(54) 发明名称
放疗补偿器的制作方法及实施该方法的数控热熔机

(57) 摘要
本发明公开了一种放疗补偿器的制作方法，包括如下步骤：使用放射治疗计划系统计算出射野补偿器的数据文件；根据上述数据文件将该射野补偿器分成上方的不规则野挡块和下方的剂量调整挡块两部分，其中不规则野挡块为一个中间镂空且中间镂空部分的表面将交于底部外一点的长方体挡块，剂量调整挡块为不同位置厚度不同且整体面积不小于不规则野挡块中间镂空部分面积的挡块；将不规则野挡块和剂量调整挡块的数据文件分别输入计算机处理系统中并生成加工程序，由加工设备按照该加工程序加工制造出不规则野挡块和剂量调整挡块；将不规则野挡块和剂量调整挡块从上至下一起固定在加速器托架板上，制成一个放疗补偿器。本发明简单快速、投入成本低、耗材少。
1. 一种放射补偿器的制作方法，其特征在于该方法包括如下步骤：
 (1)、使用放射治疗计划系统计算出射野补偿器的数据文件；
 (2)、根据上述数据文件将该射野补偿器分成上方的不规则野挡块和下方的剂量调整挡块两部分，其中所述不规则野挡块为一个中间镂空且中间镂空部分的表面将交于顶部外一点的长方体挡块，所述剂量调整挡块为不同位置厚度不同且整体面积不小于不规则野挡块中间镂空部分面积的挡块；
 (3)、将不规则野挡块数据文件输入计算机处理系统中并生成加工程序，由加工设备按照该加工程序加工制作出不规则野挡块；
 (4)、将剂量调整挡块的数据文件输入计算机处理系统中并生成加工程序，由加工设备按照该加工程序加工制作出剂量调整挡块；
 (5)、将不规则野挡块和剂量调整挡块从上至下一起固定在加速器托架板上，制成一个放射补偿器。

2. 根据权利要求1所述放射补偿器的制作方法，其特征在于所述步骤(2)中剂量调整挡块的面积大于不规则野挡块中间镂空部分的面积，所述不规则野挡块相应部分设有一沉台。

3. 根据权利要求1所述放射补偿器的制作方法，其特征在于所述步骤(3)中加工制作出不规则野挡块的方法包括如下步骤：
 (1)、将不规则野挡块的数据文件输入计算机处理系统中并生成数控加工程序；
 (2)、用泡沫材料制出一个外形不小于不规则野挡块中间镂空部分的泡沫方块；
 (3)、数控切割机根据上述数控加工程序将泡沫方块切割制成不规则野挡块的阴模；
 (4)、将上述不规则野挡块的阴模固定，用低熔点合金对其进行浇铸成型，得到不规则野挡块。

4. 根据权利要求1所述放射补偿器的制作方法，其特征在于所述步骤(4)中加工制作出剂量调整挡块的方法包括如下步骤：
 (1)、将剂量调整挡块的数据文件输入计算机处理系统中并生成数控加工程序；
 (2)、用低熔点合金浇铸出一个不小于剂量调整挡块的金属挡块；
 (3)、数控热熔机根据数控加工程序对上述金属挡块的逐个位置进行加热熔化，得到剂量调整挡块。

5. 根据权利要求1所述放射补偿器的制作方法，其特征在于所述步骤(4)中加工制作出剂量调整挡块的方法包括如下步骤：
 (1)、将剂量调整挡块的数据文件输入计算机处理系统中并生成数控加工程序；
 (2)、用泡沫材料制出一个不小于剂量调整挡块的泡沫方块；
 (3)、数控热熔机根据数控加工程序对上述泡沫方块的逐个位置进行加热熔化，得到剂量调整挡块的阴模；
 (4)、将上述剂量调整挡块的阴模固定，用低熔点铅对其进行浇铸成型，得到剂量调整挡块。

6. 根据权利要求1所述放射补偿器的制作方法，其特征在于所述步骤(3)中加工制作出不规则野挡块的方法包括如下步骤：
 (1)、将不规则野挡块的数据文件输入计算机处理系统中并生成 3D 打印程序；
（2）3D 打印机根据上述 3D 打印机打印出不规则野挡块。
7. 根据权利要求 1 所述放疗补偿器的制作方法，其特征在于：所述步骤（4）中加工制造出不规则野挡块的方法包括如下步骤：
（1）将剂量调整挡块的数据文件输入计算机处理系统中生成 3D 打印程序；
（2）3D 打印机根据上述 3D 打印机程序打印出剂量调整挡块。
8. 一种加工权利要求 4 或 5 所述剂量调整挡块的数控热熔机，其特征在于：该热熔机包括 X 轴传动机构（1）、两 Y 轴传动机构（2）、Z 轴传动机构（3）、Z 轴伸出杆（4）、热熔头（5）、基台（6）、翻转平台（7）、旋转平台（8）、夹紧机构（9）和控制中心，所述 X 轴传动机构（1）可沿 Y 轴前后移动的垂直安装在两 Y 轴传动机构（2）之间，所述 Z 轴传动机构（3）可沿 Z 轴左右移动的竖直安装在 X 轴传动机构（1）上，所述 Z 轴伸出杆（4）可沿 Z 轴上下移动的安装在 X 轴传动机构（1）上并与 Y 轴传动机构（2）相平行，所述热熔头（5）安装在 Z 轴伸出杆（4）的伸出端上，所述基台（6）垂直安装在热熔头（5）下方的两 Y 轴传动机构（2）之间，所述翻转平台（7）通过一平行于 Y 轴传动机构（2）的转轴（71）可翻转的安装在所述基台（6）上，所述旋转平台（8）通过一垂直于翻转平台（7）的中心轴（81）可旋转的平行安装在所述翻转平台（7）上，所述夹紧机构（9）安装在所述旋转平台（8）上，所述控制中心控制各机构、各平台、热熔头（5）根据加工程序依次动作。
放射补偿器的制作方法及实施该方法的数控热熔机

技术领域
[0001] 本发明涉及一种放射补偿器的制作方法。

背景技术
[0002] 补偿器是放疗的一种重要辅助装置，是由金属补偿块和相应的专用托盘构成，它可改变射野内剂量分布，也是实现调强放疗的一种方法，而采用补偿器实现调强放疗和其它方法相比，可以获得更好的剂量分布、剂量计算简单、易于验证、治疗简便。
[0003] 然而，目前临床上制作补偿器的主要方法是使用自动铣磨机，直接加工出一个完整的金属补偿块；或先加工出该金属补偿块的阴模，再利用阴模制作补偿器。由于放疗补偿器形状复杂，整体加工不仅制造难度大，还要求临床工作人员对自动铣磨机的使用要有一定的技术支持，对临床工作人员来说较为复杂，使用不是很方便，因此一般需要委托医院以外的加工单位加工，因此相对的制作时间长，成本高。

发明内容
[0004] 本发明的目的在于提供一种简单、快速、投入成本低的放射补偿器的制作方法及实施该方法的数控热熔机。
[0005] 本发明提供的这种放射补偿器的制作方法，包括如下步骤：
（1）使用射野治疗计划系统计算出射野补偿器的数据文件；
（2）根据上述射野补偿器的数据文件将该射野补偿器分成上方的不规则野挡块和下方的剂量调整挡块两部分，其中所述不规则野挡块为一个中间镂空且中间镂空部分的表面将交于顶部外一点的长方体挡块，所述剂量调整挡块为不同位置厚度不同且整体面积不小于不规则野挡块中间镂空部分面积的挡块；
（3）将不规则野挡块的数据文件输入计算机处理系统中并生成加工程序，由加工设备按照该加工程序加工制造出不规则野挡块；
（4）将剂量调整挡块的数据文件输入计算机处理系统中并生成加工程序，由加工设备按照该加工程序加工制造出剂量调整挡块；
（5）将不规则野挡块和剂量调整挡块从上至下一起固定在加速器托架板上，制成一个放射补偿器。
[0006] 为了方便本发明中不规则野挡块和剂量调整挡块可一起固定在加速器托架板上，所述步骤（2）中剂量调整挡块的面积大于不规则野挡块中间镂空部分的面积，所述不规则野挡块相应部分设有一沉台。
[0007] 所述步骤（3）中加工制造出不规则野挡块的方法包括如下步骤：
（1）将不规则野挡块的数据文件输入计算机处理系统中并生成数控加工程序；
（2）用泡沫材料制出一个外形不小于不规则野挡块中间镂空部分的泡沫方块；
（3）数控切割机根据上述数控加工程序将泡沫方块切割制成不规则野挡块的阴模；
（4）将上述不规则野挡块的阴模固定，用低熔点合金对其进行浇铸成型，得到不规则
所述步骤（4）中加工制造出剂量调整挡块的方法包括如下步骤；
（1）、将剂量调整挡块的参数文件输入计算机系统中并生成数表加工程序；
（2）、用低熔点合金浇铸出一个不小于剂量调整挡块的金属挡块；
（3）、数表热熔机根据数表加工程序对上述金属挡块的逐个位置进行加热熔化，得到剂量调整挡块。

所述步骤（4）中加工制造出剂量调整挡块的方法包括如下步骤；
（1）、将剂量调整挡块的参数文件输入计算机系统中并生成数表加工程序；
（2）、用泡沫材料制成一个不小于剂量调整挡块的泡沫方块；
（3）、数表热熔机根据数表加工程序对上述泡沫方块的逐个位置进行加热熔化，得到剂量调整挡块的阴模；
（4）、将上述剂量调整挡块的阳模固定，用低熔点铅对其进行浇铸成型，得到剂量调整挡块。

所述步骤（3）中加工制造出不规则野挡块的方法包括如下步骤；
（1）、将不规则野挡块的参数文件输入计算机系统中并生成数表程序；
（2）、3D 打印机根据上述 3D 打印机打印出不规则野挡块。

所述步骤（4）中加工制造出不规则野挡块的方法包括如下步骤；
（1）、将剂量调整挡块的参数文件输入计算机系统中并生成 3D 打印程序；
（2）、3D 打印机根据上述 3D 打印机程序打印出剂量调整挡块。

本发明提供的加工所述剂量调整挡块的数表热熔机，包括 X 轴传动机构、Y 轴传动机构、Z 轴传动机构、X 轴伸杆、热熔头、基台、翻转平台、旋转平台和夹紧机构，所述 X 轴传动机构可沿 Y 轴前后移动的垂直安装在 Y 轴传动机构之间，所述 Z 轴传动机构可沿 X 轴左右移动的垂直安装在 X 轴传动机构上，所述 Z 轴伸杆可沿 Z 轴向下移动的安装在 X 轴传动机构上并与 Y 轴传动机构相平行，所述热熔头安装在 Z 轴伸杆的伸出端上，所述基台垂直安装在热熔头下方的两 Y 轴传动机构之间，所述翻转平台通过一平行于 Y 轴传动机构的转轴可翻转的安装在所述基台上，所述旋转平台通过一垂直于翻转平台的中心轴旋转的平行安装在所述翻转平台上，所述夹紧机构安装在所述旋转平台上，所述控制中心控制各机构的各平台、热熔头根据加工程序依次动作。

本发明将一个完整的射野补偿器分成各部分形状相对简单的不规则野挡块和剂量调整挡块两部分，其中不规则野挡块为一个中间镂空的长方体挡块，中间镂空部分的表面延长将交于一点，剂量调整挡块为不同位置厚度不同的挡块，由加工设备分别制造，最后一起安装在托架板上即可。本发明简单快速、投入成本低、耗材少，可在医院科室内部制作补偿器，适合中小型医院使用，可广泛应用于医疗领域。

附图说明
图 1 为本发明射野补偿器分成两部分的结构示意图。
图 2 为本发明射野补偿器不规则野挡块的结构示意图。
图 3 为图 1A-A 处射野补偿器剂量调整挡块的结构示意图。
图 4 为本发明数表热熔机的结构示意图。
具体实施方式

【0018】本发明所述放疗补偿器的制作方法，包括如下步骤：

（1）、使用放射治疗计划系统计算出射野补偿器的数据文件；

（2）、根据上述射野补偿器的数据文件将该射野补偿器分成上方的不规则野挡块和下方的剂量调整挡块两部分，如图1所示。其中不规则野挡块为一个中间镂空且中间镂空部分的表面将交于顶部外一点的长方体挡块，如图2所示；剂量调整挡块为不同位置厚度不相同且整体面积不小于不规则野挡块中间镂空部分面积的挡块，如图3所示；

（3）、将不规则野挡块的数据文件输入计算机处理系统中并生成加工程序，由加工设备根据该加工程序加工制造出不规则野挡块；

（4）、将剂量调整挡块的数据文件输入计算机处理系统中并生成加工程序，由加工设备根据该加工程序加工制造出剂量调整挡块；

（5）、将不规则野挡块和剂量调整挡块从上至下一起固定在加速器托架板上，制成一个放疗补偿器。

【0019】从图1和图2可以看出，当在本发明步骤（2）中剂量调整挡块的面积大于不规则野挡块中间镂空部分的面积时，在不规则野挡块底部的相应部分设有一沉台。

【0020】在本发明步骤（3）中加工制造出不规则野挡块的方法包括如下步骤：

（1）、将不规则野挡块的数据文件输入计算机处理系统中并转换为数控切割机可以识别的文件格式，将该文件格式传输给数控切割机的控制中心，生成不规则野挡块中间镂空部分形状的数控加工程序；

（2）、用泡沫材料制出一个外形不小于不规则野挡块中间镂空部分的泡沫方块；

（3）、数控切割机根据上述数控加工程序将泡沫方块切割成不规则野挡块中间镂空部分的形状，形成不规则野挡块的阴模；

（4）、将上述不规则野挡块的阴模固定，用低熔点合金对其进行浇铸成型，得到不规则野挡块。

【0021】在本发明步骤（4）中加工制造出剂量调整挡块的方法包括如下步骤：

（1）、将剂量调整挡块的数据文件输入计算机处理系统中并转换为数控热熔机可以识别的文件格式，将该文件格式传输给数控热熔机的控制中心，生成剂量调整挡块的数控加工程序；

（2）、用低熔点铅浇铸出一个不小于剂量调整挡块的金属挡块；

（3）、数控热熔机根据数控加工程序对上述金属挡块的逐个位置进行加热熔化，得到剂量调整挡块。

【0022】在本发明步骤（4）中加工制造出剂量调整挡块的方法还可包括如下步骤：

（1）、将剂量调整挡块的数据文件输入计算机处理系统中并转换为数控热熔机可以识别的文件格式，将该文件格式传输给数控热熔机的控制中心，生成剂量调整挡块的数控加工程序；

（2）、用泡沫材料制出一个不小于剂量调整挡块的泡沫方块；

（3）、数控热熔机根据数控加工程序对上述泡沫方块的逐个位置进行加热熔化，得到剂量调整挡块的阴模；
（四）、将上述剂量调整挡块的阴模固定，用低熔点锡对其进行浇铸成型，得到剂量调整挡块。

【0023】本发明步骤（三）中加工制造出不规则野挡块的方法还可为如下步骤：

（1）、将不规则野挡块的数据文件输入计算机处理系统中并转换为 3D 打印机可以识别的文件格式，将该文件格式传输给 3D 打印机的控制中心，生成不规则野挡块的 3D 打印程序；

（2）、3D 打印机根据上述 3D 打印机打印出不规则野挡块。

【0024】本发明步骤（四）中加工制造出不规则野挡块的方法还可为如下步骤：

（1）、将剂量调整挡块的数据文件输入计算机处理系统中并转换为 3D 打印机可以识别的文件格式，将该文件格式传输给 3D 打印机的控制中心，生成剂量调整挡块的 3D 打印程序；

（2）、3D 打印机根据上述 3D 打印机程序打印出剂量调整挡块。

【0025】本发明中浇铸不规则野挡块阴模或剂量调整挡块的金属还可以为钨、铜、锡、钢或其他低硬度合金、其他低硬度合金。

【0026】从图 1 至图 3 可以看出，本发明制作剂量调整挡块的数控热熔机，包括 X 轴传动机构 1、Y 轴传动机构 2、Z 轴传动机构 3、Z 轴伸出机构 4、热熔头 5、基台 6、翻转平台 7、旋转平台 8、夹紧机构 9 和控制中心，X 轴传动机构 2 相互平行布置，X 轴传动机构 2 垂直安装在 Y 轴传动机构 2 之间，Z 轴传动机构 3 垂直安装在 X 轴传动机构 1 上，Z 轴伸出机构 4 垂直安装在 Y 轴传动机构 2 的安装在 X 轴传动机构 1 上，热熔头 5 安装在 Z 轴伸出机构 4 的伸出端上，基台 6 垂直安装在热熔头 5 下方的 Y 轴传动机构 2 之间，翻转平台 7 通过一平行于 Y 轴传动机构 2 的转轴 71 可翻转的安装在基台 6 上，旋转平台 8 通过一垂直于翻转平台 7 的中心轴 81 可旋转的平行安装在翻转平台 7 上，夹紧机构 9 安装在旋转平台 8 上。

【0027】该数控热熔机的使用过程如下：

1、将制作剂量调整挡块的金属挡块或制作剂量调整挡块阴模的泡沫方块安装在旋转平台 8 上，控制中心驱动夹紧机构 9 控制夹紧金属挡块或泡沫方块。

【0028】2、控制中心根据数控加工程序逐步控制旋转平台 8 在翻转平台 7 上旋转，翻转平台 8 在基台 6 上翻转。

【0029】3、控制中心再根据数控加工程序逐步控制 X 轴传动机构 1 在 Y 轴传动机构 2 之间沿 Y 轴前后移动，Z 轴传动机构 3 在 X 轴传动机构 1 上沿 Y 轴左右移动，Z 轴伸出机构 4 在 X 轴传动机构 1 上沿 Z 轴上下移动，使热熔头 5 与金属挡块或泡沫方块的指定位置接触对其进行加热熔化。

【0030】4、重复上述步骤 2 和步骤 3，完成整个金属挡块或泡沫方块该位置的加热熔化，得到剂量调整挡块或剂量调整挡块的阴模。