(54) Title: DETECTION SYSTEM AND AUTOMATIC TRANSACTION DEVICE

(57) Abstract: In this detection system (200), two wireless devices (201) (wireless device (201A) and wireless device (201B)), each provided with a light emission sensor unit (203) and a light reception sensor unit (202), are installed so that the respective light emission sensor unit (203) and light reception sensor unit (202) face each other. The pair of wireless devices (201) are connected to be able to communicate wirelessly. The wireless devices (201) communicate wirelessly and are alternately switched between a light-emission-side device in which the light emission sensor unit (203) functions and the light reception sensor unit (202) stops functioning, and a light-reception-side device in which the light reception sensor unit (202) functions and the light emission sensor unit (203) stops functioning, so that one is actuated as a light-emission-side device, and the other as a light-reception-side device. A highly reliable detection system that can be continuously operated is thereby provided.

(57) 要約: 検出システム（200）は、発光センサ部（203）と受光センサ部（202）を備える2つの無線装置（201）（無線装置（201A）と無線装置（201B））が、交互に発光センサ部（203）と受光センサ部（202）を対向するように配置され、その対の無線装置（201）が無線通信機能を提供しており、この対の無線装置（201）は、無線通信を行って発光センサ部（203）が機能し受光センサ部（202）が機能し発光センサ部（203）の機能が停止する発光側装置と、受光センサ部（202）が機能し発光センサ部（203）の機能が停止する受光側装置とを交互に切り替え、一对が発光側装置、他対が受光側装置として駆動する。これにより、連続運用が可能な信頼性の高い検出システムを提供する。
明細書
発明の名称：検出システムおよび自動取引装置
技術分野

[0001] 本発明は、検出システムおよび自動取引装置に関し、特に、互いの発光部と受光部が対向するように配設された一対の検出装置が通信可能に接続される検出システムおよび自動取引装置に関する。

背景技術

[0002] 従来、特開平３２７３１５号に記載された媒体検査装置においては、発光素子および受光素子の両方を同一直流に備え、発光素子が発した光がプリズムにより反射されて、受光素子が受光される。

また、特開２０１２－１１８７９１号に記載された自動取引装置においては、発光部からの光線を受光部が受光するように、発光部および受光部が対となって配設され、発光部および受光部はそれぞれ、自動取引装置の制御基板（アクセスポイント）との間で無線通信を行う。

発明の開示
発明が解決しようとする課題

[0003] しかしながら、特開２０１２－１１８７９１号に記載の発光部（発光側装置）と受光部（受光側装置）が対となって配設される検出システムでは、2次電池と充電回路を有している。一般的に、発光部は、受光するよりも発光し続ける方が、消費電力が大きい。そのため、発光側装置と受光側装置とは、発光側装置の方が受光側装置より先に1次電池を消耗してしまい、発光側装置の電池の方だけ入替え替える頻度が高いという問題が生じる。そこで、特開２０１２－１１８７９１号に記載の検出システムは、発光側装置および受光側装置それぞれが2次電池と充電回路を実装するようにしている。しかしながら、2次電池と充電回路とを実装することで装置が大型化する問題がある。

[0004] また、従来の技術は、発光側装置から受光側装置までの光路上にゴミ等の
障害物があることにより、被光側装置が受光できずエラーとなる問題がある。

また、無線通信における電波の通信品質は、近隣で発生した電波が干渉することによる影響を受ける。そのため、同じ周波数を用いる何らかのデバイスが接近することで、一時的に通信品質が悪化し、電波障害としてエラーとなる問題がある。

[0005] 本発明は、以上のような問題を解決するために、連続運用が可能な信頼性の高い検出システムおよび自動取引装置を提供することを課題とする。

課題を解決するための手段

[0006] 前記課題を解決するために、本発明の検出システムは、発光部と受光部とを備える2つの検出装置が、互いの前記発光部と前記受光部とが対向するように配設され、その一対の検出装置が無線通信可能に接続される検出システムであって、前記一対の検出装置は、前記無線通信を行って前記発光部が機能し前記受光部の機能が停止する発光側装置と、前記受光部が機能し前記発光部の機能が停止する受光側装置に交互に切り替えで、一方が前記発光側装置、他方が前記受光側装置として駆動する構成とする。

[0007] この検出システムによれば、一対の検出装置を備え、一方が発光側装置、他方が受光装置となるように切り替えが可能であるので、問題等の発生時に切り替えで、システムを停止させることなく運用することが可能である。例えば、消費電力が多い発光側装置の電池電圧が低下したとき、発光側装置が受光側装置に切り替え、消費電力が少ない受光側装置が発光側装置に切り換えることができる。

発明の効果

[0008] 本発明によれば、連続運用が可能な信頼性の高い検出システムおよび自動取引装置を提供することができる。

[0009] また、受光装置よりも発光装置の方が消費電力が多い。本発明によれば、切り替えを行うため、消費電力を低減させることができる。例えば、消費電力が多い発光側装置のみ電池交換が行われていたが、切り替えすることにより
発光側装置が受光側装置になるため、消費電力が低減し、電池交換頻度が少なくなる。
[0010] また、センサ異常が発生したときに、切り替えを行うことでシステムを停止させることなく、運用することができる。
[0011] また、通信異常が発生したときに、切り替えを行うことでシステムを停止させることなく、運用することができる。

図面の簡単な説明
[0012] [図1]第1の実施形態に係る検出システムの全体構成図である。
[図2]第1の実施形態に係る無線装置の構成図である。
[図3]電池残量確認パケットの一例を示す図である。
[図4]電池残量確認ACKパケットの一例を示す図である。
[図5]状態変更パケットの一例を示す図である。
[図6]状態変更ACKパケットの一例を示す図である。
[図7]第1の実施形態に係る無線装置の切替処理動作のタイムチャートである。
[図8]第2の実施形態に係るアクセスポイントの構成図である。
[図9]第2の実施形態に係る無線装置とアクセスポイントとの切替処理動作のタイムチャートである。
[図10]第3の実施形態に係る無線装置とアクセスポイントとの切替処理動作のタイムチャートである。
[図11]無線装置の変型例である。

発明を実施するための最良の形態
[0013] 以下、図面を参照して、本発明の実施の形態（以下、「本実施形態」と称する）につき詳細に説明する。なお、各図は、本発明について概略的に示してあるに過ぎない。よって、本発明は、図示のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。
[0014] 《第1の実施形態》
（検出システム２００）

図1は、本実施形態に係る検出システムの構成図である。

検出システム２００は、一組の（一対の）無線装置２０１（２０１Ａと２０１Ｂ）（無線機能付き検出装置）と、アクセスポイント１０３（無線通信中継装置）と、外部装置１０４とを備える。無線装置２０１のそれぞれと、外部装置１０４とは、アクセスポイント１０３を介して、無線通信可能に接続される。

この検出システム２００において、一組の無線装置２０１を複数組備えていてもよい。

[0015]（無線ネットワークNW）

無線装置２０１Ａと無線装置２０１Ｂとは、アクセスポイント１０３を経由したNW1（センサ間無線ネットワーク）を介して無線通信可能に接続される。また、無線装置２０１のそれぞれと外部装置１０４とは、アクセスポイント１０３を経由したNW2（外部間無線ネットワーク）を介して、無線通信可能に接続される。

これらNW1、NW2は、例えば、無線LAN(Local Area Network)、ZigBee（登録商標）やBluetooth（登録商標）等を介して、インターネットプロトコル(Internet Protocol)技術を利用して相互接続されるコンピュータネットワークである。

ここで、NW2における、アクセスポイント１０３－外部装置１０４間の無線ネットワークは有線であってもよく、例えば、有線のLANやWAN(Wide Area Network)である。

[0016]この検出システム２００の無線ネットワークNW（NW1、NW2）において、無線装置２０１が外部装置１０４にパケットを送信する場合、無線装置２０１は一旦アクセスポイント１０３宛てにパケットを送信し、アクセスポイント１０３が外部装置１０４宛てに送信する。つまり、アクセスポイント１０３（無線通信中継装置）がネットワーク中継装置としての役割をする。反対に、外部装置１０４が無線装置２０１にパケット（例えば、発光・消
灯指示）を送信する場合、外部装置104は一旦アクセスポイント103宛てにパケットを送信し、アクセスポイント103が（主無線機である受光側無線機として機能する）無線装置201宛てに送信する。

[0017]（一組の無線装置201）
　一組の無線装置201である無線装置201Aと無線装置201Bとは、同一構成の無線装置であり、それぞれ受光センサ部202および発光センサ部203を備え、一方の無線装置の発光センサ部203が発した光を、他方の無線装置の受光センサ部202が受光するように配置される。例えば、図1に示すように、無線装置201Aと無線装置201Bとは互いが向かい合うように配置される。この無線装置201の構成については詳細を後記する。

[0018]この一組の無線装置201Aと無線装置201Bとは、どちらか一方が発光専用の無線装置となり、他方が受光専用の無線装置となるように機能を切り替える。以下、発光専用の無線装置を「発光側無線機」、受光専用の無線装置を「受光側無線機」と称する。
　そして、無線装置201（201A、201B）は、外部装置104からの発光指示に応じて発光し、消灯指示に応じて消灯する。

[0019]（アクセスポイント103）
　アクセスポイント103は、各無線装置201と外部装置104との間を無線通信可能に接続する中継装置である。詳細は後記する第2の実施形態において説明する。

[0020]（外部装置104）
　外部装置104は、アクセスポイント103を介して、無線装置201（201A、201B）と無線通信を行うコンピュータである。この外部装置104は、無線装置201に発光・消灯の指示を送信し、無線装置201から受光したことを受信する。これにより、外部装置104は、無線装置201Aと無線装置201Bとの間で光が遮られたことを確認することができる。
[0021]（無線装置２０１）

図２は、第１の実施形態に係る無線装置の構成図である。図２は無線装置２０１Aの構成図としているが、一組の無線装置２０１である無線装置２０１Ａと無線装置２０１Ｂとは、同一構成の無線装置である。

無線装置２０１Ａは、対向する無線装置２０１Ｂと無線通信を行い、発光側無線機または受光側無線機となるように機能を切り替える。

この無線装置２０１Ａは、受光センサ部２０２と、発光センサ部２０３と、無線部２０４と、受光スイッチ部２０５と、発光スイッチ部２０６と、電池２０７と、電池残量判定機能を有する制御部２０８と、電池残量検出部２０９と、タイマ２１０とを備える。

[0022]図２に示す無線装置２０１Aは、不図示の無線装置２０１Bと向かい合うように配置されている。すなわち、無線装置２０１Aの発光センサ部２０３が発した光を、無線装置２０１Bの受光センサ部２０２が受光する。一方、無線装置２０１Bの発光センサ部２０３が発した光を、無線装置２０１Aの受光センサ部２０２が受光する。

[0023]（受光センサ部２０２）

受光センサ部２０２は、対向する無線装置２０１Bの発光センサ部２０３が発光した光を受光し、受光した光を無線部２０４に信号を出力する構成部であり、例えば、フォトトランジスタで構成される。

この受光センサ部２０２は、電池２０７から受光スイッチ部２０５を経由して供給される電力で、受光や信号出力の動作を行う。そのため、受光スイッチ部２０５がオフのときは電力が供給されないため動作しない。

[0024]（発光センサ部２０３）

発光センサ部２０３は、光を出射する構成部であり、例えば、発光ダイオードで構成される。この発光センサ部２０３が発光した光は、対向する無線装置２０１Bの受光センサ部２０２が受光する。

この発光センサ部２０３は、電池２０７から発光スイッチ部２０６を経由して供給される電力で、発光の動作を行う。そのため、発光スイッチ部２０
6がオフのときは電力が供給されないため動作しない。

[0025]（無線部２０４）

無線部２０４は、無線ネットワークと接続するインタフェースであり、アクセスポイント１０３（図1）を介して、対向する無線装置２０１Ｂと、外部装置１０４（図1）と無線通信でデータの送受信を行う。

この無線部２０４は、制御部２０８が後記するパケットフォーマットに基づき作成したパケットをアクセスポイント１０３に送信する。また、無線部２０４は、受信したパケットを制御部２０８に出力する。

[0026]（受光スイッチ部２０５）

受光スイッチ部２０５は、制御部２０８からの指示に従ってＯＮ／ＯＦＦを切り替え、電池２０７から受光センサ部２０２への電力の供給／遮断を切り替える。

[0027]（発光スイッチ部２０６）

発光スイッチ部２０６は、制御部２０８からの指示に従ってＯＮ／ＯＦＦを切り替え、電池２０７から発光センサ部２０３への電力の供給／遮断を切り替える。この発光センサ部２０３の発光の制御は、制御部２０８により、発光スイッチ部２０６がＯＮ／ＯＦＦ制御されることで行われる。

[0028]（電池２０７）

電池２０７は、１次電池であり、保守期間毎に定期的に交換される。電池２０７は、受光スイッチ部２０５を介して受光センサ部２０２と、発光スイッチ部２０６を介して発光センサ部２０３と、無線部２０４とに電気的に接続され、各構成部が駆動するために必要な電力を供給する。また、電池２０７は、制御部２０８が動作するために必要な電力を供給する。

[0029]（電池残量検出部２０９）

電池残量検出部２０９は、電池２０７の電池残量値を検出する構成部であり、例えば、開放端電圧を測定したり、所定の定格電流を流したときの電圧を測定したりして、電池残量を検出する。この電池残量検出部２０９は、制御部２０８の要求に応じて、電池２０７の電池残量値を検出し、制御部２０
8に出力する。

【0030】（タイム２１０）

タイム２１０は、所定時間を計測する構成部である。

このタイム２１０は、例えば、制御部２０８の要求に応じて、所定の値からデクリメントを開始し、値が０となったときに、制御部２０８に通知する。

【0031】（制御部２０８）

制御部２０８は、無線装置２０１Aの全体を制御する構成部であり、例えば、CPU（Central Processing Unit）で構成される。制御部２０８（CPU）が不図示の記憶部に格納されるプログラムを展開し、実行することによって実現される。

【0032】この制御部２０８は、無線部２０４を介して、対向する無線装置２０１Bと無線通信を行い、送信されるデータに基づき、発光側無線機または受光側無線機となるように機能を切り替える。第１の実施形態において、一対の無線装置２０１（２０１A、２０１B）は、受光側無線機が「主無線機」、他方の発光側無線機が「従無線機」という主従関係が成立するように動作し、受光側無線機の制御部２０８が発光側無線機の制御部２０８に指示を行うこととする。

この第１の実施形態に係る無線装置２０１（２０１A、２０１B）は、電池２０７の電池残量値に基づき、発光側無線機と受光側無線機との機能（主従関係）を切り替える。

【0033】また、制御部２０８は、電池残量判定機能を有し、所定のタイミングで電池２０７の電池残量値を取得する。

この制御部２０８は、例えば、タイム２１０に所定時間を計測させ、タイム２１０からの所定時間となった旨の通知を受けて、電池残量検出部２０９から電池２０７の電池残量値を取得する。

【0034】ここで、制御部２０８は、受光側無線機として機能する場合、受光スイッチ部２０５をオンにして受光センサ部２０２への電力供給を行う一方、発光
スイッチ部２０６をオフにして発光センサ部２０３への電力供給を停止する（省電力を行う）。反対に、制御部２０８は、発光側無線機として機能する場合、発光スイッチ部２０６をオンにして発光センサ部２０３への電力供給を行う一方、受光スイッチ部２０５をオフにして受光センサ部２０２への電力供給を停止する（省電力を行う）。

[0035] 《パケットフォーマット》
次に、図３～図６を用いて、検出システム２００で無線通信に用いるパケットのフォーマットについて説明する。図３は電池残量確認パケット３００のフォーマット、図４は電池残量確認ＡＣＫパケット４００のフォーマット、図５は状態変更パケット５００のフォーマット、図６は状態変更ＡＣＫパケット６００のフォーマットを示す。これらのパケットは、すべて無線通信に必要なヘッダ（３０１、４０１、５０１、６０１）を有するが、これらの具体的なフィールドについてはそれぞれの無線通信方式のフォーマットに従う。

[0036] （電池残量確認パケット３００）
図３は電池残量確認パケット３００のフォーマットを示す。
電池残量確認パケット３００は、受光側無線機から発光側無線機に送られるパケットであり、少なくとも、ヘッダ３０１と、パケットＩＤ３０２と、送信元アドレス３０３と、宛先アドレス３０４とで構成される。
パケットＩＤ３０２にはパケットを識別する情報が格納され、例えば、電池残量確認パケット３００を示す「１」が格納される。送信元アドレス３０３には受光側無線機のＩＰアドレスが格納される。宛先アドレス３０４には発光側無線機のＩＰアドレスを格納する。

[0037] （電池残量確認ＡＣＫパケット４００）
図４は電池残量確認ＡＣＫパケット４００のフォーマットを示す。
電池残量確認ＡＣＫパケット４００は、受光側無線機から送信された電池残量確認パケット３００の応答信号（ＡＣＫ）として返信するパケットであり、少なくとも、ヘッダ４０１と、パケットＩＤ４０２と、送信元アドレス
４０３と、宛先アドレス４０４と、電池残量４０５とで構成される。

パケット１Ｄ４０２にはパケットを識別する情報が格納され、例えば、電池残量確認ＡＣＫパケット４００を示す「２」が格納される。送信元アドレス４０３には発光側無線機のＩＰアドレスが格納される。宛先アドレス３０４には受光側無線機のＩＰアドレスを格納する。電池残量４０５には電池２０７の電池残量値が格納される。

[0038] （状態変更パケット５００）

図５は状態変更パケット５００のフォーマットを示す。

状態変更パケット５００は、「主無線機」である受光側無線機から「従無線機」である発光側無線機に送信される、受光側無線機と発光側無線機との機能（主従関係）を切り替える依頼をするためのパケットである。この状態変更パケット５００は、少なくとも、ヘッダ５０１と、パケット１Ｄ５０２と、送信元アドレス５０３と、宛先アドレス５０４とで構成される。

パケット１Ｄ５０２にはパケットを識別する情報が格納され、例えば、状態変更パケット５００を示す「３」が格納される。送信元アドレス３０３には「主無線機」である受光側無線機のＩＰアドレスが格納される。宛先アドレス３０４には「従無線機」である発光側無線機のＩＰアドレスを格納する。

[0039] （状態変更ＡＣＫパケット６００）

図６は状態変更ＡＣＫパケット６００のフォーマットを示す。

状態変更ＡＣＫパケット６００は、状態変更パケット５００の応答信号（ＡＣＫ）として返信するパケットであり、「従無線機」である発光側無線機から「主無線機」である受光側無線機に送信される。この状態変更ＡＣＫパケット６００は、少なくとも、ヘッダ６０１と、パケット１Ｄ６０２と、送信元アドレス６０３と、宛先アドレス６０４とで構成される。

パケット１Ｄ６０２にはパケットを識別する情報が格納され、例えば、状態変更ＡＣＫパケット６００を示す「４」が格納される。送信元アドレス３０３には「従無線機」である発光側無線機のＩＰアドレスが格納される。宛
先アドレス３０４に「主無線機」である受光側無線機のＩＰアドレスを格納する。

[0040] 《タイムチャート（第１の実施形態）》

次に、無線装置２０１の切替処理について説明する。

図７は、「主無線機」である受光側無線機として機能する無線装置２０１Ａの処理動作と、「従無線機」である発光側無線機として機能する無線装置２０１Ｂの処理動作を示すタイムチャートである。

この図７に示すタイムチャートは、まず、無線装置２０１Ａが「主無線機」である受光側無線機として機能している状態であり、無線装置２０１Ｂが「従無線機」である発光側無線機として機能している状態である。ここで、図７ではアクセスポイント１０３の処理は省略した。

以下、無線装置２０１Ａが「主無線機」である受光側無線機として機能している場合、受光側の無線装置２０１Ａとし、「従無線機」である発光側無線機として機能している場合、発光側の無線装置２０１Ａと称する。

[0041] 〈無線装置２０１Ａ：受光側無線機の処理〉

まず、受光側の無線装置２０１Ａの制御部２０８は、タイム２１０にカウントダウンを開始させる（ステップＳ１０１）。その後、タイム２１０からカウントが０になった（ステップＳ１０２）ことの通知を受けた制御部２０８は、宛先アドレス３０４に無線装置２０１Ｂのアドレスを格納して、電池残量確認パケット３００を作成する。

そして、無線部２０４が電池残量確認パケット３００をアクセスポイント１０３に送信する（ステップＳ１０３）。これにより、アクセスポイント１０３経由で無線装置２０１Ｂに電池残量確認パケット３００が送信される。

[0042] 〈無線装置２０１Ｂ：発光側無線機の処理〉

発光側の無線装置２０１Ｂは、無線部２０４が電池残量確認パケット３００を受信し（ステップＳ１０４）、制御部２０８が電池残量確認パケット３００を確認し、電池残量検出部２０９に電池残量の検出を指示する。これに
より、電池残量検出部２０９は電池２０７の電池残量を検出する（ステップＳ１０５）。以下、電池残量Ｂと称する。

[0043] 制御部２０８は、電池残量検出部２０９が検出した電池残量Ｂを電池残量４０５として格納して、電池残量確認ＡＣＫパケット４００を作成する。

そして、無線部２０４が電池残量確認ＡＣＫパケット４００をアクセスポイント１０３に送信する（ステップＳ１０６）。これにより、アクセスポイント１０３経由で無線装置２０１Ａに電池残量確認ＡＣＫパケット４００が送信される。

[0044] （無線装置２０１Ａ：受光側無線機の処理）

受光側の無線装置２０１Ａは、無線部２０４が電池残量確認ＡＣＫパケット４００を受信し（ステップＳ１０７）、制御部２０８が電池残量確認ＡＣＫパケット４００に格納された電池残量Ｂを取得する（ステップＳ１０８）。

そして、制御部２０８は、電池残量検出部２０９に電池残量の検出を指示する。これにより、電池残量検出部２０９は自身の電池２０７の電池残量を検出する（ステップＳ１０９）。以下、電池残量Ａと称する。

[0045] 次に、制御部２０８は、電池残量Ａと電池残量Ｂとの比較判定を行う（電池残量Ａ＞電池残量Ｂ？）（ステップＳ１１０）。

ステップＳ１１０の判定の結果、電池残量Ｂの方が多ければ（ステップＳ１１０、Ｎｏ）、制御部２０８は切替処理を一旦終了し、再び切替処理を開始して、ステップＳ１０１を実行する。

[0046] 一方、ステップＳ１１０の判定の結果、電池残量Ａの方が多ければ（ステップＳ１１０、Ｙｅｓ）、制御部２０８は状態変更パケット５００を作成する。そして、無線部２０４が状態変更パケット５００をアクセスポイント１０３に送信する（ステップＳ１１１）。これにより、アクセスポイント１０３経由で無線装置２０１Ｂに状態変更パケット５００が送信される。

[0047] （無線装置２０１Ｂ：発光側無線機の処理）

発光側の無線装置２０１Ｂは、無線部２０４が状態変更パケット５００を
受信し（ステップS112）、制御部208が状態変更パケット500を確認する。

そして、発光側の無線装置201Bの制御部208は、「主無線機」である受光側無線機として機能するように切り替えて、状態変更を行う（発光側→受光側、ステップS113）。これにより、無線装置201Bは、発光側無線機から受光側無線機に切り替わる。

[0048]（無線装置201B：受光側無線機の処理）
切り替え後、制御部208は状態変更ACKパケット600を作成する。
そして、無線部204が状態変更ACKパケット600をアクセスポイント103に送信する（ステップS114）。これにより、アクセスポイント103経由で無線装置201Aに状態変更ACKパケット600が送信される。

[0049]（無線装置201A：受光側無線機の処理）
まだこの時点で受光側無線機として機能している無線装置201Aは、無線部204が状態変更ACKパケット600を受信し（ステップS115）、制御部208が状態変更ACKパケット600を確認する。
そして、無線装置201Aの制御部208は、「従無線機」である発光側無線機として機能するように切り替えて、状態変更を行う（受光側→発光側、ステップS116）。これにより、無線装置201Aは、受光側無線機から発光側無線機に切り替わる。

[0050]（無線装置201A：発光側無線機の処理）
そして、発光側の無線装置201Aの制御部208は切替処理を終了する。

[0051]（無線装置201B：受光側無線機の処理）
一方、受光側の無線装置201BはステップS114の後、切替処理を一旦終了し、再び切替処理を開始して、ステップS101を実行する。
以上のように、無線装置201は、繰り返し、切替処理を行う。

[0052]（効果）
以上のように、第1の実施形態において、受光センサ部202および発光
センサ部203を備えた一対の無線装置201（201A、201B）は、
電池残量値が大きい方の無線装置201が発光側無線機として機能し、発光
する。その後、受光側無線機として機能する無線装置201との電池残量値
の大小が逆転した場合、互いの無線装置201が機能していた受光側無線機
と発光側無線機との機能を切り替える。これにより、発光側無線機として機
能する方が一般的に消費電力が高いことによる影響を防ぐことができる。
検出システム200全体の稼働時間を延ばし、連続運用を可能にすることができ
る。期待できる。

【0053】第2の実施形態

第2の実施形態は、第1の実施形態に係る検出システム200と同様のため、説明を省略する。

第1の実施形態に係る無線装置201Aは、対向する無線装置201Bと
無線通信を行い、発光側無線機または受光側無線機となるように機能（主従
関係）を切り替えるというものである。この第2の実施形態は、この切り替えを、外部装置104からのセンサ切替指示に応じて行うこともできるとい
うものである。

【0054】図8に示すアクセスポイント2103（図1のアクセスポイント103に
相当）は、外部装置104から送信されるセンサ切替指示に応じて、無線装
置2201（2201A、2201B）（図1の無線装置201A、201
Bに該当）それぞれに状態変更パケット500（図5）を送信して、「主無
線機」である受光側無線機としての機能、「従無線機」である発光側無線
機としての機能を切り替えさせる。これにより、無線装置2201Aと無
線装置2201Bとの主従関係が切り替わる。

【0055】このセンサ切替指示は、例えば、無線装置2201（2201A、220
1B）から送信されるセンサ検出信号に基づき、外部装置104がセンサ異
常と判定したときに送信される。例えば、発光指示を送信したものの、受光
センサ部202が受光していない場合、発光センサ部203から受光センサ
部２０２までの光路上にゴミ等の障害物があることにより受光できないというセンサ異常が発生する場合がある。

[0056]（アクセスポイント２１０３）

図８は、第２の実施形態に係るアクセスポイントの構成図である。

アクセスポイント２１０３は、各無線装置２２０１と外部装置１０４との間を無線通信可能に接続する中継装置である。このアクセスポイント２１０３は、各無線装置２２０１から送信されるすべてのパケットを一旦受信し、パケットの宛先アドレスに転送する。一方、外部装置１０４から送信されるパケットを一旦受信し、パケットの宛先アドレスに該当する無線装置２２０１に転送する。

[0057]このアクセスポイント２１０３は、制御部７０１と、記憶部７０２と、無線部７０３とを構成する。

制御部７０１は、アクセスポイント２１０３の全体を制御する構成部であり、例えば、CPUで構成される。アクセスポイント２１０３（CPU）が記憶部７０２に格納されるプログラムを展開し、実行することによって実現される。

記憶部７０２は、データやプログラムを記憶する構成部であり、例えば、HDD（Hard Disc Drive）、RAM（Random Access Memory）等の記憶手段である。

無線部７０３は、無線ネットワークと接続するインタフェースであり、各無線装置２２０１（図１の無線装置２０１に該当）および外部装置１０４（図１）と無線通信でデータの送受信を行う。

[0058]第２の実施形態に係るアクセスポイント２１０３は、３つの機能を有する。

このアクセスポイント２１０３は、（１）状態変更パケット５００（図５）を無線装置２２０１（２２０１Ａ、２２０１Ｂ）両方に送信して、主従関係を切り替えさせる機能と、（２）センサ異常が解消したか否かを確認するための再確認要求を外部装置１０４に送信する機能と、（３）外部装置１０
４からの再確認要求の応答内容が「センサ異常が解消した」であれば、切り替え後の主従関係のままにする一方、「センサ異常が解消しなかった」であれば、再度状態変更パケット５００を無線装置２２０１（２２０１Ａ、２２０１Ｂ）双方に送信して、切り替える前の主従関係に戻す機能と、有する。

[0059] 《タイムチャート（第２の実施形態）》

次に、図９を用いて、無線装置２２０１とアクセスポイント２１０３との切替処理動作について説明する。

まず、第２の実施形態に係るアクセスポイント２１０３は、外部装置１０４（図１）からセンサ切替指示を受信したとき、切替処理を実行する。

このとき、無線装置２２０１Ａは、「主無線機」である受光側無線機として機能しており、無線装置２２０１Ｂは、「従無線機」である発光側無線機として機能している。

[0060] （アクセスポイント２１０３の処理）

まず、アクセスポイント２１０３は、制御部７０１が状態変更パケット５００（図５）を作成し、無線部７０３が発光側の無線装置２２０１Ｂに状態変更パケット５００を送信する（ステップＳ２０１）。

[0061] （無線装置２２０１Ｂ：発光側無線機の処理）

発光側の無線装置２２０１Ｂは、無線部２０４が状態変更パケット５００を受信し（ステップＳ２０２）、制御部２０８が状態変更パケット５００を確認する。

そして、発光側の無線装置２２０１Ｂの制御部２０８は、「主無線機」である受光側無線機として機能するように切り替え、状態変更を行う（発光側→受光側、ステップＳ２０３）。これにより、無線装置２２０１Ｂは、発光側無線機から受光側無線機に切り替わる。

[0062] （無線装置２２０１Ｂ：受光側無線機の処理）

切り替え後、制御部２０８は状態変更ＡＣＫパケット６００（図６）を作成する。
そして、無線部２０４が状態変更ACKパケット６００をアクセスポイント２１０３に送信する（ステップＳ２０４）。

[0063]（アクセスポイント２１０３の処理）

アクセスポイント２１０３は、無線部７０３が状態変更ACKパケット６００を受信し（ステップＳ２０５）、制御部７０１が状態変更ACKパケット６００を確認する。

制御部７０１は、状態変更パケット５００を作成し、もう一方の無線装置２２０１である無線装置２２０１Ａに状態変更パケット５００を送信する（ステップＳ２０６）。

[0064]（無線装置２２０１Ａ：受光側無線機の処理）

まだこの時点で受光側無線機として機能している無線装置２２０１Ａは、無線部２０４が状態変更ACKパケット６００を受信し（ステップＳ２０７）、制御部２０８が状態変更ACKパケット６００を確認する。

そして、無線装置２２０１Ａの制御部２０８は、「従無線機」である発光側無線機として機能するように切り替え、状態変更を行う（受光側→発光側、ステップＳ２０８）。これにより、無線装置２２０１Ａは、受光側無線機から発光側無線機に切り替わる。

つまり、発光側無線機から受光側無線機に切り替わる無線装置２２０１Ｂの処理（ステップＳ２０３）と、受光側無線機から発光側無線機に切り替わる無線装置２２０１Ａの処理（ステップＳ２０８）とは、同時期に実行される。

[0065]（無線装置２２０１Ａ：発光側無線機の処理）

切り替え後、制御部２０８は状態変更ACKパケット６００を作成する。
そして、無線部２０４が状態変更ACKパケット６００をアクセスポイント２１０３に送信する（ステップＳ２０９）。

[0066]（アクセスポイント２１０３の処理）

アクセスポイント２１０３は、無線部７０３が状態変更ACKパケット６００を受信し（ステップＳ２１０）、制御部７０１が状態変更ACKパッ
ト600を確認する。

そして、制御部701は、外部装置104（図1）にセンサ異常を解消したかを確認する。例えば、制御部701が所定の確認要求パケットを作成し、無線部703が外部装置104に確認要求パケットを送信する（ステップS211）。

[0067] その後、無線部703は、外部装置104から確認要求パケットに対する応答パケットを受信する（ステップS212）。制御部701は、この応答パケットの内容が「センサ異常が解消した」であるか否かを判定する（応答内容＝「センサ異常解消」？）（ステップS213）。

この応答パケットの内容が「センサ異常が解消した」という場合（ステップS213, Yes）、切替処理を終了する。

[0068] 一方、応答パケットの内容が「センサ異常が解消しない」という場合（ステップS213, No）、アクセスポイント2103の制御部701は、再びステップS201～S210の処理を行い、主従関係を切り替える前の状態に戻す処理を行う。

[0069] （主従関係を切り替える前の状態に戻す処理）

アクセスポイント2103の制御部701は、例えば、再びステップS201～S210の処理を行うことにより、無線装置2201Aと無線装置2201Bとの主従関係が元に戻り、無線装置2201Aが「主無線機」である受光側無線機として機能し、無線装置2201Bが「従無線機」である発光側無線機として機能する。

[0070] （効果）

第2の実施形態において、発光センサ部203が発光しているにもかかわらず、受光センサ部202が受光していないことや、発光センサ部203から受光センサ部202までの光路上にゴミ等の障害物があることにより受光できないことというセンサ異常が発生した場合、無線装置2201Aと無線装置2201Bとの主従関係を切り替えることで、別の光路に変わること、そのセンサ異常を解消できる可能性がある。
[0071] 《第3の実施形態》

第3の実施形態に係る検出システムは、第1の実施形態に係る検出システム200と同様のため、説明を省略する。

第2の実施形態に係る無線装置2201は、外部装置104からのセンサ切替指示に応じて発光側無線機または受光側無線機となるように機能（主従関係）を切り替えるというものである。この第3の実施形態は、この切り替えを、通信異常を検出した時に行うことができるというものである。

[0072] 無線装置3201は無線通信の送信出力を抑えることで消費電力量を低減させている。

第3の実施形態における無線装置3201の動力源は、第1の実施形態に係る無線装置201、第2の実施形態に係る無線装置2201と同様に電池207である。第3の実施形態における無線装置3201は消費電力をさらに減らして、電池207の寿命を延ばすことで、さらに長時間の稼動を実現させることを目的とする。そこで、第3の実施形態に係る無線装置3201は、可能な限り無線通信の送信出力を抑えて通信を行う。

[0073] 無線装置3201は、このような通信が正常に行えるように、無線通信中継装置であるアクセススポイント3103（図1のアクセススポイント103に相当）とパケット等の送受信を行って、送信出力値を可能な限り低くなるように調整して設定する。この設定された送信出力値を「最低限送信出力値」とする。

[0074] この最低限送信出力値で無線装置3201が通信を行うことで、送信時に必要な消費電力が低減するため、電池の寿命が延び、無線装置3201の稼働時間が長くなる。その一方で、送信出力値が小さいため、外部（電磁波等）からの干渉に弱くなるという問題がある。この外部からの干渉により、無線装置3201とアクセススポイント3103との間で通信障害が発生する場合がある。

[0075] そこで、無線装置3201は、通常は最低限送信出力値で通信を行うが、外部から干渉を受けて通信障害が発生した場合、一旦、最低限送信出力値よ
り大きくする。これにより、変更後の送信出力値で出力される電波（所望波）が、（外部からの）干渉波の影響を受けない程度に大きくなった（所望波の方が支配的になった）とき、無線装置３２０１とアクセスポイント３１０３と間で通信可能になる。

以上のように、第３の実施形態に係る無線装置３２０１は、通信障害発生時に一時的に送信出力値を上げて、アクセスポイント３１０３と通信可能な状態にする。

[0076] その後、アクセスポイント３１０３との間で通信障害が発生した無線装置３２０１（以下、障害発生中無線装置３２０１xとする）は、「主無線機」である受光側無線機から「従無線機」である発光側無線機に、主従関係を切り替える処理を行う。これにより、障害発生中無線装置３２０１xと対を成す、アクセスポイント３１０３との間で通信障害が検出されていない無線装置３２０１yが「主無線機」である受光側無線機として機能する。

その後、障害発生中無線装置３２０１xは、一時的に送信出力値を上げられているため、消費電力量を低減するために、最低限送信出力値に戻す。

[0077] 第３の実施形態に係る無線装置３２０１は、第１の実施形態に係る無線装置２０１と同様に、対向配置している他の無線装置３２０１と無線通信を行い、発光側無線機または受光側無線機となるように機能（主従関係）を切り替える。

[0078] （アクセスポイント３１０３）

この第３の実施形態係のアクセスポイント３１０３は、無線装置３２０１に送信したパケットが届かなかった場合に、通信障害と判断し、最低限送信出力値から一旦送信出力値を上げ、再度無線装置３２０１にパケットを送信（再送）する。この再送パケットも届かなかった場合、アクセスポイント３１０３は送信出力値を段階的に上げ、その度に無線装置３２０１にパケットを送信する。それでも再送パケットも届かなかった場合は、断念する。

[0079] 一方、いずれかの再送パケットが届いた場合、無線装置３０１２Ａと無線装置３０１２Ｂとは、主従関係を切り替える。切り替え後「主無線機」であ
る受光側無線機として機能する無線装置３０１２とアクセスポイント３１０３との間で（通信異常が発生せず）正常にパケットの送受信が行われたとき、「従無線機」である発光側無線機として機能する無線装置３０１２は、一旦上げた送信出力値を最低限送信出力値に戻す。

[0080] 《タイムチャート（第３の実施形態）》

次に、図１０を用いて、無線装置３２０１とアクセスポイント３１０３との処理動作について説明する。

まず、アクセスポイント３１０３は、無線装置３２０１（３２０１Ａ、３２０１Ｂ）との間での無線通信における送信出力値が可能な限り低くなるように、送信出力値を調整しては、送信出力値変更パケットを送信する。その応答信号である、送信出力値変更ＡＣＫパケットが無線装置３２０１から所定時間内に届かなかった場合は、再度送信出力値を調整して、送信出力値変更パケットを送信する。このようにして、最低限送信出力値を決定する。

[0081] この最低限送信出力値で無線装置３２０１とアクセスポイント３１０３が無線通信を行っている場合に、アクセスポイント３１０３から無線装置３２０１に送信したパケットに対して、所定時間内に無線装置３２０１から応答信号がなかったときを前提として、第３の実施形態に係るアクセスポイント３１０３は、切替処理を実行する。

[0082] （アクセスポイント３１０３の処理）

まず、アクセスポイント３１０３の制御部７０１（図８）は、一旦送信出力値を所定値分（１段階）上げて、変更後送信出力値にする（ステップＳ３０１）、その変更後送信出力値を格納した送信出力値変更パケット（不図示）を送信する（ステップＳ３０２）。

[0083] （無線装置３２０１Ａ：受光側無線機の処理）

受光側の無線装置３２０１Ａは、無線部２０４が送信出力値変更パケットを受信し（ステップＳ３０３）、制御部２０８が送信出力値変更パケットに格納された変更後送信出力値を取得する。

そして、制御部２０８は、無線通信を行うときの送信出力値を、最低限送
信出力値から取得した変更後送信出力値に変更し（ステップS304）、送信出力値変更ACKパケットを作成する。

[0084] そして、無線部204は、変更後送信出力値で送信出力値変更ACKパケットをアクセスポイント3103に送信する（ステップS305）。

[0085]（アクセスポイント3103の処理）

アクセスポイント3103は、無線部703が送信出力値変更ACKパケットを受信する（ステップS306）。

そして、アクセスポイント3103の制御部701は、送信出力値変更パケットを送信してから所定時間内に送信先から送信出力値変更ACKパケットを受信したか否かを判定する（ステップS307）。

このタイムチャートでは、ステップS306にて送信出力値変更ACKパケットを受信しているため（ステップS307, Yes）、次のステップS201の処理を行う。一方、送信出力値変更ACKパケットを受信していなければ（ステップS307, No）、ステップS301に戻り、制御部701は一旦送信出力値をさらに所定値分（1段階）上げて、無線通信を行う。

[0086]（ステップS201～S210の処理）

そして、アクセスポイント3103の制御部701は、ステップS201～S210の処理を行い、主従関係を切り替える処理を行う。このステップS201～S210の処理は、第2の実施形態と同様の処理であるため、説明を省略する。

これにより、無線装置3201Aと無線装置3201Bとの主従関係が切り替わり、無線装置3201Aが「従無線機」である発光側無線機として機能し、無線装置3201Bが「主無線機」である受光側無線機として機能する。

[0087]（アクセスポイント3103の処理）

ステップS201～S210の処理後、アクセスポイント3103は、無線装置3201Bとの間で調整した最低限送信出力値（以下、最低限送信出力値Bと称する）で、通信確認用信号を送信する（ステップS308）。これ
の通信確認用信号は送信先から応答信号が帰ってくるものであればよい。

[0088]（無線装置3201B：受光側無線機の処理）

受光側の無線装置3201Bは、無線部204が通信確認用信号を受信し
（ステップS309）、応答信号を返信（送信）する（ステップS310）
。

（アクセスポイント3103の処理）

アクセスポイント3103は、無線部703が応答信号を受信する（ステ
ップS311）。

そして、アクセスポイント3103の制御部701は、通信確認用信号を
送信してから所定時間内に送信先から応答信号を受信したか否かを判定する
（ステップS312）。

このタイムチャートでは、ステップS311にて応答信号を受信している
ため（ステップS312，Yes）、切替処理を終了する。

[0089]一方、送信出力値変更ACKパケットを受信していなければ（ステップS
312，No）、アクセスポイント3103の制御部701は、再びステッ
プS201～S210の処理を行い、主従関係を切り替える前の状態に戻す
処理を行い、さらに、受光側の無線装置3201Aとの無線通信における送
信出力値を、最低限送信出力値に戻す処理を行う。そして、アクセスポイン
ト3103の制御部701は、切替処理を終了する。

[0090]（主従関係を切り替える前の状態に戻す処理）

アクセスポイント3103の制御部701は、例えば、再びステップS2
01～S210の処理を行うことにより、無線装置3201Aと無線装置3
201Bとの主従関係が元に戻り、無線装置3201Aが「主無線機」であ
る受光側無線機として機能し、無線装置3201Bが「従無線機」である発
光側無線機として機能する。

[0091]（最低限送信出力値に戻す処理）

また、アクセスポイント3103の制御部701は、例えば、最低限送信
出力値を格納した送信出力値変更パケットを送信して、受光側の無線装置3
２０１Ａとの無線通信における送信出力値を、最低限送信出力値に戻す。

【0092】（効果）

第３の実施形態に係る無線装置３２０１（３２０１Ａ、３２０１Ｂ）は、「主無線機」である受光側無線機として機能している場合に、一時的に無線通信の品質が劣化し、通信異常検出機能で通信異常を検出したとき、「主無線機」である受光側無線機の無線装置３２０１Ａは、「従無線機」である発光側無線機の無線装置３２０１Ｂに依頼をして、発光側無線機と受光側無線機との機能（主従関係）を切り替える。これにより、無線装置３２０１Ｂが「主無線機」である受光側無線機として機能する。そのため、アクセスポイント３１０３までの通信経路が、無線装置３２０１Ａ－アクセスポイント３１０３間ではなく、無線装置３２０１Ｂ－アクセスポイント３１０３間となる。このように通信経路が変わるため、無線装置３２０１Ａ－アクセスポイント３１０３間の通信経路において異常（例えば、無線電波の障害）があったとしても、（異常がないと思われる）無線装置３２０１Ｂ－アクセスポイント３１０３間の通信経路を利用して、外部装置１０４（図１）と正常に通信することができる。

【0093】以上のように、第３の実施形態に係る無線装置３２０１は、一時的に無線通信の品質が変化した場合に、発光側無線機と受光側無線機との機能（主従関係）を切り替える。これにより、無線通信経路が無線装置３２０１Ｂ－アクセスポイント３１０３間に変わるため、通信異常が解消することを期待できる。

【0094】本発明は、前記した実施形態に限定されることなく、本発明の要旨を逸脱しない範囲で種々の変更や変形を行うことができる。

例えば、第１～第３の実施形態において、受光スイッチ部２０５と発光スイッチ部２０６とで分けて記載したが、受光センサ部２０３または発光センサ部２０４に電力が供給さればよいため、図１１に示すように、１つにまとめたスイッチ部２０５０であってもよい。

【0095】また、第１～第３の実施形態に係る無線装置２０１は、例えば、ＡＴＭ（Ａ
Automated Teller Machine）等の自動取引装置や、複合機等の内部に配置して、装置内部で搬送される紙幣や通帳、紙等の媒体を検出する装置として用いることができる。一般的なＡＴＭの内部には、多数の検出装置が配置されており、それら１つ１つには、電力を供給するための配線や、通信を行うための配線がされている。この配線はＡＴＭの製造工程において非常に煩わしく、さらに設計段階で、装置内における配線スペースをも考慮しなければならないという問題がある。そこで、第１～第３の実施形態に係る無線装置２０１を用いることで、電力は電池から供給されることとなり、通信は無線で行うことができるため、それらの問題を解消することができる。

[0096] 他の実施形態として、検出システム２００は、アクセスポイント１０３の代わりに、一般的な無線ルータ等の無線ネットワーク中継装置を用いてもよい。このような構成にすることにより、一対の無線装置２０１は、無線ルータを経由して外部装置１０４と通信を行う。そのため、無線装置２０１と無線ルータとの間の通信経路で異常が発生したとしても、別の無線ルータを経由すれば、通信異常を解消することができる。

[0097] 第１の実施形態では、切替処理において、カウントダウンを行っているが、所定の時刻となった時にステップＳ１０３を実行し、受光側の無線装置２０１Ａが電池残量確認パケット３００を送信してもよい。

[0098] また、第１の実施形態に係る無線装置２０１において、制御部２０８が、タイム２１０にカウントダウンさせたり、電池残量の比較判定や、切替処理を行っているが、アクセスポイント１０３や外部装置１０４の制御部が行っている。

例えば、アクセスポイント１０３や外部装置１０４が内蔵するタイマを用いてカウントダウンしてもよい。また、アクセスポイント１０３や外部装置１０４が無線装置２０１それぞれに電池残量確認パケット３００を送信し、それぞれの無線装置２０１から電池残量確認ＡＣＫパケット４００を受信して、アクセスポイント１０３や外部装置１０４の制御部が電池残量の比較判定を行ってもよい。また、比較判定の結果、切り替えるのであれば、アクセス
スポイント１０３や外部装置１０４の制御部が状態変更パケット５００を無線装置２０１それぞれに送信してもよい。

[0099] ２０１３年３月２６日に出願された日本国特許出願２０１３－０６３７３２号の開示は、その全体が参照により本明細書に取り込まれる。
請求の範囲

[請求項1] 発光部と受光部とを備える2つ検出装置が、互いの前記発光部と前記受光部とが対向するように配置され、その一対の検出装置が無線通信可能に接続される検出システムであって、

前記一対の検出装置は、無線通信を行って前記発光部が機能し前記受光部の機能が停止する発光側装置と、前記受光部が機能し前記発光部の機能が停止する受光側装置とに交互に切り替えて、一方が前記発光側装置、他方が前記受光側装置として駆動する、

出システム。

[請求項2] 前記検出装置は、

取り付けられる一次電池の電池残量を検出する電池残量検出部と、

他方の検出装置と通信可能に接続される無線部と

制御部と

をさらに備え、

前記制御部は、

前記無線部を介して前記他方の検出装置に電池残量の送信を要求し、

受信した他方電池残量と、前記電池残量検出部が検出した自己電池残量を比較し、

前記自己電池残量の方が前記他方電池残量より多いと判定した場合、前記発光側装置としての処理を実行し、一方、前記自己電池残量の方が前記他方電池残量より少ないと判定した場合、前記受光側装置としての処理を実行する

請求項1に記載の検出システム。

[請求項3] 前記検出装置は、

前記一次電池からの直流電力が、前記発光部と前記受光部とのどちらか一方に供給されるように切り替えるスイッチ部を備え、

前記制御部は、
前記自己電池残量の方が前記他方電池残量より多い場合、前記発光部に直流電力が供給されるように前記スイッチ部を切り替えさせて、一方、前記自己電池残量の方が前記他方電池残量より少ない場合、前記受光部に直流電力が供給されるように前記スイッチ部を切り替えさせる。

請求項2に記載の検出システム。

[請求項4] 前記発光側装置として機能する検出装置は、前記受光側装置として機能する検出装置からの前記電池残量の送信要求に応じて、前記電池残量検出部が検出した電池残量を送信する、請求項2に記載の検出システム。

[請求項5] 前記一対の検出装置それぞれと通信可能に接続され、前記一対の検出装置間での無線通信の中継を行う無線通信中継装置を備え、前記無線通信中継装置は、前記一対の検出装置それぞれに状態変更指令を送信し、前記状態変更指令を受信した前記発光側装置として駆動する検出装置は、前記発光部の機能を停止させて、前記受光部を機能させ、前記状態変更指令を受信した前記受光側装置として駆動する検出装置は、前記受光部の機能を停止させて、前記発光部を機能させる、請求項1に記載の検出システム。

[請求項6] 前記無線通信中継装置は、前記受光側装置として駆動する検出装置から、前記受光部が受光したという通知が送信されないときに、前記一対の検出装置それぞれに前記状態変更指令を送信する、請求項5に記載の検出システム。

[請求項7] 前記無線通信中継装置は、前記受光側装置として駆動する検出装置との通信が失敗したときに、前記受光側装置と通信を行う際の送信出力を上げてから、
前記一対の検出装置それぞれに前記状態変更指令を送信する、
請求項5に記載の検出システム。

[請求項8] 前記無線通信中継装置は、予め前記一対の検出装置それぞれと通信可能な最低限送信出力値を測定しておき、
前記無線通信中継装置は、通常、前記受光側装置として駆動する検出装置と、前記最低限送信出力値での通信を行う、
請求項7に記載の出システム。

[請求項9] 前記検出装置は、
制御部と、
一次電池からの直流電力が、前記発光部と前記受光部とのどちらか一方に供給されるように切り替えるスイッチ部をと備え、
制御部は、前記発光側装置として機能させる場合、前記発光部に電力が供給されるように前記スイッチ部を切り替えさせて、一方、前記受光側装置として機能させる場合、前記受光部に直流電力が供給されるように前記スイッチ部を切り替えさせる
請求項5ないし請求項8のいずれか一项に記載の検出システム。

[請求項10] 発光部と受光部を備える2つの検出装置が、互いの前記発光部と前記受光部とが対向するように配設され、その一対の検出装置が無線通信可能に接続される媒体検出システムを備えた自動取引装置であって、
前記一対の検出装置は、無線通信を行って前記発光部が機能し前記受光部の機能が停止する発光側装置と、前記受光部が機能し前記発光部の機能が停止する受光側装置とに交互に切り替えて、一方が前記発光側装置、他方が前記受光側装置として駆動するものであり、
前記発光側装置として駆動する検出装置の前記発光部から出力される光を、前記受光側装置として駆動する検出装置の前記受光部が検出することにより媒体の有無を検出する、自動取引装置。
300 電池残量確認パケット

<table>
<thead>
<tr>
<th>ヘッダ</th>
<th>パケットID「1」</th>
<th>送信元アドレス</th>
<th>宛先アドレス</th>
</tr>
</thead>
</table>

400 電池残量確認ACKパケット

<table>
<thead>
<tr>
<th>ヘッダ</th>
<th>パケットID「2」</th>
<th>送信元アドレス</th>
<th>宛先アドレス</th>
<th>電池残量</th>
</tr>
</thead>
</table>

500 状態変更パケット

<table>
<thead>
<tr>
<th>ヘッダ</th>
<th>パケットID「3」</th>
<th>送信元アドレス</th>
<th>宛先アドレス</th>
</tr>
</thead>
</table>

600 状態変更ACKパケット

<table>
<thead>
<tr>
<th>ヘッダ</th>
<th>パケットID「4」</th>
<th>送信元アドレス</th>
<th>宛先アドレス</th>
</tr>
</thead>
</table>
プログラム

[図7]

第1の実施形態

[開始]
受光側無線機

S101 カウントダウン開始

S102 カウントが0になる

S103 電池残量確認パケットを送信

S104 電池残量確認パケットを受信

S107 電池残量確認

ACKパケットを受信

S105 電池残量Bを検出

S106 電池残量確認ACKパケットを送信

S108 電池残量Bを取得

S109 電池残量Aを検出

S110 判定処理

(電池残量A > 電池残量B?)

(Yes)

S111 状態変更パケットを送信

S112 状態変更パケットを受信

S113 状態変更(発光側→受光側)

S115 状態変更ACKパケットを受信

S114 状態変更ACKパケットを送信

S116 状態変更(受光側→発光側)

[終了]

発光側無線機

受光側無線機
[図8]

アクセスポイント
(無線通信中継装置)
図10]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G07D9/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2012-35953 A (Ricoh Co., Ltd.), 23 February 2012 (23.02.2012), paragraph [0051] (Family: none)</td>
<td>1-10</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search 04 February, 2014 (04.02.14)

Date of mailing of the international search report 18 February, 2014 (18.02.14)

Name and mailing address of the ISA/ Japanese Patent Office

Facsimile No.

Form PCT/ISA/210 (second sheet) (July 2009)
A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. G07D/09/00(2006.01)

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. G07D/09/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年
日本国公開実用新案公報 1971-2014年
日本国実用新案登録公報 1996-2014年
日本国登録実用新案公報 1994-2014年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>カテゴリー*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求書の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2012-118791 A（沖電気工業株式会社）2012.06.21, & CN 102486883 A</td>
<td>1 - 10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2012-35953 A（株式会社リコー）2012.02.23, 段落【0051】（ファミリーなし）</td>
<td>1 - 10</td>
</tr>
</tbody>
</table>

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

※ 引用文献のカテゴリ

「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日前でかつ優先権の主張の基礎となる出願

国際調査を完了した日

04.02.2014

国際調査報告の発送日

18.02.2014

国際調査機関の名称及びあて先

日本国特許庁（ISA/JP）
郵便番号100-8915
東京都千代田区霞が関二丁目4番3号

特許庁審査官（権限のある職員）
永谷 真
電話番号03-3581-1101 内線3386

様式PCT/ISA/210（第2ページ）（2009年7月）