(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/033931 A2

(43) International Publication Date

14 April 2005 (14.04.2005)

nternational Patent Classification’: unnyvale, . , John, P. ;
51) I ional P Classification’ GOG6F 9/40 S le, CA 94086 (US). SHEN, John, P. [US/US]
2303 Quail Bluff Place, San Jose, CA 95121 (US).
(21) International Application Number:
PCT/US2004/032461 (74) Agents: VINCENT, Lester, J. et al.; Blakely, Sokoloff,

Taylor & Zafman LLP, 12400 Wilshire Boulevard, 7th

(22) International Filing Date: Floor, Los Angeles, CA 90025 (US).

30 September 2004 (30.09.2004) (81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

(25) Filing Language: English AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(26) Publication Language: English GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(30) Priority Data:

10/676,889 30 September 2003 (30.09.2003) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-

(84) Designated States (unless otherwise indicated, for every
vard, Santa Clara, CA 95052 (US).

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

(72) Inventors; and
(75) Inventors/Applicants (for US only): LIAO, Shih-wei

[/US]; 2671 Cowper Street, Palo Alto, CA 94306
(US). TIAN, Xinmin [CA/US]; 34392 Pinnacles Court,
Union City, CA 94587 (US). HOFLEHNER, Gerolf,

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

F. [AT/US]; 444 Saratoga Avenue, #24D, Santa Clara,
CA 95050 (US). WANG, Hong [US/US]; 4249 Marsten = Published:

Lane, Santa Clara, CA 95054 (US). LAVERY, Daniel, — without international search report and to be republished
M. [US/US]; 3131 Homestead Road, #23A, Santa Clara, upon receipt of that report

CA 95051 (US). WANG, Perry [US/US]; 2907 Kiperash
Drive, San Jose, CA 95133 (US). KIM, Dongkeun
[KR/US]; 2907 Kiperash Drive, San Jose, CA 95113
(US). GIRKAR, Milind [US/US]; 1049 West Olive, #3,

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND APPARATUSES FOR COMPILER-CREATING HELPER THREADS FOR MULTI-THREADING

57033931 A2 | IV Y0 O A

& (57) Abstract: Methods and apparatuses for compiler- created helper thread for multithreading are described herein. In one em-
& bodiment, exemplary process includes identifying a region of a main thread that likely has one or more delinquent loads, the one
or more delinquent loads representing loads which likely suffer cache misses during an execution of the main thread, analyzing the
region for one or more helper threads with respect to the main thread, and generating code for the one or more helper threads, the
one or more helper threads being speculatively executed in parallel with the main thread to perform one or more tasks for the region
g of the main thread. Other methods and apparatuses are also described.

WO 2005/033931 PCT/US2004/032461

METHODS AND APPARATUSES FOR COMPILER-CREATING
HELPER THREADS FOR MULTI-THREADING

FIELD

[0001] Embodiments of the invention relate to information processing
system; and more specifically, to compiler-created helper threads for multi-
threading.

BACKGROUND

[0002] Memory latency has become the critical bottleneck to achieving high
performance on modern processors. Many large applications today are memory
intensive, because their memory access patterns are difficult to predict and their
working sets are becoming quite large. Despite continued advances in cache
design and new developments in prefetching techniques, the memory bottleneck
problem still persists. This problem worsens when executing pointer-intensive
applications, which tend to defy conventional stride-based prefetching techniques.
[0003] One solution is to overlap memory stalls in one program with the
execution of useful instructions from another program, thus effectively improving
system performance in terms of overall throughput. Improving throughput of
multitasking workloads on a single processor has been the primary motivation
behind the emerging simultaneous multithreading (SMT) techniques. An SMT
processor can issue instructions from multiple hardware contexts, or logical
processors (also referred to as hardware threads), to the functional units of a
super-scalar processor in the same cycle. SMT achieves higher overall throughput
by increasing overall instruction-level parallelism available to the architecture via
the exploitation of the natural parallelism between independent threads during
each cycle. '

[0004] SMT can also improve the performance of applications that are
multithreaded. However, SMT does not directly improve the performance, in
terms of reducing latency, of single-threaded applications. Since the majority of

desktop applications in the traditional PC environment are still single-threaded, it

WO 2005/033931 PCT/US2004/032461

is important to investigate if and how SMT resources can be exploited to enhance
single-threaded code performance by reducing its latency.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The invention may best be understood by referring to the following
description and accompanying drawings that are used to illustrate embodiments of
the invention. In the drawings:

[0006] Figure 1 illustrates a computer system having multi-threading
capability according to one embodiment.

[0007] Figure 2 illustrates a computer system having multi-threading
capability according to an alternative embodiment.

[0008] Figure 3 illustrates a computer system having a compiler capable of
generating a helper thread according to one embodiment.

[0009] Figure 4A illustrates a typical symmetric multi-threading process.
[0010] Figure 4B illustrates an asymmetric multi-thread process according to
one embodiment.

[0011] Figure 5 is flow diagram illustrating an exemplary process for
executing one or more helper threads according to one embodiment.

[0012] Figure 6 is a block diagram illustrating exemplary software
architecture of a multi-threading system according to one embodiment.

[0013] Figure 7 1s a flow diagram illustrating an exemplary process for
generating a helper thread according to one embodiment.

[0014] Figure 8 is a flow diagram illustrating an exemplary process for
parallelization analysis according to one embodiment.

[0015] Figures 9A-9C show pseudo code for an application, a main thread,
and a helper thread according to one embodiment.

[0016] Figure 10 is a block diagram illustrating an exemplary thread
configuration according to one embodiment.

[0017] Figure 11 is a block diagram illustrating an exemplary pseudo code for
allocating resources for the threads according to one embodiment.

2

WO 2005/033931 PCT/US2004/032461

[0018] Figure 12 is a block diagram illustrating an exemplary resource data
structure containing resource information for the threads according to one
embodiment.

[0019] Figure 13 is a flow diagram illustrating an exemplary process for
allocating resources for threads according to one embodiment.

[0020] Figures 14A-14D show results of a variety benchmark tests using
embodiments of techniques.

DETAILED DESCRIPTION

[0021] Methods and apparatuses for compiler-creating helper threads for

multi-threading systems are described. According to one embodiment, a
compiler, also referred to as AutoHelper, that implements thread-based
prefetching helper threads on a multi-threading system, such as, for example, the
Intel Pentium™ 4 Hyper-Threading systems, available from Intel Corporation. In
one embodiment, the compiler automates the generation of helper threads for
Hyper-Threading processors. The techniques focus at identifying and generating
helper threads of minimal sizes that can be executed to achieve timely and
effective data prefetching, while incurring minimal communication overhead. A
runtime system is also implemented to efficiently manage the helper threads and
the synchronization between threads. Consequently, helper threads are able to
issue timely prefetches for the sequential pointer-intensive applications.

[0022] In addition, hardware resources such as register contexts may be
managed for helper threads within a compiler. Specifically, the register set may
be statically or dynamically partitioned between main thread and helper threads,
and between multiple helper threads. As a result, the live-in/live-out register
copies via memory for threads may be avoided and the threads may be destroyed
at compile-time, when the compiler runs out of resources, or at runtime when
infrequent cases of certain main thread event occurs.

[0023] In the following description, numerous specific details are set forth.

However, it is understood that embodiments of the invention may be practiced

3

WO 2005/033931 PCT/US2004/032461

without these specific details. In other instances, well-known circuits, structures
and techniques have not been shown in detail in order not to obscure the
understanding of this description.

[0024] Some portions of the detailed descriptions which follow are presented
in terms of algorithms and symbolic representations of operations on data bits
within a computer memory. These algorithmic descriptions and representations
are used by those skilled in the data processing arts to most effectively convey the
substance of their work to others skilled in the art. An algorithm is here, and
generally, conceived to be a self-consistent sequence of operations leading to a
desired result. The operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these quantities take the
form of electrical or magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, numbers, or the like.

[0025] It should be'borne in mind, however, that all of these; and similar terms
are to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities. Unless specifically stated otherwise
as apparent from the following discussion, it is appreciated that throughout the
description, discussions utilizing terms such as "processing" or "computing” or
"calculating” or "determining" or "displaying" or the like, refer to the action and
processes of a computer system, or similar data processing device, that
manipulates and transforms data represented as physical (e.g. electronic)
quantities within the computer system's registers and memories into other data
similarly represented as physical quantities within the computer system memories
or registers or other such information storage, transmission or display devices.
[0026] Embodiments of the present invention also relate to apparatuses for
performing the operations described herein. An apparatus may be specially

constructed for the required purposes, or it may comprise a general purpose

4

WO 2005/033931 PCT/US2004/032461

computer selectively activated or reconfigured by a computer program stored in
the computer. Such a computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of disk including floppy
disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs) such as Dynamic RAM (DRAM),
erasable programmable ROMs (EPROMSs), electrically erasable programmable
ROMs (EEPROMs), magnetic or optical cards, or any type of media suitable for
storing electronic instructions, and each of the above storage components is
coupled to a computer system bus.

[0027] The algorithms and displays presented herein are not inherently related
to any particular computer or other apparatus. Various general purpose systems
may be used with programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to perform the methods.
The structure for a variety of these systems will appear from the description
below. In addition, embodiments of the present invention are not described with
reference to any particular programming language. It will be appreciated that a
variety of programming languages may be used to implement the teachings of the
embodiments of the invention as described herein.

[0028] A machine-readable medium includes any mechanism for stoﬁng or
transmitting information in a form readable by a machine (e.g., a computer). For
example, a machine-readable medium includes read only memory (“ROM”);
random access memory (“RAM?”); magnetic disk storage media; optical storage
media; flash memory devices; electrical, optical, acoustical or other form of
propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
[0029] Figure 1 is a block diagram of an exemplary computer which may be
used with an embodiment. For example, exemplary system 100 shown in Figure
1 may perform the processes shown in Figures 5-8. Exemplary system 100 may

be a multi-threading system, such as an Intel Pentium™ 4 Hyper-Threading

WO 2005/033931 PCT/US2004/032461

system. Exemplary system 100 may be a simultaneous multithreading (SMT) or
chip multiprocessing (CMP) enabled system.

[0030] Note that while Figure 1 illustrates various components of a computer
system, it is not intended to represent any particular architecture or manner of
interconnecting the components, as such details are not germane t’o the present
invention. It will also be appreciated that network computers, handheld
computers, cell phones, and other data processing systems which have Fewer
components or perhaps more components may also be used with the present
invention.

[0031] As shown in Figure 1, the computer system 100, which is a form of a
data processing system, includes a bus 102 which is coupled to a microprocessor
103 and a ROM 107, a volatile RAM 105, and a non-volatile memory 106. The
microprocessor 103, which may be a Pentium processor from Intel Corporation or
a PowerPC processor from Motorola, Inc., is coupled to cache memory 104 as
shown in the example of Figure 1. The bus 102 interconnects these various
components together and also interconnects these components 103, 107, 105, and
106 to a display controller and display device 108, as well as to input/output (I/O)
devices 110, which may be mice, keyboards, modems, network interfaces,
printers, and other devices which are well-known in the art. Typically, the

input/ output devices 110 are coupled to the system through input/output
controllers 109. The volatile RAM 105 is typically implemented as dynamic
RAM (DRAM) which requires power continuously in order to refresh or maintain
the data in the memory. The non-volatile memory 106 is typically a magnetic
hard drive, a magnetic optical drive, an optical drive, or a DVD RAM or other
type of memory system which maintains data even after power is removed from
the system. Typically the non-volatile memory will also be a random access
memory, although this is not required. While Figure 1 shows that the non-volatile
memory is a local device coupled directly to the rest of the components in the data

processing system, it will be appreciated that the present invention may utilize a

6

WO 2005/033931 PCT/US2004/032461

non-volatile memory which is remote from the system, such as a network storage
device which is coupled to the data processing system through a network interface
such as a modem or Ethernet interface. The bus 102 may include one or more
buses connected to each other through various bridges, controllers, and/or
adapters, as is well-known in the art. In one embodiment, the /O controller 109
includes a USB (Universal Serial Bus) adapter for controlling USB peripherals or
a PCI controller for controlling PCI devices, which may be included in IO devices
110. In a further embodiment, /O controller 109 includes an IEEE-1394
controller for controlling IEEE-1394 devices, also known as FireWire devices.
[0032] According to one embodiment, processor 103 may include one or
more logical hardware contexts, also referred to as logical processors, for
handling multiple threads simultaneously, including a main thread, also referred
to as a non-speculative thread, and one or more helper threads, also referred to as
speculative threads, of an application. Processor 103 may be a Hyper Threading
processor, such as a Pentium 4 or a Xeon processor capable of performing
multithreading processes from Intel Corporation. During an execution of an
application, the main thread and one or more helper threads are executed in
parallel. The helper threads are speculatively executed associated with, but
somewhat independent to, the main thread to perform some precomputations,
such as speculative prefetches of addresses or data, for the main thread to reduce
the memory latency incurred by the main thread.

[0033] According to one embodiment, the code of the helper threads (e.g., the
source code and the binary executable code) are generated by a compiler, such as
AutoHelper compiler available from Intel Corporation, loaded and executed in a
memory, such as volatile RAM 105, by an operating system (OS) executed by a
processor, such as processor 103. The operating system running within the
exemplary system 100 may be a Windows operating system from Microsoft

Corporation or a Mac OS from Apple Computer. Alternatively, the operating

WO 2005/033931 PCT/US2004/032461

system may be a Linux or Unix operating system. Other operating systems, such
as embedded real-time operating systems, may be utilized.

[0034] Current Hyper-Threading processors typically provide two hardware
contexts, or logical processors. To improve the performance of a single-threaded
application, Hyper-Threading technology can utilize its second context to perform
prefetching for the main thread. Having a separate context allows the helper
threads’ execution to be decoupled from the control flow of the main thread,
unlike software prefetching. By running far ahead of the main thread to perform
long-range prefetches, the helper threads can trigger prefetches early, and
eliminate or reduce the cache miss penalties experienced by the main thread.
[0035] With AutoHelper, a compiler is able to automatically generate
prefetching helper threads for Hyper-Threading machines. The helper threads aim
at bringing the latency-hiding benefit of multithreading to sequential workloads.
Unlike threads produced by the conventional parallelizing compilers, the helper
threads only prefetch for the main thread, which does not reuse the computed
results from the helper threads. According to on embodiment, the program
correctness is still maintained by the main thread’s execution, while the helper
threads do not affect program correctness and are used solely for performance
improvement. This attribute permits the use of more aggressive forms of
optimization in generating helper threads. For example, when the main thread
does not need help, certain 6ptimizations may be performed, which are not
possible with conventional throughput threading paradigm.

[0036] In one embodiment, if it is predicted that a helper 1s not needed for a
certain period of time, the helper may terminate and release all the resources
associate with the helper to main thread. According to another embodiment, if it
is predicted that a helper may be needed shortly, the helper may be in a pause
mode, which still consumes some resources on Hyper-Threading hardware.
Exponential back-off (via halting) will be invoked if the helper stays in the pause

mode too long (e.g., exceeding a programmable timeout period). According to a

8

WO 2005/033931 PCT/US2004/032461

further embodiment, if the compiler cannot predict when the helper thread will be
needed, the helper may be in a snooze mode and may relinquish the occupied
processor resources to the main thread.
[0037] Furthermore, according to one embodiment, performance monitoring
and on-the-fly adjustments are made possible under helper-threading paradigm,
because the helper thread does not contribute to the semantics of the main
program. When a main thread needs a helper, it will wake up the main thread.
For example, with respect to a run-away helper or a run-behind thread, one of the
.processes described above may be invoked to adjust the run-away helper thread.
[0038] Figure 2 is a block diagram illustrating one embodiment of a
computing system 200 capable of performing the disclosed techniques. In one
embodiment, the computing system 200 includes a processor 204 and a memory
202. Memory 202 may store instructions 210 and data 212 for controlling the
operation of the processor 204. The processor 204 may include a front end 221
that supplies instruction information to an execution core 230. The front end 221
may supply the instruction information to the processor core 204 in program
order.
[0039] For at least one embodiment, the front end 221 includes a fetch/decode
“unit 222 that includes logically independent sequencers 220 for each of a plurality
of thread contexts. The logically independent sequencer(s) 220 may include
marking logic 280 to mark the instruction information for speculative threads as
being “speculative.” One skilled in the art will recognize that, for an embodiment
implemented in a multiple processor multithreading environment, only one
sequencer 220 may be included in the fetch/decode unit 222.
[0040] As used herein, the term “instruction informationf’ is meant to refer to
instructions that can be understood and executed by the execution core 230.
Instruction information may be stored in a cache 225. The cache 225 may be
implemented as an execution instruction cache or an execution trace cache. For

embodiments that utilize an execution instruction cache, “instruction

9

WO 2005/033931 PCT/US2004/032461

information” includes instructions that have been fetched from an instruction
cache and decoded. For embodiments that utilize a trace cache, the term
“instruction information” includes traces of decoded micro-operations. For
embodiments that utilize neither an execution instruction cache nor trace cache,
“instruction information” also includes raw bytes for instructions that may store in
an instruction cache such as I cache 244.

[0041] Figure 3 is a block diagram illustrating an exemplary system
containing a compiler to generate one or more helper threads according to one
embodiment. Referring to Figure 3, exemplary processing system 300‘includes a
memory system 302 and a processor 304. Memory system 302 may store
instructions 310 and data 312 for controlling the operation of the processor 304.
Fc")r example, instructions 310 may include a compiler program 308 that, when
executed, causes the processor 304 to compile a program that resides in the
memory system 302. Memory 302 holds the program to be compiled,
intermediate forms of the program, and a resulting compiled program. For at least
one embodiment, the compiler program 308 includes instructions to generate code
for one or more helper threads with respect to a main thread.

[0042] Memory system 302 is intended as a generalized representation of
memory and may include a variety of forms of memory, such as a hard drive, CD-
ROM, random access memory (RAM), dynamic random access memory
(DRAM), static random access memory (SRAM) and related circuitry. Memory
system 302 may store instructions 310 and/or data represented by data signals that
may be executed by processor 304. The instructions 310 and/or data may include
code for performing any or all of the techniques discussed herein.

[0043] Specifically, compiler 308 may include a delinquent load identifier
320 that, when executed by the processor 304, identifies one or more delinquent
load regions of a main thread. The compiler 308 may also include a
parallelization analyzer 324 that, when executed by the processor 304, performs

one or more parallelization analysis for the helper threads. Also, the compiler

10

WO 2005/033931 PCT/US2004/032461

308 may inctude a slicer 322 that identifies one or more slices to be executed by a
helper thread in order to perform speculative precomputation. The compiler 308
may further include a code generator 328 that, when executed by the processor
304, generates the code (e.g., source and executable code) for the helper threads.
[0044] Executing helper threads in an SMT machine is a form of asymmetric
multithreading, as shown in Figure 4B according to one embodiment. Traditional
parallel programming models provide symmetric multithreading, as shown in
Figure 4A. In contrast, the helper threads, such as helper threads 451-454 in
Figure 4B execute as user-level threads (fibers) with lightweight thread
invocation and switching. Furthermore, symmetric multithreading requires well-
tuned data decomposition across symmetric threads, such as threads 401-404 in
Figure 4A. In the helper thread model, according to one embodiment, the main
thread runs the sequential code that operates on the entire data set, without
incurring data decomposition overhead. Without decomposing the data, the
compiler instead focuses on providing multiple helpers for timely prefetches for
the main thread’s data.
[0045] Figure 5 is a flow diagram illustrating an exemplary process for
executing a helper thread according to one embodiment. Exemplary process 500
may be performed by a processing logic that may comprise hardware (circuitry,
dedicated logic, etc.), software (such as is run on a general purpose computer
system or a dedicated machine), or a combination of both. In one embodiment,
exemplary process 500 includes executing a main thread of an application in a
multi-threading system, and spawning one or more helper threads from the main
thread to perform one or more computations for the main thread when the main
thread enters a region having one or more delinquent loads, code of the one or
more helper thread being created during a compilation of the main thread.
[0046] Referring to Figure 5, at block 501, the processing logic creates an
internal thread pool to maintain a list of logical thread contexts which may be

used by one or more helper threads. At block 502, a new thread team may be

11

WO 2005/033931 PCT/US2004/032461

created before a main thread enters a delinquent load region (e.g., precomputation
region) which may be identified by a compiler. In one embodiment, the new
thread team initially contains only the calling thread. According to one
embodiment, the compiler may insert a statement, such as start_helper statement,
before the main thread enters the region to activate one or more helper threads.
At block 503, when the main thread enters the region, the main thread spawns
(via a function call, such as invoke helper) one or more helper threads which are
created using the resources from the thread pool to perform one or more
precomputations, such as prefetching addresses and data, for the main thréad.
According to one embodiment, if no logical processor is available for executing
the spawned helper threads, the helper threads may be created and placed in a run
queue for the thread team for subsequent execution. In one embodiment, the run
queue may be associated with a time-out. The request to invoke a helper is
simply dropped (e.g., terminated) after the time-out period expires, assuming that
the prefetch will no longer be timely. This is different from traditional task-queue
model for parallel programming, where each task needs to be executed.

[0047] At block 504, at least a portion of the code within the region of the
main thread is executed using in part the data (e.g., prefetched or precomputed)
provided by the one or more helper threads. According to one embodiment, the
results computed by a helper thread are not integrated into the main thread. The
benefit of a helper thread lies in its side effects of prefetching, not in reusing its
computation results. This allows the compiler to aggressively optimize the code
generation for helper threads. The main thread handles the correctness issue,
while the helper threads target the performance of a program. This also allows
the helper thread invoking statement, such as invoke_helper, to drop requests
whenever deemed appropriate. Finally, non-faulting instructions, such as the
prefetch instructions, may be used to avoid disruptions to the main thread if

exceptions are signaled in a helper thread.

12

WO 2005/033931 PCT/US2004/032461

[0048] At block 505, the one or more helper threads associated with the main
thread are terminated (via a function call, such as finish_helper) when the main
thread is about to exit the delinquent load region and the resources, such as
logical thread contexts, associated with the terminated helper threads are released
back to the thread pool. This enables future requests to immediately recycle the
logical thread contexts from the thread pool. Other operations apparent to those
with ordinary skill in the art may be included.

[0049] Hyper-Threading technology is well suited for supporting the
execution of one or more helper threads. According to one embodiment, in each
processor cycle, instructions from either of the logical processors can be
scheduled and executed simultaneously on shared execution resources. This
allows helper threads to issue timely prefetches. In addition, the entire on-chip
cache hierarchy is shared between the logical processors, which is useful for
helper threads to effectively prefetch for the main thread at all levels of the cache
hierarchy. Furthermore, although the physical execution resources are shared
between the logical processors, the architecture state is duplicated in a Hyper-
Threading processor. The execution of helper threads will not alter the
architecture state in the logical processor executing the main thread.

[0050] However, on Hyper-Threading technology enabled machines, helper
threads can still impact the execution of main thread due to the writes to memory.
Because helper threads share memory with the main thread, the execution of
helper threads should be guaranteed not to write to the data structures of the main
thread. In one embodiment, the compiler (e.g., AutoHelper) provides memory
protection between the main thread and the helper threads. The compiler removes
stores to non-local variables in the helper threads.

[0051] Figure 6 is a block diagram illustrating an exemplary architecture ofa
compiler according to one embodiment. In one embodiment, exemplary
architecture 600 includes, among others, a front end module 601, profiler 602,

interprocedural analysis and optimization module 603, compiler 604, global

13

WO 2005/033931 PCT/US2004/032461

scalar optimization module 605, and backend module 606. In one embodiment,
front end module 601 provides 2 common intermediate representation, such as
ILO representation from Intel Corporation, for source codes written in a variety of
programming languages, such as C/C++ and Fortran. As aresult, the compiler,
such as AutoHelper 604 is applicable irrespective of the source languages and of
the target platforms. Profiler 602 performs a profiling run to examine the
characteristics of the representation. Interprocedural analysis module 603 may
exposes optimization opportunities across procedure call boundaries. Thereafter,
the compiler 604 (e.g., AutoHelper) is invoked to generate code for one or more
helper threads. Global scalar optimization module 605 applies, using partial
redundancy elimination to minimize the number of times an expression is
evaluated. Finally, backend module 606 generates binary code for the helper
threads for a variety of platforms, such as IA-32 or Itanium platform from Intel
Corporation. Other components apparent to those with ordinary skill in the art
may be included.

[0052] Unlike a conventional approach, AutoHelper (e.g., the compiler)
climinates the profile-instrumentation pass to make the tool easier to use.
According to one embodiment, the compiler can directly analyze the output from
profiling results, such as those generated by Intel’s VTune™ Performance
Analyzer, which is enabled for Hyper-Threading technology. Becauseitisa
middle-end pass instead of a post-pass tool, the compiler is able to utilize several
product-quality analyses, such as array dependence analysis and global scalar
optimization, etc. These analyses, invoked after the compiler, perform aggressive
optimizations on the helper threads’ code.

[0053] According to one embodiment, the compiler generates one or more
helper threads to precompute and prefetch the address accessed by a load that
misses the cache frequently, also referred to as a delinquent load. The compiler
also generates one or more triggers in the main thread that spawns one or more

helper threads. The compiler implements the trigger as an invoking function,

14

WO 2005/033931 PCT/US2004/032461

such as the invoke_helper function call. Once the trigger is reached, the load is
expected to appear later in the instruction stream of the main thread, hence the -
speculatively executed helper threads can reduce the number of cache misses in
the main thread.

[0054] Figure 7 is flow diagram illustrating an exemplary process performed
by a compiler, such as AutoHelper, according to one embodiment. Exemplary
process 700 may be performed by a processing logic that may comprise hardware
(circuitry, dedicated logic, etc.), software (such as is run on a general purpose
computer system or a dedicated machine), or a combination of both. In one
embodiment, exemplary process 700 starts at block 701, to identifying delinquent
loads using, for example, the VTune tool from Intel Corporation, to perform
parallelization analysis for helper threads (block 702), to generate code for helper
threads (block 703), and to allocate resources, such as hardware registers or
memories for each helper threads and the main thread (block 704), which will be
described in details further below.

[0055] According to one embodiment, the compiler identifies the most
delinquent loads in an application source code using one or more run-time
profiles. Traditional compilers collect the profiles in two steps: profile-
instrumentation and profile-generation. However, because cache miss is not an
architecture feature that is exposed to the compilers, profile-instrumentation pass
does not permit instrumentation of cache misses for the compiler to identify
delinquent loads. The profiles for each cache hierarchy are collected via a utility,
such as the VTune™ Analyzer from Intel Corporation. In one embodiment, the
application may be executed with debugging information in a separate profiling
run prior to the compiler. During the profiling run, cache misses are sampled and
the hardware counters are accumulated for each static load in the application.
[0056] The compiler identifies the candidates for thread-based prefetching. In
a particular embodiment, the VTune™ summarizes the cache behavior on a per-

load basis. Because the binary for the profiling run is compiled with the debug

15

WO 2005/033931 PCT/US2004/032461

information (e.g., debug symbols), it is possible to correlate the profiles back to
source line numbers and the statements. Certain loads that contribute more than a
predetermined threshold may be identified as delinquent loads. In a particular
embodiment, the top loads that contribute to 90% of cache misses are denoted as
delinquent loads.

[0057] In addition to identifying delinquent load instructions, the compiler
generates helper threads that compute the addresses of delinquent loads
accurately. In one embodiment, separate code for helper threads is generated.
The separation between the main thread and the helper thread’s code prevents
transformations on a helper thread’s code from affecting the main thread. In one
embodiment, the compiler uses multi-entry threading, instead of conventional
out-lining, in the Intel product compiler to generate separate codes for helper
threads.

[0058] Furthermore, according to one embodiment, the compiler performs
multi-entry threading at the granularity of a compiler-selected code region,
denoted as precomputation region. This region encompasses a set of delinquent
loads and defines the scope for speculative precomputation. In one embodiment,
the implementation usually targets loop regions, because loops are usually the hot
spots in program execution, and the delinquent loads are the loads that were
executed many times, usually in a loop.

[0059] - Figure 8 is flow diagram illustrating an exemplary process for
parallelization analysis according to one embodiment. Exemplary process 800
may be performed by a processing logic that may comprise hardware (circuitry,
dedicated logic, etc.), software (such as is run on a general purpose computer
system or a dedicated machine), or a combination of both. Referring to Figure 8,
at block 801, the processing logic builds a dependent graph that captures both
data and control dependencies of the main thread. According to one embodiment,
in order to filter out unrelated code and thus reduce the size of a helper thread’s

code, the compiler first builds a graph that captures both data and control

16

WO 2005/033931 PCT/US2004/032461

dependences. The effectiveness and legality of filtering rely on the compiler’s
ability to accurately disambiguate memory references. As a result, a memory
disambiguation module in the compiler is invoked to disambiguate pointers to
dynamically allocated objects. Because a pointer could be a global variable or a
function parameter, the points-to analysis performed by the compiler is
interprocedural, if the compiler compiles in the whole-program mode. In one
embodiment, in order to build the dependence graph more accurately, a series of
array dependence tests may be performed, so that each element in an array is
disambiguated in building the dependence graph, if all the array accesses are
finite expressions. Otherwise, approximation is used. Furthermore, each field in a
structure may be disambiguated. -

[0060] Referring back to Figure 8, at block 802, the-processing logic performs
a slicing operation on the main thread using the dependent graph. During slicing,
according to one embodiment, the compiler first identifies the load addresses of
delinquent loads as slice criteria, which specify the intermediate slicing results.
After building the dependence graph, the compiler computes the program slices of
the identified slice criteria. The program slices of the slice criteria are defined as
the set of instructions that contribute to the computation of the addresses for
memory prefetches executed by the one or more helper threads. Slicing can
reduce the code to only the instructions relevant to the computation of an address,
thus allows the helper threads to run quicker and ahead of the main thread. The
compiler only needs to copy instructions in a slice to the helper thread’s code.
[0061] According to one embodiment, slicing in the compiler extracts a
minimal sequence of instructions to produce the addresses of delinquent loads by
transitively traversing the dependence edges backwards. The leaf nodes on the
dependence graph of the resulting slices can be converted to prefetch instructions,
because no further instructions are dependent on those leaf nodes. Those prefetch
instructions executed by a processor, such as the Pentium™ 4 from Intel

Corporation, are both non-blocking and non-faulting. Different prefetch

17

WO 2005/033931 PCT/US2004/032461

instructions exist for bringing data into different levels of cache in the memory
hierarchy.

[0062] According to one embodiment, slicing operations may be performed
with respect to a given code region. Traversal on the dependence graph in a given
region must terminate when it reaches code outside of that region. Thus, slicing
must be terminated during traversal instead of after traversal, because the graph
traversal may span to the outside of a region and then back to the inside of a
region. Simply collecting the slices according to regions after the traversal may
lose precision.

[0063] In a further embodiment, the compiler slices each delinquent loads
instruction one by one. To minimize the duplication of code in helper threads and
reduce the overhead of thread invocation and synchronization, the compiler
merges slices into one helper thread if they are in the same precomputation
region.

[0064] Referring back to Figure 8, at block 803, the processing logic performs
scheduling across the threads to overlap multiple prefetches. In one embodiment,
since Hyper-Threading processors support out-of-order execution with large
scheduling windows, the processors can look for independent instructions beyond
the current executing instruction when it waits on a pending cache miss. This
aspect of out-of-order execution can provide substantial performance gain over an
in-order processor and reduce the need for chaining speculative precomputation.
Furthermore, the compiler selects basic speculative precomputation for Hyper-
Threading processors. Namely, only one helper thread is scheduled at a time to
save the thread spawning and communication overhead. Another benefit from
using basic speculative precomputation is that it does not inundate the memory
system on our Hyper-Threading processors as fast as chaining speculative
precomputation does. When the out-of-order processor looks for independent
instructions for execution, those instructions can generate too many load requests

and saturate the memory system. When the helper threads issue prefetching

18

WO 2005/033931 PCT/US2004/032461

requests, a large number of outstanding misses could rapidly fill up the miss
buffer and, as a result, stall the processor. Thus, the compiler needs to be
judicious in spawning helper threads. Finally, to ensure timely prefetching, the
compiler pins down the single helper thread and the main thread on respective
logical processors.
[0065] Referring back to Figure 8, at block 804, processing logic selects a
communication scheme for the threads. In one embodiment, the compiler
provides a module that computes live-ness information for any given slice, or any
subset of program. Liveness information provides estimates on the
communication cost. The information is used to select the precomputation region
that provides good trade-off between communication and computation. The
liveness information may help find triggers or the points at which the backward
slicing ends.
[0066] Because the typical Hyper-Threading processors issue three micro-ops
per processor cycle and use some hard-partitioned resources, the compiler has to
be judicious as not to let helper threads slow down the main thread’s execution,
especially if the main thread issues three micro-ops for execution per cycle
already. For the loop nest encompassing delinquent loads, the compiler makes
trade-off between re-computation and communication in choosing the loop level
for performing speculative precomputation. For each loop level, starting from the
innermost one, according to one embodiment, the compiler selects one of the
communication-based scheme and computation-based scheme.
[0067] According to one embodiment, the communication-based scheme

. communicates the live-in values from the main thread to the helper thread in each
iteration, so the helper thread does not need to re-compute the live-in values. The
compiler will select this scheme if there exists an inner loop encompassing most
delinquent loads and if slicing for the inner loop significantly decreases the size of
a helper thread. However, this scheme will be disabled if the communication cost

for the inner loop level is very large. The compiler will give smaller estimate of

19

WO 2005/033931 PCT/US2004/032461

communication cost, if the live-in values are computed early and the number of
live-ins is small.
[0068] Communication-based scheme will create multiple communication
points between the main thread and its helper thread at runtime. Communication-
based scheme is important for Hyper-Threading processors, because relying on
only one communication point by re-computing the slice in the helper thread may
create too much resource contention between threads. This scheme is similar to
constructing a do-across loop in that the main thread initiates the next iteration
after it finishes computing the live-in values for that iteration. The scheme trades
communication for less computation.
[0069] According to one embodiment, the computation-based scheme
assumes only one communication point between two threads to pass in the live-in
values in the beginning. Afterwards, the helper thread needs to compute
everything it needs to generate accurate prefetch addresses. The compiler will
select this scheme if there is no inner loop, or if slicing for this loop level does not
significantly increases the size of a helper thread. Computation-based scheme
gives the helper thread more independence in execution, once the single
communication point is reached.
[0070] According to one embodiment, to select the loop level for speculative
precomputation, the compiler selects the outermost loop that benefits from
communication-based scheme. Hence the scheme-selection algorithm described
above can terminate once it finds a loop with communication-based scheme. If
the compiler does not find any loop with communication-based scheme, the
outermost loop will be the targeted region for speculative precomputation. After
the compiler selects the precomputation regions and their communication

| schemes, locating good trigger points in the main thread would ensure timely
prefetches, while minimizing the communication between the main thread and the

helper threads. Liveness information helps locate triggers, which are the points at

20

WO 2005/033931 PCT/US2004/032461

which the backward slicing ends. Slicing beyond the precomputation region ends
when the number of live-ins increases.

[0071] Referring back to Figure 8, at block 805, the processing logic
determines a synchronization period for the threads to synchronize with each
other during the execution. According to one embodiment, the synchronization
period is used to express the distance between a helper thread and the main
thread. Typically, the helper thread performs all of its precomputation in units of
synchronization period. This both minimizes communication and limits the
possibility of producing run-away helpers. Because the compiler computes the
value of synchronization period and generates synchronization code accordingly,
special hardware support, such as Outstanding Slice Counter, is no longer needed.
[0072] If the synchronization period is too large, the prefetch induced by the
helper thread could not only displace temporally important data to be used by the
main thread but also potentially displace earlier prefetched data that have not been
used by the main thread. On the other hand, if the synchronization period is too
small, the prefetch could be too late to be useful. To decide on the value of
synchronization period, according to one embodiment, the compiler first
computes the difference between the length of tﬁe slice and the length of program
schedule in the main thread. If the difference is small, the run-ahead distance
mduced by the helper thread in one iteration is consequently small. Multiple
iterations may be needed by the helper thread to maintain enough run-ahead
distance. Hence, the compiler increases the synchronization period if the
difference is small, and vice versa.

[0073] Thereafter, the compiler generates code for the main thread and the
helper thread during a code generation stage. During the code generation stage,
the compiler builds a thread graph as the interface between the analysis phase and
code generation phase. Each graph node denotes a sequence of instructions, or a
code region. The invocation edge between the nodes denotes the thread-spawning

relationship, which is important for specifying chaining helper threads. Having a

21

WO 2005/033931 PCT/US2004/032461

thread graph enables code reuse because, according to one embodiment, the
compiler also allows the user to insert pragmas in the source program to specify
the code for helper threads and the live-ins. Both the pragma-based approach and
the automatic approach share the same graph abstraction. As a result, the helper
thread code generation module may be shared. 7

[0074] The helper thread code generation leverages multi-entry threading
technology in the compiler to generate helper thread code. In contrast to the
conventional, well-known outlining, the compiler does not create a separate
compilation unit (or routine) for the helper thread. Instead, the compiler
generates a threaded entry and a threaded return for in the helper thread code.

The compiler keeps all newly generated helper thread codes intact or inlined
within the same user-defined routine without splitting them into independent
subroutines. This method provides later compiler optimizations with more
opportunities for performing optimization on the newly generated helper threads.
Fewer instructions in the helper thread means less resource contention on a hyper-
threaded processor. This demonstrates that using helper threads for hiding
latency incurs fewer instructions and less resource contention than the traditional
symmetric multithreading model, which is important especially because the
hyper-threaded processor issues three micro-ops per processor cycle and has some
hard-partitioned resources.

[0075] According to one embodiment, the generated codes for helper threads
will be re-ordered and optimized by the later on phases in the compiler such as
partial dead-store elimination (PDSE), partial redundancy elimination (PRE), and
other scalar optimizations. In that sense, the helper thread code needs to be
optimized to minimize the resource contention due to the helper thread.
However, those further optimizations may remove prefetching code as well.
Therefore, the leaf delinquent loads may be converted to the volatile-assign
statements in the compiler. The leaf node in the dependence graph of a slice

implies that no further instructions in the helper thread depend on the loaded

22

WO 2005/033931 PCT/US2004/032461

value. Hence, the destination of the volatile-assign statement is changed to a
register temp in the representation to speed up the resulting code. Using volatile-
assign may prevent all later on compiler global optimizations from removing
generated prefetches for delinquent loads.

[0076] According to one embodiment, the compiler aims at ensuring the
helper thread to run neither too far ahead nor behind the main thread using a self-
counting mechanism. According to one embodiment, value X is pre-set for run-
ahead distance control. The X can be modified through a compiler switch by
users, or based on program analysis of the length of slice (or helper code) and the
length of main code. In one embodiment, the compiler generates mc (M-counter)
with an initial value X for main thread and hc (H-counter) with an initial value 0
for helper thread, and the compiler generates the counter M and H for counting
the sync-up periods in main and helper code. The idea is that the all four counters
(mc, M, hc, H) perform self-counting. The helper thread has no inference to main
thread. If the helper thread runs too far ahead of main thread, it will issue a wait,
if the helper thread runs behind main thread, it will perform a catch-up.

[0077] In a particular embodiment, for every X loop-iterations, the main
thread issues a post to ensure that the helper is not waiting and can go ahead to
perform non_faulting .load. At this point, if the helper thread waits for the main
thread after issuing a number of non_faulting_loads in chunks of sync-up period,
it will wake up to perform non_faulting _loads. In another particular
embodiment, for every X loop-iterations, the helper thread examines whether its
hc counter is greater main thread’s mc counter and the hc counter is greater a
sync-up period H*X of the helper thread, if so, the helper will issue a wait and go
to sleep. This prevents the helper thread from running too far ahead of the main
thread. In a further embodiment, before iterating over another chunk of sync-up
period, the helper thread examines whether its hc counter is smaller than the main
thread’s mc counter. If so, the helper thread has fallen behind, and must “catch-

up and jump ahead” by updating its counter hc and H and all capture private and

23

WO 2005/033931 PCT/US2004/032461

live-in variable from the main thread. Figures 9A-9C are diagrams illustrating
exemplary pseudo code of an application, a main thread, and a helper thread
according to one embodiment. Referring to Figures 9A-9C, the compiler
compiles a source code 901 of an application and generates code for a main
thread 902 and a helper thread 903 using at least one of the aforementioned
techniques. It will be appreciated that the code 901-903 are not limited to C/C+.
Other programming languages, such as Fortran or Assembly, may be used.

[0078] After the code for the helper threads have been created, the compiler
may further allocate, statically or dynamically, resources for each helper thread
and the main thread to ensure that there is no resource conflict between the main
thread and the helper threads, and among the helper threads. Hardware resources,
such as register contexts, may be managed for helper threads within the compiler.
Specifically, the register set may be statically or dynamically partitioned between
the main thread and the helper threads, and between multiple helper threads, Asa
result, the live-in/live-out register copies via memory for threads may be avoided
and the threads may be destroyed at compile-time, when the compiler runs out of
resources, or at runtime when infrequent cases of certain main thread event
occurs.

[0079] According to one embodiment, the compiler may “walk through” the
helper threads in a bottom-up order and communicates the resource utilization in
a data structure, such as a resource table shown in Figure 12. The parent helper
thread, which may be the main thread, utilizes this information and ensures that
its resources don’t overlap with the thread resources. When the thread resources
penalize the main execution thread, for example by forcing the main thread to
spill/fill registers, the compiler can kill previously created threads.

[0080] Figure 10 is a block diagram illustrating an exemplary configuration of
threads according to one embodiment. In this embodiment, exemplary
configuration 1000 includes a main thread 1001 (e.g., a parent thread) and three
helper threads (e.g., child threads) 1002-1004, which may be spawned from the

24

WO 2005/033931 PCT/US2004/032461

main thread 1001, while thread 1003 may be spawned from thread 1002 (e.g.,
helper thread 1002 is a parent thread of helper thread 1003). It will be
appreciated that the helper threads are not limited to three helper threads, more or
less helper threads may be included. The helper threads may be spawned by a
spawn instruction and the thread execution may resumes after the spawn
instruction.

[0081] The threads are created by the compiler during a thread creation phase,
such as those operations shown in Figures 5-8. According to one embodiment,
the compiler creates the threads in the thread creation phase and allocates
resources for the threads in a subsequent thread resource allocation phase.
Dynamically and typically, a helper thread is spawned when its parent thread
stalls. Exemplary configuration 1000 may happen during a page fault or a level 3
(L3) cache miss.

[0082] It is crucial that a thread can only share incoming registers (or
resources in general) with a parent thread. For.example, referring to Figure 10,
when main thread 1001 needs a register, it writes a value to register R10 before it
spawns helper thread 1002 and uses register R10 after the helper thread 1002
terminates. Neither the helper thread 1002 nor any of its children (in the example,
helper thread 1003 is the only children of helper thread 1002, and helper threads
1002 and 1004 are children of the main thread 1001) can write to register R10.
Otherwise they would destroy the value in the main thread 1001. This would
result in incorrect program execution. To avoid this resource conflict, according
to one embodiment, the compiler may partition the resources statically or
dynamically.

[0083] According to one embodiment, the compiler allocates resources for the
helper threads and the main thread in a bottom-up order. Figure 11 is a block
diagram illustrating an exemplary pseudo code for allocating resources for the
threads according to one embodiment. That is, in the exemplary algorithm 1100,

the compiler allocates all resources for the helper threads in a bottom-up order

25

WO 2005/033931 PCT/US2004/032461

(block 1101) and thereafter allocates resources for the main thread (block 1 102)
based on the resources used by the helper threads to avoid resource conflicts.
[0084] For the purposes of illustration, the resources used the threads are
assumed to be the hardware registers. However, similar concepts may be applied
to other resources apparent to one with ordinary skill in the art, such as memory
or interrupt. Referring to Figure 10, the compiler partitions the registers
dynamically by walking bottom up from the lead thread of a thread chain. In this
example, helper thread 1003 is a leaf thread in the first thread chain including
helper thread 1002. Helper thread 1004 is a leaf thread in the second thread
chain. The compiler records the register allocation in each helper thread in a data
structure, such as a resource table similar to the exemplary resource table 1200 of
Figure 12. Then the parent thread reads the resource allocation of its children
thread and does its allocation and reports it in its resource table.

[0085] Figure 12 is a block diagram illustrating an exemplary resource data
structure according to one embodiment. Exemplary data structure 1200 may be
implemented as a table stored in a memory and accessible by a compiler.
Alternatively, exemplary data structure 1200 may be implemented in a database.
In one embodiment, exemplary data structure 1200 includes, but not limited to,
written resources 1202 and live-in resources used by the respective thread
identified via thread ID 1201. Other configurations may exist.

[0086] - Referring to Figures 10 and 12, according to one embodiment, at the
beginning, the registers of helper thread 1003 (e.g., the thread having the most
bottom order in a bottom-up scheme) are allocated. The live-in values are V5 and
V6 and assuming they are assigned to registers R2 and R3 respectively. Also, V7
gets register R4 assigned and V9 gets register RS assigned. The resource table for
helper thread 1003 includes live-in = ((V5, R2), (V6, R3)) and register written =
(R4, R5), as shown in Figure 12. In helper thread 1002, the compiler replaces V5
with R2 and V6 with R3 during the allocation and marks register R4 and RS

(written in helper thread 1003) as live at the spawn instruction. This prevents

26

WO 2005/033931 PCT/US2004/032461

register usage of R4 or RS across the spawn point of helper thread 1003 and thus
prevents a resource conflict between helper thread 1002 and helper thread 1003.
For helper thread 1002, the live-in values are V3 and V4 and are assigned to
register R6 and R7 respectively. When V8 and V20 are assigned to registers R8
and R9 respectively, the resource table for helper thread 1002 includes live in =
((V3,R6), (V4, R7)) and written registers = (R2, R3, R4, R5, R8, R9), as shown
in Figure 12. The written registers are the live-in registers for helper thread 1003
(e.g., R2 and R3), the written registers in helper thread 1003 (e.g., R4 and R5) and
the registers written in helper thread 1002 (e.g., R8 and R9). Then the compiler
allocates the registers for helper thread 1004. When the registers are allocated for
all the helper threads, it allocates the registers for the main thread 1001.

[0087] In addition, according to one embodiment, when the compiler runs out
of registers, it can delete one or more helper threads within the chain. This can
happen for example, when the main thread runs out of registers, because the
helper thread chain is too deep or a single helper thread needs too many registers
and the main thread has to spill/fill registers. The compiler can apply heuristics to
either allow certain number of spills or delete the entire helper thread chain or
some threads in the thread chain. An alternative to deleting helper thread is to
explicitly configure the weight of context save/restore, so that upon context
switch, the parent’s live registers that could be written by the helper thread’s
execution can be saved automatically by the hardware. Even though this context
switch is relatively expensive, potentially such case is infrequent case. Moreover,
such fine-grain context switch is still of much low overhead compared to full-
context switch as used in most OS-enabled thread switch or a traditional hardware
based full-context thread switch.

[0088] Furthermore, when there is a conflict for live-in registers, for example,
if helper thread 1003 overwrote a live-in register (e.g., mov v5 = ...) and this
register is also used in helper thread 1002 after the spawn of helper thread 1003,

there would be a resource conflict for the register assigned to v5 (in this example,

27

WO 2005/033931 PCT/US2004/032461

register R2). To handle this information, the compiler would use availability
analysis and insert compensation code, such as inserting a mov v5’=v5 instruction
before spawning helper thread 1003 and replacing v5 by v5° after the spawn.
[0089] Figure 13 is a flow diagram illustrating an exemplary process for
allocating resources for threads according to one embodiment. Exemplary
process 1300 may be performed by a processing logic that may comprise
hardware (circuitry, dedicated logic, etc.), software (such as is run on a general -
purpose computer system or a dedicated machine), or a combination of both. In
one embodiment, exemplary process 1300 includes selecting, during a
compilation of a code having one or more threads executable in a data processing
system, a current thread having a most bottom order, determining resources
allocated to one or more child threads spawned from the current thread, and
allocating resources for the current thread in consideration of the resources
allocated to the current thread’s one or more child threads to avoid resource
conflicts between the current thread and its one or more child threads.

[0090] Referring to Figure 13, at block 1301, processing logic identifies one
or more threads, including a main thread and its helper threads, and selects a
thread having the most bottom order as a current thread. The threads may be
identified using a thread dependency graph created during the thread creation
phase of the compilation. At block 1302, the processing logic retrieves resource
information of any child thread, which may be spawned from the current thread.
The resources information may be obtained from a data structure corresponding to
the child threads, such as resource table 1200 of Figure 12. At block 1303, if
there is no more resources available, the processing logic may delete one or more
threads from the chain and restart over again (block 1309). If there is more
resource available, at block 1304, the processing logic allocates resources for the
current thread in consideration of resources used by its child threads without
causing resource conflicts. Thereafter, at block 1305, the processing logic

updates the resources allocated to the current thread in the associated resource

28

WO 2005/033931 PCT/US2004/032461

table, such as resource table 1200. The above processes continue until no more
helper threads (e.g., child threads of the main thread) remained (blocks 1306 and
1308). Finally, at block 1307, the processing logic allocates resources for the
main thread (e.g., a parent thread for all helper threads) based on the resource
information of all the helper threads without causing resource conflicts. Other
operations may be included.

[0091] The above described techniques have been tested against a variety of
benchmark tools based on a system similar to the following configurations:

A Processor with Hyper-Threading Technology

Threading |2 logical processors.

Trace cache |12k micro-ops. 8-way associative.
6 micro-ops per line.

8k bytes. 4-way associative. 64-byte line
L1 D cache Size_yt Y yt

2-cycle integer access. 4-cycle FP access.

L2 unified |256k bytes. 8-way associative.
cache 128-byte line size. 7-cycle access latency.

Load buffers |48
Store buffers |24

The variety of benchmark tools include at least one of the following:

Benchmark Description Input Set
Traverses nearest bodies .
nbody_walker from any node in Nbody 20k bodies
graph
: Computes Minimal
mst Spanning Tree for data 3k nodes
clustering
20k 5-
em3d Solves electromagnetic degree
propagation in 3D
nodes
health Hierarchical database 5 levels
modeling health care system
Integer programming)
mcf algorithm used for bus Lite
scheduling

29

WO 2005/033931 PCT/US2004/032461

Figure 14A is a chart illustrating an improvement of performance by the helper
thread on nbody_walker benchmark utility. Figure 14B is a chart illustrating a
speedup result of nbody walker at a given value of synchronization period.
Figure 14C is a chart illustrating an automatic process versus a manual process
with respect to a variety of benchmark. Figure 14D is chart illustrating an
improvement of an automatic process over a manual process using nbody_walker
at a given synchronization period.

[0092] Thus, methods and apparatuses for thread management for multi-
threading have been described. In the foregoing specification, the invention has
been described with reference to specific exemplary embodiments thereof. It will
be evident that various modifications may be made thereto without departing
from the broader spirit and scope of the invention as set forth in the following
claims. The specification and drawings are, accordingly, to be regarded in an

illustrative sense rather than a restrictive sense.

30

WO 2005/033931 PCT/US2004/032461

CLAIMS
What is claimed is:
1. A method, comprising:
identifying a region of a main thread that likely has one or more
delinquent loads, the one or more delinquent loads representing
loads which likely suffer cache misses during an execution of the
main thread;

analyzing the region for one or more helper threads with respect to the
main thread; and

generating code for the one or more helper threads, the one or more helper
threads being ‘s'p'eculative'iy executed in parailel with the main
thread to perform one or more tasks for the region of the main
thread. ‘ ‘

2. The method of claim 1, wherein identifying the region éomprises:
generating one or more profiles for cache misses of the region; and
analyzing the one or more profiles to identify one or more candidates for

thread-based prefetch operations. A

3. The method of claim 2, wherein generating one or more profiles comprises:

executing an application associated with the main thread with debug
information; and

sampling cache misses and accumulating hardware counter for each static
load of the region to generate the one or more profiles for each
cache hierarchy.

4. The method of claim 2, wherein analyzing the one or more profiles

comprises:
correlating the one or more profiles with respective source code based on
the debug information; and
identifying top loads that contribute cache misses above a predetermined

level as the delinquent loads.

31

WO 2005/033931 PCT/US2004/032461

5. The method of claim 1, wherein analyzing the region comprises:
building a dependent graph that captures data and control dependencies of
the main thread; and
performing a slicing operation on the main thread based on the dependent
graph to generate the helper threads.

6. The method of claim 5, wherein analyzing the region further comprises:

performing a scheduling between the main thread and the helper threads;
and

determining a communication scheme between the main thread and the
helper threads.

7. The method of claim 6, wherein analyzing the region further comprises
determining a synchronization period for the helper threads to synchronize
the main thread and the helper threads, each of the helper threads
performing its tasks within the synchronization period.

8. A machine-readable medium having executable code to cause a machine to
perform a method, the method comprising:

identifying a region of a main thread that likely has one or more
delinquent loads, the one or more delinquent loads representing
loads which likely suffer cache misses during an execution of the
main thread;

analyzing the region for one or more helper threads with respect to the
main thread; and

generating code for the one or more helper threads, the one or more helper
threads being speculatively executed in parallel with the main
thread to perform one or more tasks for the region of the main
thread.

9. The machine-readable medium of claim 8, wherein identifying the region
comprises:

generating one or more profiles for cache misses of the region; and

32

WO 2005/033931 PCT/US2004/032461

10.

11.

12.

13.

14.

analyzing the one or more profiles to identify one or more candidates for
thread-based prefetch operations.
The machine-readable medium of claim 9, wherein generating one or more
profiles comprises:
executing an application associated With the main thread with debug
information; and
sampling cache misses and accumulating hardware counter for each static
load of the region to generate the one or more profiles for each
cache hierarchy.
The machine-readable medium of claim 9, wherein analyzing the one or
more profiles comprises:
correlating the one or more profiles with respective source code based on
the debug information; and
1dentifying top loads that contribute cache misses above a predetermined
level as the delinquent loads.
The machine-readable medium of claim §, wherein analyzing the region
comprises:
building a dependent graph that captures data and control dependencies of
the main thread; and
performing a slicing operation on the main thread based on the dependent
graph to generate the helper threads.
The machine-readable medium of claim 12, wherein analyzing the region
further comprises:
performing a scheduling between the main thread and the helper threads;
and
determining a communication scheme between the main thread and the
helper threads.
The machine-readable medium of claim 13, wherein analyzing the region

further comprises determining a synchronization period for the helper

33

WO 2005/033931 PCT/US2004/032461

threads to synchronize the main thread and the helper threads, each of the
helper threads performing its respective tasks within the synchronization
period.
15. A data processing system, comprising:
a processor capable of performing multi-threading operations;
a memory coupled to the processor; and
a process executed by the processor from the memory to cause the
processor to
identify a region of a main thread that likely has one or more
delinquent loads, the one or more delinquent loads
representing loads which likely suffer cache misses during
an execution of the main thread,
analyze the region for one or more helper threads with respect to
the main thread, and
generate code for the one or more helper threads, the one or more
helper threads being speculatively executed in parallel with
the main thread to perform one or more tasks for the region
of the main thread.
16. The data processing system of claim 15, wherein the process is executed by
a compiler during a compilation of an application.
17. A method, comprising:
executing a main thread of an application in a multi-threading system; and
spawning one or more helper threads from the main thread to perform one
or more computations for the main thread when the main thread
enters a region having one or more delinquént loads, code of the
one or more helper thread being created during a compilation of
the main thread.
18. The method of claim 17, further comprising:

creating a thread pool to maintain a list of thread contexts; and

34

WO 2005/033931 PCT/US2004/032461

19.

20.

21.

22.

23.

allocating one or more thread contexts from the thread pool to generate the
one or more helper threads.
The method of claim 18, further comprising:
terminating the one or more helper threads when the main thread exits the
region; and
releasing the thread contexts associated with the one or more helper
threads back to the thread pool.
The method of claim 17, further comprising determining a time period for
each of the helper threads, each of the helper threads being terminated when

the respective time period expires.

"The method of claim 20, wherein each of the helper threads terminates when

the time period expires even if the respective helper thread has not been
accessed by the main thread.
The method of claim 17, further comprising discarding results generated by
the one or more helper threads when the main thread exits the region, the
results not being reused by another region of the 1main thread.
A machine-readable medium having executable code to cause a machine to
perform a method, the method comprising:
executing a main thread of an application in a multi-threading system; and
spawning one or more helper threads from the 1main thread to perform one
or more computations for the main thread when the main thread
enters a region having one or more delinnquent loads, code of the
one or more helper thread being created during a compilation of

the main thread.

24. The machine-readable medium of claim 23, wherein the method further

comprises:
creating a thread pool to maintain a list of thread contexts; and
allocating one or more thread contexts from the thread pool to generate the

one or more helper threads.

35

WO 2005/033931 PCT/US2004/032461

25. The machine-readable medium of claim 24, wherein the method further
comprises:
terminating the one or more helper threads when the main thread exits the
region; and
releasing the thread contexts associated with the one or more helper
threads back to the thread pool.

26. The machine-readable medium of claim 23, wherein the method further
comprises determining a time period for each of the helper threads, each of
the helper threads beingterminated when the respective time period expires.

27. The machine—readable medium of claim 26, wherein each of the helper
threads terminates when the time period expires even if the respeptive helper
thread has not been accessed by the main thread. 4

28. The machine-readable medium of claim 23, wherein the method further
comprises discarding results generated by the one or more helper threads
when the main thread exits the region, the results not being reused by
another region of the main thread.

29. A data processing system, comprising:"

a processor capable of performing multi-threading operations;
a memory coupled to the processor; and
a process executed by the processor from the memory to cause the
processor to
execute a main thread of an application in a multi-threading
system, and
spawn one or more helper threads from the main thread to perform
one or more computations for the main thread when the
main thread enters a region having one or more delinquent
loads, code of the one or more helper thread being created

during a compilation of the main thread.

36

WO 2005/033931 PCT/US2004/032461

30. The data processing system of claim 29, wherein code of the one or more
helper threads are generated by a compiler during a compilation of an

application.

37

WO 2005/033931

104

1/15

107

105

PCT/US2004/032461

- 106

Microprocessor

Volatile
RAM

——————

1

Nonvolatile |
Memory I

i

l({e.g. hard drive)

-

A

Bus

’ \
\

J

\

Display Controller
& Display Device

1/0
Controller(s)

\ 108

A
r

110
Device(s)
(e.g mouse, or
keyboard, or
modem, or
network interface,
or printer)

~ 109

110

WO 2005/033931 PCT/US2004/032461

2/15
200
240
202
242 N N
Memory
Data$ | >‘ Data r“ 212
210
1$ - > Instructions
j \
244

221 \ ;

[— N

y Front End Processor
: 204

280
> Cache

[ER—
\ 225

A LN

Y

Execution Core
230

Fig. 2

WO 2005/033931

PCT/US2004/032461

Memory
302
Data
342
Instructions 308
Compiler
N
|
\ .
N
N

3/15
300
Processor
304
Logical
Processor(s)
| 350
i
\ 1
\
\
\
\
N \
N \
N \
N \
N N \
\
AN
N
NN
NA
Y
T
-~ ~ \\
Slicer
Delinquent 322
Load Identifier Compiler
320 308

Code Generator
328

Parallelization
Analyzer
324

WO 2005/033931

PCT/US2004/032461
4/15

Thread Thread Thread Thread éQ_Q
401 402 403 404

Ny

/

Thread Switch /

— |

Logical Processor Logicai
Processor Processor

Fig. 4A
(Prior Art)

450

Helper Helper Helper Main -

Thread Thread Thread Thread
451 452 453 454

Thread Switch

Logical ical
gic Processor Log
Processor Processor

Fig. 4B

WO 2005/033931 PCT/US2004/032461
5/15

(St) 500

A

Create an internal thread pool to maintain a list of logical thread
contexts which may be used by one or more speculative threads
(e.g., helper threads)

501

Y

Create a new thread team associated with a non-speculative thread
(e.g., a main ;hread) before the non-speculative thread enters a
precomputation region (e.g., delinquent load region), the new thread
team initially containing only the calling thread
502

Y

Spawn one or more speculative threads from the thread pool once
the non-speculative thread enters the precomputation region, the one
or more speculative threads performing one or more precomputations

(e.g., prefetching) for the non-speculative thread

L - 503

Y

Execute at least a portion of code in the non-speculative thread,
using in part at least a portion of data provided (e.g., prefetched or
precomputed) by the one or more speculative threads (e.g., helper

threads)
504

Y -

Terminate the one or more speculative threads associated with the
non-speculative thread and release the logical thread contexts
associated with the terminated speculative threads back to the thread
pool for future use
505

End Fig. 5

WO 2005/033931 PCT/US2004/032461
) 6/15

— 600
Front end module to provide a common representation for
a variety of programming languages (e.g., C/C++, or
Fortran 95)
601

Y

Profile module
602

h 4

Interprocedural Analysis & Optimization module
603

A

AutoHelper (e.g., compiler)
604

Y

Global Scalar Optimizations module
605

Y

Backend module to generate binaries for a variety of
platforms, such as 1A-32 and Itanium platforms
606

WO 2005/033931 PCT/US2004/032461

7/15
() 100
a
— Y -

Identifying delinquent load on a main thread (e.g., non-
speculative thread) including, for example, generating
profiles and analyzing profiles
701

A

Performing parallelization analysis for helper threads (e.g.,
speculative threads) including, for example, generating
dependent graph, slicing, scheduling, communication, and
synchronization
702

Perform code generation for helper threads including, for
example, generating thread graph, communication, and
synchronization
703

Allocate resources, such as hardware registers or
memory, for each helper threads and the main thread to
avoid resource conflicts
704

Y

End

Fig. 7

WO 2005/033931

8/15

Building a dependent graph that captures both data and control
dependences of the main thread (e.g., non-speculative thread)
801

Perform slicing of the main thread using the dependent graph
802 .

Y

Perform scheduling across the threads to overlap multiple prefetches
even if one thread stalls
803

Y

Select a communication scheme (e.g., communication-based
scheme or computation-based scheme) for the threads
804

Y

Determine a synchronization period for the threads to synchronize
with each other
805

\ S

End)

Fig. 8

PCT/US2004/032461

800

WO 2005/033931

9/15

void foo_main(LIST *p)

{ while (p'= NULL) {

do_work1(p->datal, 10);
do_work2(p->data2, 20);

p= p->next;
}

}
}

(I) Serial code

void foo_main(LIST *p)

{ mc = X; M=1; _ssp_begin();
_ssp_spawn_helper(... helper_foo, ...p...);
while (p '=NULL) {

do_work1(p->datal, 10);
do_work2(p->data2, 20);
mc=mc + 1;
if (mc>M*X) {

M++; _ssp_post(helper_tid);
}
P= p->next;

}
_ssp_end();
} (I) Main thread code

T-entry foo_helper: captureprivate(p)
{hc=0; H=1; local_p=p;
while (local_p!= NUL:L) {
non_faulting_load(local_p->datal);
non_faulting_load(local_p->data2);
hc=hc+1;
if (he > H*X && hec > mc)
{ H++; _ssp_wait(main_tid); }
else if (hc <=mc) {
(he, local_p, H) = catchup(mc, p, M)

local_p = local_p->next;

}

T-ret } (1) Helper thread code

PCT/US2004/032461

Fig. 9A

902

Fig. 9B

903

Fig. 9C

PCT/US2004/032461

WO 2005/033931

10/15

oL "Bid4

[TTA] =84 BPI
TTIA'OTA=TTIA Ppe

<

00} € praay) 13dapRy

[2A)=6A 8PT

9Aa’ga=LA PPE

< 8a 'gA=QzA ppe

— zay umeds

€00t 7 praiy) apy [za]=8A 8PT
vAa'Ea=zA PPE |«

SO0T [peaJy) Jadpy

0001

TpA 'OPA=TVPA PPE
€3y umeds
=0pA AOW
=TPA AOW

TEA'0EA=TEA DDE
tay umeds
=QEA AOW
m=TEA AOW

100}

pyuay) ulsw

PCT/US2004/032461

WO 2005/033931

11/15

L1 Bidg

aNOd

‘OSYALSIOTI ONINIVINTY ALVDOTIV

{0SYALSIONT HLVDOTIVEId

‘ONMVYIS HOVH LV QVEIHL NTIATIHD ¥04 19V gD¥N0STY avad
0d AVIMHL NIVIA 404

c0Li

JY0AANg
_ B YOJANd
‘) 219VL ZDYNO0SHY dIIdM
{O)SYALSIOTT DONINIVINEY dLVIOTIV
{OSYALSIOTT LLVOOTIVIId
{OavVEIHL NTUATHD ¥0d g719v.L O¥N0STY avay
MA@IO dN WOLLOE NI AVIYHL HOVIIO
NIVHO QVAYHL HOVAYOd

LOLL

TTY

WO 2005/033931 PCT/US2004/032461

12/15
1200
Thread ID 1201 Written Resources 1202 Live-in Resources 1203
B S
(V5, R2)
Helper Thread 2 R4, R5 (V6. R3)
R2, R3, R4, (V3, R6)
Helper Thread 1 R5, R8, RY (V4, R7)

Helper Thread 3

Helper Thread n

Main Thread

Fig. 12

WO 2005/033931

13/15

(Start ’

Y

Delete one or more threads
1309

'

Identify one or more threads, including
a main thread and its helper threads
and select a thread having the most

bottom order
1301

PCT/US2004/032461

1300

\

Retrieve resource information (e.g.,
from a resource table) of any child
thread of the currently selected thread
1302

Yes Out of resource ?>
1303

Allocate resources for the current
thread based on the retrieved resource
information of its child threads without
causing conflicts
1304

A

Update resource information (e.g., in a
corresponding resource table) for the
current thread
1305

More thread ?
1306

Select a next thread having
the most bottom order
1308

Allocate resources for the main thread
based on the resource information of
all the helper threads
1307

End

Fig. 13

WO 2005/033931 PCT/US2004/032461
14/15

Fig. 14A

Speedup

1.4

1.38

1.36

1.34

1.32

1.3

1.28

2 5 25 50 100 150 200 250 300

Period

Fig. 14B

WO 2005/033931 PCT/US2004/032461
15/15

Speedup

1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

pmenual }
gaufo ‘

Fig. 14C

Speedup

1.60 .
1.40

1.20 | - -8 - '
.00 |~ }—1 }— - = 1

0.80 |~ — i
O Auto

0.60 |~ L 5 B2
0.40 [—J I L
0.20 | L1
0.00 L]

{; Manual

2 5 25 50 100 150 200 250 300
Period

Fig. 14D

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

