A polyamide composition for use in sealants, adhesives and high solids coatings.
POLYAMIDE COMPOSITIONS FOR SEALANTS AND HIGH SOLIDS PAINTS

CROSS-REFERENCE TO RELATED APPLICATIONS

FIELD OF THE INVENTION

[0002] The present invention relates a polyamide composition and the use of such a polyamide composition as a rheological additive in sealants, adhesives, and high solids coating systems.

BACKGROUND OF THE INVENTION

[0003] Hydrogenated castor oil is a good organic thixo trope or “rheological additive” (RA) because it provides excellent performance when the additive is dispersed and activated in a specific manner. The rheological additive provides anti-settling effects, and controls flow and leveling as well as the degree of sagging in paints and coatings. The glyceride moiety in castor wax can be replaced by amine functional materials to yield wax like amides of 12-hydroxy stearic acid. These amides are also quite effective as rheological control agents, and they complement hydrogenated castor oil to yield an effective castor wax portfolio of materials for the paint formulator to choose from. The castor derived 12-hydroxystearic acid moiety is an effective rheological component because it can self-assemble into spatially preferred structures, some of which extend throughout the formulation and effectively trap solvent and/or resin and thereby control the material flow.

[0004] Prior art polyamide based rheological additives have specific processing temperature requirements that are related to the solvency effects present in a paint system or a sealant system. Therefore, the most appropriate choice of polyamide rheological additives for any given system depends on solvent type(s), processing temperature control and the manufacturing equipment. An optimal combination of these parameters allows for the most effective level of colloidal dispersion and yields a rheologically active network.

[0005] However, problems can arise when the paint processing temperature is too high for the additive—the polyamide rheological additive can dissolve completely at these elevated temperatures and later on, as the system cools down, the additive can precipitate and form semi-crystalline particulate matter, which is sometimes also referred to as “seeds”. A similar seeding situation can occur when the solvent/temperature combination is too strong. The immediate seeding effect typically can be observed relatively quickly. A more complex seeding situation may occur when the additive is not processed enough or not enough solvent is present. In these cases potentially, not all powdered wax material has been converted into the desirable rheologically active form and unused material remains behind, often unnoticed at the point of paint manufacture. Over time upon storage, this unused additive material can transform under the influence of solvent, ambient temperature and time, to yield particles that lead to loss of fineness of grind and reduced gloss of the paint system, or activate overtime to become rheologically active.

[0006] For sealant, adhesive and coating compositions, long term storage above room temperature can lead to activation of the unreactive polyamide additive which results in an undesirable increase in viscosity of such composition.

[0007] The present invention provides for rheological additives that activate easily and can be used in high solids paint systems or Ms polymer sealants.

SUMMARY OF THE INVENTION

[0008] In one embodiment, the present disclosure provides for a polyamide composition consisting essentially of or consisting of a polyamide having groups derived from: a diamine selected from the group consisting of ethylene diamine and hexamethylene diamine; a straight chain monocarboxylic acid having 1 to 5 carbon atoms; a fatty acid independently selected from the group consisting of: 12-hydroxy stearic acid, lesquerolic acid and combinations thereof wherein the diamine, the straight chain monocarboxylic acid and fatty acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1:25; or 1:1.5:0.5 to 1:1:1; and a median particle size ranging from 1 μm to 10 μm. In some such embodiments, the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, butyric acid, valeric acid, and combinations thereof.

[0009] In certain embodiments of the polyamide, the diamine is ethylene diamine, the straight chain monocarboxylic acid is acetic acid and the fatty acid is 12-hydroxy stearic acid wherein ethylene diamine, acetic acid and 12-hydroxy stearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1:25; or 1:1.5:0.5 to 1:1:1.

[0010] In certain embodiments of the polyamide, the diamine is ethylene diamine, the straight chain monocarboxylic acid is propionic acid and the fatty acid is 12-hydroxy stearic acid, wherein ethylene diamine, propionic acid and 12-hydroxy stearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1:25; or 1:1.5:0.5 to 1:1:1.

[0011] In each of the foregoing embodiments of polyamides, the median particle size may range from 3 μm to 7 μm.

[0012] In another embodiment, the present disclosure provides for a curable sealant or adhesive composition comprising a resin; an optional catalyst or optional curing agent or optional solvent, a polyamide composition having a median particle size ranging from 1 μm to 10 μm; or 3 μm to 7 μm; wherein the polyamide composition has an activation temperature ranging between 25° C. and 50° C.; or 30° C. and 45° C. in curable sealant or adhesive composition. In another embodiment, the present disclosure provides for a method of making a curable sealant or adhesive composition. In some embodiments of the curable sealant or adhesive composition and its method of making, the resin is a silyl-terminated polymer independently selected from the group consisting of: silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene, and combinations thereof. Such polymers are known in the art as MS-Polymers and SPUR. In such embodiments, the curable sealant or adhesive composition is moisture curable.

[0013] In yet another embodiment, the present disclosure provides for a high solids coating composition comprising:
a first pack and a second pack; wherein the first pack comprises: (a) at least one resin (b) a polyamide composition; and (c) a diluent; and the second pack comprises: at least one cross linking agent; wherein the high solids composition has a solids content of at least 70 wt. %, and wherein the polyamide is activated upon mixing the ingredients of pack one between 25°C and 50°C.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0014] The present disclosure provides for a polyamide composition and its use as a rheology modifier in one and two component sealant and adhesive compositions, such as silylated polymer sealant compositions, and paint compositions including high solids and 100% solids paint. A skilled person would understand that a polyamide has two or more amide groups.

[0015] In current manufacturing processing of sealant, adhesive and coating compositions, the processing conditions are adjusted (temperature, shear rate, time) to accommodate the characteristics of the commercially available polyamide rheological additives. Various embodiments of rheological additives are described herein to allow for manufacturing processes that can yield cost savings by reducing production time and energy costs (such as no additional heat requirement).

[0016] Furthermore, paint manufacturers are moving to higher solids paint formulations, to avoid volatile organic diluents. Therefore, there is less organic solvent to facilitate incorporation and/or activation of rheological additives in such systems. The present disclosure provides for various embodiments of polyamides which avoid the necessity of pre-activation in organic solvents.

[0017] In one embodiment, the present disclosure provides for a polyamide composition consisting essentially of a polyamide having groups derived from: a diamine independently selected from the group consisting of ethylene diamine and hexamethylene diamine; a straight chain monocarboxylic acid having 1 to 5 carbon atoms; a fatty acid independently selected from the group consisting of: 12-hydroxy stearic acid, 12-hydroxy stearic acid and combinations thereof wherein the diamine, the straight chain monocarboxylic acid and fatty acid have a molar equivalent ratio ranging from 1:1:75:0.25 to 1:0.75:1:25; or 1:1:5:0.5 to 1:1; and a median particle size ranging from 1 μm to 10 μm. In some of the foregoing embodiments, the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, butyric acid, valeric acid, and combinations thereof. In certain of the foregoing embodiments, the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, and combinations thereof.

[0018] A skilled person would understand that 12-hydroxystearic acid is derived from castor oil, and typically is not 100% hydroxystearic acid.

[0019] In certain embodiments, the composition consists essentially of a polyamide wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is acetic acid and the fatty acid is 12-hydroxystearic acid wherein ethylene diamine, acetic acid and 12-hydroxystearic acid have a molar equivalent ratio ranging from 1:1:75:0.25 to 1:0.75:1:25; or 1:1:5:0.5 to 1:1; and a median particle size ranging from 1 μm to 10 μm.

[0020] In certain embodiments, the composition consists essentially of a polyamide wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is propionic acid and the fatty acid is 12-hydroxystearic acid wherein ethylene diamine, propionic acid and 12-hydroxystearic acid have a molar equivalent ratio ranging from 1:1:75:0.25 to 1:0.75:1:25; or 1:1:5:0.5 to 1:1.

[0021] In some of the foregoing embodiments, the median particle size, of the polyamide, may range from 3 μm to 7 μm.

[0022] For the purposes of this application, “consisting essentially of” shall mean materials which do not materially affect the basic and novel characteristic of the polyamide. Materials which may materially affect the basic and novel characteristic of the polyamide include, but not limited to: polyamides based on 12-hydroxystearic acid, polyamides and monocarboxylic acids with more than 7 carbon atoms; and mixtures of polyamides based on (i) 12-hydroxystearic acid, polyamides and monocarboxylic acids with more than 7 carbon atoms and (ii) 12-hydroxystearic acid, polyamides and monocarboxylic acids with 3-4 carbon atoms. Materials which also may materially affect the basic and novel characteristic of the polyamide include those that increase the activation temperature of a high solids paint composition or sealant composition containing the polyamide.

[0023] For the purposes of this application, “activation” shall mean a transformation where the polyamide is physically transformed into a form which imparts thixotropic behavior. Temperature or other forms of energy input can facilitate this activation. In one embodiment, the physical transformation is from powder like material to material with fiber like morphology.

[0024] In one embodiment, the present disclosure provides for a polyamide composition consisting of a polyamide having groups derived from: a diamine selected from the group consisting of ethylene diamine and hexamethylene diamine; a straight chain monocarboxylic acid having 1 to 5 carbon atoms; a fatty acid independently selected from the group consisting of: 12-hydroxystearic acid, leseroic acid and combinations thereof wherein the diamine, the straight chain monocarboxylic acid and fatty acid have a molar equivalent ratio ranging from 1:1:75:0.25 to 1:0.75:1:25; or 1:1:5:0.5 to 1:1:1; and a median particle size ranging from 1 μm to 10 μm. In certain of the foregoing embodiments, the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, butyric acid, valeric acid, and combinations thereof. In certain of the foregoing embodiments, the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, and combinations thereof.

[0025] In some embodiments, the composition consists of a polyamide wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is acetic acid and the fatty acid is 12-hydroxystearic acid wherein ethylene diamine, acetic acid and 12-hydroxystearic acid have a molar equivalent ratio ranging from 1:1:75:0.25 to 1:0.75:1:25; or 1:1:5:0.5 to 1:1:1.

[0026] In some embodiments, the composition consists of a polyamide wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is propionic acid and the fatty acid is 12-hydroxystearic acid wherein ethylene diamine, propionic acid and 12-hydroxystearic acid have a molar equivalent ratio ranging from 1:1:75:0.25 to 1:0.75:1:25; or 1:1:5:0.5 to 1:1:1.
In some of the foregoing embodiments, the median particle size, of the polyamide, may range from 3 μm to 7 μm.

In another embodiment, the present disclosure provides for a curable sealant or adhesive composition comprising a resin; an optional catalyst or optional curing agent or optional solvent, a polyamide composition having a median particle size ranging from 1 μm to 10 μm; or 3 μm to 7 μm; wherein the polyamide composition has an activation temperature ranging between 25° C. and 50° C.; or 30° C. and 45° C. in curable sealant or adhesive composition. In another embodiment, the present disclosure provides for a method of making a curable sealant or adhesive composition. The method comprises the steps of: adding a polyamide composition to a resin; blending the mixture of the polyamide and the resin at a temperature ranging between 25° C. and 50° C. In such embodiments, the amount of polyamide composition may range from 0.5 wt. % to 3 wt. %. In some other such embodiments, the amount of catalyst may range from 0.1 wt. % to 1.0 wt. %.

In another embodiment, the present disclosure provides for a curable sealant or adhesive composition, the composition is contained in a one or two pack system. For the two pack system, the resin and polyamide according to the various embodiments described herein, and other components, described herein below, are contained in one pack; and a catalyst or curing agent, and optional components, are contained in the second pack. For the one pack system, the resin and polyamide according to the various embodiments described herein, catalyst and/or curing agent, optional pigment, filler and plasticizer, and other components described herein below, are contained in one pack. The various embodiments of one pack curable sealant or adhesive composition, described herein, may be substantially water free. For the purposes of this application, substantially water free may mean water content that cannot be measured by standard methods such as Karl Fischer.

In some embodiments of a one part curable sealant or adhesive composition and its method of making, the resin is selected from silicone, polyurethane systems and the catalyst or curing agent are included in the composition. In some embodiments of a one part curable sealant or adhesive composition and its method of making, the resin is selected from acrylate and bismaleimide solvent based resins with a catalyst or curing agent. In some embodiments of a two part curable sealant or adhesive composition and its method of making, the resin is selected from epoxy resin, epoxy-penetrating solvent-based resin, silicone resin, and polyurethane resin.

In some embodiments of the curable sealant or adhesive composition and its method of making, the resin is a silyl-terminated polymer independently selected from the group consisting of: silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene, and combinations thereof. Such polymers are known in the art as MS-Polymers and SPUR. In such embodiment, the curable sealant or adhesive composition is moisture curable.

In some such embodiments of the curable sealant or adhesive composition, either one pack or two pack, and its method of making, the polyamide consists essentially of a polyamide having groups derived from: a diamine selected from the group consisting of ethylene diamine and hexamethylene diamine; a straight chain monocarboxylic acid having 1 to 6 carbon atoms; a fatty acid independently selected from the group consisting of: 12-hydroxy stearic acid, lesquerolic acid and combinations thereof; wherein the diamine, the straight chain monocarboxylic acid and fatty acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1. In such embodiments of the polyamide of the curable sealant or adhesive composition, the straight chain monocarboxylic acid is independently selected from the group consisting of: propionic acid, butyric acid, valeric acid, hexanoic acid and combinations thereof. In certain of the embodiments of the polyamide of the curable sealant or adhesive composition, the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, and combinations thereof.

In some embodiments of the curable sealant or adhesive composition, the polyamide consists essentially of groups wherein, the diamine is ethylene diamine, the straight chain monocarboxylic acid is acetic acid and the fatty acid is 12-hydroxy stearic acid wherein ethylene diamine, acetic acid and 12-hydroxy stearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1. Such polyamide composition may have a median particle size ranging from 1 μm to 10 μm; or 3 μm to 7 μm and the polyamide composition may have an activation temperature ranging between 25° C. and 50° C.; or 30° C. and 45° C. when combined with resin and optional solvent, pigment, filler and plasticizer. In some instances, such curable sealant or adhesive compositions includes resins independently selected from epoxy, epoxy-penetrating solvent-based resin, polyurethane resin and combinations thereof. In some other instances, such curable sealant or adhesive compositions include resins independently selected from silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene and combinations thereof.

In some embodiments of the curable sealant or adhesive composition the polyamide consists essentially of groups wherein, the diamine is ethylene diamine, the straight chain monocarboxylic acid is propionic acid and the fatty acid is 12-hydroxy stearic acid wherein ethylene diamine, propionic acid and 12-hydroxy stearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1.1. Such polyamide composition may have a median particle size ranging from 1 μm to 10 μm; or 3 μm to 7 μm and the polyamide composition may have an activation temperature ranging between 25° C. and 50° C.; or 30° C. and 45° C. when combined with resin and optional solvent, pigment, filler and plasticizer. In some instances, such curable sealant or adhesive compositions include resins independently selected from epoxy, epoxy-penetrating solvent-based resin, polyurethane resin and combinations thereof. In some other instances, such curable sealant or adhesive compositions include resins independently selected from silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene and combinations thereof.
particle size ranging from 1 µm to 10 µm; or 3 µm to 7 µm and the polyamide composition may have an activation temperature ranging between 25°C and 50°C; or 30°C and 45°C. When combined with resin and optional solvent, pigment, filler and plasticizer. In some instances, such curable sealant or adhesive compositions include resins independently selected from epoxy, epoxy-penetrating solvent-based resin, polyurethane resin and combinations thereof. In some other instances, such curable sealant or adhesive compositions include resins independently selected from silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene and combinations thereof.

[0036] In some embodiments of the curable sealant or adhesive composition the polyamide consists essentially of groups wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is hexanoic acid and the fatty acid is 12-hydroxystearic acid wherein ethylene diamine, hexanoic acid and 12-hydroxystearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1:1. Such polyamide composition may have a median particle size ranging from 1 µm to 10 µm; or 3 µm to 7 µm and the polyamide composition may have an activation temperature ranging between 25°C and 50°C; or 30°C and 45°C. When combined with resin and optional solvent, pigment, filler and plasticizer. In some instances, such curable sealant or adhesive compositions include resins independently selected from epoxy, epoxy-penetrating solvent-based resin, polyurethane resin and combinations thereof. In some other instances, such curable sealant or adhesive compositions include resins independently selected from silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene and combinations thereof.

[0037] In some other such embodiments of the curable sealant or adhesive composition and its method of making, the polyamide consists of a polyamide having groups derived from: a diamine selected from the group consisting of ethylene diamine and hexamethylene diamine; a straight chain monocarboxylic acid having 1 to 6 carbon atoms; a fatty acid independently selected from the group consisting of: 12-hydroxystearic acid, lasquerolic acid and combinations thereof; wherein the diamine, the straight chain monocarboxylic acid and fatty acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1:1. In some such embodiments of the polyamide of the curable sealant or adhesive composition, the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, and combinations thereof. In certain of the embodiments of the polyamide of the curable sealant or adhesive composition, the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, and combinations thereof. Such polyamide composition may have a median particle size ranging from 1 µm to 10 µm; or 3 µm to 7 µm and the polyamide composition may have an activation temperature ranging between 25°C and 50°C; or 30°C and 45°C. When combined with resin and optional solvent, pigment, filler and plasticizer. In some instances, such curable sealant or adhesive compositions may also include resins independently selected from epoxy, epoxy-penetrating solvent-based resin, polyurethane resin and combinations thereof. In some other instances, such curable sealant or adhesive compositions include resins independently selected from silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene and combinations thereof.

[0038] In some embodiments of the curable sealant or adhesive composition the polyamide, consists of groups wherein, the diamine is ethylene diamine, the straight chain monocarboxylic acid is acetic acid and the fatty acid is 12-hydroxystearic acid wherein ethylene acetic acid and 12-hydroxystearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1:1. Such polyamide composition may have a median particle size ranging from 1 µm to 10 µm; or 3 µm to 7 µm and the polyamide composition may have an activation temperature ranging between 25°C and 50°C; or 30°C and 45°C. When combined with resin and optional solvent, pigment, filler and plasticizer. In some instances, such curable sealant or adhesive compositions include resins independently selected from epoxy, epoxy-penetrating solvent-based resin, polyurethane resin and combinations thereof. In some other instances, such curable sealant or adhesive compositions include resins independently selected from silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene and combinations thereof.

[0039] In some embodiments of the curable sealant or adhesive composition the polyamide consists of groups wherein, the diamine is ethylene diamine, the straight chain monocarboxylic acid is propionic acid and the fatty acid is 12-hydroxystearic acid wherein ethylene diamine, propionic acid and 12-hydroxystearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1:1. Such polyamide composition may have a median particle size ranging from 1 µm to 10 µm; or 3 µm to 7 µm and the polyamide composition may have an activation temperature ranging between 25°C and 50°C; or 30°C and 45°C. When combined with resin and optional solvent, pigment, filler and plasticizer. In some instances, such curable sealant or adhesive compositions include resins independently selected from epoxy, epoxy-penetrating solvent-based resin, polyurethane resin and combinations thereof. In some other instances, such curable sealant or adhesive compositions include resins independently selected from silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene and combinations thereof.

[0040] In other embodiments of the curable sealant or adhesive composition the polyamide consists of groups wherein, the diamine is ethylene diamine, the straight chain monocarboxylic acid is butyric acid and the fatty acid is 12-hydroxystearic acid wherein ethylene diamine, butyric acid and 12-hydroxystearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1:1. Such polyamide composition may have a median particle size ranging from 1 µm to 10 µm; or 3 µm to 7 µm and the polyamide composition may have an activation temperature ranging between 25°C and 50°C; or 30°C and 45°C. When combined with resin and optional solvent, pigment, filler and plasticizer. In some instances, such curable sealant or adhesive compositions include resins independently selected from epoxy, epoxy-penetrating solvent-based resin, polyurethane resin and combinations thereof. In some other instances, such curable sealant or adhesive compositions include resins independently selected from epoxy, epoxy-penetrating solvent-based resin, polyurethane resin and combinations thereof.
from silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene and combinations thereof.

[0041] In some embodiments of the curable sealant or adhesive composition the polyamide consists of groups wherein, the diamine is ethylene diamine, the straight chain monocarboxylic acid is hexanoic acid and the fatty acid is 12-hydroxysestearic acid wherein ethylene diamine, hexanoic acid and 12-hydroxysestearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1.1. Such polyamide composition may have a median particle size ranging from 1 μm to 10 μm; or 3 μm to 7 μm and the polyamide composition may have an activation temperature ranging between 25°C and 50°C; or 30°C and 45°C when combined with resin and optional solvent, pigment, filler and plasticizer. In some instances, such curable sealant or adhesive compositions include resins independently selected from epoxy, epoxy-penetrating solvent-based resin, polyurethane resin and combinations thereof. In some other instances, such curable sealant or adhesive compositions include resins independently selected from silylated polyurethane, silylated polyether polyol, silylated polyester, silylated polybutadiene and combinations thereof.

[0042] In some such embodiments of the curable sealant or adhesive composition, either one part or two part, and its method of making, the catalyst may be a condensation catalyst or hardening catalyst. Examples of catalysts or curing agents include tetraethyl titanate and tetrapropyl titanate; organotin compounds such as dibutyltin dilaurate, dibutyltin malonate, dibutyltin diaceta, stannous octylate, stannous naphthenate, reaction products from dibutyltin oxide and phthalate esters, and dibutyltin diacetate; organoaluminum compounds such as aluminum trisacetylacetonate, aluminum tris(ethyl acetoacetate) and diisopropoxyaluminum ethyl acetooacetate; reaction products from bisulfite salts and organic carboxylic acids, such as bisulfite tris(2-ethylhexoate) and bisulfite tris(neodecanoate); chelate compounds such as zirconium tetraglycolacetone and titanium tetraacetylecetonate; organolead compounds such as lead octylate; organovinyl compounds; amine compounds such as butylamine, octylamine, dibutylamine, monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, cyclohexylamine, benzylamine, diethylenimopropylamine, xylyenediamine, triethylenediamine, guanidine, diphenylguanidine, 2,4,6-tris(dimethylaminomethyl)phenol, morpholine, N,N-methylmorpholine, 2-ethyl-4-methylimidazole and 1,8-diazabicyclo[5.4.0]undecene-7 (DBU). In one embodiment, the catalyst is an organotin compound such as dioctyltin dilaurate, dioctyltin dicarboxylate, dioctyltin didecenoate, or di-(n-butyl)tin bis-ketonate.

[0043] In some other such embodiments of the curable sealant or adhesive composition, either one part or two part, and its method of making, the composition may include one or plasticizers. Examples of plasticizers include, phthalate ester plasticizers such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diethyl phthalate, dioctyl phthalate, diisononyl phthalate, diisodecyl phthalate, diisodecyl phthalate, butyl benzyl phthalate, dialkyl phthalate and dicyclohexyl phthalate; epoxidized plasticizers such as epoxidized soybean oil, epoxidized linseed oil and benzyl epoxideesterate; polyester plasticizers derived from diisocyanate and dihydric alcohols; polyethers such as polypropylene glycol and derivatives thereof; polystyrenes such as poly-alpha-methylstyrene and polystyrene; polybutadiene, butadiene-acrylonitrile copolymers, polychloroprene, polyisoprene, polybutene, chlorinated paraffins and the like.

[0044] In some other such embodiments of the curable sealant or adhesive composition, either one part or two part, and its method of making, the composition may optionally contain additives including dehydrating agents, tactifiers, physical property modifiers, storage stability improving agents, antioxidants, adhesion promoters, ultraviolet light absorbers, metal deactivators, antiozontans, light stabilizers, amine type radical chain inhibitors, phosphorous-containing peroxide decomposers, lubricants, pigments, foaming agents, flame retardants and antisicag agents.

[0045] The polyamide additive may be used to provide rheology control to solvent-borne coatings. Examples are conventional coatings, coatings that are formulated as one- or two-component pack high solids coating systems and 100% solids coatings such as UV curable coatings and powder coatings. In one embodiment of a coating composition containing the various embodiments of the polyamide described herein, the coating is based on a binder resin chemistry selected from the group consisting of polyester-melamine, polyester-urea/formaldehyde, alkyl-melamine, alkyl-urea/formaldehyde, acrylic-melamine, acrylic urea/formaldehyde, epoxies, epoxy urea/formaldehyde, epoxy/amines and epoxy/amides, polyurethanes, and polyurea with acrylic modified urethane, uralkys, urethane acrylates and urethane amide acrylates, high solids air-dry paints of alkyl and acrylic resin, vinyl toluated alkyls, chain stopped air-dry alkyls and modified alkyls, oleoresins, polyvinyl acetates and vinyl acrylics.

[0046] For the purposes of the present disclosure, the terms “high solids” and “high solids content” refer to solid contents of at least 70% by weight (wt. %), more preferably at least 80 wt. %, and most preferably at least 85 wt. %, based on the total weight of the coating composition after mixing both packs. The maximum solids content generally is not higher than 95 wt. %. The solids content of the composition can be determined in accordance with ASTM standard D 5201-01.

[0047] In one such embodiment, the present disclosure provides for a high solids coating composition comprising: a first pack and a second pack; wherein the first pack comprises: (a) at least one resin (b) a polyamide composition having a median particle size ranging from 1 μm to 10 μm; and (c) a diluent; and the second pack comprises: at least one cross linking agent; wherein the high solids composition has a solids content of at least 70 wt. %, wherein the polyamide is activated upon mixing the ingredients of pack one between 25°C and 50°C. Various embodiments of a polyamide composition are described below and may be used in the foregoing high solids coating composition.

[0048] In one such embodiment of a two-pack high solids paint composition, the resin is an epoxy. In one such embodiment, the epoxy resin is selected from the group consisting of bisphenol A epoxy, bisphenol F epoxy, or phenolic novolac epoxy or combinations thereof. Such two component epoxy systems are cured with hardeners. In one embodiment, the hardener is selected from the group consisting of aliphatic polyamines, polyamine adducts, polyamide/amidoamines, aromatic amines, ketamines and cycloaliphatic amines and combinations thereof. In one
embodiment, the epoxy system is formulated with reactive diluents to reduce the viscosity of the base resin based on bisphenol A, bisphenol F, or phenol novolac epoxy resins to improve handling and ease of processing in various applications. Reactive diluents typically are epoxy group-containing functional products which are low viscosity materials that can react with the curing agents to become a part of the cross-linked epoxy system. Reactive diluents are described in U.S. Pat. No. 4,417,022 and U.S. Patent Appl. Publ. No. 2005012400 each of which is incorporated by reference in their entirety.

[0049] In another embodiment of a two-pack high solids paint composition with the resin in a first pack and the resin is a polyol which forms a polyurethane when reacted with a crosslinker in a second pack. In such embodiments, the polyol is a high molecular weight, high functionality polyol and the crosslinker is a low viscosity, high functionality liquid polysiloxycarboxyl crosslinker.

[0050] In some embodiments, of the high solids paint composition, the polyol resin is independently selected from the group consisting of: polyurethane polyol, a polyester polyol, a polyether polyol, a polyacrylate polyol, and combinations thereof. For such embodiments of high solids coating compositions, the amount of polyamide ranges from 0.5 wt. % to 2 wt. % and the amount of crosslinking agent ranges from 10 wt. % to 20 wt. %.

[0051] Diluents which may be present in the coating composition include customary solvents, such as aromatic, aliphatic, alicyclic or cycloaliphatic hydrocarbons, partly or fully halogenated aromatic, aliphatic, alicyclic or cycloaliphatic hydrocarbons, alcohols such as methanol, ethanol, isopropanol, butanol, benzyl alcohol, diacetone alcohol, esters such as ethyl acetate, propyl acetate, butyl acetate, ether esters such as methoxypropyl acetate or butyl glycol acetate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and water, and mixtures thereof. VOC exempt solvents may also be used as solvents.

[0052] The coating composition may optionally contain one or more auxiliary ingredients including plasticizers, stabilizers, phase mediators, pigments, surface-active substances, defoamers, biocides, desiccants, catalysts, initiators, photosensitizers, inhibitors, light stabilizers, and preservatives.

[0053] The cross-linking agent in pack two is selected according to the composition of the polyol resin. In some embodiments, the cross-linking agent is a diisocyanate or polyisocyanate. Examples of diisocyanate compounds include p-phenylene diisocyanate, biphenyl 4,4’-diisocyanate, toluene diisocyanate, tetramethylene diisocyanate, 3,3’-dimethyl-4,4’-biphenyl diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 2,2,4-trimethylhexane-1,6 diisocyanate, methylene bis (phenyl isocyanate), 1,5 napthalene diisocyanate, bis (isocyanato-ethyl furanate), isophorone diisocyanate (IPDI) and methylene-bis-(4 cyclohexylisocyanate).

[0054] In some other embodiments, the formulation may contain an amine compound. Examples include butylamine, octylamine, dibutylamine, monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylene tetramine, oleylamine, cyclohexylamine, benzylamine, diethylamino propylamine, xlylenediamine, triethylenedianime, guanidine, diphenyl guanidine, 2,4,6-tris(dimethylaminoethyl) phenol, morpholine, N-methylmorpholine, 2-ethyl-4-methylimidazole, and 1,8-diazabicyclo(5,4,0)undecene-7 (DBU).

[0055] In some embodiments, of the high solids paint composition, the polyamide consists essentially of a polyamide having groups derived from: a diamine selected from the group consisting of ethylene diamine and hexamethylene diamine; a straight chain monocarboxylic acid having 1 to 6 carbon atoms; a fatty acid independently selected from the group consisting of: 12-hydroxyestearic acid, esquereoleic acid and combinations thereof; wherein the diamine, the straight chain monocarboxylic acid and fatty acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1:25; or 1:1.5:0.5 to 1:1:1; and a median particle size ranging from 1 μm to 10 μm. In some embodiments of the polyamide of the high solids paint composition, the straight chain monocarboxylic acid is independently selected from the group consisting of: propionic acid, butyric acid, valeric acid, hexanoic acid and combinations thereof. In certain of the embodiments of the polyamide of the high solids paint composition, the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, and combinations thereof.

[0056] In some embodiments of the high solids paint composition, the polyamide consists essentially of groups wherein, the diamine is ethylene diamine, the straight chain monocarboxylic acid is acetic acid and the fatty acid is 12-hydroxyestearic acid wherein ethylene diamine, acetic acid and 12-hydroxyestearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1:25; or 1:1.5:0.5 to 1:1:1 and said polyamide having a medium particle size ranging from 1 μm to 10 μm.

[0057] In some embodiments of the high solids paint composition, the polyamide consists essentially of groups wherein, the diamine is ethylene diamine, the straight chain monocarboxylic acid is propionic acid and the fatty acid is 12-hydroxyestearic acid wherein ethylene diamine, propionic acid and 12-hydroxyestearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1:25; or 1:1.5:0.5 to 1:1:1 and said polyamide having a medium particle size ranging from 1 μm to 10 μm.

[0058] In other embodiments of the high solids paint composition, the polyamide consists essentially of groups wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is butyric acid and the fatty acid is 12-hydroxyestearic acid wherein ethylene diamine, butyric acid and 12-hydroxyestearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1:25; or 1:1.5:0.5 to 1:1:1 and said polyamide having a medium particle size ranging from 1 μm to 10 μm.

[0059] In some embodiments of the high solids paint composition, the polyamide consists essentially of groups wherein, the diamine is ethylene diamine, the straight chain monocarboxylic acid is hexanoic acid and the fatty acid is 12-hydroxyestearic acid wherein ethylene diamine, hexanoic acid and 12-hydroxyestearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1:25; or 1:1.5:0.5 to 1:1:1 and said polyamide having a medium particle size ranging from 1 μm to 10 μm.

[0060] In some other embodiments, of the high solids paint composition, the polyamide consists of a polyamide having groups derived from: a diamine selected from the group consisting of ethylene diamine and hexamethylene diamine; a straight chain monocarboxylic acid having 1 to 6
carbon atoms; a fatty acid independently selected from the group consisting of: 12-hydroxy stearic acid, lesquerolic acid and combinations thereof wherein the diamine, the straight chain monocarboxylic acid and fatty acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1:1; and a median particle size ranging from 1 μm to 10 μm. In some such embodiments of the polyamide, the straight chain monocarboxylic acid is independently selected from the group consisting of: propionic acid, butyric acid, valeric acid, hexanoic acid and combinations thereof. In certain of the embodiments of the polyamide of the high solids paint composition, the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, and combinations thereof.

[0061] In some embodiments of the high solids paint composition, the polyamide consists of groups wherein, the diamine is ethylene diamine, the straight chain monocarboxylic acid is acetic acid and the fatty acid is 12-hydroxy stearic acid wherein ethylene diamine, acetic acid and 12-hydroxy stearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1:1 and said polyamide having a median particle size ranging from 1 μm to 10 μm.

[0062] In some embodiments of the high solids paint composition, the polyamide consists of groups wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is propionic acid and the fatty acid is 12-hydroxy stearic acid wherein ethylene diamine, propionic acid and 12-hydroxy stearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1:1 and said polyamide having a median particle size ranging from 1 μm to 10 μm.

[0063] In other embodiments of the polyamide, the diamine is ethylene diamine, the straight chain monocarboxylic acid is butyric acid and the fatty acid is 12-hydroxy stearic acid wherein ethylene diamine, butyric acid and 12-hydroxy stearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1:1 and said polyamide having a median particle size ranging from 1 μm to 10 μm.

[0064] In some embodiments of the high solids paint composition, the polyamide consists of groups wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is hexanoic acid and the fatty acid is 12-hydroxy stearic acid wherein ethylene diamine, hexanoic acid and 12-hydroxy stearic acid have a molar equivalent ratio ranging from 1:1.75:0.25 to 1:0.75:1.25; or 1:1.5:0.5 to 1:1:1 and said polyamide having a median particle size ranging from 1 μm to 10 μm.

EXAMPLES

[0065] The following examples further describe and demonstrate illustrative embodiments within the scope of the present invention. The examples are given solely for illustration and are not to be construed as limitations of this invention as many variations are possible without departing from the spirit and scope thereof.

Example 1

[0066] To a 500 ml 4-neck glass reactor equipped with an overhead stirrer, a dean-stark trap, a condenser and thermometer, 200.0 g (0.647 mole) of 12-hydroxy stearic acid (HSA) and 75.2 g (0.647 mole) of hexanoic acid (HA) was added. The mixture was heated to 75-80° C. under N₂ until all material was molten. The reactor mixer was switched on and 38.9 g (0.647 mole) of ethylenediamine (ED) was slowly added to the reactor within 2-3 minutes. A typical exotherm increases the temperature to 135-140° C. After the temperature was held at 135° C. for 15-20 minutes, 0.13 g of phosphoric acid catalyst was added to the reactor. The reaction mixture was slowly heated to 180° C. and held for 5-6 hours until acid/amine numbers are about 5-8. The material was then removed from the reactor, cooled and milled to a fine powder with a median particle size between 1 and 10 microns. The amide composition is designated as HSA-ED-HA (1).

Example 2

[0067] To a 500 ml 4-neck glass reactor equipped with an overhead stirrer, a dean-stark trap, a condenser and thermometer, 100.0 g (0.323 mole) of 12-hydroxy stearic acid (HSA) and 112.8 g (0.97 mole) of hexanoic acid (HA) was added. The mixture was heated to 75-80° C. under N₂ until all material was molten. The reactor mixer was switched on and 38.9 g (0.647 mole) of ethylenediamine (ED) was slowly added to the reactor within 2-3 minutes. A typical exotherm increases the temperature to 135-140° C. After the temperature was held at 135° C. for 15-20 minutes, 0.13 g of phosphoric acid catalyst was added to the reactor. The reaction mixture was slowly heated to 180° C. and held for 5-6 hours until acid/amine numbers are about 5-8. The material was then removed from the reactor, cooled and milled to a fine powder with a median particle size between 1 and 10 microns. The amide composition is designated as HSA-ED-HA (2).

Example 3

[0068] To a 500 ml 4-neck glass reactor equipped with an overhead stirrer, a dean-stark trap, a condenser and thermometer, 200.0 g (0.647 mole) of 12-hydroxy stearic acid (HSA) and 47.8 g (0.647 mole) of propionic acid (PA) was added. The mixture was heated to 75-80° C. under N₂ until all material was molten. The reactor mixer was switched on and 38.9 g (0.647 mole) of ethylenediamine (ED) was slowly added to the reactor within 2-3 minutes. A typical exotherm increases the temperature to 135-140° C. After the temperature was held at 135° C. for 15-20 minutes, 0.13 g of phosphoric acid catalyst was added to the reactor. The reaction mixture was slowly heated to 180° C. and held for 5-6 hours until acid/amine numbers are about 5-8. The material was then removed from the reactor, cooled and milled to a fine powder with a median particle size between 1 and 10 microns. The amide composition is designated as HSA-ED-PA (1).

Example 4

[0069] To a 500 ml 4-neck glass reactor equipped with an overhead stirrer, a dean-stark trap, a condenser and thermometer, 200.0 g (0.647 mole) of 12-hydroxy stearic acid (HSA) and 38.8 g (0.647 mole) of acetic acid (AA) was added. The mixture was heated to 75-80° C. under N₂ until all material was molten. The reactor mixer was switched on and 38.9 g (0.647 mole) of ethylenediamine (ED) was slowly added to the reactor within 2-3 minutes. A typical exotherm increases the temperature to 135-140° C. After the
temperature was held at 135° C. for 15-20 minutes, 0.13 g of phosphoric acid catalyst was added to the reactor. The reaction mixture was slowly heated to 180° C. and held for 5-6 hours until acid/amine numbers are about 5-8. The material was then removed from the reactor, cooled and milled to a fine powder with a median particle size between 1 and 10 microns. The amide composition is designated as HSA-ED-AH (1).

Example 5

To a 500 ml, 4-neck glass reactor equipped with an overhead stirrer, a dean-stark trap, a condenser and thermocouple, 200.0 g (0.647 mole) of 12-hydroxystearic acid (HSA) and 57.0 g (0.647 mole) of butyric acid (BA) was added. The mixture was heated to 75-80° C. under N₂ until all material was molten. The reactor mixer was switched on and 38.9 g (0.647 mole) of ethylenediamine (ED) was slowly added to the reactor within 2-3 minutes. A typical exotherm increases the temperature to 135-140° C. After the temperature was held at 135° C. for 15-20 minutes, 0.13 g of phosphoric acid catalyst was added to the reactor. The reaction mixture was slowly heated to 180° C. and held for 5-6 hours until acid/amine numbers are about 5-8. The material was then removed from the reactor, cooled and milled to a fine powder with a median particle size between 1 and 10 microns. The amide composition is designated as HSA-ED-BA (1).

Example 6

In this example, we compare the rheological performance of polycarboxylate additives in a MS-polymer based sealant formulation. The rheological additives were compounded without applying heat. The MS Polymer sealant formulation is shown in Table 1 and the various ingredients were mixed in a planetary vacuum mixer Type LPV 1 following a mixing procedure appropriate for sealant production. A minimal temperature rise was observed due to mixing. The rheology of the final materials was measured with a MCR 300 rheometer from Physica. The measuring geometry was a plate-plate system (PP/PE 25). For rheology assessment on the MCR 300 rheometer, the MS Polymer sealant formulation was used without a catalyst.

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>Component</th>
<th>Weight Parts</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MS-Polymer S 203 H</td>
<td>15.00</td>
<td>binder</td>
</tr>
<tr>
<td>2</td>
<td>Carbitol 110 S</td>
<td>50.00</td>
<td>extender</td>
</tr>
<tr>
<td>3</td>
<td>Kronos 2190</td>
<td>1.00</td>
<td>pigment</td>
</tr>
<tr>
<td>4</td>
<td>Rheological Additive</td>
<td>3.50</td>
<td>rheological additive</td>
</tr>
<tr>
<td>5</td>
<td>MS-Polymer S 303 H</td>
<td>10.00</td>
<td>binder</td>
</tr>
<tr>
<td>6</td>
<td>Jayflex D15P</td>
<td>16.30</td>
<td>plasticizer</td>
</tr>
<tr>
<td>7</td>
<td>Dynasilan VTMO</td>
<td>0.70</td>
<td>water absorbent</td>
</tr>
<tr>
<td>8</td>
<td>Dynasilan DAMO-T</td>
<td>0.50</td>
<td>adhesion promoter</td>
</tr>
<tr>
<td>9</td>
<td>Metatin 740</td>
<td>0.30</td>
<td>catalyst</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Amide composition*</th>
<th>Shear rate, (\eta^{-1})</th>
<th>Viscosity, Pa</th>
<th>Shear thinning index</th>
<th>Yield point</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-ED-HA (1)</td>
<td>0.1</td>
<td>1293</td>
<td>81</td>
<td>148</td>
</tr>
<tr>
<td>HSA-ED-PA (1)</td>
<td>0.1</td>
<td>2071</td>
<td>115</td>
<td>217</td>
</tr>
<tr>
<td>HSA-ED-AA (1)</td>
<td>0.1</td>
<td>687</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

Nm = not measurable

The data in Table 2 demonstrates that with a low activation temperature, the MS Polymer sealant formulation with HSA-ED-PA (1) polyamide provided the highest viscosity, shear thinning index and yield point values. The MS Polymer sealant formulations with HSA-ED-HA (1) and HSA-ED-AA (1) polyamides provided lower viscosity, shear thinning index and yield point values but still imparted rheological activity.

Example 7

This example evaluates the rheological performance of MS Polymer sealant material with general formulation as shown in Table 1, but compounded at 45° C. In addition, a 3.5 wt % polyamide additive loading was used to enhance performance differences. The results shown in Table 3 illustrate desirable performance when the amide formulation of HSA-ED-HA (1) is adjusted to the additive formulation of HSA-ED-HA (2). The HSA-ED-HA (2), and HSA-ED-PA (1) polyamide compositions show desirable rheological efficiency in comparison to HSA-ED-HA (1) and the industrial benchmark.

TABLE 3

<table>
<thead>
<tr>
<th>Amide composition*</th>
<th>Mol ratio</th>
<th>Viscosity at 0.1 (\eta^{-1})</th>
<th>Viscosity at 100 (\eta^{-1})</th>
<th>Shear thinning index</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-ED-HA (1)</td>
<td>1:1:1</td>
<td>4938</td>
<td>29</td>
<td>170</td>
</tr>
<tr>
<td>HSA-ED-HA (2)</td>
<td>1:1:1:0.5</td>
<td>8444</td>
<td>32</td>
<td>264</td>
</tr>
<tr>
<td>HSA-ED-PA (1)</td>
<td>1:1:1</td>
<td>9464</td>
<td>33</td>
<td>270</td>
</tr>
<tr>
<td>Industrial benchmark</td>
<td>na</td>
<td>6331</td>
<td>32</td>
<td>198</td>
</tr>
</tbody>
</table>

Example 8

The rheological performance in a two component polyurethane paint was examined. Polyamides were evaluated for performance as rheological additive (RA) by incorporating them in a high solids two component polyurethane paint system with a formulation shown in Table 4. A generally recommended process for the incorporation of the RA into part A of a paint was followed by adding an initial charge of resin, solvent and RA to a mix tank. This mixture is then pre-dispersed at 15-20 m/s for a specified amount of time. After this pre-dispersion step, titanium dioxide R-900 pigment and leveling agent were added and then the mixture was further dispersed at 15-25 m/s and at a specified batch temperature and time so an acceptable “Fineness of Grind” is achieved. The batch temperature was actively controlled at either 50° C. or 65° C. to simulate paint production in a manufacturing plant.
TABLE 4

<table>
<thead>
<tr>
<th>Component A</th>
<th>Supplier</th>
<th>Parts by Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylic Polyol in Butyl</td>
<td>BASF</td>
<td>31.43</td>
</tr>
<tr>
<td>Acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent (Methyl Amin Ketone)</td>
<td>Various</td>
<td>16.37</td>
</tr>
<tr>
<td>Levelling aid</td>
<td>BASF</td>
<td>0.16</td>
</tr>
<tr>
<td>Rheological additive (RA)</td>
<td>Various</td>
<td>1.02</td>
</tr>
<tr>
<td>TiO₂ filler</td>
<td>Chemours</td>
<td>39.33</td>
</tr>
</tbody>
</table>

Component B (Curing agent)

Inocyanate curing agent: Bayer (aliphatic, 100% solids, Equation Wt. = 11.69, 183 g/mol; 23% NCO)

Example 9

The ability of the polyamide to control paint rheology was assessed by means of sag resistance measurement in mils using a Leneta Sag multi notch applicator at room temperature in accordance with ASTM D4400. Results for the two component A+B cured urethane paints are shown in Table 5. The HSA-ED-HA (1) polyamide does not effectively control the rheology when incorporated at 50° F. in part A as the amide is not activated into the active form at this temperature. This particular amide requires paint processing at 65° C. In contrast, the HSA-ED-PA (1) additive shows good activation at the lower 50° C. processing temperature.

TABLE 5

<table>
<thead>
<tr>
<th>Paint process temperature</th>
<th>Polyamide additive</th>
</tr>
</thead>
<tbody>
<tr>
<td>50° C.</td>
<td>HSA-ED-HA (1)</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>65° C.</td>
<td>HSA-ED-PA (1)</td>
</tr>
<tr>
<td></td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

Example 10

Polyamides were evaluated for performance as rheological additive (RA) by incorporating them in a high solids two component epoxy paint system with a formulation shown in Table 7. A generally recommended process for incorporation of the RA into part A of a paint was followed by adding an initial charge of resin, solvent and RA to a mix tank. This mixture is then pre-dispersed at 15-20 m/s for a specified amount of time. After this pre-dispersion step, pigment and other additives were added and then the mixture was further dispersed at 15-25 m/s and at a specified batch temperature and time so an acceptable “Fineness of Grind” is achieved. The batch temperature was actively controlled at either 50° C. or 65° C. to simulate paint production in a manufacturing plant.

TABLE 6

<table>
<thead>
<tr>
<th>Paint process temperature</th>
<th>Polyamide additive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient (26° C.-30° C.)</td>
<td>HSA-ED-HA (1)</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>65° C.</td>
<td>HSA-ED-AA (1)</td>
</tr>
<tr>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>
TABLE 7-continued

<table>
<thead>
<tr>
<th>Component Supplier</th>
<th>Parts by Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaSO₄ filler</td>
<td>14.39</td>
</tr>
<tr>
<td>Deformer</td>
<td>0.31</td>
</tr>
<tr>
<td>Colorant</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Component B (Cure time blend)

<table>
<thead>
<tr>
<th>Amine curing agent</th>
<th>Parts by Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardoline (pentaerythritolamine)</td>
<td>11.49</td>
</tr>
<tr>
<td>BASF (C18 unsaturated fatty acid amidoamine; AHEW = 95 g/mol)</td>
<td>5.74</td>
</tr>
</tbody>
</table>

The ability of the polyamide to control paint rheology was assessed by means of sag resistance measurement in mils using a Leneta Sag multi notch applicator at room temperature in accordance with ASTM D4400. Results for the two component A+B cured epoxy paints are shown in Table 8.

TABLE 8

<table>
<thead>
<tr>
<th>Polyamide additive</th>
<th>Paint processing temperature</th>
<th>SAG (mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSA-ED-HA (1)</td>
<td>65°C</td>
<td>37</td>
</tr>
<tr>
<td>HSA-ED-HA (1)</td>
<td>50°C</td>
<td>23</td>
</tr>
<tr>
<td>HSA-ED-PA (1)</td>
<td>50°C</td>
<td>73</td>
</tr>
<tr>
<td>HSA-ED-AA (1)</td>
<td>50°C</td>
<td>75</td>
</tr>
</tbody>
</table>

The control HSA-ED-HA (1) polyamide composition does not show effective activation at lower paint preparation temperature, while the HSA-ED-PA (1) and HSA-ED-AA (1) polyamide compositions do show good activation and rheology control by means of sag resistance testing of paints prepared at lower processing temperatures.

The present disclosure may be embodied in other specific forms without departing from the spirit or essential attributes of the invention. Accordingly, reference should be made to the appended claims, rather than the foregoing specification, as indicating the scope of the disclosure. Although the foregoing description is directed to the preferred embodiments of the disclosure, it is noted that other variations and modifications will be apparent to those skilled in the art, and may be made without departing from the spirit or scope of the disclosure.

What is claimed:

1. A polyamide composition consisting essentially of a polyamide having groups derived from:
 a diamine selected from the group consisting of ethylene diamine and hexamethylene diamine;
 a straight chain monocarboxylic acid having 1 to 5 carbon atoms; wherein the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, butyric acid, valeric acid, and combinations thereof;
 a fatty acid independently selected from the group consisting of: 12-hydroxy stearic acid, losquerolic acid and combinations thereof;
 wherein the diamine, the straight chain monocarboxylic acid and fatty acid have a molal equilibrium ratio ranging from 1:1.75:0.25 to 1.75:1:2.5; or 1:1.5:0.5 to 1:1:1; and a median particle size ranging from 1 µm to 10 µm.

2. The polyamide composition according to claim 1, wherein the straight chain monocarboxylic acid is independently selected from the group consisting of: acetic acid, propionic acid, combinations thereof.

3. The polyamide composition according to claim 2, wherein the diamine is ethylene diamine.

4. The polyamide composition of according to claim 1, wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is acetic acid and the fatty acid is 12-hydroxy stearic acid.

5. The polyamide composition of according to claim 1, wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is propionic acid and the fatty acid is 12-hydroxy stearic acid.

6. The polyamide composition of according to claim 1, wherein the diamine is ethylene diamine, the straight chain monocarboxylic acid is butyric acid and the fatty acid is 12-hydroxy stearic acid.

7. A curable sealant or adhesive composition comprising:
 a resin;
 a catalyst or curing agent;
 optional solvent, pigment, filler, and plasticizer; and
 a polyamide composition consisting essentially of a polyamide according to claim 1,
 wherein the polyamide composition has an activation temperature ranging between 25°C and 50°C, when combined with the resin, and optional pigment, filler and plasticizer, and wherein the curable sealant or adhesive composition is a one part system or a two part system.

8. The curable sealant or adhesive composition according to claim 7, wherein the resin is selected from silicone, polyurethane systems, acrylic, butyl rubber solvent based resin, epoxy-penetrating solvent-based resin, and combinations thereof.

9. The curable sealant or adhesive composition according to claim 7, wherein the resin is selected from a silyl-terminated polymer independently selected from the group consisting of: silylated polyurethane, silylated polyether polyol, silylated polyester and combinations thereof.

10. The curable sealant composition according to claim 7, wherein the curable sealant composition is a one part system and is moisture curable.

11. A method of making a curable sealant or adhesive composition comprising the steps of:
 adding a polyamide composition to a resin and catalyst mixture;
 blending the mixture of the polyamide and the resin and catalyst mixture at a temperature ranging between 25°C and 50°C;
 wherein the polyamide composition consisting essentially of a polyamide according to claim 1.

12. The method of making a curable sealant or adhesive according to claim 11, wherein the resin is selected from silicone, polyurethane systems, acrylic, butyl rubber solvent based resin, epoxy-penetrating solvent-based resin, and combinations thereof.

13. The method of making a curable sealant or adhesive according to claim 11, wherein the resin is a silyl-terminated...
polymer independently selected from the group consisting of: silylated polyurethane, silylated polyester polyol, silylated polyester and combinations thereof.

14. A coating composition comprising:
 (a) a resin binder chemistry selected from the group consisting of polyester/melamine, polyester/urea/formaldehyde, alkyd-melamine, alkyd-urea/formaldehyde, acrylic-melamine, acrylic urea/formaldehyde, epoxies, epoxy urea/formaldehyde, epoxy/amines and epoxy/amides, polyurethanes, alkyd and acrylic modified urethane, uralkyds, urethane acrylates and urethane amide acrylates, high solids air-dry paints of alkyd and acrylic resin, vinyl toluated alkyds, chain stopped air-dry alkyds and modified alkyds, oleoresins, polyvinyl acetates and vinyl acrylics;
 (b) a polyamide composition consisting essentially of a polyamide according to claim 1; and
 (c) an optional diluent.

15. A high solids coating composition comprising a first pack and a second pack; wherein the first pack comprises:
 (a) a resin;
 (b) a polyamide composition consisting essentially of a polyamide according to claim 1;
 (c) a diluent;

and the second pack comprises:
 at least one cross linking agent or a hardening agent;
 wherein the high solids composition has a solids content of at least 70 wt. %, and wherein the polyamide is activated upon mixing the ingredients of pack one between 25°C and 50°C.

16. The high solids coating composition according to claim 15, where in the resin is an epoxy selected from the group consisting of bisphenol A epoxy, bisphenol F epoxy, or phenolic novolac epoxy or combinations there.

17. The high solids coating composition according to claim 15, wherein the hardening agent is selected from the group consisting of aliphatic polyamines, polyamine adducts, polyamide/amidoamines, aromatic amines, ketimines and cycloaliphatic amines and combinations thereof.

18. The high solids coating composition according to claim 15, wherein the resin is a polyol which forms a polyurethane when reacted with a crosslinker in a second pack.

19. The high solids coating composition according to claim 15, wherein the resin is a polyol independently selected from the group consisting of: polyurethane polyol, a polyester polyol, a polyether polyol, a polyacrylate polyol, an epoxy and combinations thereof.

* * * * *

* * * * *