至吸水纸或鞋带外侧，则所述鞋子是防水的。

[0019] 发明详述

[0020] 本发明提供一种具有上部和下部的透气防水鞋制品。所示鞋制品与传统足套型鞋相比重量相对较轻，不容易吸水。

[0021] 参照以下说明和示出某些实施方式的附图对本发明进行描述。对本领域技术人员显而易见的是这些实施方式不代表本发明的全部范围，如所附权利要求概括的那样本发明可以以变化和等同的形式广泛地应用。此外，作为一个实施方式部分描述的特征可以用于另一实施方式，从而再得到一种实施方式。权利要求的范围应延伸到所有的这种变化形式和实施方式。

[0022] 回到图 1，提供了一种防水透气性鞋制品。所述鞋包含鞋帮，所述鞋帮包括上部 10 和下部 20。所述上部包括表层 11，它由最内层 12（最接近脚）、至少一层中间层 13 和最外层 14（离脚最远并且在使用中直接与外部环境接触）组成。

[0023] 所述上部的最内层优选由轻质材料制作，在正常使用和穿着所述鞋制品过程中使用者的脚与最内层接触时，所述鞋质材料能对使用者提供舒适感和透气性。这种材料包括但不限于非织造织物、针织物或织造织物，例如锦纶人造丝、尼龙、聚酯等或它们的组合。

[0024] 优选地，所述上部的至少一层中间层包括薄膜。较佳地，所述薄膜可以包括聚合物材料，如含氟聚合物、聚烯烃、聚氨酯和聚酯。合适的聚合物可以包括能进行加工形成多孔或微孔结构的树脂。例如，可以进行加工形成拉伸的多孔结构的聚四氟乙烯（PTFE）树脂适合用于本发明。例如，PTFE 树脂可拉伸形成微孔结构，当按照例如美国专利第 3,953,566, 5,814, 405 或 7,306,729 号所介绍的方法使其膨胀时，所述微孔结构的特征是具有通过原纤维互连的结点（node）。在一些实施方式中，膨胀型 PTFE 含氟聚合物薄膜由根据美国专利第 6,541,589 号的 PTFE 树脂制备的。PTFE 树脂具有聚氟丁基乙烯（PFB）的共聚合单体单元。例如，微孔膨胀型 PTFE（ePTFE）含氟聚合物可包含具有约 0.05 重量％－约 0.5 重量％的 PFB 共聚单体单元（基于聚合物总重）的 PTFE。

[0025] 在一个实施方式中，所述薄膜包含 ePTFE，所述 ePTFE 具有特征为原纤维互连的结点的微结构，其中多孔薄膜的孔足够紧密，从而提供防湿性，同时足够开放，从而提供例如湿气渗透性以及渗透着色剂和疏油性组合物的涂层的性质。例如，在一些实施方式中，对于多孔薄膜理想的是其平均中流量孔径小于或等于约 400 纳米，从而提供耐水性，并且中流量孔径大于约 50 纳米以进行着色（colorization）。这可以通过配混 PTFE 树脂完成，所述 PTFE 树脂适合通过拉伸制成结点和原纤维的微结构。所述树脂可以与脂肪烃润滑油剂挤出助剂如矿物油精掺混。配混的树脂可以成形为圆柱形颗粒，通过已知方法进行螺杆挤出，形成所需的可挤出形状，优选形成带或膜。所述制品可在辊间压延成所需厚度，然后热干燥，除去润滑剂。干燥制品按照例如美国专利第 3,953,566, 5,814,405 或 7,406,729 号的内容，通过沿纵向和/或横向拉伸进行膨胀，产生膨胀型 PTFE 结构，其特征是一系列通过原纤维互连的结点。然后，通过在高于 PTFE 的晶体熔点的温度下，例如在约 343-375°C 之间的温度下加热 ePTFE 制品，使该制品发生非晶态闭塞（amorphously locked）。

[0026] 所述上部的最外层 14 可以是织造物，非织造物，皮革，合成皮革，穿孔橡胶，聚合物网状，不连续图案的不透气性材料等，或它们的组合。无论用于所述上部最外层的材料是哪种类型，都应使得所述叠层具有足够的耐磨性，从而对所述鞋制品的穿着者提供足
够的保护。按照ASTM D3886，合适的耐磨性叠层包括经过高达约1000个循环，优选1500个循环，更优选2500个循环之后仍保持完整的叠层。所述上部叠层的湿气渗透速率较佳地应大于1100g/m²/24小时。

[0027]本领域已知可以使用多种方法将所述叠层的层连接在一起。这样的一种方法包括使用粘合剂。以连续形式（即在整个区域上）施用粘合剂或不连续地（即有间隙）施用粘合剂都可以实现粘合，从而形成叠层。在施加连续粘合剂层的情况下使用可透湿水蒸汽的粘合剂。对于使用不连续粘合剂层的情况，例如以粉末、点状、网状或矩阵形式施用时，可以使用使用本身非可透湿水蒸汽的粘合剂。由于其低成本和容易调节粘合剂施用方式（laydown）的原因，粉末状粘合剂是优选的。在这种情况下，通过用粘合剂仅覆盖层的部分表面保持水蒸汽透过性。

[0028]所述粘合剂层可以是可热活化的粘合剂层，如果该可热活化的粘合剂用于制作形成鞋子的叠层，可以从鞋子内侧或外侧通过应用加热装置来影响该层叠粘合剂的活化。

[0029]或者，所述上部的各层可以使用超声粘结、缝合密封或热粘结等本领域已知的方法层叠在一起。

[0030]回到图1，所述防水透气性鞋制品还包括下部。所述下部包括叠层21，所述叠层由最内层22、至少一层中间层23和最外层24组成。

[0031]与所述上部类似，所述下部的最内层优选由轻质材料制作，在正常使用和穿着所述鞋制品过程中使用者的脚与最内层接触时，所述轻质材料能对使用者提供舒适感和透气性。这种材料包括但不限于非织造物、针织织物或织造物，例如棉质人造丝、尼龙、聚酯等或它们的组合。

[0032]另外，与所述上部类似，所述下部叠层包括至少一层由至少一层薄膜组成的中间层。所述下部的薄膜使用的材料与所述用于上部的材料相同。

[0033]另外，与所述上部类似，所述下部包括外层。虽然所述外层可以包括所述用于上部外层的任一种材料，应对所述外层中使用的一个或多个特定组件进行选择，以使所述叠层的耐磨性小于所述叠层。这样，按照ASTM D3886，合适的耐磨性下部叠层包括经过高达约200个循环，优选400个循环仍保持完整的叠层。所述下部叠层的湿气渗透速率较佳地应大于2200g/m²/24小时。

[0034]此外，按照以上所述所述上部的描述，所述下部叠层的层可以使用本领域已知的多种方法连接在一起。

[0035]所述下部还包含用于下部叠层的保护性覆盖物50。所述保护性覆盖物可以由多种材料制成，所述材料包括但不限于皮革、针织织物、针织织物、合成皮革、穿孔橡胶、聚合物网材、不连续图案的不透湿性材料、非织造物等，或它们的组合。无论用于所述保护性覆盖物的材料是哪种类型，它应具有足够的耐久性，从而在所述鞋制品的正常使用中保护所述下部叠层，并且足够透气以保持鞋内的舒适感。

[0036]回到图1，使用连接件将所述下部与所述上部连接。所述连接件可以是本领域已知的任何合适的连接方法。例如，可以是条带、密封剂、缝线等，或它们的组合。或者，所述连接件可以是超声粘结、缝合密封、热粘结等，或它们的组合。

[0037]所述防水透气性鞋制品还包括外部鞋底。所述外部鞋底可以通过本领域已知的不会对鞋子的防水性产生不利影响的任何合适方法与鞋帮连接。这些方法包括但不限于使用
垫圈、注入模制或胶接等。

【0038】测试方法

【0039】湿气渗透速率（MVTR）测试

【0040】各样品的湿气渗透速率按照ISO15496进行测定，不同之处是，根据装置的水蒸汽渗透率（WVPapp）并利用以下转换方程式，将样品的水蒸汽渗透率（WVP）换算为MVTR湿气渗透速率（MVTR）。

$$\text{MVTR} = \frac{\Delta P \text{值} \times 24}{(1/\text{WVP})+(1+WVP\text{app 值})}$$

【0042】另外，该标准指定杯直径为85~95毫米，但也可以使用64毫米的杯直径。另外用氯化钠代替乙酸钠。

【0043】耐磨性测试

【0045】全靴湿气渗透速率测试

【0046】根据国防部战斗靴部门高温和气候说明说书（Department of Defense Army Combat Boot Temperate Weather Specifications）确定各样品的全靴湿气渗透速率。说明书如下：

【0047】4.5.4全靴透湿性

【0048】设计靴透湿性测试，通过靴内部和外部环境之间的湿气浓度差来表述湿气渗透速率（MVTR）。

【0049】4.5.4.1设备

【0050】a. 外部测试环境控制系统在测试期间应能保持23（±1）℃和50%±2%的相对湿度。

【0051】b. 确定引入水的靴重的重量标度应能精确到（±0.01）克。

【0052】c. 保水袋应该是柔性的，这样它可以插入靴中并与内部轮廓相适应，它必须足够薄，能折叠不产生空气间隙；它的MVTR必须比要测试的鞋产品高得多，并且它必须是防水的，这样仅仅是湿气而非液态水与鞋产品内部接触。

【0053】d. 靴内加热器应该能均匀地控制靴内的液态水温度为35(±1)℃。

【0054】e. 靴塞（boot plug）应该不可渗透液态水也不可渗透水蒸汽。

【0055】4.5.4.2过程

【0056】a. 将靴放置在测试环境中。

【0057】b. 将保水袋插入靴开口处，用水填充至12.5厘米（5英寸）的高度（从鞋底内侧测量）。

【0058】c. 插入水加热器并用靴塞密封开口处。

【0059】d. 将靴中的水加热至35℃。

【0060】e. 对靴样品称重并记录为Wi。

【0061】f. 称重之后保持靴内温度至少6小时。

【0062】g. 6小时之后，再次对靴样品称重。记录重量为Wf，测试时间为Tf。

【0063】h. 用以下方程式计算全靴MVTR，以克/小时计：
[0064] MVTR = (Wi-Wf)/Td

[0065] 4.5.4.3 检测方法

[0066] 根据第 4.5.4.2 段所述方法测试各个靴。从所测定的 5 个靴得到的平均全靴 MVTR 大于 3.5 克/小时，满足透气性标准。

[0067] 吸湿性测试

[0068] 按照以下方法测试靴吸湿性。使用男士 9 号靴，记录左右各靴的重量。测试对象在 30 英尺长，48 英尺宽，有机玻璃壁为 12” 的定制槽中行走。注入室温水，至槽中各处深度为 2”。测试对象在槽中行走 30 分钟，然后在槽外的橡胶垫（长 30 英尺）上行走 15 分钟。

[0069] 再对靴进行称重。在槽中行走之前和之后靴的重量差值为吸湿性。

[0070] 实施例 1

[0071] 用包括下部和上部的鞋帮层材料制造靴。所述上部层叠是一种三层层叠层，包括 a) 8.8 股司 1000D 尼龙织物，b) 膨胀型聚四氟乙烯膜，c) 6 股司亲水性尼龙（有纹理的聚氨酯针织物），d) 热熔粘合剂以将组织保持在一起，购自马里兰州埃尔克顿的戈尔联合有限公司（Gore and Associates，Elkton，MD），备件号：EXQP102120A，EXQP102120AZ。所述下部层叠是一种三层层叠层，包括 a) 1.5 股司尼龙经编织物，b) 膨胀型聚四氟乙烯膜，c) 6 股司亲水性尼龙（有纹理的聚氨酯针织物），d) 热熔粘合剂以将组织保持在一起，购自马里兰州埃尔克顿的戈尔联合有限公司，备件号：EAAM2108AZ，EAAM2108AZ。

[0072] 所述上部和下部的层叠都采用上述 MVTR 测试方法进行测试。所述上部层叠的 MVTR 为 1600g/m²/24 小时，下部层叠的 MVTR 为 3200g/m²/24 小时。

[0073] 所述上部和下部的层叠也采用上述耐磨性测试方法进行耐磨性测试。所述下部层叠经 350-400 次循环磨穿，所述上部层叠经 2400-2550 次循环磨穿。

[0074] 制备本发明的鞋制品时，所述上部层叠与所述下部层叠的保护性皮革覆盖物连接在一起，形成所述靴的鞋帮。所述上部和下部用缝线缝合并使用热塑性粘合剂胶带（Gore 缝线 TM 胶带，购自马里兰州埃尔克顿的戈尔联合有限公司）连接在一起，以确保鞋帮的防水性。

[0075] 内底板通过钉子与鞋楦相连。将鞋帮层叠包住鞋楦并将鞋帮牵拉到脚趾区域。使用帮鞋机（lastings machine），再通过帮鞋机自动施加的热熔粘合剂将脚趾区域与内底板相连。然后使用第二帮鞋机来完成鞋制品侧面和脚跟区域的植制。然后向鞋楦边缘施用聚氨酯聚合物树脂。

[0076] 再将靴入热模具中，该热模具包括热板和成形硅橡胶模具。硅橡胶模具的形状与靴底的形状相匹配。将热板加热至 157℃，使得硅橡胶模具表面的温度分布为 70-100℃。将一张脱模纸放在热模具底部，将所述靴放置在鞋底压机中。鞋底压机的液压系统设定为 40kg/cm²。启动鞋底压机，再将所述靴压入热模具 60 秒。再将所述靴从模具中移出，从靴底去除脱模纸。在闪热活化器（flash activator）中加热靴底形状的垫圈，然后放入靴底部。再将所述靴放回热模具，启动鞋底压机 60 秒。然后在闪热活化器中加热制备的鞋底和加入垫圈的靴子，这是本领域的标准操作。鞋底放置在靴底部，然后在鞋底压机中按压在所述靴上。鞋底压机以用于鞋底连接的标准设置构造。鞋底压机的液压系统设定为 10kg/cm²，启动 15 秒。将所述靴冷却，从靴中去除鞋楦。
根据上述防水性测试方法对所述靴子进行防水性测试。所述靴子通过测试。

根据本发明制作的标准8英寸靴进行上述吸湿性测试。另外，对使用标准足套构造的防水（商品名Belleville 790，购自美国依利诺伊州贝拉维尔市的贝拉维尔制鞋公司（Belleville Shoe Manufacturing Company, Belleville, IL））和非防水（商品名Belleville DST105R，购自美国依利诺伊州贝拉维尔市的贝拉维尔制鞋公司）的8英寸靴进行测试。结果如下所示：

如上述图表所示，根据本发明制作的靴子与用防水性足套制作的靴子和非防水性热季靴相比，吸收的水明显更少。

对4组根据本发明制作的5只标准八英寸靴（总共20只）进行上述全靴温湿气透性测试。另外，对4组采用标准足套构造制作的5只标准八英寸防水靴（总共20只）（商品名Belleville 790，购自美国依利诺伊州贝拉维尔市的贝拉维尔制鞋公司）进行测试。此外，对另外四组采用标准足套构造制作的5只标准八英寸防水靴（总共20只）（商品名Bates ICB，购自密歇根州罗克福德的狼狼世界公司（Wolverine Worldwide, Inc., Rockford, MI））进行测试。测定各组的平均值。结果如下。

<table>
<thead>
<tr>
<th>靴子类型</th>
<th>WBMVTR范围（g/h）</th>
</tr>
</thead>
<tbody>
<tr>
<td>本发明靴</td>
<td>8.9-12.6</td>
</tr>
<tr>
<td>Belleville 790</td>
<td>4.0-8.5</td>
</tr>
<tr>
<td>Bates ICB</td>
<td>4.0-8.5</td>
</tr>
</tbody>
</table>
[0086] 以上表格证明，根据本发明制作的靴子的平均全靴湿气渗透性测试结果高于采用标准防水足套构造制作的靴子。