一种基于布拉格光纤光栅的高精度倾斜角传感装置

本发明一种基于布拉格光纤光栅的高精度倾斜角传感装置，属于光纤传感技术领域。其结构有：入射光束（1）与光隔离器（2）相连，光隔离器（2）与 2×2 光耦合器（3）的 1 端口相连，2×2 光耦合器（3）的 4 端口与折射率匹配液（4）相连，3 端口与传感头（5）相连。2 端口与布拉格光纤光栅 FBG22 相连，布拉格光纤光栅 FBG22 与 FBG12 相连，FBG12 与光纤 F-P 扫描干涉仪（6）相连，光纤 F-P 扫描干涉仪（6）与光电转换器（7）相连，光电转换器（6）与控制与处理电路（8）的输入端相连。本发明具有测量精度高、可辨别倾斜方向等优点。
1. 一种基于布拉格光纤光栅的高精度倾斜角传感装置，其结构有：广谱光源 (1) 的输出端与光隔离器 (2) 的输入端相连，光隔离器 (2) 的输出端与 2×2 光耦合器 (3) 的 1 端口相连，2×2 光耦合器 (3) 的 4 端口与折射率匹配液 (4) 相连，3 端口与传感头 (8) 的布拉格光纤光栅 FBG21 的一端相连，2 端口与布拉格光纤光栅 FBG22 的一端相连，布拉格光纤光栅 FBG22 的另一端与布拉格光纤光栅 FBG12 的一端相连，布拉格光纤光栅 FBG12 的另一端与光纤 F-P 扫描干涉仪 (5) 的输入端相连，光纤 F-P 扫描干涉仪 (5) 的输出端与光电转换器 (6) 的输入端相连，光电转换器 (6) 的输出端与控制与处理电路 (7) 的输入端相连。其特征在于：

所述的传感头 (8) 的结构为：中间窄，上下宽的细腰基座 (81) 水平放置，细腰基座的顶部中间有竖直固定的一对支架 (82)。测量平台 (83) 的中间通过一个能自由转动的轴 (84) 与支架 (82) 的顶端相连。细腰基座 (81) 的上半部分的两侧固定有轴为竖直的限位孔 M1 和限位孔 M2。传动杆 D1 位于限位孔 M1 且且下端与圆柱体 C1 相接，传动杆 D2 位于限位孔 M2 且且下端与圆柱体 C2 相接，限位孔 M1 的下端和圆柱体 C1 相接，限位孔 M2 的下端和圆柱体 C2 相接，同一根弹簧 K1 的两端，限位孔 M2 的下端和圆柱体 C2 相接，同一根弹簧 K2 的两端，传动杆 D1 和传动杆 D2 的顶端与测量平台 (83) 的下表面不受力接触且处于同一水平面，测量平台 (83) 处于平衡时弹簧 K1 和弹簧 K2 处于拉伸状态。细腰基座 (81) 的下半部分的两侧固定有 L 型的支撑杆 B1 和 L 型的支撑杆 B2，支撑杆 B1 的顶端固定有光纤夹具 S1，支撑杆 B2 的顶端固定有光纤夹具 S2，细腰基座 (81) 的腰部正中间固定有光纤夹具 S3，所述的三个光纤夹具 S1、S2、S3 处于同一平线上。光纤夹具 S1 和光纤夹具 S2 之间固定有布拉格光纤光栅 FBG21，光纤夹具 S2 和光纤夹具 S3 之间固定有布拉格光纤光栅 FBG11，布拉格光纤光栅 FBG21 的一端与 2×2 光耦合器 (3) 的 3 端口相连，另一端与布拉格光纤光栅 FBG11 的一端相连，测量平台平衡时，布拉格光纤光栅 FBG21、布拉格光纤光栅 FBG11 分别与圆柱体 C1、圆柱体 C2 相切且不受力接触；所述的布拉格光纤光栅 FBG11、FBG12 的反射峰位置和反射率均相同，所述的布拉格光纤光栅 FBG21、FBG22 的反射峰位置和反射率均相同，但与布拉格光纤光栅 FBG11、FBG12 不同；所述的控制与处理电路 (7) 的结构为：信号放大模块 (71) 的输出端与 A/D 转换模块 (72) 的输入端连接，A/D 转换模块 (72) 的输出端与单片机 (73) 的第一 10 口相连，显示模块 (74) 的输入端与单片机 (73) 的第二 10 口相连，通信模块 (75) 与单片机 (73) 的串行或并行通信端口相连；信号放大模块 (71) 的输出端作为控制与处理电路 (7) 的输入端。

2. 根据权利要求 1 所述的一种基于布拉格光纤光栅的高精度倾斜角传感装置，其特征在于：所述的 2×2 光耦合器 (3) 的输出端功率分配比是 50：50。

3. 根据权利要求 1 或 2 所述的一种基于布拉格光纤光栅的高精度倾斜角传感装置，其特征在于：所述的信号放大模块 (71) 的型号为 OP184，A/D 转换模块 (72) 的型号为 AD7685，单片机 (73) 的型号为 STM32F103，显示模块 (74) 的型号为 OCMJ4X8C-3，通信模块 (75) 的型号为 MAX232。
一种基于布拉格光纤光栅的高精度倾斜角传感装置

技术领域
[0001] 本发明属于光纤传感技术领域，特别是涉及一种基于布拉格光纤光栅的高精度倾斜角传感装置。

背景技术
[0002] 目前角度或倾斜测量技术主要有机械式测角技术、电磁式测角技术和光学测角技术。机械式测角的缺点是人工操作，实时性差，体积庞大，难以实现自动化；电磁式测角的缺点是电路复杂，抗电磁干扰差，需要屏蔽，环境要求较高。光学测角技术中，基于布拉格光纤光栅（FBG）的测斜传感器具有测量精度高，抗电磁干扰，体积小，自动化程度高，速度快等优点。现有技术中，基于FBG的测倾斜角传感器，其测量原理都是基于FBG反射峰波长的移动，当FBG反射峰波长移动不明显或者测量仪器的波长分辨率不够高时就无法实现精确测量。而高分辨率的光谱仪价格极其昂贵。
[0003] 因此研制一种在FBG反射峰波长移动不明显时，能够对倾斜角进行高精度测量的传感装置具有重大应用价值。

发明内容
[0004] 本发明要解决的技术问题是，克服背景技术存在的不足，提供一种在FBG反射峰波长移动不明显时，能够对倾斜角进行高精度测量的传感装置。
[0005] 上述的技术问题通过以下的技术方案实现：
[0006] 一种基于布拉格光纤光栅的高精度倾斜角传感装置，其结构有，广谱光源1的输出端与光隔离器2的输入端相连，光隔离器2的输出端与2×2光耦合器3的1端口相连，2×2光耦合器3的4端口与折射率匹配液4相连，3端口与传感头8的布拉格光纤光栅FBG21的一端相连，2端口与布拉格光纤光栅FBG22的一端相连，布拉格光纤光栅FBG22的另一端与布拉格光纤光栅FBG12的一端相连，布拉格光纤光栅FBG12的另一端与光纤F-P扫描干涉仪5的输入端相连，光纤F-P扫描干涉仪5的输出端与光电转换器6的输入端相连，光电转换器6的输出端与控制与处理电路7的输入端相连；
[0007] 所述的传感头8的结构为：中间窄、上下宽的细腰基座81水平放置，细腰基座的顶部中间有竖直固定的支架82，测量平台83的中间通过一个能自由转动的轴84与支架82的顶端相连，细腰基座81的上半部分的两侧固定有轴为竖直的限位孔M1和限位孔M2，传动杆D1位于限位孔M1中且下端与圆柱体C1粘接，传动杆D2位于限位孔M2中且下端与圆柱体C2粘接，限位孔M1的下端和圆柱体C1粘接着同一根弹簧K1的两端，限位孔M2的下端和圆柱体C2粘接着同一根弹簧K2的两端，传动杆D1和传动杆D2的顶部与测量平台83的下表面不受力接触且处于同一水平面，测量平台83处于平衡时弹簧K1和弹簧K2处于拉伸状态，细腰基座81的下半部分的两侧固定有L型的支撑杆B1和L型的支撑杆B2，支撑杆B1的顶端固定有光纤夹具S1，支撑杆B2的顶端固定有光纤夹具S3，细腰基座81的腰部正中间固定有光纤夹具S2，所述的三个光纤夹具S1、S2、S3处于同一水平线上，光纤夹具S1和
说明书

光纤夹具 S2 之间固定有布拉格光纤光栅 FBG21，光纤夹具 S2 和光纤夹具 S3 之间固定有布拉格光纤光栅 FBG11，布拉格光纤光栅 FBG21 的一端与 2×2 光耦合器 3 的 3 端口相连、另一端与布拉格光纤光栅 FBG11 的一端相连，测量平台平衡时，布拉格光纤光栅 FBG21、布拉格光纤光栅 FBG11 分别与圆柱体 C1、圆柱体 C2 相切且不受力接触；所述的布拉格光纤光栅 FBG11、FBG12 的反射峰位置和反射率均相同，所述的布拉格光纤光栅 FBG21、FBG22 的反射峰位置和反射率均相同，但与布拉格光纤光栅 FBG11、FBG12 不同。

0008 所述的控制与处理电路 7 的结构为：信号放大模块 71 的输入端与 A/D 转换模块 72 的输入端连接，A/D 转换模块 72 的输出端与单片机 73 的第一 IO 口相连，显示模块 74 的输入端与单片机 73 的第二 IO 口相连，通信模块 75 与单片机 73 的串行或并行通信端口相连；信号放大模块 71 的输入端作为控制与处理电路 7 的输入端。

0009 所述的 2×2 光耦合器 3 的输出端功率分配比可以是任意比，优选 50：50。

0010 所述的信号放大模块 71 优选 OP184 运算放大器芯片，A/D 转换模块 72 优选 AD7685 芯片，单片机 73 优选 STM32F103 单片机，显示模块 74 优选 OCM14X8C-3 液晶，通信模块 75 优选 MAX232 串口芯片。

0011 当测量平台 83 顺时针转动时，左侧传动杆 D1 不动，测量平台 83 压迫右侧的传动杆 D2 下移，传动杆 D2 下端的圆柱体 C2 压迫 FBG11 产生弯曲，位于 FBG11 的反射峰两侧的双峰功率发生变化，右峰功率增加左峰功率减小，通过控制与处理电路 7 将右峰功率和左峰功率做差，以差值作为传感器装置的输出值，差值可显示在显示模块 74 上。此时，位于 FBG21 的反射峰两侧的双峰功率将不发生变化，当转动平台逆时针转动时，情况恰好相反，位于 FBG11 的反射峰两侧的双峰功率不变，位于 FBG21 的反射峰两侧的双峰功率将产生变化，右峰功率增加左峰功率减小，同样以右峰和左峰的功率差值作为传感器装置的输出值。本传感器可以高精度地测量倾斜角度并可辨别倾斜的方向。

0012 有益效果：

0013 1. 由于 FBG 的反射峰半峰值很窄，故本传感器具有极高的测量精度，在 FBG 反射峰波长变化不明显的情况下，可实现峰值功率的大幅度变化。

0014 2. 本传感器可以辨别倾斜的方向。

附图说明：

0015 图 1 为本发明一种基于布拉格光纤光栅的高精度倾斜角传感器装置的结构示意图。

0016 图 2 为本发明一种基于布拉格光纤光栅的高精度倾斜角传感器装置的出射光谱示意图。

0017 图 3 为一种控制与处理电路的结构框图。

0018 图 4 为本发明的倾斜角度与输出值的关系图。

0019 图 5 为单一 1553nmFBG 反射波长随转动平台倾斜角度的变化图。

具体实施方式

0020 下面结合附图对本发明作进一步的说明：

0021 实施例 1

0022 装置如附图 1 所示，细腰基座 81 水平放置，布拉格光纤光栅 FBG11 和 FBG12 的反
射频波长为 λ₁ = 1553nm, FBG21 和 FBG22 的反射波长为 λ₂ = 1514nm, 2×2 光耦合器 3 的输出端功率分配比为 50:50。测量平台 83 的长度为 L = 11.5cm, 圆柱体 C1 和圆柱体 C2 的半径均为 R = 0.5cm, 折射率匹配液 4 使用甘油和水的混合溶液（折射率为 1.45），其中甘油的体积分数为 82.14%，将测量平台 83 顺时针转动角度计为正, 逆时针转动角度计为负。当测量平台 83 发生倾斜时, 在如图 3 所示的控制与处理电路 7 中的显示模块 74 中直接读出右峰和左峰功率的差值, 测量结果如图 4 所示。

[0023] 实施例 2

[0024] 将单独一个反射波长为 1553nm 的 FBG 置于图 1 中的 FBG11 位置上, 去掉图 1 中的 FBG21、FBG22、FBG12、光纤 F-P 干涉仪 5、光电转换器 6 和控制与处理电路 7。由勃谱光源 1 发出的光被反射波长为 1553nm 的 FBG 反射后由 2×2 光耦合器 3 的 2 端口出射, 2×2 光耦合器 3 的 2 端口接一个勃谱仪, 勃谱仪波长分辨率 0.05nm。当转动平台顺时针转动时, 测出倾斜角度与反射波长的关系, 如图 5 所示。

[0025] 从图 4 可见, 输出值与倾斜角度有良好的线性关系。本发明可以辨别转动平台的倾斜方向, 本传感器测量倾角的分辨率 2.5×10⁻⁵°, 测量精度可达 4×10⁻⁵dBm/°。从图 5 可见, 在 0 〜 0.032° 范围内, FBG 反射波长没有明显移动, 即本发明在 FBG 反射波长变化不明显的情况下, 实现了峰值功率的大幅度变化, 进而对倾斜角进行高精度测量。
图 3

![图3图示](image)

图 4

![图4图示](image)
图 5