Title: SECURE ENTRY SYSTEM

Abstract: A secure entry system is provided. The secure entry system comprises an authorisation apparatus including a reader for reading data, and a record medium, wherein the record medium is presented to the reader, and characterised in that the reader and the record medium or a member connected to the record medium include one or more pairs of visible and/or tactile markings which, only when the record medium is correctly presented to the reader, cooperate with one another in a predetermined manner.

Fig. 4A


Published: — with international search report (Art. 21(3))
The invention relates to a secure entry system.

Secure entry systems are used in a wide variety of applications to control access to buildings, rooms, sports stadia, countries and the like. A typical secure entry system comprises authorisation apparatus including a reader for reading data from a record medium presented to the reader by a user.

In many situations, particularly border controls, sports stadia and the like, a secure entry system is commonly required to process a large number of users in as short a time as possible. This might occur at an airport, for example, where a number of planes arrive at similar times and all passengers need to be securely processed and admitted (or not) into the country. Other examples include secure entry systems to stadia for sporting events where again a large number of people need to be securely authorised in a short time.

Known secure entry systems have been implemented but often they fail to successfully authorise a user and the user then has to be redirected to a manual authorisation station. This slows down the authorisation process and requires multiple staff members to be available to assist users.

There is therefore a need to improve such secure entry systems to increase the rate at which they can authorise users and thus speed up the overall authorisation process while reducing the number of times a manual authorisation has to be performed.

In accordance with a first aspect of the present invention, a secure entry system comprises authorisation apparatus including a reader for reading data, and a record medium, wherein the record medium is presented to the reader, and characterised in that the reader and the record medium or a member connected to the record medium include one or more pairs of visible and/or tactile markings which, only when the record medium is correctly presented to the reader, cooperate with one another in a predetermined manner.
2

The inventor has realised that one of the problems with the use of conventional secure entry systems is that readers require the record medium to be presented to them in a particular orientation without significant tolerance and it is often difficult for a user to achieve this. The user may be unfamiliar with the reader or may not realise that although they have presented the record medium in an apparently acceptable manner, it is not sufficiently well presented for the reader to read data from it.

A further advantage is that the markings can easily be added to otherwise conventional readers and record media.

By including one or more pairs of markings, one of each pair on the record medium or member connected to the record medium, and the other on the reader, it becomes much easier for a user to correctly present the record medium to the reader by simply checking that the markings cooperate with one another in the predetermined manner.

If visible markings are used they may or may not also be tactile, while if tactile markings are used, they may or may not be visible. In most cases, a pair of markings will be of the same type - visible or tactile but in other examples one may be visible (and optionally tactile) while the other is tactile and not clearly visible. A tactile marking may not be visible if it is formed of a clear embossing or the like.

In a very simple application, the "data" that is read from the record medium is simply the presence or otherwise of indicia or an object, such as an electronic chip, in or on the record medium. This provides a relatively low level of authorisation.

In more sophisticated examples, the authorisation apparatus further comprises an input device for detecting information about a person presenting the record medium, and an analyser for comparing the detected information with the read data, such as biodata, and for allowing entry if a satisfactory comparison is achieved. This provides a higher level of authorisation in that the person presenting the record medium is authorised rather than simply acknowledging the possession of the record medium. Such embodiments can be used in the context of geographical border controls and the like.
In some embodiments, the authorisation apparatus is adapted to determine whether the markings cooperate with one another in the predetermined manner. For example, the apparatus could include an imaging device for detecting images of visible markings and then checking for the correct cooperation.

In preferred embodiments, however, the cooperation, between the pair of markings is visible and/or detectable by touch to the person presenting the record medium. This presents a lower cost approach but also enables the cooperation to be checked quickly and conveniently by the person presenting the record medium.

In the simplest embodiments, a single pair of markings is provided but occasionally this can lead to ambiguities if, to the relatively unskilled user, the markings appear to be correctly cooperating when in fact the orientation of the record medium is not correct. This problem can be significantly reduced if each of the reader and record medium or the member connected to the record medium is provided with at least two pairs of visible and/or tactile markings, the members of each pair cooperating together in a predetermined manner when the record medium is correctly presented to the reader. By having at least two pairs of markings, it will only usually be possible to present the record medium in a single orientation to the reader to achieve the desired cooperation.

In some cases, the members of each pair of markings are identical. This makes production of the markings on the reader and record medium or member connected to the record medium a simple task and has the benefit of users easily recognizing the markings for what they are. However, in order to reduce the risk of misorientation, in preferred examples, the members of each pair of markings differ from the members of the or each other pair of markings so as to introduce an asymmetry. This will mean that a number of unique pairings will be achieved which can be easily detected by the user. The markings could differ by being mirror images of one another, having the same shape but different colours, having the same colour but different shapes, or being in the form of alphanumeric characters spelling a word, or other known pairings of symbols.
The markings may differ from one another in a variety of ways including one or more of colour, shape, surface texture, size and/or graphic design.

Visible markings may also be or incorporate security devices such as holograms, security inks, perforations and embossings.

The predetermined manner in which the visible markings cooperate is preferably based on their relative geometric location, typically being arranged side by side when a record medium is correctly positioned relative to the reader. In other examples, the markings could be vertically aligned. This could be achieved if one of the markings (typically visible) is provided in or adjacent a transparent or semi-transparent part of the record medium or member connected to the record medium allowing the other marking to be viewed.

In one example, the reader includes a border region extending alongside a record medium presenting region, the border region having one of the or each pair of markings so that when the record medium is correctly presented on the record medium presenting region, the corresponding pairs of markings are aligned with one another. Typically, the record medium is slid along the presenting region to bring the markings into alignment or alternatively the record medium can be simply placed down onto the presenting region.

Examples of record media include identification cards, driving licenses, visas or page of a security booklet such as a passport. In the latter case, one member of the or each pair of visible markings may be provided on an outer surface of a cover of the security booklet.

In particularly preferable embodiments, at least one of the one or more pairs of visible and/or tactile markings are substantially invisible when illuminated by a natural light, and become visible when illuminated by a light having a wavelength outside the visible wavelength range, and the authorisation apparatus further comprises a light source configured to illuminate said at least one of the one or more pairs of visible and/or tactile markings with light having the wavelength outside the visible wavelength range. Preferably, the light having a wavelength outside the visible wavelength range is a light having a wavelength in the ultraviolet wavelength
range. In one example, the light source is an illuminating hood configured to illuminate at least the reader.

In embodiments having markings that are substantially invisible in natural light, it is preferable that the markings are only made visible when the record medium is brought close to the reader. Therefore, preferably the authorisation apparatus further comprises a sensor configured to sense one or more of a person presenting the record medium and the record medium presented to the reader, and a controller configured to switch on the light source in response to the sensor sensing one or more of the person presenting the record medium and the record medium presented to the reader. Alternative embodiments are foreseen in which, for example, the intensity of the light source is increased and decreased instead of the light source being switched on and off.

In embodiments having markings that are substantially invisible in natural light, the or each pair of markings included on the record medium or the member connected to the record medium may be substantially invisible when illuminated by a natural light, and the or each pair of markings included on the reader substantially visible when illuminated by natural light. Alternatively, all of the one or more pairs of visible and/or tactile markings may be substantially invisible when illuminated by a natural light, and become visible when illuminated by a light having a wavelength outside the visible wavelength range.

In accordance with a second aspect of the present invention, we provide a record medium for use in a secure entry system according to the first aspect of the invention, the record medium or a member connected to the record medium including one or more pairs of visible and/or tactile markings which, when the record medium is correctly presented to the reader of the secure entry system, cooperate with a corresponding member in the reader in the predetermined manner.

In accordance with a third aspect of the present invention, we provide a security booklet for use in a secure entry system according to the first aspect of the invention, the security booklet including a record medium incorporating secure data such as biodata, the security booklet having a cover on an outer surface of which one member of one or more pairs of visible and/or tactile markings is provided such
that when the record medium is correctly presented to the reader of the secure entry system, the member will cooperate with the other member of the marking pair on the reader in the predetermined manner.

In accordance with a fourth aspect of the present invention, we provide authorisation apparatus for use in a secure entry system according to the first aspect of the invention, the apparatus including a reader for reading data from a record medium presented to the reader, the reader including one member of one or more pairs of visible and/or tactile markings which, when a record medium is correctly presented to the reader, cooperates with the other member of the pair of visible and/or tactile markings on the record medium or a member connected to the record medium in the predetermined manner.

Some examples of security entry systems according to the invention will now be described with reference to the accompanying drawings, in which:

Figure 1 is a schematic, perspective view of an example of a secure entry system according to the invention;

Figure 2 illustrates part of the reader shown in Figure 1;

Figure 3 illustrates a security booklet such as a passport;

Figures 4A-4D illustrate a number of different examples of a passport and reader indicating the visible markings used in which the visible markings of each pair are mirror images; and,

Figure 5 illustrates further examples of pairs of visible markings.

A typical secure entry system for authorising entry at a geographical border is shown schematically in Figure 1. The system includes a reader housing 1 having an upper surface 2 on which is mounted a camera assembly 3. A passport biodata reader 4 of conventional form is located in the housing 1 beneath the surface 2 and cooperates with an entry slot 5 at the rear end of a passport 10 presenting region 6 formed in the housing 1.
The reader 4 outputs signals, representing biodata read from a passport 10 presented to it, to a control processor 12 located in the housing 1. Image data from the camera 3 representing the image of the face of a person 14 is also fed to the control processor 12 which then makes a comparison of the image data from the person 14 presenting the passport with the biodata read from the passport and, if a sufficient match is obtained, causing a pair of doors 16 to open and allow the user to pass through.

The reader 4 includes an upper surface 20 comprising an opaque border region 22 extending around three sides and a central, transparent region 24 defining a record medium presenting region made of plastic or glass. A passport 10 is placed by the user on the region 22, part of which is located in the slot 5 of the housing 1. Information on a data page in the passport is read by the reader 4 through the transparent region 24. It is therefore important to ensure that the passport is correctly aligned to enable that data to be read.

A typical passport construction is shown in Figure 3. This comprises an outer cover 30 folded about a fold line 32 and including a number of inner pages 34-37. The page 34 is a data page and carries information about the holder of the passport such as biodata in machine-readable form, for example on a chip, barcode or the like, together with other readable information such as a photo image, name, date of birth and the like. In order that the reader 4 can read this data, the passport must be opened to present the page 34 face down onto the presenting region 24 leaving the cover 30 fully open and visible from above.

In order to achieve correct alignment, the cover 30 on its outer surface and the border region 22 of the reader 20 are provided with at least one cooperating pair of visible markings (not shown in Figure 2).

Figures 4A-4D illustrate some examples of two cooperating pairs of visible markings.

In the example shown in Figure 4A, two pairs of visible markings are provided indicated at 50,52 respectively. The pair of visible markings 50 comprises a pair of...
white dots 50A.50B, the dot 50B being provided on the right hand side of the opaque border region 52 and the dot 50A on the right hand side of the passport cover 30.

The second pair of visible markings 52 comprises a pair of white dots 52B on the left hand side of the opaque border region 52 and a pair of white dots 52A on the left hand side of the passport cover 30.

When the passport 10 is correctly aligned with the reader, the two pairs of visible markings 50,52 are arranged in the (predetermined) manner shown in Figure 4A with the dots 50A.50B being adjacent one another and aligned, while each of the dots 52A.52B are aligned and adjacent one another. This is visible to the user since only the leading part of the passport 10 is located in the slot 5 and thus the user can see very easily that alignment has been achieved.

It will readily apparent that there are many different combinations of visible markings which can be used.

In Figure 4B, two pairs of visible markings 54,56 are provided, the visible marking pair 56 comprising half-moon shapes 56A.56B and the other pair comprising rectangular markings 58A.58B. In this example, the markings 46A.58A are provided on the leading side of the cover 30 although they will still be visible to the user as they will not be inserted into the slot shown at 5.

Figure 4C illustrates a third example. In this case, two pairs of visible markings 60,62 are provided. The marking 60 comprises two sets of concentric half circles 60A.60B which, when the passport 10 is correctly aligned with the reader, form complete concentric circles as shown in Figure 4C. The markings 62 comprise two half circles 62A.62B which form a complete circle as shown in Figure 4C when the passport 10 is correctly aligned.

In the example of Figure 4D, the marking 62 is the same as in Figure 4C while the marking 56 is the same as in Figure 4B.
In each example, the two pairs of markings 50,52; 56,58; 60,62; and 56,62 differ from one another so reducing the risk of misalignment. However, it would be possible to use just one pair of markings or more than one pair of identical markings. In addition, within each pair the markings may be the same (Figure 4A) or different (Figures 4B-4D).

In all these examples, the markings have been provided on the sides of the passport 10 and border region 22. In addition, or alternatively, a marking could be provided on the part of the housing above the slot 5 with a cooperating marking on the cover at a position such that the two markings are aligned when the passport is fully inserted into the slot. This is shown in dashed lines in Figure 4B where a semi-circular marking 66B is provided on the housing and a cooperating marking 66A on the cover 30 inset from its leading edge located in the slot 5.

In these examples, the markings are distinguished by their shapes and in each case the markings in each pair are mirror images of one another.

There are many other ways in which different markings could be provided, particularly by using different colours, graphic designs, alphanumeric characters, etc. Figure 5 illustrates just a few of these examples and it will be understood that the different characteristics can be combined in many different ways. The important feature is that once the passport is correctly aligned with the reader, a visually recognisable cooperation will be determined by the user between the members of each pair of visible markings.

Figure 5A illustrates a document such as a page of a passport 10 on which markings 70a (N) and 71a (U) are provided. When the passport is in its correct position on the reader (not shown), the markings 70a, 71a are aligned with markings 70b (N), 71b (U) on the reader which form the same abbreviation "UN" which could be a country abbreviation or the like.

Figure 5B illustrates markings 72a (SS) and 73a (PA) on the passport page which cooperate with markings 72b (PA) and 73b (SS) respectively so spelling out the same word "PASS".
Figure 5C illustrates a document 10 having a single marking 74a which cooperates with the marking 74b on the reader so as to form a complete graphic design.

Finally, Figure 5D illustrates markings 75a and 76a, each of which exhibits part of a rainbow pattern and cooperates with corresponding rainbow patterns 75b and 76b on the reader to form a full rainbow spectrum. Thus, marking 75a is the same as 76b and marking 76a is the same as marking 75b.

While the markings of the above examples are described as visible markings, in other embodiments the markings on either or both of the reader and the record medium may be invisible when viewed under normal lighting conditions, and become visible when viewed under light having a wavelength outside of the visible wavelength range, and further, may become visible when the record medium is presented to the reader.

For example, the embodiment of Figure 4A may have markings 50A, 52A printed on the passport 10 in a fluorescent ink which only becomes visible when illuminated by ultraviolet light. The region of the entry slot 5 on the reader housing 1 may have an ultraviolet light incorporated therewithin, preferably in the form of an illuminating hood, which is configured to illuminate the markings 50A, 52A when the passport 10 is presented to the reader. In some embodiments the markings on the reader 50B, 52B may be visible in natural light while the markings on the record medium 50A, 52A are only visible under ultraviolet light. Alternatively, the markings on the reader 50B, 52B may also be invisible under natural light, and may become visible when illuminated by the same ultraviolet light that illuminates the record medium. Further, the ultraviolet light may be configured to switch on in response to a sensor sensing, for example, a person 14 approaching the reader, or preferably a sensor sensing that the record medium has been presented to the reader, thereby allowing the person presenting the record medium to achieve correct alignment. While the above is described with reference to Figure 4A, it will be appreciated that the markings of any of the above embodiments could be configured to be activated by ultraviolet light, as described.

In further examples, the surface texture of the markings could be used to distinguish between them and determine the required cooperation. The surface texture of the
markings could be varied by using gloss/matt inks or varnishes, tactile inks such as those described in WO2009106799, or embossing directly into the surface of the substrate or into a coating applied onto the substrate.

The markings can be provided on the cover 30 of the passport in any conventional manner including printing, embossing, foil transfer, laser marking, perforations either produced mechanically or by a laser and the like. The markings on the opaque border 22 of the reader can also be provided by printing or coating, moulding, laser marking etc.

In the examples described so far, markings have been shown provided on the passport cover 30. In other examples, markings could be provided on the data page 34 or any other designated page and this will depend on the nature of the reader. In the case of identification cards, the markings will be provided directly on the cards themselves.
Claims

1. A secure entry system comprising:
   an authorisation apparatus including a reader for reading data; and
   a record medium; wherein
   the record medium is presented to the reader, and characterised in that
   the reader and the record medium or a member connected to the record medium
   include one or more pairs of visible and/or tactile markings which, only when the
   record medium is correctly presented to the reader, cooperate with one another
   in a predetermined manner.

2. A system according to claim 1, wherein the cooperation, between the pair
   of visible markings is visible to the person presenting the record medium.

3. A system according to claim 1 or claim 2, wherein each of the reader and
   record medium or the member connected to the record medium is provided with
   at least two pairs of visible and/or tactile markings, the members of each pair
   cooperating together in a predetermined manner when the record medium is
   correctly presented to the reader.

4. A system according to claim 3, wherein the members of each pair of
   markings differ from the members of the or each other pair of markings.

5. A system according to claim 4, wherein the difference is due to
   differences in colour, shape, surface texture, size and/or graphic design of the
   markings.

6. A system according to any of the preceding claims, wherein the members
   of each pair of markings are identical.

7. A system according to any of claims 1 to 5, wherein the members of each
   pair of markings have different appearances which relate to one another.
8. A system according to claim 7, wherein the members of a pair of markings are mirror images of one another.

9. A system according to any of the preceding claims, wherein the authorisation apparatus further comprises an input device for detecting information such as biodata about a person presenting the record medium, and an analyser for comparing the detected information with the read data and for allowing entry if a satisfactory comparison is achieved.

10. A system according to any of the preceding claims, wherein the markings are or incorporate security devices such as holograms, security inks, perforations and embossings.

11. A system according to any of the preceding claims, wherein the predetermined manner in which the markings cooperate is based on their relative locations when the record medium is correctly presented to the reader.

12. A system according to claim 11, wherein the predetermined manner is when the markings of the or each pair are side by side.

13. A system according to any of the preceding claims, wherein the reader includes a border region extending alongside a record medium presenting region, the border region having one of the or each pair of markings so that when the record medium is correctly presented on the record medium presenting region, the corresponding pairs of markings are aligned with one another.

14. A system according to any of the preceding claims, wherein the record medium is an identification card or a page of a security booklet such as a passport.

15. A system according to claim 14, wherein the record medium forms part of a security booklet and one member of the or each pair of markings is provided on an outer surface of a cover of the security booklet.

16. A system according to any of the preceding claims, wherein at least one of the one or more pairs of visible and/or tactile markings are substantially invisible when illuminated by a natural light, and become visible when illuminated by a light
having a wavelength outside the visible wavelength range, and wherein the
authorisation apparatus further comprises a light source configured to illuminate said
at least one of the one or more pairs of visible and/or tactile markings with light
having the wavelength outside the visible wavelength range.

17. A system according to claim 16, wherein the light having a wavelength
outside the visible wavelength range is a light having a wavelength in the ultraviolet
wavelength range.

18. A system according to claim 16 or claim 17, wherein the light source is an
illuminating hood configured to illuminate at least the reader.

19. A system according to any of claims 16 to 18, wherein the authorisation
apparatus further comprises:

a sensor configured to sense one or more of a person presenting the record
medium and the record medium presented to the reader; and

a controller configured to switch on the light source in response to the sensor
sensing one or more of the person presenting the record medium and the record
medium presented to the reader.

20. A system according to any of claims 16 to 19, wherein the or each pair of
markings included on the record medium or the member connected to the record
medium are substantially invisible when illuminated by a natural light, and the or
each pair of markings included on the reader are substantially visible when
illuminated by natural light.

21. A system according to any of claims 16 to 19, wherein all of the one or more
pairs of visible and/or tactile markings are substantially invisible when illuminated by
a natural light, and become visible when illuminated by a light having a wavelength
outside the visible wavelength range.

22. A record medium for use in a secure entry system according to any of the
preceding claims, the record medium or a member connected to the record
medium including one or more pairs of visible and/or tactile markings which,
when the record medium is correctly presented to the reader of the secure entry
system, cooperate with a corresponding member in the reader in the
predetermined manner.
23. A security booklet for use in a secure entry system according to any of claims 1 to 21, the security booklet including a record medium incorporating secure data such as biodata, the security booklet having a cover on an outer surface of which one member of one or more pairs of visible and/or tactile markings is provided such that when the record medium is correctly presented to the reader of the secure entry system, the member will cooperate with the other member of the visible marking pair on the reader in the predetermined manner.

24. Authorisation apparatus for use in a secure entry system according to any of claims 1 to 21, the apparatus including a reader for reading data from a record medium presented to the reader, the reader including one member of one or more pairs of visible and/or tactile markings which, when a record medium is correctly presented to the reader, cooperates with the other member of the pair of visible and/or tactile markings on the record medium or a member connected to the record medium in the predetermined manner.
## A. CLASSIFICATION OF SUBJECT MATTER

**INV.** G07C9/00

**ADD.**

According to International Patent Classification (IPC) or both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

G07C G06K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used):

EPO-Internal, WPI Data

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Wo 2005/104024 AI (NAGRAID SA [CH]; DROZ FRANCOIS [CH]) 3 November 2005 (2005-11-03) figures 1,2 page 5, line 5 - page 6, line 2</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
  * "A" document defining the general state of the art which is not considered to be of particular relevance
  * "E" earlier application or patent but published on or after the international filing date
  * "L" document which may throw doubts on priority claim(s) or one which is cited to establish the publication date of another citation or other special reason (as specified)
  * "O" document referring to an oral disclosure, use, exhibition or other means
  * "P" document published prior to the international filing date but later than the priority date claimed

* "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "A" document member of the same patent family

Date of the actual completion of the international search:

20 August 2015

Date of mailing of the international search report:

28/08/2015

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel.: (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer:

Grob, Mark

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2011090046 A1</td>
<td>21-04-2011</td>
<td>NONE</td>
</tr>
<tr>
<td>Wo 2005104024 A1</td>
<td>03-11-2005</td>
<td>AT 496348 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005236643 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0509425 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2563249 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1947137 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1741051 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1741051 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2360183 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4777342 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007535063 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070011403 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MY 146320 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1741051 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2374685 C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI 1741051 T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005236489 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2005104024 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2749036 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 10227800 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2382605 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2011133077 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011277518 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2010078856 A</td>
</tr>
<tr>
<td>US 2010046016 A1</td>
<td>25-02-2010</td>
<td>TW 201009720 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010046016 A</td>
</tr>
</tbody>
</table>