

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 November 2010 (18.11.2010)

(10) International Publication Number
WO 2010/131092 A1

(51) International Patent Classification:
C08J 3/24 (2006.01) *A61K 31/785* (2006.01)
C08F 8/00 (2006.01) *C08F 8/44* (2006.01)
C08F 26/02 (2006.01)

(21) International Application Number:
PCT/IB2010/001071

(22) International Filing Date:
10 May 2010 (10.05.2010)

(25) Filing Language: Italian

(26) Publication Language: English

(30) Priority Data:
MI2009A000816 12 May 2009 (12.05.2009) IT

(71) Applicant (for all designated States except US): LABORATORIO CHIMICO INTERNAZIONALE S.P.A. [IT/IT]; Via T. Salvini, 10, I-20122 Milano (IT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VILLANI, Flavio [IT/IT]; c/o Laboratorio Chimico Internazionale S.p.a., Via T. Salvini, 10, I-20122 Milan (IT). DE ANGELIS, Bruno [IT/IT]; c/o Laboratorio Chimico Internazionale S.p.A., Via B. Cellini, 20, I-20090 Segrate (IT). NARDI, Antonio [IT/IT]; c/o Laboratorio Chimico Internazionale S.p.a., Via B. Cellini, 20, I-20090 Segrate (MI) (IT). PATERNOSTER, Maria [IT/IT]; Via G. Pietra, 7, I-33100 Udine (IT).

(74) Agent: SANTORO, Tiziana; Marietti, Gislon e Trupiano S.r.l., Via Larga, 16, I-20122 Milan (IT).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

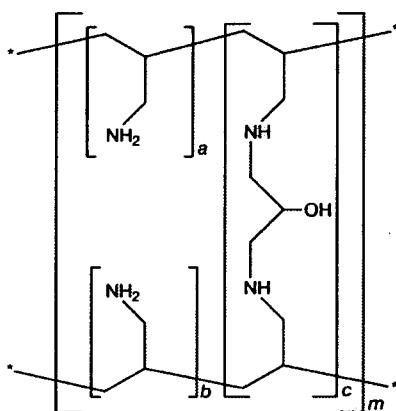
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

WO 2010/131092 A1

(54) Title: PROCESS FOR THE PREPARATION OF SEVELAMER


(57) Abstract: The present invention relates to a process for the preparation of sevelamer, in particular sevelamer hydrochloride and sevelamer carbonate/bicarbonate, by means of a process that allows sevelamer to be obtained with good yields and using conventional reactors, without requiring to use specific and expensive equipment.

“Process for the preparation of sevelamer”

Technical background

Sevelamer, or poly(allylamine-co-*N,N'*-diallyl-1,3-diamino-2-hydroxypropane), is a
5 polymer compound having the formula

wherein $a+b = 9$; $c = 1$; and m is variable,

Sevelamer is marketed as the hydrochloride salt under the trade name Renagel[®] for
10 controlling hyperphosphatemia (increase in the level of phosphates in the blood) in adult patients undergoing dialysis or hemodialysis. Recently, the sevelamer carbonate/bicarbonate salt, under the trade name Renvela[®], has also been placed on the market.

Different types of the synthesis of sevelamer are known, all substantially deriving
15 from cross-linking with high molecular weight polyallylamine epichlorohydrin.

Polyallylamine is a polymer compound known in the art with the CAS RN 71550-12-4 and is obtained by allylamine polymerization.

One of the major problems encountered during the synthesis of sevelamer is the production of a highly congealed and viscous reaction mass, which must be
20 adequately stirred and crumbled in order to obtain a final product in solid form.

Some patent documents describe the synthesis of sevelamer by reaction between an aqueous solution of polyallylamine and epichlorohydrin in an organic solvent, such as toluene or acetonitrile. The use of the organic solvent is necessary in order to process the congealed and difficult to process mass, as seen above.

US patent 6180754 in the name of The Dow Chemical Company, describes a process for the synthesis of sevelamer that provides for the use of a LIST reactor to perform the cross-linking step. This reactor, produced by the company LIST Inc., is a reactor specifically designed for processing high viscosity materials. It is easily understood 5 that this reactor is not commonly used and that its use requires specific and economically important investments, unjustified for the preparation of a single active ingredient.

The patent application WO01/18072 describes a process for the preparation of sevelamer hydrochloride comprising partial salification of a solution of polyallylamine hydrochloride, removal of salts through ion exchange or electrodeionization and by means of subsequent optional nanofiltration or ultrafiltration of the partially desalified polyallylamine, and then causing it to react 10 with epichlorohydrin. As stated in the text of WO01/18072 (for example pages 4 and 5), during desalification of the polyallylamine hydrochloride with metal hydroxides a 15 substantial quantity of salts is produced. The steps of removing salts and of nanofiltration or ultrafiltration are therefore necessary, as otherwise a very viscous and non-stirrable mixture is obtained during the subsequent cross-linking reaction with epichlorohydrin. This mass would require the use of a LIST reactor as seen above or, alternatively, the addition of substantial quantities of organic solvents. 20 It is evident that these further reaction steps are laborious and entail substantial costs at industrial level.

Description of the invention

The aim of the present invention is to provide a process for the preparation of sevelamer which overcomes the drawbacks of the prior art.

25 It has now been found that it is possible to avoid the use of reactors to process high viscosity materials and also the use of organic solvents, starting from polyallylamine aqueous solutions, at specific concentrations.

In particular, it has been noted that a particular concentration interval of the 30 polyallylamine aqueous solution which must be subjected to cross-linking, leads to a reaction mass easily workable and processable even in conventional reactors, commonly present in chemical production plants and does not require the addition of

organic solvents.

Therefore, according to one of its aspects, the invention relates to a process for the preparation of sevelamer which comprises partially salifying, preferably with hydrochloric acid, a polyallylamine aqueous solution having a concentration between 5 10% and 14.5% (w/w) and reacting it with epichlorohydrin, in the absence of any organic solvents.

In particular, the invention relates to a process comprising the steps of:

- (a) partially salifying a polyallylamine aqueous solution having a concentration between 10% and 14.5% (w/w), preferably to a degree of salification of 25-40%;
- 10 (b) adding epichlorohydrin, preferably in an “allylamine unit”/“epichlorohydrin” molar ratio of around 8-11/1;
- (c) maintaining the reaction mixture under stirring, preferably at 65 to 85°C for a few hours;
- 15 (d) isolating the sevelamer thus obtained.

According to a preferred aspect of the invention, the polyallylamine is partially salified with hydrochloric acid and the sevelamer obtained in step (d) is sevelamer hydrochloride.

The initial polyallylamine aqueous solution is commercially available. This 20 polyallylamine can be suitably diluted with water to the desired concentration.

According to a preferred embodiment, the concentration of the polyallylamine aqueous solution is between 11% and 14.5%, preferably between 12.5 and 14.5%, advantageously this concentration is around 13-14%.

Concentrations below 10% could in theory be used, but the copious quantity of water 25 would lead to a more laborious process to isolate the sevelamer from the reaction mixture.

The epichlorohydrin used according to the present invention is also commercially available.

In practice, for the preparation of sevelamer according to the invention, the 30 polyallylamine aqueous solution is loaded into a common reactor, hydrochloric acid is added to reach the degree of salification required and epichlorohydrin is dosed,

preferably controlling the temperature as the reaction is exothermic.

According to a preferred embodiment, the temperature of the reaction mixture is maintained around 20-25°C during the step of acid addition.

5 The quantity of acid to add to the polyallylamine depends on the degree of salification required. According to an advantageous embodiment, the polyallylamine is salified to 25-40%, for example around 30-35%. Therefore, by way of example, salification can be achieved using a “allylamine unit”/“hydrochloric acid” molar ratio of around 3-3.5/1.

The hydrochloric acid is preferably added in an aqueous solution.

10 Epichlorohydrin is then added to the partially salified polyallylamine solution.

The “allylamine unit”/“epichlorohydrin” ratio is advantageously around 8-11/1, preferably around 9/1.

15 After epichlorohydrin has been added, the mixture is maintained under stirring for some time, for example a few hours, and the reaction mixture is then heated to a temperature between 65 and 85°C, preferably between 75 and 83°C.

The cross-linking reaction is normally complete in a few hours.

20 Therefore, with the process of the invention, which involves the use of specific concentrations of initial polyallylamine, it is possible to obtain a final reaction mixture that is easy to work and filter. On the contrary, as will be shown by the comparative tests in the experimental section of the present description, greater concentrations lead to an extremely dense and congealed reaction mixture, which can only be processed in special equipment, such as the LIST reactor, or by adding organic solvents.

25 Moreover, it will also be understood that, contrary to the process described in WO01/18072 in which salt is removed from the polyallylamine hydrochloride with metal hydroxides, in the process of the invention that starts from a polyallylamine which is salified by adding an acid, no salts are produced and therefore no further and laborious reaction steps are required, such as removal of salts and nanofiltration or ultrafiltration. This aspect of the invention, together with the specific percentages 30 of polyallylamine used in the initial aqueous solution, provides a the synthesis of sevelamer that is industrially simple and inexpensive.

The sevelamer obtained according to the process of the invention can be directly filtered and dried according to methods known in the art.

Alternatively, at the end of the reaction with epichlorohydrin, a water miscible solvent, advantageously isopropanol, can be added to the reaction mass and maintained under stirring for some time, and the sevelamer thus obtained can then be filtered and dried.

This last experimental solution is not necessary but can be used to facilitate obtaining a sevelamer that is easier to filter, or which can even be separated by decantation of the liquid part of the mixture.

According to a further embodiment of the invention, the sevelamer obtained with the process described above can be converted into sevelamer carbonate/bicarbonate according to known techniques, for example by reaction with gaseous carbon dioxide or other carbonating agents, such as carbonates of alkaline or alkaline-earth metals.

If carbon dioxide is used, the reaction can be conducted in a basic aqueous solvent, such as in a sodium hydroxide solution or also in solid phase, i.e. without using solvents.

Details of the process of the invention are provided in the experimental section of the description.

As will be apparent to those skilled in the art, by suitably varying the reaction conditions it is possible to obtain a mixture of sevelamer hydrochloride and sevelamer carbonate/bicarbonate. said mixture, obtained with the process described here, represents a further aspect of the present invention.

The sevelamer hydrochloride obtained with the process of the invention, having the properties indicated below, and more specifically in the experimental section hereunder, forms a further object of the invention:

- Chlorides % (weight/weight)	17-19
- Swell index	12-13
- Phosphate binding capacity (mmol/g)	5.5-6.4
- Epichlorohydrin	not detectable (<5 ppm)

30 **Experimental section**

Example 1

Sevelamer preparation

Loads

PAA Solution 14.0% (g)	PAA 100% (g)	PAA (mol allylamine units)	epichlorohydrin (mol)	epichlorohydrin (g)	HCl (mol)	HCl 38.2% (g)	washing isopropanol (g)
16650	2344	41.1	4.6	426.5	11.9	1137	14630

A conventional reactor, with blade stirrer, is used. HCl is added to the polyallylamine
 5 loaded into the reactor in two batches dosed at a distance of 15 minutes. When the
 temperature reaches around 25°C, dosing of epichlorohydrin begins and continues
 for around 10 minutes. After 45 minutes, heating to 78°C – 83°C begins and
 continues for 3 hours, at the end of which the product, after cooling to room
 10 temperature, is washed with isopropanol. Washing is performed by maintaining the
 product under stirring with isopropanol for 1 hour, then the product is centrifuged
 and vacuum dried at 60°C for 3 hours, finally obtaining 2.94 kg of product in the
 form of a whitish solid.

Example 2

Sevelamer preparation

15 The same procedure as described in example 1 is followed, but isopropanol is not
 added and the reaction mixture is instead maintained at 20-25°C for three hours. The
 final product is isolated by filtration.

Properties of the sevelamer obtained

- Swell index	12.5
- Phosphate binding capacity (mmol/g)	5.8
- Chloride content (weight/weight)	18.5%
- Epichlorohydrin	not detectable (< 5 ppm)

The analytical evaluations are performed according to methods known in the art and
 conventionally used for sevelamer.

25 Comparative example

Sevelamer preparation starting from a 30% solution of polyallylamine

Loads:

PAA Solution 30% (g)	PAA 100% (g)	PAA (mol allylamine units)	epichlorohydrin (mol)	epichlorohydrin (g)	HCl (mol)	HCl 38.2% (g)
483.5	145	2.54	0.28	26	0.79	77.5

The process of example 1 is repeated. After adding one part of epichlorohydrin a vitreous and intractable gel is obtained, which blocked stirring.

Example 3

Sevelamer carbonate/bicarbonate preparation

5 1.4 kg of water is loaded into a 2 litre glass reactor. The temperature is set to 35°C and 100 g of sevelamer hydrochloride is added in portions, stirring the mixture. A solution of 30% sodium hydroxide is then added until pH 12 is reached (around 71 g) and gaseous carbon dioxide is bubbled through. The temperature is maintained at 35-37°C until pH 7.2 is reached. The mixture is maintained at 35°C under stirring for 2

10 hours and if necessary further carbon dioxide is bubbled through until the pH is stabilized at 7.2. The suspension is filtered, the solid washed repeatedly with water to eliminate as much of the residual chlorine as possible. The solid thus obtained is dried and ground.

Example 4

15 Sevelamer carbonate/bicarbonate preparation in solid phase

1.4 kg of water is loaded into a 2 litre glass reactor. The temperature is set to 35°C and 100

g of sevelamer hydrochloride is added in portions, stirring the mixture. A solution of 30% sodium hydroxide is then added until pH 12 is reached (around 71 g). The

20 suspension is maintained at 35-37°C under stirring for 40 minutes and then filtered, the wet solid is resuspended in 800 ml of distilled water and stirred for two hours at room temperature. The solid is then filtered and washed with distilled water. The solid is loaded into a fluid bed dryer at 50°C for three hours, after which a carbon dioxide stream is passed through the solid until obtaining an internal pressure of around 40000Pa. The flow is maintained until the pressure decreases. Finally, the drier is maintained under vacuum and the temperature is raised to 60°C for 72 hours. Sevelamer carbonate/bicarbonate is thus obtained.

Claims

1. A process for the preparation of sevelamer characterized in that it comprises the following steps:
 - (a) partially salifying a polyallylamine aqueous solution having a concentration between 10% and 14.5% (w/w);
 - (b) adding epichlorohydrin;
 - (c) maintaining the reaction mixture under stirring;
 - (d) isolating the sevelamer thus obtained;and also characterized in that the steps from (a) to (c) are carried out in the absence of any organic solvents.
- 5 2. The process according to claim 1, characterized in that the polyallylamine is salified up to a degree of salification of 25-40%.
- 10 3. The process according to claim 1 or 2, characterized in that the “allylamine unit”/“epichlorohydrin” molar ratio is around 8-11/1.
- 15 4. The process according to any one of claims 1 to 3, characterized in that in the step (c) it is maintained under stirring at 65 and 85 °C for a few hours.
5. The process according to any one of the preceding claims, characterized in that said polyallylamine aqueous solution has a concentration between 12.5 and 14.5%.
- 20 6. The process according to claim 5, characterized in that said polyallylamine aqueous solution has a concentration between 13 and 14%.
7. The process according to any one of the preceding claims, characterized in that polyallylamine is partially salified with hydrochloric acid.
- 25 8. Sevelamer obtained with the process of claim 6 characterized in that it has the following properties:

Chlorides % (weight/weight)	17-19
Swell index	12-13
Phosphate binding capacity (mmol/g)	5.5-6.4
Epichlorohydrin	<5 ppm

9. The process according to any one of the preceding claims, characterized in that the sevelamer thus obtained is converted into sevelamer carbonate/bicarbonate.
10. The process according to claim 8, characterized in that the sevelamer thus obtained is converted into sevelamer carbonate/bicarbonate by reaction with gaseous CO₂.
11. The process according to claim 9, characterized in that the conversion into sevelamer carbonate/bicarbonate with gaseous CO₂ is carried out in solid phase.

10

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2010/001071

A. CLASSIFICATION OF SUBJECT MATTER

INV. C08J3/24 C08F8/00 C08F26/02 A61K31/785
ADD. C08F8/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08F C08J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 01/18072 A1 (DOW CHEMICAL CO [US]) 15 March 2001 (2001-03-15) cited in the application page 12; examples comparative A-N page 17; examples A-F, I, J, M, N; table 1 -----	1-3, 5-8
X	EP 0 223 222 A2 (GRACE W R AB [SE]) 27 May 1987 (1987-05-27) examples 1-3 -----	1, 4, 5, 7
A	WO 2008/062437 A2 (USV LTD [IN]; HEDGE DEEPAK ANANT [IN]; CHOUDHARY VARSHA SHASHANK [IN];) 29 May 2008 (2008-05-29) example 3 ----- -/-	1-11

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

2 August 2010

06/08/2010

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Friebe, Lars

INTERNATIONAL SEARCH REPORT

International application No PCT/IB2010/001071

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2003/078366 A1 (MCDONNELL PETER D [GB] ET AL MCDONNELL PETER D [GB] ET AL) 24 April 2003 (2003-04-24) example 1 ----- WO 98/57652 A1 (GELTEX PHARMA INC [US]) 23 December 1998 (1998-12-23) page 8, line 18 - line 24 ----- WO 00/63259 A1 (ABBOTT LAB [US]) 26 October 2000 (2000-10-26) examples -----	1-11
A		1-11
A		1-11

INTERNATIONAL SEARCH REPORT

Information on patent family members

 International application No
 PCT/IB2010/001071

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 0118072	A1 15-03-2001	EP 1214359	A1	19-06-2002
		JP 2003508601	T	04-03-2003
		US 6180754	B1	30-01-2001
EP 0223222	A2 27-05-1987	DE 3541511	A1	21-05-1987
		FI 864703	A	20-05-1987
		JP 62187719	A	17-08-1987
		US 4895621	A	23-01-1990
WO 2008062437	A2 29-05-2008	CA 2661987	A1	29-05-2008
		EP 2064252	A2	03-06-2009
		JP 2010502590	T	28-01-2010
		KR 20090051240	A	21-05-2009
		US 2009280178	A1	12-11-2009
		US 2010092421	A1	15-04-2010
US 2003078366	A1 24-04-2003	EP 2189490	A1	26-05-2010
		IL 161185	A	28-03-2010
		PT 1918318	E	30-04-2010
WO 9857652	A1 23-12-1998	AT 249228	T	15-09-2003
		AU 735260	B2	05-07-2001
		CA 2294036	A1	23-12-1998
		CN 1263468	A	16-08-2000
		DE 69818058	D1	16-10-2003
		DE 69818058	T2	08-07-2004
		EP 0996454	A1	03-05-2000
		HK 1029920	A1	02-12-2005
		IL 133434	A	25-09-2005
		JP 4420143	B2	24-02-2010
		JP 2002516613	T	04-06-2002
		MX PA99011826	A	02-07-2002
		NZ 501719	A	26-10-2001
		TW 526063	B	01-04-2003
		US 2003086898	A1	08-05-2003
WO 0063259	A1 26-10-2000	AT 366264	T	15-07-2007
		CA 2362410	A1	26-10-2000
		DE 60035414	T2	13-03-2008
		DK 1175451	T3	05-11-2007
		EP 1175451	A1	30-01-2002
		ES 2288852	T3	01-02-2008
		JP 2002542345	T	10-12-2002
		MX PA01010454	A	06-05-2002
		PT 1175451	E	24-09-2007
		US 2001041756	A1	15-11-2001