(54) 发明名称
一种电机在旋转中再启动的控制方法

(57) 摘要
本发明公开了一种电机在旋转中再启动的控制方法，它主要是在输入电源突然瞬间丢失或者电流发生突变时，采取措施，立即改变变频器的输出电压幅值，同时改变输出频率，达到输入电源正常后电机再启动的功能，使电机在旋转状态下变频器能够继续驱动电机运行，不需要大量的电机参数和大量的计算，就可以在实际工程中使用。使用本发明控制方式，可以完成三种控制功能，一种是输入电源瞬间丢失，电机再启动的过程，一种是电机在高速旋转过程中切变变频，一种是变频输出电流突变的处理。
1. 一种电机在旋转中再启动的控制方法，其特征在于，控制过程如下；

第一步，控制过程开始，对变频器输入电源进行采样，当变频器检测到输入电源瞬间丢失时，立即使变频器的输出电压按指数衰减方式立即下降，同时按设定的速度下降频率，当输出电压下降到额定电压的1%以下时就关断输出，且保持频率仍然继续下降，直至输入电源恢复正常；

第二步，当变频器检测到输入电源正常后，如果此时频率下降到零时则按正常的工作方式重新启动电机，如果频率没有下降到零，而是下降到某个频率后，则将变频器的输出电压由零逐渐增加，同时继续降低变频器的输出频率并继续检测变频器的输出电流，只要检测到的输出电流小于变频器额定电流，则继续升高输出电压，

第三步，在上述升高输出电压过程中与当前时刻频率下的对应输出电压进行比较，如果两电压不一致，则继续升高输出电压和降低输出控制；当达到一致时，则按正常的V/F控制模式和正常的加速时间再将电机驱动到输入电源丢失前的正常工作状态；

第四步，当检测到输出电流大于变频器额定电流时，则按比例加快输出频率下降速度；也就是说，相对尽量减小加速电流，同时使输出频率尽快接近电机的转速，输出电流快速下降到小于额定电流；

第五步，在进行输出电流快速下降的过程中，同时适当提高电机的电磁转矩，即升高输出电压，让电机处于一定的加速运行状态，防止停机。

2. 一种如权利要求1所述的控制方法，其特征在于，详细步骤如下；

第一步，控制过程开始，对变频器输入电源状态进行采样；

第二步，当变频器检测到输入电源瞬间丢失时，立即使变频器的输出电压按指数衰减方式立即下降，同时按设定的速度下降频率，同时打开第一定时段(A)，第二定时段(B)，第三定时段(C)开始计时，并给出瞬时掉电的标志，然后判断变频器的输出电压是否降到额定电压的1%以下；当输出电压下降到额定电压的1%以下时就关断电压输出，且保持频率仍然继续下降；如果没有降到额定电压的1%以下，就直接判断第一定时段(A)的定时时间是否达到保护时间，如果没有达到保护时间就直接进入下一步判断变频器输出是否升压，如果没有第一定时段(A)保护时间达到，就关掉变频器的输出，进行保护或者保护复位，然后判断第二定时段(B)的定时时间是否到达，如果没有到达就进入下一步判断变频器输出是否升压，如果没有第一定时段(B)的定时时间达到，就使变频器有电压输出，然后判断第三定时段(C)的定时时间是否到达，如果没有第三定时段(C)的定时时间到达，就给出变频器输出电压是否升压标志，如果没有第三定时段(C)定时时间到达，就直接进入下一步判断变频器输出是否升压；

第三步，对变频器输出升电压标志进行判断，如果没有升电压标志，就直接返回到第一步，等待下一个周期的到来；

如果有升电压标志，就开始升电压，进行并行升压和电压进行判断，等待输出电压是否达到V/F控制的频率下的电压；如果电压达到V/F控制下的电压，就进行给出处理过程结束标志，同时对所用到的部分标志进行复位处理；如果电压没有达到V/F控制下的电压，就进入下一步；

第四步，对变频器输出额定电流进行判断，当检测到变频器的输出电流小于变频器额定电流时，继续升高输出电压，升高过程中与当前时刻频率下的对应输出电压进行比较，如果两电压不一致，则继续升高输出电压和降低输出频率；当达到一致时，则按正常的V/F
控制模式和正常的加速时间将电机驱动到输入电源丢失前的工作状态，返回第三步；
当检测到输出电流大于变频器额定电流时，就保持输出电压不变状态，并进入快速降
频率的过程，使输出频率快速下降，使得变频输出电流小于额定电流；返回第三步；
第五步，当变频器检测到输入电源正常后，如果频率下降到零时则按正常的工作方式
再启动电机，如果频率没有下降到零，而是下降到某个频率时，则将变频器的输出电压由零
逐渐减小即可。
3. 一种电机在旋转中再启动的控制方法，其特征在于：控制过程如下：
第一步骤，控制过程开始，对变频器输入电源进行采样，当变频器检测到输出电流突变
时，判断是否达到进行保护的状态，如果没有达到保护状态则转入第六步；
如果达到保护状态，立即使变频器的输出电压按指数衰减方式快速下降，同时按设定的
速度下降频率，当输出电压下降到额定电压的 1% 以下后就关断输出，且保持频率仍然继
续下降，直到输入电源恢复正常；
第二步，当变频器检测到输入电源正常后，如果此时频率下降到零时则按正常的工作
方式重新启动电机，如果频率没有下降到零，而是下降到某个频率时，则将变频器的输出电
压由零逐渐增大，同时继续降低变频器的输出频率并继续检测变频器的输出电流；只要检
测到的输出电流小于变频器额定电流，则继续升高输出电压；
第三步，在上述升高输出电压过程中与当前时刻频率下的对输出电压进行比较，如
果两电压不一致，则继续升高输出电压和降低输出频率；当达到一致时，则按正常的 V/F 控
制模式和正常的加速时间再将电机驱动到输入电源丢失前的正常工作状态；
第四步，当检测到输出电流大于变频器额定电流时，则按比例加快输出频率下降速度，
也就是说，相对尽量减小加速电流，同时使输出频率尽快接近电机的转速，输出电流快速下
降到小于额定电流；
第五步，在进行输出电流快速下降的过程中，同时适当提高电机的电磁转矩，即升高输
出电压，让电机处于一定的加速运行状态，防止停机；
第六步，当输出电流没有达到保护状态时，再对当前输出电流与额定电流进行对比
如果输出电流大于额定电流就进行降电压和降频率，再进入第七步；
如果输出电流不大于额定电流，判断是否输入掉电；
如果掉电就进行降电压和降频率，再进入第七步；
如果没有掉电就进行升电压，再进入第七步；
第七步，判断是否到达额定电压的 1%，当到达输出电压为额定电压的 1% 时，就保持
该输出电压，至此整个处理过程结束。
4. 如权利要求 3 所述的控制方法，其特征在于，详细步骤如下：
第一步，控制过程开始，对变频器的输出电流进行采样，根据采样结果进行是否保护进
行判断；
第二步，如果输出电流突变时，给出处理标志，进入输出电流突变处理入口，然后判
断输出电流是否达到保护的条件，如果到达保护条件，就立即使变频器的输出电压按指数
衰减方式快速下降，同时按设定的速度下降频率，同时打开第一定时器 (A) 和第二定时器
(B)，第三定时器 (C) 开始计时，并给出瞬时掉电的标志，然后判断变频器的输出电压是否
降到额定电压的 1% 以下；当输出电压下降到额定电压的 1% 以下时就关断电压输出；且保
持频率仍然继续下降；如果没有降到额定电压的1％以下，就直接判断第一定时器(A)定时时间是否达到保护时间，如果没有达到保护时间就直接进入下一步判断变频输出是否升压；如果第一定时器(A)保护时间未到，就关掉变频器的输出，进行保护或者保护复位；然后判断第二定时器(B)的定时时间是否到达，如果没有到达就直接进入下一步判断变频输出是否升压；如果第二定时器(B)的定时时间到达，就使变频器有电压输出；然后判断第三定时器(C)的定时时间是否到达，如果第三定时器(C)的定时时间到达，就给出变频器输出升压标志，如果第三定时器(C)定时没有到达，就直接进入下一步判断变频输出是否升压；

第三步，对变频器输出升压标志进行判断，如果没有升压标志，就直接返回到第一步，等待下一个突变的到来；

如果有升压标志，就开始升压，并进行对所升得电压进行判断，等待输出电压是否达到V/F控制频率下的电压；如果电压达到V/F控制下的电压，就给出处理过程结束标志，同时对所用到的部分标志进行复位处理；如果电压没有达到V/F控制下的电压，就继续升电压和降频率；返回第三步，等下一个月期的判断过程；

第四步，对变频器输出额定电流进行判断，当检测到变频器的输出电流小于变频器额定电流时，则继续升高输出电压，升高过程中与当前时刻频率下对应的输出电压进行比较，如果两电压不一致，则继续升高输出电压和降低输出频率；当达到一致时，则按正常的V/F控制模式和正常的加速时间将电机驱动到输入电源丢失前的工作状态，返回第三步，等下一个周期的判断过程；

当检测到输出电流大于变频器额定电流时，就保持输出电压不变状态，并进入快速降频率的过程，使输出频率快速下降，使得变频输出电流小于额定电流，返回第三步，等下一个周期的电流判断过程；

第五步，如果判断输出电流没有达到保护，关闭第二步中开通的所有定时器，再进行对输出电流与额定电流的判断；

如果输出电流大于额定电流就进行降压和降频率，再进入下一步；

如果没有大于额定电流，就判断是否输入掉电；如果掉电就进行降压和降频率，再进入下一步；如果没有掉电就进入变频输出，并给出升压标志，进入第三步，等下一个周期的电流判断过程；

第六步，判断是否到达额定电压的1％，如果没有达到就转入第三步，等下一个周期的电流判断过程；如果到达输出电压为额定电压的1％时，就保持该输出电压；至此整个处理过程结束。
一种电机在旋转中再启动的控制方法

技术领域
[0001] 本发明涉及变频驱动电机的控制方法。

背景技术
[0002] 在变频驱动异步电机过程中，输入电源突然瞬间丢失，几秒后输入电源又恢复正常的过程中，或者输出电流突变时，如果控制中没有相应措施，会出现变频器损坏或者变频器保护停机，某些场合对生产将产生较大影响和重大损失。在变频驱动电机高速运行过程中，输入电源突然瞬间丢失，一般变频器会检测到电压保护停机，但由于输入电压只是瞬间丢失，几秒后输入电源就恢复正常，如果变频停机，整个生产设备，甚至整个生产系统就要停止。

[0003] 常见的控制方法中采用电机转速跟踪技术，这种电机转速跟踪技术中，通过对变频器输出电压和电机定子电流进行采样，然后按照矢量控制技术或者直接转矩控制技术计算电机的转速，最后调整变频器输出频率与电机转速同步，输入电源正常后让电机再启动。这种控制方法的不足是，控制复杂、计算量大，同时需要电机的大量参数，如电机定子电阻、转子电阻、定子、转子电感等，如果参数不准确，就会存在较大计算误差，甚至使得电机转速跟踪失败，同时还会有使得变频器出现过压、过流保护等现象。

发明内容
[0004] 本发明的目的在于提供一种变频驱动电机电源瞬间丢失或输出电流突变时，电机在旋转状态下变频器能够继续驱动电机运行的控制方法，该方法在控制系统中可以做为一个独立的控制模块。

[0005] 本发明的变频电机电源瞬间丢失的控制方法是：

[0006] 第一步，控制过程开始，对变频器输入电源进行采样，当变频器检测到输入电源瞬间丢失时，立即变频器的输出电压按指数衰减方式快速下降，同时按设定的速度下降频率，当输出电压下降到额定电压的1%以下后就关断输出，且保持频率仍然继续下降，直至输入电源恢复正常；

[0007] 第二步，当变频器检测到输入电源正常后，如果此时频率下降到零时则按正常的工作方式重新启动电机，如果频率没有下降到零，而是下降到某个频率时，则将变频器的输出电压由零逐渐增大，同时继续降低变频器的输出频率并继续检测变频器的输出电流；只要检测到的输出电流小于变频器额定电流，则继续升高输出电压。

[0008] 第三步，在上述升高输出电压过程中与当前时频率下的对应输出电压进行比较，如果两电压不一致，则继续升高输出电压和降低输出频率；当达到一致时，则按正常的V/F控制模式和正常的加速时间再将电机驱动到输入电源丢失前的正常工作状态。

[0009] 第四步，当检测到输出电流大于变频器额定电流时，则按比例加快输出频率下降速度，也就是说：相对额定减小加速电流，同时使输出频率尽快接近电机的转速。输出电流快速下降到小于额定电流
第五步，在进行输出电流快速下降的过程中，同时适当提高电机的电磁转矩，即升高输出电压，让电机处于一定的加速运行状态，防止停机。

本发明的变频电机电源输出电流突变时的控制方法是：

第一步，控制过程开始，对变频器输入电源进行采样，当变频器检测到输出电流突变时，判断是否达到保护状态，如果没有达到保护状态则转入第六步；

如果达到保护状态，立即使变频器的输出电压按指数衰减方式快速下降，同时按设定的速度下降频率，当输出电压下降到额定电压的1%以下后就断开输出，且保持频率仍然继续下降，直至输入电源恢复正常；

第二步，当变频器检测到输入电源正常后，如果此时频率下降到零则按正常的工作方式重新启动电机，如果频率没有下降到零，而是下降到某个频率时，则将变频器的输出电压由零逐渐增大，同时继续降低变频器的输出频率并继续检测变频器的输出电流，只要检测到的输出电流小于变频器额定电流，则继续升高输出电压；

第三步，在上述升高输出电压过程中与当前时刻频率下的对应输出电压进行比较，如果两电压不一致，则继续升高输出电压和降低输出频率；当达到一致时，则按正常的V/F控制模式和正常的加速时间再将电机驱动到输入电源丢失前的正常工作状态；

第四步，当检测到输出电流大于变频器额定电流时，则按比例加快输出频率下降速度，也就是说，相对降压减小加速电流，同时使输出频率尽快接近电机的转速，输出电流快速下降到小于额定电流；

第五步，在进行输出电流快速下降的过程中，同时适当提高电机的电磁转矩，即升高输出电压，让电机处于一定的加速运行状态，防止停机。

第六步，当输出电流没有达到保护状态时，再对当前输出电流与额定电流进行对比；

如果输出电流大于额定电流就进行降电压和降频率，再进入第七步；

如果输出电流不大于额定电流，再判断是否输入掉电；

如果掉电就进行降电压和降频率，再进入第七步；

如果没有掉电就进行升电压，再进入第七步；

第七步，判断是否到达额定电压的1%，当到达输出电压为额定电压的1%时，就保持该输出电压，至此整个过程结束。

由电机原理可知，在电机定子端会存在较高的反电势电压，同时对变频器中的开关器件会产生较大的电流应力，严重的会损坏开关器件。由于电机定子端的反电势电压为很指数函数方式衰减，所以本控制方法中改变变频器输出电压按指数函数方式快速下降。变频器的运行频率从检测到输入电源丢失时刻开始按一定的速度下降。所以本控制方法中，在变频检测到输入电源瞬间丢失时，立即改变变频器的输出电压幅值，同时改变输出频率。

本控制方法同样适用于在正常的变频驱动电机过程中出现输出电流瞬间有过大冲击的问题，以及电机在高速旋转过程中需要将变频器投入工作，让变频器启动电机工作问题。

本控制方法在普通的变频变频 (VVVF) 的控制基础上就可以达到输入电源正常后电机再启动的功能，不需要大量的电机参数和大量的计算，就可以在实际工程中使用。使用
该控制方式，可以完成三种控制功能，一种是输入电源瞬间丢失，电机再启动的过程，一种是电机在高速旋转过程中切人变频，一种是变频输出电流突变的处理。

附图说明

[0027] 图1是本发明实施例的控制流程图。
[0028] 图中：A-第一定时间器，B-第二定时间器，C-第三定时间器。

具体实施方式

[0029] 下面参照图1的控制流程图，进一步说明本发明输入电源瞬间丢失时实施例的控制方案。
[0030] 第一步，控制过程开始，对变频器输入电源状态进行采样；
[0031] 第二步，当变频器检测到输入电源瞬间丢失时，立即使变频器的输出电压按指数衰减方式快速下降，同时按设定的速度下降频率，同时打开第一定时间器A，第二定时间器B，第三定时间器C开始计时，并给出瞬时掉电的标志，然后判断变频器的输出电压是否降到额定电压的1%以下；当输出电压下降到额定电压的1%以下时就关断电压输出，且保持频率仍然继续下降。如果没有降到额定电压的1%以下，就直接判断第一定时间器A的定时间间是否达到保护时间，如果没有达到保护时间就直接进入下一步判断变频输出是否升压，如果第一定时间器A保护时间达到，就关掉变频器的输出，进行保护或者保护复位；然后判断第二定时间器B的定时间间是否到达，如果没有到达就进入下一步判断变频器输出是否升压，如果第二定时间器B的定时间间达到，就使变频器有电压输出；然后判断第三定时间器C的定时间间是否到达，如果第三定时间器C的定时间间达到，就给出变频器输出升压信号标志，如果第三定时间器C定时间间没有达到，就直接进入下一步判断变频输出是否升压；
[0032] 第三步，对变频器输出升压信号标志进行判断，如果没有升压信号标志，就直接返回到第一步，等待下一个周期的到来；
[0033] 如果有升压信号标志，就开始升压，并进行对所升得电压进行判断，等待输出电压是否达到V/F控制的频率下的电压；如果电压达到V/F控制下的电压，就进行给出处理过程的标志同时对所用到的部分标志进行复位处理；如果电压没有达到V/F控制下的电压，就进入下一步；
[0034] 第四步，对变频器输出额定电流进行判断，当检测到变频器的输出电流小于变频器额定电流时，则继续升高输出电压，升高过程中与当前时刻频率下对应的输出电压进行比较，如果电压不一致，则继续升高输出电压和降低输出频率；当达到一致时，则按正常V/F控制模式和正常的加速时间将电机驱动到输入电源丢失前的工作状态，返回第三步；
[0035] 当检测到输出电流大于变频器额定电流时，就保持输出电压不变状态，并进入快速降频率的过程，使输出频率快速下降，使得变频输出电流小于额定电流，返回第三步；
[0036] 第五步，当变频器检测到输入电压正常后，如果频率下降到零时则按正常的工作方式再启动电机，如果频率没有下降到零，而是下降到某个频率时，则将变频器的输出电压由零逐渐增大即可。
[0037] 下面参照图1的控制流程图，进一步说明本发明变频输出电流突变实施例的控制
方案。
[0038] 第一步，控制过程开始，对变频器的输出电流进行采样，根据采样结果进行是否保护进行判断；
[0039] 第二步，如果输出电流突变时，给出处理标志，进入输出电流突变处理入口，然后判断输出电流是否达到保护的条件；如果到达保护条件，就立即变频器的输出电压按指数衰减方式快速下降，同时按设定的速度下降频率，同时打开第一定时器 A 和第二定时器 B，第三定时器 C 开始计时，并给予瞬时掉电的标志，然后判断变频器的输出电压是否降到额定电压的 1% 以下；当输出电压下降到额定电压的 1% 以下时就关断电压输出，且保持频率仍然继续下降；如果没有降到额定电压的 1% 以下，就直接判断第一定时器 A 的定时时间是否达到保护时间，如果没有达到保护时间就直接进入下一步判断变频输出是否升压；
[0040] 第三步，对变频器输出升电压标志进行判断，如果没有升电压标志，就直接返回到第一步，等待下一个变化的到来；
[0041] 如果有升电压标志，就开启升电压，并进行对所升得电压进行判断，等待输出电压是否达到 V/F 控制频率下的电压；如果电压达到 V/F 控制下的电压，就给输出处理过程结束标志，同时对所用到的部分标志进行复位处理；如果电压没有达到 V/F 控制下的电压，就继续升电压和降频率，返回第三步，等下下一个周期的判断过程；
[0042] 第四步，对变频器输出额定电流进行判断，当检测到变频器的输出电流小于变频器额定电流时，则继续升高输出电压，升高过程中与当前时间频率下的电压对应的输出电压进行比较，如果相电压不一致，则继续升高输出电压和降低输出频率，当达到一致时，则按正常 V/F 控制模式和正常的加速时间将电机驱动到输入电源丢失前的工作状态，返回第三步，等下一个周期的判断过程；
[0043] 当检测到输出电流大于变频器额定电流时，就保持输出电压不变状态，并进入快速降频率的过程，使得输出频率快速下降，使得变频输出电流小于额定电流，返回第三步，等下一个周期的判断过程；
[0044] 第五步，如果判断输出电流没有达到保护，关闭第二步中开通的所有定时器，再进行对输出电流与额定电流的判断；
[0045] 如果输出电流大于额定电流就进行降电压和降频率，再进入下一步；
[0046] 如果没有大于额定电流，就判断是否输入掉电；如果掉电就进行降电压和降频率，再进入下一步；如果没有掉电就进入变频输出，并输出升电压标志，进入第三步，等下一个周期的电流判断过程；
[0047] 第六步，判断是否到达额定电压的 1%，如果没有到达就转到第三步，等下一个周期的电流判断过程；如果到达输出电压为额定电压的 1% 时，就保持该输出电压，至此整个处理过程结束。
图 1