
(12) STANDARD PATENT (11) Application No. AU 2014389572 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Process evaluation for malware detection in virtual machines

(51) International Patent Classification(s)
G06F 21/53 (2013.01)
G06F 9/455 (2006.01)

G06F 21/56 (2013.01)

(21) Application No: 2014389572 (22) Date of Filing: 2014.07.02

(87) WIPO No: WO15/152748

(30) Priority Data

(31) Number (32) Date (33) Country
13/936,058 2013.07.05 US

(43) Publication Date: 2015.10.08
(44) Accepted Journal Date: 2019.03.07

(71) Applicant(s)
Bitdefender IPR Management Ltd

(72) Inventor(s)
Lukacs, Sandor;Tosa, Raul-Vasile;Boca, Paul-Daniel;Hajmasan, Gheorghe-
Florin;Lutas, Andrei-Vlad

(74) Agent / Attorney
Phillips Ormonde Fitzpatrick, PO Box 323, Collins Street West, VIC, 8007, AU

(56) Related Art
US 20120254993A1
US 20100306849A1
US 20060236392 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization
International Bureau

(43) International Publication Date
8 October 2015 (08.10.2015) WIPO I PCT

IIN
(10) International Publication Number

WO 2015/152748 Al

(51) International Patent Classification:
G06F 21/53 (2013.01) G06F 9/455 (2006.01)
G06F21/56 (2013.01)

(21) International Application Number:
PCT/RO2014/000019

(22) International Filing Date:
2 July 2014 (02.07.2014)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
13/936,058 5 July 2013 (05.07.2013) US

(71) Applicant (for all designated States except US): BITDE­
FENDER IPR MANAGEMENT LTD [—/CY]; Kreon-
tos 12, PC 1076, Nicosia (CY).

(72) Inventors; and
(71) Applicants (for US only): LUKACS, Sandor [RO/RO];

Bld. Cetatea Fetei bl. 8, et. 3, Sat f'loresti (Com. f'loresti),
Jude(Cluj (RO). TO§A, Raul-Vasile [RO/RO]; Str. Edgar
Quinet nr. 32, et. 4, ap. 30, Cluj-Napoca, Jude(Cluj (RO).
BOCA, Paul-Daniel [RO/RO]; Str. Agricultorilor nr. 20,
sc. 2, ap. 22, Cluj-Napoca, Jude(Cluj (RO). HAJMA§AN,
Gheorghe-Florin [RO/RO]; Sat. Lunca Miiresiilui nr. 351,
Comuna Lunca Miiresiilui, Jude(Alba (RO). I.UTAS, An­
drei-Vlad [RO/RO]; Bld. Cloaca nr.lll, Satu Mare, Jude(
Satu Mare (RO).

(74) Agent: TULUCA, Doina; Bd. Lacul Tei 56, bl. 19, sc. B,
ap. 52, sector 2, RO-020392 Bucuresti (RO).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(H))

[Continued on next page]

= (54) Title: PROCESS EVALUATION FOR MALWARE DETECTION IN VIRTUAL MACHINES

W
O

 20
15

/1
52

74
8 A

l

FIG. 2

(57) Abstract: Described systems and methods allow protecting a computer system from malware, such as viruses and rootkits. An
anti-malware component executes within a virtual machine (VM) exposed by a hypervisor executing on the computer system. A
memory introspection engine executes outside the virtual machine, at the processor privilege level of the hypervisor, and protects a
process executing within the virtual machine by write-protecting a memory page of the respective process. By combining anti-mal­
ware components executing inside and outside the respective VM, some embodiments of the present invention may use the abund­
ance of behavioral data that inside- VM components have access to, while protecting the integrity of such components from outside
the respective VM.

wo 2015/152748 Al I Hill Illi II lllllllllll IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIH
— as to the applicant's entitlement to claim the priority of —

the earlier application (Rule 4.17(iii))

Published:

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

20
14

38
95

72

30
 A

pr
 2

01
8

Process Evaluation for Malware Detection in Virtual Machines

BACKGROUND

[0001] The invention relates to systems and methods for protecting computer systems

from malware, and in particular to anti-malware systems employing hardware virtualization

technology.

[0002] Malicious software, also known as malware, affects a great number of computer

systems worldwide. In its many forms such as computer viruses, worms, and rootkits,

malware presents a serious risk to millions of computer users, making them vulnerable to

loss of data and sensitive information, identity theft, and loss of productivity, among others.

[0003] Hardware virtualization technology allows the creation of simulated computer

environments commonly known as virtual machines, which behave in many ways as

physical computer systems. In typical applications such as server consolidation and

infrastructure-as-a-service (IAAS), several virtual machines may run simultaneously on the

same physical machine, sharing the hardware resources among them, thus reducing

investment and operating costs. Each virtual machine may run its own operating system

and/or software applications, separately from other virtual machines. Due to the steady

proliferation of malware, each virtual machine operating in such an environment potentially

requires malware protection.

[0004] A virtualization solution commonly used in the art comprises a hypervisor, also

known as a virtual machine monitor, consisting of a layer of software operating between

the computing hardware and the operating system (OS) of a virtual machine, and having

more processor privileges than the respective OS. Since some malware, such as rootkits,

operate at OS privilege level, there is interest in developing anti-malware solutions

executing at the privilege level of the hypervisor.

[0004a] A reference herein to a patent document or any other matter identified as

prior art, is not to be taken as an admission that the document or other matter was known or

that the information it contains was part of the common general knowledge as at the

priority date of any of the claims.

1

20
14

38
95

72

30
 A

pr
 2

01
8

SUMMARY

[0005] According to one aspect, the present invention provides a host system comprising

at least one hardware processor configured to execute: a hypervisor configured to expose a

virtual machine; a process evaluator executing within the virtual machine; a memory

introspection engine executing outside the virtual machine; and a process-scoring module.

The process evaluator is configured to determine whether an evaluated process executing

within the virtual machine performs an action, and in response, when the evaluated process

performs the action, transmit a first process evaluation indicator to the process-scoring

module, the first process evaluation indicator determined for the evaluated process. The

memory introspection engine is configured to intercept a call to an operating system

function, to detect a launch of a protected process executing within the virtual machine,

wherein the operating system function is configured to add the protected process to a list of

processes executing within the virtual machine, and in response to detecting the launch,

determine whether the evaluated process attempts to modify a memory page of the

protected process, and in response, when the evaluated process attempts to modify the

memory page, transmit a second process evaluation indicator to the process-scoring

module, the second process evaluation indicator determined for the evaluated process. The

process-scoring module is configured to receive a first weight and a second weight from a

security server configured to perform anti-malware transactions with a plurality of

computer systems including the host system, receive the first and second process evaluation

indicators, and in response, determine whether the evaluated process is malicious according

to the first and second process evaluation indicators, wherein determining whether the

evaluated process is malicious comprises determining a weighted sum of a first score and a

second score, the first weight multiplying the first score in the weighted sum, and the

second weight multiplying the second score in the weighted sum, wherein the first and

second scores are determined according to the first and second process evaluation

indicators, respectively.

[0006] According to another aspect, the present invention provides a non-transitory

computer-readable medium encoding instructions which, when executed on a host system

comprising at least one processor, cause the host system to form: a hypervisor configured

to expose a virtual machine; a process evaluator executing within the virtual machine; a

memory introspection engine executing outside the virtual machine; and a process-scoring

2

20
14

38
95

72

30
 A

pr
 2

01
8

module. The process evaluator is configured to determine whether an evaluated process

executing within the virtual machine performs an action, and in response, when the

evaluated process performs the· action, transmit a first process evaluation indicator to the

process-scoring module, the first process evaluation indicator determined for the evaluated

process. The memory introspection engine is configured to intercept a call to an operating

system function, to detect a launch of a protected process executing within the virtual

machine, wherein the operating system function is configured to add the protected process

to a list of processes executing within the virtual machine, and in response to detecting the

launch, determine whether the evaluated process attempts to modify a memory page of the

protected process, and in response, when the· evaluated process attempts to modify the

memory page, transmit a second process evaluation indicator to the process-scoring

module, the second process evaluation indicator determined for the evaluated process. The

process-scoring module is configured to receive a first weight and a second weight from a

security server configured to perform anti-malware transactions with a plurality of

computer systems including the host system, receive the first and second process evaluation

indicators, and in response, determine whether the evaluated process is malicious according

to the first and second process evaluation indicators, wherein determining whether the

evaluated process is malicious comprises determining a weighted sum of a first score and a

second score, the first weight multiplying the first score in the weighted sum, and the

second weight multiplying the second score in the weighted sum, wherein the first and

second scores are determined according to the first and second process evaluation

indicators, respectively.

[0007] According to another aspect, the present invention provides a method comprising

employing at least one hardware processor of a host system to receive a first weight and a

second weight from a security server configured to perform anti-malware transactions with

a plurality of computer systems including the host system; employing at least one hardware

processor to receive a first process evaluation indicator determined for an evaluated

process, the evaluated process executing within a virtual machine exposed by a hypervisor

executing on the host system, wherein determining the first process evaluation indicator

comprises employing a process evaluator executing within the virtual machine to determine

whether the evaluated process performs a first action. The method further comprises

employing the at least one hardware processor to receive a second process evaluation

3

20
14

38
95

72

30
 A

pr
 2

01
8

indicator determined for the evaluated process, wherein determining the second process

evaluation indicator comprises employing a memory introspection engine executing outside

the virtual machine to determine whether the evaluated process performs a second action;

and in response to receiving the first and second process evaluation indicators, employing

the at least one hardware processor to determine whether the evaluated process is malicious

according to the first and second process evaluation indicators, wherein determining

whether the evaluated process is malicious comprises determining a weighted sum of a first

score and a second score, the first weight multiplying the first score in the weighted sum,

and the second weight multiplying the second score in the weighted sum, wherein the first

and second scores are determined according to the first and second process evaluation

indicators, respectively. [0008] According to another aspect, the present invention

provides a method comprising employing at least one hardware processor of a host system

to receive a first weight and a second weight from a security server configured to perform

anti-malware transactions with a plurality of computer systems including the host system;

employing the at least one hardware processor to execute a memory introspection engine,

the memory introspection engine executing outside a virtual machine exposed by a

hypervisor executing on the host system, wherein executing the memory introspection

engine comprises detecting a launch of a process executing within the virtual machine. The

method further comprises, in response to the memory introspection engine detecting the

launch of the process, employing the at least one hardware processor to determine a first

and a second process evaluation indicators of the process. The method further comprises, in

response to determining the first and second evaluation indicators, employing the at least

one hardware processor to determine whether the process is malicious according to the first

and second process evaluation indicators, wherein determining whether the evaluated

process is malicious comprises determining a weighted sum of a first score and a second

score, the first weight multiplying the first score in the weighted sum, and the second

weight multiplying the second score in the weighted sum, wherein the first and second

scores are determined according to the first and second process evaluation indicators,

respectively.

[0008a] Where any or all of the terms "comprise", "comprises", "comprised" or

"comprising" are used in this specification (including the claims) they are to be interpreted

as specifying the presence of the stated features, integers, steps or components, but not

3a

20
14

38
95

72

30
 A

pr
 2

01
8

precluding the presence of one or more other features, integers, steps or components.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Various features and advantages of the present invention will become better

understood upon reading the following detailed description and upon reference to the

drawings where:

3b

WO 2015/152748 PCT/R02014/000019

[0010] Fig. 1 shows an exemplary hardware configuration of a host computer system protected

from malware according to some embodiments of the present invention.

[0011] Fig. 2 shows an exemplary set of virtual machines exposed by a hypervisor executing on

the host system of Fig. 1, and a security application operating in conjunction with a memory

introspection engine to protect a virtual machine according to some embodiments of the present

invention.

[0012] Fig. 3 illustrates an exemplary hierarchy of software objects executing on the host system

at various processor privilege levels, including a set of anti-malware objects according to some

embodiments of the present invention.

[0013] Fig. 4 shows an exemplary process-scoring module receiving a plurality of process

evaluation indicators determined for a process by a plurality of process evaluators, according to

some embodiments of the present invention.

[0014] Fig. 5 shows an exemplary sequence of steps performed by the process-scoring module of

Fig. 4 according to some embodiments of the present invention.

[0015] Fig. 6 shows an exemplary mapping of memory addresses in the system configuration of

Fig. 2, according to some embodiments of the present invention.

[0016] Fig. 7 illustrates an exemplary execution flow of a set of processes in a Windows®

environment. Solid arrows indicate an exemplary execution flow in the absence of an anti­

malware system. Dashed arrows indicate modifications to the execution flow, the modifications

introduced by a plurality of process evaluators operating according to some embodiments of the

present invention.

[0017] Fig. 8 illustrates an exemplary sequence of steps performed by the memory introspection

engine of Figs. 2-3 according to some embodiments of the present invention.

[0018] Fig. 9 shows an exemplary sequence of steps performed by the memory introspection

engine to protect a memory page according to some embodiments of the present invention.

4

WO 2015/152748 PCT/R02014/000019

[0019] Fig. 10 illustrates an exemplary configuration comprising a plurality of host systems

connected to a security server via a computer network.

[0020] Fig. 11 shows an exemplary anti-malware transaction between a host system and a

security server according to some embodiments of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[0021] In the following description, it is understood that all recited connections between

structures can be direct operative connections or indirect operative connections through

intermediary structures. A set of elements includes one or more elements. Any recitation of an

element is understood to refer to at least one element. A plurality of elements includes at least

two elements. Unless otherwise required, any described method steps need not be necessarily

performed in a particular illustrated order. A first element (e.g. data) derived from a second

element encompasses a first element equal to the second element, as well as a first element

generated by processing the second element and optionally other data. Making a determination

or decision according to a parameter encompasses making the determination or decision

according to the parameter and optionally according to other data. Unless otherwise specified,

an indicator of some quantity/data may be the quantity/data itself, or an indicator different from

the quantity/data itself. Unless otherwise specified, a process represents an instance of a

computer program, wherein a computer program is a sequence of instructions determining a

computer system to perform a specified task. Unless otherwise specified, a page represents the

smallest unit of virtualized physical memory individually mapped to a physical memory of a

computer system. Computer readable media encompass non-transitory media such as magnetic,

optic, and semiconductor storage media (e.g. hard drives, optical disks, flash memory, DRAM),

as well as communications links such as conductive cables and fiber optic links. According to

some embodiments, the present invention provides, inter alia, computer systems comprising

hardware (e.g. one or more processors) programmed to perform the methods described herein, as

well as computer-readable media encoding instructions to perform the methods described herein.

[0022] The following description illustrates embodiments of the invention by way of example

and not necessarily by way of limitation.

5

WO 2015/152748 PCT/R02014/000019

[0023] Fig. 1 shows an exemplary hardware configuration of a host system 10 performing anti­

malware operations according to some embodiments of the present invention. Host system 10

may represent a corporate computing device such as an enterprise server, or an end-user device

such as a personal computer or a smartphone, among others. Other host systems include

entertainment devices such as TVs and game consoles, or any other device having a memory and

a processor supporting virtualization, and requiring malware protection. Fig. 1 shows a

computer system for illustrative purposes; other client devices such as mobile telephones or

tablets may have a different configuration. In some embodiments, system 10 comprises a set of

physical devices, including a processor 12, a memory unit 14, a set of input devices 16, a set of

output devices 18, a set of storage devices 20, and a set of network adapters 22, all connected by

a set of buses 24.

[0024] In some embodiments, processor 12 comprises a physical device (e.g. multi-core

integrated circuit) configured to execute computational and/or logical operations with a set of

signals and/or data. In some embodiments, such logical operations are delivered to processor 12

in the form of a sequence of processor instructions (e.g. machine code or other type of software).

Memory unit 14 may comprise volatile computer-readable media (e.g. RAM) storing data/signals

accessed or generated by processor 12 in the course of carrying out instructions. Input

devices 16 may include computer keyboards, mice, and microphones, among others, including

the respective hardware interfaces and/or adapters allowing a user to introduce data and/or

instructions into system 10. Output devices 18 may include display devices such as monitors and

speakers among others, as well as hardware interfaces/adapters such as graphic cards, allowing

system 10 to communicate data to a user. In some embodiments, input devices 16 and output

devices 18 may share a common piece of hardware, as in the case of touch-screen devices.

Storage devices 20 include computer-readable media enabling the non-volatile storage, reading,

and writing of software instructions and/or data. Exemplary storage devices 20 include magnetic

and optical disks and flash memory devices, as well as removable media such as CD and/or

DVD disks and drives. The set of network adapters 22 enables system 10 to connect to a

computer network and/or to other devices/computer systems. Buses 24 collectively represent the

plurality of system, peripheral, and chipset buses, and/or all other circuitry enabling the inter­

communication of devices 12-22 of host system 10. For example, buses 24 may comprise the

6

WO 2015/152748 PCT/R02014/000019

northbridge connecting processor 12 to memory 14, and/or the southbridge connecting

processor 12 to devices 16-22, among others.

[0025] Fig. 2 shows an exemplary set of guest virtual machines 32a-b executing on host

system 10 and exposed by a hypervisor 30 according to some embodiments of the present

invention. Virtual machines (VM) are commonly known in the art as software emulations of

actual physical machines/computer systems, each capable of running its own operating system

and software independently of other VMs. Hypervisor 30 comprises software allowing the

multiplexing (sharing) by multiple virtual machines of hardware resources of host system 10,
such as processor operations, memory, storage, input/output, and networking devices. In some

embodiments, hypervisor 30 enables multiple virtual machines and/or operating systems (OS) to

run concurrently on host system 10, with various degrees of isolation. To enable such

configurations, software forming part of hypervisor 30 may create a plurality of virtualized, i.e.,

software-emulated devices, each virtualized device emulating a physical hardware device of

system 10, such as processor 12 and memory 14, among others. Hypervisor 30 may further

assign a set of virtual devices to each VM operating on host system 10. Thus, each VM 32a-b
operates as if it possesses its own set of physical devices, i.e., as a more or less complete

computer system. Examples of popular hypervisors include the VMware vSphere™ from

VMware Inc. and the open-source Xen hypervisor, among others.

[0026] In some embodiments, hypervisor 30 includes a memory introspection engine 40,

configured to perform anti-malware operations as described further below. Engine 40 may be

incorporated into hypervisor 30, or may be delivered as a software component distinct and

independent from hypervisor 30, but executing at substantially similar processor privilege level

as hypervisor 30. A single engine 40 may be configured to malware-protect multiple VMs

executing bn host system 10.

[0027] While Fig. 2 shows just two VMs 32a-b for simplicity, host system 10 may operate a

large number, e.g. hundreds, of VMs concurrently, and the number of such VMs may change

during the operation of host system 10. In some embodiments, each VM 32a-b executes a guest

operating system 34a-b and/or a set of software applications 42a-b, 42c, and 44, respectively,

concurrently and independently of other VMs running on host system 10. Each OS 34a-b

7

WO 2015/152748 PCT/R02014/000019

comprises software that provides an interface to the (virtualized) hardware of the respective

VM32a-b, and acts as a host for software applications executing on the respective OS.

Operating systems 34a-b may comprise any widely available operating system such as

Windows®, MacOS®, Linux®, iOS®, or Android™, among others. Applications 42a-c may

include word processing, image processing, database, browser, and electronic communication

applications, among others. In the following description, software executing on a virtual

processor of a virtual machine is said to execute within the respective virtual machine. For

instance, in Fig. 2, application 42b is said to execute within VM32a, while application 42c is

said to execute within VM 32b. In contrast, memory introspection engine 40 is said to execute

outside VMs 32a-b.

[0028] In the example of Fig. 2, a security application 44 executes on guest OS 34b,

application 44 configured to perform anti-malware (AM) operations in conjunction with memory

introspection engine 40, as detailed below, to protect virtual machine 32b from malware. In

some embodiments, an instance of application 44 may execute on each of a plurality of VMs

operating on host system 10, each such instance configured to interface with introspection

engine 40 to protect the respective virtual machine. Security application 44 may be a standalone

program, or may form part of a software suite comprising, among others, anti-malware, anti­

spam, and anti-spyware components.

[0029] Fig. 3 illustrates a hierarchy of software objects executing on host system 10 according to

some embodiments of the present invention. Fig. 3 is represented from the perspective of

processor privilege levels, also known in the art as layers or protection rings. In some

embodiments, each such layer or protection ring is characterized by a set of instructions, which a

software object executing at the respective processor privilege level is allowed to execute. When

a software object attempts to execute an instruction, which is not allowed within the respective

privilege level, the attempt may trigger a processor event, such as an exception, a fault, or a

virtual machine exit event. In some embodiments, switching between privilege levels may be

achieved via a set of dedicated instructions. Such exemplary instructions include

SYSCALL/SYSENTER, which switch from user level to kernel level, SYSRET/SYSEXIT,

which switch from kernel level to user level, VMCALL, which switches from either user or

8

WO 2015/152748 PCT/R02014/000019

kernel level to root level, and VMRESUME, which switches from root level to either kernel or

user level.

[0030] In some embodiments, hypervisor 30 takes control of processor 12 at the most privileged

level (e.g., VMXroot on Intel® platforms supporting virtualization, and also known as ring -1 or

root mode), thus creating a hardware virtualization platform presented as a virtual machine 32 to

other software executing on host system 10. An operating system 34, such as OSs 34a-b in

Fig. 2, executes within the virtual environment of VM 32, OS 34 having lesser processor

privilege than hypervisor 30 (e.g., ring 0 on Intel platforms, or kernel mode). A set of

applications 42d-e execute at lesser processor privilege than OS 34 (e.g., ring 3, or user mode).

[0031] In some embodiments, parts of security application 44 may execute at user-level

processor privilege, i.e., same level as applications 42d-e. For instance, such parts may comprise

a graphical user interface informing a user of any malware or security threats detected on the

respective VM, and receiving input from the user indicating, e.g., a desired configuration option

for application 44. Another example of a component executing at user level is a user-level

process evaluator, as detailed below. Other parts of application 44 may execute at kernel

privilege level. For instance, application 44 may install an anti-malware driver 36 and a process

scoring module 38, both operating in kernel mode. An exemplary AM driver 36 provides

functionality to anti-malware application 44, e.g. to scan memory for malware signatures and/or

to detect malware-indicative behavior of processes and/or other software objects executing on

OS 34.

[0032] In some embodiments, process-scoring module 38 is configured to receive process

evaluation data from a plurality of software components, the process evaluation data determined

for an evaluated process, and to determine whether the evaluated process is malicious according

to the respective data. A process is an instance of a computer program, such as an application or

a part of an operating system, and is characterized by having at least an execution thread and a

section of virtual memory assigned to it by the operating system, the respective section

comprising executable code. In some embodiments, the operating system manages processes

currently executing on host system 10 (or within virtual machine 32, in the case of

9

WO 2015/152748 PCT/R02014/000019

virtualization), such management including, among others, assigning virtual memory to each

process and scheduling each process or thread thereof for execution.

[0033] Fig. 4 shows an exemplary process-scoring module 38 receiving a plurality of process

evaluation indicators 52a-d, each indicator 52a-d determined by a process evaluator component.

In Fig. 4, such evaluation components include a user-level process evaluator 50a, a kernel-level

process evaluator 50b, and a system call evaluator 50c, among others. Evaluators 50a-c may be

set up by, or form part of anti-malware driver 36. Each such evaluator may execute

independently of other evaluators, and each may determine a plurality of distinct process

evaluation indicators of the evaluated process. The operation of evaluators 50a-c will be detailed

further below. In some embodiments, some process evaluation indicators, such as

indicators 52a-c in Fig. 4, are determined by components executing within VM 32, while other

process evaluation indicators, such as 52d, are determined by components executing outside

VM 32 (for instance, by memory introspection engine 40).

[0034] Some evaluation indicators may be malware-indicative, i.e., may indicate that the

evaluated process is malicious. Some evaluation indicators may not be malware-indicative

themselves, but may indicate maliciousness when combined with other evaluation indicators.

Each evaluation indicator 52a-d may be determined according to a distinct method or criterion.

An exemplary process evaluation indicator determined for an evaluated process may include, for

instance, a behavioral indicator, indicating whether the evaluated process performed, or

attempted to perform, a certain action, such as editing a system register key of VM 32, or writing

to a memory page belonging to a protected software object. Another exemplary process

evaluation indicator may indicate whether a section of memory belonging to the evaluated

process contains a malware-indicative signature. In some embodiments, each process evaluation

indicator 52a-d comprises a process identification indicator, such as a process ID, a label, or a

hash index, allowing module 38 to identify the process for which the respective indicator was

determined.

[0035] In some embodiments, a process evaluation indicator may comprise a numerical score

determined by the respective process evaluator, the score indicative of a degree of maliciousness

of the respective process. Alternatively, such scores may be determined by module 38 according

10

WO 2015/152748 PCT/R02014/000019

to process evaluation indicators 52a-d. Maliciousness scores may be binary (1/0, yes/no), or

may vary over a continuous range of values. An exemplary maliciousness score that may vary

within a range of values comprises a number indicative of a likelihood (e.g., probability) that the

evaluated process is malicious; such a score may vary, for instance, between 0 and 1, or between

0% and 100%. Score values may be behavior-specific. For example, an evaluated process may

receive a maliciousness score of 0.2 when it creates a disk file, and a maliciousness score of 0.7

when it modifies a Windows registry value.

[0036] Fig. 5 shows an exemplary sequence of steps executed by process scoring module 38

according to some embodiments of the present invention. In a step 302, module 38 receives a

process evaluation indicator, such as indicators 52a-d in Fig. 4, from a process evaluator which

may operate either within VM 32 (see e.g., evaluators 50a-c in Fig. 4), or outside VM 32 (e.g.,

memory introspection engine 40). In a step 304, module 38 may identify the process for which

the respective process evaluation indicator was determined. In some embodiments, process

scoring module 38 may keep a per-process record of all process evaluation indicators received

from various process evaluators; step 304 may further comprise adding the indicator received in

step 302 to the record of the respective process.

[0037] To determine whether an evaluated process is malicious, in a step 306, process scoring

module 38 may determine an aggregate score by combining individual scores determined for the

respective process, and received from various process evaluators. Exemplary aggregate scores

comprise a weighted sum and a weighted average of individual scores. In some embodiments,

the aggregate score may combine process evaluation indicators/scores determined for the

evaluated process with process evaluation indicators/scores determined for other processes or

software objects. For instance, scores determined for the evaluated process may be combined

with scores determined for a child process of the evaluated process, and/or with scores

determined for a parent process of the evaluated process.

[0038] In a step 308, module 38 may compare the aggregate score to a predetermined threshold.

When the aggregate score does not exceed the threshold, module 38 may return to step 302

described above. In some embodiments, the threshold may be set to a value determined

according to an input received from a user of the respective VM (e.g., through a user interface

11

WO 2015/152748 PCT/R02014/000019

exposed by security application 44). Threshold values may reflect the respective user’s security

preferences. For instance, when the user opts for tight security, the threshold may be set to a

relatively low value; when the user prefers a more tolerant security setting, the threshold may be

set to a relatively high value. In some embodiments, the threshold value may be received from a

remote security server, as described below in relation to Figs. 10-11.

[0039] In some embodiments, in steps 306-308, process-scoring module 38 may determine a

plurality of aggregate scores, and compare each aggregate score to a (possibly distinct) threshold.

Each such aggregate score may be determined according to a distinct subset of process

evaluation indicators. In an exemplary embodiment, each such set of process evaluation

indicators may represent a particular class or type of malware (e.g., Trojans, rootkits, etc.),

allowing module 38 to perform a classification of the detected malware.

[0040] When the aggregate score exceeds the threshold, in a step 310, module 38 may decide

that the evaluated process is malicious, and may take anti-malware action. In some

embodiments, such anti-malware action may include, among others, terminating the evaluated

process, quarantining the evaluated process, and removing or disabling a resource (such as a file

or a section of memory) of the evaluated process. In some embodiments, anti-malware action

may further comprise alerting a user of host system 10, and/or alerting a system administrator,

for instance by sending a message to the system administrator over a computer network

connected to host system 10 via network adapter(s) 22. In some embodiments, anti-malware

action may also comprise sending a security report to a remote security server, as described

below in relation to Figs. 10-11.

[0041] The exemplary process-scoring module 38 depicted in Figs. 3-4 operates within VM 32 at

OS processor privilege level (e.g., kernel mode). In alternative embodiments, process-scoring

module 38 may execute within VM 32 in user mode, or even outside VM32, at the processor

privilege level of hypervisor 30.

[0042] In some embodiments, introspection engine 40 executes substantially at the same

privilege level as hypervisor 30, and is configured to perform introspection of virtual machines

such as VM 32. Introspection of a VM, or of a software object executing on the respective VM,

may comprise analyzing a behavior of the software object, determining and/or accessing memory

12

WO 2015/152748 PCT/R02014/000019

addresses of such software objects, restricting access of certain processes to a content of memory

located at such addresses, analyzing such content, and determining process evaluation indicators

of the respective software objects (e.g., indicator 52d in Fig. 4), among others. In some

embodiments, software objects targeted by introspection engine 40 comprise processes,

instruction streams, registers, and data structures such as page tables and driver objects of the

respective VM, among others.

[0043] To perform introspection of VM 32 from outside the respective VM, some embodiments

of engine 40 employ memory mapping structures and mechanisms of processor 12. Virtual

machines typically operate with a virtualized physical memory, i.e., a virtual representation of

the actual physical memory 14 of host system 10. Virtualized physical memory comprises a

contiguous space of virtualized addresses, specific to each guest VM executing n host system 10,
with parts of the respective space mapped to addresses within physical memory 14 and/or

physical storage devices 20. In systems configured to support virtualization, such mapping is

typically achieved by dedicated data structures controlled by processor 12, such as extended page

tables (EPT) or nested page tables (NPT). In such systems, virtualized physical memory may be

partitioned in units known in the art as pages. A page represents the smallest unit of virtualized

physical memory individually mapped to physical memory via mechanisms such as EPT and/or

NPT, i.e., mapping between physical and virtualized physical memory is performed with page

granularity. All pages typically have a predetermined size, e.g., 4 kilobytes, 2 megabytes, etc.

The partitioning of virtualized physical memory into pages is usually configured by

hypervisor 30. In some embodiments, hypervisor 30 also configures the EPT/NPT and therefore

the mapping between physical memory and virtualized physical memory. The actual translation

of a virtualized physical memory address to a physical memory address may comprise looking

up the physical memory address in a translation lookaside buffer (TLB) of host system 10. In

some embodiments, address translation comprises performing a page walk, which includes a set

of successive address look-ups in a set of page tables, and performing calculations such as

adding an offset of a page to an address relative to the respective page.

[0044] Some hardware configurations allow hypervisor 30 to selectively control access to data

stored within each page, e.g., by setting read and write access rights to the respective page. Such

rights may be set, for instance, by modifying an entry of the respective page within the EPT or

13

WO 2015/152748 PCT/R02014/000019

NPT. Hypervisor 30 may thus select which software object may access data stored at the

addresses within each page, and may indicate which operations are allowed with the respective

data, e.g., read, write, etc. An attempt by a software object executing within a VM to perform an

operation, such as reading data from, or writing data to a page to which the object does not have

the respective right, may trigger a virtual machine exit event (e.g. a VMExit event on Intel

platforms). In some embodiments, virtual machine exit events transfer control of the processor

from the VM executing the respective software object to hypervisor 30 or to memory

introspection engine 40, thus allowing hypervisor 30 and/or engine 40 to intercept and analyze

the unauthorized read/write attempt.

[0045] In some embodiments, OS 34 configures a virtual memory space (also termed logical

address space) and exposes the virtual memory space to an application such as applications 42d-
e and 44 in Fig. 3. In such systems, OS 34 configures and maintains a mapping between the

virtual memory space and the virtualized physical memory of VM 32, for instance using a page

table mechanism. In some embodiments, the virtual memory space is also partitioned into pages,

such pages representing the smallest unit of virtual memory individually mapped to virtualized

physical memory by OS 34 (virtual to virtualized physical memory mapping is performed with

page granularity).

[0046] Fig. 6 illustrates an exemplary mapping (translation) of memory addresses in an

embodiment as shown in Fig. 2. A software object, such as an application or a process executing

within VM 32a, is assigned a virtual address space 214a by guest OS 34a. When the respective

software object attempts to access an exemplary memory address 60a of space 214a, address 60a
is translated by the virtualized processor of guest VM 32a, according to page tables configured

and controlled by guest OS 34a, into an address 60b within a virtualized physical memory space

114a of virtual machine 32a. Address 60b is also known in the art as a guest-physical address.

Hypervisor 30, which configures and controls virtualized physical memory 114a, maps

address 60b to an address 60c within physical memory 14 of host system 10, for instance using

EPT or NPT means, as discussed above.

[0047] Similarly, a virtual memory space 214b is set up by guest OS 34b for applications

(e.g. 42c) or other software objects executing on guest VM 32b. An exemplary virtual address

14

WO 2015/152748 PCT/R02014/000019

60d within space 214b is translated by the virtualized processor of guest VM 32b, according to

page tables configured and controlled by guest OS 34b, into an address 60e within a virtualized

physical memory space 114b of guest VM 32b. Address 60e is further mapped by hypervisor 30
into an address 60f within physical memory 14.

[0048] In some embodiments, hypervisor 30 sets up its own virtual memory space 214c
comprising a representation of physical memory 14, and employs a translation mechanism (for

instance, page tables) to map addresses in space 214c into addresses in physical memory 14. In

Fig. 6, such an exemplary mapping translates an address 60g into an address 60h. Similarly,

addresses such as 60c and 60f in physical memory 14 correspond to addresses 60k and 60m,
respectively, within virtual memory space 214c of hypervisor 30. Such translation allows

hypervisor 30 to manage (e.g., read, write, and control access to) memory pages belonging to

software objects executing within various VMs running on host system 10.

[0049] Fig. 7 illustrates an exemplary execution flow of a set of processes 70a-b executing on a

VM 32 according to some embodiments of the present invention. The example of Fig. 7 shows

the execution flow in a system running a version of the Windows® OS; similar diagrams may be

rendered for other operating systems such as Linux, for instance. Solid arrows represent the

execution flow in the absence of an anti-malware system such as security application 44. Dashed

arrows represent modifications to the flow due to the presence of process evaluators executing

according to some embodiments of the present invention.

[0050] Process 70a comprises a plurality of dynamic-linked libraries (DLLs) 72a-c; in the

example of Fig. 7, DLL 72c is injected into process 70a by (possibly malicious) process 70b.
Code injection is a generic term used in the art to indicate a family of methods of introducing a

sequence of code, such as a DLL, into the memory space of an existing process, to alter the

original functionality of the respective process. When process 70a executes an instruction

calling for some system functionality, e.g. to write something to a disk file, or to edit a registry

key, the respective instruction calls a user-mode API such as KERNEL32.DLL or NTDLL.DLL.

In the example of Fig. 7, the respective user-mode API call is intercepted and analyzed by user­

level behavioral filter 50a. Such interceptions may be achieved by a method such as DLL
injection or hooking, among others. Hooking is a generic term used in the art for a method of

15

WO 2015/152748 PCT/R02014/000019

intercepting function calls, or messages, or events passed between software components. One

exemplary hooking method comprises altering the entry point of a target function, by inserting

an instruction redirecting execution to a second function. Following such hooking, the second

function may be executed instead, or before, the target function. In the example of Fig. 7, anti­

malware driver 36 may hook into certain functions of KERNEL32.DLL or NTDLL.DLL, to

instruct the respective functions to redirect execution to filter 50a. Thus, filter 50a may detect

that process 70a is attempting to perform a certain behavior, identified according to the function

performing the redirection. When filter 50a detects such behavior, filter 50 may formulate

process evaluation indicator 52a (Fig. 4) and transmit indicator 52a to process scoring

module 38.

[0051] In a typical flow of execution, the user-mode API function may request service from the

operating system’s kernel. In some embodiments, such operations are performed by issuing a

system call, such as SYSCALL and SYSENTER on x86 platforms. In the example of Fig. 7,

such system calls are intercepted by system call evaluator 50c. In some embodiments, such

interception comprises, for instance, modifying a system call handler routine by changing a value

stored in a model-specific register (MSR) of processor 12, which effectively redirects execution

to filter 50c. Such techniques are known in the art as MSR hooking, and may allow system call

evaluator 50c to detect that the evaluated process is attempting to perform certain system calls.

When such system calls are intercepted, system call filter 50c may formulate process evaluation

indicator 52c and transmit indicator 52c to process scoring module 38.

[0052] Following the system call, control of the processor is typically turned over to the kernel

of OS 34. In some embodiments, kernel-level process evaluator 50b is configured to intercept

certain operations of the OS kernel, and therefore determine that the evaluated process is

attempting to perform certain operations, which may be malicious. To intercept such operations,

some embodiments may employ a set of filtering mechanisms built into and exposed by OS 34.

For example, in a Windows OS, FltRegisterFilter may be used to intercept operations like

creating, opening, writing to, and deleting a file. In another example, evaluator 50b may use

ObRegisterCallback to intercept create or duplicate object-handle operations, or

PsSetCreateProcessNotifyRoutine to intercept the creation of new processes. In yet another

example, Windows registry operations such as creating and setting registry keys/values may be

16

WO 2015/152748 PCT/R02014/000019

intercepted using CmRegisterCallbackEx. Similar filtering mechanisms are known in the art for

other operating systems such as Linux®. When kernel-mode process evaluator 50b intercepts

such operations, evaluator 50b may formulate process evaluation indicator 52b and transmit

indicator 52b to process scoring module 38.

[0053] To transmit data such as process evaluation indicators 52a-c from evaluators 50a-c to

scoring module 38, a person skilled in the art may employ any inter-process communication

method. For instance, to communicate between user-mode and kernel-mode components,

evaluators 50a-c and module 38 may be configured to use a shared section of memory.

[0054] Fig. 8 shows an exemplary sequence of steps performed by memory introspection

engine 40 according to some embodiments of the present invention. In a step 312, engine 40

may detect that a process requiring protection from malware (hereafter referred to as a protected

process) is launching within VM 32. In some embodiments, such protected processes include,

among others, processes belonging to security application 44.

[0055] To detect the launch of the protected process, engine 40 may employ data structures

and/or mechanisms native to OS 34. For example, some versions of the Windows® OS manage

processes using a list of active processes, maintained by the kernel. Each time a process is

created, an indicator of the respective process is inserted into the list of active processes; the

indicator is removed from the list upon termination of the respective process. In some

embodiments, the kernel of OS 34 represents each process as a data structure, e.g., an executive

process block (EPROCESS) in Windows, which comprises, among others, handles to each of the

threads of the respective process, and a unique process ID allowing OS 34 to identify the

respective process from a plurality of executing processes.

[0056] To detect the creation of the protected process (step 312 in Fig. 8), some embodiments

hook into a kernel function which manipulates the list of active processes, using any hooking

method known in the art. An example of such function of the Windows OS is PspInsertProcess,

which adds a process to the list of active processes when the respective process is launched into

execution. Some embodiments of AM driver 36 may apply a re-direction patch to the respective

kernel function, such as a VMCALL instruction or a JMP instruction. Other embodiments may

modify the EPT entry of the respective kernel function, to point to a new address. The effect of

17

WO 2015/152748 PCT/R02014/000019

such patches and/or EPT hooks is to redirect execution of the native OS function to a fragment of

code provided by memory introspection engine 40. Following hooking, when OS 34 attempts to

launch a process into execution, the fragment of code will be executed before or instead of the

code of the respective kernel function, thus notifying memory introspection engine 40 that the

respective process is executing. In some embodiments, engine 40 may identify the respective

process according to a parameter (e.g., the EPROCESS structure including the unique process

ID) passed to the kernel function when the respective process is launched. An alternative

embodiment may use a memory hook (such as an EPT hook) to gain access to an address of a

section of memory storing the list of active processes, and according to a content of the

respective memory section, further determining the address of the EPROCESS structure

describing each process cunently in execution.

[0057] In a step 314, memory introspection engine 40 may notify AM driver 36 that the

protected process is executing. For instance, engine 40 may send an indicator such as the

process ID of the protected process to AM driver 36. Next, in a step 316, engine 40 may receive

from driver 36 an indicator of a memory page (for instance, an address of a page in virtual

memory), the memory page storing code and/or data of the protected process. In some

embodiments, engine 40 uses steps 314-316 to bridge a semantic gap, which appears because

engine 40 executes outside VM 32, while the protected process executes within VM 32. AM

driver 36, by executing in kernel mode within VM 32, may have direct access to information

such as a memory address used by the protected process, e.g., an address of a page within the

virtualized physical memory of the respective VM (see spaces 114a-b in Fig.6) storing code

and/or data of the protected process. Although hypervisor 30 may gain access to a list of active

processes executing within the respective VM, parsing the list to determine all modules (such as

DLLs) loaded by the respective process, and further determining all addresses of memory pages

storing such data/code from the level of hypervisor 30 may require substantial computation. In

some embodiments, another reason for the sequence of steps 314-316 is that data belonging to

user-mode processes may be swapped by OS 34 between physical memory 14 and other

computer-readable media, e.g., storage devices 20. Executing outside the respective VM,

memory introspection engine 40 may detect that when data is swapped in and out of physical

memory, but may not be able to access and/or protect such data while it does not reside in

18

WO 2015/152748 PCT/R02014/000019

physical memory. In contrast, AM driver 36 executing within VM 32 may readily access a page

which is swapped out of physical memory, by forcing OS 34 to load the respective page. AM

driver 36 may thus efficiently list all modules used/loaded by the protected process, and

determine the size and the location of such modules within the virtualized physical memory of

VM 32.

[0058] In an alternative embodiment, instead of actively detecting the launch of the protected

process (step 312 above), memory introspection engine 40 may receive an indicator of the

protected process from AM driver 36, wherein AM driver 36 may actually detect the launch of

the protected process from within VM 32. In such embodiments, step 314 as described above is

no longer necessary. In yet another embodiment, in step 316, engine 40 may actually perform

the necessary calculations to determine an address of the memory page of the protected process,

instead of relying on AM driver 36 as described above.

[0059] In a step 318, memory introspection engine protects the target page from unwanted

modification, for example by malicious software attempting to compromise VM 32. Several

such memory protection mechanisms are known in the art. Protection may be enforced by

hypervisor 30 at the request on memory introspection engine 40, using data structures such as the

EPT or NPT. For instance, hypervisor 30 may set the target memory page as read-only, by

modifying the EPT/NPT access right bits of the respective pages. In some embodiments,

hypervisor 30 may intercept any attempt to write to the memory pages allocated to the target

object, and re-direct the respective attempt to memory introspection engine 40 for analysis. The

operation of engine 40 in step 318 will be further detailed below, in relation to Fig. 9.

[0060] To apply write-protection to the target page, step 318 may comprise performing a

translation of memory addresses of the kind illustrated in Fig. 6, from a virtual memory space set

up by OS 34 for the protected process, all the way to physical memory 14 of host system 10, or

from a virtualized physical memory space of the respective VM to physical memory 14. The

respective translation allows memory introspection engine 40 to determine an address of the

target page in actual physical memory 14, according to the indicator received in step 316 from

AM driver 36. Such translations may employ an EPT/NPT mechanism, as described in relation

to Fig. 6.

19

WO 2015/152748 PCT/R02014/000019

[0061] In a step 320, engine 40 may detect a termination of the protected process. In some

embodiments, step 320 may proceed in a manner similar to step 312 described above. For

instance, step 320 may comprise receiving a signal from a kernel function configured to remove

a process from the list of active processes of VM32, the respective function modified by AM

driver 36 by hooking (e.g., applying a patch, such as a VMCALL instruction, to the respective

function, the patch redirecting execution to engine 40). An exemplary Windows function which

may be modified in this way is PspDeleteProcess. When engine 40 detects termination of the

protected process, a step 322 removes protection from the respective target page, e.g., by

instructing hypervisor 30 to change the write permissions for the target page.

[0062] Fig. 9 illustrates a sequence of steps performed by memory introspection engine 40 to

protect the target page (step 318 in Fig. 8). In a step 332, engine 40 may intercept an attempt to

write to the target page; such attempts may be indicative of malicious intent, and may be

intercepted via hypervisor 30, as described above. In a step 334, engine 40 may identify the

process executing the attempt; the respective process will be referred to as the offending process.

In some embodiments, to execute step 334, engine 40 may use a content of an instruction pointer

register, such as the EIP and/or RIP registers on x86 systems, to identify the processor

instruction (or address thereof) performing the attempt, and a content of a CR3 register to

identify the process that the respective instruction belongs to. Alternatively, engine 40 may use a

content of a segment register, such as the FS and GS registers on x86 processors, to identify the

offending process according to certain kernel data structures, which are modified every time

OS 34 switches execution between processes.

[0063] In a step 336, engine 40 may formulate process evaluation indicator 52d (see e.g., Fig. 4)

of the offending process and transmit indicator 52d to process scoring module 38. An exemplary

indicator 52d may comprise an indicator (e.g., process ID) of the offending process identified in

step 334, and an indicator of a type of action attempted by the offending process, and intercepted

in step 332 (e.g., an attempt to write to a protected memory page).

[0064] Some of the methods and systems described above require communication, such as data

exchange and/or messaging, between components executing within VM 32, and components

executing outside the respective VM. Such communication may be carried out using any method

20

WO 2015/152748 PCT/R02014/000019

known in the art of virtualization. For instance, to transmit data from a component executing in

kernel mode, such as AM driver 36, to memory introspection engine 40 (see, e.g., step 316 in

Fig. 8), some embodiments use a privileged instruction to transfer control of processor 12 from

VM 32 to hypervisor 30. An example of such privileged instructions is VMCALL on Intel

platforms, which may be used to signal to engine 40 that some data is being transferred from

within VM 32. The actual data being transmitted may be placed in a predetermined section of

memory shared between driver 36 and engine 40. To transmit data from memory introspection

engine 40 to AM driver 36 (see, e.g., step 314 in Fig. 8, and step 336 in Fig. 9), some

embodiments use an interrupt injection mechanism to signal to driver 36 that data is being

transmitted from outside the respective VM. The actual data may be transferred, for instance,

through the shared memory section described above.

[0065] In some embodiments, host system 10 may be configured to exchange security

information, such as details about malware detection events, with a remote security server.

Fig. 10 illustrates such an exemplary configuration, in which a plurality of host systems lOa-c

are connected to a security server 110 via a computer network 26. In an exemplary embodiment,

host systems lOa-c are individual computers used by employees of a corporation, while security

server 110 may comprise a computer system configured by a network administrator of the

respective corporation to monitor malware threats or security events occurring on systems lOa-c.

In another embodiment, for instance in an Infrastructure-as-a-service (IAAS) system wherein

each host system lOa-c is a server hosting tens or hundreds of virtual machines, security

server 110 may comprise a computer system configured to manage anti-malware operations for

all such VMs from a central location. In yet another embodiment, security server 110 may

comprise a computer system configured by a provider of anti-malware software (e.g., the

provider of security application 44, among others), to receive statistical and/or behavioral data

about malware detected on various systems around network 26. Network 26 may include a

wide-area network such as the Internet, while parts of network 26 may include local area

networks (LAN).

[0066] Fig. 11 shows an exemplary data exchange between host system 10 and security

server 110 in an embodiment as shown in Fig. 10. Host system 10 may be configured to send a

security report 80 to server 110, and to receive a set of security settings 82 from server 110. In

21

WO 2015/152748 PCT/R02014/000019

some embodiments, security report 80 comprises process evaluation indicators and/or scores

determined by process evaluators executing on host system 10, and/or aggregate scores

determined by process scoring module 38, among others. Security report 80 may also comprise

data identifying the respective virtual machine and evaluated processes (e.g., process IDs, names,

paths, hashes, version information, or other kinds of identifiers of applications and/or processes),

as well as indicators associating a process evaluation indicator/score to the VM and process for

which it was determined. In some embodiments, report 80 may further comprise statistical

and/or behavioral data regarding processes and/or applications executing on host system 10.

System 10 may be configured to send report 80 upon detection of malware, and/or according to a

schedule (e.g., every few minutes, every hour, etc.).

[0067] In some embodiments, security settings 82 may include operational parameters of process

evaluators (e.g., parameters of filters 50a-c in Fig. 4), and/or parameters of process-scoring

module 38. An example of an operational parameter of module 38 is the threshold for deciding

whether an evaluated process is malicious (see step 308 in Fig. 5 and associated description). An

exemplary operational parameter of a process evaluator is a value of a maliciousness score

assigned to an evaluated process, when the evaluated process performs a certain action. For

instance, an evaluated process may receive a maliciousness score of 0.1 when the respective

process writes to a disk file, and a maliciousness score of 0.7 when it modifies a Windows

registry value.

[0068] In some embodiments, server 110 runs an optimization algorithm to dynamically adjust

such parameters to maximize malware-detection performance, for instance to increase detection

rate while minimizing false positives. Optimization algorithms may receive statistical and/or

behavioral data about various processes executing on the plurality of host systems lOa-c,

including process evaluation indicators/scores reported to process-scoring module 38 by various

process evaluators, and determine optimal values for the parameters. The values are then

transmitted to the respective host systems via network 26. In some embodiments, to determine

optimal parameter value, server 110 may calibrate the operation of process-scoring module 38

and/or process evaluators 50a-c using a set of processes known to be clean (not affected by

malware). In an exemplary calibration scenario, security server 110 may instruct host system 10

to execute a set of calibration processes, known to be clean, and to send back to server 110 a set

22

WO 2015/152748 PCT/R02014/000019

of process evaluation indicators/scores determined for the calibration processes. Server 110 may

then determine parameter values tailored to the respective virtual machine and/or host system.

[0069] In another example, security settings 82 comprise a set of weight values used by process­

scoring module 38 to determine an aggregate maliciousness score for an evaluated process

according to individual process evaluation indicators received from various process evaluators.

In an embodiment wherein the aggregate score is a weighted sum or a weighted average of

individual scores, and wherein each score is computed according to a distinct malware detection

criterion or method (for instance, when each score indicates whether an evaluated process

performs a certain malware-indicative behavior), changing the weight of an individual score may

effectively change the relevance of the respective criterion or method, compared to other

criteria/methods. Malware threats typically occur in waves, in which a great number of

computer systems worldwide are affected by the same malware agent in a short time interval.

By receiving security reports 80 in real time from a plurality of host systems, security server 110

may be kept up to date with the current malware threats, and may promptly deliver optimal

security settings 82 to the respective host systems, settings 82 including, for instance, a set of

score weights optimized for detecting the current malware threats.

[0070] The exemplary systems and methods described above allow protecting a host system,

such as a computer system, from malware such as viruses and rootkits. Conventional anti­

malware systems typically execute at the processor privilege level of the operating system (e.g.,

kernel mode). Some malware, such as rootkits, may also operate at the level of the OS, and may

thus incapacitate conventional anti-malware systems and compromise the security of the

computer system. In contrast, in some embodiments of the present invention, a hypervisor

executes on the computer system at the highest processor privilege level, displacing the operating

system to a virtual machine. An anti-malware system operating according to some embodiments

of the present invention comprises components executing within the VM and components

executing outside the VM, at hypervisor level. Some anti-malware operations may thus be

conducted from a processor privilege level higher than that of the operating system, where they

cannot be subverted by malware executed within the VM. In some embodiments, a single

memory introspection engine, executing at the level of the hypervisor, may protect multiple

virtual machines executing concurrently on the respective computer system.

23

WO 2015/152748 PCT/R02014/000019

[0071] In some embodiments, the operation of the memory introspection engine includes

selecting a set of critical software objects, such as certain drivers, libraries, registers, and page

tables, among others, and preventing malicious changes to such objects. In particular, some

embodiments may thus protect the anti-malware components executing within the VM from

malicious attacks.

[0072] To protect such objects, some embodiments may prevent malicious changes by

intercepting an attempt to write to a memory space allocated to the respective object, and

blocking or redirecting the attempt. Other embodiments may protect a target object by marking

the memory space allocated to the respective object as read-only. In typical hardware and

software configurations, memory is partitioned into individual blocks of contiguous addresses,

known as pages. In systems supporting virtualization, page access permissions are controlled by

the hypervisor, for instance using dedicated data structures such as extended page tables (EPT)

on Intel platforms. Thus, protecting the memory space of a target object may be achieved, for

instance, by memory introspection engine instructing the hypervisor to mark a set of pages

containing data belonging to the respective object as read-only.

[0073] In some embodiments, some anti-malware components execute within the protected

virtual machine, collaborating with the memory introspection engine to detect malware. Such

configurations may substantially simplify malware detection, by bridging a semantic gap which

arises through virtualization. In typical software configurations, a malware-detecting component

executing in user mode may have access to a wealth of information about the behavior of an

evaluated process, whereas most of this information is not readily available to components

executing at kernel level, or outside the respective VM. For instance, when an evaluated process

attempts to download a file from the Internet, a user-mode process evaluator, e.g. using methods

known in the art such as DLL injection, may identify which process is performing the action,

may detect that the evaluated process is attempting to download a file, and may determine the IP

address that the file is downloaded from, and the disk location of the downloaded file, among

others. Meanwhile, a process evaluator executing at the level of the hypervisor may only detect

that a set of network packets are circulating over a network adapter of the host system. Although

recovering information about the behavior of the evaluated process from the level of the

hypervisor may be possible in principle, such tasks may be impractical for malware detection,

24

WO 2015/152748 PCT/R02014/000019

since they may carry a significant computational cost. By combining anti-malware components

executing within the respective VM with a memory introspection engine executing outside the

VM, some embodiments of the present invention may use the abundance of behavioral data that

inside-VM components have access to, while protecting the integrity of such components from

outside the respective VM.

[0074] In conventional anti-malware systems, a software component executing at a processor

privilege level similar to that of the operating system detects when a process is being launched,

and instructs other anti-malware components to monitor the behavior of the respective process.

Some malware agents manage to compromise such anti-malware systems by disabling the

software component detecting process launches, thus causing the anti-malware system to monitor

only a subset of the currently executing processes. In contrast, in some embodiments of the

present invention, the component detecting process launches is moved outside the respective

virtual machine, at higher processor privilege level than the operating system. Such

configurations may prevent malware from hiding from anti-malware components.

[0075] In some embodiments, a process-scoring module receives per-process evaluation

indicators from a plurality of process evaluators executing either within or outside the respective

VM. Process evaluation indicators received from components executing within the protected

VM may indicate, for instance, that an evaluated process has performed a malware-indicative

behavior, such as an attempt to modify a registry value of the OS, or an attempt to delete a file.

Process evaluation indicators determined outside the respective VM may indicate, for instance,

that an evaluated process is attempting to write to a protected memory section. Process

evaluation indicators may comprise numerical scores indicating a degree of maliciousness of the

respective process. In some embodiments, the process-scoring module determines an aggregate

score according to the plurality of process evaluation indicators/scores received from various

process evaluators, and determines whether the evaluated process is malicious according to the

aggregate score.

[0076] It will be clear to one skilled in the art that the above embodiments may be altered in

many ways without departing from the scope of the invention. Accordingly, the scope of the

invention should be determined by the following claims and their legal equivalents.

25

WO 2015/152748 PCT/R02014/000019

PAGE BLANK UPON FILING

26

20
14

38
95

72

30
 A

pr
 2

01
8

The claims defining the invention are as follows:

1. A host system comprising at least one hardware processor configured to execute:

a hypervisor configured to expose a virtual machine;

a process evaluator executing within the virtual machine;

a memory introspection engine executing outside the virtual machine; and

a process-scoring module, wherein:

the process evaluator is configured to:

determine whether an evaluated process executing within the virtual

machine performs an action, and

in response, when the evaluated process performs the action, transmit a

first process evaluation indicator to the process-scoring module, the

first process evaluation indicator determined for the evaluated

process;

the memory introspection engine is configured to:

intercept a call to an operating system function, to detect a launch of a

protected process executing within the virtual machine, wherein the

operating system function is configured to add the protected

process to a list of processes executing within the virtual machine,

and

in response to detecting the launch, determine whether the evaluated

process attempts to modify a memory page of the protected

process, and in response, when the evaluated process attempts to

modify the memory page, transmit a second process evaluation

indicator to the process-scoring module, the second process

evaluation indicator determined for the evaluated process; and

the process-scoring module is configured to:

receive a first weight and a second weight from a security server

configured to perform anti-malware transactions with a plurality of

computer systems including the host system, receive the first and

second process evaluation indicators, and

in response, determine whether the evaluated process is malicious

according to the first and second process evaluation indicators,

27

20
14

38
95

72

30
 A

pr
 2

01
8

wherein determining whether the evaluated process is malicious

comprises determining a weighted sum of a first score and a second

score, the first weight multiplying the first score in the weighted

sum, and the second weight multiplying the second score in the

weighted sum, wherein the first and second scores are determined

according to the first and second process evaluation indicators,

respectively.

2. The host system of claim 1, wherein the memory introspection engine is further

configured to:

in response to detecting the launch of the protected process, send an indicator of

the protected process to a security application executing within the virtual

machine, and

in response, receive from the security application an indicator of the memory

page.

3. The host system of claim 1 or claim 2, wherein the process evaluator comprises a

user-level process evaluator executing at user level of processor privilege, the

user-level process evaluator configured to determine whether the evaluated

process performs the action.

4. The host system of claim 1 or claim 2, wherein the process evaluator comprises a

kernel-level process evaluator executing at kernel level of processor privilege, the

kernel-level process evaluator configured to determine whether the evaluated

process performs the action.

5. The host system of any one of the preceding claims, wherein the process evaluator

comprises a system call evaluator configured to intercept a system call performed

by the evaluated process.

6. The host system of any one of the preceding claims, wherein the process-scoring

module executes within the virtual machine.

7. The host system of any one of claims 1 to 5, wherein the process-scoring module

28

20
14

38
95

72

30
 A

pr
 2

01
8

executes outside the virtual machine.

8. The host system of any one of the preceding claims, wherein the protected process

includes the process scoring module.

9. The host system of any one of the preceding claims, wherein the protected process

forms a part of a security application comprising the process evaluator.

10. A non-transitory computer-readable medium encoding instructions which, when

executed on a host system comprising at least one processor, cause the host

system to form:

a hypervisor configured to expose a virtual machine;

a process evaluator executing within the virtual machine;

a memory introspection engine executing outside the virtual machine; and

a process-scoring module, wherein:

the process evaluator is configured to:

determine whether an evaluated process executing within the virtual

machine performs an action, and

in response, when the evaluated process performs the action, transmit a

first process evaluation indicator to the process-scoring module, the

first process evaluation indicator determined for the evaluated

process;

the memory introspection engine is configured to:

intercept a call to an operating system function, to detect a launch of a

protected process executing within the virtual machine, wherein the

operating system function executes within the virtual machine and

is configured to add the protected process to a list of processes

executing within the virtual machine, and

in response to detecting the launch, determine whether the evaluated

process attempts to modify a memory page of the protected

process, and in response, when the evaluated process attempts to

modify the memory page, transmit a second process evaluation

indicator to the process- scoring module, the second process

29

20
14

38
95

72

30
 A

pr
 2

01
8

evaluation indicator determined for the evaluated process; and

the process-scoring module is configured to:

receive a first weight and a second weight from a security server

configured to perform anti-malware transactions with a plurality of

computer systems including the host system,

receive the first and second process evaluation indicators, and

in response, determine whether the evaluated process is malicious

according to the first and second process evaluation indicators,

wherein determining whether the evaluated process is malicious

comprises determining a weighted sum of a first score and a second

score, the first weight multiplying the first score in the weighted

sum, and the second weight multiplying the second score in the

weighted sum, wherein the first and second scores are determined

according to the first and second process evaluation indicators,

respectively.

11. The non-transitory computer-readable medium of claim 10, wherein the memory

introspection engine is further configured to:

in response to detecting the launch of the protected process, send an indicator of

the protected process to a security application executing within the virtual

machine, and

in response, receive from the security application an indicator of the memory

page.

12. The non-transitory computer-readable medium of claim 10 or claim 11, wherein

the process evaluator comprises a user-level process evaluator executing at user

level of processor privilege, the user-level process evaluator configured to

determine whether the evaluated process performs the action.

13. The non-transitory computer-readable medium of claim 10 or claim 11, wherein

the process evaluator comprises a kernel-level process evaluator executing at

kernel level of processor privilege, the kernel-level process evaluator configured

to determine whether the evaluated process performs the action.

30

20
14

38
95

72

30
 A

pr
 2

01
8

14. The non-transitory computer-readable medium of any one of claims 10 to 13,

wherein the process evaluator comprises a system call evaluator configured to

intercept a system call performed by the evaluated process.

15. The non-transitory computer-readable medium of any one of claims 10 to 14,

wherein the process-scoring module executes within the virtual machine.

16. The non-transitory computer-readable medium of any one of claims 10 to 14,

wherein the process-scoring module executes outside the virtual machine.

17. The non-transitory computer-readable medium of any one of claims 10 to 16,

wherein the protected process includes the process-scoring module.

18. The non-transitory computer-readable medium of any one of claims 10 to 17,

wherein the protected process forms a part of a security application configured to

execute the process evaluator.

19. A method comprising:

employing at least one hardware processor of a host system to receive a first

weight and a second weight from a security server configured to perform

anti-malware transactions with a plurality of computer systems including

the host system;

employing at least one hardware processor to receive a first process evaluation

indicator determined for an evaluated process, the evaluated process

executing within a virtual machine exposed by a hypervisor executing on

the host system, wherein determining the first process evaluation indicator

comprises employing a process evaluator executing within the virtual

machine to determine whether the evaluated process performs a first

action;

employing the at least one hardware processor to receive a second process

evaluation indicator determined for the evaluated process, wherein

determining the second process evaluation indicator comprises employing

a memory introspection engine executing outside the virtual machine to

determine whether the evaluated process performs a second action; and

31

20
14

38
95

72

30
 A

pr
 2

01
8

in response to receiving the first and second process evaluation indicators,

employing the at least one hardware processor to determine whether the

evaluated process is malicious according to the first and second process

evaluation indicators, wherein determining whether the evaluated process

is malicious comprises determining a weighted sum of a first score and a

second score, the first weight multiplying the first score in the weighted

sum, and the second weight multiplying the second score in the weighted

sum, wherein the first and second scores are determined according to the

first and second process evaluation indicators, respectively.

20. A method comprising:

employing at least one hardware processor of a host system to receive a first

weight and a second weight from a security server configured to perform

anti-malware transactions with a plurality of computer systems including

the host system;

employing the at least one hardware processor to execute a memory introspection

engine, the memory introspection engine executing outside a virtual

machine exposed by a hypervisor executing on the host system, wherein

executing the memory introspection engine comprises detecting a launch

of a process executing within the virtual machine;

in response to the memory introspection engine detecting the launch of the

process, employing the at least one hardware processor to determine a first

and a second process evaluation indicators of the process; and

in response to determining the first and second evaluation indicators, employing

the at least one hardware processor to determine whether the process is

malicious according to the first and second process evaluation indicators,

wherein determining whether the evaluated process is malicious comprises

determining a weighted sum of a first score and a second score, the first

weight multiplying the first score in the weighted sum, and the second

weight multiplying the second score in the weighted sum, wherein the first

and second scores are determined according to the first and second process

evaluation indicators, respectively.

32

1/8

WO 2015/152748 PCT/R02014/000019

10

FIG. 1

FIG. 2

2/8

WO 2015/152748 PCT/R02014/000019

FIG. 3

FIG. 4

3/8

WO 2015/152748 PCT/R02014/000019

FIG. 5

4/8

WO 2015/152748 PCT/R02014/000019

Γ
I Guest VM

FIG. 6

5/8

WO 2015/152748 PCT/R02014/000019

FIG. 7

6/8

WO 2015/152748 PCT/R02014/000019

FIG. 8

WO 2015/152748 PCT/R02014/000019

FIG. 9

WO 2015/152748 PCT/R02014/000019

8/8

Host system

FIG. 10

FIG. 11

