(12) STANDARD PATENT

(11) Application No. AU 2008203053 B2
(19) AUSTRALIAN PATENT OFFICE
(54) Title

Nucleic acid and corresponding protein named 158P1D7 useful in the treatment and detection of bladder and other cancers
(51) International Patent Classification(s)

> C07K 14/47 (2006.01)

C12N 15/11 (2006.01)
A01K 67/027 (2006.01)
C12N 15/12 (2006.01)
A61K 38/17 (2006.01)
C12Q 1/68 (2006.01)
A61K 39/00 (2006.01)
C07K 16/18 (2006.01)
(21) Application No: 2008203053

A61K 38/00 (2006.01)
(22) Date of Filing: 2008.07 .10
(43) Publication Date: 2008.07 .31
(43) Publication Journal Date: 2008.07.31
(44) Accepted Journal Date: 2010.02 .18
(62) Divisional of:

2004210975
(71) Applicant(s)

Agensys, Inc.
(72) Inventor(s)

Morrison, Karen Jane Meyrick;Jakobovits, Aya;Gudas, Jean;Raitano, Arthur B;Perez-Villar, Juan J;Faris, Mary;Kanner, Steven B;Ge, Wangmao;Challita-Eid, Pia M;Morrison, Robert Kendall
(74) Agent / Attorney

FB Rice \& Co, Level 23200 Queen Street, Melbourne, VIC, 3000

Abstract

A novel gene (designated 158P1D7) and its encoded protein are described. While 158P1D7 exhibits tissue specific expression in normal adult tissue, it is aberrantly expressed in multiple cancers including set forth in Table 1. Consequently, 158P1D7 provides a diagnostic and/or therapeutic target for cancers. The 158P1D7 gene or fragment thereof, or its encoded protein or a fragment thereof, can be used to elicit an immune response.

AUSTRALIA

Patents Act 1990

AGENSYS, INC.

COMPLETE SPECIFICATION STANDARD PATENT

Invention Title:

Nucleic acid and corresponding protein named 158P1D7 useful in the treatment and detection of bladder and other cancers

The following statement is a full description of this invention including the best method of performing it known to us:-

NUCLEIC ACID AND CORRESPONDING PROTEIN NAMED 158P1D7 USEFUL IN THE TREATMENT AND DETECTION OF BLADDER AND OTHER CANCERS

5 incorporated herein by reference.

FIELD OF THE INVENTION

The invention described herein relates to novel nucleic acid sequences and their
This is a divisional of AU 2004210975, the entire contents of which are encoded proteins, referred to as 158P1D7 and variants thereof, and to diagnostic and therapeutic methods and compositions useful in the management of various cancers that express 158P1D7 and variants thereof.

BACKGROUND OF THE INVENTION

 Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half-million people annually, with over 1.2 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death.Of all new cases of cancer in the United States, bladder cancer represents approximately 5 percent in men (fifth most common neoplasm) and 3 percent in women (eighth most common neoplasm). The incidence is increasing slowly, concurrent with an increasing older population. In 1998, there was an estimated 54,500 cases, including 39,500 in men and 15,000 in women. The age-adjusted incidence in the United States is 32 per 100,000 for men and 8 per 100,000 in women. The historic male/female ratio of 3:1 may be decreasing related to smoking patterns in women. There were an estimated 11,000 deaths from bladder cancer in 1998 (7,800 in men and 3,900 in women). Bladder cancer incidence and mortality strongly increase with age and will be an increasing problem as the population becomes more elderly.

Bladder cancers comprise a heterogeneous group of diseases. The main determinants of disease control and survival are histology and extent of disease. The main codes for these factors include pathology classification, the International Classification of Diseases-Oncology (ICDO), and staging classification of extent of disease, the TNM classification. (Table XXI). For a general discussion of bladder and
other urogenital cancers, see, e.g., Volgelzang, et al, Eds. Comprehensive Textbook of Genitourinary Oncology, (Williams \& Wilkins, Baltimore 1996), in particular pages 295-556.

Three primary types of tumors have been reported in the bladder. The most common type of bladder cancer is Transitional cell carcinoma (TCC); this accounts for about 90% of all bladder cancers. The second form of bladder cancer is squamous cell carcinoma, which accounts for about 8% of all bladder cancers where schistosomiasis is not endemic, and approximately 75% of bladder carcinomas where schistosomiasis is endemic. Squamous cell carcinomas tend to invade deeper layers of the bladder. The
10 third type of bladder cancer is adenocarcinoma, which account for $1 \%-2 \%$ of bladder cancers; these are primarily invasive forms of cancer.

Bladder cancer is commonly detected and diagnosed using cytoscopy and urine cytology. However these methods demonstrate poor sensitivity. Relatively more reliable methods of detection currently used in the clinic include the bladder tumor antigen (BTA) stat test, NMP22 protein assay, telomerase expression and hyaluronic acid and hyaluronidase (HA-

HAase) urine test. The advantage of using such markers in the diagnosis of bladder cancer is their relative high sensitivity in earlier tumor stages compared to standard cytology.

For example, the BTA stat test has $60-80 \%$ sensitivity and $50-70 \%$ speclicity for bladder cancer, while the HAHAase urine test shows 90-92\% sensitivity and 80-84\% specificity for bladder cancer (J Urol 2001 165:1067). In general, sensitivity for stage Ta tumors was 81% for nuclear matrix protein (NMP22), 70\% for telomerase, 32\% for bladder tumor antigen (BTA) and 26\% for cytology (J Urol 2001 166:470; J Urol 1999, 161:810). Although the telomeric repeat assay which measures telomerase activity is relatively sensitive, instability of telomerase in urine presently renders this detection method unreliable.

Most bladder cancers recur in the bladder. Generally, bladder cancer is managed with a combination of transurethral resection of the bladder (TUR) and intravesical chemotherapy or immunotherapy. The multifocal and recurrent nature of bladder cancer points out the limitations of TUR. Most muscle-invasive cancers are not cured by TUR alone. Radical cystectomy and urinary diversion is the most effective means to eliminate the cancer but carry an undeniable impact on urinary and sexual function.

Intravesical bacilli Calmette-Guerin (BCG) is a common and efficacious immunotherapeutic agent used in the treatment of bladder cancer. BCG is also used as a prophylactic agent to prevent recurrence of bladder cancer. However, 30% of patients fail to respond to BCG therapy and go on to develop invasive and metastatic disease (Catalona et al. J Urol 1987, 137:220-224). BCG-related side effects have been frequently observed such as drug-induced cystitis, risk of bacterial infection, and hematuria, amongst others. Other allemative immunotherapies have been used for the treatment of bladder cancer, such as KLH (Flamm et al. Urologe 1994; 33:138-143) interferons (Bazarbashi et al. J Surg Oncol. 2000; 74:181-4), and MAGE-3 peptide loaded dendritic cells (Nishiyama et al. Clin Cancer Res 2001; 7:23-31). All these approaches are still experimental (Zlotta et al. Eur Urol 2000;37 Suppl 3:10-15). There continues to be a significant need for diagnostic and treatment modalities that are beneficial for bladder cancer patients. Furthermore, from a worldwide standpoint, several cancers stand out as the leading killers. In particular, carcinomas of the lung, prostate, breast, colon, pancreas, and ovary are primary causes of cancer death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience physical debilitations following treatment. Furthermore, many cancer patients experience a recurrence.

Prostate cancer is the fouth most prevalent cancer in men worldwide. In North America and Northem Europe, it is by far the most common cancer in males and is the second leading cause of cancer death in men. In the United States alone, well over 30,000 men die annually of this disease, second only to lung cancer. Despite the magnitude of these figures, there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, surgical castration and chemotherapy continue to be the main treatment modalities.
Unfortunately, these treatments are ineffective for many and are often associated with undesirable consequences.
On the diagnostic front, the lack of a prostate tumor marker that can accurately detect early-stage, localized tumors remains a signlicant limitation in the diagnosis and management of this disease. Although the serum prostate specific antigen (PSA) assay has been a very useful tool, however its specificity and general utility is widely regarded as lacking in several important respects. While previously identified markers such as PSA, PSM, PCTA and PSCA have facilitated efforts to diagnose and treat prostate cancer, there is need for the identification of additional markers and therapeutic targets for prostate and related cancers in order to further improve diagnosis and therapy.

Renal cell carcinoma (RCC) accounts for approximately 3 percent of adult malignancies. Once adenomas reach a diameter of 2 to 3 cm , malignant potential exists. In the adult, the two principal mallgnant renal tumors are renal cell
adenocarcinoma and transitional cell carcinoma of the renal pelvis or ureter. The incidence of renal cell adenocarcinoma is estimated at more than 29,000 cases in the United States, and more than 11,600 patients died of this disease in 1998. Transitional cell carcinoma is less frequent, with an incidence of approximately 500 cases per year in the United States.

Surgery has been the primary therapy for renal cell adenocarcinoma for many decades. Until recently, metastatic disease has been refractory to any systemic therapy. With recent developments in systemic therapies, particularly immunotherapies, metastatic renal cell carcinoma may be approached aggressively in appropriate pattenis with a possibility of durable responses. Nevertheless, there is a remaining need for effective therapies for these patients.

An estimated 130,200 cases of colorectal cancer occurred in 2000 in the United States, including 93,800 cases of colon cancer and 36,400 of rectai cancer. Colorectal cancers are the third most common cancers in men and women. Incidence rates declined significantly during 1992-1996 (-2.1\% per year). Research suggests that these declines have been due to increased screening and polyp removal, preventing progression of polyps to invasive cancers. There were an estimated 56,300 deaths (47,700 from colon cancer, 8,600 from rectal cancer) in 2000, accounting for about 11% of all U.S. cancer deaths.

At present, surgery is the most common form of therapy for colorectal cancer, and for cancers that have not spread, it is frequently curative. Chemotherapy, or chemotherapy plus radiation is given before or after surgery to most patients whose cancer has deeply perforated the bowel wall or has spread to the lymph nodes. A permanent colostomy (creation of an abdominal opening for elimination of body wastes) is occasionally needed for colon cancer and is infrequently required for rectal cancer. There continues to be a need for effective diagnostic and treatment modalities for colorectal cancer.

There were an estimated 164,100 new cases of lung and bronchial cancer in 2000, accounting for 14% of all U.S. cancer diagnoses. The incidence rate of lung and bronchial cancer is declining significantly in men, from a high of 86.5 per 100,000 in 1984 to 70.0 in 1996. In the 1990s, the rate of increase among women began to slow. In 1996, the incidence rate in women was 42.3 per 100,000.

Lung and bronchial cancer caused an estimated 156,900 deaths in 2000, accounting for 28% of all cancer deaths. During 1992-1996, mortality from lung cancer declined significantly among men (-1.7% per year) while rates for women were still significantly increasing (0.9% per year). Since 1987, more women have died each year of lung cancer than breast cancer, which, for over 40 years, was the major cause of cancer death in women. Decreasing lung cancer incidence and mortality rates most llikely resulted from decreased smoking rates over the previous 30 years; however, decreasing smoking patterns among women lag behind those of men. Of concem, although the declines in aduil tobacco use have slowed, tobacco use in youth is Increasing again.

Treatment options for lung and bronchial cancer are determined by the type and stage of the cancer and include surgery, radiation therapy, and chemotherapy. For many localized cancers, surgery is usually the treatment of choice. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often needed in combination with surgery. Chemotherapy alone or combined with radialion is the treatment of cholce for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which in some cases is long lasting. There is however, an ongoing need for effective treatment and diagnostic approaches for lunch and bronchial cancers.

An estimated 182,800 new invasive cases of breast cancer were expected to have occurred among women in the United States during 2000. Additionally, about 1,400 new cases of breast cancer were expected to be diagnosed in men in 2000. After increasing about 4% per year in the 1980s, breast cancer incidence rates in women have leveled off in the 1990s to about 110.6 cases per 100,000 .

In the U.S. alone, there were an estimated 41,200 deaths (40,800 women, 400 men) in 2000 due to breast cancer. Breast cancer ranks second among cancer deaths in women. According to the most recent data, mortality rates declined
significantly during 1992-1996 with the largest decreases in younger women, both white and black. These decreases were probably the result of earlier detection and improved treatment.

Taking into account the medical circumstances and the patient's preferences, treatment of breast cancer may involve lumpectomy (local removal of the tumor) and removal of the lymph nodes under the arm; mastectomy (surgical removal of the breast) and removal of the lymph nodes under the arm; radiation therapy; chemotherapy; or hormone therapy. Often, two or more methods are used in combination. Numerous studies have shown that, for early stage disease, long-term survival rates after lumpectomy plus radiotherapy are similar to survival rates after modified radical mastectomy. Significant advances in reconstruction techniques provide several options for breast reconstruction after mastectomy. Recently, such reconstruction has been done at the same time as the mastectomy.

Local excision of ductal carcinoma in situ (DCIS) with adequate amounts of surrounding normal breast tissue may prevent the local recurrence of the DCIS. Radiation to the breast and/or tamoxifen may reduce the chance of DCIS occurring in the remaining breast tissue. This is important because DCIS, if left untreated, may develop into invasive breast cancer. Nevertheless, there are serious side effects or sequelae to these treatments. There is, therefore, a need for efficacious breast cancer treatments.

There were an estimated 23,100 new cases of ovarian cancer in the United States in 2000. It accounts for 4% of all cancers among women and ranks second among gynaecologic cancers. During 1992-1996, ovarian cancer incidence rates were significantly declining. Consequent to ovarian cancer, there were an estimated 14,000 deaths in 2000. Ovarian cancer causes more deaths than any other cancer of the female reproductive system.

Surgery, radiation therapy, and chemotherapy are treatment options for ovarian cancer. Surgery usually includes the removal of one or both ovaries, the fallopian tubes (salpingo-oophorectomy), and the uterus (hysterectomy). In some very early tumors, only the involved ovary will be removed, especially in young women who wish to have children. In advanced disease, an attempt is made to remove all intra-abdominal disease to enhance the effect of chemotherapy. There continues to be an important need for effective treatment options for ovarian cancer.

There were an estimated 28,300 new cases of pancreatic cancer In the United States in 2000. Over the past 20 years, rates of pancreatic cancer have declined in men. Rates among women have remained approximately constant but may be beginning to decline. Pancreatic cancer caused an estimated 28,200 deaths in 2000 in the United States. Over the past 20 years, there has been a slight but significant decrease in mortality rates among men (about -0.9\% per year) while rates have increased slightly among women.

Surgery, radiation therapy, and chemotherapy are treatment options for pancreatic cancer. These treatment options can extend survival and/or relieve symptoms in many patients but are not likely to produce a cure for most. There is a significant need for additional therapeutic and diagnostic options for pancreatic cancer.

Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

SUMMARY OF THE INVENTION

The present invention relates to a novel nucleic acid sequence and its encoded polypeptide, designated 158P1D7. As used herein, "158P1D7" may refer to the novel polynucleotides or polypeptides or variants thereof or both of the disclosed invention.

Nucleic acids encoding 158P1D7 are over-expressed in the cancer(s) listed in Table I. Northern blot expression analysis of 158P1D7 expression in normal tissues shows a restricted expression pattern in adult tissues. The nucleotide (Figure 2) and amino acid (Figure 2, and Figure 3) sequences of 158P1D7 are provided. The tissuerelated profile of 158P1D7 in normal adult tissues, combined with the over-expression observed in bladder tumors, shows that 158PID7 is aberrantly over-expressed in at least some cancers. Thus, 158P1D7 nucleic acids and polypeptides serve as a useful diagnostic agent (or indicator) and/or therapeutic target for cancers of the tissues, such as those listed in Table I.

The invention provides polynucleotides corresponding or complementary to all or part of the 158P1D7 nucleic acids, mRNAs, and/or coding sequences, preferably in isolated form, including polynucleotides encoding 158P1D7-related proteins and fragments of $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25$, or more than 25 contiguous amino acids; at least about $30,35,40,45,50,55,60,65$, 70, $80,85,90,95,100$ or more than 100 contiguous amino acids of a 158P1D7-related protein, as well as the peptides/proteins themselves; DNA, RNA, DNA/RNA hybrids, and related molecules (such as PNAs), polynucleotides or oligonucleotides complementary or having at least a 90% homology to 158P1D7 nucleic acid sequences or mRNA sequences or parts thereof, and polynucleotides or oligonucleotides that hybridize to the 158PID7 genes, mRNAs, or to 158P1D7-encoding polynucleotides. Also provided are means for isolating cDNAs and the gene(s) encoding 158P1D7. Recombinant DNA molecules containing 158P1D7 polynucleotides, cells transformed or transduced with such molecules, and host-vector systems for the expression of 158PID7 gene products are also provided. The invention further provides antibodies that bind to 158P1D7 proteins and polypeptide fragments thereof, including polyclonal and monoclonal antibodies, murine and other mammalian antibodies, chimeric antibodies, humanized and fully human antibodies, and antibodies labeled with a detectable marker. The invention also comprises T cell clones that recognize an epitope of 158P1D7 in the context of a particular HLA molecule.

In one embodiment the polynucleotide is an isolated polynucleotide that encodes a variant of the 158P1D7 protein (SEQ ID NO:2), wherein the polynucleotide is selected from the group consisting of:
(a) a polynucleotide comprising the sequence of SEQ ID NO:72, which encodes variant 3 of the 158P1D7 protein;
(b) a polynucleotide comprising the sequence of SEQ ID NO:76, which encodes variant 4 of the 158P1D7 protein;
(c) a polynucleotide comprising the sequence of SEQ ID NO:84, which encodes variant 5 of the 158PID7; or
(d) a polynucleotide comprising the sequence of SEQ ID NO:90, which encodes variant 6 of the 158P1D7.

The present invention further provides a recombinant expression vector comprising a polynucleotide of the invention.

The present invention further provides a process for producing a protein comprising culturing a host cell of the invention under conditions sufficient for the production of the protein.

The present invention further provides an isolated variant 158P1D7 protein, wherein the protein comprises the amino acid sequence of SEQ ID NO:73, SEQ ID. NO:81, SEQ ID NO:85 or SEQ ID NO:91.

The present invention further provides an antibody or fragment thereof that immunospecifically binds to an epitope on the variant 158P1D7 protein of the invention.

The present invention further provides a hybridoma that produces an antibody of the invention.

The present invention further provides a vector comprising a polynucleotide encoding a monoclonal antibody according to the invention.

The invention further provides methods for detecting the presence, amount, and status of 158P1D7 polynucleotides and proteins in various biological samples, as well as methods for identifying cells that express 158P1D7 polynucleotides and polypeptides. A typical embodiment of this invention provides methods for monitoring 158P1D7 polynucleotides and polypeptides in a tissue or hematology sample having or suspected of having some form of growth dysregulation such as cancer.

The present invention further provides an in vitro method for detecting the presence of the variant 158P1D7 protein of the invention or a polynucleotide encoding the protein in a test sample comprising:
contacting the sample with an antibody or polynucleotide, respectively, that specifically binds to the variant 158P1D7 protein or polynucleotide encoding the protein, respectively; and
detecting binding of the variant 158P1D7 protein or polynucleotide encoding the protein, respectively, in the sample thereto.

Note that to determine the starting position of any peptide set forth in Tables V XVIII and XXII to XLIX (collectively HLA Peptide Tables) respective to its parental variant, the length of the peptide in an HLA Peptide Table, and the Search Peptides in Table VII. Generally, a unique Search Peptide is used to obtain HLA peptides of a particular for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table 55. Accordingly, if a Search Peptide begins at position " X ", one must add the value " $\mathrm{X}-1$ " to each position in Tables V XVIII and XXII to XLIX to obtain the actual position of the HLA peptides in their parental molecule. For example, if a particular Search Peptide begins at position 150 of its parental molecule, one must add 150-1, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule.

The invention further provides various immunogenic or therapeutic compositions and strategies for treating cancers that express 158P1D7 such as bladder cancers, including therapies aimed at inhibiting the transcription, translation, processing or function of 158P1D7 as well as cancer vaccines.

The present invention further provides a composition comprising a pharmaceutically acceptable carrier and a protein of the invention.

The invention further provides a method of generating a mammalian immune response directed to a protein of Figure 2, where the method comprises exposing cells of the mammal's immune system to a portion of a) a 158P1D7-related protein and/or b) a nucleotide sequence that encodes said protein, whereby an immune response is generated to said protein. The 158P1D7-related protein can comprise at least one T cell or at least one B cell epitope; and, upon contacting the epitope with a mammalian immune system T cell or B cell respectively, the T cell or B cell is activated. The immune system cell is a B cell, a cytotoxic T cell (CTL), and/or a helper T cell (HTL). When the immune system cell is a B cell, the activated B cell generates antibodies that specifically bind to the 158P1D7-related protein. When the immune system cell is a T cell that is a cytotoxic T cell (CTL), the activated CTL kills an autologous cell that expresses the 158P1D7-related protein. When the immune system cell is a T cell that is a helper T cell (HTL), the activated HTL secretes cytokines that facilitate the cytotoxic activity of a cytotoxic T cell (CTL) or the antibody-producing activity of a B cell.

The present invention further provides an in vitro method of inhibiting growth of a cell expressing the variant 158P1D7 protein of the invention, comprising providing
an effective amount of an antibody according to the invention to the cell, whereby the growth of the cell is inhibited.

The present invention further provides an in vitro method of delivering a cytotoxic agent to a cell expressing the variant 158P1D7 protein of the invention, comprising providing an effective amount of an antibody according to the invention to the cell.

The present invention further provides use of the variant 158P1D7 protein of the invention for the preparation of a medicament to induce an immune response in a subject.

The present invention further provides use of an antibody for the preparation of a medicament which delivers an agent to a cell expressing a variant 158P1D7 protein of the invention, wherein the antibody comprises an antibody according to the invention.

The present invention further provides use of an effective amount of an antibody according to the invention for the preparation of a medicament which inhibits growth of a cell expressing the variant 158P1D7 protein of the invention.

The present invention further provides a viral expression vector encoding a polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the sequence of SEQ ID NO:72, which encodes variant 3 of the 158P1D7 protein;
(b) a polynucleotide comprising the sequence of SEQ ID NO:76, which encodes variant 4 of the 158P1D7 protein;
(c) a polynucleotide comprising the sequence of SEQ ID NO:84, which encodes variant 5 of the 158P1D7; or
(d) a polynucleotide comprising the sequence of SEQ ID NO:90, which encodes variant 6 of the 158P1D7.

Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. 158P1D7 SSH nucleic acid sequence. The 158P1D7 SSH sequence contains 231 bp .
Figure 2. A) The cDNA and amino acid sequence of 158P1D7 variant 1 (also called "158P1D7 v. $1^{\text {" }}$ or ${ }^{\text {a } 158 P 1 D 7}$ variant $1^{\text {p }}$) is shown in Figure 2A. The start methionine is underlined. The open reading frame extends from nucleic acid $23-$ 2548 including the stop codon.
B) The cDNA and amino acid sequence of 158P1D7 variant 2 (also called "158P1D7v.2") is shown in Figure 2 B . The codon for the slart methionine is underlined. The open reading frame extends from nucleic acid $23-2548$ including the stop codon.
C) The cDNA and amino acid sequence of 158P1D7 variant 3 (also called "158P1D7 v.3") is shown in Figure 2C. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid $23-2221$ including the stop codon.
D) The cDNA and amino acid sequence of 158P1D7 variant 4 (also called " $158 \mathrm{P} 1 \mathrm{D} 7 \mathrm{v} . \mathrm{4}^{\text {p }}$) is shown in Figure 2 D . The codon for the start methionine is underlined. The open reading frame extends from nucleic acid $23-1210$ including the stop codon.
E) The cDNA and amino acid sequence of 158P1D7 variant 5 (also called "158P1D7 v. 5^{a}) is shown in Figure 2E. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 480-3005 including the stop codon.
F) The cDNA and amino acid sequence of 158P1D7 variant 6 (also called "158P1D7 v.6") is shown in Figure 2F. The codc the start methionine is underlined. The open reading frame extends from nucleic acid 23-1612 including the stop codon.

Figure 3.
A) The amino acid sequence of 158P1D7 v .1 is shown in Figure 3 A ; it has 841 amino acids.
B) The amino acid sequence of 158P1D7 v. 3 is shown in Figure 3B; it has 732 amino acids.
C) The amino acid sequence of 158P1D7 v. 4 is shown in Figure 3C; it has 395 amino acids.
D) The amino acid sequence of 158P1D7 $v .6$ is shown in Figure 3D; it has 529 amino acids.

As used herein, a reference to 158P107 includes all variants thereof, including those shown in Flgures 2,3,10,11, and 12 unless the context clearly indicates otherwise.

Figure 4. Alignment BLAST homology of 158P1D7 v. 1 amino acid to hypothetical protein FLJ22774.
Figure 5. Figure 5a: Amino acid sequence alignment of 158P1D7 with human protein. Figure 5b: Amino acid sequence alignment of 158P1D7 with human protein similar to IGFALS.

Figure 6. Expression of 158P1D7 by RT-PCR. First strand CDNA was prepared from vital pool 1 (VP1: liver, lung and kidney), vital pool 2 (VP2, pancreas, colon and stomach), prostate xenograft pool (LAPC-4AD, LAPC-4AI, LAPC9AD, LAPC-9AI), prostate cancer pool, bladder cancer pool, colon cancer pool , lung cancer pool, ovary cancer pool, breast cancer pool, and metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semiquantitative PCR , using primers to 158P1D7, was performed at 30 cycles of amplification. Strong expression of 158P107 is observed in bladder cancer pool and breast cancer pool. Lower levels of expression are observed in VP1, VP2, xenograft pool, prostate cancer pool, colon cancer pool , lung cancer pool, ovary cancer pool, and metastasis pool.

Figure 7. Expression of 158P1D7 in normal human tissues. Two multiple tissue northern blots, with $2 \mu \mathrm{~g}$ of mRNAlane, were probed with the 158P1D7 fragment. Size standards in kilobases (kb) are indicated on the side. The resulls show expression of 158P1D7 in prostate, liver, placenta, heart and, to lower levels, in small intestine and colon.

Figure B. Expression of 158P1D7 In bladder cancer patlent specimens. Figure 8A. RNA was extracted from the bladder cancer ceil lines (CL), normal bladder (N), bladder tumors (T) and matched normal adjacent tissue (N_{AT}) isolated
from bladder cancer patients. Northern blots with $10 \mu \mathrm{~g}$ of total RNAllane were probed with the 158P1D7 fragment. Size standards in kilobases (kb) are indicated on the side. The results show expression of 158P1D7 in 1 of 3 bladder cancer cell lines. In patient specimens, 158P1D7 expression is detected in 4 of 6 tumors tested. Figure 8B. In another study, 158P1D7 expression is detected in all patient tumors tested (8B). The expression observed in normal adjacent tissues (isolated from diseased tissues) but not in normal tissue, Isolated from healthy donors, may indicate that these tissues are not fully normal and that 158P1D7 may be expressed in early stage tumors.

Figure 9. Expression of 158P1D7 in lung cancer patient specimens. RNA was extracted from lung cancer cell lines (CL), lung tumors (T), and their normal adjacent tissues (NaT) isolated from lung cancer patients. Northern blot with 10 $\mu \mathrm{g}$ of total RNAlane was probed with the 158P1D7 fragment. Size standards in kilobases (kb) are indicated on the side. The results show expression of 158P1D7 in 1 of 3 lung cancer cell lines and in all 3 lung tumors tested, but not in normal lung tissues.

Figure 10. Expression of 158P1D7 in breast cancer patient specimens. RNA was extracted from breast cancer cell lines (CL), normal breast (N), and breasi tumors (T) isolated from breast cancer patients. Northern blot with 10 $\mu \mathrm{g}$ of total RNAllane was probed with the 158P1D7 fragment. Size standards in kilobases (kb) are indicated on the side. The results show expression of 158P1D7 in 2 of 3 breast cancer cell lines and in 2 breast tumors, but not in normal breast tissue.

Figure 11. Figures $11(\mathrm{a})$-(d): Hydrophilicity amino acid profile of 158P1D7 v.1, v.3, v.4, and v. 6 determined by computer algorithm sequence analysis using the method of Hopp and Woods (Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Scl. U.S.A. 78:3824-3828) accessed on the Protscale website located on the World Wide Web at (URL: expasy.ch/cgibin/proiscale.pl) through the ExPasy molecular biology server.

Figure 12. Figures 12(a)-(d): Hydropathicity amino acid profile of 158P1D7 v.1, v.3, v.4, and v. 6 determined by computer algorithm sequence analysis using the method of Kyte and Doolittle (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132) accessed on the ProtScale website located on the World Wide Web at (URL: expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

Figure 13. Figures 13(a)-(d): Percent accessible residues amino acid profile of 158P1D7 v.1, v.3, v.4, and v. 6 determined by computer algorithm sequence analysis using the method of Janin (Janin J., 1979 Nature 277:491-492) accessed on the ProtScale website located on the World Wide Web at (URL: expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.

Figure 14. Figures 14(a)(d): Average flexibility amino acid profile of 158P1D7 v.1, v.3, v.4, and v. 6 determined by computer algorithm sequence analysis using the method of Bhaskaran and Ponnuswamy (Bhaskaran R., and Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255) accessed on the ProtScale website located on the Wortd Wide Web at (URL: expasy.ch/cgi-bin/proiscale.pl) through the ExPasy molecular blology server.

Figure 15. Figures 15(a)-(d): Beta-turn amino acid profile of 158P1D7 v.1, v.3, v.4, and v. 6 determined by computer algorithm sequence analysis using the method of Deleage and Roux (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294) accessed on the ProtScale website located on the World Wide Web at (URL: expasy.ch/cgibin/protscale.pl) through the ExPasy molecular biology server.

Figure 16. Figures 16(A)-(D): Secondary structure and transmembrane domains prediction for 158P1D7 protein variants. The secondary structures of 158P1D7 protein variants 1 (SEQ ID NO: 104), v. 3 (SEQ ID NO: 105), v. 4 (SEQ ID NO: 106), and v. 6 (SEQ ID NO: 107), respectively, were predicted using the HNN - Hierarchical Neural Network method (NPS@: Network Protein Sequence Analysis TIBS 2000 March Vol. 25, No 3 [291]:147-150 Combet C., Blanchet C., Geourjon C. and Deléage G., http://pbil.ibcp.fr/cgi-bin/npsa_automat.plipage=npsa_nn.html), accessed from the ExPasy
molecular biology server located on the World Wide Web at (.expasy.ch/tools). This method predicts the presence and location of alpha helices, extended strands, and random coils from the primary protein sequence. The percent of the protein variant in a given secondary structure is also listed. Figures 16E, 16G, 161, and 16K: Schematic representation of the probability of existence of transmembrane regions of 158P1D7 protein variant $1,3,4$, and 6 , respectively, based on the TMpred algorithm of Hofmann and Stoffel which utilizes TMBASE (K. Hofmann, W. Stoffel. TMBASE - A database of membrane spanning protein segments Biol. Chem. Hoppe-Seyler 374:166, 1993). Figures 16F, 16H, 16J, and 16L: Schematic representation of the probability of the existence of transmembrane regions of 158P1D7 proteln variants 1, 3, 4, and 6, respectively, based on the TMHMM algorithm of Sonnhammer, von Heiine, and Krogh (Erik L.L. Sonnhammer, Gunnar von Heijne, and Anders Krogh: A hidden Markov model for predicting transmembrane helices in protein sequences. in Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182 Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998). The TMpred and TMHMM algorithms are accessed from the ExPasy molecular biology server located on the World Wide Web at (.expasy.ch/tools). Protein variants 1 and 3 are predicted to contain 1 transmembrane region and protein variants 3 and 4 are not predicled to have transmembrane regions. All variants contain a hydrophobic stretch at their amino terminus that may encode a signal peplide.

Figure 17. Schematic alignment of SNP variants of 158P1D7. Schematic allgnment of SNP variants of 158P1D7. Variant 158P1D7 v. 2 is a variant with single nucleotide differences at 1546. Though this SNP variant is shown on transcript variant 158P1D7 v.1, it could also occur in any other transcript variants that contains the base pairs. Numbers correspond to those of 158 P 1 D 7 v .1 . Black box shows sequence similar to 158 P 1 D 7 v .1. SNP is indicated above the box.

Figure 18. Schematic alignment of protein variants of 158P1D7. Schematic alignment of protein variants of 158P1D7. Protein variants correspond to nucleotide variants. Nucleotide variant 158 P1D7 v. 2 and $v .5$ code for the same protein as v.1. Nucleotide variants 158P1D7 v. 3 and $v .4$ are transcript variants of $v .1$, as shown in Figure 12. Variant $v .6$ is a single nucleotide different from $v .4$ but codes for a protein that differs in the C-terminal portion from the protein coded by v.4. Black boxes represent sequence simllar to v.1. Hatched box represents amino acid sequence not present in v.1. Numbers undermeath the box correspond to 158P1D7 v.1.

Figure 19. Exon compositions of transcript varlants of 158P1D7. Variant 158P1D7 v.3, v.4, v. 5 and $v .6$ are transcript variants of 158P1D7 v.1. Variant 158P1D7 v. 3 spliced 2069-2395 out of variant 158P1D7 v. 1 and variant v. 4 spliced out 1662-2096 out of v.1. Variant v. 5 added another exon and 2 bp to the 5 ' end and extended 288 bp to the 3^{\prime} end of variant v.1. Variant $v .6$ spliced at the same site as v. 4 but spliced out an extra ' g ' at the boundary. Numbers in "($)$ " underneath the boxes correspond to those of $158 P 1 D 7$ v.1. Lengths of introns and exons are not proportional.

Figure 20. 158P1D7 Expression in Melanoma Cancer. RNA was extracted from normal skin cell line Detroit551 , and from the melanoma cancer cell line A375. Northem blots with 10ug of total RNA were probed with the 158P1D7 DNA probe. Size standards in kilobases are on the side. Results show expression of 158P1D7 in the melanoma cancer cell line but not in the normal cell line.

Figure 21. 158P1D7 Expression in cervical cancer patient specimens. First strand CDNA was prepared from normal cervix, cervical cancer cell line Hela, and a panel of cervical cancer patient specimens. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 158P1D7, was performed at 26 and 30 cycles of amplification. Results show expression of 158P107 in 5 out of 14 tumor specimens tested but not in normal cervix nor in the cell line.

Figure 22. Detection of 158P1D7 protein in recombinant cells with monoclonal antibodies. Cell lysates from the indicated cell lines were separated by SDS-PAGE and then transferred to nitrocellulose for Western bloting. The blots were probed with $5 \mathrm{ug} / \mathrm{ml}$ of the indicated anti-158P1D7 monoclonal antibodies (MAbs) in PBS $+0.2 \%$ Tween $20+1 \%$ non-fat milk, washed, and then incubated with goat ant-mouse IgG-HRP secondary Ab . Immunoreactive bands were then
visualized by enhanced chemoluminescence and exposure to autoradiographic film. Arrows indicate the $\sim 95 \mathrm{KD}$ and 90 kD 158P1D7 protein doublet band which suggest 158P1D7 is post-translationally modified to generate 2 different molecular weight species. These results demonstrate expression of 158P1D7 protein in recombinant cells and specific detection of the protein with monoclonal antibodies.

Figure 23. Surface staining of 158P1D7-expressing 293T and UMUC cells with anti-158P1D7 monocional antibodies. Transienty transfected 293T cells expressing 158P1D7 and stable 158P1D7-expressing UMUC bladder cancer cells were analyzed for surface expression of 158P1D7 with monoclonal antibodies (MAbs) by flow cytometry. Transfected 293 control vector and 158P1D7 vector cells and stable UMUC-neo and UMUC-158P1D7 cells were stained with $10 \mathrm{ug} / \mathrm{ml}$ and $1 \mathrm{ug} / \mathrm{ml}$, respectively, of the indicated MAbs. Surface bound MAbs were detected by incubation with goat anti-mouse \lg G-PE secondary Ab and then subjected to FACS analysis. 158P1D7-expressing 293T and UMUC cells exhibited an increase in relative fluorescence comnpared to control cells demonstrating surface expression and detection of 158P1D7 protein by each of the MAbs.

Figure 24. Surface staining of endogenous 158P1D7-expressing LAPC9 prostale cancer and UGB1 bladder cancer xenograft cells with MAb M15-68(2)22.1.1. LAPC9 and UGB1 xenograft cells were subjected to surface staining with either control mouse IgG antibody or MAb M15-68(2).1.1 at 1 ug/ml. Surface bound MAbs were detected by incubation with goat ant-mouse IgG-PE secondary Ab and then subjected to FACS analysis. Both LAPC9 and UGB1 cells exhibited an increase in relative fluorescence with the anti-158P1D7 MAb demonstrating surface expression and detection of 158P1D7 protein.

Figure 25. Monoclonal antibody-mediated internalization of endogenous surface 158P107 in NCI-H146 small cell lung cancer cells. NCH-H146 cells were stained with 5 ug/ml of the indicated MAbs at $4^{\circ} \mathrm{C}$ for 1.5 hours, washed, and then either left at $4^{\circ} \mathrm{C}$ or moved to $37{ }^{\circ} \mathrm{C}$ for 10 and 30 minutes. Residual surface bound MAb was then detected with anti-mouse IgG-PE secondary antibody. The decrease in the mean fluorescence intensity (MF) of cells moved to $37^{\circ} \mathrm{C}$ compared to cells left at $4{ }^{\circ} \mathrm{C}$ demonstrates internalization of surface bound 158P1D7/MAb complexes.

Figrue 26. Binding of the 158P1D7 extracellular domain to human umbilical vein endothelial cells. The recombinant extracellular domain (ECD) of 158P1D7 (amino actds 16-608) was iodinated to high spectic activity using the lodogen ($1,3,4,5$-tetrachloro- $3 \mathrm{a}, 6$ a-diphenylglycoluri) method. Human umblical vein endothelial cells (HUVEC) at 90% confluency in 6 well plates was incubated with 1 nM of 125l-158P1D7 ECD in the presence (non-specific binding) or absence (Total binding) of 50 fold excess unlabeled ECD for 2 hours at elther $4{ }^{\circ} \mathrm{C}$ or $37{ }^{\circ} \mathrm{C}$. Cells were washed, solubilized in 0.5 M NaOH , and subjected to gamma counting. The data shows specific binding of 158P1D7 ECD to HUVEC cells suggesting the presence of an 158P1D7 receptor on HUVEC cells. Figure 26A. Shows that the 158P1D7 ECD bound directly to the surface of HUVEC cells as detected by the 158P1D7 specific MAb. Figure 26B. Shows specific binding of 158 P1D7 ECD to HUVEC cells suggesting the presence of an 158P1D7 receptor on HUVEC cells.

Figure 27. 158P1D7 enhances the growth of bladder cancer in mice. Male ICR-SCID mice, $5-6$ weeks old (Charles River Laboratory, Wilmington, MA) were used and maintained in a strictly controlled environment in accordance with the NIH Guide for the Care and Use of Laboratory Animals. 158P1D7 transfected UM-UC-3 cells and parental cells were injected into the subcutaneous space of SCID mice. Each mouse received 4×10^{6} cells suspended in 50% (V/v) of Matrigel. Tumor size was monitored through caliper measurements twice a week. The longest dimension (L) and the dimension perpendicular to it (W) were taken to calculate tumor volume according to the formula $W^{2} \times U 2$. The Mann-Whitney U test was used to evaluate differences of tumor growth. All tests were two sided with $d=0.05$.

Figure 28. Internalization of M15-68(2).31.1.1 in NCI-H146 cells. Endogenous-158P1D7 expressing NCI-H146 cells were incubated with 5 ug/ml of MAb M15-68(2).31.1.1 at $4{ }^{\circ} \mathrm{C}$ for 1 hour, washed, and then incubated with goat antimouse IgG-PE secondary antibody and washed. Cells were then either left at $4^{\circ} \mathrm{C}$ or moved to $37^{\circ} \mathrm{C}$ for 30 minutes. Cells
were then subjected to fluorescent and brightfield microscopy. Cells that remained at $4^{\circ} \mathrm{C}$ exhibited a halo of fluorescence on the cells demonstrative of surface staining. Cells moved to $37^{\circ} \mathrm{C}$ exhibited a loss of the halo of surface fluorescence and the generation of punctate internal fluorescence indicative of internalization of the 158P1D7/MAb complexes.

Figure 29. Effect of 158P1D7 RNAi on cell survival. As control, $3 T 3$ cells, a cell line with no detectable expression of 158P1D7 mRNA, was also treated with the panel of siRNAs (including oligo 158P1D7.b) and no phenotype was observed. This result reflects the fact that the specific protein knockdown in the LNCaP and PC3 cells is not a function of general toxicity, since the $3 T 3$ cells did not respond to the 158P1D7.b oligo. The differential response of the three cell lines to the Eg5 control is a reflection of differences in levels of cell transfection and responsiveness of the cell lines to oligo treatment.

Figure 30. 158P1D7 MAb Retards the Growth of Human Bladder Cancer Xenografts in Mice. Male ICR-SCID mice, 5-6 weeks old (Charles River Laboratory, Wilmington, MA) were used and were maintained in a strictly-controlled environment in accordance with the NIH Guide for the Care and Use of Laboratory Animals. UG-B1, a patient bladder cancer, was used to establish xenograft models. Stock tumors regularly maintained in SCID mice were sterilely dissected, minced, and digested using Pronase (Calbiochem, San Diego, CA). Cell suspensions generated were incubated overnight at $37^{\circ} \mathrm{C}$ to obtain a homogeneous single-cell suspension. Each mouse received 2.5×10^{6} cells at the subcutaneous site of right flank. A Murine monocional antibody to 158P1D7 was tested at a dose of $500 \mu \mathrm{~g} /$ mouse in the study. PBS was used as control. MAbs were dosed intra-peritoneally twice a week for a total of 12 doses, starting on the same day of tumor cell injection. Tumor size was monitored through caliper measurements twice a week. The longest dimension (L) and the dimension perpendicular to it (W) were taken to calculate tumor volume according to the formula: $W^{2} \times L / 2$. The results show that Anti-158P1D7 mAbs are capable of inhibiting the growth of human bladder carcinoma in mice.

Figure 31. 158P1D7 MAbs Retard Growth of Human Prostate Cancer Xenografts in Mice. Male ICR-SCID mice, 5-6 weeks old (Charles River Laboratory, Wilmington, MA) were used and were maintained in a strictly-controlled environment in accordance with the NIH Guide for the Care and Use of Laboratory Animals. LAPC-9AD, an androgendependent human prostate cancer, was used to establish xenograft models. Stock tumors were regularly maintained in SCID mice. At the day of implantation, stock tumors were harvested and trimmed of necrotic tissues and minced to $1 \mathrm{~mm}^{3}$ pieces. Each mouse received 4 pieces of tissues at the subcutaneous site of right flank. A Murine monoclonal antibody to 158P1D7 was tested at a dose of $500 \mu \mathrm{~g} /$ mouse and $500 \mu \mathrm{~g} /$ mouse respectively. PBS and anti-KLH monoclonal antibody were used as controls. The study cohort consisted of 4 groups with 6 mice in each group. MAbs were dosed intra-peritoneally twice a week for a total of 8 doses. Treatment was started when tumor volume reached $45 \mathrm{~mm}^{3}$. Tumor size was monitored through caliper measurements twice a week. The longest dimension (L) and the dimension perpendicular to it (W) were taken to calculate tumor volume according to the formula: $W^{2} x \cup 2$. The Student's t test and the Mann-Whitney U test, where applicable, were used to evaluate differences of tumor growth. All tests were two-sided with $\alpha=0.05$.

Figure 32. Effect of 158P1D7 on Proliferation of Rat1 cells. cells were grown overnight in 0.5% FBS and then compared to cells treated with 10% FBS. The cells were evaluated for proliferation at $18-96 \mathrm{hr}$ post-treatment by a ${ }^{3} \mathrm{H}$ thymidine incorporation assay and for cell cycle analysis by a BrdU incorporation/propidium lodide staining assay. The results show that the Rat-1 cells expressing the 158P1D7 antigen grew effectively in low serum concentrations (0.1%) compared to the Rat-1-Neo cells.

Figure 33. 158P1D7 Enhances Entry Into the S Phase. Cells were labeled with 10 MM BrdU , washed, trypsinized and fixed in 0.4% paraformaldehyde and 70\% ethanol. Anti-BrdU-FITC (Pharmigen) was added to the cells, the cells were washed and then incubated with $10 \mathrm{gg} / \mathrm{ml}$ propidium iodide for 20 min prior to washing and analysis for fluorescence at 488 nm . The results show that there was increased labeling of cells in S-phase (DNA synthesis phase of the cell cycle) in 3T3 cells that expressed the 158P1D7 antigen relative to control cells.

Figure 34. Figure 34A. The CDNA (SEQ ID NO: 108) and amino acid sequence (SEQ ID NO: 109) of M15/X68(2) 18 VH clone \#1. Figure 34B. The cDNA (SEQ ID NO: 110) and amino acid sequence (SEQ ID NO: 111) of M15/X68(2)18 VL clone \#2.

Figure 35. Figure 35A. The amino acid sequence (SEQ ID NO: 112) of M15/X68(2) 18 VH clone \#1. Figure 35B. The amino acid sequence (SEQ ID NO: 113) of M15/X68(2) 18 VL clone \#2.

Figure 36. Detection of 158P1D7 protein by immunohistochemistry in various cancer patient specimens. Tissue was obtained from patients with bladder transitional cell carcinoma, breast ductal carcinoma and lung carcinoma. The results showed expression of 158P1D7 in the tumor cells of the cancer patients' tissue panel (A) bladder transitional cell carcinoma, invasive Grade III (B) bladder transitional cell carcinoma, papillary Grade II. (C) breast infiltrating ductal carcinoma,moderately differentiated, (D)breast infilitrating ductal carcinoma,moderate to poorly differentiated, (E) lung squamous cell carcinoma, (F) lung adenocarcinoma, well differentiated. The expression of 158P1D7 in bladder transitional cell carcinoma tissues was detected mostly around the cell membrane indicating that 158P1D7 is membrane associated.

DETAILED DESCRIPTION OF THE INVENTION

Outline of Sections
I.) Definitions
II.) 158P1D7 Polynucleotides
II.A.) Uses of 158P1D7 Polynucleotides
II.A.1.) Monitoring of Genetic Abnormalities
II.A.2.) Antisense Embodiments
II.A.3.) Primers and Primer Pairs
II.A.4.) Isolation of 158P1D7-Encoding Nucleic Acid Molecules
II.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems
III.) 158P1D7-related Proteins
III.A.) Motli-bearing Protein Embodiments
III.B.) Expression of 158P1D7-related Proteins
III.C.) Modifications of 158P1D7-related Proteins
III.D.) Uses of 158P1D7-related Proteins
IV.) 158P1D7 Antibodies
V.) 158P1D7 Cellular Immune Responses
VI.) 158P1D7 Transgenic Animals
VII.) Methods for the Detection of 158P1D7
VIII.) Methods for Monitoring the Status of 158P1D7-related Genes and Their Products
IX.) Identification of Molecules That Interact With 158P1D7
X.) Therapeutic Methods and Compositions

XA.) Anti-Cancer Vaccines
X.B.) 158P1D7 as a Target for Antlbody-Based Therapy
X.C.) 158P1D7 as a Target for Cellular Immune Responses
X.C.1. Minigene Vaccines
X.C.2. Combinations of CTL Peptides with Helper Peptides
X.C.3. Comblnations of CTL Peptides with T Cell Priming Agents
X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides

X.D.) Adoptive Immunotherapy

X.E.) Administration of Vaccines for Therapeutic or Prophylactic Purposes

XI.) Diagnostic and Prognostic Embodiments of 158P1D7.
XII.) Inhibition of 158P1D7 Protein Function
XII.A.) Inhibition of 158P1D7 With Intracellular Antibodies
XII.B.) Inhibition of 158P107 with Recombinant Proteins
XII.C.) Inhibition of 158P1D7 Transcription or Translation
XII.D.) General Considerations for Therapeutic Strategles
XIII.) Identification, Characterization and Use of Modulators of 158P1D7
XIV.) RNAi and Therapeutic use of small interfering RNA (sIRNAs)
XV.) KITS
1.) Definitions:

Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein are intended to have the meanings commonily understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. Many of the techniques and procedures described or referenced hereln are well understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utillzed molecular cloning methodologies described in Sambrook et al., Molecular Cloning: A Laboratory Manual 2nd. edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer defined protocols and/or parameters unless otherwise noted.

The terms "invasive bladder cancer" means bladder cancers that have extended into the bladder muscle wall, and are meant to include stage stage T2-T4 and disease under the TNM (tumor, node, metastasis) system. In general, these patients have substantially less favorable outcomes compared to patients having non-invasive cancer. Following cystectomy, 50% or more of the patients with invasive cancer will develop metastasis (Whittmore. Semin Urol 1983; 1:4-10).
"Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence 158P1D7 (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence 158P1D7. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moletles present.

The term "analog" refers to a molecule which is strucurally similar or shares similar or corresponding attributes with another molecule (e.g. a 158 P1D7-related protein). For example an analog of the $158 \mathrm{P} 1 \mathrm{D7}$ protein can be spectically bound by an antbody or T cell that specifically binds to 158P1D7 protain.

The term "antibody" is used in the broadest sense. Therefore an "antibody" can be naturally occurring or man-made such as monoclonal antibodies produced by conventional hybridomatechnology. Anti-158P1D7 antibodies bind 158P1D7 proteins, or a fragment thereof, and comprise monoclonal and polyclonal antibodies as well as fragments contaning the antigenbinding domain and/or one or more complementarity determining regions of these antibodies.

An "antibody fragment" is defined as at least a portion of the variable region of the immunoglobulin molecule that binds to its target, i.e., the antigen-binding region. In one embodiment it specifically covers single anti-158P1D7 antibodies and
clones thereof (including agonist, antagonist and neutralizing antibodies) and anti-158P1D7 antibody compositions with polyepilopic specificity.

The term "codon optimized sequences" refers to nucleotlde sequences that have been optimized for a particular host species by replacing any one or more than one codon having a usage requency of less than about 20%, more preferably less than about 30% or 40%. A sequence may be "completely oplimized" to contain no codon having a usage frequency of less than about 20%, more preferably less than about 30% or 40%. Nucleotide sequences that have been optimized for expression in a given host species by elimination of spurious polyadenylation sequences, elimination of exon/intron splling signals, elimination of transposon-like repeats and/or optimization of GC content in addition to codon optimization are referred to herein as an "expression enhanced sequences."

The term "cytoloxic agent" refers to a substance that inhibits or prevents one or more than one function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof. Examples of cytotoxic agents include, but are not limited to maytansinoids, ytrium, bismuth, ricin, ricin A-chain, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin, diphtheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, abrin A chaln, modeccin A chain, alpha-sarcin, gelonin, mitogellin, retstrictocin, phenomycin, enomycin, curicin, crotin, calicheamicin, sapaonaria officinalis inhibitor, and glucocorticoid and other chemotherapeutic agents, as well as radioisotopes such as A^{211}, $\|^{131},\left.\right|^{125}, Y^{90}, R e^{186}, R^{188}, \mathrm{Sm}^{153}, \mathrm{~B}^{2122}, \mathrm{P}^{32}$ and radioactive isolopes of Lu . Antibodies may also be conjugated to an antlcancer pro-drug acivating enzyme capable of converting the pro-drug to its active form.

The term "homolog" refers to a molecule which exhibits homology to another molecule, by for example, having sequences of chemical residues that are the same or similar at corresponding positions.
"Human Leukocyte Antigen" or "HLA" is a human class I or class II Major Histocompatibility Complex (MHC) protein (see, e.g., Stites, et al., Immunology, $8^{\text {rim }}$ Ed., Lange Publishing, Los Altos, CA (1994).

The terms "hybridize", "hybridizing", "hybridizes" and the like, used in the context of polynucleotides, are meant to refer to conventional hybridization conditions, preferably such as hybridization in 50% formamide/6XSSC/0.1\% SDS/100 $\mu \mathrm{g} / \mathrm{ml}$ ssDNA, in which temperatures for hybridization are above 37 degrees C and temperatures for washing in $0.1 \mathrm{XSSC} / 0.1 \%$ SDS are above 55 degrees C .

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated, or present, with the peptides in their in situ environment. For example, a polynucleotide is sald to be "isolated" when it is subslantially separated from contaminant polynucleotides that correspond or are complementary to nucleic acids other than those of 158P107 or that encode polypeptides other than 158P1D7 gene product or fragments thereof. A skilled artisan can readily employ nucleic acid isolation procedures to obtain an isolated 158P1D7 polynucleotide. A protein is said to be "isolated," for example, when physical, mechanical andor chemical methods are employed to remove the 158P1D7 protein from cellular constltuents that are normally associated, or present, with the protein. A skilled artisan can readily employ standard purification methods to obtain an isolated 158P1D7 protein. Altematively, an isolated protein can be prepared by synthetic or chemlcal means.

The term "mammal" refers to any organism classified as a mammal, including mice, rals, rabbits, dogs, cats, cows, horses and humans. In one embodiment of the invention, the mammal is a mouse. In another embodiment of the invention, the mammal is a human.

The terms "metastatic bladder cancer" and "metastatic disease" mean bladder cancers that have spread to regional lymph nodes or to distant sites, and are meant to stage $\mathrm{TxNxM}+$ under the TNM system. The most common site for bladder cancer metastasis is lymph node. Other common sites for metaslasis include lung, bone and liver.

The term "monoclonal antibody" refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the antibodies comprising the population are identical except for possible naturally occurring mutations that are present in minor amounts.

A "motif, as in blological motif of an 158P107.related protein, refers to any pattern of amino acds forming part of the primary sequence of a protein, that is associated with a particular function (e.g. protein-protein interaction, protein-DNA interaction, etc) or modification (e.g. that is phosphorylated, glycosylated or amidated), or locallzation (e.g. secretory sequence, nuclear localization sequence, etc.) or a sequence that is correlated with being immunogenic, either humorally or celluarly. A motif can be either contiguous or capable of being aligned to certain positions that are generally correlated with a certain function or property. In the context of HLA motifs, "motif" refers to the pattern of residues in a peptide of defined length, usually a pepitide of from about 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class || HLA motif, which is recognized by a particular HLA molecule. Peptide motifs for HLA binding are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.

A "pharmaceutical excipient" comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like.
"Pharmaceutically acceptable" refers to a non-toxic, inert, and/or composition that is physiologically compatible with mammals, such as humans.

The term "polynucleotide" means a polymeric form of nucieotides of at least $3,4,5,6,7,8,9$, or 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA and/or RNA. In the art, this term is often used interchangeably with "oligonucleotide", although "oligonucleotide" may be used to refer to the subset of polynucleotdes less than about 50 nucleotides in length. A polynucleotide can comprise a nucleotide sequence disclosed herein wherein thymidine (T) (as shown for example in can also be uracil (U); this definition pertains to the differences between the chemical structures of DNA and RNA, in particular the observation that one of the four major bases in RNA is uracil (U) instead of thymidine (T).

The lerm "polypeptide" means a polymer of at least about $4,5,6,7$, or 8 amino acids. Throughout the specification, standard three letter or single letter designations for amino acids are used. In the art, this term is often used interchangeably with "peptide" or "protein", thus "peptide" may be used to refer to the subset of polypeptides less than about 50 amino acids in length.

An HLA "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a "motif' for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding groove of an HLA molecule, with their side chains buried in specific pockets of the binding groove. In one embodiment, for example, the primary anchor residues for an HLA class I molecule are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 8, 9, 10, 11, or 12 residue peptide epitope in accordance with the invention. In another embodiment, for example, the primary anchor residues of a peptide that will bind an HLA class II molecule are spaced relative to each other, rather than to the termini of a peptide, where the peptide is generally of at least 9 amino acids in length. The primary anchor positions for each motif and supermotif are set forth in Table IV. For example, analog peptides can be created by altering the presence or absence of
particular residues in the primary and/or secondary anchor positions shown in Table IV. Such analogs are used to modulate the binding affinity and/or population coverage of a peptide comprising a particular HLA motif or supermotif.

A "recombinant" DNA or RNA molecule is a DNA or RNA molecule that has been subjected to molecular manipulation in vitro.
"Stringency" of hybridization reactlons is readlly determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ablilty of denatured nuclelc acid sequences to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditlons more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocois in Molecular Blology, Wiley Interscience Publishers, (1995).
"Stringent conditions" or "high stringency conditions", as defined herein, are identified by, but not limited to, those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodlum chloride $/ 0.0015 \mathrm{M}$ sodium citrate/ 0.1% sodum dodecyl sulfate at $50^{\circ} \mathrm{C}$; (2) employ during hybridization a denaluring agent, such as formamide, for example, 50% (v / v) formamide with 0.1% bovine serum albumin $/ 0.1 \%$ Ficoll $/ 0.1 \%$ polyvinylpyrrolidone $/ 50 \mathrm{mM}$ sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at $42{ }^{\circ} \mathrm{C}$; or (3) employ 50% formamide, 5 x SSC ($0.75 \mathrm{M} \mathrm{NaCl}, 0.075 \mathrm{M}$ sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA ($50 \mu \mathrm{~g} / \mathrm{ml}), 0.1 \%$ SDS, and 10% dextran sulfate at $42{ }^{\circ} \mathrm{C}$, with washes at $42^{\circ} \mathrm{C}$ in $0.2 \times$ SSC (sodium chloridelsodium. cltrate) and 50% formamide at $55^{\circ} \mathrm{C}$, followed by a high-stringency wash consisting of $0.1 \times$ SSC containing EDTA at $55^{\circ} \mathrm{C}$. "Moderately stringent conditions" are described by, but not limited to, those in Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and \%SDS) less stringent than those described above. An example of moderately stringent conditions is overnight incubation at $37^{\circ} \mathrm{C}$ in a solution comprising: 20% formamide, $5 \times \operatorname{SSC}$ ($150 \mathrm{mM} \mathrm{NaCl}, 15 \mathrm{mM}$ trisodium citrate), 50 mM sodium phosphale (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and $20 \mathrm{mg} / \mathrm{mL}$ denatured sheared salmon sperm DNA, followed by washing the filters in $1 \times$ SSC at about $37-50^{\circ} \mathrm{C}$. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.

An HLA "supermotif" is a pepilde binding specificity shared by HLA molecules encoded by two or more HLA alleles.
A "ransgenic animal" (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A "transgene" is a DNA that is integrated into the genome of a cell from which a transgenic animal develops.

As used herein, an HLA or cellular immune response "vaccine" is a composition that contains or encodes one or more peptides of the invention. There are numerous embodiments of such vaccines, such as a cocktail of one or more individual peptides; one or more peptides of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such individual peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The "one or more peptides" can include any whole unit integer from 1 -150 or more, e.g., at least $2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$, $19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55$, $60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145$, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by lipidation, addition of largeting or other sequences. HLA dass I peptides of the invention can be admixed with, or linked to, HLA class II peptides, to facilitate activation of both
cylotoxic T Iymphocytes and helper T lymphocytes. HLA vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., dendritic cells.

The term 'varlant' refers to a molecule that extibits a variation from a described type or norm, such as a protein that has one or more different amino acid residues in the corresponding position(s) of a specifically described protein (e.g. the 158P1D7 protein shown in Figure 2 or Figure 3). An analog is an example of a variant protein.

The 158P1D7-related proteins of the invention include those specifically identifed herein, as well as allelic variants, conservative substitution varlants, analogs and homologs that can bo isolated/generated and characterized without undue experimentation following the methods oullined herein or readily available in the art. Fusion proteins that combine parts of different 158P1D7 proteins or fragments thereof, as well as fusion proteins of a 158P1D7 protein and a heterologous polypeptide are also included. Such 158P1D7 proteins are collectively referred to as the 158P1D7-related proteins, the protelns of the invention, or 158P1D7. The term "158P1D7-related protein" refers to a polypeptide fragment or an 158P1D7 protein sequence of $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25$, or more than 25 amino acids; or, at least about 30,35 , $40,45,50,55,60,65,70,80,85,90,95,100$ or more than 100 amino acids.

II.) 158P1D7 Polynucleotides

One aspect of the invention provides polynucleotides corresponding or complementary to all or part of an 158P1D7 gene, mRNA, and/or coding sequence, preferably in isolated form, including polynucleotides encoding an 158P107-related protein and fragments thereof, DNA, RNA, DNA/RNA hybrid, and related molecules, polynucleotides or oligonucleotides complementary to an 158P1D7 gene or mRNA sequence or a part thereof, and polynucleotides or oligonudeotides that hybridize to an 158P1D7 gene, mRNA, or to an 158P1D7 encoding polynucleotide (collectively, "158P1D7 polynucleotides"). In all instances when referred to in this section, T can also be U in Figure 2.

Embodiments of a 158P1D7 polynucleotide include: a 158P1D7 polynucleotide having the sequence shown in Figure 2, the nucleotide sequence of 158P1D7 as shown In Figure 2, wherein T is U ; at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in Figure 2; or, at least 10 conliguous nucleotides of a polynucleotide having the sequence as shown in Figure 2 where T is U. For example, embodiments of 158P1D7 nucleotides comprise, without limitation:
(a) a polynucleotide comprising or consisting of the sequence as shown in Figure 2, wherein T can also be U;
(b) a polynucleotide comprising or consisting of the sequence as shown in Figure 2, from nucleotide residue number 23 through nucleotide residue number 2548 , wherein T can also be U;
(c) a polynucleotide that encodes a 158P1D7-related proteln whose sequence is encoded by the cDNAs contained in the plasmid designated p158P1D7-Turbo/3PX deposited with American Type Culture Collection as Accession No. PTA-3662 on 22 August 2001 (sent via Federal Express on 20 August 2001);
(d) a polynucleotide that encodes an 158P1D7-related protein that is at least 90% homologous to the entire amino acid sequence shown in Figure 2;
(e) a polynucleotide that encodes an 158P1D7-related protein that is at least 90% identical to the entire amino acid sequence shown In Figure 2;
(f) a polynucleotide that encodes at least one peptide set forth in Tables V-XVIII;
(g) a polynucleotide that encodes a peptide region of at least 5 amino acids of Figure 3 in any whole number increment up to 841 that includes an amino acld position having a value greater than 0.5 in the Hydrophilicily profile of Figure 11;
(h) a polynucleotide that encodes a peptide region of at least 5 amino acids of Figure 3 in any whole number increment up to 841 that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of Figure 12;
(i) a polynucleotide that encodes a pepttde reglon of at least 5 amino acids of Figure 3 in any whole number increment up to 841 that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 13;
(j) a polynucleotide that encodes a peptide region of at least 5 amino acids of Figure 3 in any whole number. increment up to 841 that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profile on Flgure 14;
(k) a polynucleotide that encodes a peptide region of al least 5 amino acids of Figure 3 in any whole number increment up to 841 that includes an amino acid position having a value greater than 0.5 in the Beta-tum profile of Figure 15;
(I) a polynucleotide that is fully complementary to a polynucieotide of any one of (a)-(k);
(m) a polynucleolide that selectively hybridizes under stringent conditions to a polynucleolide of (a)-(1);
(n) a peptide that is encoded by any of (a)-(k); and,
(0) a polynucleotide of any of (a)-(m) or peptide of (n) together with a pharmaceutical excipient and/or in a human unit dose form.

As used hereln, a range is understood to specificaily disclose all whole unil positions thereof.
Typical embodiments of the invention disclosed herein include 158P1D7 polynucleotides that encode specific portions of the 158P1D7 mRNA sequence (and those which are complementary to such sequences) such as those that encode the protein and fragments thereof, for example of $4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23$, $24,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,125,150,175,200,225,250,275,300,325,350,375$, $400,425,450,475,500,525,550,575,600,625,650,675,700,725,750,775,800,825$ or 841 contiguous amino acids.

For example, representative embodiments of the invention disclosed herein include: polynucleotides and thelr encoded peptides themsetves encoding about amino acid 1 to about amino acid 10 of the 158P1D7 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 10 to about amino acid 20 of the 158P1D7 protein shown in Figure 2, or Figure 3, polynucleotides encoding about amino acid 20 to about amino acid 30 of the 158P1D7 protein shown In Figure 2 or Figure 3, polynucleotides encoding about amino acid 30 to about amino acid 40 of the 158P1D7 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 40 to about amino acid 50 of the 158P1D7 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 50 to about amino acid 60 of the 158 P 107 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino adid 60 to about amino acid 70 of the 158P1D7 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 70 to about amino acid 80 of the 158P1D7 protein shown in

Figure 2 or Figure 3, polynucleotides encoding about amino acid 80 to about amino acid 90 of the 158P1D7 protein shown in Figure 2 or Figure 3, polynudeotides encoding about amino acid 90 to about amino acid 100 of the 158P1D7 protein shown in Figure 2 or Figure 3, In increments of about 10 amino acids, ending at the carboxyl terminal amino acid set forth in Figure 2 or Figure 3. Accordingly polynucleotides encoding portions of the amino acid sequence (of about 10 amino acids), of amino acids 100 through the carboxyl terminal amino actd of the 158P1D7 protein are embodiments of the invention. Wherein it is understood that each particular amino acid position discloses that position plus or minus five amino acid residues.

Polynucleotides encoding relatively long portions of the 158P1D7 protein are also within the scope of the invention. For example, polynucleotides encoding from about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 30 , or 40 or 50 etc.) of the 158P1D7 protein shown in Figure 2 or Figure 3 can be generated by a variety of techniques well known in the art. These polynucleotide fragments can include any portion of the 158P1D7 sequence as shown in Figure 2 or Figure 3.

Additional illustrative embodiments of the invention disclosed herein include 158P1D7 polynucleotide fragments encoding one or more of the biological motifs contained within the 158P1D7 proteln sequence, including one or more of the motif-bearing subsequences of the 158P107 protein set forth in Tables V-XVIII. In another embodiment, typical polynucleotide fragments of the invention encode one or more of the regions of 158P107 that exhibit homology to a known molecule. In another embodiment of the invention, typical polynucleotide fragments can encode one or more of the 158P1D7 N-glycosylation sites, cAMP and cGMP-dependent protein kinase phosphorylation sites, casein kinase II phosphorylation sites or N -myristoylation site and amldation sites.

II.A.) Uses of 158P1D7 Polynucleotides

II.A.1.) Monitoring of Genetic Abnormalities

The polynucleotides of the preceding paragraphs have a number of different specific uses. The human 158P1D7 gene maps to the chromosomal location set forth in Example 3. For example, because the 158P1D7 gene maps to this chromosome, polynucleotides that encode different regions of the 158P1D7 protein are used to characierize cytogenetic abnomalities of this chromosomal locale, such as abnormalities that are identified as being assoclated with various cancers. In certain genes, a varlety of chromosomal abnormalities including rearrangements have been identified as frequent cytogenetic abnormalites in a number of different cancers (see e.g. Krajinovic et al., Mutat. Res. 382(3-4): $81-83$ (1998); Johansson et al., Blood 86(10): 3905-3914 (1995) and Finger et al., P.N.A.S. 85(23): 9158-9162 (1988)). Thus, polynucleotides encoding specific regions of the 158P1D7 protein provide new tools that can be used to delineate, with greater precision than previously possible, cytogenetic abnomalities in the chromosomal reglon that encodes 158P1D7 that may contribute to the mallgnant phenotype. In this context, these polynucleotides satisfy a need in the art for expanding the sensitivity of chromosomal screening in order to ldentify more subtle and less common chromosomal abnormalities (see e.g. Evans et al., Am. J. Obstet. Gynecol 171(4): 1055-1057 (1994)).

Furthermore, as 158P1D7 was shown to be highly expressed in bladder and other cancers, 158P1D7 polynucleotides are used in methods assessing the status of 158P1D7 gene producls in normal versus cancerous tissues. Typically, polynucleotldes that encode specific reglons of the 158P1D7 protein are used to assess the presence of perturbations (such as deletions, insertions, point mutations, or alterations resulting in a loss of an antigen etc.) in specific regions of the 158P1D7 gene, such as such regions containing one or more motifs. Exemplary assays include both RT-PCR assays as well as single-strand conformatlon polymorphism (SSCP) analysis (see, e.g., Marrogi et al., J. Cutan. Pathol. 26(8): 369-378 (1999), both of which utilize polynucleotides encoding specific regions of a protein to examine these regions within the protein.

II.A.2.) Antisense Embodiments

Other spedfically contemplated nucleic acid related embodiments of the invention disclosed herein are genomic DNA, cDNAs, ribozymes, and anlisense molecules, as well as nucleic acid molecules based on an allernative backbone, or including alitemative bases, whether derived from natural sources or synthesized, and include molecules capable of inhibiting the RNA or protein expression of 158P1D7. For example, antisense molecules can be RNAs or other molecules, including peptide nucieic acids (PNAs) or non-nucleic acid molecules such as phosphorothloate derivatives, that specifically bind DNA or RNA in a base palr-dependent manner. A skilled artisan can readily obtain these classes of nucleic acid molecules using the 158P1D7 polynucleotides and polynucleotide sequences disclosed herein.

Antisense technology entails the administration of exogenous olligonucleotides that bind to a target polynucleotide located within the cells. The term "antisense" refers to the fact that such oligonucleotides are complementary to their intracellular targets, e.g., 158P107. See for example, Jack Cohen, Oligodeoxynucleotides, Antisense Inhibltors of Gene Expression, CRC Press, 1989; and Synthesis 1:1-5 (1988). The 158P1D7 antisense oligonucleotides of the present invention include derivatives such as S-oligonucleotides (phosphorothioate derivalives or S-oligos, see, Jack Cohen, supra), which exhibit enhanced cancer cell growth inhibitory action. S-oligos (nucleoside phosphorothioates) are isoelectronic analogs of an olligonucleotide (0 -oligo) in which a nonbridging oxygen atom of the phosphate group is replaced by a sulfur atom. The S-oligos of the present invention can be prepared by treatment of the corresponding O-oligos with 3H-1,2-benzodithiol-3-one-1,1-dioxide, which is a sulfur transfer reagent. See lyer, R. P. et al, J. Org. Chem. 55:4693-4698 (1990); and lyer, R. P. et al., J. Am. Chem. Soc. 112:1253-1254 (1990). Addilional 158P107 antisense oligonucleotides of the present invention include morpholino antisense oligonucleotides known in the art (see, e.g., Partidge et al., 1996, Antisense \& Nucleic Acid Drug Development 6: 169-175).

The 158P1D7 antisense oligonucleotides of the present invention typically can be RNA or DNA that is complementary to and stably hybridizes with the first 1005^{\prime} codons or last 1003^{\prime} codons of the 158P1D7 genomic sequence or the corresponding mRNA. Absolute complementarity is not required, although high degrees of complementarity are preferred. Use of an oligonucleotide complementary to this region allows for the selective hybridization to 158P1D7 mRNA and not to mRNA specifying other regulatory subunits of protein kinase. In one embodiment, 158P1D7 antisense oligonucleotides of the present invention are 15 to 30 -mer fragments of the antisense DNA molecule that have a sequence that hybridizes to 158P1D7 mRNA. Optlonally, 158P1D7, antisense oligonucleotide is a 30 -mer oligonucleotide that is complementary to a region in the first 105^{\prime} codons or last 103^{\prime} codons of 158P1D7. Alternatively, the antisense molecules are modified to employ ribozymes in the inhibition of 158P1D7 expression, see, e.g., L. A. Couture \& D. T. Stinchcomb; Trends Genet 12: 510-515 (1996).

II.A.3.) Primers and Primer Palrs

Further specific embodiments of this nucleotldes of the invention include primers and primer pairs, which allow the specific amplification of polynucleotides of the invention or of any specific parts thereof, and probes that selectively or specifically hybridize to nucleic acid molecules of the invention or to any part thereof. Primers may also be used as probes and can be labeled with a detectable marker, such as, for example, a radioisotope, fluorescent compound, bioluminescent compound, a chemiluminescent compound, metal chelator or enzyme. Such probes and primers are used to delect the presence of a 158P1D7 polynucleotide in a sample and as a means for detecting a cell expressing a 158P1D7 protein.

Examples of such probes include polypeplides comprising all or part of the human 158P1D7 cDNA sequence shown in Figure 2. Examples of primer pars capable of specifically amplifying 158P1D7 mRNAs are also described in the Examples. As will be understood by the skilled artisan, a great many difierent primers and probes can be prepared based on the sequences provided herein and used effectively to amplify and/or detect a 158P1D7 mRNA. Preferred probos of the invention are polynucleotides of more than about 9 , about 12 , about 15 , about 18 , about 20 , about 23 , about 25 , about 30 , about 35 , about 40 , about 45, and about 50 consecutive nucleotides found in 158P1D7 nucleic acids disclosed herein.

The 158P107 polynucleotides of the invention are useful for a variety of purposes, including but not limited to their use as probes and primers for the amplification and/or detection of the 158P1D7 gene(s), mRNA(s), or fragments thereof; as reagents for the diagnosis and/or prognosls of bladder cancer and other cancers; as coding sequences capable of directing the expression of 158P1D7 polypeptides; as tools for modulating or inhibiting the expression of the 158P1D7 gene(s) and/or translation of the 158P1D7 transcripi(s); and as therapeutic agents.

II.A.4.) Isolation of 158P1D7.Encoding Nucleic Acid Molecules

The 158P1D7 CDNA sequences described herein enable the lsolation of other polynucieotides encoding 158P1D7 gene product(s), as well as the isolation of polynucleotides encoding 158P1D7 gene product homologs, altematively spliced isoforms, allelic variants, and mulant forms of the 158P1D7 gene product as well as polynucleotides that encode analogs of 158P1D7related proteins. Various molecular ctoning methods that can be employed to isolate full length cDNAs encoding an 158P1D7 gene are well known (see, for example, Sambrook, J. et al., Molecular Cloning: A Laboralory Manual, 2d edition, Cold Spring Harbor Press, New York, 1989; Current Prolocols in Molecular Biology. Ausubel et al., Eds., Wiley and Sons, 1995). For example, lambda phage cloning methodologies can be conveniently employed, using commerclally available cioning systems (e.g., Lambda ZAP Express, Stratagene). Phage clones containing 158P107 gene cDNAs can be identified by probing with a labeled 158P1D7 CDNA or a fragment thereof. For example, in one embodiment, the 158P1D7 cDNA (Figure 2) or a portion thereof can be synthesized and used as a probe to retheve overlapping and full-length cDNAs corresponding to a 158P1D7 gene. The 158P1D7 gene itself can be isolated by screening genomic DNA libraries, bacterial artificial chromosome libraries (BACs), yeast artificial chromosome libraries (YACs), and the like, with 158P1D7 DNA probes or primers.

The present invention includes the use of any probe as described herein to identify and isolate a 158P1D7 or 158P1D7 related nuceic acid sequence from a naturally occurring source, such as humans or other mammals, as well as the isolated nucleic acid sequence per se, which would comprise all or most of the sequences found in the probe used.

II.A.5.) Recomblnant Nucleic Acid Molecules and Host-Vector Systems

The invention also provides recombinant DNA or RNA molecules containing an 158P1D7 polynucleotide, a fragment, analog or homologue thereof; including but not limited to phages, plasmids, phagemids, cosmids, YACs, BACs, as well as various viral and non-viral vectors well known in the art, and cells transformed or transfected with such recombinant DNA or RNA molecules. Methods for generating such molecules are well known (sae, for example, Sambrook et al, 1989, supra). The invention further provides a host-vector system comprising a recombinant DNA molecule containing a 158P1D7 polynucleolide, fragment, analog or homologue thereof within a suilable prokaryotic or eukaryotic host cell. Examples of suitable eukaryotic host cells indude a yeast cell, a plant cell, or an animal cell, such as a mammalian cell or an insect cell (e.g., a baculovinusinfectible cell such as an Sf9 or HighFive cell.). Examples of sultable mammalian cells include various bladder cancer cell lines such as SCaBER, UM-UC3, HT1376, RT4, T24, TCC-SUP, J82 and SW780, other transfectable or transducible bladder cancer cell lines, as well as a number of mammalian cells routinely used for the expression of recombinant proteins (e.g., COS, $\mathrm{CHO}, 293,293 \mathrm{~T}$ cells). More particularly, a polynucleotide comprising the coding sequence of 158P1D7 or a fragment, analog or homolog thereof can be used to generate 158P1D7 proteins or fragments thereof using any number of host-vector systems routinely used and widely known in the art.

A wide range of host-vector systems suitable for the expression of 158P1D7 protelns or fragments thereof are available, see for example, Sambrook et al., 1989, supra; Current Protocols in Molecular Biology, 1995, supra). Preferred vectors for mammalian expression include but are not limited to PCDNA 3.1 myc-His-tag (Invitrogen) and the retrowral vector pSRatkneo (Muller et al., 1991, MCB 11:1785). Using these expression vectors, 158P1D7 can be expressed in several bladder cancer and non-bladder cell lines, Induding for example SCaBER, UM-UC3, HT1376, RT4, T24, TCC-SUP, J82 and SW780. The host-vector systems of the invention are useful for the production of a 158P1D7 protein or fragment thereof.

Such host-vector systems can be employed to study the functional properties of 158P1D7 and 158P1D7 mutations or analogs.

Racombinant human 158P1D7 protein or an analog or homolog or fragment thereof can be produced by mammalian cells transfected with a construct encoding a 158P1D7-related nucleotide. For example, 293T cells can be transfected with an expression plasmid encoding 158P107 or fragment, analog or homolog thereof, the 158P1D7 or related protein is expressed in the 293T cells, and the recombinant 158P1D7 protein is isolated using standard purification methods (e.g.; affinity purification using anti-158P1D7 antibodies). In another embodiment, a 158P1D7 coding sequence is subcioned into the retroviral vector pSRaMSVtkneo and used to infect various mammalian cell lines, such as NHH 3T3, TsuPr1, 293 and rat-1 in order to establish 158P1D7 expressing cell lines. Varlous other expression systems well known in the art can also be employed. Expression constructs encoding a leader peplide joined in frame to the 158P1D7 coding sequence can be used for the generation of a secreted form of recombinant 158P1D7 protein.

As discussed herein, redundancy in the genetic code permits variation in 158P1D7 gene sequences. In particular, it is known in the art that specific host species often have specific codon preferences, and thus one can adapt the disclosed sequence as preferred for a desired host. For example, prefered analog codon sequences typically have rare codons (i.e., codons having a usage frequency of less than about 20% in known sequences of the desired host) replaced with higher frequency codons. Codon preferences for a specific species are calculated, for example, by utlizing codon usage tables available on the INTERNET such as at URL URL: dna.affrc.go.jp/ -nakamura/codon.html.

Additional sequence modifications are known to enhance protein expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon/Intron splice site signals, transposon-like repeats, and/or other such well-characlerized sequences that are deleterious to gene expression. The GC content of the sequence is adjusted to levels average for a given celluiar host, as calculated by reference to known genes expressed in the host cell. Where possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures. Other useful modifications Include the addition of a translational initlation consensus sequence at the start of the open reading frame, as described in Kozak, Mol. Cell Biol, 9:5073-5080 (1989). Skllled artisans understand that the general rule that eukaryotic ribosomes initlate translation exclusively at the 5 ' proximal AUG codon is abrogated only under rare conditions (see, e.g., Kozak PNAS 92(7): 2662-2666, (1995) and Kozak NAR 15(20): 8125-8148 (1987)).

II.) 158P1D7-related Proteins

Another aspect of the present invention provides 158P1D7-related protelns. Specific embodiments of 158P107 proteins comprise a polypeptide having all or part of the amino acid sequence of human 158P1D7 as shown in Figure 2 or Figure 3. Alternatively, embodiments of 158P1D7 proteins comprise variant, homolog or analog polypeptides that have alterations in the amino acid sequence of 158P1D7 shown in Flgure 2 or Figure 3.

In general, naturally occurring allelic variants of human 158P1D7 share a high degree of structural identity and homology (e.g., 90\% or more homology). Typically, allelic variants of the 158P1D7 protein contaln conservative amino acid subsiltutions within the 158P1D7 sequences described herein or contain a substitution of an amino acid from a corresponding position in a homologue of 158P1D7. One class of 158P1D7 allelic variants are protelns that share a high degree of homology with at least a small region of a particular 158P1D7 amino acld sequence, but further contaln a radical departure from the sequence, such as a non-consenvative substitution, truncation, insertion or frame shift. In comparisons of proteln sequences, the terms, similarity, identity, and homology each have a distinct meaning as appreciated in the field of genetcs. Moreover, orthology and paralogy can be important concepts describing the relationship of members of a given protein family in one organism to the members of the same family in other organisms.

Amino acid abbreviations are provided in Table ll. Conservative amino acid substitutions can frequently be made in a protein without altering either the conformation or the function of the protein. Proteins of the invention can comprise 1,2 , $3,4,5,6,7,8,9,10,11,12,13,14,15$ or more conservative substitutions. Such changes include substituting any of isoleucine (I), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspattic acid (D) for glutamic acid (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa. Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the three-dimensional structure of the protein. For example, glycine (G) and alanine (A) can frequently be interchangeable, as can alanine (A) and vailine (V). Methionine (M), which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine (K) and arginine (R) are frequenty interchangeable in locations in which the significant feature of the amino add residue is lis charge and the differing PK 's of these two amino acid residues are not significant. Still other changes can be considered 'conservative" in particular environments (see, e.g. Table ill herein; pages 13-15 "Biochemistry" 2nd ED. Lubert Stryer ed (Stanford University); Henikoff et al., PNAS 1992 Vol 89 1091510919; Lel et al., J Biol Chem 1995 May 19; 270(20):11882-6).

Embodiments of the invention disclosed herein include a wide variety of art-accepted variants or analogs of 158P1D7 proteins such as polypeptides having amino add Insertions, deletions and subsilutions. 158P1D7 variants can be made using methods known in the art such as site-directed mulagenesis, alanine scanning, and PCR mutagenesis. Sitedirected mutagenesis (Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)), cassette mutagenesis (Wells et al., Gene, 34:315 (1985)), restriction selection mutagenesis (Wells et al., Phillos. Trans. R. Soc. London SerA, 317:415 (1986)) or other known techniques can be periormed on the cloned DNA to produce the 158P1D7 variant DNA.

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence that is involved in a spediic biological activity such as a protein-protein interaclion. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cystelne. Alanine is typically a preferred scanning amino acid among this group because lt elliminates the side-chain beyond the betacarbon and is less likely to alter the main-chain conformation of the variant. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequenily found in both burled and exposed positions (Creighton, The Proteins, (W.H. Freeman \& Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)). If alanine subslitution does not yield adequate amounts of variant, an isosteric amino acid can be used.

As defined herein, 158P1D7 variants, analogs or homologs, have the distingulshing attribute of having at least one epitope that is "cross reactive" with a 158P1D7 protein having the amino acid sequence of Figure 2. As used in this sentence, "cross reactive" means that an antibody or T cell that specifically binds to an 158P1D7 variant also speclically binds to the 158P1D7 protein having the amino acid sequence of Figure 2. A polypeptide ceases to be a variant of the protein shown in Figure 2 when it no longer contains any epitope capable of being recognized by an antibody or T cell that specifically binds to the 158P1D7 protein. Those skilled in the art understand that antibodles that recognize proteins bind to epitopes of varying size, and a grouping of the order of about four or five amino acids, contiguous or not, is regarded as a typical number of amino aclds in a minimal epitope. See, e.g., Nair et al., J. Immunol 2000 165(12): 6949-6955; Hebbes et al., Mol Immunol (1989) 26(9):865-73; Schwartz et al., J Immunol (1985) 135(4):2598-608.

Another class of 158 P 107 -related proteln variants share $70 \%, 75 \%, 80 \%, 85 \%$ or 90% or more similarity with the amino acid sequence of Figure 2 or a fragment thereof. Another specific class of 158P1D7 proteln variants or analogs comprise one or more of the 158P1D7 biological motifs described herein or presently known in the art. Thus, encompassed by the present invention are analogs of 158P1D7 fragments (nucleic or amino acid) that have altered functional (e.g.
immunogenic) propertles relative to the slarting fragment. It is to be appreciated that motifs now or which become part of the art are to be applied to the nucleic or amino acid sequences of Figure 2 or Figure 3.

As discussed herein, embodiments of the clalmed invention include polypeptides containing less than the full amino acid sequence of the 158P1D7 protein shown in Figure 2 or Figure 3. For example, representative embodiments of the invention comprise peptides/proteins having any $4,5,6,7,8,9,10,11,12,13,14,15$ or more conllguous amino acids of the 158P1D7 protein shown in Flgure 2 or Figure 3.

Moreover, representafive embodiments of the invention disciosed hereln include polypeptides consisting of about amino acid 1 to about amino acid 10 of the 158P1D7 protein shown in Figure 2 or Flgure 3, polypeptides consisting of about amino acid 10 to about amino acid 20 of the 158P1D7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 20 to about amino acid 30 of the 158P1D7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 30 to about amino acid 40 of the 158P1D7 proteln shown in Flgure 2 or Figure 3, polypeptides consisting of about amino acid 40 to about amino acid 50 of the 158P1D7 protein shown in Flgure 2 or Figure 3, polypeptides consisting of about amino acid 50 to about amino acid 60 of the 158P1D7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acld 60 to about amino acid 70 of the 158P1D7 protein shown in Flgure 2 or Figure 3, polypeptides consisting of about amino acid 70 to aboul amino acid 80 of the 158P1D7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 80 to about amino acld 90 of the 158P1D7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 90 to about amino acid 100 of the 158P1D7 protein shown in Figure 2 or Figure 3, etc. throughout the entirety of the 158P1D7 amino acid sequence. Moreover, polypeptides consisting of about amino acld (or 20 or 30 or 40 etc.) to about amino acid 20, (or 130, or 140 or 150 etc.) of the 158P1D7 protein shown in Figure 2 or Figure 3 are embodiments of the invention. It is to be appreciated that the starting and stopping positions in this paragraph refer to the specified position as well as that position plus or minus 5 residues.

158P1D7-related proteins are generated using standard peptide synthesis technology or using chemical cleavage methods well known in the art. Alternatively, recombinant methods can be used to generate nuclelc acid molecules that encode a 158P107-related protein. In one embodiment, nucleic acid molecules provide a means to generate defined fragments of the 158P1D7 protein (or variants, homologs or analogs thereof).

III.A.) Motif-bearing Protein Embodiments

Additional illustrative embodiments of the invention disclosed herein include 158P1D7 polypeptides comprising the amino acid residues of one or more of the bialogical motifs contained within the 158P1D7 polypeptide sequence set forth in Figure 2 or Figure 3. Various motifs are known in the art, and a protein can be evaluated for the presence of such motifs by a number of publicly avalable Internet sites (see, e.g., URL addresses: pfam.wustl.edul; searchlauncher.bcm.tmc.edu/seq-search/struc-predict.html; psort.Ims.u-tokyo.ac.|p/; URL: cbs.dtu.dk; ebl.ac.ukinterpro/scan.html; expasy.ch/tools/scnpsit1.html; Epimatrix ${ }^{\mathrm{TM}}$ and Epimer ${ }^{\mathrm{TM}}$, Brown University, brown.edu/Research $/ T \mathrm{~TB}$ HIV_Lablepimatrixepimatrixitml; and BIMAS, bimas.dortnih.gov/.).

Motif bearing subsequences of the 158P1D7 proteln are set forth and Identified in Table XIX.
Table XX sets forth several frequently occurring moifs based on pfam searches (see URL address
pfam.wustl.edul). The columns of Table XX list (1) motif name abbreviation, (2) percent identity found amongst the different member of the motif family, (3) motff name or description and (4) most common function; location information is included if the molif is relevant for location.

Polypeptides comprising one or more of the 158P1D7 motifs discussed above are useful in elucldating the specific characteristics of a malignant phenotype in view of the observation that the 158P1D7 motifs discussed above are associated with growth dysregulation and because 158P107 is overexpressed in certain cancers (See, e.g., Table I). Casein kinase II, cAMP and camp-dependent protein kinase, and Proteln KInase C, for example, are enzymes known to be associated with
the development of the malignant phenotype (see e.g. Chen et al., Lab Invest., 78(2): 165-174 (1998); Gaiddon et al., Endocrinology 136(10): 4331-4338 (1995); Hall et al., Nucleic Acids Research 24(6): 1119-1126 (1996); Peterziel et al., Oncogene 18(46): 6322-6329 (1999) and O'Brian, Oncol. Rep. 5(2): 305-309 (1998)). Moreover, both glycosylation and myristoylation are protein modifications also associated with cancer and cancer progression (see e.g. Dennis et al., Biochem. Biophys. Acta 1473(1):21-34 (1999); Raju et al., Exp. Cell Res. 235(1): 145-154 (1997)). Amidation is another proteln modlication also associated with cancer and cancer progression (see e.g. Treston et al., J. Natt. Cancer Inst Monogr. (13): 169-175 (1992)).

In another embodiment, proteins of the invention comprise one or more of the immunoreactive epitopes identified in accordance with art-accepted methods, such as the peptides set forth in Tables V-XVIII. CTL epitopes can be determined using specific algorithms to identify peptides within an 158P1D7 protein that are capable of oplimally binding to specified HLA alleles (e.g., Table IV; Epimatrix ${ }^{T M}$ and EpimerTM, Brown University, URL: brown.edu/Research/TB-
HIV_Lab/epimatixlepimatrix.html; and BIMAS, URL: bimas.dort.nih.govI.) Moreover, processes for identifying peptides that have sufficient binding affinity for HLA molecules and which are correlated with being immunogenic epitopes, are well known in the art, and are carried out without undue experimentation. In addition, processes for identifying peptides that are immunogenic epitopes, are well known in the art, and are carried out without undue experimentation either in vitro or in vivo.

Also known in the art are principles for creating analogs of such epitopes in order to modulate immunogenicity. For example, one begins with an epitope that bears a CTL or HTL motil (see, e.g., the HLA Class I and HLA Class II motiff/supermotifs of Table IV). The epitope is analoged by substituting out an amino acid at one of the specified positions, and replacing it with another amino acid specified for that position. For example, one can subsitute out a delelerious residue in favor of any other residue, such as a preferred residue as defined in Table IV; substitute a less-preferred residue with a preferred residue as defined in Table IV; or substitute an originally-occurring preferred residue with another preferred residue as defined in Table IV. Substitutions can occur at primary anchor positions or at other positions in a peptide; see, e.g., Table IV.

A variety of references reflect the art regarding the identification and generation of epitopes in a protein of interest as well as analogs thereof. See, for example, WO 9733602 to Chesnut et al;; Sette, Immunogenetics 1999 50(3-4): 201-212; Sette et al., J. Immunol. 2001 166(2): 1389-1397; Sidney et al., Hum. Immunol. 1997 58(1): 12-20; Kondo et al., Immunogenetics 1997 45(4): 249-258; Sidney et al., J. Immunol. 1996 157(8): 3480-90; and Falk et al., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al., J. Immunol. 149:3580-7 (1992); Parker et al., J. Immunol. 152:163-75 (1994)); Kast et al., 1994 152(8): 3904-12; Borras-Cuesta et al., Hum. Immunol. 200061 (3): 266-278; Alexander et al., J. Immunol. 2000 164(3); 164(3): 1625-1633; Alexander et al., PMID: 7895164, Ul: 95202582; O'Sullivan et al., J. Immunol. 1991 147(8): 2663-2669; Alexander et al., Immunity 1994 1(9): 751-761 and Alexander et al., Immunol. Res. 1998 18(2): 79-92.

Related embodiments of the inventions include polypeptides comprising comblnations of the different motifs set forth in Table XIX, and/or, one or more of the predicted CTL epitopes of Table V through Table XVIII, and/or, one or more of the T cell binding motifs known in the art. Preferred embodiments contain no insertions, deletions or substitutions either within the motifs or the intervening sequences of the polypeptides. In addition, embodiments which include a number of either N-terminal and/or C-terminal amino acid residues on either side of these motifs may be desirable (to, for example, include a greater portion of the polypeptide architecture in which the motif is located). Typically the number of N -teminal and/or C-terminal amino acid residues on either side of a motif is between about 1 to about 100 amino acid residues, preferably 5 to about 50 amino acid residues.

158P1D7-related proteins are embodied in many forms, preferably in isolated form. A purified 158P1D7 protein molecule will be substantially free of other proleins or molecules that impair the binding of 158P1D7 to antibody, T cell or other llgand. The nalure and degree of isolation and purification will depend on the intended use. Embodiments of a 158P107related proteins include purified 158P1D7-related protens and functional, soluble 158P1D7-related proteins. In one embodiment, a functional, soluble 158P1D7 protein or fragment thereof retains the abllity to be bound by antibody, T cell or other ligand.

The invention also provldes 158P107 proteins comprising biologically active fragments of the 158P1D7 amino acid sequence shown in Figure 2 or Figure 3. Such proteins exhibit properties of the 158P1D7 proteln, such as the ability to elicit the generation of antibodies that specifically bind an epitope associated with the 158P1D7 protein; to be bound by such antibodies; to elicit the actuation of HTL or CTL; and/or, to be recognized by HTL or CTL.

158P1D7-related polypeptides that contain particularty interesting structures can be predicted and/or identified using various analytical techniques well known in the art, including, for example, the methods of Chou-Fasman, Garnler-Robson, KyteDoolittle, Elsenberg, Karplus-Schulz or Jameson-Wolf analysis, or on the basis of immunogenicity. Fragments that contain such structures are particularly useful in generating subunit-specific anti-158P1D7 antibodies, or T cells or in identifying cellular factors that bind to 158P1D7.

CTL epitopes can be determined using specific algorithms to idenify peptides within an 158P1D7 protain that are capable of oplimally binding to specified HLA alleles (e.g., by using the SYFPEITHI site at World Wide Web URL syipelthi.bmiheidelberg.com; the listings in Table IV(A)-(E): Epimatrix ${ }^{\text {mM }}$ and Epimer ${ }^{T M}$, Brown University, URL (URL: brown.edu/Research/TB-HIV_Lablepimatix/epimatrix.htmil); and BIMAS, URL: bimas.dcrtnih.gov). lilustrating this, peptide epitopes from 158P1D7 that are presented in the context of human MHC class I molecules HLA-A1, A2, A3, A11, A24, B7 and $B 35$ were predicted (Tables V-XVIII). Specifically, the complete amino acld sequence of the 158P1D7 protein was entered into the HLA Peptide Motif Search algorithm found In the Bioinformatics and Molecular Analysis Section (BIMAS) web site listed above. The HLA peptlde motif search algorithm was developed by Dr. Ken Parker based on binding of specific peptide sequences in the groove of HLA Class I molecules, In particular HLA-A2 (see, e.g., Falk et al., Nature 351 : 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al., J. Immunol. 149:3580-7 (1992); Parker et al., J. Immunol. 152:163-75 (1994)). This algorithm allows location and ranking of 8 -mer, 9 -mer, and 10 -mer peptides from a complete protein sequence for predicted binding to HLA-A2 as well as numerous other HLA Class I molecules. Many HLA class I binding peptides are 8 -, 9 -, 10 or 11 -mers. For example, for class \mid HLA-A2, the epitopes preferably contain a leucine (L) or methionine (M) at position 2 and a valine (V) or leucine (L) at the C-lerminus (see, e.g., Parker et al., J. Immunol. 149:3580-7 (1992)). Selected results of 158P1D7 predicted binding peptides are shown in Tables V-XVIII herein. In Tables V-XVIII, the top 50 ranking candidates, 9 -mers and 10 -mers, for each famlly member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. The binding score corresponds to the estimated half time of dissociation of complexes containing the peptide at $37^{\circ} \mathrm{C}$ at pH 6.5 . Peptides with the highest binding score are predicted to be the most tightly bound to HLA Class I on the cell surface for the greatest period of time and thus represent the best immunogenic targets for T-cell recognition.

Actual binding of peptdes to an HLA allele can be evaluated by stabilization of HLA expression on the antigenprocessing defective cell line $T 2$ (see, e.g., Xue et al., Prostate 30:73-8 (1997) and Peshwa et al., Prostate 36:129-38 (1998)). Immunogenicity of specific peptides can be evaluated in vitro by stimulation of CD8+ cytotoxic T lymphocyles (CTL) in the presence of antigen presenting cells such as dendritic cells.

It is to be appreciated that every epitope predicted by the BIMAS site, Epimer ${ }^{\text {TM }}$ and Epimatrix ${ }^{\text {TM }}$ sites, or specifled by the HLA class I or class II motifs available in the art or which become part of the art such as set forth in Table IV (or
detemined using World Wide Web slte URL syfpeithl.bmi-heldelberg.com/) are to be "applied" to the 158P1D7 protein. As used in this context "applied" means that the 158P1D7 protein is evaluated, e.g., visually or by computer-based patterns finding methods, as appreciated by those of skill in the relevant art. Every subsequence of the $158 \mathrm{P} 1 \mathrm{D7}$ of $8,9,10$, or 11 amino acid residues that bears an HLA Class I motif, or a subsequence of 9 or more amino acid residues that bear an HLA Class II motif are within the scope of the invention.

III.B.) Expression of 158P107-related Proteins

In an embodiment described in the examples that follow, 158P1D7. can be conveniently expressed in cells (such as 293 T cells) transfected with a commercially available expression vector such as a CMV-driven expression vector encoding 158P1D7 with a C-terminal 6XHis and MYC tag (pcDNA3.1/mycHIS, Invitogen or Tag5, GenHunter Corporation, Nashville TN). The Tag5 vector provides an $\lg G K$ secretion signal that can be used to facilitate the production of a secreted 158P1D7 protein in transfected cells. The secreted HIS-tagged 158P1D7 in the culture media can be purified, e.g., using a nickel column using standard techniques.

III.C.) Modifications of 158P1D7-related Proteins

Modifications of 158P1D7-related proteins such as covalent modifications are included within the scope of this invention. One type of covalent modification indudes reacting targeted amino acid residues of a 158P1D7 polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N - or C - terminal residues of the 158P1D7. Another type of covalent modification of the 158P1D7 polypeptide included within the scope.of this invention comprises altering the native glycosylation pattern of a protein of the invention. Another type of covalent modification of 158P1D7 comprises linking the 158P1D7 polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; $4,301,144 ; 4,670,417 ; 4,791,192$ or $4,179,337$.

The 158P1D7-related proteins of the presentinvention can also be modified to form a chimeric molecule comprising 158P1D7 fused to another, heterologous polypeptide or amino acid sequence. Such a chimeric molecule can be synthesized chemically or recombinantly. A chimeric molecule can have a protein of the invention fused to another tumorassociated antigen or fragment thereof. Alternatively, a protein in accordance with the invention can comprise a fusion of fragments of the 158P1D7 sequence (amino or nucieic acid) such that a molecule is created that is not, through its length, directly homologous to the amino or nucleic acid sequences shown in Figure 2 or Figure 3. Such a chimeric molecule can comprise multiples of the same subsequence of 158P1D7. A chimeric molecule can comprise a fusion of a 158P1D7-related proteln with a polyhistidlne epitope tag, which provides an epltope to which immobilized nickel can selectively bind, with cylokines or with growth factors. The epitope tag is generally placed at the amino- or carboxyl- terminus of the 158P1D7. In an alternative embodiment, the chimeric molecule can comprise a fusion of a 158P1D7-relaled protein with an immunoglobulin or a particular region of an immiunoglobulin. For a blvalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably Include the subsitullon of a soluble (transmembrane domain deleted or inactivated) form of a 158P1D7 polypeptide in place of at least one variable region within an Ig molecule. In a preferred embodiment, the immunoglobulin fusion includes the hinge, CH 2 and CH 3 , or the hinge, $\mathrm{CHI}, \mathrm{CH} 2$ and CH 3 regions of an IgGI molecule. For the production of immunoglobulln fusions see, e.g., U.S. Patent No. 5,428,130 issued June 27, 1995.

Ill.D.) Uses of 158P1D7-related Proteins

The protelns of the invention have a number of different uses. As 158P1D7 is highly expressed in bladder and other cancers, 158P1D7-related proteins are used in methods that assess the status of 158P1D7 gene products in normal versus cancerous tissues, thereby elucidating the malignant phenotype. Typically, polypeptides from specffic reglons of the 158P107 protein are used to assess the presence of perturbations (such as deletions, insertions, point mutations elc.) in
those regions (such as regions containing one or more motifs). Exemplary assays utilize antibodies or T cells targeting 158P1D7-related proteins comprising the amino acid residues of one or more of the biological motifs contained within the 158P1D7 polypeptide sequence in order to evaluate the characleristics of this region in normal versus cancerous tissues or to elicit an immune response to the epitope. Alternatively, 158P1D7-related protelns that contain the amino acid residues of one or more of the biologlcal motifs in the 158P1D7 protein are used to screen for factors that interact with that region of 158P1D7.

158P1D7 protein fragments/subsequences are particulanly usefull In generating and characterizing domain-specific antibodles (e.g., antbodies recognizing an extacellular or intracellular epitope of an 158P1D7 protein), for identifying agents or cellular factors that bind to 158P1D7 or a particular structural domain thereof, and in various therapeutic and diagnostic contexts, including but not limited to diagnostic assays, cancer vaccines and methods of preparing such vaccines.

Proteins encoded by the 158P1D7 genes, or by analogs, homologs or fragments thereof, have a variety of uses, including but not limited to generating antibodies and in methods for Identfying ligands and other agents and cellular constituents that bind to an 158P1D7 gene product. Antibodies raised against an 158P1D7 protein or fragment thereof are useful in diagnostic and prognostic assays, and imaging methodologles in the management of human cancers characterized by expression of 158P1D7 protein, such as those listed in Table I. Such antibodies can be expressed intracellularly and used in methods of treating patients with such cancers. 158P1D7-related nucleic acids or proteins are also used in generating HTL or CTL responses.

Various immunologlical assays useful for the detection of 458P1D7 proteins are used, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzymo-linked immunofiuorescent assays (ELIFA), immunocytochemical methods, and the like. Anlibodies can be labeled and used as immunological imaging reagents capable of detecting 158P1D7-expressing cells (e.g., in radioscintigraphic imaging methods). 158P1D7 proteins are also particularly useful in generating cancer vaccines, as further described herein.

IV.) 158P1D7 Antibodies

Another aspect of the invention provides antibodies that bind to 158P1D7-related proteins. Preferred antibodles specifically bind to a 158P1D7-related protein and do not bind (or blnd weakly) to peplides or proteins that are not 158P107related proteins. For example, antibodies bind 158P1D7 can bind 158P1D7-related proteins such as the homologs or analogs thereof.

158P1D7 antibodies of the invention are particularly useful in bladder cancer diagnostic and prognostic assays, and imaging methodologies. Similarly, such antibodies are useful in the treatment, diagnosls, and/or prognosis of other cancers, to the extent 158P1D7 is also expressed or overexpressed in these other cancers. Moreover, intracellularly expressed antibodies (e.g., single chain antibodies) are therapeutically useful in treating cancers in which the expression of 158P1D7 is involved, such as advanced or metastatic bladder cancers.

The invention also provides various immunological assays useful for the detection and quantification of 158P1D7 and mulant 158P1D7-related proteins. Such assays can comprise one or more 158P1D7 antibodies capable of recognizing and binding a 158P1D7-related protein, as appropriate. These assays are performed within various immunological assay formals well known in the art, including but not limited to various types of radiolmmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), and the like.

Immunological non-antibody assays of the invention also comprise T cell immunogenicity assays (nnhibitory or stimulatory) as well as major histocompalibility complex (MHC) binding assays.

In addition, immunological imaging methods capable of detecting bladder cancer and other cancers expressing 158P1D7 are also provided by the invenlion, inciuding but not limited to radioscintigraphic imaging methods using labeled

158P107 antibodies. Such assays are clinically useful in the detection, monitoring, and prognosis of 158P1D7 expressing cancers such as bladder cancer.

158P1D7 antibodies are also used in methods for purifying a 158P1D7-related protein and for isolating 158P1D7 homologues and related molecules. For example, a method of purifying a 158P1D7-related protein comprises incubating an 158P1D7 antibody, which has been coupled to a solid matrix, with a lysate or other solution containing a 158P107-related prittein under conditions that permit the 158P1D7 antibody to bind to the 158P1D7-related protein; washing the solid matrix to eliminate impurities; and eluting the 158P1D7-related protein from the coupled antibody. Other uses of the 158P1D7 antibodies of the invention include generating anti-idiotypic antibodies that mimic the 158P1D7 protein.

Various methods for the preparation of antibodies are well known in the art. For example, antibodies can be prepared by immunizing a suitable mammalian host using a 158P1D7-related protein, peptide, or fragment, in isolated or immunoconjugated form (Antibodies: A Laboratory Manual, CSH Press, Eds., Harlow, and Lane (1988); Harlow, Antibodies, Cold Spring Harbor Press, NY (1989)). In addition, fusion proteins of 158P107 can also be used, such as a 158P1D7 GST-fusion protein. In a particular embodiment, a GST fusion protein comprising all or most of the amino acid sequence of Figure 2 or Figure 3 is produced, then used as an immunogen to generate appropriate antibodies. In another embodiment, a 158P1D7-related protein is synthesized and used as an immunogen.

In addition, naked DNA immunization techniques known in the art are used (with or without purified 158P107-related protein or 158P1D7 expressing cells) to generate an immune response to the encoded immunogen (for review, see Donnelly et al., 1997, Ann. Rev. Immunol. 15: 617-648).

The amino acid sequence of 158P1D7 as shown in Figure 2 or Figure 3 can be analyzed to select specific regions of the 158P107 protein for generating antibodies. For example, hydrophobicity and hydrophilicity analyses of the 158P1D7 amino acid sequence are used to identify hydrophilic regions in the 158P1D7 structure (see, e. g., the Example entitled "Antigenicity profiles"). Regions of the 158P1D7 protein that show immunogenic structure, as well as other regions and domains, can readily be identified using various other methods known in the art, such as Chou-Fasman, Hopp and Woods, Kyte-Doolittle, Janin, Bhaskaran and Ponnuswamy, Deleage and Roux, Garnier-Robson, Eisenberg, Karplus-Schulta, or Jameson-Wolf analysis. Thus, each region identified by any of these programs or methods is within the scope of the present invention. Methods for the generation of 158P1D7 antibodies are further illustrated by way of the examples provided herein. Methods for preparing a protein or polypeptide for use as an immunogen are well known in the ant. Also well known in the art are methods for preparing immunogenic conjugates of a protein with a carrier, such as BSA, KLH or other carier protein. In some circumstances, direct conjugation using, for example, carbodimide reagents are used; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, are effective. Administration of a 158P1D7 immunogen is often conducled by injection over a suitable time period and with use of a suitable adjuvant, as is understood in the art. During the immunization schedule, fiters of antibodies can be taken to determine adequacy of antibody formation.

158P1D7 monoclonal anlibodies can be produced by various means well known in the art. For example, immortalized cell lines that secrete a desired monoclonal antibody are prepared using the standard hybridoma technology of Kohler and Milstein or modifications that immortalize antibody-producing B cells, as is generally known. Immortalized cell lines that secrete the desired antibodies are screened by immunoassay in which the antigen is a 158P107-related protein. When the appropriale immortalized cell culture is identified, the cells can be expanded and antibodies produced either from in vifro cultures or from ascites fluid.

One embodiment of the invention is a mouse hybridoma that produces murine monoclonal antibodies designated X68(2)18 (a.k.a. M15-68(2)18.1.1) deposited with American Type Culture Collection (ATCC), P.O. Box 1549, Manassas, VA 20108 on 06-February-2004 and assigned Accession No. PTA-5801.

The antibodies or fragments of the invention can also be produced, by recombinant means. Regions that bind specifcally to the desired regions of the 158P1D7 protein can also be produced in the context of chimeric or complementarity detemining region (CDR) grafted antibodies of multiple species origin. Humanized or human 158P1D7 antbodies can also be produced, and are preferred for use in therapeutic contexts. Methods for humanizing murine and other non-human antibodies, by substituting one or more of the non-human antibody CDRs for corresponding human antibody sequences, are well known (see for example, Jones et al., 1986, Nature 321: 522-525; Riechmann et al., 1988, Nature 332: 323-327; Verhoeyen et al., 1988, Science 239: 1534-1536). See also, Carter et al., 1993, Proc. Nat. Acad. Sci. USA 89: 4285 and Sims et al., 1993, J. Immunol. 151: 2296.

Methods for producing fully human monocional antibodles Incuude phage dsplay and tansgenic methods (for review, see Vaughan el al., 1998, Nature Biotechnology 16: 535-539). Fully human 158P1D7 monodonal antibodies can be generated using cloning technologies employing large human \lg gene combinatorial libraries (i.e., phage display) (Griffiths and Hoogenboom, Bulldng an in vitro immune system: human antibodies from phage display libraries. In: Prolein Engineering of Antibody Molecules for Prophylactic and Therapeutic Applications in Man, Clark, M. (Ed.), Nottingham Academic, pp 45-64 (1993); Burton and Barbas, Human Antibodies from combinatorial libraries. Id., pp 65-82). Fully human 158P1D7 monodonal antibodies can aso be produced using transgenic mice engineered to contain human immunoglobulin gene loci as described in PCT Patent Application WO98/24893, Kucherlapai and Jakobovits et al., published December 3, 1997 (see also, Jakobovits, 1998, Exp. Opin. Invest. Drugs 7(4): 607-614; U.S. patents 6,162,963 Issued 19 December 2000; 6,150,584 issued 12 November 2000; and, 6,114598 issued 5 September 2000). This method avoids the in vitro manipulation required with phage display technology and efficiently produces high affinity authentic human antibodies.

Reactivity of 158P1D7 antibodies with an 158P1D7-related protein can be established by a number of well known means, including Western blot, immunoprecipitation, ELISA, and FACS analyses using, as appropriate, 158P1D7-related protelns, 158P1D7-expressing cells or extracts thereof. A 158P1D7 antibody or fragment thereof can be labeled with a detectable marker or conjugated to a second molecule. Suitable delectable markers inciude, but are not limited to, a radioisotope, a fluorescent compound, a bioluminescent compound, chemiluminescent compound, a metal chelator or an enzyme. Further, bi-specific antibodies specific for two or more 158P1D7 epitopes are generated using methods generally known in the art. Homodimeric antibodies can also be generated by cross-linking techniques known in the att (e.g., Wolff et al., Cancer Res. 53: 2560-2565).

V.) 158P1D7 Cellular Immune Responses

The mechanism by which T cells recognize antigens has been delineated. Efficaclous peptide epitope vaccine compositions of the invention induce a therapeutic or prophylactic immune responses in very broad segments of the worldwide population. For an understanding of the value and efficacy of compositions of the invention that induce cellular immune responses, a brief review of immunology-related technology is provided.

A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. et al., Cell 47:1071, 1986; Babbitt, B. P. et al., Nature 317:359, 1985; Townsend, A. and Bodmer, H., Annu. Rev. Immunol. 7:601, 1989; Germain, R. N., Annu. Rev. Immunol. 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptdes, critical residues that correspond to motils required for specific binding to HLA antigen molecules have been identified and are set forth in Table IV (see also, e.g., Southwood, et al., J. Immunol. 160:3363, 1998; Rammensee, et al., Immunogenetics 41:178, 1995; Rammensee et al., SYFPEITHI, access via World Wide Web at URL syppelthl.bmi-heidelberg.coml; Sette, A. and Sidney, J. Curr. Opin. Immunol. 10:478, 1998; Engelhard, V. H., Curr. Opin. Immunol. 6:13, 1994; Sette, A. and Grey, H. M., Curr. Opin. Immunol. 4:79, 1992; Sinigaglia, F. and Hammer, J. Curr. Blol. 6:52, 1994; Ruppert et al, Cell 74:929-937, 1993; Kondo et
al., J. Immunol. 155:4307-4312, 1995; Sidney et al., J. Immunol. 157:3480-3490, 1996; Sidney et al., Human Immunol. 45:79-93, 1996; Sette, A. and Sidney, J. Immunogenetics 1999 Nov; 50(3-4):201-12, Review).

Furthermore, x-ray crystallographic analyses of HLA-peptide complexes have revealed pockets within the peptide binding cleftlgroove of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptldes in which they are present. (See, e.g., Madden, D.R. Annu. Rev. Immunol. 13:587, 1995; Smith, et al., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Stem et al., Structure 2:245, 1994; Jones, E.Y. Curr. Opin. Immunol. 9:75, 1997; Brown, J. H. et al., Nature 364:33, 1993; Guo, H. C. et al., Proc. Natl. Acad. Sci. USA 90:8053, 1993; Guo, H. C. et al., Nature 360:364, 1992; Sllver, M. L. et al., Nature 360:367, 1992; Malsumura, M. et al., Science 257:927, 1992; Madden et al., Cell 70:1035, 1992; Fremont, D. H. et al., Science 257:919, 1992; Saper, M. A. , Bjorkman, P. J. and Wiley, D. C., J. Mol. Biol. 219:277, 1991.)

Accordingly, the definition of class I and dass II allele-specific HLA binding motifs, or cass I or class II supermotifs allows identification of regions within a protein that are correlated with binding to particular HLA antigen(s).

Thus, by a process of HLA motif identification, candidates for epitope-based vaccines have been identified; such candidates can be further evaluated by HLA-peptide binding assays to determine binding affinity and/or the time period of association of the epitope and ils corresponding HLA molecule. Additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characterlstles in terms of population coverage, and/or immunogenicity.

Various strategies can be utilized to evaluate cellular immunogenicity, including:

1) Evaluation of primary T cell cullures from normal individuals (see, e.g., Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995; Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol. 158:1796, 1997; Kawashima, l. et al., Human Immunol. 59:1, 1998). This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, e.g., a lymphokine- or ${ }^{51}$ Cr-release assay involving peptide sensitized target cells.
2) Immunization of HLA transgenic mice (see, e.g., Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. et al., int. Immunol. 8:651, 1996; Alexander, J. et al., J. Immunol. 159:4753, 1997). For example, in such methods peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cullured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a ${ }^{51} \mathrm{Cr}$-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.
3) Demonstration of recall T cell responses from immune individuals who have been either effectively vaccinated and/or from chronically ill patients (see, e.g., Rehermann, B. et al., J. Exp. Med. 181:1047, 1995; Doolan, D. L. et al., Immunity 7:97, 1997; Bertoni, R. et al., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J. Immunol. 159:1648, 1997; Diepolder, H. M. et al., J. Virol. 71:6011, 1997). Accordingly, recall responses are detected by culturing PBL from subjects that have been exposed to the antigen due to disease and thus have generated an immune response "naturally", or from patients who were vaccinated sgainsi the antigen. PBL from subjects are cultured in vitro for $1-2$ weeks in the presence of test peptide plus antgen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" T cells. At the end of the culture period, T cell activity is detected using assays including ${ }^{51} \mathrm{Cr}$ release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.

Nucleic acids that encode a 158P107-related protein can also be used to generate either transgenic animals or "knock out" animals which, in turn, are useful in the development and screening of therapeutically useful reagents. In accordance with established techniques, cDNA encoding 158P1D7 can be used to clone genomic DNA that encodes 158P1D7. The cloned genomic sequences can then be used to generate transgenic animals containing cells that express DNA that encode 158P1D7. Methods for generating transgenic animats, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 issued 12 April 1988, and 4,870,009 issued 26 September 1989. Typically, particular cells would be targeted for 158 P 107 transgene incorporation with tissue-specific enhancers.

Transgenic animals that include a copy of a transgene encoding 158P1D7 can be used to examine the effect of increased expresslon of DNA that encodes 158P1D7. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this aspect of the invention, an animal is treated with a reagent and a reduced incidence of a pathological condition, compared to untreated animais that bear the transgene, would indicate a potential therapeutic intervention for the pathological condition.

Alternatively, non-human homologues of 158P1D7 can be used to construct a 158P1D7 "knock out' anlmal that has a defective or altered gene encoding 158P1D7 as a result of homologous recombination between the endogenous gene encoding 158P1D7 and altered genomic DNA encoding 158P1D7 introduced into an embryonic cell of the animal. For example, cDNA that encodes 158P1D7 can be used to clone genomic DNA encoding 158P1D7 in accordance with established techniques. A portion of the genomic DNA encoding 158P1D7 can be deleted or replaced with another gene, such as a gene encoding a selectable marker that can be used to monitor integration. Typically, several kllobases of unallered flanking DNA (both at the 5^{\prime} and 3^{\prime} ends) are included in the vector (see, e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected (see, e.g., Lل L et al., Cell, $6 \underline{69} 915$ (1992)). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras (see, e.g.,, Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Prectical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal, and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identiffed by standard techniques and used to breed animals in which all cells of the animal contaln the homologously recombined DNA. Knock out animals can be characterized, for example, for their ability to defend againsi certain pathological conditions or for their development of pathologlcal conditions due to absence of the 158P1D7 polypeptide.

ViI.) Methods for the Detection of 158P107

Another aspect of the present invention relates to methods for detecting 158P1D7 polynucleotides and polypeptides and 158P1D7-related proteins, as well as methods for identifying a cell that expresses 158P1D7. The expression profle of 158P1D7 makes it a diagnostic marker for metastasized disease. Accordingly, the status of 158P1D7 gene products provides information useful for predicting a variety of factors including susceptibility to advanced slage disease, rate of progression, and/or tumor aggressiveness. As discussed in detail herein, the status of 158P1D7 gene products in patient samples can be analyzed by a variety protocols that are well known in the art including immunohistochemical analysis, the variety of Northem bloting technlques incuding in silu hybridization, RT-PCR analysis (for example on laser capture micro-dissected samples), Westem blot analysis and tissue array analysis.

More particularly, the invention provides assays for the detection of 158P1D7 polynucleotides in a biological sample, such as urine, serum, bone, prostatic fluid, tissues, semen, cell preparations, and the like. Detectable 158P1D7 polynucleotides
include, for example, a 158P1D7 gene or fragment thereof, 158P1D7 mRNA, alternative splice variant 158P1D7 mRNAs, and recombinant DNA or RNA molecules that contain a 158P1D7 polynucieotide. A number of methods for amplifying and/or detecting the presence of 158P1D7 polymucleotides are well known in the art and can be employed in the practice of this aspect of the invention.

In one embodiment, a method for detecting an 158P1D7 mRNA in a biological sample comprises producing CDNA from the sample by reverse transcription using at least one primer; amplifying the CDNA so produced using an 158P1D7 polynucleotides as sense and antisense primers to amplify 158P1D7 CDNAs therein; and detecting the presence of the amplified 158P1D7 cDNA. Optionally, the sequence of the amplified 158P1D7 cDNA can be determined.

In another embodiment, a method of detecting a 158P1D7 gene in a biological sample comprises first isolating genomic DNA from the sample; amplifying the lsolated genomic DNA using 158P1D7 polynucleotides as sense and antisense primers; and detecting the presence of the amplified 158P1D7 gene. Any number of appropriate sense and antisense probe combinations can be designed from the nucleolide sequence provided for the 158P1D7 (Figure 2) and used for this purpose.

The invention also provides assays for detecting the presence of an 158P107 protein in a tissue or other biological sample such as urine, serum, semen, bone, prostate, cell preparations, and the like. Methods for detecting a 158P1D7-related protein are also well known and include, for example, immunoprecipitation, immunohistochemical analysis, Westem blot analysis, molecular binding assays, ELISA, ELIFA and the like. For example, a method of detecting the presence of a 158P1D7-related protein in a biological sample comprises first contacting the sample with a 158P1D7 antibody, a 158P107-reactive fragment thereof, or a recombinant protein containing an antigen binding region of a 158P1D7 antibody; and then detecting the binding of 158P107-related protein in the sample.

Methods for identifying a cell that expresses 158P1D7 are also within the scope of the invention. In one embodiment, an assay for identifying a cell that expresses a 158P1D7 gene comprises delecting the presence of 158P1D7 mRNA in the cell. Methods for the detection of partcular mRNAs in cells are well known and inctude, for example, hybridization assays using complementary DNA probes (such as in situ hybridization using labeled 158P1D7 rboprobes, Northem blot and related techniques) and various nucleic acid amplification assays (such as RT-PCR using complementary primers specific for 158P1D7, and other amplification type delection methods, such as, for exemple, branched DNA, SISBA, TMA and the like). Altematively, an assay for idenifying a cell that expresses a 158P1D7 gene comprises detecting the presence of 158P1D7-related protein in the cell or secreted by the cell. Various methods for the detection of proteins are well known in the art and are employed for the detection of 158P1D7-related proteins and cells that express 158P1D7-related protelns.

158P1D7 expression analysis is also useful as a tool for identifying and evaluating agents that modulate 158P1D7 gene expression. For example, 158P1D7 expression is significantly upregulated in bladder cancer, and is expressed in cancers of the tissues listed in Table I. Identification of a molecule or blological agent that inhibits 158P1D7 expression or overexpression in cancer cells is of therapeutic value. For example, such an agent can be identified by using a screen that quantifies 158P1D7 expression by RT-PCR, nucleic acid hybridization or antibody binding.

VIII.) Methods for Monitoring the Status of 158P1D7-related Genes and Their Products

Oncogenesis is known to be a multistep process where cellular growth becomes progressively dysregulated and cells progress from a normal physiological state to precancerous and then cancerous states (see, e.g., Alers et al., Lab Invest. 77(5): 437-438 (1997) and Isaacs et ail., Cancer Surv. 23: 19-32 (1995)). In this context, examining a biological sample for evidence of dysregulated cell growth (such as aberrant 158P1D7 expression in cancers) allows for early detection of such aberrant physiology, before a pathologic state such as cancer has progressed to a stage that therapeutlc options are more limited and or the prognosis is worse. In such examinations, the status of 158P1D7 in a biological sample of interest
can be compared, for example, to the status of 158P1D7 in a corresponding normal sample (e.g. a sample from that individual or alternatively another individual that is not affected by a pathology). An alteration in the status of 158P1D7 in the biological sample (as compared to the normal sample) provides evidence of dysregulated cellular growth. In addition to using a biological sample that is not affected by a pathology as a normal sample, one can also use a predetermined normative value such as a predetermined normal level of mRNA expression (see, e.g., Grever et al., J. Comp. Neurol. 1996 Dec 9;376(2):306-14 and U.S. Patent No. 5,837,501) to compare 158P1D7 status in a sample.

The lerm "status" in this context is used according to its art accepted meaning and refers to the condition or state of a gene and its products. Typically, skilled artisans use a number of parameters to evaluate the condition or state of a gene and its products. These incurde, but are not limited to the location of expressed gene products (including the location of 158P1D7 expressing cells) as well as the level, and biological activity of expressed gene products (such as 158P1D7 mRNA, polynucleotides and polypeptides). Typicaliy, an alteration in the status of 158P1D7 comprises a change in the location of 158P1D7 and/or 158P1D7 expressing cells and/or an increase in 158P1D7 mRNA and/or proteln expression.

158P1D7 status in a sample can be analyzed by a number of means well known in the art, including without limitation, immunohistochemical analysis, in situ hybridizajion, RT-PCR analysis on laser capture micro-dissected samples, Westem blot analysis, and tissue anay analysis. Typical prolocols for evalualing the status of the 158P1D7 gene and gene products are found, for example in Ausubel et al. eds., 1995, Current Prolocols In Molecular Biology, Units 2 (Northern Blotting), 4 (Southem Blotting), 15 (Immunoblotting) and 18 (PCR Analysis). Thus, the status of 158P1D7 in a blological sample is evaluated by various methods utilized by skilled artisans including, but not limited to genomic Southern analysis (to examine, for example perturbations in the 158P1D7 gene), Northern analysis and/or PCR analysis of 158P1D7 mRNA (to examine, for example alterations in the polynucleotide sequences or expression levels of 158P1D7 mRNAs), and, Western and/or immunohistochemical analysis (to examine, for example alterations in polypeptide sequences, alterations in polypeptide localization within a sample, alterations in expression levels of 158P1D7 proteins and/or associations of 158P1D7 proteins with polypeptide binding partners). Detectable 158P1D7 polynucleotides include, for example, a 158P1D7 gene or fragment thereof, 158P1D7 mRNA, alternative splice variants, 158P1D7 mRNAs, and recombinant DNA or RNA molecules contalning a 158P1D7 polynucleotide.

The expression profile of 158P1D7 makes it a diagnostic marker for local and/or metastasized disease, and provides information on the growth or oncogenic potential of a biological sample. In particular, the status of 158P107 provides information useful for predicting susceptibility to partlcular disease slages, progression, and/or tumor aggressiveness. The Invention provides methods and assays for determining 158P1D7 status and diagnosing cancers that express 158P1D7, such as cancers of the lissues listed in Table I. For example, because 158P1D7.mRNA is so highly expressed in bladder and other cancers relative to normal bladder tssue, assays that evaluate the levels of 158P1D7 mRNA tanscripts or proteins in a biological sample can be used to diagnose a disease associated with 158P1D7 dysregulation, and can provide prognostic information useful in defining appropriate therapeutic options.

The expression status of 158P1D7 provides information including the presence, stage and location of dysplastic, precancerous and cancerous cells, predicing susceptibility to various stages of disease, and/or for gauging tumor aggressiveness. Moreover, the expression profile makes it useful as an imaging reagent for metastasized disease. Consequently, an aspect of the invention is directed to the various molecular prognostic and diagnostic methods for examining the status of 158P1D7 in biological samples such as those from indlviduals suffering from, or suspected of suffering from a pathology characterized by dysregulated cellular growth, such as cancer.

As described above, the status of 458P1D7 in a biological sample can be examined by a number of well-known procedures in the art. For example, the status of 158P1D7 in a biological sample taken from a specific location in the body can be examined by evaluating the sample for the presence or absence of 158P1D7 expressing cells (e.g. those that express

158P1D7 mRNAs or protelns). This examination can provide evidence of dysregulated cellular growth, for example, when 158P107expressing cells are found in a biological sample that does not normally contain such cells (such as a lymph node), because such alterations in the status of 158P1D7 in a biological sample are often associated with dysregulated cellular growth. Specifically, one indicator of dysregulated cellular growth is the metastases of cancer cells from an organ of origin (such as the bladder) to a different area of the body (such as a lymph node): By example, evidence of dysregulated cellular growth is important because occult lymph node metastases can be detecled in a substantial proportion of patients with prostate cancer, and such metastases are associated with known predictors of disease progression (see, e.g., Murphy et al., Prostate 42(4): 315-317 (2000);Su et al., Semin. Surg. Oncol. 18(1): 17-28 (2000) and Freeman et al., J Urol 1995 Aug 154(2 P(1):474-8).

In one aspect, the invention provides methods for monitoring 158P1D7 gene products by determining the status of 158P1D7 gene products expressed by cells from an individual suspected of having a disease associated with dysregulated cell growth (such as hyperplasia or cancer) and then comparing the status so determined to the status of 158P1D7 gene products in a corresponding normal sample. The presence of aberrant 158P1D7 gene products in the lest sample relative to the normal sample provides an indication of the presence of dysregulated cell growth within the cells of the individual.

In another aspect, the invention provides assays useful in determining the presence of cancer in an individual, comprising detecting a significant increase in 158P1D7 mRNA or proteln expression in a test cell or tissue sample relative to expression levels in the corresponding normal cell or tissue. The presence of 158P107 mRNA can, for example, be evaluated in tissue samples inchuding but not limited to those listed in Table I. The presence of significant 158P1D7 expression in any of these tissues is useful to indicate the emergence, presence and/or severity of a cancer, since the corresponding normal tissues do not express 158P1D7 mRNA or express it at lower levels.

In a related embodiment, 158P1D7 status is determined at the proteln level rather than at the nucleic acid level. For example, such a method comprises determining the level of 158P1D7 protein expressed by cells in a test tissue sample and comparing the level so determined to the level of 158P1D7 expressed in a corresponding normal sample. In one embodiment, the presence of 158P1D7 proteln is evaluated, for example, using immunohistoctemical methods. 158P1D7 antibodies or binding partners capable of detecting 158P107 protein expression are used in a variety of assay formats well known in the art for this purpose.

In a further embodiment, one can evaluate the status of 158P1D7 nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules. These perturbations can include Insertions, deletions, substitutions and the like. Such evaluations are useful because perturbations in the nucleotide and amino acid sequences are observed in a large number of proteins associated with a growth dysregulated phenotype (see, e.g., Marrogl et al., 1999, J. Cutan. Pathol. 26(8):369-378). For example, a mutation in the sequence of 158P1D7 may be indicative of the presence or promotion of a tumor. Such assays therefore have diagnostic and predictive value where a mutalion in 158P1D7 indicates a potential loss of function or increase in tumor growith.

A wide varlety of assays for observing perturbatlons in nucleotide and amino actd sequences re well known in the art For example, the size and structure of nucleic acid or amino acid sequences of 158P1D7 gene products are observed by the Northem, Southern, Western, PCR and DNA sequencing protocols discussed herein. In addition, other methods for observing perturbations in nucleotide and amino acld sequences such as single strand conformation polymorphism analysis are well known in the art (see, e.g., U.S. Patent Nos. 5,382,510 issued 7 September 1999, and 5,952,170 issued 17 January 1995).

Additionally, one can examine the methylation status of the 158P1D7 gene in a biological sample. Aberrant demethylation and/or hypermethylation of CpG islands in gene 5 ' regulatory regions frequently occurs in immortalized and transformed cells, and can result in altered expression of various genes. For example, promoter hypermethylation of the DBCCR1, PAX6 and APC genes have been detected in bladder cancers leading to aberrant expression of the genes
(Esteller et al., Cancer Res 2001; 61:3225-3229) A variety of assays for examining methylation status of a gene are well known in the art. For example, one can ubilize, in Southem hybridization approaches, methylation-sensitive restriction enzymes which cannot cleave sequences that contain methylated CpG sites to assess the methylation status of CpG istands. In addition, MSP (methylation specific PCR) can rapidly profile the methylation status of all the CpG sites present in a CpG island of a given gene. This procedure involves initial modification of DNA by sodium bisulfite (which will convert all unmethylated cytosines to uracil) followed by amplification using primers specific for methylated versus unmethylated DNA. Protocols involving methylation interference can also be found for example in Current Protocols In Molecular Biology, Unit 12, Frederick M. Ausubel et al. eds., 1995.

Gene amplification is an additional method for assessing the status of 158P1D7. Gene amplification is measured in a sample directly, for example, by conventional Southern blotting or Northem bloting to quantitate the transcription of mRNA (Thomas, 1980, Proc. Natl. Acad. Sci. USA, 77:5201-5205), dot blottIng (DNA analysis), or in sifu hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies are employed that recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn are labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Biopsied tissue or peripheral blood can be conveniently assayed for the presence of cancer cells using for example, Northern, dot blot or RT-PCR analysis to detect 158P1D7 expression. The presence of RT-PCR amplifiable 158P1D7 mRNA provides an indication of the presence of cancer. RT-PCR assays are well known in the art RT-PCR detection assays for tumor cells in peripheral blood are currently being evaluated for use in the diagnosis and management of a number of human solid tumors.

A further aspect of the invention is an assessment of the susceptbility that an Indlvidual has for developing cancer. In one embodiment, a method for predicting susceptibility to cancer comprises detecing 158P1D7 mRNA or 158P1D7 protein in a tissue sample, its presence indicaling susceptibility to cancer, wherem the degree of 158P1D7 mRNA expression correlates to the degree of susceplibility. In a specific embodiment, the presence of 158P1D7 in bladder or other tissue is examined, with the presence of 158P1D7 in the sample providing an indication of bladder cancer susceptibility (or the emergence or existence of a bladder tumor). Similarly, one can evaluate the Integrity 158P1D7 nucleotde and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations in 158P1D7 gene products in the sample is an indication of cancer susceptibility (or the emergence or existence of a tumor).

The invention also comprises methods for gauging tumor aggressiveness. In one embodiment, a method for gauging aggressiveness of a tumor comprises determining the level of 158P1D7 mRNA or 158P1D7 protein expressed by tumor calls, comparing the level so determined to the level of 158P1D7 mRNA or 158P1D7 protein expressed in a corresponding nomal tissue taken from the same individual or a nomal tissue reference sample, wherein the dagree of 158P1D7 mRNA or 158 P 107 protein expression in the tumor sample relative to the normal sample indicates the degree of aggressiveness. In a speciic embodiment, aggressiveness of a tumor is evaluated by detemining the extent to which 158P1D7 is expressed in the tumor calls, with higher expression levels indicating more aggressive tumors. Another embodiment is the evaluation of the Integrity of 158P1D7 nucleotide and amino acid sequences in a bilogical sample, in order to identify perturbations in the structure of these molecules such as inserions, deletions, substitutions and the like. The presence of one or more perturbations indicates more aggressive tumors.

Another embodiment of the invention is directed to methods for observing the progression of a malignancy in an individual over time. In one embodiment, methods for obsenving the progression of a malignancy in an indlvidual over time comprise detemining the level of 158P1D7 mRNA or 158P1D7 protein expressed by cells in a sample of the tumor, comparing
the level so determined to the level of 158P1D7 mRNA or 158P1D7 protein expressed in an equivalent issue sample taken from the same individual at a different time, whereln the degree of 158P1D7 mRNA or 158P1D7 protein expression in the tumor sample over time provides information on the progression of the cancer. In a specific embodiment, the progression of a cancer is evaluated by detemnining 158P1D7 expression in the tumor cells over tme , where increased expression over time indicales a progression of the cancer. Also, one can evaluate the integrity 158P1D7 nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like, where the presence of one or more perturbations Indicates a progression of the cancer.

The above diagnostic approaches can be combined with any one of a wide variety of prognostic and dlagnostic protocols known in the art. For example, another embodiment of the invention is directed to methods for observing a coincidence between the expression of 158P1D7 gene and 158P1D7 gene products (or perturbations in 158P1D7 gene and 158P1D7 gene products) and a factor that is associated with malignency, as a means for diagnosing and prognosticating the slatus of a tissue sample. A vide variety of factors associated with malignancy can be utilized, such as the expression of genes associated with malignancy (e.g. PSCA, H-rasand p53 expression etc.) as well as gross cytological observations (see, e.g., Bocking et al., 1984, Anal. Quant. Cytol. 6(2):74-88; Epstein, 1995, Hum. Pathol. 26(2):223-9; Thorson et al., 1998, Mod. Pathol. 11(6):543-51; Baisden et al., 1999, Am. J. Surg. Pathol. 23(8):918-24). Methods for observing a coincidence between the expression of 158P1D7 gene and 158P1D7 gene products (or perturbations in 158P1D7 gene and 158P1D7 gene products) and another factor that is associated with malignancy are useful, for example, because the presence of a set of specific factors that coincide with disease provides information crucial for diagnosing and prognosticating the status of a tissue sample.

In one embodiment, melhods for observing a coincidence between the expression of 158P1D7 gene and 158P1D7 gene products (or perturbations in 158P1D7 gene and 158P1D7 gene products) and another factor associated with malignancy entalls detecting the overexpression of 158P1D7 mRNA or protein in a tissue sample, detecting the overexpression of BLCA-4A mRNA or protein in a tissue sample (or PSCA expression), and observing a coincidence of 158P1D7 mRNA or protein and BLCA4 mRNA or protein overexpression (or PSCA expression) (Amara et el., 2001, Cancer Res 61:4660-4665; Konety et al., Clin Cancer Res, 2000,6(7):2618-2625). In a specific embodiment, the expresslon of 158P1D7 and BLCA-4 mRNA in bladder tissue is examined, where the coincidence of 158P1D7 and BLCA-4 mRNA overexpression in the sample indicatas the existence of bladder cancer, bladder cancer susceptibility or the emergence or status of a bladder tumor.

Methods for detecting and quantifying the expression of 158P1D7 mRNA or protein are described herein, and standard nucleic acid and proteln detection and quantification technologies are well known in the art. Standard methods for the delection and quantification of 158P1D7 mRNA include in situ hybridization using labeled 158P1D7 riboprobes, Northem blot and related techniques using 158P1D7 polynucleotide probes, RT-PCR analysis using primers specific for 158P1D7, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like. In a spedic embodiment, semiquantitative RT.PCR is used to detect and quantify 158P1D7 mRNA expression. Any number of primers capable of amplifying 158P1D7 can be used for this purpose, including but not limited to the various pimer sets specifically described hereln. In a specific embodiment, polyctonal or monocional antibodies specifically reactive with the wlld-type 158P107 protein can be used in an immunohistochemical assay of biopsied tissue.

IX.) Identification of Molecules That Interact With 158P1D7

The 158P1D7 protein and nucielc acid sequences disclosed herein allow a skilled artisan to identify proteins, small molecules and other agents that interact with 158P1D7, as well as pathways activated by 158P1D7 via any one of a variety of art accepted protocols. For example, one can utilize one of the so-called interaction trap systems (also referred to as the "two-hybrid assay"). In such systems, molecules interact and reconstitute a transcription factor which directs expression of a reporter gene, whereupon the expression of the reporter gene is assayed. Other systems identify protein-protein interactions

In vivo through reconstitution of a eukaryotic transcriptional activator, see, e.g., U.S. Patent Nos. 5,955,280 issued 21 September 1999, 5,925,523 issued 20 July 1999, 5,846,722 issued 8 December 1998 and 6,004,746 Issued 21 December 1999. Algorithms are also available in the art for genome-based predictions of protein function (see, e.g., Marcotte, et al., Nature 402: 4 November 1999, 83-86).

Alternatively one can screen peptide libraries to identify molecules that interact with 158P1D7 protein sequences. In such methods, peptides that bind to 158P1D7 are identified by screening libraries that encode a random or controlled collection of amino acids. Peptides encoded by the libraries are expressed as fusion proteins of bacteriophage coat protelns, the bacteriophage particles are then screened against the 158P1D7 protein.

Accordingly, peplides having a wide variety of uses, such as therapeutic, prognostic or diagnostic reagents, are thus identified without any prior information on the structure of the expected ligand or receptor molecule. Typical peptide llbrarfes and screening methods that can be used to identify molecules that interact with 158P1D7 protein sequences are disclosed for example in U.S. Patent Nos. 5,723,286 Issued 3 March 1998 and 5,733,731 issued 31 March 1998.

Alternatively, cell lines that express 158P1D7 are used to identify protein-protein interactions mediated by 158P1D7. Such interactions can be examined using immunoprecipitation techniques (see, e.g., Hamilton BJ, et al. Biochem. Biophys. Res. Commun. 1999, 261:646-51). 158P1D7 protein can be immunoprecipitated from 158P1D7-expressing cell lines using anti-158P1D7 antibodies. Allematively, anlibodies against His-tag can be used in a cell line engineered to express fusions of 158P1D7 and a His-tag (vectors mentioned above). The immunoprecipitated complex can be examined for protein association by procedures such as Western blotting, ${ }^{35} \mathrm{~S}$-methionine labeling of protelns, protein microsequencing; silver staining and two-dimensional gel electrophoresis.

Small molecules and ligands that Interact with 158P107 can be identified through related embodiments of such screening assays. For example, small molecules can be identified that interiere with protein function, including molecules that interfere with 158P1D7's ability to mediate phosphorylation and de-phosphorylation, interaction with DNA or RNA molecules as an Indication of regulation of cell cycles, second messenger signaling or tumorigenesls. Similarly, small molecules that modulate 158P1D7 related ion channel, proteln pump, or cell communication functions 158P1D7are identifled and used to treat patients that have a cancer that expresses 158P1D7 (see, e.g., Hille, B., lonic Channels of Excitable Membranes $2^{\text {nd }}$ Ed., Sinauer Assoc., Sunderland, MA, 1992). Moreover, ligands that regulate 158P1D7 function can be identified based on their ability to bind 158P1D7 and activate a reporter construct. Typical methods are discussed for example in U.S. Patent No. 5,928,868 issued 27 July 1999, and include methods for forming hybrid ligands in which at least one ligand is a small molecule. In an illustrative embodiment, cells engineered to express a fusion protein of 158P1D7 and a DNA-binding protein are used to co-express a fusion protein of a hybrid ligand/small molecule and a cDNA library transcriptional aclivator protein. The cells further contain a reporter gene, the expression of which is conditioned on the proximity of the first and second fusion proteins to each other, an event that occurs only if the hybrid ligand binds to target sites on both hybrid proteins. Those cells that express the reporter gene are selected and the unknown small molecule or the unknown ligand is identified. This method provides a means of Identifying modulators which activate or inhibit 158P1D7.

An embodiment of this invention comprises a method of screening for a molecule that interacts with an 158P1D7 amino acd sequence shown in Figure 2 or Figure 3, comprising the steps of contacting a population of molecules with the 158P1D7 amino acid sequence, allowing the population of molecules and the 158P1D7 amino acid sequence to interact under conditions that facilitate an interactlon, determining the presence of a molecule that interacts with the 158P1D7 amino acid sequence, and then separating molecules that do not interact with the 158P1D7 amino acid sequence from molecules that do. In a specific embodiment, the method further comprises purifying, characterizing and identifying a molecule that interacts with the 158P1D7 amino acid sequence. The identified molecule can be used to modulate a function performed by 158P1D7. In a preferred embodiment, the 158P1D7 amino acid sequence is contacted with a library of peptides.

X.) Therapeutic Methods and Compositions

The identification of 158P1D7 as a protein that is normally expressed in a restricted set of tissues, but which is also expressed in bladder and other cancers, opens a number of therapeutic approaches to the treatment of such cancers. As contemplated herein, 158P107 functions as a transcription factor involved in activating tumor-promoting genes or repressing genes that block tumorigenesis.

Accordingly, therapeutic approaches that inhibit the activity of the 158P1D7 protein are useful for patients suffering from a cancer that expresses 158P1D7. These therapeutic approaches generally fall inlo two classes. One class comprises varlous methods for inhibiting the binding or association of the 158P1D7 protein with its binding partner or with other proteins. Another class comprises a variety of methods for inhibiting the transcription of the 158P107 gene or translation of 158P1D7 mRNA.

X.A.) Antl-Cancer Vaccines

The invention provides cancer vaccines comprising a 158P1D7-related proteln or 158P1D7-related nucleic acid. In vlew of the expression of 158P1D7, cancer vaccines prevent and/or treat 158P1D7-expressing cancers with minimal or no effects on non-target tissues. The use of a tumor antigen in a vaccine that generates humoral and/or cell-mediated immune responses as anti-cancer therapy is well known in the at (see, e.g., Hodge et al., 1995, Int. J. Cancer 63:231-237; Fong et al., 1997, J. Immunol. 159:3113-3117).

Such methods can be readily practiced by employing a 158P1D7-related protein, or a 158P1D7-encoding nudeic acid molecule and recombinant vectors capable of expressing and presenting the 158P1D7 immunogen (which typically comprises a number of antibody or T cell epitopes). Skilled artisans understand that a wide variety of vaccine systems for delivery of immunoreactive epitopes are known in the art (see, e.g., Heryin et al., Ann Med 1999 Feb 31(1):66-78; Maruyama et al., Cancer Immunol Immunother 2000 Jun 49(3):123-32) Briefly, such methods of generating an Immune response (e.g. humoral and/or cell-mediated) in a mammal, comprise the steps of: exposing the mammal's immune system to an Immunoreaciive epitope (e.g. an epitope present in the 158P1D7 protein shown in Figure 2 or analog or homolog thereof) so that the mammal generates an immune response that is specific for that epitope (e.g. generates antibodies that specifically recognize that epitope). In a preferred method, the 158P1D7 Immunagen contains a biologlcal motif, see e.g., Tables VXVIII, or a peptide of a size range from 158P1D7 indicated in Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15.

The entire 158P1D7 protein, immunogenic regions or epitopes thereof can be combined and delivered by various means. Such vaccine compositions can include, for example, lipopeptides (e.g.,Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et al., Vaccine 13:675-681, 1995), peptide compositions contained in immune stlmulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873875, 1990; Hu et al, Clin Exp Immunol. 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., Proc. Natt. Acad. Sci. U.S.A. 85:5409-5413, 1988; Täm, J.P., J. Immunol. Methods 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized poptides, viral delivery vectors (Perkus, M. E. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al., Nature 320:537, 1986; Kleny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis. 124:148, 1971; Chanda, P. K. et al., Virology 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. ot al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L.,

Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shlver, J. W. ef al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Edridge, J. H. et al., Sem. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

In patients with 158P1D7-associated cancer, the vaccine compositions of the invention can also be used in conjunction with other treatments used for cancer, e.g., surgery, chemotherapy, drug therapies, radiation therapies, etc. including use in combination with immune adjuvants such as IL-2, IL-12, GM-CSF, and the like.

Cellular Vaccines:
CTL epitopes can be determined using specific algorithms to identify peptides within 158P1D7 protein that bind corresponding HLA alleles (see e.g., Table IV; Epimer ${ }^{T M}$ and Epimatrix ${ }^{\text {TM }}$, Brown University (URL brown.edw/Research/TBHIV_Lab/epimatrixepimatix.htm); and, BIMAS, (URL blmas.dcrtnih.govi; SYFPEITHI at URL syfpeithi.bmi-heidelberg.com/). In a preferred embodiment, the 158P1D7 immunogen contains one or more amino acid sequences identified using techniques well known in the art, such as the sequences shown in Tables V-XVIII or a peptide of $8,9,10$ or 11 amino acids specified by an HLA Class I motif/supermotif (e.g., Table IV (A), Table IV (D), or Table IV (E)) and/or a peptide of at least 9 amino aclds that comprises an HLA Class II motif/supermotif (e.g., Table IV (B) or Table IV (C)). As is appreciated in the art, the HLA Class I binding groove is essentially closed ended so that peptides of only a particular size range can fit into the groove and be bound, generally HLA Class I epitopes are $8,9,10$, or 11 amino acids long. In contrast, the HLA Class II binding groove is essentially open ended; therefore a peptide of about 9 or more amino acids can be bound by an HLA Class II molecule. Due to the binding groove differences between HLA Class I and II, HLA Class I motifs are length specific, I.e., position two of a Class I molif is the second amino acid in an amino to carboxyl direction of the peptide. The amino acid positions in a Class II motif are relative only to each other, not the overall peptide, i.e., additional amino acids can be attached to the amino and/or carboxyl terminl of a motif-bearing sequence. HLA Class II epitopes are often $9,10,11,12,13$, $14,15,16,17,18,19,20,21,22,23,24$, or 25 amino acids long, or longer than 25 amino acids.

Antibody-based Vaccines
A wide variety of methods for generating an immune response in a mammal are known in the at (for example as the first step in the generation of hybridomas). Methods of generating an immune response in a mammal comprise exposing the mammal's immune system to an immunogenic epitope on a protein (e.g. the 158P107 protein) so that an immune response is generated. A typical embodiment consists of a method for generating an immune response to 158P107 in a host, by contacting the host with a sufficient amount of at least one 158P1D7 B cell or cytoloxc T-cell epitope or analog thereof; and at least one periodic interval thereafter re-contacting the host with the 158P1D7 B celi or cytotoxic T-cell epitope or analog thereof. A specific embodiment consists of a method of generating an immune response against a 158P1D7related proteln or a man-made multeplioplc peptide comprising: administering 158P1D7 immunogen (e.g. the 158P1D7 protein or a peptide fragment thereof, an 158P1D7 fusion protein or analog etc.) in a vaccine preparation to a human or another mammal. Typically, such vaccine preparations further contain a suitable adjuvant (see, e.g., U.S. Patent No. $6,146,635$) or a universal helper epitope such as a PADRE ${ }^{\text {TM }}$ peptide (Epimmune Inc., San Diego, CA; see, e.g., Alexander et al., J. Immunol. 2000 164(3); 164(3): 1625-1633; Alexander el al., Immunity 1994 1(9): 751-761 and Alexander et al., Immunol. Res. 1998 18(2): 79-92). An alternative method comprises generating an immune response in an individual against a 158P1D7 immunogen by: administering in vivo to muscle or skin of the individual's body a DNA molecule that comprises a DNA sequence that encodes an 158P1D7 immunogen, the DNA sequence operatively linked to regulatory sequences which control the expression of the DNA sequence; whereln the DNA molecula is taken up by cells, the DNA sequence is expressed in the cells and an immune response is generated against the immunogen (see, e.g., U.S. Patent No.
$5,962,428$). Optionally a genetic vaccine facilitator such as anionic lipids; saponins; lectins; estrogenic compounds; hydroxylated lower alkyls; dimethyl sulfoxide; and urea is also administered.

Nucleic Acid Vaccines:'

Vaccine compositions of the invention include nucleic acid-mediated modalities. DNA or RNA that encode protein(s) of the invention can be administered to a patient. Genetic immunization methods can be employed to generate prophylactic or therapeutic humoral and cellular immune responses directed against cancer cells expressing 158P1D7. Constructs comprising DNA encoding a 158P1D7-related protein/immunogen and appropriate regulatory sequences can be injected directly into muscle or skin of an individual, such that the cells of the muscle or skin take-up the construct and express the encoded 158P1D7 protein/immunogen. Altematively, a vaccine comprises a 158P1D7-related protein. Expression of the 158P1D7-related protein immunogen results in the generation of prophylactic or therapeutic humoral and cellular Immunity agalnst cells that bear 158P1D7 protein. Various prophylactic and therapeutic genetic immunization lechniques known in the art can be used (for review, see information and references published at Internet address URL: genweb.com). Nucleic acid-based delivery is described, for inslance, in Wolff et. al., Sclence 247:1465 (1990) as well as U.S. Patent Nos. $5,580,859 ; 5,589,466 ; 5,804,566 ; 5,739,118 ; 5,736,524 ; 5,679,647 ;$ WO 98104720 . Examples of DNAbased delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, catlonic lipld complexes, and particle-mediated ('gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. $5,922,687$).

For therapeutic or prophylactic immunization purposes, proteins of the invention can be expressed via viral or bacterial vectors. Various viral gene delivery systems that can be used in the practice of the invention inctude, but are not limiled to, vaccinia, fowipox, canarypox, adenovirus, influenza, poliovirus, adeno-associated virus, lentivirus, and sindbis virus (see, e.g., Restifo, 1996, Curr. Opin. Immunol. 8:658-663; Tsang el al. J. Nat. Cancer Inst. 87:982-990 (1995)). Non-viral delivery systems can also be employed by Introducing naked DNA encoding a 158P1D7-related protein into the patient (e.g., intramuscularly or intradermally) to induce an anti-tumor response.

Vaccinia virus is used, for example, as a vector to express nucleollde sequences that encode the peptides of the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the protein immunogenic peptide, and thereby elicits a host immune response. Vaccinia vectors and methods useful in immunization prolocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-assoclated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.

Thus, gene delivery systems are used to deliver a 158P1D7-related nucleic acid molecule. In one embodiment, the fulllength human 158P1D7 cDNA is employed. In anolher embodiment, 158P1D7 nucleic acid molecules encoding specific cytotoxic T lymphocyte (CTL) and/or anlibody epitopes are employed.

Ex Vivo Vaccinos
Various ex vivo strategies can also be employed to generate an immune response. One approach involves the use of antigen presenting cells (APCs) such as dendritic cells (DC) to prasent 158P1D7 antigen to a patient's immune system. Dendritic cells express MHC class I and II molecules, B7 co-stimulator, and IL-12, and are thus highly specialized antigen presenting cells. In bladder cancer, autologous dendritic cells pulsed with peptides of the MAGE-3 antigen are being used in a Phase I cllinical trial to slimulate bladder cancer patients' immune systems (Nishlyama et al., 2001, Clin Cancer Res, 7(1):23-31). Thus, dendritic cells can be used to present 158P1D7 peptides to T cells in the context of MHC class I or II molecules. In one embodiment, autologous dendritic cells are pulsed with 158P1D7 peptides capable of binding to MHC class I and/or class II molecules. In another embodiment, dendritic cells are pulsed with the complete 158P1D7 proteln. Yet another embodiment involves engineering the overexpression of the 158P1D7 gene in dendritic cells using various implementing vectors known in
the art, such as adenovinus (Arthur et al., 1997, Cancer Gene Ther. 4:17-25), retrovirus (Henderson et al., 1996, Cancer Res. 56:3763-3770), lentivirus, adeno-associated virus, DNA transfection (Ribas et al., 1997, Cancer Res. 57:2865-2869), or tumor-derived RNA transfection (Ashley et al., 1997, J. Exp. Med. 186:1177-1182). Cells that express 158P1D7 can also be engineered to express immune modulators, such as GM-CSF, and used as immunizing agents.

X.B.) 158P1D7 as a Target for Antibody-based Therapy

158P107 is an attractive target for antibody-based therapeutic strategles. A number of antibody strategies are known in the art for targeting boith extracellular and intracellular molecules (see, e.g., complement and ADCC mediated killing as well as the use of Intrabodies). Because 158P1D7 is expressed by cancer cells of various llneages relative to corresponding normal cells, systemic administration of 158P1D7-immunoreactive compositions are prepared that exhibit excellent sensitivity without toxic, non-specific and/or non-target effects caused by binding of the immunoreactive composition to non-target organs and lissues. Antibodies specifically reactive with domalns of $158 \mathrm{P} 1 \mathrm{D7}$ are useful to treat 158P1D7-expressing cancers systemically, either as conjugates with a toxin or therapeutic agent, or as naked antibodies capable of inhibiting cell proliferation or function.

158P1D7 antibodies can be introduced into a patient such that the antibody binds to 158P1D7 and modulates a function, such as an interaction with a binding partner, and consequently mediates destruction of the tumor cells and/or inhibits the growth of the tumor cells. Mechanisms by which such antibodies exert a therapeutic effect can include complement-mediated cylolysis, antibody-dependent cellular cytotoxicity, modulation of the physiological function of 158P1D7, inhibition of ligand binding or slgnal transduction pathways, modulation of tumor cell differentiation, alteration of tumor anglogenesis factor profiles, and/or apoptosis.

Those skilled in the art understand that antibodles can be used to specifically target and bind immunogenic molecules such as an Immunogenic region of the 158P1D7 sequence shown in Figure 2 or Flgure 3. In addition, skilled artisans understand that it is routine to conjugate antibodies to cytotoxic agents (see, e.g., Slevers et al. Blood 93:11 36783684 (June 1, 1999)). When cytotoxic and/or therapeutic agents are dellivered directly to cells, such as by conjugating them 10 antibodies specfic for a molecule expressed by that cell (e.g. 158P1D7), the cytotoxic agent will exert its known biological effect (i.e. cytotoxicity) on those cells.

A wide varlety of compositions and methods for using antibody-cytotoxic agent conjugates to kill cells are known in the ari. In the context of cancers, typical methods entail administering to an animal having a tumor a biologically effective amount of a conjugate comprising a selected cylotoxic and/or therapeutic agent linked to a largeting agent (e.g. an anti158P1D7 antibody) that binds to a marker (e.g. 158P1D7) expressed, accessible to binding or localized on the cell surfaces. A typical embodiment is a method of delivering a cytotoxic and/or therapeutic agent to a cell expressing 158P1D7, comprising conjugating the cytotoxic agent to an anlibody that immunospecifically binds to a 158P1D7 epitope, and, exposing the cell to the antibody-agent conjugate. Another illustrative embodiment is a method of treating an individual suspected of suffering from metastasized cancer, comprising a step of administering parenterally to sald individual a pharmaceutical composition comprising a therapeutically effective amount of an antibody conjugated to a cytotoxic and/or therapeutic agent.

Cancer immunotherapy using anti-158P1D7 antibodies can be done in accordance with various approaches that have been successfully employed in the treatment of other types of cancer, Including but not limited to colon cencer (Arlen et al., 1998, Crit. Rev. Immunol. 18:133-138), multiple myeloma (Ozaki et al., 1997, Blood 90:3179-3186, Tsunenari et al., 1997, Blood 90:2437-2444), gastric cancer (Kasprzyk et al., 1992, Cancer Res. 52:2771-2776), B-cell lymphoma (Funakoshi et al., 1996, J. Immunother. Emphasis Tumor Immunol. 19:93-101), leukemia (Zhong et al., 1996. Leuk. Res. 20:581-589), colorectal cancer (Moun et al., 1994, Cancer Res. 54:6160-6166; Velders et al., 1995, Cancer Res. 55:4398-4403), and breast cancer (Shepard et al., 1991, J. Clin. Immunol. 11:117-127). Some therapeutic approaches involve conjugation of
naked antibody to a toxin, such as the conjugation of Y^{91} or ${ }^{131}$ to antl-CD20 antibodies (e.g., Zevalin ${ }^{\text {TM, }}$, IDEC Pharmaceuticals Corp. or Bexxar${ }^{\mathrm{Tm}}$, Coulter Pharmaceuticals), while others involve co-administration of antibodies and other therapeutic agents, such as HerceptinTM (trastuzumab) with paçitaxel (Genentech, Inc.). To treat bladder cancer, for example, 158P1D7 antibodies can be administered in conjunction with radiation, chemotherapy or hormone ablation.

Although 158P1D7 antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indlcated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicily of the chemotherapeutic agent very well.

Cancer patients can be evaluated for the presence and level of 158P107 expression, preferably using Immunohlstochemical assessments of tumor tissue, quantitative 158P107 imaging, or other tectniques that reliably indicate the presence and degree of 158P107 expression. Immunohistochemical analysis of tumor biopsies or surgical specimens is preferred for this purpose. Methods for immunohistochemical analysis of tumor tissues are well known in the art.

Anti-158P1D7 monocional antibodies that treat bladder and other cancers include those that initiate a potent immune response against the tumor or those that are directly cytotoxic. In this regard, anti-158P1D7 monoclonal antibodies (mAbs) can elicit tumor cell lysis by either complement-mediated or antibody-dependent cell cytotoxicity (ADCC) mechanisms, both of which require an intact Fc portion of the immunoglobulin molecule for interaction with effector cell Fc receptor sites on complement proteins. In addition, anti-158P1D7 mAbs that exert a direct biological effect on tumor growth are useful to treat cancers that express 158P1D7. Mechanisms by which directly cytotoxic mAbs act include: inhibition of cell growth, modulation of cellular differentiation, modulation of tumor angiogenesis factor profiles, and the induction of apoptosis. The mechanism(s) by which a particular anti-158P1D7 mAb exerts an anti-tumor effect is evaluated using any number of in vitro assays that evaluate cell death such as ADCC, ADMMC, complement-mediated cell lysis, and so forth, as is generally known in the art.

In some patients, the use of murine or other non-human monoclonal antibodies, or human/mouse chimeric mAbs can induce moderate to strong immune responses against the non-human antibody. This can result in clearance of the antibody from circulation and reduced efficacy. In the most severe cases, such an immune response can lead to the extensive formation of immune complexes which, potentially, can cause renal failure. Accordingly, preferred monocional antibodies used in the therapeutic methods of the invention are those that are either fully human or humanized and that bind specifically to the target 158P1D7 antigen with high affinity but exhibit low or no antigenicity in the patient.

Therapeutic methods of the invention contemplate the administration of single anti-158P1D7 mAbs as well as comblnations, or cocktalls, of different mAbs. Such mAb cocktails can have certain advantages inasmuch as they contaln mAbs that target different epitopes, exploit different effector mechanisms or comblne directly cytotoxic mAbs with mAbs that rely on immune effector functionality. Such mAbs in combination can exhibit synergistic therapeutic effects. In addition, anti158P107 mAbs can be administered concomitanlly with other therapeutic modalities, including but not limited to various chemotherapeutic agents, androgen-blockers, immune modulators (e.g., IL-2, GM-CSF), surgery or radiation. The anti158P107 mAbs are administered in their "naked" or unconjugated form, or can have a therapeutic agent(s) conjugated to them.

Anti-158P1D7 antibody formulations are administered via any route capable of delivering the antlbodies to a tumor cell. Routes of administration include, but are not limited to, intravenous, intraperitoneal, intramuscular, intratumor, intradermal, and the like. Treatment generally involves repeated administration of the anti-158P1D7 antibody preparation,
vla an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1 to about $10 \mathrm{mg} / \mathrm{kg}$ body weight. In general, doses in the range of $10-500 \mathrm{mg}$ mAb per week are effective and well tolerated.

Based on clinical experience with the Herceptin mAb in the treatment of metastatic breast cancer, an initial loading dose of approximately $4 \mathrm{mg} / \mathrm{kg}$ patient body weight IV, followed by weakly doses of about $2 \mathrm{mg} / \mathrm{kg}$ IV of the anti- 158P1D7 mAb preparation represents an acceptable dosing regimen. Preferably, the initial loading dose is administered as a 90 mlnute or longer infusion. The periodic maintenance dose is administered as a 30 minute or longer infusion, provided the initial dose was well tolerated. As appreciated by those of skill in the art, various factors can influence the ideal dose regimen in a partcular case. Such factors include, for example, the binding affinity and half life of the Ab or mAbs used, the degree of 158P1D7 expression in the patient, the extent of circulating shed 158P1D7 antigen, the desired steady-state antibody concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a partcular patient.

Optionally, patients should be evaluated for the levels of 158P1D7 in a given sample (e.g. the levels of circulating 158P1D7 antigen and/or 158P1D7 expressing cells) in order to assist in the determination of the most effective dosing regimen, etc. Such evaluations are also used for monitoring purposes throughoul therapy, and are useful to gauge therapeutic success in combination with the evaluation of other parameters (for example, urine cytology and/or ImmunoCyt levels in bladder cancer therapy, or by analogy, serum PSA levels in prostate cancer therapy).

Anti-Idiotypic anti-158P1D7 antibodies can also be used in anti-cancer therapy as a vaccine for inducing an immune response to cells expressing a 158P1D7-related protein. In particular, the generation of antl-diotyplc antibodies is well known in the art, this methodology can readily be adapted to generate ant-idiotypic anti-158P1D7 antibodles that mimic an epitope on a 158P1D7-related protein (see, for example, Wagner et al., 1997, Hybridoma 16: 33-40; Foon et al., 1995, J. Clin. Invest. 96:334-342; Herlyn et al., 1996, Cancer Immunol. Immunother. 43:65-76). Such an anti-idiotypic antibody can be used in cancer vaccine strategles.

X.C. 158 P1D7 as a Target for Cellular Immune Responses

Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more HLA-binding peptides as described herein are further embodiments of the invention. Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed pepildes. A peptide can be present in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comprising multiple coples of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The compositlon can be a naturally occurring region of an antigen or can be prepared, e.g., recombinantly or by chemical synthesis.

Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino äcids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core proteln, and the like. The vaccines can contain a physiologically tolerable (i.e., acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typlcally Include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additlonally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine (P3CSS). Moreover, an adjuvant such as a synthetic cytosine-phosphorothiolated-guanine-containing (CpG) ollgonucleotides has been found to increase CR responses 10- to 100-fold. (see, e.g. Davila and Celis J. Immunol. 165:539-547 (2000))

Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intratheca, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specffic for the desired antigen. Consequently, the host becomes at least partially immune to later development of cells that express or overexpress 158P1D7 antigen, or derives at least some therapeutic benefil when the antigen was tumor-associated.

In some embodiments, it may be desirable to combine the class I peptide components with components that Induce or facilitate neutralizing antibody and or helper T cell responses directed to the target antigen. A preferred embodiment of such a composition comprises class I and class II eptopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a. cross reactive HTL eptope such as PADRETM (Epimmune, San Diego, CA) molecule (described e.g., in U.S. Patent Number $5,736,142$).

A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells (DC), as a vehicie to present peptides of the invention. Vaccine compositions can be created in vitro, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs in vitro. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention, or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses in vivo. Vaccine compositions, either DNA- or peptide-based, can also be administered in vivo in combination with dendritic cell mobilization whereby loading of dendritic cells occurs in vivo.

Preferably, the following principles are utilized when selecting an array of epitopes for Inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles be balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine compostion may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.
1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For HLA Class I this includes 3-4 epitopes that come from at least one tumor associated antigen (TAA). For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one TAA (see, e.g., Rosenberg et al., Science 278:1447-1450). Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs.
2.) Epitopes are selected that have the requisite binding affinily established to be correlated with immunogenicity: for HLA Class I an IC50 of 500 nM or less, often 200 nM or less; and for Class II an IC50 of 1000 nM or less.
3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysls, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.
4.) When selecting epliopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the native epitope.
5.) Of particular relevance are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a glven peptide sequence. A nested peptide sequence can comprise B cell, HLA class I and/or HLA class II epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a mult-epitopic sequence,
such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.
6.) If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peplide that encompasses the epitopes of interest. This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epilope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concem is a junctional epitope that is a "dominant epitope." A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.
7.) Where the sequences of multiple variants of the same target protein are present, potential peptide epitopes can also be selected on the basis of their conservancy. For example, a criterion for conservancy may define that the entire sequence of an HLA class I binding peptide or the entire 9 -mer core of a class II binding peppide be conserved in a designated percentage of the sequences evaluated for a spectic proteln antigen.

X.C.1. Minigene Vaccines

A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peplides of the invention are a particularly useful embodiment of the invention. Epitopes for indusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptlde comprising one or multiple epitopes of the invention.

The use of multi-epitope minigenes is described below and in, Ishioka et al., J. Immunol. 162:3915-3925, 1999; An, L. and Whitton, J. L., J. Virol. 71:2292, 1997; Thomson, S. A. et al., J. Immunol. 157:822, 1996; Whitton; J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et al., Vaccine 16:426, 1998. For example, a mulli-epitope DNA plasmid encoding supermotifand/or motif-bearing epitopes derived 158P1D7, the PADRE® universal helper T cell epitope (or multiple HTL epitopes from 158P1D7), and an endoplasmic reticulum-translocating signal sequence can be engineered. A vaccine may also comprise epitopes that are derived from other TAAs.

The immunogenicity of a mulli-epitopic minigene can be confirmed in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes lested. Further, the immunogenicity of DNA-encoded epitopes in vivo can be correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.

For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, antibody epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. in addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.

The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides ($30-100$ bases long) may be synthesized, phosphorylated, purified and annealed under appropriale conditions using well known techniques. The ends of the ollgonucleotides can be jolned, for example, using T4 DNA ligase. This synthetic minigene, encoding the epilope polypeptide, can then be cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are preferably inciuded in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an E. coli origin of replication; and an E. coll selectable marker (e.g. amplcillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.

Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or nalurally-occuring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.

Once an expression vector is selected, the minigene is cloned into the polylinker reglon downstream of the promoter. This plasmid is transformed into an appropriate E. coll strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial celis harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.

In some embodiments, a bl-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed Include cylokines (e.g., IL-2, IL-12, GMCSF), cytokine-inducing molecules (e.g., LelF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRETM, Epimmune, San Diego, CA). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF- β) may be beneficial in certain dlseases.

Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E. coli, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well-known techniques. Plasmld DNA can be purifled using standard bloseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, Califomia). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.

Purified plasmid DNA can be prepared for Injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in cllnical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods
have been described, and new techniques may become available. Cationic liplds, glycolipids, and fusogenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino \& Gould-Fogerite, BioTechniques 6 (7): 682 (1988); U.S. Pat No. 5,278,833; WO 91/06309; and Felgner, et al., Proc. Nat'I Acad. Sci. USA 84:7413 (1987). In addilton, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

Target cell sensitization can be used as a funclional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromlum release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct in vitro transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium- 51 (${ }^{61} \mathrm{Cr}$) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by ${ }^{51} \mathrm{Cr}$ release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epltopes may be evaluated in an analogous manner using assays to assess HTL activity.

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (i.p.) for lipid-complexed DNA). Twenty-one days after • immunization, splenocytes are harvested and restimulated for one week in the presenc of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, ${ }^{51} \mathrm{C}$-labeled target cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, corresponding to minigene-encoded epilopes, demonstrates DNA vaccine function for in vivo induction of CTLS. Immunogenicity of HTL epitopes is confirmed in transgenic mice in an analogous manner.

Alernatively, the nuclelc aclds can be administered using ballistlic delivery as described, for instance, in U.S. Patent No. $5,204,253$. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, suct as gold particles.

Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., an expression construct encoding epitopes of the invention can be incorporated into a viral vector such as vaccinia.

X.C.2. Combinations of CTL Peptides with Helper Pepildes

Vaccine compositions comprising CTL peptides of the invention can be modified, e.g., analoged, to provide desired attributes, such as improved serum half life, broadened population coverage or enhanced immunogenicity.

For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. Although a CTL peptide can be direclly linked to a Thelper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues. The CTL peptide epltope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peplide may be acylated.

In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in a majority of a genelically diverse population. This can be accomplished by selecting peptides that bind to many, most, or all of the HLA class II molecules. Examples of such amino acid bind many HLA Class II molecules include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE; SEQID NO: 24), Flasmodium falciparum crcumsporozoite (CS) protein at positions $378-398$ (DIEKKIAKMEKASSVFNVVNS; SEQ ID NO: 25), and Streptococcus 18kD protein at positions 116-131 (GAVDSILGGVATYGAA; SEQ ID NO: 26). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.

Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO-95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRETN, Epimmune, Inc., San Dlego, CA) are designed to most preferably bind most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epilope peptide having the formula: aKXVAAWTLKAAa (SEQ ID NO: 27), where " X " is either cyclohexylalanine, phenylaianine, or tyrosine, and a is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimuiate the response of T helper lymphocytes from most individuals, regardless of their HLA type. An alternative of a pan-DR binding epitope comprises all "L" natural amino acids and can be provided in the form of nuckeic acids that encode the epliope.

HTL peptide epitopes can also be modifled to alter their biological properties. For example, they can be modified to include D-amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to Increase their biological activity. For example, a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.

X.C.3. Combinations of CTL Peptides with T Cell Priming Agents

In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes B lymphocytes or Tlymphocytes. Lipids have been identified as agenis capable of priming CTL in vivo. For example, palmitic acid residues can be altached to the ε-and α - amino groups of a lysine residue and then linked, e.g., via one or more linking resldues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immiunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particie, incorporated into a liposome, or emulsified in an adjuvant, e.g., incomplate Freund's adjuvant. In a preferred embodiment, a particularly effective immunogenic composition comprises palmltic acid attached to ε - and α - amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.

As another example of lipid priming of CT responses, E . coli lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine ($\mathrm{P}_{3} C S S$) can be used to prime virus speciic CTL when covalently attached to an appropriate peptide (see, e.g., Deres, et al., Nature $342: 561,1989$). Peptides of the invention can be coupled to P3CSS, for example, and the lipopeptide administered to an indlvidual to specfically prime an immune response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P3CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses.

X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL. Peptides

An embodiment of a vaccine composition in accordance with the invention comprises ex vivo administration of a cocklail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoietin™ (Pharmacia-Monsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the $D C$ are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces.

The DC can be pulsed ex vivo with a cocktail of peptides, some of which stimulate CTL responses to 158P1D7. Oplionally, a helper T cell (HTL) peptide, such as a natural or artificial loosely restricted HLA Class Il peptide, can be included to facilitate the CTL response. Thus, a vaccine in accordance with the invention is used to treat a cancer which expresses or overexpresses 158P1D7.

X.D. Adoptive Immunotherapy

Anligenic 158P107-related peptides are used to elicit a CTL and/or HTL response ex vivo, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. Ex vivo CTL or HTL responses to a particular antigen are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate Immunogenic peptide. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patlent, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (e.g., a fumor cell). Transfected dendritic cells may also bo used as antigen presenting cells.

X.E. Administration of Vaccines for Therapeutlc or Prophylactic Purposes

Pharmaceutical and vaccine compositions of the invention are typically used to treat and/or prevent a cancer that expresses or overexpresses 158P1D7. In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective B cell, CTL and/or HTL response to the antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.

For pharmaceutical compostions, the immunogenic peplides of the invention, or DNA encoding them, are generally administered to an individual already bearing a tumor that expresses 158P1D7. The peptides or DNA encoding them can be administered individually or as fusions of one or more peptide sequences. Patients can be treated with the immunogenlc peptides separately or in conjunction with other treatments, such as surgery, as appropriate.

For therapeutic use, administration should generally begin at the first dlagnosis of 158P1D7-associated cancer. This is followed by boosting doses untl at least symptoms are substantially abated and for a period thereafter. The embodiment of the vaccine composition (i.e., including, but not limited to embodiments such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells) delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, in a patient with a tumor that expresses 158P1D7, a vaccine comprising 158P1D7-specific CTL. may be more efficaclous in killing tumor cells in patient with advanced disease than alternative embodiments.

It is generally important to provide an amount of the peptide epitope delivered by a mode of administration sufficient to effectively stimulate a cytotoxic T cell response; compositions which stimulate helper T cell responses can also be given in accordance with this embodiment of the invention.

The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about $1,5,50,500$, or $1,000 \mathrm{gg}$ and the higher value is about 10,$000 ; 20,000 ; 30,000$; or $50,000 \mathrm{og}$. Dosage values for a human typically range from about 500 gg to about $50,000 \mathrm{gg}$ per 70 kilogram patient. Boosting dosages of between about 1.0 $\mu \mathrm{g}$ to about $50,000 \mu \mathrm{~g}$ of peptide pursuant to a boosting regimen over weeks to moniths may be administered depending upon the patient's response and condition as determined by measuring the specific aclivity of CTL and HTL oblained from the patient's blood. Administration should continue until at least clinical symptoms or laboratory tests indicate that the
neoplasia, has been ellminated or reduced and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologles known in the art

In certain embodiments, the peptides and compositions of the present invention are employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.

The vaccine compositions of the invention can also be used purely as prophylactic agents. Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value ls about $1,5,50,500$, or 1000 ng and the higher value is about 10,$000 ; 20,000 ; 30,000 ;$ or $50,000 \mathrm{ng}$. Dosage values for a human typically range from about 500 gg to about $50,000 \mathrm{gg}$ per 70 kilogram patient. This is followed by boosting dosages of between about $1.0 \mu \mathrm{~g}$ to about $50,000 \mu \mathrm{~g}$ of peptide administered at defined intervals trom about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine can be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.

The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, nasal, intrathecal, or local (e.g. as a cream or topical ointment) administration. Preferably, the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or Intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier.

A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well-known sterilization techniques, or may be sterile fillered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterlle solution prior to administration.

The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH -adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, polassium chloride, calcium chloride, sorbilan monolaurate, triethanolamine oleate, etc.

The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., In accordance with the particular mode of administration selected.

A human unit dose form of the peptide composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, preferably an aqueous carrier, and is administered in a volume of fluid that is known by those of skill in the art to be used for administration of such composilions to humans (see, e.g., Remingion's Pharmaceutical Sciences, $17^{\text {th }}$ Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pennsylvania, 1985).

Proteins(s) of the invention, and/or nucleic acids encoding the protein(s), can also be administered via liposomes, which may also serve to: 1) target the protens(s) to a particular issue, such as lymphold tissue; 2) to target selectively to diseases cells; or, 3) to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dlspersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monocional antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the Invention
can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes tor use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negattvely charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev., Biophys. Bioeng. 9:467 (1980), and U.S. Patent Nos. $4,235,871,4,501,728,4,837,028$, and 5,019,369.

For targeting cells of the Immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, atc. in a dose whlch varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.

For solid compositions, conventional nontoxic solld carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magneslum carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10 95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of $25 \%-75 \%$.

For aerosol administration, immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are about $0.01 \%-20 \%$ by weight, preferably about $1 \%-10 \%$. The surfactant must, of course, be nontoxic, and preferably soluble in the propeliant. Representative of such agents are the esters or partial esters of fatty acids containing from about 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or Its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute about $0.1 \%-20 \%$ by waight of the composition, preferably about $0.25-5 \%$. The balance of the composition is ordinarily propeliant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.

XI.) Diagnostic and Prognostic Embodiments of 158P1D7.

As disclosed herein, 158P1D7 polynucieotides, polypeptides, reactive cytoloxic T cells (CTL), reactive helper T cells (HTL) and anti-polypeptide antlbodies are used in well known diagnostic, prognostic and therapeutic assays that examine conditions associated with dysregulated cell growth such as cancer, in particular the cancers listed in Table I (see, e.g., both its specific pattern of tissue expresslon as well as its overexpression in certain cancers as described for example in Example 4).

158P1D7 can be used in a manner analogous to, or as complementary to, the bladder associated antigen combination, mucins and CEA, represented in a diagnostic kil called ImmunoCytTM. ImmunoCyt a is a commercially available assay to Identify and monitor the presence of bladder cancer (see Fradel el al., 1997, Can J Urol, 4(3):400-405). A variety of other diagnostic markers are also used in simillar coniexis including p53 and H -ras (see; $\theta . g$., Tulchinsky et al.; $\ln \mathrm{J} \mathrm{J}$. Mol Med 1999 Jul 4(1):99-102 and Minimoto et al., Cancer Delect Prev 2000;24(1):1-12). Therefore, this disclosure of the 158P1D7 polynucleolides and polypeptides (as well as the 158P1D7 polynucleotide probes and anli-158P1D7 antibodies used to identify the presence of these molecules) and their properties allows skilled artisans to utilize these molecules in methods that are analogous to those used, for example, in a variety of diagnostic assays directed to examining conditions associated with cancer.

Typlcal embodiments of diagnostic methods which utilize the 158P1D7 polynucleotides, polypeptides, reactive T cells and antibodies are analogous to those methods from wellestablished diagnoslic assays which employ, e.g., PSA polynucleotides, polypeptides, reaclive T cells and antibodies. For example, just as PSA polynucleotides are used as probes
(for example in Northern analysis, see, e.g., Sharief et al., Biochem. Mol. Biol. Int. 33(3):567-74(1994)) and primers (for example in PCR analysis, see, e.g., Okegawa et al., J. Urol. 163(4): 1189-1190 (2000)) to observe the presence and/or the level of PSA mRNAs in methods of monitoring PSA overexpression or the metastasis of prostate cancers, the 158P1D7 polynucleotides described herein can be utilized to detect 158P1D7 overexpression or the metastasis of bladder and other cancers expressing this gene. Alternalively, just as PSA polypeptides are used to generate antibodies specific for PSA which can then be used to observe the presence and/or the level of PSA proteins in methods to monitor PSA protein overexpression (see, e.g., Stephan et al., Urology 55(4):560-3 (2000)) or the metastasis of prostate cells (see, e.g., Alanen et al., Pathol. Res. Pract! 192(3):233-7 (1996)), the 158P1D7 polypeptides described herein can be utilized to generate antibodies for use in detecting 158P1D7 overexpression or the metastasis of bladder cells and cells of other cancers expressing this gene.

Specifically, because metastases Involves the movement of cancer cells from an organ of origin (such as the lung or bladder etc.) to a different area of the body (such as a lymph node), assays which examine a biological sample for the presence of cells expressing 158P1D7 polynucleotides and/or polypeptides can be used to provide evidence of melastasis. For example, when a biological sample from tissue that does not normally contain 158P1D7-expressing cells (lymph node) is found to contain 158P1D7 expressing cells such as the 158P1D7 expression seen in LAPC4 and LAPC9, xenografis isolated from lymph node and bone metastasis, respectively, this finding is indicative of metastasis.

Alternatively 158P1D7 polynucleotides and/or polypeptides can be used to provide evidence of cancer, for example, when cells in a biological sample that do not normally express 158P1D7 or express 158P107 at a different level are found to express 158P1D7 or have an increased expression of 158P1D7 (see, e.g., the 158P1D7 expression in the cancers listed in Table I and in patient samples etc. shown in the accompanying Figures). In such assays, artisans may further wish to generate supplementary evidence of metastasis by testing the blological sample for the presence of a second tissue restricted marker (in addition to 158P1D7) such as ImmunoCyt™, PSCA etc. (see, e.g., Fradet et al., 1997, Can J Urol, 4(3):400-405; Amara et al., 2001, Cancer Res 61:4660-4665). Just as PSA polynucleotide fragments and polynucleotide variants are employed by skilled artsans for use in methods of monitoring PSA, 158P1D7 polynucleolide fragments and polynucleotide variants are used in an analogous manner. In particular, typical PSA polynucleotides used in methods of monitoring PSA are probes or primers which consist of fragments of the PSA cDNA sequence. Illustrating this, primers used to PCR amplify a PSA polynucleotide must include less than the whole PSA sequence to function in the polymerase chain reaction. In the context of such PCR reactions, skilled artisans generally create a variety of different polynucleotide fragments that can be used as primers in order to ampilfy different portions of a polynucleollde of interest or to optimize amplification reactions (see, e.g., Caetano-Anolles, G. Biotechniques 25(3): 472-476, 478-480 (1998); Robertson et al., Methods Mol. Biol. 98:121-154 (1998)). An additional illustration of the use of such fragments is provided in Example 4, where a 158P1D7 polynucleotide fragment is used as a probe to show the expression of 158P1D7 RNAs in cancer cells. In addition, variant polynucleotide sequences are typically used as primers and probes for the corresponding mRNAs in PCR and Northern analyses (see, e.g., Sawai et al., Fetal Dlagn. Ther. 1996 Nov-Dec 11(6):407-13 and Current Protocols In Molecular Biology, Volume 2, Unit 2, Frederick M. Ausubel et al. eds., 1995)). Polynucleotide fragments and variants are useful in this context where they are capable of binding to a target polynucleotide sequence (e.g. the 158P1D7 polynucleotide shown in Figure 2) under conditions of high stringency.

Furthermore, PSA polypeptides which contain an epitope that can be recognized by an antibody or T cell that specifically binds to that epitope are used in methods of monitoring PSA. 158P107 polypeptide fragments and polypeptide analogs or variants can also be used in an analogous manner. This practice of using polypeptide fragments or polypeptide variants to generate antibodies (such as ant-PSA antibodies or T cells) is typical in the art with a wide variety of systems such as fusion proteins being used by practitioners (see, e.g., Current Protocols in Molecular Blology, Volume 2, Unit 16,

Frederick M. Ausubel et al. eds., 1995). In this context, each epilope(s) functions to provide the architecture with which an antibody or T cell is reactive. Typically, skilled artisans create a variety of different polypeptide fragments that can be used in order to generate immune responses specific for different portlons of a polypeptide of interest (see, e.g., U.S. Patent No. $5,840,501$ and U.S. Patent No. $5,939,533$). For example it may be preferable to utilize a polypeptide comprising one of the 158P1D7 biological motifs discussed herein or a motif-bearing subsequence which is readily identified by one of skill in the art based on motifs available in the art. Polypeptide fragments, variants or analogs are typically useful in this context as long as they comprise an epitope capable of generating an antibody or T cell specific for a target polypeptide sequence (e.g. the 158P1D7 polypeptide shown in Figure 2).

As shown herein, the 158P1D7 polynucleolides and polypeptides (as well as the 158P1D7 polynucleotide probes and anti-158P1D7 antibodies or Tcells used to identify the presence of these molecules) exhibit specific properfies that make them useful in diagnosing cancers such as those listed in Table I. Diagnostic assays that measure the presence of 158P1D7 gene products, in order to evaluate the presence or onset of a disease condition described herein, such as bladder cancer, are used to identify patients for preventive measures or further monitoring, as has been done so successfuily with PSA for monitoring prostate cancer. Materials such as 158P1D7 polynucleotides and polypeptides (as well as the 158P1D7 polynucleotide probes and ant-158P1D7 antibodies used to identify the presence of these molecules) satisty a need in the art for molecules having similar or complementary characteristics to PSA in situations of bladder cancer. Finally, in addition to their use in diagnostic assays, the 158P1D7 polynucleotides disclosed herein have a number of other utilities such as their use in the idenification of oncogenetic associaled chromosomal abnormallties in the chromosomal region to which the 158P1D7 gene maps (see Example 3 below). Moreover, in addition to their use in diagnostic assays, the 158P1D7-related proteins and polynucleotides disclosed herein have other utilities such as their use in the forensic analysis of tissues of unknown origin (see, e.g., Takahama K Forensic Scl Int 1996 Jun 28;80(1-2): 63-9).

Additionally, 158P1D7-related proteins or polymucleotides of the invention can be used to treat a pathologic condition characterized by the over-expression of 158P1D7. For example, the amino acid or nucleic acid sequence of Figure 2. or Figure 3, or fragments of either, can be used io generate an immune response to the 158P1D7 antigen. Antibodies or other molecules that react with 158P1D7 can be used to modulate the function of this molecule, and thereby provide a therapeutic benefit.

Xll.) Inhibition of 158P1D7 Protein Function

The invention includes various methods and compositions for inhibiting the binding of 158P1D7 to its binding partner or its association with other protein(s) as well as methods for inhibiting 158P1D7 function.

Xll.A.) Inhibition of 158P1D7 With intracellular Antibodies

In one approach, a recombinant veclor that encodes single chain antibodies that specifically bind to 158P1D7 are introduced into 158P1D7 expressing cells via gene transfer technologies. Accordingly, the encoded single chain anti158P1D7 antibody is expressed intracellutarly, binds to 158P1D7 protein, and thereby inhibits its function. Methods for engineering such intracellular single chain antibodies are well known. Such intracellular antibodies, also known as "intrabodies", are specifically targeted to a particular compartment within the cell, providing control over where the inhibitory acilvity of the treatment is focused. This technology has been successfully applied in the art (for review, see Richardson and Marasco, 1995, TIBTECH vol. 13). Intrabodies have been shown to virtually eliminate the expression of otherwise abundant cell surface receptors (see, e.g., Richardson et al., 1995, Proc. Natl. Acad. Sci. USA 92: 3137-3141; Beerli el al., 1994, J. Biol. Chem. 289: 23931-23936; Deshane et al., 1994, Gene Ther. 1: 332-337).

Single chain antibodies comprise the variable domains of the heavy and light chain joined by a flexible linker polypeptide, and are expressed as a single polypeptide. Optionally, single chain antibodies are expressed as a single chain
variable region fragment joined to the light chain constant region. Well-known intracellular trafficking signals are engineered into recombinant polynucleotide vectors encoding such single chain antibodies in order to precisely target the intrabody to the desired intracellular compartment. For example, intrabodies targeted to the endoplasmic reticulum (ER) are engineered to incorporate a leader peptide and, optionally, a C-terminal ER retention signal, such as the KDEL amino acid motif. Intrabodies intended to exert activity in the nucleus are engineered to include a nuclear localization signal. Lipid moieties are Jolned to intrabodies in order to tether the intrabody to the cytosolic side of the plasma membrane. Intrabodies can also be targeted to exert function in the cytosol. For example, cytosolic intrabodies are used to sequester factors wilhin the cytosol, thereby preventing them from being transported to their natural cellular destination.

In one embodiment, intrabodies are used to capture 158P1D7 in the nuckeus, thereby preventing its activity wilhin the nucleus. Nuctear targeting signals are engineered into such 158P1D7 intrabodles in order to achieve the desired targeting. Such 158P1D7 intrabodies are designed to bind specifically to a particular 158P1D7 domain. In another embodiment, cytosolic intrabodies that specifically bind to the 158P1D7 protein are used to prevent 158P107 from gaining access to the nucleus, thereby preventing it from exerting any biological activity within the nucleus (e.g., preventing 158P1D7 from forming transcription complexes with other factors).

In order to specifically direct the expression of such intrabodies to particular cells, the transcription of the intrabody is placed under the regulatory control of an appropriate tumor-specific promoler and/or enhancer. In order to target intrabody expression specifically to bladder, for example, the PSCA promoter and/or promoter/enhancer can be utilized (See, for example, U.S. Patent No. 5,919,652 issued 6 July 1999 and Lin et al. PNAS, USA 92(3):679-683 (1895)).

XII.B.) Inhibltion of 158P1D7 with Recomblnant Proteins

In another approach, recombinant molecules bind to 158P1D7 and thereby inhibit 158P1D7 function. For example, these recombinant molecules prevent or inhibit 158P1D7 from accessing/binding to its binding partner(s) or associating with other protein(s). Such recombinant molecules can, for example, contain the reactive part(s) of a 158P1D7 specific anfibody molecule. In a particular embodiment, the 158P1D7 binding domain of a 158P1D7 binding partner is engineered into a dimeric fusion protein, whereby the fusion protein comprses two 158P1D7 ligand binding domains Inked to the Fc portion of a human $\lg G$, such as human lgG1. Such lgG portion can contain, for example, the $C_{H} 2$ and $C_{H} 3$ domains and the hinge region, but not the $\mathrm{C}_{H} 1$ domain. Such dimeric fusion proteins are administered in soluble form to patients suffering from a cancer associated with the expression of 158P1D7, whereby the dimeric fusion protein specifically binds to 158P1D7 and blocks 158P1D7 interaction with a binding partner. Such dimeric fusion proteins are further combined into multimeric proteins using known antibody linking technologies.

XII.C.) Inhibition of 158P1D7 Transcription or Translation

The present invention also comprises various methods and compositions for inhibiting the transcription of the 158P1D7 gene. Similarly, the invention also provides methods and compositions for inhibiting the translation of 158P1D7 mRNA Into protein.

In one approach, a method of inhibiting the transcription of the 158P1D7 gene comprises contacting the 158P1D7 gene with a 158P107 antisense polynucleotide. In another approach, a method of inhibiling 158P1D7 mRNA translation comprises contacting the 158P1D7 mRNA with an antisense polynucleotide. In another approach, a 158P1D7 specific ribozyme is used to cleave the 158P1D7 message, thereby inhibiting translation. Such antisense and ribozyme based methods can also be directed to the regulatory regions of the 158P1D7 gene, such as the 158P1D7 promoter and/or enhancer elements. Similaty, proteins capable of inhibiting a 158P1D7 gene transcription factor are used to inhibit 158P1D7 m RNA transcription. The various polynucleotides and compositions useful in the aforementioned methods have been described above. The use of antisense and ribozyme molecules to inhibit transcription and translation is well known in the art.

Other factors that inhibit the transcription of 158P1D7 by interfering with 158P1D7 transcriptional activation are also useful to treat cancers expressing 158P1D7. Similarly, factors that interfere with 158P1D7 processing are useful to treat cancers that express 158P1D7. Cancer treatment methods utilizing such factors are also within the scope of the invention.

Xll.D.) General Considerations for Therapeutic Strategies

Gene transfer and gene therapy technologles can be used to deliver therapeutic polynucleotide molecules to tumor cells synthesizing 158P1D7 (i.e., antisense, ribozyme, polynucleotides encoding intrabodies and other 158P1D7 inhibltory molecules). A number of gene therapy approaches are known in the at. Recombinant vectors encoding 158P1D7 antisense polynucleotides, ribozymes, factors capable of interiering with 158P1D7 transcription, and so forth, can be delivered to targel tumor cells using such gene therapy approaches.

The above therapeutic approaches can be combined with any one of a wide variety of surgical, chemotherapy or radiation therapy regimens. The therapeutic approaches of the invention can enable the use of reduced dosages of chemotherapy (or other therapies) and/or less frequent administration, an advantage for all patients and particularly for those that do not tolerate the toxicity of the chemotherapeutic agent well.

The anti-tumor activity of a particular composition (e.g., antisense, ribozyme, intrabody), or a combination of such compositions, can be evaluated using various in vitro and in vivo assay systems. In vitro assays that evaluale therapeutic activity include cell growth assays, soft agar assays and other assays indicative of tumor promoting activity, binding assays capable of determining the extent to which a therapeutic composition will inhibit the binding of 158P1D7 to a binding partner, etc.

In vivo, the effeci of a 158P1D7 therapeutic composition can be evaluated in a suitable animal model. For example, xenogenic bladder cancer models can be used, wherein human bladder cancer explants or passaged xenograft tissues are introduced into immune compromised animals, such as nude or SCID mice (Shibayama et al., 1991, JUrol., 146(4):1136-7; Beecken et al., 2000, Urology, 56(3):521-526). Efficacy can be predicted using assays that measure inhibition of tumor formation, tumor regression or metastasis, and the like.

In vivo assays that evaluate the promotion of apoptosis are useful in evaluating therapeutic compositions. In one embodiment, xenografts from tumor bearing mice treated with the therapeutic composition can be examined for the presence of apoptotic foci and compared to untreated control xenograft-bearing mice. The extent to which apoptotic foci are found in the tumors of the treated mice provides an indication of the therapeutic efficacy of the composition.

The therapeutic compositions used in the practice of the foregolng methods can be formulated into phamaceutical compositions comprising a carier suitable for the desired delivery method. Suitable carriers include any material that when combined with the therapeutic composition retains the anti-fumor function of the therapeutic composition and is generally non-reacive with the patienl's immune system. Examples lnclude, but are not limited $t 0$, any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like (see, generally, Reminglon's Pharmaceutical Sciences $16^{\text {hl }}$ Edition, A. Osal., Ed., 1980).

Therapeutic formulations can be solubilized and administered via any route capable of delivering the therapeutic composition to the tumor site. Potentially effecive routes of administration include, but are not IImited to, intravenous, parenteral, intraperitoneal, intramuscular, intratumor, intradermal, intraorgan, orthotopic, and the like. A preferred formulation for intravenous injection comprises the therapeutic composition in a solution of preserved bacteriostatic water, sterile unpreserved water, and/or diluted in polyvinylchloride or polyethylene bags containing 0.9% sterlle Sodium Chloride for Injection, USP. Therapeutic protein preparations can be lyophilized and stored as sterile powders, preferably under vacuum, and then reconstituted in bacteriostatic water (containing for example, benzyl alcohol preservative) or in sterlle water prior to injection.

Dosages and administration protocols for the teatment of cancers using the foregoing methods will vary with the method and the target cancer, and will generally depend on a number of other factors appreciated in the art

Methods to Identify and Use Modulators

In one embodiment, screening is performed to identify modulators that Induce or suppress a particular expression profile, suppress or induce specific pathways, preferably generating the associated phenotype thereby. In another embodiment, having identified differentially expressed genes important in a particular state; screens are performed to identify modulators that alter expression of individual genes, either increase or decrease. In another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to Identify agents that bind and/or modulate the biological activity of the gene product.

In addition, screens are done for genes that are induced in response to a candidate agent. After identifying a modulator (one that suppresses a cancer expression pattern leading to a normal expression pattern, or a modulator of a cancer gene that leads to expression of the gene as in normal tissue) a screen is performed to identify genes that are spedifcally modulated in response to the agent. Comparing expression profiles between normal tissue and agent-treated cancer tissue reveals genes that are not expressed in normal tissue or cancer fissue, but are expressed in agent treated tissue, and vice versa. These agent-specific sequences are identified and used by methods described herein for cancer genes or proteins. In particular these sequences and the proteins they encode are used in marking or Identifying agenttreated cells. In addition, antibodies are raised against the agent-Induced proteins and used to target novel therapeutics to the treated cancer tissue sample.

Modulator-related Identification and Screening Assays:

Gene Expression-related Assays

Proteins, nucleic acids, and antibodies of the invention are used in screening assays. The cancer-associated proteins, antbodles, nucleic aclds, modified proleins and celis containing these sequences are used in screening assays, such as evaluating the effect of drug candidates on a "gene expression profile," expression profile of polypeptides or • alteration of blological function. In one embodiment, the expression profiles are used, preferably in conjunction with high throughput screening lechniques to allow monitoring for expression profile genes after treatment with a candldate agent (e.g., Davis, GF, et al, J Biol Screen 7:69 (2002); Zlokarnik, et al., Science 279:84-8 (1998); Heid, Genome Res 6:98694,1996).

The cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified cancer proteins or genes are used in screening assays. That is, the present invention comprises methods for screening for compositions which modulate the cancer phenotype or a physiological function of a cancer protein of the invention. This is done on a gene itself or by evaluating the effect of drug candidates on a "gene expression profile" or biological function. In one embodiment, expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring after treatment with a candidale agent, see Zlokamik, supra.

A variety of assays are executed directed to the genes and proteins of the invention. Assays are run on an Individual nucleic acid or protein level. That is, having identifled a particular gene as up regulated in cancer, test compounds are screened for the ability to modulate gene expression or for binding to the cancer protein of the invention. "Modulation" in this context includes an increase or a decrease in gene expression. The preferred amount of modulation will depend on the origInal change of the gene expression in normal versus tissue undergoing cancer, with changes of at least 10%, preferably 50%, more preferably $100-300 \%$, and in some embodiments $300-1000 \%$ or greater. Thus, if a gene exnibits a 4 -fold Increase in cancer tssue compared to normal tissue, a decrease of about four-fold is often desired; similany, a 10 -fold
decrease in cancer tissue compared to normal tissue a target value of a 10 -fold increase in expression by the test compound is often desired. Modulators that exacerbata the type of gene expression seen in cancer are also useful, e.g., as an upregulated target in further analyses.

The amount of gene expression is monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, a gene product itself is monitored, e.g., through the use of antibodies to the cancer protein and standard Immunoassays. Proteomics and separation techniques also allow for quantification of expression.

Expression Monitoring to Identify Compounds that Modify Gene Expression

In one embodiment, gene expression monitoring, i.e., an expression proflle, is monitored simultaneousiy for a number of entities. Such profiles will typically involve one or more of the genes of Figure 2. In this embodiment, e.g., cancer nucleic acid probes are attached to blochips to detect and quantity cancer sequences in a particular cell. Alternatively, PCR can be used. Thus, a series, e.g., wells of a microtiter plate, can be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring is performed to identify compounds that modify the expression of one or more cancerassoclated sequences, e.g., a polynucleotide sequence set out In Figure 2. Generally, a test modulator is added to the cells prior to analysis. Moreover, screens are also-provided to identify agents that modulate cancer, modulate cancer proteins of the invention, bind to a cancer protein of the invention, or interfere with the binding of a cancer protein of the invention and an antibody or other binding partner.

In one embodiment, high throughput screening methods involve providing a library containing a large number of potental therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus idenlified can serve as conventional "lead compounds," as compounds for screening, or as therapeutics.

In certain embodiments, combinatorial libraries of potential modulators are screened for an ability to bind to a cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhiblting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysls.

As noted above, gene expression monitoring is conveniently used to test candldate modulators (e.g., protein, nudelc acid or small molecule). After the candidate agent has been added and the cells allowed to incubate for a period, the sample containing a target sequence to be analyzed is, e.g., added to a biochip.

If required, the target sequence is prepared using known techniques. For example, a sample is treated to lyse the cells, using known lysis buffers, electroporation, etc., with purfication and/or amplification such as PCR performed as appropriate. For example, an in vitro transcripition with labels covalently attached to the nucleotides is performed. Generally, the nuclelc acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

The target sequence can be labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as alkaline phosphatase or horseradish peroxidase, which when provided with an appropriale substrate produces a product that is detected. Alternatively, the label is a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a molety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streplavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typlcally removed prior to analysis.

As will be apprecialed by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5, 681,702; $5,597,909 ; 5,545,730 ; 5,594,117 ; 5,591,584 ; 5,571,670 ; 5,580,731 ; 5,571,670 ; 5,591,584 ; 5,624,802 ; 5,635,352 ; 5,594,118 ;$ $5,359,100 ; 5,124,246$; and $5,681,697$. In this embodiment, in general, the target nucleic acid is prepared as oullined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

A variety of hybridization conditions are used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allow formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH , organic solvent concentration, etc. These paramelers may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. $5,681,697$. Thus, it can be desirable to perform certain steps at higher stringency condittons to reduce non-specific binding.

The reactions outlined herein can be accomplished in a variety of ways. Components of the reaction can be added simullaneously, or sequentially, in different orders, with preferred embodiments outined below. In addition, the reaction may Include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which can be used to facilitate optimal hybridization and detection, and/or reduce nonspecific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibilors, anti-microbial agents, eic., may also be used as appropriate, depending on the sample preparation methods and purity of the target. The assay data are analyzed to determine the expression levels of individual genes, and changes in expression levels as between states, forming a gene expression profile.

Biological Activity-related Assays

The invention provides methods identify or screen for a compound that modulates the aclivity of a cancer-related gene or protein of the invention. The methods comprise adding a lest compound, as defined above, to a cell comprising a cancer protein of the invention. The cells contain a recombinant nucleic acid that encodes a cancer protein of the invention. In another embodiment, a library of candidate agents is tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e., cell-cell contacts). In another example, the determinations are made at different stages of the cell cycle process. In this way, compounds that modulate genes or proteins of the invention are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the cancer protein of the invention. Once idenifified, similar structures are evaluated to identify critical structural features of the compound."

In one embodiment, a method of modulating (e.g., inhibiting) cancer cell division is provided; the method comprises administration of a cancer modulator. In another embodiment, a method of modulating (e.g., inhibiting) cancer is provided; the method comprises administration of a cancer modulator. In a further embodiment, methods of treating cells or individuals with cancer are provided; the method comprises administration of a cancer modulator.

In one embodiment, a method for modulating the status of a cell that expresses a gene of the invention is provided. As used herein status comprises such art-accepted parameters such as growth, proliferation, survival, function, apoptosis, senescence, location, enzymatic activity, signal transduction, etc. of a cell. In one embodiment, a cancer inhibitor is an
antibody as discussed above. In another embodiment, the cancer inhibitor is an antisense molecule. A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described herein.

High Throughput Screening to Identify Modulators

The assays to identify suitable modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activily.

In one embodiment, modulators evaluated in high throughput screening methods are proteins, often naturally occurring proteins or fragments of naturally occuring proteins. Thus, e.g., cellular extracts contalning protelns, or random or directed digests of proteinaceous cellular extracts, are used. In this way, libraries of proteins are made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the larget belongs, e.g., substrates for enzymes, or ligands and receptors.

Use of Soft Agar Growth and Colony Formation to Identify and Characterize Modulaiors
Normal cells require a solid substrate to altach and grow. When cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stired suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, can regenerate normal phenotype and once again require a solid substrate to attach to and grow. Soft agar growth or colony formation in assays are used to identify modulators of cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A modulator reduces or eliminates the host cells' ability to grow suspended in solid or semisolid media, such as agar.

Techniques for soft agar growth or colony formation in suspenslon assays are described in Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed., 1994). See also, the methods section of Garkavisev et al. (1996), supra.

Evaluation of Contact Inhibition and Growth Density Limitation to Identify and Characterize Modulators
Normal cells typically grow in a flat and organized pattern in cell culture until they louch other cells. When the cells touch one another, they are contact inhibited and stop growing. Transformed cells, however, are not contact inhibited and continue to grow to high densities in disorganlzed foci. Thus, transformed cells grow to a higher saturation denslty than corresponding normal cells. This is detected morphologically by the formation of a disoriented monolayer of cells or cells in foci. Altematively, labeling index with (${ }^{(} \mathrm{H}$)-thymidine at saturation density is used to measure density limitation of growth, similarly an MTT or Alamar blue assay will reveal proliferation capacity of cells and the the ability of modulators to affect same. See Freshney (1994), supra. Transformed cells, when transfected with tumor suppressor genes, can regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with ${ }^{3 H}$)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with $(3 \mathrm{H})$-thymidine is determined by incorporated cpm.

Contact independent growth is used to identify modulators of cancer sequences, which had led to abnormal cellular proliferation and transformation. A modulator reduces or eliminates contact independent growth, and returns the cells to a normal phenotype.

Evaluation of Growth Factor or Serum Dependence to Identify and Characterize Modulators

Transformed cells have lower serum dependence than their normal counterparts (see, e.g., Temin, J. Natl. Cancer Inst. 37:167-175 (1966); Eagle et al., J. Exp. Med 131:836-879 (1970)); Freshney, supra. This is in part due to release of
various growth factors by the transformed cells. The degree of growth factor or serum dependence of transformed host cells can be compared with that of control. For example, growth factor or serum dependence of a cell is monitored in methods to identify and characterize compounds that modulate cancer-associated sequences of the invention.

Use of Tumor-specific Marker Levels to Identify and Characterize Modulators

Tumor cells release an increased amounl of certain factors (herelnafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, Angiogenesis, Tumor Vascularization, and Potential Interference with Tumor Growth, in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tumor Angiogenesis Factor (TAF) is released al a higher level in tumor cells than their normal counterparts. See, e.g., Folkman, Angiogenesis and Cancer, Sem Cancer Biol. (1992)), while bFGF is released from endothelial tumors (Ensoll, B et al).

Various techniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkless et al.; J. Biol. Chem. 249:4295-4305 (1974); Strickland \& Beers, J. Blol. Chem. 251:5694-5702 (1976); Whur et al., Br. J. Cancer 42:305 312 (1980); Gullino, Angiogenesis, Tumor Vascularization, and Potential Interference with Tumor Growth, in Blological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985); Freshney, Anticancer Res. 5:111-130 (1985). For example, tumor specific marker levels are monitored in methods to identify and characterize compounds that modulate cancer-associated sequences of the invention.

Invasiveness into Marigel to Identify and Characierize Modulators

The degree of invasiveness into Matrigel or an extracellular matrix constituent can be used as an assay to identity and characterize compounds that modulate cancer associated sequences. Tumor cells extibit a positive correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic colls are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells. Techniques described in Cancer Res. 1999; 59:6010; Freshney (1994), supra, can be used. Briefly, the level of invasion of host celis is measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with 1251 and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.

Evaluation of Tumor Growith in Vivo to Identify and Characterize Modulators

Effects of cancer-associated sequences on cell growth are tested In transgenic or immune-suppressed organisms. Transgenlc organisms are prepared in a variety of art-accepted ways. For example, knock-out transgenic organlsms, e.g., mammals such as mice, are made, in which a cancer gene is disrupted or in which a cancer gene is inserted. Knock-out transgenic mice are made by Insertion of a marker gene or other heterologous gene into the endogenous cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous cancer gene with a mutated version of the cancer gene, or by mutating the endogenous cancer gene, e.g., by exposure to carcinogens.

To prepare transgenic chimeric animals, e.g., mice, a DNA construct is Introduced into the nuclei of embryonic stem cells. Cells containing the newly englneared genetic lesion are injected into a host mouse embryo, which is roimplanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells some of which are derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetlc lesion (see, e.g., Capecchi et al., Science 244:1288 (1989)). Chimeric mice can be derived according to US Patent 6,365,797, issued 2 April 2002; US Patent 6,107,540 issued 22 August 2000; Hogan et al., Manipulating the Mouse Embryo: A laboratory Manual, Cold Spring Harbor Laboratory (1988) and Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., IRL Press, Washington, D.C., (1987).

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, a genetically athymic "nude" mouse (see, e.g., Giovanella el al., J. Nat. Cancer inst 52:921 (1974)), a SCID mouse, a thymectornized mouse, or an irradiated mouse (see, e.g., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer $41: 52$ (1980)) can be used as a host. Transplantable tumor cells (typically about 10^{6} cells) injected into isogenic hosts produce invasive tumors in a high proportion of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing cancer-associated sequences are injected subcutaneously or orthotopically. Mice are then separated into groups, including control groups and treated experimental groups) e.g. treated with a modulator). After a suitable length of time, preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions, or weight) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test') are said to have inhibited growth.

In Vitro Assays to Identify and Characterize Modulators

Assays to identify compounds with modulating activity can be performed in vitro. For example, a cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as Westem blotting, ELISA and the like with an antibody thal selectively binds to the cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e. g., Northem hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described hereln.

Allematively, a reporter gene system can be devised using a cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or P-gal. The reporter constuct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard lectniques known to those of skill in the art (Davis GF, supra; Gonzalez, J. \& Negulescu, P. Curr. Opin. Biotechnol. 1998: 9:624).

As outlined above, in vitro screens are done on individual genes and gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself is performed.

In one embodiment, screening for modulators of expression of specific gene(s) is performed. Typically, the expression of only one or a few genes is evaluated. In another embodiment, screens are designed to first find compounds that bind to differentally expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

Binding Assays to Identify and Characterize Modulators

In binding assays in accordance with the invention, a purified or isolated gene product of the invention is generally used. For example, antibodies are generated to a protein of the invention, and immunoassays are run to determine the amount and/or location of protein. Alternatively, colls comprising the cancer proteins are used in the assays.

Thus, the methods comprise combining a cancer protein of the invention and a candidate compound such as a ligand, and determining the binding of the compound to the cancer protein of the invention. Preferred embodiments utilize the human cancer protein; animal models of human disease of can also be developed and used. Also, other analogous
mammalian proteins aso can be used as apprecialed by those of skill in the art. Moreover, in some embodiments variant or derivative cancer proteins are used.

Generally, the cancer protein of the invention, of the ligand, is non-difusibly bound to an insoluble support. The support can, e.g., be one having isolated sample receiving areas (a microiter plate, an array, etc.). The insoluble supports can be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatble with the overall method of screening. The surface of such supports can be solld or porous and of any convenient shape.

Examples of sultable Insoluble supports include microiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharide, nylon, nitrocellulose, or Tellon ${ }^{\text {nh }}$, etc. Microiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition to the support is not crucial so long as it is compatible with the reagents and overall methods of the invention, malntalns the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies which do not sterically block either the ligand binding stte or activation sequence when attaching the protein to the support, direct binding to "sticky" or lonic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or ligand/binding agent to the support, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other Innocuous protein or other moiety.

Once a cancer protein of the invention is bound to the suppoth, and a test compound is added to the assay. Alternatively, the candidate binding agent is bound to the support and the cancer protein of the invention is then added. Binding agents include speciic antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc.

Of particular interest are assays to identity agents that have a low toxicity for human cells. A wide variety of assays can be used for this purpose, including proliferation assays, AAMP assays, labeled in vitro protein-protein binding assays, electrophoretic mobility shit assays, Immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

A determination of binding of the test compound (igand, binding agent, modulator, etc.) to a cancer proteln of the invention can be done in a number of ways. The.test compound can be labeled, and binding determined directly, e.g., by attaching all or a portion of the cancer protein of the invention to a solid support, adding a labeled candidate compound (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps can be utilized as appropriate.

In certain embodiments, only one of the components is labeled, e.g., a protein of the invention or ligands labeied. Alternatively, more than one component is labeled with different labels, e.g., ${ }^{125}$, for the proteins and a fuorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

Competitive Binding to Identify and Characterize Modulators

In one embodiment, the binding of the "test compound " is determined by competitive binding assay with a "competior." The competitor is a binding moiety that binds to the target molecule (e.g., a cancer proteln of the invention). Competitors include compounds such as antibodies, peptldes, binding partners, ligands, etc. Under cerrain crrcumstances, the competitive binding between the test compound and the competito displaces the test compound. In one embodiment, the lest compound is labeled. Either the test compound, the competior, or both, is added to the proteln for a time sufficient to allow binding. Incubations are performed at a temperature that facilitites optimal activity, typically between four and $40^{\circ} \mathrm{C}$. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening; typically between zero and one
hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In one embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indicalion that the test compound is binding to the cancer protein and thus is capable of binding to, and potentially modulating, the activity of the cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the post-test compound wash solution indicates displacement by the test compound. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the compelitor indicates that the test compound binds to the cancer protein with higher affinity than the competitor. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of compettor binding, Indicates that the test compound binds to and thus potentillily modulates the cancer protein of the invention.

Accordingly, the competitive binding methods comprise differential screening to identity agents that are capable of modulating the activity of the cancer proteins of the invention. In this embodiment, the methods comprise combining a cancer protein and a competitor in a first sample. A second sample comprises a test compound, the cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the cancer protein.

Altematively, differential screening is used to identify drug candidates that bind to the native cancer protein, but cannot bind to modified cancer protelns. For example the structure of the cancer protein is modeled and used in ralional drug design to synthesize agents that interact with that site, agents which generally do not bind to site-modified proteins. Moreover, such drug candidates that affect the activity of a native cancer protein are also identified by screening drugs for the ability to either enhance or reduce the aclivity of such proteins.

Positive controls and negative controls can be used in the assays. Preferably control and test samples are performed In at least triplicate to obtain statlstically significant results. Incubation of all samples occurs for a time sufficient to allow for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples can be counted in a scintillation counter to delermine the amount of bound compound.

A variety of other reagents can be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which are used to facilitate optimal protein-protein binding and/or reduce non-specilic or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., can be used. The mixture of components is added in an order that provides for the requisite binding.

Use of Polynucleotides to Down-regulate or Inhibit a Protein of the invention.

Polynucleotide modulators of cancer can be introduced into a cell conlaining the target nudeotide sequence by formation of a conjugate with a ligand-binding molecule, as described in WO 91/04753. Suitable ligand-binding molecules include, but are not limiled to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of cancer can be introduced into a cell
containing the target nucleic acid sequence, e.g., by formation of a polynucleotide-lipid complex, as described in wo 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

Intibition and Antisense Nucleotides

In certain embodiments, the activity of a cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide or Inhibitory small nuclear RNA (snRNA), i.e., a nuclelc acld complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a cancer protein of the invention, mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally occurring nucleotides, or synthetic species formed from naturally occurring subunits or their close homologs. Antisense polynucleotides may also have allered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprised by this invention so long as they function effectively to hybridize with nudeotides of the Invention. See, e.g., Isis Pharmaceuticals, Carisbad, CA; Sequltior, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized in vitro. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense ollgonucleotides. Sense oligonucleotldes can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 12 nucleotides, preferably from about 12 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given proteln is described in, e.g., Steln \&Cohen (Cancer Res. 48:2659 (1988 and van der Krol et al. (BioTechniques 6:958 (1988)).

Ribozymes

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of cancerassociated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, halrpin ribozymes, RNase P , and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the propertles of different ribozymes).

The general features of hairpin ribozymes are described, e.g., in Hampel et al., Nucl. Acids Res. 18:299-304 (1990); European Patent Publication No. 0360257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang et al., Proc. Natl. Acad. Scl. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad Sa. USA 92:699-703 (1995); Leavitt et al., Human Gene Therapy 5: 1151-120 (1994); and Yamada et al., Virology 205: 121-126 (1994)).

Use of Modulators in Phenotypic Screening

In one embodiment, a test compound is administered to a population of cancer cells, which have an associated cancer expression profile. By "administration" or "contacting" herein is meant that the modulator is added to the cells in such a manner as to allow the modulator to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, a nuclelc acid encoding a proteinaceous agent (l.e., a peptde) is put into a viral construct
such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used. Once the modulator has been administered to the cells, the cells are washed if desired and are allowed to incubate under preferably physiological conditions for some period. The cells are then harvested and a new gene expression profile is generated. Thus, e.g., cancer tissue is screened for agents that modulate, e.g., induce or suppress, the cancer phenotype. A change in at least one gene, preferably many, of the expression profile indlcates that the agent has an effect on cancer acivity. Similarly, altering a biological function or a signaling pathway is indicative of modulator activity. By defining such a signature for the cancer phenotype, screens for new drugs that alter the phenotype are devised. With this approach, the drug target need not be known and need not be represented in the original gene/protein expression screening platform, nor does the level of transcript for the target protein need to change. The modulator inhibiting function will serve as a surrogate marker

As outlined above, screens are done to assess genes or gene products. That is, having identified a particular differentially expressed gene as important in a parficular state, screening of modulators of either the expression of the gene or the gene product itself is performed.

Use of Modulators to Affect Peptides of the Invention

Measurements of cancer polypeptide activity, or of the cancer phenotype are performed using a variety of assays. For example, the effects of modulators upon the function of a cancer polypeplide(s) are measured by examining parameters described above. A physiological change that affects activity is used to assess the influence of a test compound on the polypeptides of this invention. When the functional outcomes are determined using intact cells or animals, a variety of effects can be assesses such as, in the case of a cancer associated with solid tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., by Northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGNIP.

Methods of Identifying Characterizing Cancer-associated Sequences

Expression of various gene sequences is correlated with cancer. Accordingly, disorders based on mutant or variant cancer genes are determined. In one embodiment, the invention provides methods for identifying cells containing variant cancer genes, e.g., determining the presence of, all or part, the sequence of at least one endogenous cancer gene in a cell. This is accomplished using any number of sequencing techniques. The invention comprises methods of identifying the cancer genotype of an individual, e.g., determining all or part of the sequence of at least one gene of the invention in the Individual. This is generally done in at least one tissue of the individual, e.g., a tissue set forth in Table I, and may include the evaluation of a number of tissues or different samples of the same lissue. The method may include comparing the sequence of the sequenced gene to a known cancer gene, i.e., a wild-type gene to determine the presence of family members, homologles, mulations or variants. The sequence of all or part of the gene can then be compared to the sequence of a known cancer gene to determine if any differences exist. This is done using any number of known homology programs, such as BLAST, Bestiti, etc. The presence of a difference in the sequence between the cancer gene of the patient and the known cancer gene correlates with a disease state or a propensity for a disease state, as outined herein.

In a preferred embodiment, the cancer genes are used as probes to determine the number of copies of the cancer gene in the genome. The cancer genes are used as probes to determine the chromosomal localization of the cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the cancer gene locus.

XIV.) RNAi and Therapeutic Use of Small Interfering RNA (siRNAS)

The present invention is also directed towards siRNA oligonucleotides, particularly double stranded RNAs encompassing at least a fragment of the 158P1D7 coding region or 5^{n} UTR regions, or complement, or any antisense oligonucleotide specific to the 158P1D7 sequence. In one embodiment such oligonucleotides are used to elucidale a function of 158P1D7, or are used to screen for or evaluate modulators of 158P1D7 function or expression. In another embodiment, gene expression of 158P1D7 is reduced by using siRNA transfection and results in significantly diminished proliferative capacity of transformed cancer cells that endogenously express the antigen; cells treated with specific 158P1D7 siRNAs show reduced survival as measured, e.g., by a metabolic readout of cell viability, correlating to the reduced proliferative capacity. Thus, 158P107 siRNA compositions comprise siRNA (double stranded RNA) that correspond to the nucieic acid ORF sequence of the 158P1D7 protein or subsequences thereof, these subsequences are generally $5,6,7,8$, $9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ or more than 35 conliguous RNA nucleotides in length and contaln sequences that are complementary and non-complementary to at least a portion of the mRNA coding sequence In a preferred embodiment, the subsequences are 19-25 nucleotides in length, most preferably 21-23 nucleotides in length.

RNA interference is a novel approach to silencing genes in vitro and in vivo, thus small double stranded RNAs (siRNAs) are valuable therapeutic agents. The power of siRNAs to silence specific gene activities has now been brought to animal models of disease and is used in humans as well. For example, hydrodynamic infusion of a solution of siRNA into a mouse with a siRNA against a particular target has been proven to be therapeutically effective.

The pioneering work by Song et al. indicates that one type of entirely natural nucleic acid, small interfering RNAs (siRNAs), served as therapeutic agents even without further chemical modification (Song, E., et al. "RNA interference targeting Fas protects mice from fulminant hepatitis" Nat. Med. 9(3): 347-51(2003)). This work provided the first in vivo evidence that infusion of siRNAs into an animal could alleviate disease. In that case, the authors gave mice injections of siRNA designed to silence the FAS protein (a cell death receptor that when over-activated during inflammatory response induces hepatocyles and other cells to die). The next day, the animals were given an antibody specific to Fas. Control mice died of acute liver faliure within a few days, while over 80% of the siRNA-treated mice remained free from serious disease and survived. About 80% to 90% of their liver cells incorporated the naked siRNA ollgonucleotides. Furthermore, the RNA .molecules functioned for 10 days before losing effect after 3 weeks.

For use In human therapy, siRNA is delivered by efficient systems that induce long-lasting RNAI actlvity. A major caveat for clinical use is delivering siRNAs to the appropriate cells. Hepatocytes seem to be particularly receptive to exogenous RNA. Today, targets located in the liver are attractive because liver is an organ that can be readily targeted by nuclelc acid molecules and viral vectors. However, other tissue and organs targets are preferred as well.

Formulations of siRNAs with compounds that promote transit across cell membranes are used to improve administration of siRNAs in therapy. Chemically modified synthetic siRNA, that are resistant to nucleases and have serum stability have concomitant enhanced duration of RNAl effects, are an additional embodiment.

Thus, siRNA technology is a therapeutic for human malignancy by delivery of siRNA molecules directed to 158P1D7 to individuals with the cancers, such as those listed in Table 1. Such administration of sIRNAs leads to reduced growth of cancer cells expressing 158P1D7, and provides an anti-tumor therapy, lessening the morbidity and/or mortality associated with malignancy.

The effectiveness of this modality of gene product knockdown is significant when measured in vitro or in vivo. Effectiveness in vitro is readily demonstrable through application of siRNAs to cells in culture (as described above) or to aliquots of cancer patient biopsies when in vitro methods are used to detect the reduced expression of 158P1D7 protein.

XV.) Kits/Articles of Manufacture

For use in the laboratory, prognostic, prophylactic, diagnostic and therapeutic applications described herein, kits are within the scope of the invention. Such kits can comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in the method, along with a label or insert comprising instructions for use, such as a use described herein. For example, the container(s) can comprise a probe that is or can be detectably labeled. Such probe can be an antibody or polynucleotide specific for a proteln or a gene or message of the invention, respectively. Where the method utilizes nucleic acid hybridization to detect the target nucleic acid, the kit can also have containers containing nucleotide(s) for amplification of the target nucleic acid sequence. Kits can comprise a container comprising a reporter, such as a biotinbinding protein, such as avidin or streptavidin, bound to a reporter molecule, such as an enzymatic, fluorescent, or radiolsotope label; such a reporter can be used with, e.g., a nucleic acid or antibody. The kitcan include all or part of the amino acid sequences in Figure 2 or Figure 3 or analogs thereof, or a nucleic acid molecule that encodes such amino acid sequences.

The kit of the invention will typically comprise the container described above and one or more other containers associated therewith that comprise matertals desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or instuctlons for use, and package inserts with instuctions for use.

A label can be present on or with the container to indicate that the composition is used for a specific therapy or nonTherapeutic application, such as a prognostic, prophylactic, diagnostic or laboratory applicalion, and can also indicate directions for either in vivo or in vitro use, such as those descrbed herein. Directions and or other information can also be included on an inser(s) or label(s) which is included with or on the kit. The label can be on or associated with the container. A label a can be on a container when letters, numbers or other characters forming the label are molded or etched into the container itself, a label can be associated with a container when it is present within a receplacle or carrier that also holds the container, e.g., as a package insert. The label can indicate that the composition is used for diagnosing, treating, prophylaxing or prognosing a condition, such as a neoplasia of a tissue set forth in Table I.

The terms "kit" and "article of manufacture" can be used as synonyms.
In another embodiment of the invention, an article(s) of manufacture contalning compositions, such as amino acid sequence(s), small molecule(s), nucleic acid sequence(s), and/or antibody(s), e.g., materials useful for the diagnosis, prognosis, prophylaxis and/or treatment of neoplasias of tissues such as those set forth in Table lis provided. The article of manufacture typically comprises at least one container and at least one label. Suitable containers include, for example, bottles, vlals, syringes, and test tubes. The containers can be formed from a variety of materals such as glass, metal or plastic. The container can hold amino acid sequence(s), small molecule(s), nucleic acid sequence(s), cell population(s) and/or antibody(s). In one embodiment, the container holds a polynucleotlde for use in examining the mRNA expression profile of a cell, together with reagents used for this purpose. In another embodiment a contaner comprises an antibody, binding fragment thereof or specific binding proteln for use in evaluating protein expression of 158P1D7 in cells and tissues, or for relevant laboratory, prognostic, diagnostic, prophylactic and therapeutic purposes; indications and/or directions for such uses can be included on or with such container, as can reagents and other compositions or tools used for these purposes. In another embodiment, a contalner comprises materials for eliciting a cellular or humoral immune response, together with associated indications and/or directions. In another embodiment, a container comprises materials for adoplive Immunotherapy, such as cytotoxic T cells (CTL) or helper T cells (HTL), logether with associated indications and/or directions; reagents and other compositions or tools used for such purpose can also be included.

The container can altematively hold a composition that is effective for teating, diagnosis, prognosing or prophylaxing a condition and can have a sterile access port (for example the container can be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The active agents in the composition can be an antibody capable of specifically binding 158P1D7 and modulating the function of 158P1D7.

The article of manufacture can further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution and/or dextrose solution. It can further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, stirrers, needles, syringes, and/or package inserts with indications and/or instructions for use.

EXAMPLES

Various aspects of the invention are further described and illustrated by way of the several examples that follow, none of which are intended to limit the scope of the invention.

Example 1: SSH-Generated Isolation of a cDNA Fragment of the 158P1D7 Gene

To isolate genes that are over-expressed in bladder cancer we used the Suppression Subtraclive Hybridization (SSH) procedure using cDNA derived from bladder cancer tissues, including invasive transitional cell carcinoma. The 158P1D7 SSH CDNA sequence was derived from a bladder cancer pool minus normal bladder cDNA subtraction. Included in the driver were also cDNAs derived from 9 other normal tissues. The 158P1D7 cDNA was identified as highly expressed in the bladder cancer tissue pool, with lower expression seen in a restricted set of normal lissues.

The SSH DNA sequence of 231 bp (Figure 1) has high homology ($230 / 231$ identity) to a hypothetical protein FLJ22774 (GenBank accession XM_033183) derived from a chromosome 13 genomic clone. A 158P107 cDNA cione (TurboScript3PX) of 2,555 bp was isolated from bladder cancer cDNA, revealling an ORF of 841 amino acids (Figure 2 and Figure 3).

The 158P107 protein has a signal sequence and a transmembrane domain and is predicted to be localized to the cell surface using the PSORT-I program (URL psort.nibb.ac.jp:8800/form.html). Amino acid sequence analysis of 158P1D7 reveals 100% identity over 798 amino acid region to a human hypothetical proteln FL22774 (GenBank Accession XP_033182)(Figure 4).

Materials and Methods
Human Tissues:
The bladder cancer patient tissues were purchased from several sources such as from the NDRI (Philadelphia, PA). mRNA for some normal tissues were purchased from Clontech, Palo Alto, CA.

RNA Isolation:
Tissues were homogenized in Trizol reagent (Life Technologles, Gibco BRL) using $10 \mathrm{ml} / \mathrm{g}$ tissue Isolate total RNA. Poly A RNA was purified from total RNA using Qiagen's Oligotex mRNA Mini and Midi kits. Total and mRNA were quantified by spectrophotometric analysis (O.D. $260 / 280 \mathrm{~nm}$) and analyzed by gel electrophoresis.

[^0]
Adaptor 1:
 5'CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAG3' (SEQ ID NO: 29)
 3'GGCCCGTCCTAG5' (SEQID NO: 30)

Adaptor 2:
5'GTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAG3' (SEQID NO: 31)
3^{\prime} CGGCTCCTAG5' (SEQID NO: 32)

PCR primer 1:
5'CTAATACGACTCACTATAGGGC3' (SEQ ID NO: ${ }^{33 \text {) }}$

Nested primer (NP)1:
5'TCGAGCGGCCGCCCGGGCAGGA3'
(SEQ ID NO: 34)

Nested primer (NP)2:
5'AGCGTGGTCGCGGCCGAGGA3' (SEQID NO: 35)

Suppression Subtractive Hybridization:

Suppression Subtractlve Hybridlzation (SSH) was used to identify CDNAs corresponding to genes that may be differentially expressed in bladder cancer. The SSH reaction utilized cDNA from bladder cancer and normal tissues.

The gene 158P1D7 sequence was derived from a bladder cancer pool minus normal bladder CDNA subtraction. The SSH DNA sequence (Figure 1) was idenlified.

The cDNA derived from of pool of normal bladder. tissues was used as the source of the "driver" cDNA, while the cDNA from a pool of bladder cancer tissues was used as the source of the "tester" cDNA. Double stranded cDNAs corresponding to tester and driver cDNAs were synthesized from $2 \mu \mathrm{~g}$ of poly $(\mathrm{A})+$ RNA isolated from the relevant xenograft tissue, as described above, using CLONTECH's PCR-Select CDNA Subtraction Kit and 1 ng of oligonucleotide DPNCDN as primer. First- and second-strand synthesis were carried out as described in the Kit's user manual protocol (CLONTECH Protocol No. PT1117-1, Catalog No. K1804-1). The resulting cDNA was digested with Dpn II for 3 hrs at $37^{\circ} \mathrm{C}$. Digested cDNA was extracted with phenol/chloroform (1:1) and ethanol precipitated.

Driver cDNA was generated by combining in a $1: 1$ ratio Dpn II digested CDNA from the relevant tissue source (see above) with a mix of digested cDNAs derived from the nine normal tissues: stomach, skeletal muscle, lung, braln, liver, kidney, pancreas, small intestine, and heart.

Tester cDNA was generated by diluting $1 \mu \mathrm{l}$ of Dpn II digested CDNA from the relevant tissue source (see above) (400 ng) in 5μ of water. The diluted cDNA $(2 \mu \mathrm{l}, 160 \mathrm{ng})$ was then ligated to 2μ l of Adaptor 1 and Adaptor $2(10 \mu \mathrm{M})$, in separale ligation reactions, in a total volume of 10μ at $16^{\circ} \mathrm{C}$ overnight, using $400 u$ of T4 DNA ligase (CLONTECH). Ligation was terminated with $1 \mu \mathrm{l}$ of 0.2 M EDTA and heating at $72^{\circ} \mathrm{C}$ for 5 min .

The first hybridization was performed by adding $1.5 \mu \mathrm{l}(600 \mathrm{ng})$ of driver cDNA to each of two tubes contaning 1.5 $\mu(20 \mathrm{ng})$ Adaptor 1 - and Adaptor 2 - ligated tester CDNA. In a final volume of 4μ, the samples were overlaid with mineral oil, denatured in an MJ Research thermal cycler at $98^{\circ} \mathrm{C}$ for 1.5 minules, and then were allowed to hybridize for 8 hrs at
$68^{\circ} \mathrm{C}$. The two hybridizations were then mixed together with an additional 1μ of fresh denatured driver CDNA and were allowed to hybridize overnight at $68^{\circ} \mathrm{C}$. The second hybridization was then diluted in 200μ of 20 mM Hepes, $\mathrm{pH} 8.3,50 \mathrm{mM}$ $\mathrm{NaCl}, 0.2 \mathrm{mM}$ EDTA, heated at $70^{\circ} \mathrm{C}$ for 7 min . and stored at $-20^{\circ} \mathrm{C}$.

PCR Amplification. Cloning and Sequencing of Gene Fragments Generated from SSH:

To amplify gene fragments resulting from SSH reactions, two PCR amplifications were performed. In the primary PCR reaction 1μ l of the diluted final hybridization mix was added to 1μ of PCR primer $1(10 \mu \mathrm{M}), 0.5 \mu \mathrm{dNTP}$ mix (10 $\mu \mathrm{M}), 2.5 \mu 10 \times$ reaction buffer (CLONTECH) and $0.5 \mu \mathrm{l} 50 \times$ Advantage cDNA polymerase Mix (CLONTECH) in a final volume of 25μ. PCR 1 was conducted using the following conditions: $75^{\circ} \mathrm{C}$ for 5 min ., $94^{\circ} \mathrm{C}$ for 25 sec ., then 27 cycles of $94^{\circ} \mathrm{C}$ for $10 \mathrm{sec}, 66^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1.5 min . Five separate primary PCR reactions were performed for each experiment. The producis were pooled and diluted 1:10 with water. For the secondary PCR reaction, $1 \mu \mathrm{l}$ from the pooled and diluted primary PCR reaction was added to the same reaction mix as used for PCR 1, except that primers NP1 and NP2 $(10 \mu \mathrm{M})$ were used instead of PCR primer 1. PCR 2 was performed using $10-12$ cycles of $94^{\circ} \mathrm{C}$ for $10 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for 30 sec , and $72^{\circ} \mathrm{C}$ for 1.5 minutes. The PCR products were analyzed using 2% agarose gel electrophoresis.

The PCR products were inserted Into PCR2.1 using the T/A vector cloning kit (Invitrogen). Transformed E. coli were subjected to blue/white and ampicillin selection. White colonies were picked and arrayed into 96 well plates and were grown in liquid culture overnight. To identify inserts, PCR amplification was performed on 1 ml of bacterial culture using the conditlons of PCR1 and NP1 and NP2 as primers. PCR products were analyzed using 2% agarose gel electrophoresis.

Bacterial clones were stored in 20% glycerol in a 96 well format. Plasmid DNA was prepared, sequenced, and subjected to nuclelc acld homology searches of the GenBank, dBest, and NCI-CGAP databases.

RT-PCR Expression Analysis:
First strand cDNAs can be generated from $1 \mu \mathrm{~g}$ of mRNA with oligo (ol) $12-18$ priming using the Gibco-BRL Superscript Preamplification system. The manufacturer's protocol was used which included an incubation for 50 min at $42^{\circ} \mathrm{C}$ with reverse transcriptase followed by RNAse H treatment at $37{ }^{\circ} \mathrm{C}$ for 20 min . After completing the reaction, the volume can be increased to $200 \mu \mathrm{l}$ with water prior to normalization. First strand cDNAs from 16 different normal human tssues can be obtained from Clontech.

Normalization of the first strand cDNAs from multiple tissues was performed by using the primers
5'atatcgccgcgctcgicgtcgacaa3' (SEQ ID NO: 36) and 5'agccacacgcagctcattglagaagg 3' (SEQ ID NO: 37) to amplify β-actin. First strand CDNA $(5 \mu \mathrm{l})$ were amplified in a total volume of $50 \mu \mathrm{l}$ containing $0.4 \mu \mathrm{M}$ primers, $0.2 \mu \mathrm{M}$ each dNTPs , 1XPCR buffer (Clontech, 10 mM Tris- $\mathrm{HCL}, 1.5 \mathrm{mM} \mathrm{MgCl} 2,50 \mathrm{mM} \mathrm{KCl}, \mathrm{pH} 8.3$) and $1 \mathrm{X} \mathrm{Klentaq} \mathrm{DNA} \mathrm{polymerase} \mathrm{(Clontech)} .\mathrm{Five} \mu \mathrm{l}$ of the PCR reaction can be removed at 18,20 , and 22 cycles and used for agarose gel electrophoresis. PCR was performed using an MJ Research thermal cycder under the following conditions: Initial denaturation can be at $94^{\circ} \mathrm{C}$ for 15 sec, followed by a 18,20 , and 22 cycles of $94^{\circ} \mathrm{C}$ for $15,65^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 5 sec . A final extension at $72^{\circ} \mathrm{C}$ was carrled out for 2 min . After agarose gel electrophoresis, the band intenslties of the $283 \mathrm{~b} . \mathrm{p} . \beta$-actin bands from multiple tissues were compared by visual inspection. Dilution factors for the first strand CDNAs were calculated to result in equal β-actin band intensities in all tissues after 22 cycles of PCR. Three rounds of normalization can be required to achieve equal band intensities in all tissues after 22 cycles of PCR.

To determine expression levels of the 158P1D7 gene, 5μ l of normalized first strand cDNA were analyzed by PCR using 26 , and 30 cycles of amplification. Semi-quantitative expression analysis can be achieved by comparing the PCR products at cycle numbers that give light band intensitles. The primers used for RT-PCR were designed using the 158P1D7 SSH sequence and are listed below:

158P1D7. 1
 5' ATAAGCTTTCAATGTTGCGCTCCT 3' (SEQ ID NO: 38)

158P1D7. 2

5' TGTCAACTAAGACCACGTCCATTC3' (SEQ ID NO: 39)

A typical RT-PCR expression analysis is shown in Figure 6. RT-PCR expression analysis was performed on first strand CDNAs generated using pools of tissues from multiple samples. The CDNAs were shown to be normalized using betaaclin PCR. Expression of 158P1D7 was observed in bladder cancer pool.

Example 2: Full Length Cloning of 158P1D7

The 158P1D7 SSH cDNA sequence was derived from a bladder cancer pool minus normal bladder CDNA subtraction. The SSH cDNA sequence (Figure 1) was designated 158P1D7. The full-length cDNA clone 158P1D7-clone TurboScript3PX (Figure 2) was cloned from bladder cancer pool cDNA.

158P1D7 done CDNA was deposited under the terms of the Budapest Treaty on 22 August 2001, with the American Type Culture Collection (ATCC; 10801 University Blvd., Manassas, VA 20110-2209 USA) as plasmid p158P1D7Turbo/3PX, and has been assigned Accession No. PTA-3662.

Example 3: Chromosomal Mapping of 158P1D7

Chromosomal localization can implicate genes in disease pathogenesis. Several chromosome mapping approaches are available including fluorescent in situ hybridization (FISH), human/hamster radiation hybrid (RH) panels (Walter et al., 1994; Nature Genetics 7:22; Research Genetics, Huntsville Al), human-rodent somatic cell hybrid panels such as is available from the Coriell Inslitute (Camden, New Jersey), and genomic viewers utilizing BLAST homologies to sequenced and mapped genomic clones (NCBI, Bethesda, Maryland).

158P1D7 maps to chromosme 13, using 158P1D7 sequence and the NCBI BLAST tool: (wordd wide web URL ncbi.nlm.nih.gov/genome/seq/page.cgiPF=HsBlast.htmI\&\&ORG=Hs). This is a region of frequent amplification in bladder cancer (Prat et al., Urology 2001 May;57(5):986-92; Muscheck et al., Carcinogenesis 2000 Sep;21(9):1721-26) and is assoclated with rapid tumor cell prolferation in advanced bladder cancer (Tomovska et al., Int J Oncol 2001 Jun; 18(6):123944).

Example 4: Expression analysis of 158P1D7 in normal tissues and patient specimens

Analysis of 158P1D7 by RT-PCR is shown in Figure 6. Strong expression of 158P1D7 is observed in bladder cancer pool and breast cancer pool. Lower levels of expression are observed in VP1, VP2, xenograft pool, prostate cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, and metastasis pool.

Extensive northern blot analysis of 158P1D7 in 16 human normal tissues confirms the expression observed by RTPCR (Figure 7). Two transcripts of approximately 4.6 and 4.2 kb are delected in prostate and, to lower levels, in heart, placenta, liver, small intestine and colon.

Northern blot analysis on patient tumor specimens shows expression of 158P1D7 in most bladder tumor tissues tested and in the bladder cancer cell line SCaBER (Figure 8A and 8B). The expression detected in normal adjacent tissues (isolated from patients) but not in normal tissues (isolated from a healthy donor) may indicate that these tissues are not fully normal and that 158P1D7 may be expressed in early stage tumors. Expression of 158P1D7 is also detected in 2 of 4 lung cancer cell lines, and in all 3 lung cancer tissues tested (Figure 9). In breast cancer samples, 158P1D7 expression is
observed in the MCF7 and CAMA- 1 breast cancer cell lines, in breast tumor tissues isolated from breast cancer patients, but not in normal breast tissues (Figure 10). 158P1D7 shows expression in melanoma cancer. RNA was extracted from normal skin cell line Detrol-551, and from the melanoma cancer cell line A375. Northern blots with 10 ug of total RNA were probed with the 158P1D7 DNA probe. Results show expression of 158P1D7 in the melanoma cancer cell line but not in the normal cell line (Figure 20). 158P1D7 shows expression in cervical cancer patient specimens. First strand cDNA was prepared from normal cervix, cervical cancer cell line Hela, and a panel of cervical cancer patient specimens. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 158P1D7, was performed at 26 and 30 cycles of amplification. Results show expression of 158P1D7 in 5 out of 14 tumor specimens tested but not in normal cervix nor in the cell line (Figure 21).

The restricted expression of 158P1D7 in normal tissues and the expression detected in prostate cancer, bladder cancer, colon cancer, lung cancer, ovarian cancer, breast cancer, melanoma cancer, and cervical cancer suggest that 158P1D7 is a potential therapeutic target and a diagnoslic marker for human cancers.

Example 5; Production of Recombinant 158P1D7 in Prokaryotic Systems

To express recombinant 158P1D7 and 158P1D7 variants in prokaryotic cells, the full or partial length 158P1D7 and 158P1D7 varlant cDNA sequences are cloned into any one of a variety of expresslon vectors known in the art. One or more of the following regions of 158P1D7 variants are expressed: the full length sequence presented in Figures 2 and 3 , or any 8 , $9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30$ or more contiguous amino acids from 158P1D7, variants, or analogs thereof.
A. In vitro transcription and translation constructs:
pCRII: To generate 158P1D7 sense and anti-sense RNA probes for RNA in sftu investigations, pCRII constructs (Invitrogen, Carlsbad CA) are generated encoding either all or fragments of the 158P1D7 CDNA. The pCRil vector has Sp6 and 77 promoters flanking the insert to drive the transcription of 158P1D7 RNA for use as probes in RNA in situ hybridization experiments. These probes are used to analyze the cell and tissue expression of 158P1D7 at the RNA level. Transcribed 158P1D7 RNA representing the cDNA amino acid coding region of the 158P1D7 gene is used in in vitro translation systems such as the TnTTM Coupled Retliculolysate System (Promega, Corp., Madison, WI) to synthesize 158P1D7 protein.
B. Bacterial Constructs:
pGEX Constructs: To generate recombinant 158P1D7 proteins in bacteria that are fused to the Glutathione S transferase (GST) protein, all or parts of the 158P1D7 cDNA protein coding sequence are cloned into the pGEX family of GST-fusion vectors (Amersham Pharmacia Biotech, Piscataway, NJ). These constructs allow controlled expression of recombinant 158P107 protein sequences with GST fused at the amino-terminus and a slx histidine epitope (6 XHIs) at the carboxyl-terminus. The GST and 6X His tags permit purification of the recombinant fusion protein from induced bacteria with the appropriate affinity matrix and allow recognilion of the fusion protein with anti-GST and anti-His antibodies. The 6X His tag is generated by adding 6 histidine codons to the cloning primer at the 3^{\prime} end, e.g., of the open reading frame (ORF). A proteolytic cleavage site, such as the PreScission ${ }^{\text {TM }}$ recognition site in PGEX-6P-1, may be employed such that it permits cleavage of the GST tag from 158P107-related protein. The ampicillin resistance gene and pBR322 orgin permilts selection and maintenance of the pGEX plasmids in E. coli.
pMAL Constructs: To generate, in bacteria, recombinant 158P1D7 proteins that are fused to mallose-binding proteln (MBP), all or parts of the 158P1D7 cDNA protein coding sequence are fused to the MBP gene by cloning into the pMAL-c2X and pMAL-p2X vectors (New England Biolabs, Beverly, MA). These constructs allow controlled expression of recombinant 158P1D7 protein sequences with MBP fused at the amino-terminus and a $6 \times$ His epltope tag at the carboxylterminus. The MBP and $6 \times$ His tags permit purification of the recombinant protein from induced bacteria with the appropriate
affinity marrix and allow recognition of the fusion protein with anti-MBP and anti-His antibodies. The 6 XHis epitope tag is generated by adding 6 histidine codons to the 3^{\prime} cloning primer. A Factor Xa recognition site permits cleavage of the PMAL tag from 158P1D7. The pMAL-c2X and pMAL-p2X vectors are optimized to express the recombinant protein in the cytoplasm or periplasm respectively. Periplasm expression enhances folding of proteins with disulfide bonds. Amino acids 356-608 of 158P1D7 variant 1 have been cloned into the pMALc2X vector.

DET Constructs: To express 158P1D7 In bacterial cells, all or parts of the 158P1D7 CDNA proteln coding sequence are cloned into the pET family of vectors (Novagen, Madison, WI). These vectors allow tightly controlled expression of recombinant 158P107 protein in bacteria with and without fusion to proteins that enhance solubility, such as NusA and thioredoxin (TIX), and epitope tags, such as $6 \times$ His and S-Tag ${ }^{\text {Tu4 }}$ that aid purification and detection of the recombinant protein. For example, constructs are made utilizing pET NusA fusion system 43.1 such that regions of the 158P1D7 protein are expressed as amino-terminal fusions to NusA.

C. Yeast Construcls:

pESC Construcis: To express 158P1D7 in the yeast species Saccharomyces cerevisiae for generation of recombinant protein and functional studies, all or parts of the 158P1D7 cDNA protein coding sequence are cloned into the DESC family of vectors each of which contain 1 of 4 selectable markers, HIS3, TRP1, LEU2, and URA3 (Stratagene, La Jolla, CA). These vectors allow controlled expression from the same plasmld of up to 2 different genes or cloned sequences containing either FlagTM or Myc epitope tags in the same yeast cell. This system is useful to confirm protein-protein interactions of 158P1D7. In addition, expression in yeast yields similar post-translational modifications, such as glycosylations and phosphorylations, that are found when expressed in eukaryolic cells.

DESP Constructs: To express 158P1D7 in the yeast species Saccharomyces pombe, all or parts of the 158P1D7 CDNA protein coding sequence are cloned into the pESP family of vectors. These vectors allow controlled high level of expression of a 158P1D7 protein sequence that is fused at either the amino terminus or at the carboxyl terminus to GST which aids purification of the recombinant protein. A Flag ${ }^{\text {TM }}$ epitope tag allows detection of the recombinant protein with antiFlag $^{\mathrm{TM}}$ antibody.

Example 6: Production of Recombinant 158P1D7 In Eukaryotic Systems

A. Mammalian Constructs:

To express recombinant 158P1D7 in eukaryotic cells, the full or partial length 158P1D7 cDNA sequences were cloned into any one of a variety of expression vectors known in the art. One or more of the following reglons of 158P1D7 were expressed in these constructs, amino acids 1 to 841 , or any $8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23$, $24,25,26,27,28,29,30$ or more contlguous amino acids from 158P1D7 v.1; amino acids 1 to 732 of v.3; amino acids 1 to 395 of v. 4 ; amino acids 1 to 529 of v.6; or any $8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28$, 29, 30 or more contiguous amino acids from 158P1D7 varlants, or analogs thereof.

The constructs can be transfected into any one of a wide variety of mammalian cells such as 293 T cells. Transfected 293T cell lysates can be probed with the anti-158P1D7 polyclonal serum, described herein.
pcDNA4/HIsMax Constructs: To express 158P1D7 in mammalian cells, a 158P1D7 ORF, or portions thereof, of 158P1D7 are cloned into pCDNA4/HisMax Version A (Invitrogen, Carlsbad, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter and the SP16 translational enhancer. The recombinant protein has Xpress ${ }^{7 M}$ and six histidine (6 XHis) epitopes fused to the amino-terminus. The pCDNA4/HisMax vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Zeocin
resistance gene allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColE1 origin permits selection and maintenance of the plasmid in E. coli.
pcDNA3.1/Mychis Constructs: To express 158P1D7 in mammalian cells, a 158P1D7 ORF, or portions thereof, of 158P1D7 with a consensus Kozak translation initiation site was cloned into pcDNA3.1/Mychis Version A (Invitrogen, Carlsbad, CA). Protein expression was driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the myc epitope and 6X His epitope fused to the carboxyl-terminus. The pcDNA3.1/MycHis vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stabillity, along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin resistance gene can be used, as it allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and CoIE1 origin permits selection and maintenance of the plasmid in E. coll.

The complete ORF of 158P1D7 v. 1 was cloned into the pcDNA3.1/Mychis construct to generale 158P1D7.pcDNA3.1/MycHis. Figure 23 shows expression of 158P1D7.pcDNA3.1/Mychis following transfection into 293T cells. 293T cells were transfected with either 158P1D7.pcDNA3.1/Mychis or pcDNA3.1/Mychis vector control. Forty hours later, cells were collected and analyzed by flow cytometry using anti-158P1D7 monoclonal antibodies. Results show expression of 158P1D7 from the 158P1D7.pCDNA3.1/Mychis construct on the surface of transfected cells.
pCDNA3.1/CT-GFP-TOPO Construct: To express 158P1D7 in mammalian cells and to allow detection of the recombinant proteins using fluorescence, a 158P1D7 ORF, or portions thereof, with a consensus Kozak transiation initiation site are cloned into pCDNA3.1/CT-GFP-TOPO (Invitrogen, CA). Protein expression is driven from the cytomegalovinus (CMV) promoter. The recombinant proteins have the Green Fluorescent Protein (GFP) fused to the carboxyl-terminus facilitaing non-invasive, in vivo detection and cell biology studies. The pCDNA3.1CT-GFP-TOPO vector also contalns the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin resistance gene allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and CoIE1 origin permits selection and maintenance of the plasmid in E. coli. Additional constructs with an aminoterminal GFP fusion are made in pcDNA3.1/NT-GFP-TOPO spanning the entire length of a 158P1D7 proteln.

PAPtag: A 158P1D7 ORF, or portions thereof, is cloned into pAPtag-5 (GenHunter Corp. Nashville, TN). This construct generates an alkaline phosphatase fusion at the carboxyl-terminus of a 158P1D7 protein while fusing the IgGk signal sequence to the amino-terminus. Constructs are also generated in which alkaline phosphatase with an amino-terminal $\lg \mathrm{G} \mathrm{k}$ signal sequence is fused to the amino-terminus of a 158P1D7 protein. The resultung recombinant 158P1D7 proteins are optimized for secretion into the media of transfected mammalian cells and can be used to identify proteins such as ligands or receptors that interact with 158P1D7 proteins. Protein expression is driven from the CMV promoter and the recombinant proteins also contain myc and 6X His epitopes fused at the carboxyl-terminus that facilitates detection and purification. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the recombinant protein and the ampicilin resistance gene permits selection of the plasmid \ln E. coll.
pTag5: A 158P1D7 ORF, or portions thereof, were cloned into pTag-5. This vector is similar to pAPtag but without the alkaline phosphatase fusion. This construct generated a 158P1D7 protein with an amino-terminal lgGx signal sequence and myc and 6 X His epitope tags at the carboxyl-terminus that facilitate detection and affinity purification. The resulting recombinant 158P1D7 protein was optimized for secretion into the media of transfected mammalian cells, and was used as Immunogen or ligand to identify proteins such as ligands or receptors that interact with the 158P1D7 proteins Protein expression is driven from the CMV promoter. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the proteln, and the ampicillin resistance gene permits selection of the plasmid in E. coll.

The extracellular domain, amino acids 16-608, 27-300, and 301-608, of 158P1D7 v. 1 were cloned into the pTag5 construct to generate 158P1D7(16-608).pTag5, 158P1D7(27-300).pTag5, and 158P1D7(301-608).pTag5 respectively. Expression and secretion of the various segments of the extraceilular domaln of 158P1D7 following vector transfection into 293T cells was confirmed.

PsecFc: A 158P1D7 ORF, or portions thereof, was also cloned into psecFc. The psecFc vector was assembled by doning the human immunoglobulin $\mathrm{G1}$ (IgG) Fc (hinge, $\mathrm{CH} 2, \mathrm{CH} 3$ regions) into pSecTag 2 (Invitrogen, Califomia). This construct generates an $\operatorname{IgG1}$ Fc fusion at the cartoxyl-terminus of the 158P1D7 proteins, while fusing the IgGK signal sequence to N -terminus. 158P1D7 fusions utilizing the murine $\lg \mathrm{G} 1 \mathrm{Fc}$ region are also used. The resulting recombinant 158P1D7 proteins are optimized for secretion into the media of transfected mammalian cells, and can be used as immunogens or to identify proteins such as ligands or receptors that interact with 158P1D7 proteln. Proteln expression is driven from the CMV promoter. The hygromycin resistance gene present in the vector allows for selection of mammalian cells that express the recombinant protein, and the ampicillin resistance gene permits selection of the plasmid in E. coll.

The extracellular domain amino acids $16-608$ of 158P1D7 v. 1 was cloned into the psecFc construct to generate 158P1D7(16-608).psecFc.
pSRa Constructs: To generate mammalian cell lines that express 158P1D7 constitutively, 158P1D7 ORF, or portions thereof, of 158P1D7 were cloned into pSR α constructs. Amphotropic and ecotropic retroviruses were generated by transfection of pSR α constructs into the 293T-10A1 packaging line or co-transfection of $p S R \alpha$ and a helper plasmid (containing deleted packaging sequences) into the 293 cells, respectively. The retrovirus is used to infect a variety of mammalian cell lines, resulting in the integration of the cloned gene, 158P1D7, into the host cell-lines. Protein expression is driven from a long terminal repeat (LTR). The Neomycin resistance gene present in the vector allows for selection of mammalian cells that express the protein, and the ampldillin resistance gene and ColE1 origin permit selection and maintenance of the plasmid in E. coli. The retroviral vectors can thereafter be used for infection and generation of various cell lines using, for example, PC3, NHH 3T3, TsuPr1, 293 or rat-1 cells.

The complete ORF of 158P1D7 v. 1 was cloned Into the pSR α construct to generate 158P1D7.pSR α. Figure 23 shows expression of 158P1D7.pSR α following trasnduction into UMUC3 cells. UMUC-3 cells were transduced with elther 158P1D7.pSR α or vector control. Forty hours later, cells were collected and analyzed by flow cytometry using anti-158P1D7 monoclonal antibodies. Results show expression of 158P1D7 from the 158P1D7.pSRa construct on the surface of the cells.

Additional pSRoc construcls are made that fuse an epitope tag such as the FLAGTM tag to the carboxyl-terminus of 158P1D7 sequences to allow detection using anti-Flag antbodies. For example, the FLAG ${ }^{\text {TM }}$ sequence 5^{\prime} gat tac aag gat gac gac gat aag 3 ' (SEQ ID NO: 40) is added to cloning primer at the 3^{\prime} end of the ORF. Additional pSR α constructs are made to produce both amino-terminal and carboxyl-terminal GFP and mycl6X His fusion proteins of the full--ength 158P1D7 proteins.

Additional Viral Vectors: Additional constructs are made for viral-mediated delivery and expression of 158P1D7. High virus titer leading to high level expression of 158P1D7 is achieved in viral delivery systems such as adenoviral vectors and herpes amplicon vectors. A 158P1D7 coding sequences or fragments thereof are amplified by PCR and subcloned into the AdEasy shuttle vector (Stratagene). Recombination and virus packaging are performed according to the manufacturer's instructions to generate adenoviral vectors. Alternatively, 158P1D7 coding sequences or fragments thereof are cloned into the HSV-1 vector (Imgenex) to generate herpes viral vectors. The viral vectors are thereafter used for infection of various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells.

Regulated Expression Systems: To control expression of 158P1D7 in mammallian cells, coding sequences of 158P1D7, or portions thereof, are cloned into regulated mammalian expression systems such as the T-Rex System
(Invitrogen), the GeneSwitch System (Invitrogen) and the tightly-regulated Ecdysone System (Sratagene). These systems allow the study of the temporal and concentration dependent effecis of recombinant 158P1D7. These vectors are thereafter used to control expression of 158P1D7 in various cell Ines such as PC3, NIH 3T3, 293 or rat-1 cells.

B. Baculovirus Expression Systems

To generate recombinant 158P1D7 proteins in a baculovirus expression system, 158P1D7 ORF, or portions thereof, are cloned into the baculovirus transfer vector pBlueBac 4.5 (Invitrogen), which provides a His-tag at the N -terminus. Specifically, pBlueBac-158P1D7 is co-transfected with helper plasmid pBac-N-Blue (Invitrogen) into SF9 (Spodoptera frugiperda) insect cells to generate recombinant baculovirus (see Invitrogen instruction manual for details). Baculovirus is then collected from cell supematant and purified by plaque assay.

Recombinant 158P1D7 protein is then generated by infection of HighFive insect cells (Invitrogen) with purified baculovirus. Recombinant 158P1D7 protein can be detected using ant-158P1D7 or antl-His-tag antibody. 158P1D7 protein can be purified and used in various cell-based assays or as immunogen to generate polyclonal and monoclonal antibodies specific for 158P1D7.

Example 7 Antigenicity Proflles and Secondany Structure

Figure $11(\mathrm{a})$-(d), Figure 12(a)-(d), Figure 13 (a)-(d), Figure 14(a)-(d), and Figure 15(a)-(d) depict graphically five amino acid profiles each of 158P1D7 protein variants 1, 3, 4, and 6, each assessment available by accessing the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/prolscale.pl) on the ExPasy molecular biology server.

These profiles: Figure 11, Hydrophilicity, (Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824 3828); Figure 12, Hydropathicity, (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132); Figure 13, Percentage Accessible Residues (Janin J., 1979 Nature 277:491-492); Figure 14, Average Flexibility, (Bhaskaran R., and Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255); Figure 15, Beta-turn (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294); and optionally others avallable in the art, such as on the ProtScale website, were used to identify antigenic regions of each of the 158P1D7 variant proteins. Each of the above amino acid profiles of 158P1D7 variants were generated using the following ProtScale parameters for analysls: 1) A window size of 9 ; 2) 100% weight of the window edges compared to the window center; and, 3) amino acid profile values normalized to lle between 0 and 1.

Hydrophilicity (Figure 11), Hydropathicity (Figure 12) and Percentage Accessible Residues (Figure 13) profiles were used to determine stretches of hydrophilic amino acids (i.e., values greater than 0.5 on the Hydrophilicity and Percentage Accessible Residues profile, and values less than 0.5 on the Hydropathicity profile). Such regions are lkely to be exposed to the aqueous environment, be present on the surface of the protein, and thus available for immune recognition, such as by antibodies.

Average Flexibility (Figure 14) and Beta-turn (Figure 15) profiles determine stretches of amino acids (i.e., values greater than 0.5 on the Beta-turn profile and the Average Flexibility profile) that are not constrained in secondary structures such as beta sheets and alpha helices. Such reglons are also more likely to be exposed on the protein and thus accessible to immune recognition, such as by antibodies.

Antigenlc sequences of the 158P1D7 variant protelns Indicated, e.g., by the profiles set forth in Figures 11(a)-(d), Figure 12(a)-(d), Figure 13(a)-(d), Figure 14(a)-(d), and Figure 15(a)-(d) are used to prepare immunogens, either peptides or nucleic acids that encode them, to generate therapeutic and diagnostic anti-158P1D7 antibodies. The immunogen can be any $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,30,35,40,45,50$ or more than 50 contiguous amino acids, or the corresponding nucleic acids that encode them, from the 158P1D7 protein variants listed in Figures 2 and 3. In particular, peptide immunogens of the invention can comprise, a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the

Hydrophilicity profiles of Figure 11; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number Increment that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of Figures 12; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profiles of Figure 13; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profiles on Figure 14; and, a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that Includes an amino acid position having. a value greater than 0.5 in the Beta-turn profile of Figures 15. Peptide immunogens of the invention can also comprise nucleic acids that encode any of the forgoing.

All immunogens of the invention, peptide or nucleic acid, can be embodled in human unit dose form, or comprised by a composition that includes a pharmaceutical excipient compatible with human physiology.

The secondary structure of 158P1D7 protein variants $1,3,4$, and 6 , namely the predicted presence and location of alpha helices, extended strands, and random coils, are predicted from the primary amino acid sequence using the HNN Hierarchical Neural Network method (NPS@: Network Protein Sequence Analysis TIBS 2000 March Vol. 25, No 3 [291]:147-• 150 Combet C., Blanchet C., Geourjon C. and Deléage G., http.J/pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_nn.htmil), accessed from the ExPasy molecular biology server (http://www.expasy.ch/tools). The aṇalysis indicates that 158P1D7 variant 1 is composed of 35.32% alpha helix, 15.93% extended strand, and 48.75% random coil (Figure 16A). Varlant 3 is composed of 34.97% alpha helix, 16.94% extended strand, and 48.09% random coll (Figure 16B). Variant 4 is composed of 24.56% alpha helix, 20.76% extended strand, and 54.68 \% random coil (Figure 16C). Variant 6 is composed of 28.92% alpha helix, 17.96\% extended strand, and 53.12\% random coil (Figure 16D).

Analysis for the potential presence of transmembrane domains in the 158P1D7 variant proteins was carried out using a variety of transmembrane prediction algorithms accessed from the ExPasy molacular biology server (http://www.expasy.ch/tools). Shown graphically in figure $16 \mathrm{E}, 16 \mathrm{G}, 16 \mathrm{I}, 16 \mathrm{~K}$, are the results of analysis of variants $1,3,4$, and 6 , respectively, using the TMpred program. In figure $16 \mathrm{~F}, 16 \mathrm{H}, 16 \mathrm{I}$, 16 L are the results of variants $1,3,4$, and 6 , respectively, using the TMHMM program. Both the TMpred program and the TMHMM program predict the presence of 1 transmembrane domaln in variant 1 and 3. Variants 4 and 6 are not predicted to contain transmembrane domains. All variants contain a stretch of hydrophobic amino acid sequence at their amino terminus that may encode a signal peptide. Analyses of 158P1D7 and 158P1D7 variants using other structural prediction programs are summarized in Table LVI.

Example 8: Generation of 158P1D7 Polyclonal Antlbodies

Polyclonal antibodles can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by mulliple subcutaneous or intraperitoneal injections. In addition to immunizing with a full length 158P1D7 protein variant, computer algorithms are employed in design of immunogens that, based on amino acid sequence analysis contain characteristics of being antigenic and available for recognition by the immune system of the immunized host (see the Example entitled "Antigenicity Profiles and Secondary Structure"). Such regions would be predicted to be hydrophilic, flexible, in beta-turn conformations, and be exposed on the surface of the protein (see, e.g., Figure 11, Figure 12, Figure 13, Figure 14, or Figure 15 for amino acid profiles that indicate such reglons of 158P1D7 protein variants $1,3,4$, and 6).

For example, recombinant bacterial fusion proteins or peptides containing hydrophilic, flexible, beta-urn regions of 158 P 107 prolein variants are used as antigens to generate polyclonal antbodies in New Zealand White rabbits or monoclonal antibodies as described in Example 9. For example, in 158P1D7 varlant 1, such reglons include, but are not limited to, amino acids $25-45$, amino acids $250-385$, and amino acids 694-730. It is useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such Immunogenic proteins include,
bul are not limilted to, keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, and soybean trypsin inhlbitor. In one embodiment, a peptide encoding amino acids 274-285 of 158P1D7 variant i was synthesized and conjugated to KLH. This peptide is then used as immunogen. Alternatively the immunizing agent may include all or portions of the 158P1D7 variant proteins, analogs or fusion proteins thereof. For example, the 158P1D7 variant 1 amino acid sequence can be fused using recombinant DNA techniques to any one of a varlety of fusion protein partners that are well known in the art, such as glutathione-S-transferase (GST) and HIS tagged fusion proteins. In another embodiment, amino acids 27-300 of 158P1D7 variant 1 is fused to GST using recombinant techniques and the pGEX expression vector, expressed, purified and used to immunize a rabbit. Such fusion protelns are purfied from induced bacteria using the appropriate affinity matrix.

Other recombinant bacterial fusion proteins that may be employed include maltose binding protein, LacZ, thioredoxin, NusA, or an immunoglobulin constant region (see the section entitled "Production of 158P1D7 in Prokaryotic Systems" and Current Protocols in Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubul et al. eds., 1995; Unsley, P.S., Brady, W., Urnes, M., Grosmaire, L., Damle, N., and Ledbetter, L.(1991) J.Exp. Med. 174, 561-566).

In addition to bacterial derived fustion proteins, mammalian expressed protein antigens are also used. These anligens are expressed from mammalian expression vectors such as the Tag5 and Fc-fusion vectors (see the section entitled "Production of Recombinant 158P1D7 in Eukaryotic Systems"), and retain post-translational modifications such as glycosylations found in native protein. In one embodiment, amino acids 16-608 of 158P1D7 variant 1 was cloned into the Tag5 mammalian secretion vector, and expressed in 293T cells. The recomblnant proteln was purified by metal chelate chromatography from tissue culture supernatants of 293T cells stably expressing the recombinant vector. The purified Tag5 158P1D7 variant 1 protein is then used as immunogen.

During the immunization protocol, it is useful to mix or emulsify the antigen in adjuvants that enhance the immune response of the host animal. Examples of adjuvanis include, but are not limited to, complete Freund's adjuvant (CFA) and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

In a typical protocol, rabbits are initially immunlzed subcutaneously with up to $200 \mu \mathrm{~g}$, typically $100-200 \mu \mathrm{~g}$, of fusion proteln or peptide conjugated to KLH mixed in complete Freund's adjuvant (CFA). Rabbits are then injected subcutaneously every two weeks with up to $200 \mu \mathrm{~g}$, typically $100-200 \mu \mathrm{~g}$, of the immunogen in incomplete Freund's adjuvant (IFA). Test bleeds are taken approximately 7:10 days following each immunization and used to monitor the titer of the antiserum by ELISA.

To test reactivity and specificity of immune serum, such as the rabbit serum derlved from immunization with the GST-fusion of 158P1D7 variant 1 protein, the full-length 158P1D7 variant 1 CDNA is cloned into pCDNA 3.1 myc-his expression vector (Invitrogen, see the Example entitled "Production of Recombinant 158P1D7 in Eukaryotic Systems"). After transfection of the constructs into 293T cells, cell lysates are probed with the anti-158P1D7 serum and with anti-His antibody (Santa Cruz Blotechnologles, Sania Cruz, CA) to determine specific reactivity to denatured 158P1D7 protein using the Western blot technique. In addition, the immune serum is tested by fluorescence microscopy, flow cytometry and immunoprecipitation against 293T and other recombinant 158P1D7-expressing cells to determine specific recognition of native protein. Westem blot, immunoprecipitation, fluorescent microscopy, and flow cytometric techniques using cells that endogenously express 158P1D7 are also carried out to test reactivity and spedficity.

Anti-serum from rabbits immunized with 158P1D7 variant fusion proteins, such as GST and MBP fusion proteins, are purified by depletion of antibodies reactive to the fusion partner sequence by passage over an affinity column containing the fusion partner either alone or in the context of an irrelevant fuslon proteln. For example, antiserum derived from a GST158P1D7 variant 1 fuston protein is first purified by passage over a column of GST protein covalently coupled to AffiGel matrix (BioRad, Hercules, Calif.). The antiserum is then affinity purified by passage over a column composed of a MBP-

158P1D7 fusion protein covalently coupled to Affigel matrix. The serum is then further purfied by proteln G affinity chromatography to isolate the lgG fraction. Sera from other His-lagged antigens and peptide immunized rabbils as well as fusion partner depleted sera are affinity purified by passage over a column matrix composed of the original protein immunogen or free peptide.

Example 9: Generation of 158P1D7 Monocional Antibodies (mAbs)

In one embodiment, therapeutic mAbs to 158P1D7 variants comprise those that react with epitopes specific for each variant protein or specific to sequences in common between the variants that would bind, intemalize, disrupt or modulate the biological function of the 158P1D7 variants, for example those that would disrupt the interaction with ligands and binding partners. Immunogens for generation of such mAbs include those designed to encode or contain the extracellular domain or the entire 158P1D7 protein variant sequence, regions predicted to contain functional motifs, and regions of the 158P1D7 protein variants predicted to be anligenic from computer analysis of the amino acid sequence (see, e.g., Figure 11, Figure 12, Figure 13, Figure 14, or Figure 15, and the Example entitled "Antigeniclty Profies and Secondary Structure"). Immunogens indude peptides, recombinant bacterial protelins, and mammalian expressed Tag 5 protejns and human and murine IgG FC fusion proteins. In addition, pTAG5 protein, DNA vectors encoding the pTAG5 cells engineered to express high levels of a respective 158P1D7 variant, such as 293T-158P1D7 variant 1 or 3T3, RAT, or 300.19-158P1D7 variant 1murine Pre-B cells, are used to immunize mice.

To generate mAbs to a 158P1D7 variant, mice are first immunized intraperitoneally (IP) with, typically, 10-50 $\mu \mathrm{g}$ of protein immunogen or 107 158P107-expressing cells mixed in complete Freund's adjuvant. Mice are then subsequently immunized IP every 2-4 weeks with, typlcally, $10-50 \mu \mathrm{~g}$ of proteln Immunogen or 107 cells mixed In incomplete Freund's adjuvant. Alternatively, MPL-TDM adjuvant is used in immunizations. In addition to the above protein and cell-based immunization strategies, a DNA-based immunization protocol is employed in which a mammalian expression vector encoding a 158P1D7 variant sequence is used to immunize mice by direct injection of the plasmid DNA. For example, amino acids 16608 of 158P1D7 of varlant 1 was cloned into the Tag5 mammalian secretion vector and the recombinant vector was used as immunogen. In another example, the same amino acids were cloned into an Fc-fusion secretton vector in which the 158P1D7 variant 1 sequence is fused at the amino-terminus to an IgK leader sequence and at the carboxyl-terminus to the coding sequence of the human or murine igG Fc region. This recombinant vector was then used as immunogen. The plasmid immunization protocols were used in combination with purfied proteins expressed from the same veclor and with cells expressing the respective 158P1D7 variant.

During the immunization protocol, test bleeds are taken 7.10 days following an injection to monitor liter and specificity of the immune response. Once appropriate reactivity and specificity is obtained as determined by ELISA, Western blotting, immunoprecipitation, fluorescence microscopy, and flow cytometric analyses, fusion and hybridoma generation is then carried out with established procedures well known in the art (see, e.g., Harlow and Lane, 1988).

In one embodiment for generating 158P1D7 variant 1 monoclonal antibodies, a peptide encoding amino acids 274285 was synthesized, conjugated to KLH and used as immunogen. ELISA on free peptide was used to identify immunoreactive clones. Reactivity and specificity of the monocional antibodies to full length 158P1D7 variant 1 protein was monitored by Western blotting, immunoprecipitation, and flow cytometry using both recombinant and endogenous-expressing 158P1D7 variant 1 cells (See Figures 22, 23, 24, 25, and 28).

The binding affinity of 158P1D7 variant 1 specific monoclonal antibodies was determined using standard technologies. Affinity measurements quantify the strength of antibody to epitope binding and are used to help define which 158P1D7 variant monoclonal antibodies preferred for diagnostic or therapeutic use, as appreciated by one of skill in the art.

The BIAcore system (Uppsala, Sweden) is a preferred method for determining binding affinity. The BIAcore"system uses . .a. surface plasmon resonance (SPR, Wefford K. 1991, Opt. Quant. Elect. 23:1; Morton and Myszka, 1998, Methods in Enzymology 295: 268) to monitor biomolecular interactions in real time. BIAcore analysis conveniently generates association rate constants, dissociation rate constants, equilibrium dissociation constants, and affinity constants. Results of BIAcore analysis of 158P107 variant 1 monoctonal antibodies is shown in Table LVII.

To generate monoclonal antibodies specific for other 158P1D7 variants, immunogens are designed to encode amino acid sequences unique to the variants. In one embodiment, a peptide encoding amino acids 382 -395 unique to 158P1D7 variant 4 is synthesized, coupled to KL.H and used as immunogen. In another embodiment, peptides or bacterial fusion proteins are made that ericompass the unique sequence generated by alternative splicing in the variants. In one example, a peplide encoding a conseculive sequence containing amino acios 682 and 683 in 158P1D7 variant 3 is used, such as amino acids 673-693. In another example, a peptide encoding a consecutive sequence containing amino acids 379 381 in 158P107 variant 6 is used, such as amino acids 369-391. Hybridomas are then selected that recognize the respective variant specific antigen and also recognize the full length variant protein expressed in cells. Such selection utilizes immunoassays described above such as Western blotting, immunoprecipitation, and flow cytometry.

To generate 158P1D7 monoclonal antibodies the following protocols were used. 5 Balb/c mice were immunized subculaneously with $2 \mu \mathrm{~g}$ of peptide in Quiagen ImmuneEasy ${ }^{1 M}$ adjuvant. Immunizations were given 2 weeks apart. The peplide used was a 12 amino acid peptide consisting of amino acids 274-285 with the sequence EEHEDPSGSLHL (SEQ ID NO: 41) conjugated to KLH at the C' terminal (Keyhole Limpet Hemocyanin).

B-cells from spleens of immunized mice were fused with the fusion partner $\mathrm{Sp} 2 / 0$ under the influence of polyethylene glycol. Antibody producing hybridomas were selected by screening on peplide coated ELISA plates indicating specific binding to the peptide and then by FACS on cells expressing 158P1D7. This produced and identified four 158P107 extra cellular domain (ECD) specific antibodies designated: M15-68(2)18.1.1; M15-68(2)22.1.1; M15-68(2)31.1.1 and M1568(2)102.1.1.

The antibody designated M15-68(2)18.1.1 was sent (via Federal Express) to the American Type Culture Collection (ATCC), P.O. Box 1549, Manassas, VA 20108 on 06-February-2004 and assigned Accession number PTA-5801.
The characteristics of these four antibodies are set forth in Table LVII.
To clone the M15-68(2)18.1.1 antibody the following protocols were used. M15-68(2)18.1.1 hybridoma cells were lysed with Trizol reagent (Life Technologies, Gibco BRL). Total RNA was purified and quantified. Firsl strand cDNAs was generated from total RNA with oligo (dT)12-18 priming using the Gibco-BRL Superscript Preamplification system. First strand CDNA was amplified using mouse Ig variable heavy chain primers, and mouse Ig variable light chain primers. PCR products were cloned into the pCRScript vector (Stratagene, La Jolla). Several clones were sequenced and the variable heavy (VH) and variable light (VL) chain regions determined. The nucleic acid and amino acid sequences of M15-68(2)18 variable heavy and light chain regions are sel forth in Figure 34A and 34B and Figure 35A and 35B.

Example 10: HLA Class I and Class II Binding Assays

HLA class I and class II binding assays using purified HLA molecules are performed in accordance with disclosed protocols (e.g., PCT publications WO 94/20127 and WO 94/03205; Sidney et al., Current Protocols in Immunology 18.3.1 (1998); Sidney, et al., J. Immunol. 154:247 (1995); Sette, et al., Mol. Immunol. 31:813 (1994)). Briefly, purified MHC molecules (5 to 500 nM) are incubated with various unlabeled peptide inhibitors and $1-10 \mathrm{nM}{ }^{125}$-radiolabeled probe peptides as described. Following incubation, MHC-peptide complexes are separated from free peptide by gel fillration and the fraction of peptide bound is determined. Typically, in preliminary experiments, each MHC preparation is titered in the presence of
fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20\% of the total radioactivity. All subsequent inhibition and direct binding assays are performed using these HLA concentrations.

Since under these conditions [labell<<[HLA] and IC50 ${ }_{50}[H L A]$, the measured I_{50} values are reasonable approximations of the frue Ko values. Peptide inhibitors are typically tested at concentrations ranging from $120 \mu \mathrm{gml}$ to 1.2 $\mathrm{ng} / \mathrm{ml}$; and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC50 of a positive control for Inhibition by the C_{50} for each tested peptide (typically uniabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converiad back into $I C_{60} \mathrm{nM}$ values by dividing the $\mathrm{I}_{50} \mathrm{nM}$ of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation is accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.

Binding assays as outined above may be used to analyze HLA supermotif and/or HLA motif-bearing peptides.

Example 11: Identiflcation of HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes

HLA vaccine compositions of the invention can include multiple epitopes. The multiple epitopes can comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification and confirmation of supermotif- and molif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage is performed using the strategy described below.

Computer searches and algorithms for identification of supermotif and/or motif-bearing epitopes

The searches performed to identify the motif-bearing peptide sequences in the Example entitted "Antigenicity Profiles" and Tables V-XVIII and XXII-XLIX employ the protein sequence data from the gene product of 158P1D7 set forth in Figures 2 and 3.

Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs are performed as follows. All translated 158P1D7 proteln sequences are analyzed using a text string search software program to identify potential peptide sequences containing appropriate HLA binding motifs; such programs are readily produced in accordance with information in the art in view of known motif/supermotif disclosures. Furthermore, such calculations can be made mentally.

Identified A2-, A3-, and DR-supermotif sequences are scored using polynomlal algorithms to predict their capacity to bind to specific HLA-Class | or Class II molecules. These polynomial algorithms account for the impact of different amino acids at different positions, and are essentially based on the premise that the overall affinity (or $\Delta \mathrm{G}$) of pөptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:

$$
{ }^{n} \Delta G^{\prime \prime}=a_{i 1} \times a_{2} \times a_{3 i} \ldots \ldots \times a_{n i}
$$

where a; is a coefficient which represents the effect of the presence of a given amino acid (i) al a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each positton are essentially independent of each other (i.e., independent binding of individuai side-chains). When residue joccurs at position i in the peptide, it is assumed to contribute a constant amount j to the free energy of binding of the peptide irrespective of the sequence of the rest of the peplide.

The method of derivation of speciicic algorithm coefficlents has been described in Gulukota et al., J. Mol. Biol. 267:1258-126, 1997; (see also Sidney et al., Human Immunol. 45:79-93, 1996; and Southwood et al., J. Immunol. 160:33633373,1998). Briefly, for all / positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying/is calculated relative to the remainder of the group, and used as the estimate of j. For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an Iterative procedure.

To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired.

Selection of HLA-A2 supertype cross-reactive peptides

Complete protein sequences from 158P1D7 are scanned utilizing motif identification software, to identify 8-, 9-10and 11-mer sequences containing the HLA-A2-supermotif main anchor specificity. Typically, these sequences are then scored using the protocol described above and the peptides corresponding to the positive-scoring sequences are synthesized and tested for their capacity to bind purified HLA-A*0201 molecules in vitro (HLA-A*0201 is considered a prototype A2 supertype molecule).

These peptides are then tested for the capacity to bind to additional A2-supertype molecules ($A^{*} 0202, A^{*} 0203$, $A^{*} 0200$, and $A^{*} 6802$). Peptides that bind to at least three of the five A2-supertype alleles tested are typically deamed A2supertype cross-reactive binders. Preferred peptides bind at an affinity equal to or less than 500 nM to three or more HLAA2 supertype molecules.

Selection of HLA-A3 supermotif-bearing epitopes
The 158P1D7 protein sequence scanned above is also examined for the presence of peptides with the HLA-A3supermotif primary anchors. Peptides corresponding to the HLA A3 supermotif-bearing sequences are then synthesized and tested for binding to HLA-A*0301 and HLA-A*1101 molecules, the molecules encoded by the two most prevalent A3supertype alleles. The peptides that bind at least one of the two alleles with binding affinities of $\leq 500 \mathrm{nM}$, often $\leq 200 \mathrm{nM}$, are then tested for binding cross-reactivity to the other common $A 3$-supertype alleles (e.g., $A^{*} 3101, A^{*} 3301$, and $A^{*} 6801$) to identify those that can bind at least three of the five HLA-A3-supertype molecules tested.

Selection of HLA-B7 supermotif bearing epitopes

The 158P1D7 protein is also analyzed for the presence of 8-, 9-10-, or 11 -mer peptides with the HLA-B7supermotif. Corresponding peptides are synthesized and tested for binding to $H \angle A-B^{*} 0702$, the molecule encoded by the most common B7-supertype allele (l.e., the prototype B7 supertype allele). Peptides binding $\mathrm{B}^{*} 0702$ with IC_{50} of $\leq 500 \mathrm{nM}$ are identified using standard methods. These peptides are then tested for binding to other common B7-supertype molecules (e.g., $\mathrm{B}^{*} 3501, \mathrm{~B}^{*} 5101, \mathrm{~B}^{*} 5301$, and $\mathrm{B}^{*} 5401$). Peptides capable of binding to three or more of the five B 7 -supertype alleles tested are thereby identified.

Selection of A1 and A24 motif-bearing epitopos
To further increase population coverage, HLA-A1 and -A24 epitopes can also be incorporated into vaccine compositions. An analysis of the 158P1D7 protein can also be performed to identify HLA-A1- and A24-motif-containing sequences.

High affinity and/or cross-reactive binding epitopes that bear other motif and/or supermotifs are identified using analogous methodology.

Example 12: Confirmation of Immunogenicity

Cross-reactive candidate CTL A2-supermotif-bearing peptides that are identified as described hereln are selected to confirm in vitro immunogenicity. Confirmation Is performed using the following methodology:

Target Cell Lines for Cellular Screening:

The .221A2.1 cell line, produced by transferring the HLA-A2.1 gene into the HLA-A, -B, -C null mutant human Blymphoblastoid cell line 721:221, is used as the peplide-loaded targel to measure acivity of HLA-A2.1-restricted CTL. This cell line is grown in RPMI-1640 medium supplemented with antibiotics, sodium pyruvate, nonessential amino acids and 10%
(v/v) heat inactivated FCS. Cells that express an antigen of interest, or transfectants comprising the gene encoding the antigen of interest, can be used as target cells to confirm the ability of peptide-speciic CTLs to recognize endogenous antigen.

Primary CTL Induction Cultures:
Generation of Dendritic Cells (DC): PBMCs are thawed in RPMI with $30 \mu \mathrm{~g} / \mathrm{ml}$ DNAse, washed twice and resuspended in complete medium (RPMI-1640 plus 5\% AB human serum, non-essential amino adds, sodium pyruvate, Lglutamine and penicillin/streptomycin). The monocytes are purified by plating $10 \times 10^{6} \mathrm{PBMC} /$ well in a 6 -well plate. After 2 hours at $37^{\circ} \mathrm{C}$, the non-adherent cells are removed by gently shaking the plales and aspirating the supernatants. The wells are washed a total of three times with 3 ml RPMI to remove most of the non-adherent and loosely adherent cells. Three ml of complete medium containing $50 \mathrm{ng} / \mathrm{ml}$ of GM-CSF and $1,000 \mathrm{U} / \mathrm{ml}$ of IL-4 are then added to each well. TNF α is added to the DCs on day 6 at $75 \mathrm{ng} / \mathrm{ml}$ and the cells are used for CTL induction cultures on day 7 .

Induction of CTL with DC and Peptide: CD8+ T-cells are isolated by positive selection with Dynal immunomagnetic beads (Dynabeads® M-450) and the detacha-bead® reagent. Typically about $200-250 \times 10^{6}$ PBMC are processed to obtain $24 \times 10^{6} \mathrm{CD}^{+}$T-cells (enough for a 48 -well plate culture). Briefly, the PBMCs are thawed in RPMI with $30 \mu \mathrm{~g} / \mathrm{ml}$ DNAse, washed once wth PBS containing 1% human AB serum and resuspended in $\mathrm{PBS} / 1 \% \mathrm{AB}$ serum at a concentration of 20×10^{6} cells $/ \mathrm{ml}$. The magnetic beads are washed 3 times with PBS/AB serum, added to the cells ($140 \mu \mathrm{l}$ beads $/ 20 \times 10^{6}$ cells) and incubated for 1 hour at $4^{\circ} \mathrm{C}$ with continuous mixing. The beads and cells are washed $4 x$ with PBSIAB senum to remove the nonadherent cells and resuspended at 100×10^{6} cells/ml (based on the original cell number) in PBS/AB serum containing $100 \mu / \mathrm{ml}$ detacha-bead (1) reagent and $30 \mu \mathrm{~g} / \mathrm{ml}$ DNAse. The mixture is incubated for 1 hour at room temperature with continuous mixing. The beads are washed again with PBS/AB/DNAse to collect the CD8+ T-cells. The DC are collected and centrifuged at 1300 rpm for $5-7$ minutes, washed once with PBS with 1% BSA, counted and pulsed with $40 \mathrm{\mu g} / \mathrm{ml}$ of peptide at a cell concentration of $1-2 \times 10^{8} / \mathrm{ml}$ in the presence of $3 \mu \mathrm{~g} / \mathrm{ml} B_{2}$ - microglobulin for 4 hours at $20^{\circ} \mathrm{C}$. The $D C$ are then leradiated ($4,200 \mathrm{rads}$), washed 1 time with medium and counted again.

Setting up induction cultures: 0.25 ml cytokine-generated DC (at 1×10^{5} cells $/ \mathrm{ml}$) are co-cultured with 0.25 ml of $\mathrm{CD8}+$ T-cells (at 2×10^{6} cell/ml) in each well of a 48 -well plate in the presence of $10 \mathrm{ng} / \mathrm{ml}$ of $\mathrm{IL}-7$. Recombinant human $\mathrm{IL}-10$ is added the next day at a final concentration of $10 \mathrm{ng} / \mathrm{ml}$ and rhuman $\mathrm{LL}-2$ Is added 48 hours later at $10 \mathrm{l} / \mathrm{ml}$.

Restimulation of the inductlon cultures with peptide-pulsed adherent cells: Seven and fourteen days after the primary induction, the cells are restimulated with peplide-pulsed adherent cells. The PBMCs are thawed and washed twice with RPMI and DNAse. The cells are resuspended at 5×10^{6} cells $/ \mathrm{ml}$ and irradiated at -4200 rads. The PBMCs are plated at 2×10^{6} in 0.5 ml complete medium per well and incubated for 2 hours at $37^{\circ} \mathrm{C}$. The plates are washed twice with RPMI by tapping the plate gently to remove the nonadherent cells and the adherent cells pulsed with $10 \mu \mathrm{~g} / \mathrm{ml}$ of peptide in the presence of $3 \mu \mathrm{~g} / \mathrm{ml} \mathrm{B}_{2}$ microglobullin in 0.25 ml RPM/ $/ 5 \% A B$ per well for 2 hours at $37^{\circ} \mathrm{C}$. Peptide solution from each well is aspirated and the wells are washed once with RPMI. Most of the media is asplrated from the induction cultures (CD8+ cells) and brought to 0.5 ml with fresh media. The cells are then transferred to the wells containing the peptide-pulsed adherent cells. Twenty four hours later recombinant human IL-10 is added at a final concentration of $10 \mathrm{ng} / \mathrm{ml}$ and recombinant human IL2 is added the next day and again 2-3 days later at 50IU/ml (Tsal et al., Critical Reviews in Immunology 18(1-2):65-75, 1998). Seven days later, the cultures are assayed for CTL activity in a ${ }^{54} \mathrm{Cr}$ release assay. In some experiments the cultures are assayed for peptide-specific recognition in the in situ IFNY ELISA at the time of the second restimulation followed by assay of endogenous recognition 7 days later. After expansion, activity is measured in both assays for a side-by-side comparison.

[^1]Seven days after the second restimulailon, cytotoxicity is determined in a standard (5 hr) ${ }^{51} \mathrm{Cr}$ release assay by assaying individual wells at a single E:T. Peptide-puised targels are prepared by incubating the cells with $10 \mu \mathrm{~g} / \mathrm{ml}$ peptide overnight at $37^{\circ} \mathrm{C}$.

Adherent target cells are removed from culture flasks with trypsin-EDTA. Target cells are labeled with $200 \mu \mathrm{Cl}$ of ${ }^{51} \mathrm{Cr}$ sodium chromate (Dupont, Wilmington, DE) for 1 hour at $37^{\circ} \mathrm{C}$. Labeled target cells are resuspended at 10^{6} per ml and diluted 1:10 with K562 celis at a concentration of $3.3 \times 10^{6} / \mathrm{ml}$ (an NK-sensitive erythroblastoma cell line used to reduce nonspecific lysis). Target cells ($100 \mu \mathrm{l}$) and effectors ($100 \mu \mathrm{l}$) are plated in 96 .well round-bottom plates and incubated for 5 hours at $37^{\circ} \mathrm{C}$. At that time, 100μ l of supernatant are collected from each well and percent lysis is determined according to the formula:
[(cpm of the test sample- cpm of the spontaneous ${ }^{61} \mathrm{Cr}$ release sample)/(cpm of the maximal ${ }^{51} \mathrm{Cr}$ release sample-cpm of the spontaneous ${ }^{51} \mathrm{Cr}$ release sample)] $\times 100$.

Maximum and spontaneous release are determined by incubating the labeled targets with 1% Trition $X-100$ and media alone, respectively. A positive culture is defined as one in which the specific lysis (sample-background) is 10% or higher in the case of Individual wells and is 15% or more at the two highest E:T ratios when expanded cultures are assayed.

In situ Measurement of Human IFNy Production as an Indicator of Peptlde-specific and Endogenous Recognilion Immulon 2 plates are coated with mouse anti-human IFNy monoclonal antibody ($4 \mu \mathrm{~g} / \mathrm{ml} 0.1 \mathrm{M} \mathrm{NaHCO}_{3}$, pH8.2) overnight at $4^{\circ} \mathrm{C}$. The plates are washed with $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}+$ free $\mathrm{PBS} / 0.05 \%$ Tween 20 and blocked with PBS $/ 10 \%$ FCS for two hours, after which the CTLs ($100 \mu /$ well) and targets ($100 \mu / \mathrm{well}$) are added to each well, leaving empty wells for the standards and blanks (which received media oniy). The target cells, either peptide-pulsed or endogenous targets, are used at a concentration of 1×10^{5} cells $/ \mathrm{ml}$. The plates are incubated for 48 hours at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$.

Recombinant human IFN-gamma is added to the standard wells starting at 400 pg or $1200 \mathrm{pg} / 100$ microlliter/well and the plate incubated for two hours at $37^{\circ} \mathrm{C}$. The plates are washed and 100μ of biotinylated mouse anti-human IFNgamma monoclonal antibody (2 microgram/ml in PBS/3\%FCS $/ 0.05 \%$ Tween 20) are added and incubated for 2 hours at room temperature. After washing again, 100 microllter HRP-streptavidin (1:4000) are added and the plates incubated for one hour al room temperature. The plates are then washed $6 x$ with wash buffer, 100 microliter/well developing solution (TMB 1:1) are added, and the plates allowed to develop for 5-15 minutes. The reaction is stopped with 50 microliterivell $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ and read at OD450. A culture is considered positive if it measured at least 50 pg of IFN-gamma/well above background and is twice the background level of expression.

CTL Expansion.

Those cultures that demonstrate specific lytic activity against peptide-pulsed targets and/or tumor targets are expanded over a two week period with anti-CD3. Briefly, $5 \times 10^{4} \mathrm{CD8}+$ cells are added to T 25 flask containing the following: 1×10^{6} irradiated ($4,200 \mathrm{rad}$) PBMC (autologous or allogenelc) per ml, 2×10^{5} irradiated ($8,000 \mathrm{rad}$) EBV- transformed cells per ml , and OKT3 (anti-CD3) at 30ng per ml in RPMI- 1640 containing 10% (V / v) human AB serum, non-essential amino acids, sodlum pyruvale, $25 \mu \mathrm{M} 2$-mercaptcethanol, L-glutamine and penicillin/streptomycin. Recombinant human IL2 is added 24 hours later at a final concentration of $2001 \mathrm{U} / \mathrm{ml}$ and every three days thereafter with fresh media al $501 \mathrm{U} / \mathrm{ml}$. The cells are split if the cell concentration exceeds $1 \times 105 / \mathrm{ml}$ and the cultures are assayed between days 13 and 15 at E:T ratios of 30,10 , 3 and $1: 1$ in the ${ }^{51} \mathrm{Cr}$ release assay or at $1 \times 108 / \mathrm{ml}$ in the in situ IFNy assay using the same targets as before the expansion.

Cultures are expanded in the absence of anti-CD3+ as follows. Those cultures that demonstrate specfic lytic activity against peptide and endogenous targets are selected and $5 \times 10^{4} \mathrm{CDB}+$ cells are added to a 25 flask containing the following: 1×10^{6} autologous PBMC per mi which have been peptide-pulsed with $10 \mu \mathrm{~g} / \mathrm{ml}$ peplide for two hours at $37^{\circ} \mathrm{C}$ and
irradiated ($4,200 \mathrm{rad}$); 2×105 irradiated ($8,000 \mathrm{rad}$) EBV-transformed cells per ml RPMI- 1640 containing $10 \%(\mathrm{~V} / \mathrm{V}$) human AB serum, non-essential $A A$, sodium pyruvate, $25 \mathrm{mM} 2-\mathrm{ME}$, L-glutamine and gentamicin.

Immunogenicity of A2 supermolif-bearing peptides

A2-supermolif cross-reactive binding peptides are tested in the cellular assay for the ability to induce peptidespecific CTL in normal individuals. In this analysis, a peptide is typically considered to be an epitope if it induces peptidespecific CTLs in at least individuals, and preferably, also recognizes the endogenously expressed peplide.

Immunogenicity can also be confirmed using PBMCs isolated from patients bearing a tumor that expresses 158P1D7. Briefly, PBMCs are isolated from patients, re-stimulated with peptide-pulsed monocytes and assayed for the ability to recognize peptide-pulsed target cells as well as transfected cells endogenously expressing the antigen.

Evaluation of $A^{*} 03 / A 11$ immunogencicity
HLA-A3 supermotif-bearing cross-reacive binding peptides are also evaluated for immunogenicity using methodology analogous for that used to evaluate the immunogenicity of the HLA-A2 supermotif peptides.

Evaluation of B 7 immunogenicity
Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified as set forth herein are confirmed in a manner analogous to the confirmation of A2-and A3-supermotif-bearing peptides.

Peptides bearing other supermotifs/motifs, e.g., HLA-A1, HLA-A24 etc. are also confirmed using similar methodology

Example 13: Implementation of the Extended Suparmotif to Improve the Binding Capacity of Native
 Epitopes by Creating Analogs

HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analoged to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analoging peptides to exhibit modulated binding affinity are set forth in this example.

Analoging at Primary Anchor Residues

Peptide englneering strategies are implemented to further increase the cross-reactivity of the epitopes. For example, the main anchors of A2-supermotif-bearing peptides are altered, for example, to introduce a preferred $L, 1, V$, or M at position 2 , and I or V at the C -terminus.

To analyze the cross-reactivity of the analog peplides, each engineered analog is initally tested for binding to the prototype $A 2$ supertype allele $A^{*} 0201$, then, if $A^{*} 0201$ binding capaclty is maintalned, for $A 2$-supertype cross-reactivity.

Alternatively, a peptide is confirmed as binding one or all supertype members and then analogued to modulate binding affinity to any one (or more) of the supertype members to add population coverage.

The selection of analogs for immunogenlcity in a cellular screening analysis is typlcally further restricted by the capacity of the parent wild type (WT) peptide to bind at least weakiy, i.e., bind at an IC C_{50} of 5000 nM or less, to three of more A2 supertype alleles. The rationale for this requirement is that the WT peptides must be present endogenously in sufficient quantity to be blologically relevant. Analoged peptides have been shown to have increased immunogenicity and crossreactlvity by T cells specific for the parent epitope (see, e.g., Parkhurst et al., J. Immunol. 157:2539, 1996; and Pogue et al., Proc. Netl. Aced. Sci. USA 92:8166, 1995).

In the cellular screening of these peplide analogs, it is important to confirm that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, target cells that endogenously express the epitope.

Analoging of HLA-A3 and B7-supermotif-bearing peptides

Analogs of HLA-A3 supermotif-bearing epitopes are generated using strategies similar to those employed in analoging HLA-A2 supermotif-bearing peptides. For example, peptides binding to $3 / 5$ of the A3-supertype molecules are engineered at primary anchor residues to possess a preferred residue $(V, S, M$, or $A)$ at position 2.

The analog peptides are then lested for the ability to bind $A^{*} 03$ and $A^{*} 11$ (prototype $A 3$ supertype alleles). Those peptides that demonstrate $\leq 500 \mathrm{nM}$ binding capacity are then confirmed as having A3-supertype cross-reactivity.

Similarly to the A2- and A3- motif bearing peptides, peptides binding 3 or more B7-supertype alleles can be improved, where possible, to achieve increased cross-reactive binding or greater binding affinity or binding half life. B7 supermotif-bearing peptides are, for example, engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney et al. (J. Immunol. 157:3480-3490, 1996).

Analoging at primary anchor residues of other molif and/or supermotif-bearing epitopes is performed in a like manner.

The analog peptides are then be confirmed for immunogenicity, typically in a cellular screening assay. Again, it is generally important to demonstrate that analog-specific CTLs are also able to recognize the wild-type peplide and, when possible, targets that endogenously express the epitope.

Analoging at Secondary Anchor Residues
Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that bind HLA molecules with increased afinity by identifying particular residues at secondary anchor positions that are associated with such properties. For example, the binding capacity of a $B 7$ supermotf-bearing peptide with an F residue at position 1 is analyzed. The peptide is then analoged to, for example, substitute L for F at position 1 . The analoged peptide is evaluated for increased binding affinity, binding half life and/or increased cross-reactivity. Such a procedure identifies analoged peptides with enhanced properties.

Engineered analogs with sufficiently improved binding capacity or cross-reactivity can also be lested for immunogenicity in HLA-B7-transgenic mice, following for example, IFA Immunization or lipopeptide immunization. Analogued peptides are additionally tested for the ability to stimulate a recall response using PBMC from patients with 158P1D7-expressing tumors.

Other analoguing strategies

Another form of peptide analoguing, unrelated to anchor positions, involves the substitution of a cysteine with α amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as io reduce binding capacty. Substitution of α-amino butyric acd for cysteine not only alleviates this problem, but has been shown to improve binding and crossbinding capabilities in some instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley \& Sons, England, 1899).

Thus, by the use of single amino acid substitutions, the binding propertles and/or cross-reactivity of peptide ligands for HLA supertype molecules can be modulated.

Example 14. Identification and confirmation of 158P1D7-derived sequences with HLA-DR binding motifs
Peptide epitopes bearing an HLA class II supermotif or motif are identified and confirmed as outined below using methodology similar to that described for HLA Class I peptides.

Selection of HLA-DR-supermotif-bearing epitopes.

To Identify 158P1D7-derved, HLA class II HTL epilopes, the 158P1D7 antigen is analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15-mer sequences are selected comprising a DRsupermotif, comprising a 9-mer core, and three-residue N - and C -terminal flanking regions (15 amino acids total).

Protocols for predicting peptide binding to DR molecules have been developed (Southwood et al., J. Immunol. 160:3363-3373, 1998). These protocols, specific for individual DR molecules, aliow the scoring, and ranking, of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR-supermotif primary anchors (l.e., at position 1 and position 6) within a 9 -mer core, but additionally evaluates sequences for the presence of secondary anchors. Using allele-specific selection tables (see, e.g., Southwood et al., ibid.), it has been found that these protocols efficiently select peptide sequences with a high probabilly of binding a particular DR molecule. Additionally, it has been found that performing these protocols in tandem, specifically those for DR1, DR4w4, and DR7, can efficiently select DR cross-reactive peptides.

The 158P1D7-derived peptides identified above are tested for their binding capacity for various common HLA-DR molecules. All peptides are initially tesied for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Peptides binding at least two of these three DR molecules are then tested for binding to DR2w2 $\beta 1$, DR2w2 $\beta 2$, DR6w19, and DR9 molecules in secondary assays. Finally, peptides binding at least two of the four secondary panel DR molecules, and thus cumulatively at least four of seven different DR molecules, are screened for binding to DR4w15, DR5w11, and DR8w2 molecules in tertlary assays. Peplides binding at least seven of the ten DR molecules comprising the primary, secondary, and lertiary screening assays are considered cross-reactive DR binders. 158P1D7-derived peptides found to bind common HLA-DR alleles are of particular interest.

Selection of DR3 motif peptides

Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is a relevant criterion in the selection of HTL epltopes. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the binding spedicicity of the DR3 motif, peplides binding only to DR3 can also be considered as candidates for inclusion in a vaccine formulation.

To efficiently identify. peptides that bind DR3, target 158P1D7 antigens are analyzed for sequences carrying one of the two DR3-specific binding motifs reported by Geluk et al. (J. Immunol. 152:5742-5748, 1994). The corresponding peptides are then synthesized and confirmed as having the ability to bind DR3 with an affinity of $1 \mu \mathrm{M}$ or better, i.e., less than $1 \mu \mathrm{M}$. Peptides are found that meet this binding criterion and quallfy as HLA class il high affinity binders.

DR3 binding epitopes identified in this manner are included in vaccine compositions with DR supermotif-bearing peplide e, epitopes.

Similarly to the case of HLA class I motif-bearing peptides, the class II mollf-bearing peptides are analoged to improve affinity or cross-reactivity. For example, aspartic acid at position 4 of the 9 -mer core sequence is an optimal residue for DR3 binding, and substitution for that residue ọten improves DR 3 binding.

Example 15: Immunogenicity of 158P1D7-derived HTL epitopes

This example determines immunogenic DR supermoifi- and DR3 motif-bearing epitopes among those identifled using the methodology set forth herein.

Immunogenicity of HTL epitopes are confirmed in a manner analogous to the determination of immunogenicity of CTL epitopes, by assessing the abillty to stimulate HTL responses and/or by using appropriate transgenic mouse models. Immunogenicity is determined by screening for: 1.) in vitro primary induction using normal PBMC or 2.) recall responses from patlents who have 158P1D7-expressing tumors.

Example 16: Calculation of phenotypic frequencies of HLA-supartypes in various ethnic backgrounds to determine breadth of population coverage

This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.

In order to analyze populaion coverage, gene frequencies of HLA alleles are determined. Gene frequencies for each HLA allele are calculated from antigen or allele frequencles utilizing the binomial distribution formulae gf=1-(SQRT(1af) (see, e.g., Sidney et al., Human Immunol. 45:79-93, 1996). To obtain overall phenotypic frequencles, cumulative gene frequencies are calculated, and the cumulaive antigen frequencies derived by the use of the inverse formula [af=1-(1-Cgf)z].

Where frequency data is not available at the level of DNA typing, correspondence to the serologically defined antigen frequencles is assumed. To obtain total potential supertype population coverage no linkage disequilibrium is assumed, and only alleles confirmed to belong to each of the supertypes are included (minimal estimates). Estimales of total potential coverage achieved by inter-loci combinations are made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total $=A+B^{*}(1-A)$). Confirmed members of the $A 3$-like supertype are $A 3, A 11, A 31, A^{*} 3301$, and $A^{*} 6801$. Although the $A 3$-like supertype may also include A34, A66, and $A^{*} 7401$, these alleles were not included in overall frequency calculations. Likewise, confirmed members of the $A 2$-like supertype family are $A^{*} 0201, A^{*} 0202, A^{*} 0203, A^{*} 0204, A^{*} 0205, A^{*} 0206, A^{*} 0207, A^{*} 6802$, and $A^{*} 6901$. Finally, the B 7 -like supertype-confirmed alleles are: $\mathrm{B} 7, \mathrm{~B}^{*} 3501-03, \mathrm{~B} 51, \mathrm{~B}^{*} 5301, \mathrm{~B}^{*} 5401, \mathrm{~B}^{*} 5501-2, \mathrm{~B}^{*} 5601, \mathrm{~B}^{*} 6701$, and $\mathrm{B}^{*} 7801$ (potentially also $\mathrm{B}^{*} 1401, \mathrm{~B}^{*} 3504-06, \mathrm{~B}^{*} 4201$, and $\mathrm{B}^{*} 5602$).

Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups. Coverage may be extended by including peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when A1 and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is $>95 \%$. An analogous approach can be used to estimate population coverage achleved with combinations of class II motit-bearing epitopes.

Immunogenicity studies in humans (e.g., Bertoni et al., J. Clin. Invest. 100:503, 1997; Doolan et al., Immunity 7:97, 1997; and Threlkeld et al., J. Immunol. 159:1648, 1997) have shown that highly cross-reactive binding peptides are almost always recognized as epitopes. The use of highly cross-reactive binding peptides is an importani selection criterion in identifying candidate epitopes for inclusion in a vaccine that is immunogenic in a diverse populalion.

With a sufficient number of epitopes (as disclosed herein and from the art), an average population coverage is predicted to be greater than 95% in each of five major ethnic populations. The game theory Monte Carlo simulation analysis, which is known in the art (see e.g., Osbome, M.J. and Rubinstein, A. "A course in game theory" MTT Press, 1994), can be used to estimate what percentage of the individuals in a population comprised of the Caucasian, North American Black, Japanese, Chinese, and Hispanic ethnic groups would recognize the vaccine epitopes described hereln. A preferred percentage is 90%. A more preferred percentage is 95%.

Example 17: CTL Recognition Of Endogenously Processed Antigens After Priming

Thls example confirms that CTL Induced by native or analoged peptide epitopes identified and selected as described herein recognize endogenously synthesized, i.e., native antigens.

Effector cells isolated from transgenic mice that are Immunized with peptide epltopes, for example HLA-A2 supermolif-bearing epitopes, are re-stimulated in vitro using peptide-coated stimulator cells. Six days later, effector cells are
assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An addilional six days later, these cell lines are tested for cytotoxic activity on ${ }^{51} \mathrm{Cr}$ labeled Jurkat-A2.1/K0 target cells in the absence or presence of peptide, and also tested on ${ }^{51} \mathrm{Cr}$ labeled target cells bearing the endogenously synthesized antigen, i.e. cells that are stably transfected with 158P1D7 expression vectors.

The results demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized 158P1D7 antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that are being evaluated. In addition to $\mathrm{HLA}-\mathrm{A}^{*} 0201 / \mathrm{K}^{\mathrm{b}}$ transgenic mice, several other transgenic mouse models including mice with human A11, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLADR3 mouse models have also been developed, which may be used to evaluate HTL epitopes.

Example 18: Activity of CTL-HTL Conjugated Epitopes In Transgenic Mice

This example illustrates the induction of CTLs and HTLs in transgenic mice, by use of a 158P107-derived CTL and HTL peplide vaccine compositions. The vaccine composition used herein comprise peplides to be administered to a patient with a 158P1D7-expressing tumor. The peptide composition can comprise muliple CTL and/or HTL epilopes. The epitopes are Identfled using methodology as described herein. This example also illustrates that enhanced immunogenicity can be achieved by inclusion of one or more HTL epitopes in a CTL vaccine composition; such a peptide composition can comprise an HTL epitope conjugated to a CTL epitope. The CTL epitope can be one thal binds to multiple HLA family members at an affinity of 500 nM or less, or analogs of that epitope. The peplides may be lipidated, if desired.

Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et al., J. Immunol. 159:4753-4761, 1997). For example, A2/Kb mice, which are transgenic for the human HLA A2.1 allele and are used to confirm the immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, and are primed subcutaneously (base of the tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTL/HTL-conjugate, in DMSO/saline, or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic Irradiated LPSactlvated lymphoblasts coated with peplide.

Cell lines: Target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/Kb chimeric gene (e.g., Vitiello et al., J. Exp. Med. 173:1007, 1991)

In vilm CTL activation: One week after priming, spleen cells ($30 \times 10^{\circ} \mathrm{cells/flask}$) are co-cultured at $37^{\circ} \mathrm{C}$ with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10×106 cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity.

Assay for cytotoxic activity: Target cells (1.0 to 1.5×10^{6}) are incubated at $37^{\circ} \mathrm{C}$ in the presence of $200 \mu \mathrm{l}$ of ${ }^{51} \mathrm{Cr}$. After 60 minutes, cells are washed three times and resuspended in R10 medium. Peptide is added where required at a concentration of $1 \mu \mathrm{~g} / \mathrm{ml}$. For the assay, $10^{4}{ }^{51} \mathrm{Cr}$-labeled target cells are added to different concentrations of effector celis (final volume of $200 \mu \mathrm{l}$) in U -bottom 96 -well plates. After a six hour incubation period at $37^{\circ} \mathrm{C}$, a 0.1 ml aliquot of supernatant Is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent specific lysis is determined by the formula: percent specific release $=100 \times$ (experimental release - spontaneous release) /(maximum release - spontaneous release). To facilitate comparison between separate CTL assays run under the same condilions, \% ${ }^{51} \mathrm{Cr}$ release data is expressed as lytic units $/ 10^{6}$ cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a six hour ${ }^{51} \mathrm{Cr}$ release assay. To obtain specific lytic units/106, the lytic units $/ 10^{6}$ obtained in the absence of peptide is subtracted from the lytic units/10 10° obtained in the presence of peptide. For example, if $30 \%{ }^{51} \mathrm{Cr}$ release is obtained at the effector (E): target (T) ratio of $50: 1$ (i.e., 5×10^{5} effector cells for 10,000
targets) in the absence of peptide and $5: 1$ (i.e., 5×10^{4} effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: $[(1 / 50,000)-(1 / 500,000)] \times 10^{5}=18 \mathrm{LU}$.

The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTLHTL conjugate vaccine preparation and are compared to the magnitude of the CTL response achieved using, for example, CTL epitopes as outined above in the Example entitled "Confirmation of Immunogenicity". Analyses similar to this may be performed to confirm the immunogenicity of peptide conjugates containing mulliple CTL epitopes and/or muliple HTL epitopes. In accordance with these procedures, it is found that a CTL response is induced, and concomitantly that an HTL response is induced upon administration of such compositions.

Example 19: Selection of CTL and HTL epltopes for inclusion In an 158P1D7-specific vaccine.

This example illustrates a procedure for selecting peptide epitopes for vaccine compositions of the Invention. The peptides in the composition can be in the form of a nucleic acid sequence, either single or one or more sequences (i.e., minigene) that encodes peptide(s), or can be single and/or polyepitopic peptides.

The following principles are utillzed when selecting a plurality of epitopes for inclusion in a vaccine composition. Each of the following principles is balanced in order to make the selection.

Epitopes are selected which, upon administration, mimic immune responses that are correlated with 158P1D7 clearance. The number of epitopes used depends on observations of patients who spontaneously clear 158P1D7. For example, if it has been observed that patients who spontaneously ctear 158P1D7 generate an immune response to at least three (3) from 158P1D7 antigen, then three or four (3-4) epitopes should be included for HLA class I. A similar rationale is used to determine HLA class II epitopes.

Epitopes are often selecied that have a binding affinity of an IC_{50} of 500 nM or less for an HLA class I molecule, or for class II, an IC_{50} of 1000 nM or less; or HLA Class I peptides with high binding scores from the BIMAS web site, at URL bimas.dart.nih.govl.

In order to achieve broad coverage of the vaccine through out a diverse population, sufficlent supermotif bearing peptides, or a sufficient array of allele-specific molif bearing peptides, are selected to give broad population coverage. In one embodiment, epitopes are selected to provide at least 80% population coverage. A Monie Cario analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population coverage.

When creating polyepitopic compositions, or a minlgene that encodes same, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, if not the same, as those employed when selecting a peptide comprising nested epitopes. For example, a protein sequence for the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. Epitopes may be nested or overlapping (l.e., frame shifted relative to one another). For example, with overlapping epitopes, two 9 -mer epitopes and one 10 -mer epitope can be present in a 10 amino acid peptide. Each epitope can be exposed and bound by an HLA molecule upon administration of such a peptide. A mult-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source. Alternatively, an analog cen be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes. This embodiment provides for the possiblity that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilltate the production of therapeutic or prophylacilc Immune response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motifbearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent the creating of any analogs) directs the immune response to multiple peptide sequences that are actually present In 158P1D7, thus avoiding the
need to evaluate any junctional epitopes. Lasily, the embodiment provides an economy of scale when producing nucierc acid vaccine compositions. Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.

A vaccine composition comprised of selected peptides, when adminislered, is safe, efficacious, and elicits an immune response similar in magnilude to an immune response that controls or clears cells that bear or overexpress 158P1D7.

Example 20: Construction of "Minigene" Multi-Epitope DNA Plasmids

This example discusses the construction of a minigene expression plasmid. Minigene plasmlds may, of course, contain various configurations of B cell, CTL and/or HTL epitopes or epitope analogs as described herein.

A minigene expression plasmid typically includes multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -B7 supermotif-bearing peptlde epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes. HLA class I supermout or motif-bearing peptide epitopes derived 158P1D7, are selected such that mulliple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from 158P1D7 to provide broad population coverage, i.e. both HLA DR-1-4-7 supermotlf-bearing epitopes and HLA DR-3 motifbearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.

Such a construct may addilionally include sequences that direct the HTL epitopes to the endoplasmic reticulum. For example, the li protein may be fused to one or more HTL epitopes as described in the art, wherein the CLIP sequence of the if protein is removed and replaced with an HLA dass II epitope sequence so that HLA class II epitope is directed to the endoplasmic reticulum, where the epitope binds to an HLA class II molecules.

This example illustrates the methods to be used for construction of a minigene-bearing expression plasmid. Other expression vectors that may be used for minlgene compositions are avallable and known to those of skill in the art.

The minigene DNA plasmid of this example contains a consensus Kozak sequence and a consensus murine kappa lg-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector.

Overlapping ollgonucleotides that can, for example, average about 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The ollgonucleotides encode the selected peptide epltopes as well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final multlepitope minigene is assembled by extending the overlapping oligonucleolides in three sets of reactions using PCR. A Perkin/EImer 9600 PCR machlne is used and a total of 30 cycles are performed using the following conditions: $95^{\circ} \mathrm{C}$ for 15 sec , annealling temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec , and $72^{\circ} \mathrm{C}$ for 1 min .

For example, a minigene is prepared as follows. For a first PCR reaclion, $5 \mu \mathrm{~g}$ of each of two oligonucleotldes are annealed and extended: In an example using eight digonucleotides, i.e., four pairs of primers, ollgonucleotides $1+2,3+4$, $5+6$, and $7+8$ are combined in 100μ / reactions containing Pfu polymerase buffer ($1 x=10 \mathrm{mM} \mathrm{KCL}, 10 \mathrm{mM}(\mathrm{NH} 4)_{2} \mathrm{SO}_{4}, 20$ mM Tris-chloride, $\mathrm{pH} 8.75,2 \mathrm{mM} \mathrm{MgSO}_{4}, 0.1 \%$ Triton X-100, $100 \mu \mathrm{~g} / \mathrm{ml}$ BSA), 0.25 mM each dNTP, and 2.5 U of Pfu polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of $1+2$ and $3+4$, and the producl of $5+6$ and $7+8$ are mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of anneailing and extenslon carried out before flanking primers are added to amplify the full length product. The fulllength product is gel-purified and ctoned into pCR-blunt (Invitrogen) and individual clones are screened by sequencing.

Example 21: The Plasmid Construct and the Dearee to Which It Induces Immunogenicity.

The degree to which a plasmid construct, for example a plasmid constructed in accordance with the previous Example, is able to induce immunogenicity is confirmed in vitro by determining epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines "antigenicity" and allows the use of human APC. The assay determines the ability of the epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted form the APC (see, e.g., Sijts et al., J. Immunol. 156:683-692, 1996; Demotz et al., Nature 342:682-684, 1989); or the number of peptide-HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by diseased or transfected target cells, and then determining the concentration of peptide necessary to obtain equivalent levels of lysis or lymphokine release (see, e.g., Kageyama et al., J. Immunol. 154:567-576, 1995).

Alternatively, immunogenicity is confirmed through in vivo injections into mice and subsequent in vitro assessment of CTL and HTL activity, which are analyzed using cytotoxicity and proliferation assays, respectively, as detailed e.g., in Alexander et al., Immunity 1:751-761, 1994.

For example, to confirm the capacity of a DNA minigene construct containing at least one HLA-A2 supermotif peptide to induce CTLs in vivo, HLA-A2.1/Kb transgenic mice, for example, are immunized intramuscularly with $100 \mu \mathrm{~g}$ of naked CDNA. As a means of comparing the level of CTLs induced by CDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptlde as they would be encoded by the minigene.

Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a ${ }^{51} \mathrm{Cr}$ release assay. The results indicate the magnitude of the CTL response directed against the A2-restricled epitope, thus indicating the in vivo immunogenicity of the minigene vaccine and polyepitopic vaccine.

It is, therefore, found that the minigene elicils immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL Induction by HLA-A3 and HLA-B7 motif or supermotif epitopes, whereby it is also found that the minigene elicits appropriate immune responses directed toward the provided epitopes.

To confirm the capacity of a class II epitope-encoding minigene to induce HTLs in vivo, DR transgenic mice, or for those epitopes that cross react with the appropriate mouse MHC molecule, $1-\mathrm{A}^{\mathrm{b}}$-restricted mice, for example, are immunized intramuscularly with $100 \mu \mathrm{~g}$ of plasmid DNA. As a means of comparing the level of HTLs induced by DNA Immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant. CD4+ T cells, I.e. HTLs, are purifled from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a ${ }^{3} \mathrm{H}$-thymidine incorporation proliferation assay, (see, e.g., Alexander et al. Immunity 1:751-761, 1994). The results indicate the magnilude of the HTL response, thus demonstrating the in vivo immunogenicity of the minigene.

DNA minigenes, constructed as described in the previous Example, can also be confirmed as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein (e.g., Barnett et al., Aids Res. and Human Retroviruses 14, Supplement 3:S299-s309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (see, e.g., Hanke et al., Vaccine 16:439-

445, 1998; Sedegah et al., Proc. Natl. Acad. Sci USA 95:7648-53, 1998; Hanke and McMichael, Immunol. Letters 66:177181, 1999; and Robinson et al., Nature Med. 5:526-34, 1999).

For example, the efficacy of the DNA minigene used in a prime boost protocol is inittally evaluated in transgenic mice. In this example, A2.1K0 transgenic mice are immunized IM with $100 \mu \mathrm{~g}$ of a DNA minigene encoding the immunogenic peptides including at least one HLA-A2 supermotif-bearing peptide. After an incubation period (ranging from 3 9 weeks), the mice are boosted IP with 107 pfu/mouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with $100 \mu \mathrm{~g}$ of DNA or recombinant vaccinla without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additlonally, splenocytes are stimulated in vitro with the A2-restricted peptide epitopes encoded in the minigene and - recombinant vaccinia, then assayed for peptide-specific activity in an alpha, beta and/or gamma IFN ELISA.

It is found that the minigene utilized in a prime-boost protocol elicits greater immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis can also be performed using HLA-A11 or HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 or HLA-B7 motif or supermotif epitopes. The use of prime boost protocols in humans is described below in the Example entitled "Induction of CTL Responses Using a Prime Boost Protocol."

Example 22: Peptide Composition for Prophylactic Usos

Vaccine compositions of the present invention can be used to prevent 158P107 expression in persons who are at risk for tumors that bear this antigen. For example, a polyepitopic peptide epitope composition (or a nucleic acid comprising the same) containing multipie CTL and HIL epitopes such as those selected in the above Examples, which are also selected to targel greater than 80% of the population, is administered to individuals at risk for a 158P1D7-associated tumor.

For example, a peplide-based composition is provided as a single polypeptide that encompasses multiple epltopes. The vaccine is typically administered in a physlological solution that comprises an adjuvant, such as incomplete Freunds Adjuvant. The dose of peptide for the initial immunization is from about 1 to about $50,000 \mu \mathrm{~g}$, generally $\cdot 100-5,000 \mu \mathrm{~g}$, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the Immune response in the patient, by techniques that delermine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against 158P107-assoclated disease.

Alternatively, a composition typically comprising transfecting agents is used for the administration of a nucleic acidbased vaccine in accordance with methodologies known in the art and disclosed herein.

Example 23: Polyepitopic Vaccine Compositions Derived from Native 158P1D7 Sequences

A native 158P1D7 polyprotein sequence is analyzed, preferably using computer algorithms defined for each class I and/or class II supermotif or motif, to idenlify "relatively short" regions of the polyprotein that comprise multiple epitopes. The "relatively short" regions are preferably less in length than an entire native antigen. This relatively short sequence that contains multiple distinct or overlapping, "nested" epltopes is selected; it can be used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The "relaively short" peptide is generally less than 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino adds in length. The prolein sequence of the vaccine composition is selected because il has maximal number of epitopes contained within the sequence, l.e., it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overfapping (i.e., frame shifted relative to one
another). For example, with overlapping epitopes, two 9 -mer epitopes and one 10 -mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes.

The vaccine composition will include, for example, multiple CTL epitopes from 158P1D7 antigen and at least one HTL epitope. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.

The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-Inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motifbearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (excluding an analoged embodiment) directs the immune response to multiple peptide sequences that are actually present in nattve 158P1D7, thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing peptide or nucleic acid vaccine compositions.

Related to this embodiment, computer programs are avallable in the art which can be used to identify in a target sequence, the greatest number of epitopes per sequence length.

Example 24: Polyepitopic Vaccine Compositions From Multiple Antigens

The 158P1D7 peplide epitopes of the present invention are used in conjunction with epitopes from other target tumor-associated antigens, to create a vacine composition that is useful for the prevention or treatment of cancer that expresses 158P1D7 and such other anligens. For example, a vaccine composition can be provided as a single polypeptide that incorporates multiple epitopes from 158P1D7 as well as tumor-associated anligens that are often expressed with a target cancer associated with 158P1D7 expression, or can be administered as a composition comprising a cocktail of one or more discrete epitopes. Alternatively, the vaccine can be administered as a minigene construct or as dendritic cells which have been loaded with the peptide epitopes in vitro.

Example 25: Use of peptides to evaluate an immune response

Peptides of the invention may be used to analyze an immune response for the presence of specific antibodies, CTL or HTL directed to 158P1D7. Such an analysis can be performed in a manner described by Ogg et al., Science 279:2103-2106, 1998. In thls Example, peptldes in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.
in this example highly sensitive human leukocyte antigen tetrameric complexes ("tetramers") are used for a crosssectional analysis of, for example, 158P1D7 HLA-A*0201-specific CTL frequencies from HLA A ${ }^{*} 0201$-positive individuals at different stages of disease or following Immunization comprising an 158P1D7 peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey et al., N. Engl. J. Med. 337:1267, 1997). Brlefly, purifed HLA heavy chain ($A^{*} 0201$ in this example) and $\beta 2$-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH -terminal addition of a sequence containing a BirA enzymatic blotinylation site. The heavy chain, $\beta 2$-microglobulin, and peptide are refolded by dilution. The $45-\mathrm{kD}$ refolded product is Isolated by fast protein Iquild chromatography and then blotinylated by BirA in the presence of biotin (Sigma, St. Louis, Missouri), adenosine 5' triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a $1: 4$ molar ratio, and the tetrameric product is concentrated to $1 \mathrm{mg} / \mathrm{ml}$. The resulting product is referred to as tetramer-phycoerythrin.

For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300 g for 5 minutes and resuspended in 50μ lof cold phosphate-buffered saline. Tit-color analysis is performed with the tetramer-phycoerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain $>99.98 \%$ of control samples. Controls for the tetramers include both $\mathrm{A}^{*} 0201$-negative individuals and $\mathrm{A}^{*} 0201$-positive non-diseased donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The resulis indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the 158p1D7 epitope, and thus the status of exposure to 158P1D7, or exposure to a vaccine that elicits a protective or therapeutic response.

Example 26: Use of Peptide Epitopos to Evaluate Recall Responses

The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who have recovered from 158P1D7-associated disease or who have been vaccinated with an 158P1D7 vaccine.

For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any 158P1D7 vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peplde epitopes of the invention that, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type.

PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, MO), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2 mM), penicillin ($50 \mathrm{U} / \mathrm{ml}$), streptomycin ($50 \mu \mathrm{~g} / \mathrm{ml}$), and Hepes (10 mM) containing 10\% heat-inactivated human $A B$ serum (complete RPMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the invention is added at $10 \mu \mathrm{~g} / \mathrm{ml}$ to each well and HBV core $128-140$ epitope is added at $1 \mu \mathrm{~g} / \mathrm{ml}$ to each well as a source of T cell help during the first week of stimulation.

In the microculture format, 4×10^{5} PBMC are stlmulated with peptide in 8 replicate cultures in 96 -well round bottom plate in $100 \mu /$ twell of complete RPMI. On days 3 and $10,100 \mathrm{ul}$ of complete RPMI and $20 \mathrm{U} / \mathrm{ml}$ final concentration of rlL-2 are added to each well. On day 7 the cultures are transferred into a 96 -well flat-bottom plate and restimulated with peptide, rIL-2 and 10^{5} irradialed ($3,000 \mathrm{rad}$) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific ${ }^{51} \mathrm{Cr}$ release, based on comparison with non-diseased control subjects as previously described (Rehermann, ei al., Nature Med. 2:1104,1108, 1996; Rehemann et al., J. Clin. Invest. 97:1655-1665, 1996; and Rehermann et al. J. Clin. Invest. 98:14321440, 1996).

Target ceill lines are autologous and allogenelc EBV-Iransformed B-LCL that are either purchased from the American Society for Histocompatiblility and Immunogenetics (ASHI, Boston, MA) or established from the pool of patients as described (Guilhot, et al. J. Virol. 66:2670-2678, 1992).

Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-rransformed B lymphoblastold cell line that are incubated overnight with the synthetic peptide epitope of the invention at $10 \mu \mathrm{M}$, and labeled with $100 \mu \mathrm{Ci}$ of ${ }^{51} \mathrm{Cr}$ (Amersham Corp., Arlington Heights, IL) for 1 hour after which they are washed four times with HBSS.

Cytolytic activity is determined in a standard $4-\mathrm{h}$, split well ${ }^{51} \mathrm{C}$ r release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (ETT) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: $100 \times[$ (experimental release-spontaneous release)/maximum release-
spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X - 100 ; Sigma Chemical Co., St. Louis, MO). Spontaneous release is $<25 \%$ of maximum release for all experiments.

The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to 158P1D7 or an 158P1D7 vaccine.

Similarly, Class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96 -well flat bottom plate at a density of 1.5×10^{5} cells/well and are stimulated with $10 \mu \mathrm{~g} / \mathrm{ml}$ synthetic peptide of the invention, whole 158P107 antigen, or PHA. Cells are routinely plated in replicales of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing $10 \mathrm{U} / \mathrm{ml} \mathrm{IL}-2$. Two days later, $1 \mu \mathrm{Ci}{ }^{3} \mathrm{H}$-hymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for 3 H -thymidine incorporation. Antlgen-specific T cell proliferation is calculated as the ratio of 3 H thymidine incorporation in the presence of antigen divided by the ${ }^{3} \mathrm{H}$-thymidine incorporation in the absence of antigen.

Example 27: Induction Of Specific CTL Response In Humans

A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study and carried out as a randomized, double-blind, placebo-controlled trial. Such a trial is designed, for example, as follows:

A total of about 27 individuals are enrolled and divided into 3 groups:
Group I: 3 subjects are injected with placebo and 6 subjects are injected with $5 \mu \mathrm{~g}$ of peptide composition;
Group II: 3 subjects are injecled with placebo and 6 subjects are injected with $50 \mu \mathrm{~g}$ peptide composition;
Group ili: 3 subjects are injected with placebo and 6 subjects are injected with $500 \mu \mathrm{~g}$ of peptide composition.
After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage.
The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of blological efflcacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.

Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.

Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinlzed blood by. Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

The vacine is found to be both safe and efficacious.

Example 28; Phase II Triais In Patients Expressing 158P1D7

Phase II trials are performed to study the effect of administering the CTL-HTL peptide compositions to patients having cancer that expresses 158P107. The main objectives of the trial are to determine an effeclive dose and regimen for inducing CTLs in cancer patients that express 158P1D7, to establish the safety of inducing a CTL and HTL response in these patients, and to see to what extent activation of CTLs improves the cinical picture of these patients, as manifested, e.g., by the reduction and/or shrinking of lesions. Such a study is designed, for example, as follows:

The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the pepitde composition is administered as a single dose followed six weeks later by a single booster shot
of the same dose. The dosages are 50,500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded.

There are three patient groupings. The first group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peplide composition, respectively. The patients withln each group range in age from 21-65 and represent diverse ethnic backgrounds. All of them have a tumor that expresses 158P1D7.

Clinical manifestations or antigen-specific T-cell responses are monitored to assess the effects of administering the pepllde compositions. The vaccine composition is found to be both safe and efficacious in the treatment of 158P1D7associated disease.

Example 29: Induction of CTL Responses Using a Prime Boost Protoco

A prime boost protocol similar in its underlying principle to that used to confirm the efficacy of a DNA vaccine in transgenic mice, such as described above in the Example entitled "The Plasmid Construct and the Degree to Which It Induces Immunogenicity," can also be used for the administration of the vaccine to humans. Such a vaccine regimen can include an initial administration of, for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an adjuvant.

For example, the initial immunization may be periormed using an expression vector, such as that constructed in the Example entitled "Construction of 'Minigene' Mult-Epitope DNA Plasmids" in the form of naked nucteic acid administered IM (or SC or ID) in the amounts of $0.5-5 \mathrm{mg}$ at multiple sites. The nucleic acid (0.1 to $1000 \mu \mathrm{~g}$) can also be administered using a gene gun. Following an incubation period of $3-4$ weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of $5-10^{7}$ to 5×10^{9} pfu. An allemative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also be used for the booster, or the polyepitopic protein or a mlxture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples are obtained before Immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

Analysis of the results indicates that a magnitude of response sufficient to achieve a therapeutic or protective immunlty against 158P1D7 is generated.

Example 30: Administration of Vaccine Compositions Using Dendritic Cells (DC)

Vaccines comprising peptide epitopes of the invention can be administered using APCs, or "professional" APCs such as DC. In this example, peptide-pulsed DC are administered lo a patient to stimulate a CTL response in vivo. In this method, dendritic cells are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses in vivo. The induced CTL and HTL then destroy or facilitate destruction, respectively, of the farget cells that bear the 158P1D7 protein from whlch the epitopes in the vaccine are derlved.

For example, a cocktail of epitope-comprising peptides is administered ex vivo to PBMC, or isolated DC therefrom. A pharmaceutical to facilitale harvesting of DC can be used, such as Progenipoietin ${ }^{T M}$ (Monsanto, St. Louis, MO) or GM-CSF/LL-4. After pulsing the $D C$ with peptides, and prior to reinfusion into patients, the $D C$ are washed to remove unbound peptides.

As appreciated clinically, and readily determined by one of sklll based on clinical outcomes, the number of DC reinfused into the patient can vary (see, e.g., Nature Med. 4:328, 1998; Nature Med. 2:52, 1996 and Prostate 32:272, 1997). Although $2-50 \times 10^{6} \mathrm{DC}$ per patient are typically administered, larger number of DC , such as 10^{7} or 10^{8} can also be provided. Such cell populations typically contain between $50-90 \% \mathrm{DC}$.

In some embodiments; peptide-loaded PBMC are injected into patients without purification of the DC . For example, PBMC generated after treatment with an agent such as Progenipoletin ${ }^{\text {TM }}$ are injected into patlents without purification of the DC. The total number of PBMC that are administered often ranges from 10^{8} to 10^{10}. Generally, the cell doses injected into patients is based on the percentage of $D C$ in the blood of each patient, as determined, for example, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, if Progenipoiefin ${ }^{T M}$ mobilizes $2 \% D C$ in the peripheral blood of a given patient, and that patient Is to recelve $5 \times 10^{6} \mathrm{DC}$, then the patient will be injected with a total of 2.5×10^{8} peptide-loaded PBMC. The percent DC mobilized by an agent such as Progenipoietin ${ }^{\text {TM }}$ is typically estimated to be between $2-10 \%$, but can vary as appreciated by one of skill in the art.

Ex vivo activation of CTLIHTL responses

Alternatively, ex vivo CTL. or HTL responses to 158P1D7 antigens can be induced by incubating, in tissue culture, the patients, or genetically compatible, CTL or HTL precursor cells together with a source of APC, such as DC, and Immunogenic peptides. After an appropriate incubation time (typically aboul 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused into the patient, where they will destroy (CTL) or faclitate destruction (HTL) of their specific target cells, i.e., tumor cells.

Example 31: An Alternative Method of Identifying and Confirming Motif-Bearing Peptides

Another method of idenlifying and confirming motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can be tansfected with nucleic acids that express the antigen of interest, e:g. 158P1D7. Peplides produced by endogenous antigen processing of peptides produced as a result of transfection will then bind to HLA molecules within the cell and be transported and displayed on the cell's surface. Peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g., by mass spectral analysis (e.g., Kubo ot al., J. Immunol. 152:3913, 1994). Because the majority of peptldes that bind a particular HLA molecule are motif-bearing, this is an altemative modality for obtaining the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell.

Alternatively, cell lines that do not express endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells can then be used as described, i.e., they can then be transfected with nucleic acids that ericode 158P1D7. to isolate peptides corresponding to 158P1D7. that have been presented on the cell surface. Peptides obtained from such an analysis will bear molif(s) that correspond to binding to the single HLA allele that is expressed in the cell.

As appreclated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed. Moreover, one of skill would also recognize that means other than transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell.

Example 32: Complementary Polynucleotides

Sequences complementary to the 158P1D7-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring 158P1D7. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using, e.g., OLIGO 4.06 software (National Blosciences) and the coding sequence of 158P1D7. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5 ' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the 158P1D7-encoding transcript.

Example 33: Purification of Naturally-occurring or Recombinant 158P1D7 Using 158P1D7 Specific

Antibodies

Naturally occurring or recombinant 158P1D7 is substantially purified by immunoaffinity chromatography using antibodies specific for 158P1D7. An immunoaffinity column is constructed by covalently coupling anti-158P1D7 antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biolech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing 158P1D7 are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of 158P1D7 (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/158P1D7 binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope; such as urea or thiocyanate ion), and GCR.P is collected.

Examole 34: Identification of Molecules Which Interact with 158P1D7

158P1D7, or biologically active fragments thereof, are labeled with 1211 Bolton-Hunter reagent.
(See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules prevlously arrayed in the wells of a multi-well plate are incubated with the labeled 158P1D7, washed, and any wells with labeled 158P1D7 complex are assayed. Data obtained using different concentrations of 158P1D7 are used to calculate values for the number, affinity, and association of 158P107 with the candidate molecules.

Example 35: In Vivo Assay for 158P1D7 Tumor Growth Promotion

The effect of the 158P1D7 protein on tumor cell growth can be confirmed in vivo by gene overexpression in bladder cancer cells. For example, SCID mice can be injected SQ on each flank with 1×10^{6} bladder cancer cells (such as SCaBER, UM-UC-3, HT1376, RT4, T24, TCC-SUP, J82 and SW780 cells) containing tkNeo empty vector or 158P1D7.

At least two strategies may be used: (1) Constitutive 158P1D7 expression under regulation of a promoter such as a constitutive promoter obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK $2,211,504$ published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepattis-B virus and Simian Virus 40 (SV40), or from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, provided such promoters are compatble with the host cell systems. (2) Regulated expression under control of an inducible vector system, such as ecdysone, tet, etc., can be used provided such promoters are compatible with the host cell systems. Tumor volume is then monitored at the appearance of palpable tumors and is followed over time to determine if 158P1D7-expressing cells grow at a faster rate and whether tumors produced by 158P1D7expressing cells demonstrate characteristics of altered aggressiveness (e.g. enhanced metastasis, vascularization, reduced responsiveness to chemotherapeutic drugs). Additionally, mice can be implanted with the same cells orthotopically to determine If 158P1D7 has an effect on local growth in the bladder or on the ability of the cells to metastasize, specifically
to lungs or lymph nodes (Fu, X., ot al., Int. J. Cancer, 1991. 49: p. 938-939; Chang, S., et al., Anticancer Res., 1997. 17: p. 3239-3242; Peralta, E. A., et al., J. Urol., 1999. 162: p. 1806-1811). Furthermore, this assay is useful to confirm the 158P1D7 Inhibitory effect of candidate therapeutic compositions, such as for example, 158P1D7 antibodies or intrabodies, and 158P107 antisense molecules or ribozymes.

The assay was performed using the following prolocols. Male ICR-SCID mice, $5-6$ weeks odd (Charles River Laboratory, Wilmington, MA) were used and maintained in a strictly controlled environment in accordance with the NIH Guide for the Care and Use of Laboratory Animals. 158P1D7 transfected UM-UC-3 cells and parental cells were Injected into the subcutaneous space of SCID mice. Each mouse recelved 4×10^{6} cells suspended in 50% ($\mathrm{v} k$) of Matrigel. Tumor size was monitored through caliper measurements twlee a week. The longest dimension (L) and the dimension perpendicular to it (W) were taken to calculate tumor volume according to the formula $W^{2} \times L / 2$. The Mann-Whitney U test was used to evaluate differences of tumor growth. All tests were two sided with $\alpha=0.05$. The results show that 158P1D7 enhances the growth of bladder cancer in mice (Figure 27).

Example 36: 158P1D7 Monoclonal Antlbody-mediated Inhibition of Bladder and Prostate Tumors In Vivo
The significant expression of 158P1D7 in cancer tissues, together with its restricted expression in normal tissues, makes 158P1D7 an excellent target for antibody therapy. In cases where the monoclonal antibody target is a cell surface protein, antibodies have been shown to be efficacious at inhibiting tumor growth (See, e.g., (Saffran, D., et al., PNAS 10:1073-1078 or URL: pnas.org/cgi/doi/10.1073/pnas.051624698). In cases where the target is not on the cell surface, such as PSA and PAP in prostate cancer, antibodies have still been shown to recognize and inhibit growth of cells expressing those proteins (Saffran, D.C., et al., Cancer and Metastasis Reviews, 1999. 18: p. 437-449). As with any cellular protein with a restricted expression profile, 158P1D7 is a target for T cell-based Immunotherapy.

Accordingly, the therapeutic efflcacy of anll-158P1D7 mAbs in human bladder cancer mouse models is modeled in 158P107-expressing bladder cancer xenografts or bladder cancer call lines, such as those described in Example (the Example entilled "In Vivo Assay for 158P1D7 Tumor Growth Promotion", that have been engineered to express 158P1D7.

Antibody efficacy on tumor growth and metastasis formation is confirmed, e.g., In a mouse orthotopic bladder cancer xenograft model. The antibodies can be unconjugated, as discussed in this Example, or can be conjugated to a therapeutic modality, as appreciated in the art. It is confirmed that anti-158P1D7 mAbs inhibit formation of 158P1D7expressing bladder and prostate tumors (Figures 30 and 31). Anti-158P1D7 mAbs can be tested for the retardation of the growth of established orthotopic tumors and the prolonged survival of tumor-bearing mice. These results indicate the utlity of anti-158P107 mAbs in the treatment of local and advanced stages of bladder and prostate cancers. (See, e.g., Saffran, D., et al., PNAS 10:1073-1078 or URL: pnas.org/cgi/doil10.1073/pnas.051624698)

Administration of anti-158P1D7 mAbs retard established orthotopic tumor growth and inhibit metastasis to distant sites, resultung in a significant prolongation in the survival of tumor-bearing mice. These studles indicate that 158P107 is an attractive target for immunotherapy and demonstrate the therapeutic potential of anti-158P1D7 mAbs for the treatment of local and metastatic bladder cancer.

This example demonstrates that unconjugated 158P1D7 monoclonal antibodies effectively to inhibit the growth of human bladder tumors grown in SCID mice; accordingly a combination of such efficacious monoclonal antibodies is also effective.

Tumor inhibition using multiple unconjugated 158P1D7 mAbs
Materials and Methods
158P1D7 Monoclonal Antibodies:

Monoctonal antibodies are raised against 158P1D7 as described in the Example entitled "Generation of 158P1D7 Monoclonal Antibodies (mAbs)." The anjbodies are characterized by ELISA, Westem blot, FACS, and immunoprecipitation, in accordance with techniques known in the art, for their capacity to bind 158P1D7. Epitope mapping data for the anti158P1D7 mAbs, as determined by ELISA and Western analysis, recognize epitopes on the 158P1D7 protein. Immunohistochemical analysis of bladder cancer tissues and cells with these antibodies is performed.

The monocional antibodies are purified from ascltes or hybridoma tissue culture supernatants by Protein-G Sepharose chromatography, dialyzed against PBS, filter sterilized, and stored at $-20^{\circ} \mathrm{C}$. Protein determinations are performed by a Bradford assay (Bio-Rad, Hercules, CA). A therapeutic monoclonal antibody or a cocktail comprising a mixture of individual monoclonal antibodies is prepared and used for the treatment of mice receiving subcutaneous or orthotopic injections of bladder tumor xenografts.

Bladder Cancer Cell Lines

Bladder cancer cell lines (Scaber, J82, UM-UC-3, HT1376, RT4, T24, TCC-SUP, J82 and SW780) expressing 158P1D7 are generated by retroviral gene transfer as described in Hubert, R.S., et al., STEAP: a proslate-specific cellsurface antigen highly expressed in human prostate tumors. Proc Natl Acad Scl U S A, 1999. 96(25):14523-8. Anti-158P1D7 staining is detecled by using an FITC-conjugated goat anti-mouse antibody (Southern Biotechnology Associales) followed by analysis on a Coulter Epics-XL flow cytometer.

In Vivo Mouse Models.

Subcutaneous (s.c.) tumors are generated by injection of 1×10^{6} 158P1D7-expressing bladder cancer cells mixed at a $1: 1$ dilution with Matrigel (Collaborative Research) in the right flank of male SCID mice. To test antibody efficacy on tumor formation, I.p. anlibody injections are started on the same day as tumor-cell injections. As a control, mice are injected with either purified mouse $\lg G$ (ICN) or PBS; or a purified monoclonal antibody that recognizes an irrelevant antigen not expressed in human cells. In preliminary studles, no difference is found between mouse lgG or PBS on tumor growth. Tumor sizes are determined by vemier caliper measurements, and the tumor volume is calculated as length x width x height. Mice with s.c. tumors greater than 1.5 cm in diameter are sacrificed. Clrculating levels of anti-158P1D7 mAbs are determined by a capture ELISA kit (Bethyl Laboratories, Montgomery, TX). (See, e.g., (Saffran, D., et al., PNAS 10:1073-. 1078)

Orthotopic injections are performed, for example, in two alternative embodiments, under anesthesia by, for example, use of ketaminetxylazine. In a first embodiment, an intravesicular injection of bladder cancer cells is administered directly through the urethra and into the bladder (Peralta, E. A., et al., J. Urol., 1999. 162:1806-1811). In a second embodiment, an incision is made through the abdominal wall, the bladder is exposed, and bladder tumor tissue pieces (1-2 mm in size) derived from a s.c. tumor are surgically glued onto the exterior wall of the bladder, termed "onplantation" (Fu, X., et al., Int. J. Cancer, 1991. 49: 938-939; Chang, S., et al., Anticancer Res., 1997. 17: p. 3239-3242). Antibodies can be administered to groups of mice at the time of tumor injection or onplantation, or after 1-2 weeks to allow tumor establishment. Anti-158P1D7 mAbs inhibit Growth of 158P1D7-Expressing Bladder Cancer Tumors
In one embodiment, the effect of anti-158P1D7 mAbs on tumor formation is tested by using the bladder onplantation orthotopic model. As compared with the s.c. tumor model, the orthotopic model, which requires surgical atlachment of tumor tissue directly on the bladder, results in a local tumor growth, development of metastasis in distal sites, and subsequent death (Fu, X., et al., int. J. Cancer, 1991. 49: p. 938-939; Chang, S., et al., Anticancer Res., 1997. 17: p. 3239-3242). This feature make the orthotopic model more representative of human disease progression and allows one to follow the therapeutic effect of mAbs, as well as other therapeutic modalities, on clinically relevant end points.

Accordingly, 158P1D7-expressing tumor cells are onplanted orthotopically, and 2 days later, the mice are segregated into two groups and treated with either: a) $50-2000 \mu \mathrm{~g}$, usually $200-500 \mathrm{\mu g}$, of anti-158P1D7 Ab, or b) PBS, three times per week for two to five weeks. Mice are monitored weekly for indications of tumor growth.

As noted, a major advantage of the orthotopic bladder cancer model is the ability to study the development of metastases. Formation of metastasis in mice bearing established orthotopic tumors is studied by histological analysis of tissue sections, including lung and lymph nodes (Fu, X, et al., Int. J. Cancer, 1991. 49:938-939; Chang, S., et al., Anticancer Res., 1997. 17:3239-3242). Additionally, IHC analysis using anti-158P1D7 antibodies can be performed on the tissue sections.

Mice bearing established orthotoplc 158P1D7-expressing bladder tumors are administered $1000 \mu \mathrm{~g}$ injections of either anti-158P1D7 mAb or PBS over a 4 -week period. Mice in both groups are allowed to establish a high tumor burden (12 weaks growth), to ensure a high frequency of metastasis formation in mouse lungs and lymph nodes. Mice are then sacrificed and their local bladder tumor and lung and lymph node tissue are analyzed for the presence of tumor cells by histology and IHC analysis.

In another embodiment, the effect of ant1-158P1D7 mAbs on fumor growth was tested using the following protocols. Male ICR-SCID mice, 5-6 weeks old (Charles River Laboratory, Wimington, MA) were used and were maintained in a strictly-controlled environment in accordance with the NIH Guide for the Care and Use of Laboratory Animals.

UG-B1, a palient bladder cancer, was used to establish xenograft models. Stock tumors regularly maintained in SCID mice were sterilely dissected, minced, and digested using Pronase (Calbiochem, San Diego, CA). Cell suspensions generated were incubated overnight at $37^{\circ} \mathrm{C}$ to obtain a homogeneous single-cell suspension. Each mouse received 2.5 x 10^{6} cells al the subcutaneous site of right flank. Murine monoclonal antibodies to 158P1D7 were tested at a dose of 500 $\mu \mathrm{g} /$ mouse in the study. PBS was used as control. MAbs were dosed intra-peritoneally twice a week for a total of 12 doses, starting on the same day of tumor cell injection. Tumor size was monitored through caliper measurements twice a week. The
 formula: W2 \times L/2. The results show that Antl-158P1D7 mAbs are capable of inhibiting the growth of human bladder carcinoma in mice (Figure 30).

Anti-158P107 mAbs retard the Growth of established 158P1D7-Expressing Prostate Cancer Tumors
In another embodiment, the effect of anti-158P1D7 mAbs on tumor growth was tested using the following protocols. Male ICR-SCID mice, 5-6 weeks old (Charles River Laboratory, Wilmington, MA) were used and were maintained in a strictly-controlled environment in accordance with the NIH Guide for the Care and Use of Laboratory Animals. LAPC: 9AD, an androgen-dependent human prostate cancer, was used to establish xenograft models. Stock tumors were regularly maintained in SCID mice. At the day of implantation, stock tumors were harvested and timmed of necrotic tissues and minced to $1 \mathrm{~mm}^{3}$ pieces. Each mouse received 4 pieces of tissues at the subcutaneous site of right flank. Murine monoclonal antibodies to 158P1D7 were tested at a dose of $500 \mu \mathrm{~g} /$ mouse and $500 \mu \mathrm{~g} /$ mouse respectively. PBS and antiKLH monoclonal antibody were used as controls. The study cohort conslsted of 4 groups with 6 mice in each group. MAbs were dosed intra-peritoneally twice a week for a total of 8 doses. Treatment was started when tumor volume reached 45 mm^{3}. Tumor size was monitored through caliper measurements twice a week. The longest dimension (L) and the dimension perpendicular to it (W) were taken to calculate tumor volume according to the formula: $W^{2} \times L / 2$. The Sudent's t test and the Mann-Whitney U test, where applicable, were used to evaluate differences of tumor growth. All tests were two-sided with $a=0.05$. The results show that Anti-158P1D7 mAbs are capable of retarding the growth of established human prostate carcinoma in mice (Figure 31).

These studies demonstrate a broad anti-tumor efficacy of anti-158P1D7 antibodies on Intiation and progression of bladder cancer and prostate cancer and indicate that 158P1D7 antibodies to be efficacious in inhlibiting and retarding the
growth of 158P1D7-expressing tissues (Table I) in mouse models. Anti-158P1D7 antibodies inhibit tumor formation and retard the growth of already established tumors and prolong the survival of treated mice. Moreover, antl-158P1D7 mAbs demonstrate a dramatic inhibitory effect on the spread of local bladder tumor to distal sites, even in the presence of a large tumor burden. Thus, anti-158P1D7 mAbs are efficacious on major clinically relevant end points including lessened tumor growth, lessened metastasls, and prolongation of survival.

Example 37: Homology Comparison of 158P1D7 to Known Sequences

The 158P1D7 protein has 841 amino acids with calculated molecular weight of 95.1 kDa , and plof 6.07 . 158P1D7 is predicted to be a plasma membrane protein (0.46 PSORT http:/lpsort.nibb.ac.jp/form.html) with a possibiity of il being a nuclear protein (65\% by PSORT http://psort.nibb.ac.jp/form2.html). 158P1D7 has a potential cleavage site between aa 626 and 627 and a potential signal site at aa 3-25.

158P1D7 contains a single transmembrane region from amino acids 611-633 with high probability that the aminoterminus resides outside, consistent with the topology of a Type 1 transmembrane protein (located on the World Wide Web at .cbs.dtu.dK/services/TMHMM). Also visualized is a short hydrophobic stretch from amino acids 3-25; consistent with the existence of an amino-terminal signal peptide. Based on the TMpred algorlthm of Hofmann and Stoffel which utilizes TMBASE (K. Hofmann, W. Stoffel, TMBASE - A database of membrane spanning protein segments Biol. Chem. HoppeSeyler 374:166, 1993), 158P1D7 contains a primary transmembrane region from amino acids 609-633 and a secondary transmembrane region from amino acids $3-25$ (contiguous amino acids with values greater than 0 on the plot have high probability of boing transmembrane reglons) with an orientation in which the amino terminus resides inside and the carboxyt terminus outside. An alternative model is also predicted that 158P1D7 is a Type 1 transmembrane protein in which the amino-terminus resides outside and the protein contains a secondary transmembrane domain signal peptide from amino acids 3-25 and a primary transmembrane domain from aa615-633. The transmembrane prediction algorithms are accessed through the ExPasy molecular biology server located on the World Wide Web at (expasy.ch/tools $/$ /.

By use of the PubMed website of the N.C.B.I. located on the Word Wide Web at (.ncbi.nlm.nih.gov/entrez), it was found at the protein level that 158P1D7 shows best homology to the hypothetical protein FLJ22774 (PubMed record: gi 14149932) of unknown function, with 97% identity and 97% homology (Figure 4 and Figure 5A). The 158P1D7 protein demonstrates homology to a human protein similar to IGFALS (Insulin-like growth factor binding protein, acid labile subunit) (PubMed record: gi 6691962) with 36% identity and 52% homology (Figure 5B), to Slit proteins with 25% Identity and 39% homology and to the leucine-rich repeat transmembrane family of proteins FLRT (Fibronectin-like domain-containing leucinerich transmembrane protein), including FLRT2 with 26% identity and 43% homology, and FLRT3 with 34% identity and 53% homology.

Insulin-like growth factors (IGF) have been shown to play an important role in tumor growth including prostate, breast, brain and ovarian cancer (O'Brian et al, Urology, 2001, 58:1; Wang J et al Oncogene. 2001, 20:3857; Helle S et al, Br J Cancer. 2001, 85:74). IGFs produce their oncogenic effect by binding to specific cell surface receptors and activating survival as well as mitogenic pathways (Babajko S et al, Med Pediat Oncol. 2001, 36:154; Scalia P et al, J Cell Biochem. 2001, 82:610). The activity of insulin-like growth factors is regulated by IGF binding proteins (IGF-BP) and the acid labile subunit (ALS) of IGF-BP (Zeslawskl W et al, EMBO J. 2001, 20:3638; Jones JI. and Clemmons DR. Endocr. Rev. 1995, 16: 3). In the plasma, most IGFs exist as a ternary complex contalning IGF-BP and ALS (Jones JI. and Clemmons DR. Endocr. Rev. 1995, 16: 3). Association with ALS allows the retention of the ternary complex in the vasculature and extends its lifespan (Ueki l et al, Proc Natl Acad Sci U S A 2000, 97:6868). Studies in mice demonstrate the contribution of ALS lo cell growth by showing that mice carrying mutant ALS exhibit a growth deficit (Ueki I et al, Proc Natl Acad Sci U S A 2000,

97:6868), Indicating that ALS plays a critical role in the growth of tumor cells. The 158P1D7 protein serves as an IGF-ALSlike prolein in that it facilitates the formation of the IGF temary complex. The 158P1D7-induced IGF complex formation leads to increased growth of tumor cells expressing 158P1D7 which facilitates the growth of this maligniancy in vivo. The induction of the IGF complex allows one to assay for monoclonal antibodies with neutalizing ability to disrupt, or enhancing capacity to help form, the ternary interaction.

Slit proteins were first identified in Drosophila as secreted proteins that regulate axon guldance and orientation (Rajagopalan S et al, Cell. 2000, 103:1033; Chen J et al, J Neurosci. 2001, 21:1548). Mammalian homologs were cloned in mice and humans, where they are shown to regulate migration and chemotaxis (Wu J et al, Nature. 2001, 410:948; Brose K and Tessler M, Curr Opin Neurobiol. 2001, 10:95). Slit protens locallze at two distinct subcellular sites within epithelial cells depending on cell stage, with Slit 3 predominantly localizing in the mitochondria and targeling to the cell surface in more confluent cells (LItte MH et al, Am J Physiol Cell Physlol. 2001, 281:C486). The differential Slit localization suggests that slit may function differently whether it is secreted, assoclated with the cell surface or retained in the mitochondria. The 158P1D7 protein functions as a Slit-like protein In that it binds to Roundabout receptors (Robos) on the surface of cells. 158P1D7 has homology (83% identity along entire length) with the murine Slitrk6 gene, a member of a new family of Leucine Rich Receptors (LRRs). The Slit family of LRRs is involved in neurite oulgrowth and axonal guidance during development. These proteins also play a role in organ development by providing cues for branching morphogenesis in lung, kidney and other organs. The crystal stucture for several LRRs has been determined. These proteins are shaped like a horseshoe with LRRs on both sides of a central flexible reglon. This horseshoe shape likely forms a central pocket where other proteins (binding partners) can interact. The term binding parteer includes ligands, receptors, substrates, antibodies, and other molecules that interact with the 158P1D7 polypeptide through contact or proximity between particular portions of the binding partner and the 158P1D7 polypeptide. Binding partners for 158P1D7 polypeptides are expressed on both epithelial and mesenchymal cells within an organ. Known binding partners for the Slit family of LRRs include both the Robo family of genes and glypicans. Both of these potential proteln interacting partners are aberrantly expressed in human cancers. Robos are Ig-like proteins that act as adhesion molecules. Interaction of specific Robo and Slit protelns results in cell migration with the ultimate outcome being either repulsion or attraction depending on intracellular signaling cascades. Mutations that disrupt interaction of Slit with Robo result in failure to repel migrating neurons during development. Moreover, mutations that disrupt functional interactions lead to organ failure and hyperproliferation in the developing lung. Mutational analysis has further shown that the LRR region is required for blologlc activity of these receptors. 158P1D7 is overexpressed in a variety of human cancers Including those derived from bladder and lung. Aberrant expression of this protein leads to enhanced cell growth, survival, increased metastasis and angiogenesis by disrupting or promoting protein interactions between 158P1D7 and specfic binding partners on the surface of adjacent cells. Binding of 158P1D7 to Robo receptors (Robo-1, $-2,-3$ and -4) is observed in vitro, both as recombinant proteins and as cell surface molecules. Biological effects are induced when the Robo-1, $-2,-3$ or -4 receptors or glypican-binding pariners binds to 158P1D7 on the cell surface. These activites are detected by adhesion, enhanced migration or repulsion in cell based assays. The interaction between 158P1D7 and Robo receptors leads to increased adhesion between 158P1D7-expressing tumor cells and endothellum or other cell types expressing Robo receptors, leading to spreading and metastasis of tumor cells as well as enhanced angiogenesis. Further, the association between 158P1D7 and Robo receptors allows one to screen for monocional antibodies with the ability to block (or enhance) the interaction in an in vitro assay. Such antibodies have a modulating effect on growth of 158P1D7 expressing tumors.

The FLRT (Fibronectin-like domain-containing leucine-rich transmembrane proteln) family of transmembrane proteins has three members, FLRT1, FLRT2 and FLRT3, which contain 10 leucine-rich repeats flanked by cysteine-rich domains, a flbronectin/collagen-llke motif and an intracellular tail (Lacy SE et al, Genomics 1999, 62:417). Based on overall structure of the three proteins, a role in cell adhesion and receptor signaling is predicted. A Xenopus laevis ortholog of

FLRT3 (XFLRT3) was identified that shows co-expression with FGFs (fibroblast growth factors) and is induced after activation and reduced following inhibition of signal tansduction through the FGFs (Bottcher RT et al, Nature Cell Biol 2004, 6:38). The interaction between FGFRs (FGF receptors) and XFLRT3 Indicates that XFLRT3 modulates FGF-Induced signal transduction through the MAP kinase pathway. The 158P1D7 protein forms a complex with FGFRs that induces modulation of FGF-induced signal transduction through the MAP kinase (ERK-1 and ERK-2) pathway. FGF-induced signals are potentiated by expression of 158P1D7, which leads to an increase in the proliferative capacity of the cells. This significantly promotes unregulated growth of cancer cells expressing 158P1D7, contributing to their growth advantage in vivo. The interaction between 158P1D7 protein and FGFR allows one to screen for monoclonal antibodies with the ablity to disrupt (or enhance) the assoclation of these two molecules. Such antibodies have a modulating effect on growth of 158P1D7 expressing tumors.

Example 38: Identification and Confirmation of Signal Transduction Pathways

Many mammalian proteins have been reported to interact with.signaling molecules and to participate in regulating signaling pathways. (J Neurochem. 2001; 76:217-223). in particular, IGF and IGF-BP have been shown to regulate mitogenic and survival pathways (Babajko S et al, Med Pediatr Oncol. 2001, 36:154; Scalia P et al, JCell Biochem. 2001, 82:610). Using immunopreciptation and Western blotting techniques, proteins are idenlified that associate with 158P1D7 and mediate signaling events. Several'pathways known to play a role in cancer biology are regulated by 158P1D7, including phospholipid pathways such as PI3K, AKT, etc, adhesion and migration pathways, including FAK, Rho, Rac-1, etc, as well as milogenic/survival cascades such as ERK, p38, etc. (Cell Growth Differ. 2000,11:279; J Blol Chem. 1999, 274:801; Oncogene. 2000, 19:3003, J. Cell Biol. 1997, 138:913.). Bioinformatic analysis revealed that 158P1D7 can become phosphorylated by serine/threonine as well as tyrosine kinases. Thus, the phosphorylation of 158P1D7 is provided by the present invention to lead to activation of the above listed pathways.

Using, e.g., Western blotting techniques, the ability of 158P1D7 to regulate these pathways is confirmed. Cells expressing or lacking 158P1D7 are either left untreated or stimulated with cytokines, hormones and anti-integrin antibodies. Cell lysates are analyzed using anti-phospho-specific antibodies (Cell Signaling, Santa Cruz Biotechnology) in order to detect phosphorylation and regulation of ERK, P38, AKT, PI3K, PLC and other signaling molecules. When 158P1D7 plays a role in the regulation of signaling pathways, whether individually or communally, ills used as a target for diagnostic, prognostic, preventative and therapeutic purposes.

To confirm that 158P1D7 directly or indirectly activates known signal transduction pathways in cells, luciferase (luc) based transcriptional reporter assays are carried out in cells expressing individual genes. These transcriptional reporters contain consensus-binding sites for known transcription factors that lie downstream of well-characterized signal transduction pathways. The reporters and examples of these associated transcription factors, signal transduction pathways, and activation stimuli are listed below:

1. NFkB-luc, NFkB/Rel; ik-kinase/SAPK; growth/apoptosis/stress
2. SRE-luc, SRF/TCF/ELK1; MAPKISAPK; growth/differentiation
3. AP-1-luc, FOSIJUN; MAPKISAPK/PKC; growth/apoptosis/stress
4. ARE-luc, androgen receptor; steroids/MAPK; growth/differentiation/apoptosis
5. p53-luc, p 53 ; SAPK; growth/differentiation/apoplosls
6. CRE-luc, CREBIATF2; PKA/p38; growth/apoptosis/stress

Gene-medialed effects are assayed in cells showing mRNA expression. Luciferase reporter plasmids are introduced by lipid-mediated transfection (TFX-50, Promega). Lucierase activity, an Indicator of relative transcriptional activity, is measured by incubation of cell extracts with luciferin substrate and luminescence of the reaction is monitored in a luminometer.

Signaling pathways activated by 158P1D7 are mapped and used for the identification and validation of therapeutic targets. When 158P107 is involved in cell signaling, it is used as target for diagnostic, prognostic, preventative and therapeutic purposes.

Example 39; Involvement in Tumor Progression

The 158P1D7 gene can contribute to the growth of cancer cells. The role of 158P1D7 in tumor growth is confirmed in a variety of primary and transfected cell lines including prostate, colon, bladder and kidney cell lines as well as NIH 3 T3 cells engineered to stably express 158P1D7. Parental ceils lacking 158P1D7 and cells expressing 158P1D7 are evaluated for cell growth using a well-documented proliferation assay (see, e.g., Fraser SP, Grimes JA, Djamgoz MB. Prostate. 2000;44:61, Johnson DE, Ochieng J, Evans SL. Anticancer Drugs. 1996, 7:288).

To confirm the role of 158P1D7 in the transformation process, its effect In colony forming assays is investigated. Parental NIH3T3 celis lacking 158P1D7 are compared to NHI-3T3 cells expressing 158P1D7, using a soft agar assay under stringent and more permissive conditions (Song Z. et al. Cancer Res. 2000, 60:6730).

To confirm the role of 158P1D7 in invasion and metastasis of cancer cells, a well-established assay is used, e.g., a Transwell Insert System assay (Becton Dickinson) (Cancer Res. 1999, 59:6010). 'Control cells, including prostate, colon, bladder and kidney cell lines lacking 158P1D7 are compared to cells expressing 158P1D7, respectively. Cells are loaded with the fluorescent dye, calcein, and plated in the top well of the Transwell insert coated with a basement membrane analog. Invasion is determined by fluorescence of cells in the lower chamber relative to the fluorescence of the entire cell population.

158P1D7 can also play a role in cell cycle and apoptosis. Parental cells and cells expressing 158P1D7 are compared for differences in cell cycle regulation using a well-establlshed BrdU assay (Abdel-Malek ZA. J Cell Physiol. 1988, 136:247). In short, cells are grown under both optimal (full serum) and limiting (low serum) conditions are labeled with BrdU and stained with anti-BrdU Ab and propidium iodide. Cells are analyzed for entry into the $\mathrm{G} 1, \mathrm{~S}$, and G2M phases of the cell cycle. Alternatively, the effect of stress on apoptosis is evaluated in control parental cells and cells expressing 158P1D7, including normal and tumor bladder cells. Engineered and parental cells are treated with various chemotherapeutic agents, such as paclitaxel, gemcitabine, etc, and protein synthesis inhibitors, such as cycloheximide. Cells are stained with annexin V-FITC and cell death is measured by FACS analysis. The modulation of cell death by 158P1D7 can play a critical role in regulating tumor progression and tumor load.

When 158P1D7 plays a role in cell growth, transformation, invasion or apoptosis, it is used as a targel for diagnostic, prognostic, preventative and therapeutic purposes.

Example 40: Involvement in Anglogenesis

Angiogenesis or new capillary blood vessel formation is necessary for tumor growth (Hanahan D, Folkman J. Cell. 1996, 86:353; Folkman J. Endocrinology. 1998 139:441). Several assays have been developed to measure angiogenesis in vitro and in vivo, such as the tissue culture assays, endothelial cell tube formation, and endothelial cell prollferation. Using these assays as well as in vitro neo-vascularization, the effect of 158P1D7 on angiogenesis is confirmed. For example, endothelial cells engineered to express 158P1D7 are evaluated using tube formation and proliferation assays. The effect of 158P1D7 is also confirmed in animal models in vivo. For example, cells either expressing or lacking 158P1D7 are implanted
subculaneously in immunocompromised mice. Endothelial cell migration and angiogenesis are evaluated 5-15 days later using immunohistochemistry techniques. When 158P1D7 affects anglogenesis, it is used as a target for dlagnostic, prognostic, preventative and therapeutic purposes

Example 41: Regulation of Transcription

The above-indicated localization of 158 P 107 to the nucleus and its similarity to IGF-BP which has been found to activate signaling pathways and to regulate essential ceilular functions, support the present invention use of 158P1D7 based on its role in the transcriptional regulation of eukaryotic genes. Regulation of gene expression is confirmed, e.g., by studying gene expression in cells expressing or lacking 158P1D7. For this purpose, two types of experiments are performed.

In the first set of experiments, RNA from parental and 158P1D7-expressing cells are extracted and hybridized to commercially available gene arrays (Clontech) (Smid-Koopman E et al. BrJ Cancer. 2000. 83:246). Resting celis as well as colls treated with FBS or androgen are compared. Differentially expressed genes are identified in accordance with procedures known in the art. The differentially expressed genes are then mapped to blological pathways (Chen K et al., Thyroid. 2001. 11:41.).

In the second set of experiments, specific transcriptional pathway activation is evaluated using commercially available (e.g., Stratagene) luciferase reporter constructs including: NFkB-luc, SRE-luc, ELK1-luc, ARE-luc, p53-luc, and CRE-luc. These transcriptional reporters contain consensus binding sites for known transcription factors that lie downstream of well-characterized signal transduction pathways, and represent a good tool to ascertain pathway activation and screen for positive and negative modulators of pathway activation.

When 158P1D7 plays a role in gene regulation, it is used as a target for diagnostic, prognostic, preventative and therapeutic purposes.

Example 42: Subcellular Localization of 158P1D7

The cellular location of 158P1D7 is assessed using subcelluiar fraclionation techniques widely used in cellular biology (Storie B, et al. Methoós Enzymol. 1990;182:203-25). A variety of cell lines, including prostate, kidney and bladder cell ines as well as cell lines engineered to express 158P1D7 are separated into nuclear, cytosolic and membrane fractions. Gene expression and location in nuclei, heavy membranes (lysosomes, peroxisomes, and mitochondria), light membranes (plasma membrane and endoplasmic reticulum), and soluble protein fractions are tested using Western blotting techniques.

Altematively, 293 T cells are transfected with an expresslon vector encoding individual genes, HIS-tagged (PCDNA 3.1 MYC/HIS, Invitrogen) and the subcellular localization of these genes is determined as described above. In short, the transfected cells are harvested and subjected to a differential subcellular fractionation protocol (Pemberton, P.A. et al, 1997, J of Histochemistry and Cytochemistry, 45:1697-1706). Location of the HIS-tagged genes is followed by Western blotting.

Using 158P1D7 antibodies, it is possible to demonstrate cellular localization by immunofuorescence and immunohistochemistry. For example, cells expressing or lacking 158P1D7 are adhered to a microscope slide and stained with anti-158P1D7 specific Ab. Cells are incubated with an FITC-coupled secondary anti-species Ab, and analyzed by fluorescent microscopy. Alternatively, cells and tissues lacking or expressing 158P1D7 are analyzed by HC as described herein.

When 158P1D7 is localized to specific cell compartments, it is used as a target for diagnostic, preventative and therapeutic purposes.

Due to its similarity to Slit proteins, 158P1D7 can regulate intracellular trafficking and retention into mitochondrial and/or nuclear compartments. Its role in the trafficking of proteins can be confirmed using well-established methods (Valett C. et al. Mol Biol Cell. 1999, 10:4107). For example, FITC-conjugated $\alpha 2$-macroglobulin is incubated with 158P1D7expressing and 158P1D7-negative cells. The location and uptake of FITC- $\alpha 2$-macroglobulin is visualized using a fluorescent microscope. In another approach, the co-localization of 158P1D7 with vesicular proteins is confirmed by co-precipitation and Western blotting techniques and fluorescent microscopy.

Alternattvely, 158P1D7-expressing and 158P1D7-lacking cells are compared using bodipy-ceramide labeled bovine serum albumine (Huber L et al. Mol. Cell. Biol. 1995, 15:918). Briefly, cells are allowed to take up the labeled BSA and are placed intermittently at $4^{\circ} \mathrm{C}$ and $18^{\circ} \mathrm{C}$ to allow for trafficking to take place. Cells are examined under fluorescent microscopy, at different time points, for the presence of labeled BSA in specific vesicular compartments, including Golgi, endoplasmic reticulum, etc.

In another emboolment, the effect of 158P1D7 on membrane transport is examined using biotin-avidin complexes. Cells either expressing or lacking 158P1D7 are transiently incubated with biotin. The cells are placed at $4^{\circ} \mathrm{C}$ or transiently warmed to $37^{\circ} \mathrm{C}$ for various periods of time. The cells are fractionated and examined by avidin affinity precipitation for the presence of blotin in specific cellular compartments. Using such assay systems, proteins, antibodies and small molecules are identified that modify the effect of 158P107 on vesicular transport. When 158P1D7 plays a rote in intracellular trafficking, 158P1D7 Is a target for diagnostic, prognostic, preventative and therapeutic purposes

Example 44; Protein-Protein Association

IGF and IGF-BP proteins have been shown to interact with other proteins, thereby forming protein complexes that can regulate protein localization, biological activity, gene transcription, and cell transformation (ZeslawskiW et al, EMBO J. 2001, 20:3638; Yu H, Rohan T. J Nati Cancer Inst. 2000, 92:1472). Using Immunoprecipitation techniques as well as two yeast hybrid systems, proteins are identified that associate with 158P1D7. Immunoprecipitates from cells expressing 158P1D7 and colls lacking 158P1D7 are compared for specific protein-proteln associations.

Studies are performed to determine the extent of the association of 158P1D7 with receptors, such as the EGF and IGF receptors, and with intracellular proteins, such as IGF-BP, cytoskeletal proteins etc. Studies comparing 158P1D7 posilive and 158P1D7 negative cells, as well as studles comparing unstimulated/resting cells and cells treated with epithelial cell activators, such as cytokines, growth factors and ant-integrin Ab reveal unique protein-protein interactions.

In addition, protein-proteln interactions are confirmed using two yeast hybrid methodology (Curr Opin Chem Biol. 1999, 3:64). A vector carrying a library of proteins fused to the activation domain of a transcription factor is introduced into yeast expressing a 158P1D7-DNA-binding domain fusion protein and a reporter construct. Protein-protein interaction is detected by colorimetric reporter activity. Specific association with surface receptors and effector molecules directs one of skill to the mode of action of 158P1D7, and thus identifies therapeutic, prognostic, preventative and/or diagnostic targets for cancer. This and similar assays are also used to identify and screen for small molecules that interact with 158P1D7.

When 158P1D7 associates with proteins or small molecules it is used as a largel for diagnostic, prognostic, preventative and therapeutic purposes.

Example 45: Transcript Variants of 158P1D7

Transcript variants are variants of mature mRNA from the same gene which arise by altemative transcription or allematlve splicing. Allernative transcripts are transcripts from the same gene but start transcription at different points. Splice
varlants are mRNA variants spliced differently from the same transcript. In eukaryotes, when a multi-exon gene is transcribed from genomic DNA, the initial RNA is spliced to produce functional mRNA, which has only exons and is used for translation into an amino acid sequence. Accordingly, a given gene can have zero to many alternative transcripts and each transcript can have zero to many splice variants. Each transcript variant has a unique exon makeup, and can have different coding and/or non-coding (5^{\prime} or 3^{\prime} end) portions, from the original transcript. Transcript variants can code for similar or different proteins with the same or a similar function or can encode proteins with different functions, and can be expressed in the same tissue at the same time, or in different tissues at the same time, or in the same tissue at different times, or in different tissues at different times. Proteins encoded by transcript variants can have similar or different cellular or extracellular localizations, e.g., secreled versus intracellular.

Transcript variants are identified by a variety of art-accepted methods. For example, alternative transcripts and splice variants are identified by full-length cloning experiment, or by use of full-length transcript and EST sequences. First, all human ESTs were grouped into clusters which show direct or indirect identity with each other. Second, ESTs in the same cluster were further grouped into sub-cluslers and assembled into a consensus sequence. The original gene sequence is compared to the consensus sequence(s) or other full-length sequences. Each consensus sequence is a potential splice variant for that gene (see, e.g., URL www.doubletwist.com/products/c11_agentsOverview.jhtmi). Even when a variant is identified that is not a full-length clone, that portion of the variant is very useful for antigen generation and for further cloning of the full-kength splice variant, using techniques known in the art.

Moreover, computer programs are available in the art that identify transcript variants based on genomic sequences. Genomic-based transcript variant Identification programs include FgenesH (A. Salamov and V. Solovyev, ${ }^{\text {D }} \mathrm{Ab}$ initio gene finding in Drosophila genomic DNA,' Genome Research. 2000 April; 10(4):516-22); Grail (URL compbio.ornl.gov/Grail-bin/EmptyGrailForm) and GenScan (URL genes.mit.edu/GENSCAN.html). For a general discussion of splice variant Identification protocols see., e.g., Southan, C., A genomic perspective on human proteases, FEBS Lett. 2001 Jun 8; 498(2-3):214-8; de Souza, S.J., et al., Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags, Proc. Natl Acad Scl U S A. 2000 Nov 7; 97(23):12690-3.

To further confirm the parameters of a transcript variant, a variety of techniques are available in the art, such as full-ength cloning, proteomic validation, PCR-based valldation, and 5^{\prime} RACE validation, etc. (see e.g., Proteomic Validation: Brennan, S.O., et al., Albumin banks peninsula: a new termination variant characterized by electrospray mass spectrometry, Biochem Biophys Acta. 1999 Aug 17;1433(1-2):321-6; Ferranti P, et al., Differential splicing of pre-messenger RNA produces multiple forms of mature caprine alpha(s1)-casein, Eur J Biochem. 1997 Oct 1;249(1):1-7. For PCR-based Validation: Wellmann S, et al., Specific reverse transcriplion-PCR quantification of vascular endothelial growth factor (VEGF) splice variants by LightCycler technology, Clin Chem. 2001 Apr;47(4):654-60; Jia, H.P., et al., Dlscovery of new human beladefensins using a genomics-based approach, Gene. 2001 Jan 24; 263(1-2):214-8. For PCR-based and 5' RACE Validation: Brigle, K.E., et al., Organization of the murine reduced folate carrier gene and identification of variant splice forms, Blochem Biophys Acta. 1997 Aug 7; 1353(2): 191-8).

It is known in the art that genomic regions are modulated in cancers. When the genomic region to which a gene maps is modulated in a particular cancer, the alternative transcripts or splice variants of the gene are modulated as well. Disclosed hereln is that 158P107 has a particular expression profile related to cancer. Alternative transcripts and splice variants of 158P1D7 may also be involved in cancers in the same or different tissues, thus serving as tumor-associated markers/antigens.

Using the fuliflength gene and EST sequences, four transcript variants were identified,-designaled as 158P1D7 v.3, v.4, v. 5 and v.6. The boundaries of the exon in the original transcript, 158P1D7 v. 1 were shown in Table BILL-I. Compared with 158P1D7 v.1, transcript variant 158P1D7 v. 3 has spliced out 2069-2395 from variant 158P1D7 v.1, as shown in Figure
12. Variant 158P1D7 v. 4 spliced out 1162-2096 of variant 158P1D7 v.1. Variant 158P1D7 v. 5 added one exon to the 5 ' and extended 2 bp to the 5^{\prime} end and 288 bp to the 3^{\prime} end of variani 158P1D7v.1. Theoretically, each different combination of exons in spatial order, e.g. exon 1 of v. 5 and exons 1 and 2 of $v .3$ or v.4, is a potential splice variant.

The variants of 158P1D7 include those that lack a transmembrane motif, but include a signal peptide indicating that they are secreted proteins (v. 4 and v.6). Secreted proteins such as v. 4 and v. 6 serve as blomarkers of cancer existence and progression. The levels of such variant proteins in the serum of cancer patients serves as a prognostic marker of cancer disease or its progression, particularly of cancers such as those listed in Table I. Moreover, such secreted proteins are targets of monocional antibodies and related binding molecules. Accordingly, secreted proteins such as these serve as targets for dlagnostics, prognostics, prophylactics and therapeutics for human malignancies. Targeting of secreted variants of 158P1D7 is particularly preferred when they have pathogy-related or cancer-related effects on cells/isssues.

Tables LI.(a)-(d) through LIV(a)-(d) are set forth on a variant-by-variant bases. Tables Ll(a)-(d) shows nucleotide sequence of the transcript variant. Tables LII(a)-(d) shows the alignment of the transcript variant with nucleic acid sequence of 158P1D7 v.1. Tables LIII (a)-(d) lays out amino acid translation of the transcript varlant for the identffed reading frame orientation. Tables LIV(a)-(d) displays alignments of the amino acid sequence encoded by the splice variant with that of 158P1D7 v.1.

Example 46: Single Nucleotide Polymorohisms of 158P1D7

A Single Nucleotide Polymorphism (SNP) is a single base pair variation in a nucleotide sequence at a specific location. At any given point of the genome, there are four possible nucleotide base pairs: AT, C/G, G/C and T/A. Genotype refers to the specific base pair sequence of one or more locations in the genome of an individual. Haplotype refers to the base pair sequence of more than one location on the same DNA molecule (or the same chromosome in higher organisms), often in the context of one gene or in the context of several tighly linked genes. SNP that occurs on a cDNA is called cSNP. This cSNP may change amino acids of the protein encoded by the gene and thus change the functions of the proteln. Some SNP cause inherited diseases; others contribute to quantitative variations in phenotype and reactions to environmental factors including diet and drugs among individuals. Therefore, SNP and/or combinations of alleles (called haplotypes) have many applications, including diagnosis of inherited diseases, determinatlon of drug reactions and dosage, idendification of genes responsible for diseases, and analysis of the genetic relationship between individuals (P. Nowotny, J. M. Kwon and A. M. Goate, "SNP analysis to dissect human traits," Curr. Opin. Neurobiol. 2001 Oct; 11(5):637-641; M. Pirmahamed and B. K. Park, "Genetic susceptibility to adverse drug reactions," Trends Pharmacol. Sci. 2001 Jun; 22(6):298-305; J. H. Riley, C. J. Allan, E. Lai and A. Roses, "The use of single nucleotide polymorphisms in the isolation of common disease genes," Pharmacogenomics. 2000 Feb; 1(1):39-47; R. Judson, J. C. Stephens and A. Windemuth, "The prediclive power of haplotypes in clinical response," Pharmacogenomics. 2000 feb; 1(1):15-26).

SNP are identified by a variety of art-accepted methods (P. Bean, "The promising voyage of SNP target dlscovery, Am. Clin. Lab. 2001 Oct-Nov; 20(9):18-20; K. M. Welss, "In search of human variation," Genome Res. 1998 Jul; 8(7):691697; M. M. She, "Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies," Clin. Chem. 2001 Feb; 47(2):164-172). For example, SNP can be Identifled by sequencing DNA fragments that show polymorphism by gel-based methods such as restriction fragment lengih polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE). They can also be discovered by direct sequencing of DNA samples pooled from different indiviluals or by comparing sequences from different DNA samples. With the rapld accumulation of sequence data In public and private databases, one can discover SNP by comparing sequences using computer programs (Z. Gu, L. Hillier and P. Y. Kwok, "Single nuceotide polymorphism hunting in cyberspace," Hum. Mutat. 1998; 12(4):221-225). SNP can be verified and genotype or haplotype of an Indlvidual can be determined by a variety of methods including direct sequencing
and high throughput microarrays (P. Y. Kwok, "Methods for genotyping single nudeotide polymorphisms," Annu. Rev. Genomics Hum. Genet. 2001; 2:235-258; M. Kokoris, K. Dix, K. Moynihan, J. Mathis, B. Erwin, P. Grass, B. Hines and A. Duesterhoeft, "High-lhroughput SNP genotyping with the Masscode system," Mol. Diagn. 2000 Dec; 5(4):329-340).

Using the methods described above, one SNP was identified in the original transcript, 158P1D7 v.1, at positions 1546 (A/G). The transcripts or proteins with alternative allele was designated as variant 158P1D7 v.2. Figure 17 shows the schematic alignment of the SNP variants. Figure 18 shows the schematic alignment of protein variants, corresponding to nucleotide variants. Nucleotide variants that code for the same amino acid sequence as v. 1 are not shown in Figure 18. These alieles of the SNP, though shown separately here, can occur in different combinations (haplotypes) and in any one of the transcript variants (such as 158P1D7 v.5) that contains the site of the SNP.

Example 47: Therapeutic and Diagnostic use of Anti-158P1D7 Antibodles In Humans.

Anti-158P1D7 monocional antibodies are safely and effectively used for diagnostic, prophylactic, prognostic and/or therapeutic purposes in humans. Westem blot and immunohistochemical analysis of cancer tissues and cancer xenografts with anti-158P1D7 mAb show strong extensive staining in carcinoma but significantly lower or undetectable levels in normal tissues. Detection of 158P1D7 in carcinoma and in metastatic disease demonstrates the usefulness of the mAb as a diagnositic and/or prognostic indicator. Anti-158P1D7 antibodies are therefore used in diagnostic applications such as Immunohistochemistry of kidney biopsy specimens to detect cancer from suspect patients.

As determined by flow cytometry, anli-158P1D7 mAb specifically binds to carcinoma cells. Thus, anti-158P1D7 antibodies are used in diagnostic whole body imaging applications, such as radioimmunoscintigraphy and radioimmunotherapy, (see, e.g., Potamianos S., et. al. Anticancer Res 20(2A):925-948 (2000)) for the detection of localized and metastatic cancers that exhbibit expression of 158P1D7. Shedding or release of an extracellular domain of 158P1D7 into the extracellular milieu, such as that seen for alkaline phosphodiesterase B10 (Meerson, N. R., Hepatology 27:563-568 (1998)), allows diagnostic detection of 158P1D7 by anti-158P1D7 antibodies in serum and/or urine samples from suspect patients.

Anti-158P1D7 antibodies that specifically bind 158P1D7 are used in therapeutic applications for the treatment of cancers that express 158P1D7. Anti-158P1D7 antibodies are used as an unconjugated modality and as conjugated form in which the antibodies are attached to one of various therapeutic or imaging modalities well known in the art, such as a prodrugs, enzymes or radiolsotopes. In preclinical studles, unconjugated and conjugated anti-158P1D7 antibodies are tested for efficacy of tumor prevention and growth inhibition in the SCID mouse cancer xenograft models, e.g., kidney cancer models AGS-K3 and AGS-K6, (see, e.g., the Example entitled "158P1D7 Monoclonal Antibody-mediated Inhibition of Bladder and Lung Tumors in Vivo ${ }^{\circ}$). Either conjugated and unconjugated anti-158P1D7 antibodies are used as a therapeutic modality in human clinical trials either alone or in combination with other treatments as described in following Examples.

Example 48: Human Clinical Trials for the Treatment and Diagnosis of Human Carcinomas through use of Human Anti-458P1D7 Antibodies In vivo

Antibodies are used in accordance with the presentinvention which recognize an epitope on 158P1D7, and are used in the treatment of certain tumors such as those listed in Table I. Based upon a number of factors, induding 158P1D7 expression levels, tumors such as those listed in Table I are presently preferred indications. In connection with each of these indications, three clinical approaches are successfully pursued.
I.) Adjunclive therapy: In adjunctive therapy, patients are treated with anti-158P1D7 antibodies in combination with a chemotherapeutic or antineoplastic agent and/or radiation therapy. Primary cancer targets, such as those
listed in Table I , are treated under standard protocols by the addition anti-158P107 antibodies to standard first and second line therapy. Protocol designs address effectiveness as assessed by reduction in tumor mass as well as the ability to reduce usual doses of standard chemotherapy. These dosage reductions allow additional and/or prolonged therapy by reducing dose-related toxicity of the chemotherapeutic agent. Anti-158P1D7 antibodies are utilized in several adjunctive clinical trials in combination with the chemotherapeutic or antineoplastic agents adriamycin (advanced prostrate carcinoma), cisplatin (advanced head and neck and lung carcinomas), taxol (breast cancer), and doxorubicin (preclinical).
II.) Monotherapy: In conneciion with the use of the anti-158P1D7 antibodies in monotherapy of tumors, the antibodies are administered to patients without a chemotherapeutic or antineoplastic agent. In one embodiment, monotherapy is conducted clinically in end stage cancer patients with extensive metastatic disease. Patients show some disease stabilization. Trials demonstrate an effect in refractory patients with cancerous lumors.
III.) Imaging Agent: Through binding a radionuclide (e.g., fodine or yttrium (I'13, Y90) to antl-158P1D7 antibodies, the radiolabeled antibodies are utilized as a diagnostic and/or imaging agent. In such a role, the labeled anlibodies localize to both solid tumors, as well as, metastatic lesions of cells expressing 158P1D7. In connection with the use of the anti-158P1D7 antibodies as imaging agents, the antibodies are used as an adjunct to surgical treatment of solid tumors, as both a pre-surgical screen as well as a post-operative follow-up to determine what tumor remains and/or returns. in one embodiment, a $\left({ }^{111} \mathrm{In}\right)$-158P1D7 antibody is used as an Imaging agent in a Phase I human clinical trial in patients having a carcinoma that expresses 158P1D7 (by analogy see, e.g., Divgi et al. J. Natt. Cancer Inst. 83:97-104 (1991)). Patients are followed with standard anterior and posterior gamma camera. The results indicate that primary lesions and metastatic lesions are identified.

Dose and Route of Administration

As appreciated by those of ordinary skill In the art, dosing considerations can be determined through comparison with the analogous products that are in the clinic. Thus, anti-158P1D7 antibodies can be administered with doses in the range of 5 to $400 \mathrm{mg} / \mathrm{m}^{2}$, with the lower doses used, $\theta . \mathrm{g}$, in connection with safety studies. The affinity of anti-158P1D7 antibodies relative to the affinity of a known antibody for its target is one parameter used by those of skill in the art for determining analogous dose regimens. Further, anti-158P1D7 antibodies that are fully human antibodies, as compared to the chimeric antibody, have slower clearance; accordingly, dosing in patients with such fully human antl-158P1D7 antibodies can be lower, perhaps in the range of 50 to $300 \mathrm{mg} / \mathrm{m}^{2}$, and still remain efficacious. Dosing in $\mathrm{mg} / \mathrm{m}^{2}$, as opposed to the conventional measurement of dose in mg/kg, is a measurement based on surface area and is a convenient dosing measurement that is designed to include patients of all sizes from infants to adults.

Three distinct delivery approaches are useful for delivery of anti-158P1D7 antibodies. Conventional intravenous delivery is one standard delivery technique for many tumors. However, In connecton with tumors in the peritoneal cavity, such as tumors of the ovaries, biliary duct, other ducis, and the like, intraperitoneal administration may prove favorable for obtaining high dose of antibody at the tumor and to also minimize antibody clearance. In a similar manner, certain solid tumors possess vasculature that is approprlate for regional perfusion. Reglonal perfusion allows for a high dose of antibody at the site of a tumor and minimizes short term clearance of the antibody.

Clinical Development Plan (CDP)

Overview: The CDP follows and develops trealments of anti-158P1D7 antibodies in connection with adjunclive therapy, monotherapy, and as an imaging agent. Trials initially demonstrate safety and thereafter confirm efficacy in repeat doses. Trails are open label comparing standard chemotherapy with standard therapy plus ant-158P1D7 antibodies. As will be appreciated, one crileria'that can be utilized in connection with enrollment of patients is 158P1D7 expression levels in their tumors as determined by biopsy.

As with any protein or antibody infusion-based therapeutic, safety concems are related primarily to (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (i.e., development of human antibodies by the patient to the antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 158P1D7. Standard tesis and follow-up are utilized to monitor each of these safety concerns. Anti158P1D7 antibodies are found to be safe upon human administration.

Example 49: Human Clinical Trial Adjunctive Therapy with Human Anti-158P1D7 Antibody and Chemotherapeutic Agent

A phase I human clinical trial is initiated to assess the safety of six intravenous doses of a human anti-158P1D7 antibody in connection with the treatment of a solid tumor, e.g., a cancer of a tissue listed in Table I. In the study, the safety of single doses of ant1-158P1D7 antibodies when utilized as an adjunctive therapy to an antineoplastic or chemotherapeutic agent as defined herein, such as, without limitation: cisplatin, topotecan, doxorubicin, adriamycin, taxol, or the like, is assessed. The trial design includes delivery of six single doses of an anti-158P1D7.antibody with dosage of antibody escalating from approximately about $25 \mathrm{mg} / \mathrm{m}^{2}$ to about $275 \mathrm{mg} / \mathrm{m}^{2}$ over the course of the treatment in accordance with the following schedule:

| | Day0 | Day 7 | Day 14 | Day 21 | Day 28 | Day 35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Patients are closely followed for one-week following each administration of antibody and chemotherapy. In particular, palients are assessed for the safety concerns mentioned above: (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (l.e., development of human anlibodies by the pattent to the human antibody therapeutic, or HAHA response); and, (iii) foxicity to normal cells that express 158P1D7. Standard tests and follow-up are utilized to monitor each of these safety concerns. Patients are also assessed for clinical outcome, and particularly reduction in tumor mass as evidenced by MRI or other imaging.

The anti-158P1D7 antibodies are demonstrated to be safe and efficacious, Phese II trials confirm the efficacy and refine optimum dosing.

Example 50: Human Clinical Trial: Monotherapy with Human Anti-158P1D7 Antibody

Anli-158P1D7 antibodies are safe in connection with the above-discussed adjunclive trial, a Phase II human clinical trial confirms the efficacy and oplimum dosing for monotherapy. Such trial is accomplished, and entails the same safety and outcome analyses, to the above-described adjunctive trial with the exception being that patients do not receive chemotherapy concurrently with the receipt of doses of anti-158P1D7 antibodles.

Example 51: Human Clinical Trial: Diagnostic Imaging with Anti-158P1D7 Antibody

Once again, as the adjunctive therapy discussed above is safe within the safety criteria discussed above, a human clinical trial is conducted concerning the use of anti-158P1D7 antibodles as a diagnostic imaging agent. The protocol is
designed in a substantially similar manner to those described in the art, such as in Divgi et al. J. Natl. Cancer Inst. 83:97-104 (1991). The antibodies are found to be both safe and efficacious when used as a diagnostic modality.

Abstract

Example 52: RNA Interfernece (RNAi) RNA interference (RNAJ) technology is implemented to a variety of cell assays relevant to oncology. RNAi is a post-transcriptional gene sllencing mechanism activated by double-stranded RNA (dsRNA). RNAi induces specific mRNA degradation leading to changes in protein expression and subsequently in gene function. In mammalian cells, these dsRNAs called short interfering RNA (siRNA) have the correct composition to activate the RNAJ pathway targeting for degradation, specifically some mRNAs. See, Elbashir S.M., et. al., Duplexes of 21 -nucleotide RNAs Mediate RNA interference in Cultured Mammalian Cells, Nature 411(6836):494-8 (2001). Thus, RNAi technology is used successfully in mammalian cells to silence targeted genes.

Loss of cell prollferation control is a hallmark of cancerous cells; thus, assessing the role of 158P1D7 in cell survival/proliferation assays is relevant. Accordingly, RNAi was used to investigate the function of the 158P1D7 antigen. To generate siRNA for 158P1D7, algorithms were used that predict oligonucleotides that exhibit the critical molecular parameters ($\mathrm{G}: \mathrm{C}$ content, melting lemperature, eic.) and have the ability to significantly reduce the expression levels of the 158P1D7 protein when introduced inlo calls. Accordingly, one targeted sequence for the 158P1D7 siRNA is: 5^{\prime} AAGCTCATTCTAGCGGGAAAT 3' (SEQ ID NO: 42)(oligo 158P1D7.b). In accordance with this Example, 158P1D7 siRNA compositions are used that comprise siRNA (double stranded, short interfering RNA) that correspond to the nucleic acid ORF sequence of the 158P1D7 protein or subsequences thereof. Thus, siRNA subsequences are used in this manner are generally $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$ or more than 35 contiguous RNA nucleotides in length. These siRNA sequences are complementary and non-complementary to at least a portion of the mRNA coding sequence. In a preferred embodiment, the subsequences are 19-25 nucleotides in length, most preferably 21-23 nucleotides in length. In preferried embodiments, these siRNA achieve knockdown of 158P1D7 antigen in cells expressing the protein and have functional effects as described below.

The selected siRNA (158P1D7.b oligo) was tested in numerous cell lines in the survival/proliferation MTS assay (measures cellular metabolic activity). Tetrazolium-based colorimetric assays (l.e., MTS) detect vable cells exclusively, since living cells are metabolically active and therefore can reduce tetrazolium salts to colored formazan compounds; dead cells, however do not. Moreover, this 158P1D7.b oligo achieved knockdown of 158P1D7 antigen in cells expressing the protein and had functional effects as described below using the following protocols.

Mammalian sIRNA transfections: The day before siRNA transfection, the different cell lines were plated in media (RPMI 1640 with 10% FBS w/o antibiotics) at 2×10^{3} cells/well in 80μ (96 well plate format) for the survivalMMS assay. In parallel with the 158P1D7 specific siRNA oligo, the following sequences were included in every experiment as controls: a) Mock transfected cells with Lipofectamine 2000 (Invitrogen, Carlsbad, CA) and annealing buffer (no siRNA); b) Luciferase-4 specific siRNA (targeted sequence: 5'-AAGGGACGAAGACGAACACUUCTT-3') (SEQ ID NO: 43); and, c) Eg5 specific siRNA (targeted sequence: 5^{\prime}-AACTGAAGACCTGAAGACAATAA-3') (SEQ ID NO: 44). SiRNAs were used at 10 nM and $1 \mu \mathrm{~g} / \mathrm{ml}$ Lipofectamine 2000 final concentration.

The procedure was as follows: The siRNAs were first diluted in OPTIMEM (serum-free transfection media, Invitrogen) at $0.1 u M \mu \mathrm{M}$ (10 -fold concentrated) and incubated $5-10 \mathrm{~min}$ RT. Lipofectamine 2000 was diluted at $10 \mu \mathrm{~g} / \mathrm{ml}$ (10 -fold concentrated) for the total number transfections and incubated 5-10 minutes at room temperature (RT). Appropriate amounts of diluted 10 -fold concentrated Lipofectamine 2000 were mixed $1: 1$ with diluted 10 -fold concentrated siRNA and

incubated at RT for $20-30^{\circ}$ (5 -fold concentrated transfection solution). $20 \mu \mathrm{ls}$ of the 5 -fold concentated transfection solutions were added to the respective samples and incubated at $37^{\circ} \mathrm{C}$ for 96 hours before analysis.

MTS assay: The MTS assay is a colorimetric method for determining the number of viable cells in proliferation, cytotoxdcity or chemosensitivity assays based on a tetrazollum compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS(b)] and an electron coupling reagent (phenazine ethosulfate; PES). Assays were performed by adding a small amount of the Solution Reagent directly to culture wells, Incubating for 1-4 hours and then recording absorbance at 490 nm with a 96 -well plate reader. The quantity of colored formazan product as measured by the amount of 490 nm absorbance is directly proportional to the mitochondrial aclivity and/or the number of living cells in culture.

In order to address the function of 158P1D7 in cells, 158P1D7 was silenced by transfecting the endogenously expressing 158P1D7 cell lines (LNCaP and PC3) with the 158P1D7 specific siRNA (158P1D7.b) along with negative sIRNA controls (Luc4, targeted sequence not represented in the human genome) and a positive siRNA control (targeting Eg5) (Figure 29). The results indicated that when these cells are treated with siRNA specifically targeting the 158P1D7 mRNA, the resulting "158P1D7 deficient cells" showed diminished cell viabillity or proliferation as measured by this assay (see oligo 158P1D7.b treated cells). This effect is likely caused by an active induction of apoptosis. The reduced viability is measured by the increased release (and activity) of a mitochondrial enzyme that occurs predominanty in apoptotic cells.

As control, 3T3 cells, a cell line with no detectable expression of 158P1D7 mRNA, was also treated with the panel of siRNAs (including oligo 158P1D7.b) and no phenotype was observed. This result reflects the fact that the specific protein knockdown in the LNCaP and PC3 cells is not a function of general toxicity, since the $3 T 3$ cells did not respond to the 158P1D7.b oligo. The differential response of the three cell lines to the Eg5 control is a reflection of differences in levels of cell transfection and responsiveness of the cell lines to oligo treatment (Figure 29).

Together, these data indicate that 158P1D7 plays an important role in the proliferation of cancer cells and that the lack of 158P1D7 clearly decreases the survival potential of these cells. It is to be noted that 158P1D7 is constitutively expressed in many tumor cell lines. 158P1D7 serves a role in malignancy; It expression is a primary indicator of disease, where such disease is often characterized by high rates of uncontrolled cell proliferation and diminished apoptosis. Correlating cellular phenotype with gene knockdown following RNAi treatments is important, and allows one to draw valld conclusions and rule out toxicity or other non-speciic effecis of these reagents. To this end, assays to measure the levels of expression of both protein and mRNA for the target after RNAI treatments are important, including Westem bloting, FACS staining with antibody, immunoprecipitation, Northern bloting or RT-PCR (Taqman or standard methods). Any phenotypic effect of the siRNAs in these assays should be correlated with the protein and/or mRNA knockdown levels in the same cell lines. Knockdown of 158P1D7 is achieved using the 158P1D7.b oligo as measured by Western blotting and RT-PCR analysis.

A method to analyze 158P1D7 related cell proliferation is the measurement of DNA synthesis as a marker for proliferation. Labeled DNA precursors (i.e. ${ }^{3 H}$-Thymidlne) are used and their Incorporation to DNA Is quantified. Incorporation of the labeled precursor inlo DNA is directly proportional to the amount of cell division occurring in the culture. Another method used to measure cell proliferation is periorming clonogenic assays. In these assays, a defined number of cells are plated onto the appropriate matrix and the number of colonies formed after a perlod of growth following siRNA treatment is counted.

In 158P1D7 cancer target validation, complementing the cell survival/proliferation analysis with apoptosis and cell cycle profiling studles are considered. The biochemical hallmark of the apoptotic process is genomic DNA fragmentation, an irreversible event that commits the cell to die. A method to observe fragmented DNA in cells is the immunological detection of histone-complexed DNA fragments by an immunoassay (i.e. cell death detection ELISA) which measures the enrichment
of histone-complexed DNA fragments (mono- and oligo-nucleosomes) in the cytoplasm of apoptotic cells. This assay does not require pre-labeling of the cells and can detect DNA degradation in cells that do not proliferate in vitro (i.e. freshly isolated tumor cells).

The most important effector molecules for triggering apoptotic cell death are caspases. Caspases are proteases that when activated cleave numerous substrates at the carboxy-terminal site of an asparlate residue mediating very early stages of apoptosis upon activation. All caspases are synthesized as pro-enzymes and activation involves cleavage at aspartate residues. In particular, caspase 3 seems to play a central role in the initiation of cellular events of apoptosis. Assays for determination of caspase 3 activation detect early events of apoptosis. Following RNAI treatments, Western blot detection of active caspase 3 presence or proteolytic cleavage of products (i.e. PARP) found in apoptotic cells further support an active induction of apoptosis. Because the cellular mechanisms that result in apoptosis are complex, each has its advantages and limitations. Consideration of other criteria/endpoints such as cellular morphology, chromatin condensation, membrane blebbing, apoptotic bodies help to further support cell death as apoptotic. Since not all the gene targets that regulate cell growth are anti-apoptotic, the DNA content of permeabilized cells is measured to obtain the profile of DNA content or cell cycle profile. Nuctel of apoptotic cells contain less DNA due to the leaking out to the cytoplasm (sub-G1 population). In addition, the use of DNA stains (i.e., propidium iodide) also differentiate between the different phases of the cell cycle in the cell population due to the presence of different quanitites of DNA in GO/G1, S and G2/M. In these studies the subpopulations can be quantified.

For the 158P1D7 gene, RNAi studies facilitate the understanding of the contribution of the gene product in cancer pathways. Such active RNAi molecules have use in identifying assays to screen for mAbs that are active anti-tumor therapeutics. Further, siRNA are administered as therapeutics to cancer patients for reducing the malignant growth of several cancer types, including those listed in Table 1. When 158P1D7 plays a role in cell survival, cell proliferation, tumorigenesis, or apoplosis, it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes

Example 53: 158P1D7 Functional Assays

1. Enhanced proliferation and cell cycle modulation in 158P1D7 expressing cells.

Enhanced proliferation and entry into S-phase of tumor cells relative to normal cells is a hallmark of the cancer cell phenotype. To address the effect of expression of 158P1D7 on the proliferation rate of normal cells, two rodent cell lines (3T3 and Rat-1) were infected with virus containing the 158P1D7 gene and stable cells expressing 158P1D7 antigen were derlved, as well as empty vector control cells expressing the selection marker neomycin (NeO). The cells were grown overnight in 0.5% FBS and then compared to cells treated with 10% FBS. The cells were evaluated for proliferation at 18-96 hr post-treatment by a ${ }^{3} \mathrm{H}$-thymidine incorporation assay and for cell cycle analysis by a BrdU incorporation/propidium iodide staining assay. The results in Figure 32 show that the Rat-1 cells expressing the 158P1D7 antigen grew effectively in low serum concentrations (0.1%) compared to the Rat-1-Neo cells. Similar results were obtained for the 3 T 3 cells expressing 158P1D7 versus Neo only. To assess cell proliferation by another melhodology, the cells were stained with BrdU and propidium iodide. Briefly, cells were labeled with 100 M BrdU, washed, trypsinized and fixed in 0.4% paraformaldehyde and 70% ethanol. Ant-BrdU-FITC (Pharmigen) was added to the cells, the cells were washed and then Incubated with $10 \mathrm{ng} / \mathrm{ml}$ propidium lodide for 20 min prior to washing and analysis for fluorescence at 488 nm . The results in Figure 33 show that there was increased labeling of cells in S-phase (DNA synthesis phase of the cell cycle) in $3 T 3$ cells that expressed the 158P1D7 antigen relative to control cells. These results confirm those measured by ${ }^{s} \mathrm{H}$-thymidine incorporation, and indicate that cells that express 158P1D7 antigen have an enhanced proliferative capacity and survive in low serum conditions.
Accordingly, 158P1D7 expressing ceils have increased potential for growth as tumor cells in vivo.
11. Recombinant extracellular domain (ECD) binding to call surface.

Cell-cell interactions are essential in maintaining tissue/organ integrity and homeostasis, both of which become deregulated during tumor formation and progression. Additionally, cell-cell interactions facilitate tumor cell attachment during metastasis and activation of endothelium for increased angiogenesis. To address interaction between the gene product of 158P1D7 and a putative ligand, an assay was established to identify the interaction between the extracellular domain (ECD) (amino acids 16-608) of 158P1D7 antigen and primary endothelium. Human umbilical vein endothelial cells (HUVEC) were grown in 0.1% FBS in media for 3 hr . Ceils were washed, detached in 10 mM EDTA and resuspended in 10% FBS. Recombinant 158P1D7 ECD (described in Example entitled "Production of Recombinant 158P1D7 in Eukaryotic Systems") was added to cells, and the cells were washed prior to the addition of MAb M15/X68.2.22 at $1 \mathrm{ug} / \mathrm{ml}$. After washing, secondary Ab (anti-mouse-PE, 1:400) was added to cells for 1 hr on ice. Cells were washed and fixed in 1% formalin for 3 hr on ice, then resuspended in PBS and analyzed by flow cytometry. Figure 26A shows that the158P1D7 ECD bound directly to the surface of HUVEC cells as detected by the 158P1D7 specific MAb. In a similar embodiment, recombinant ECD of 158P1D7 was iodinated to high specific activity using the iodogen (1,3,4,5-tetrachloro-3a,6a-diphenylglycoluri) method. HUVEC cells at 90% confluency in 6 well plates were incubated with 1 nM of ${ }^{125 J}$-158P.1D7. ECD in the presence (nonspeciflc blnding) or absence (Total binding) of 50 fold excess unlabeled ECD for 2 hours at either $4^{\circ} \mathrm{Cor} 37^{\circ} \mathrm{C}$. Cells were washed, solubilized in 0.5 M NaOH , and subjected to gamma counting. The data in Figure 26B shows specific binding of 158P1D7 ECD to HUVEC cells suggesting the presence of a 158P1D7 receptor on HUVEC cells. These resulis indicate that 158P1D7 antigen is involved in cell-cell interactions that facilitate fumor growth, activation of endothelium for lumor vascularization or tumor cell metastasis. The data also indicate that 158P1D7 antigen shed from the cell surface of expressing cells may bind to cells in an autocrine or paracrine fashion to induce cell effector functions.

Example 54: Detection of 158P1D7 protein in cancer patient specimens using

Immunohistochemistry.

To determine the expression of 158P1D7 protein, specimens were obtained from various cancer patlents and stained using an affinity purified monocional antibody raised against the peptide encoding amino acids 274-285 of 158P1D7 (See the Example Entitled "Generation of 158P1D7 Monoclonal Antibodies (mAbs)"), formalin fixed, paraffin embedded tissues were cut into 4 micron sections and mounted on glass sildes. The sections were dewaxed, rehydrated and treated with antigen retrieval solution (Antigen Retrieval Cilra Solution; BioGenex, 4600 Norris Canyon Road, San Ramon, CA; 94583) at high temperature. Sections were then incubated in mouse monoclonal anti-158P1D7 antibody, M15-68(2)22, for 3 hours. The slides were washed three times in buffer and further incubated with DAKO EnVision ${ }^{\text {Tm }}$ peroxidase-conjugated goat anti-mouse immunoglobulin secondary antibody (DAKO Corporation, Carpenteria, CA) for 1 hour. The sections were then washed in buffer, developed using the DAB kit (SIGMA Chemicals), counterstained using hematoxylin, and analyzed by bright field microscopy. The results showed expression of 158P1D7 in cancer patients' tissue (Figure 36). Generally, in bladder transitional cell carcinoma expression of 158P1D7 was mainly around the cell membrane indicating that 158P1D7 is membrane assoclated in these tissues. 49.3% of bladder transitional cell carcinoma samples tested were positive for 158P1D7 (Table LVIII).

These results indicate that 158P1D7 is a target for diagnostic, prophylactic, prognostic and therapeutlc applications in cancer.

The present invention is not to be limited in scope by the embodiments disclosed herein, which are intended as single illustrations of individual aspects of the invention, and any that are functionally equivalent are within the scope of the invention. Various modifications to the models and methods of the invention, in addition to those described herein, will become apparent to those skilled in the art from the foregoing description and teachings, and are similarly intended to fall
within the scope of the invention. Such modifications or other embodiments can be practiced without departing from the true scope and spirit of the invention.

TABLES:

TABLE l: Tissues that Express 158P1D7 When Malignant
Bladder, Prostate, Colon, Lung, Breast, Ovary, Skin, Cervix

TABLE II: AMINO ACID ABBREVIATIONS

SINGLE LETTER	THREE LETTER	FULL NAME
F	Phe	phenylalanine
L	Leu	leucine
S	Ser	serine
Y	Tyr	tyrosine
C	Cys	cysteine
W	Tp	tryptophan
P	Pro	proline
H	His	hisidine
Q	Gin	glutamine
R	Arg	arginine
I	Me	isoleucine
M	Thr	methionine
T	Asn	threonine
K	Lys	asparagine
V	Val	lysine
A	Ala	valine
D	Asp	alanine
E	Glu	aspartic acid
G	Gly	glutamic acid
		glycine

table ill: Amino acid substitution matrix

Adapted from the GCG Software 9.0 BLOSUM62 amino acid substitution matrix (block substitution matrix). The higher the value, the more likely a substitution is found in related, natural proteins. (See world wide web URL ikp.unibe.ch/manual/blosum62.html)

$$
\begin{aligned}
& \begin{array}{lllllllllllllllllllll}
A & C & D & E & F & G & H & I & K & L & M & N & \mathrm{P} & \mathrm{Q} & \mathrm{R} & \mathrm{~S} & \mathrm{~T} & \mathrm{~V} & \mathrm{~W} & \mathrm{Y}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{rlllllllllllllllllll}
& -3 & -4 & -2 & -3 & -3 & -1 & -3 & -1 & -1 & -3 & -3 & -3 & -3 & -1 & -1 & -1 & -2 & -2 & \text { C }
\end{array} \\
& \begin{array}{lllllllllllllllllll}
6 & 2 & -3 & -1 & -1 & -3 & -1 & -4 & -3 & 1 & -1 & 0 & -2 & 0 & -1 & -3 & -4 & -3 & D
\end{array} \\
& \begin{array}{lllllllllllllllll}
5 & -3 & -2 & 0 & -3 & 1 & -3 & -2 & 0 & -1 & 2 & 0 & 0 & -1 & -2 & -3 & -2 \\
\hline
\end{array} \\
& \begin{array}{llllllllllllllll}
6 & -3 & -1 & 0 & -3 & 0 & 0 & -3 & -4 & -3 & -3 & -2 & -2 & -1 & 1 & 3
\end{array} \\
& \begin{array}{llllllllllllllll}
6 & -2 & -4 & -2 & -4 & -3 & 0 & -2 & -2 & -2 & 0 & -2 & -3 & -2 & -3 & G
\end{array} \\
& \begin{array}{rrrrrrrrrrrrrrr}
8 & -3 & -1 & -3 & -2 & 1 & -2 & 0 & 0 & -1 & -2 & -3 & -2 & 2 & \mathrm{H} \\
4 & -3 & 2 & 1 & -3 & -3 & -3 & -3 & -2 & -1 & 3 & -3 & -1 & \mathbf{I}
\end{array} \\
& \begin{array}{lllllllllllll}
5 & -2 & -1 & 0 & -1 & 1 & 2 & 0 & -1 & -2 & -3 & -2 & K
\end{array} \\
& 4 \quad 2 \begin{array}{llllllllllll}
& 2 & -3 & -3 & -2 & -2 & -2 & -1 & 1 & -2 & -1 & 1
\end{array}
\end{aligned}
$$

TABLE N
HLA Class IIII Motifs/Supermotifs
TABLE IV (A): HLA Class I Supermotifs/Motifs

SUPERMOTIFS	POSITION	POSITION	POSITION
	2 (Primary Anchor)	3 (Primary Anchor)	C Terminus (Primary Anchor)
A1	TILVMS		FWY
A2	LIVMATQ		IVMATL
A3	VSMATLI		RK
A24	YFWIVLMT		FIYWLM
B7	P		VILFMWYA
B27	RHK		FYLWMIVA
B44	ED		FWYLIMVA
B58	ATS		FWYLIVMA
B62	QLIVMP		FWYMIVLA
MOTIFS			
A1	TSM		Y
A1		DEAS	Y
A2. 1	LMVQIAT		VLIMAT
A3	LMVISATFCGD		KYRHFA
A11	VTMLISAGNCDF		KRYH
A24	YFWM		FLIW
A*3101	MVTALS		RK
A*3301	MVALFIST		RK
$A^{*} 6801$	AVTMSLI		RK
B*0702	P		LMAFWYAIV
B*3501	P		LMFWYIVA
B51	P		LIVFWYAM
B*5301	P		IMFWYALV
B*5401	P		ATIVLMFWY

Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as spedfled in the above table.

TABLE IV (B): HLA CLASS II SUPERMOTIF

1	6	9
W, F, Y, V, I, L	A, V, I, L, P, C, S, T	$A, V, I, L, C, S, T, M, Y$

TABLE N (C) HLA Class II Motifs

MOTIFS		1° anchor 1	2	3	4	5	1° anchor 6		8	
DR4	preferred deleterious	FMYUVW	M	T	W	1	VSTCPALIM	$\begin{aligned} & \hline \mathrm{MH} \\ & \mathrm{R} \end{aligned}$		MH WDE
DR1	preferred deleterious	MFLJVWY	C	CH	$\begin{aligned} & \hline \text { PAMQ } \\ & \text { FD } \end{aligned}$	CWD	VMATSPLIC	$\begin{aligned} & \mathrm{M} \\ & \mathrm{GDE} \\ & \hline \end{aligned}$	D	AVM
DR7	preferred deleterious	MFLIVW	$\begin{aligned} & M \\ & M \\ & C \end{aligned}$	W	$\begin{aligned} & A \\ & G \end{aligned}$		IVMSACTPL	$\begin{aligned} & \hline M \\ & \text { GRD } \\ & \hline \end{aligned}$	N	$\begin{aligned} & \mathrm{N} \\ & \mathrm{G} \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { DR3 } \\ & \text { Motif a preferred } \\ & \text { Motif b preferred } \end{aligned}$	MOTIFS	1° anchor 1 LIVMFY LIVMFAY	2	3	1° anchor 4 D DNQEST	5	$1{ }^{\circ}$ anchor 6 KRH			
DR Supermolif		MFLIWYY					VMSTACPL			

TABLE IV (D) HLA Class I Supermotifs
POSITION: 1
23
6
Crterminus
SUPER-

MOTIFS									
A1			1° Anchor TLLVMS						$\frac{1^{\circ} \text { Anchor }}{\text { FWY }}$
A2			$\begin{aligned} & 1{ }^{1} \text { Anchor } \\ & \text { LNMATQ } \end{aligned}$						$\begin{aligned} & 1^{\circ} \text { Anchor } \\ & \text { LIVMAT } \end{aligned}$
A3	Preferred deleterious	$\begin{aligned} & \mathrm{DE}(3 / 5) ; \\ & \mathrm{P}(5 / 5) \\ & \hline \end{aligned}$	$\begin{aligned} & 1^{\circ} \text { Anchor } \\ & \text { VSMATLI } \end{aligned}$	YFW (415) DE (4/5)		$\begin{aligned} & \hline \text { YFW } \\ & (3 / 5) \end{aligned}$	$\begin{aligned} & \text { YFW } \\ & (4 / 5) \end{aligned}$	$\begin{aligned} & \hline P \\ & (4 / 5) \end{aligned}$	$\frac{1^{\circ} \text { Anchor }}{R K}$
A24			$\frac{1^{\circ} \text { Anchor }}{\text { YFWIVLMT }}$						$\begin{aligned} & 1^{\circ} \text { Anchor } \\ & \text { FIYWLM } \\ & \hline \end{aligned}$
B7	Preferred deleterious	FWY (5/5) LIVM (3/5) DE (3/5); $P(5 / 5)$; $G(4 / 5)$; A(3/5); QN(3/5)	$\frac{1^{\circ} \text { Anchor }}{P}$	$\begin{aligned} & \text { FWY } \\ & (4 / 5) \end{aligned}$	$\begin{aligned} & D E \\ & (3 / 5) \end{aligned}$	G (415)	$\begin{aligned} & \text { QN } \\ & (415) \end{aligned}$	FWY (3/5) DE (4/5)	$\frac{1^{\circ} \text { Anchor }}{\text { VILFMWYA }}$
B27			$\begin{aligned} & \frac{1^{\circ} \text { Anchor }}{\text { RHK }} \\ & \hline \end{aligned}$						$\begin{aligned} & 1^{\circ} \text { Anchor } \\ & \text { FYLWMIVA } \end{aligned}$
844			$\frac{1^{\circ} \text { Anchor }}{E D}$						$\begin{aligned} & 1^{\circ} \text { Anchor } \\ & \text { FWYLIMVA } \end{aligned}$
B58			$\frac{1^{\circ} \text { Anchor }}{\text { ATS }}$						$\begin{aligned} & 1^{\circ} \text { Anctor } \\ & \text { FWYLIVMA } \end{aligned}$
B62			$\frac{1^{\circ} \text { Anchor }}{\text { QLVMP }}$						$\begin{aligned} & 1^{\circ} \text { Anchor } \\ & \text { FWYMIVLA } \end{aligned}$

Lalicized residues indicate less preferred or "tolerated" residues

TABLE IV (E) HLA Class I Motifs

| POSTIION 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | C- |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(flalicized residues indicate less preferred or "tolerated" residues. The information in this Table is specific for 9 -mers unless otherwise specified.)

TABLEIV (F):

TABLE IV (G):
Calculated population coverage afforded by different HLA-supertype combinations

HLA-supertypes Phenotypic frequency						
	Caucasian	N.A Blacks	Japanese	Chinese	Hispanic	Average
	83.0	86.1	87.5	88.4	86.3	86.2
A2, A3 and B7	99.5	98.1	100.0	99.5	99.4	99.3
A2, A3, B7, A24, B44	99.9	99.6	100.0	99.8	99.9	99.8
and A1 A2, A3, B7, A24, B44, A1, B27, B62, and B58						
Motifs indicate the residues defining supertype specificites. The motifs incorporate residues determined on the basis of published data to be recognized by multiple alleles within the supertype. Residues within brackets are additional residues also predicted to be tolerated by multiple alleles within the supertype.						

Tables V.XVIII:

Table V-V1-HLA-A1-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Score
150	VIEPSAFSK	900.000
436	NLEYLYLEY	225.000
812	LVEQTKNEY	45.000
828	HAEPDYLEV	45.000
711	GSDAKHLQR	37.500
546	CTSPGHLDK	25.000
265	SICPTPPVY	10.000
51	NIESLSDLR	9.00
799	LMETLMYSR	9.000
173	ESLPPNIFR	7.500
650	DNSPVHLQY	6.250
601	LTDAVPLSV	6.250
174	SLPPNIFRF	5.000
100	IADIEIGAF	5.000
682	MVSPMVHVY	5.000
102	DIEIGAFNG	4.500
134	GLENLEFLQ	4.500
47	NCEAKGIKM	4.500
383	LVEYFTLEM	4.500
401	VEEGSFMN	4.500
388	TLEMLHLGN	4.500
749	FQDASSLYR	3.750
56	VSEISVPPS	2.700
561	NSELLCPGL	2.700
431	FLGLHNLEY	2.500
291	INDSRMSTK	2.500
142	QADNNFITV	2.500
502	ILDDLDLLT	2.500
522	SCDLVGLQQ	2.500
223	NCDLLQLKT	2.500
71	TTEYLRKNI	2.250
232	WLENMPPQS	1.800
171	AIESLPPNI	1.800
137	NLEFLQADN	1.800
355	LSDLRPPPQ	1.500
380	KSDLVEYFT	1.500
59	ISVPPSRPF	1.500
255	GSILSRLKK	1.500
540	VTDDILCTS	1.250
308	TKAPGLIPY	1.250

Table V-V1-HLA-A1-9mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Score
817	KNEYFELKA	1.125
743	STEFLSFQD	1.125
359	RPPPQNPRK	1.000
246	VCNSPPFFK	1.000
417	YLNGNHLTK	1.000
433	GLHNLEYLY	1.000
785	DMEAHYPGA	0.900
398	RIEVLEEGS	0.900
701	EEEEERNEK	0.900
833	YLEVLEQQT	0.900
513	DLEDNPWDC	0.900
123	SLEILKEDT	0.900
203	FLEHIGRIL	0.900
36	NCEEKDGTM	0.900
699	HLEEEEERN	0.900
214	QLEDNKWAC	0.900
573	PSMPTQTSY	0.750
81	TNDFSGLTN	0.625
192	GNQLQTLPY	0.625
301	TSILKLPTK	0.600
631	LVLHRRRRY	0.500
643	QVDEQMRDN	0.500
610	LILGLIMF	0.500
407	FMNLTRLQK	0.500
89	NAISIHLGF	0.500
187	HLDLRGNQL	0.500
511	QIDLEDNPW	0.500
627	GIVLVLR	0.500
472	QVLPPHIFS	0.500
593	TADTILRSL	0.500
337	VLSPSGLLI	0.500
210	ILDLQLEDN	0.500
615	LIMFITIVF	0.500
473	VLPPHIFSG	0.500
730	LTGSNMKYK	0.500
447	IKEILPGTF	0.450
669	TTERPSASL	0.450
441	YLEYNAIKE	0.450
802	TLMYSRPRK	0.400
683	VSPMVHVYR	0.300
547	TSPGHLDKK	0.300

Table V-V1-HLA-A1-9mers158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

Start	Subsequence	Score
32	DSLCNCEEK	0.300
723	EQENHSPLT	0.270
276	HEDPSGSLH	0.250
769	LGITEYLRK	0.250
76	LTMLHTNDF	0.250
235	NMPPQSIIG	0.250
196	QTLPYVGFL	0.250
738	KTTNQSTEF	0.250
372	GNIIHSLMK	0.250
287	ATSSINDSR	0.250
551	HLDKKELKA	0.250
825	ANLHAEPDY	0.250
148	ITVIEPSAF	0.250
729	PLTGSNMKY	0.250
584	VTTPATTTN	0.250
664	KTTHHTTER	0.250
526	VGLQQWIQK	0.250
801	ETLMYSRPR	0.250
297	STKTTSILK	0.250

$\begin{gathered} \text { Tablo V-V3-HLA-A1-9mers- } \\ \text { 15BP1D7 } \\ \hline \end{gathered}$		
Each peplide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 9 amino aclds, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Score
7	HMGAHEELK	0.100
2	SLYEQHMGA	0.050
3	LYEQHMGAH	0.045
1	ASLYEQHMG	0.015
8	MGAHEELKL	0.013
6	QHMGAHEEL	0.001
5	EQHMGAHEE	0.000
4	YEQHMGAHE	0.000

[^2]| 9
 9 amino acids, and the end
 position for each peptide Is the
 start position plus eight | | |
| :---: | :---: | :---: |
| Start | Subsequence | Score |
| 3 | HSLMKSILW | 0.075 |
| 8 | SILWSKASG | 0.020 |
| 11 | WSKASGRGR | 0.015 |
| 7 | KSILWSKAS | 0.015 |
| 9 | ILWSKASGR | 0.010 |
| 5 | LMKSILWSK | 0.010 |
| 1 | IIHSLMKSI | 0.010 |
| 4 | SLMKSILWS | 0.005 |
| 12 | SKASGRGRR | 0.005 |
| 13 | KASGRGRRE | 0.001 |
| 6 | MKSILWSKA | 0.001 |
| 2 | IHSLMKSIL | 0.001 |
| 14 | ASGRGRREE | 0.000 |
| 10 | LWSKASGRG | 0.000 |

Table VI-V1-HLA.A1-10mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
56	VSEISVPPSR	27.000
669	TTERPSASLY	11.250
210	ILDLQLEDNK	10.000
781	QLQPDMEAHY	10.000
150	VIEPSAFSKL	9.000
171	AIESLPPNIF	9.000
828	HAEPDYLEVL	9.000
123	SLEILKEDTF	9.000
398	RIEVLEEGSF	9.000
812	LVEQTKNEYF	9.000
173	ESLPPNIFRF	7.500
546	CTSPGHLDKK	5.000
134	GLENLEFLQA	4.500
401	VLEEGSFMNL	4.500
380	KSDLVEYFTL	3.750
456	NPMPKLKVLY	2500
505	DLDLLTQIDL	2.500
502	ILDDLDLLTQ	2.500
743	STEFLSFQDA	2.250
771	ITEYLRKNIA	2.250
682	MVSPMVHVYR	2.000
214	QLEDNKWACN	1.800
355	LSDL.RPPPQN	1.500

Table VI-V1-HLA-A1-10mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the slart position plus nine.		
Start	Subsequence	Score
264	ESICPTPPVY	1.500
753	SSLYRNILEK	1.500
561	NSEILCPGLV	1.350
601	LTDAVPLSVL	1.250
276	HEDPSGSLHL	1.250
590	TTNTADTILR	1.250
149	TVIEPSAFSK	1.000
106	GAFNGLGLLK	1.000
801	ETLMYSRPRK	1.000
545	LCTSPGHLDK	1.000
824	KANLHAEPDY	1.000
525	LVGLQQWIQK	1.000
300	TTSILKLPTK	1.000
477	HIFSGVPLTK	1.000
100	IADIEIGAFN	1.000
768	QLGITEYLRK	1.000
245	WCNSPPFFK	1.000
721	LLEQENHSPL	0.900
700	LEEEEERNEK	0.900
102	DIEIGAFNGL	0.900
441	YLEYNAIKEI	0.900
436	NLEYLYLEYN	0.900
36	NCEEKDGTML	0.900
513	DLEDNPWDCS	0.900
383	LVEYFTLEML	0.900
388	TLEMLHLGNN	0.900
137	NLEFLQADNN	0.900
232	WLENMPPQSI	0.900
47	NCEAKGIKMV	0.900
747	LSFQDASSLY	0.750
711	GSDAKHLQRS	0.750
723	EQENHSPLTG	0.675
728	SPLTGSNMKY	0.625
830	EPDYLEVLEQ	0.625
435	HNLEYLYLEY	0.625
181	RGNQLQTLPY	0.625
643	QVDEQMRDNS	0.500
223	NCDLLQLKTW	0.500
142	QADNNFITVI	0.500
60	SVPPSRPFQL	0.500
765	ELQQLGITEY	0.500

$\begin{gathered} \text { Table VI-V1-HLA.A1-10mers- } \\ \text { 158P1D7 } \\ \hline \end{gathered}$		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino aclds, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
609	VIILGLLIMF	0.500
453	GTFNPMPKLK	0.500
630	VLVLHRRRRY	0.500
42	GTMLINCEAK	0.500
472	QVLPPHIFSG	0.500
593	TADTILRSLT	0.500
337	VLSPSGLLIH	0.500
811	VLVEQTKNEY	0.500
187	HLDLRGNQLQ	0.500
614	LLIMFITIVF	0.500
603	DAVPLSVLIL	0.500
200	YVGFLEHIGR	0.500
522	SCDLVGLQQW	0.500
203	FLEHIGRILD	0.450
759	ILEKERELQQ	0.450
706	RNEKEGSDAK	0.450
785	DMEAHYPGAH	0.450
351	NIESLSDLRP	0.450
439	YLYLEYNAKK	0.400
59	ISVPPSRPFQ	0.300
727	HSPLTGSNMK	0.300
419	NGNHLTKLSK	0.250
310	APGLIPYITK	0.250
681	HMVSPMVHVY	0.250
783	QPDMEAHYPG	0.250
432	LGLHNLEYLY	0.250
119	INHNSLEILK	0.250
451	LPGTFNPMPK	0.250
371	AGNIIHSLMK	0.250
254	KGSILSRLKK	0.250
796	ELKLMETLMY	0.250
584	VITPATTTNT	0.250
820	YFELKANLHA	0.225
817	KNEYFELKAN	0.225
793	AHEELKLMET	0.225
358	LRPPPQNPRK	0.200

> Table VI-V3-HLA-A1-10mers-
> 158P1D7

Each peplide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
2	ASLYEQHMGA	0.075
8	HMGAHEELKL	0.025
1	SASLYEQHMG	0.010
7	QHMGAHEELK	0.010
3	SLYEQHMGAH	0.010
4	LYEQHMGAHE	0.009
9	MGAHEELKLM	0.003
6	EQHMGAHEEL	0.002
5	YEQHMGAHEE	0.000

Table VI-V4-HLA-A1-10mers-
158P1D7

Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peplide is the start position plus nine.

Start	Subsequence	Score
9	SILWSKASGR	0.100
4	HSLMKSILWS	0.075
8	KSILWSKASG	0.030
5	SLMKSILWSK	0.020
12	WSKASGRGRR	0.015
1	NIIHSLMKSI	0.010
2	IIHSLMKSIL	0.010
3	IHSLMKSILW	0.003
10	ILWSKASGRG	0.001
14	KASGRGRREE	0.001
11	LWSKASGRGR	0.001
6	LMKSILWSKA	0.001
7	MKSILWSKAS	0.001
13	SKASGRGRRE	0.000

| Table VII-V1-HLA-A2-9mers-
 158P1D7 |
| :---: | :---: |
| Each peptide is a portion of SEQ
 ID NO: 3 ; each start position is
 specified, the lenglh of peptide is 9 |
| amino acids, and the end position |
| for each peptide is the start |
| position plus elght |

Table VII-V1-HLA-A2-9mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Score
193	NQLQTLPYV	330.059
616	IMFITIVFC	285.492
140	FLOADNNFI	263.950
415	KLYLNGNHL	239.259
439	YLYLEYNAI	230.356
611	ILGUIMFI	224.357
2	KLWIHLFYS	158.832
429	GMFLGLHNL	131.296
581	YLMVTTPAT	126.833
463	VLYY	116.211
574	SMPTQTSYL	84.856
71	LLNNGLTML	83.527
4	WIHLFYSSL	77.017
305	KLPTKAPGL	74.768
613	GLLIMFITI	73.343
213	LQLEDNKWA	71.445
826	NLHAEPDYL	57.572
803	LMYSRPRKV	54.652
501	NILDDLDLL	50.218
798	KLMETLMYS	50.051
527	GLQQWIQKL	49.134
158	KLNRLKVL	36.515
178	NIFRFVPLT	33.135
225	DLQLKTWL	32.604
462	KVLYLNNNL	24.206
767	QQLGITEYL	21.597
116	QLHINHNSL	21.362
68	QLSLLNNGL	21.362
502	ILDDLDLT	20.776
70	SLLNNGLTM	18.382
470	LLQVLPPHI	17.736
391	MLHLGNNRI	17.736
164	VLILNDNAI	17.736
337	VLSPSGLLI	17.736
774	YLRKNIAQL	17.177
450	ILPGTFNPM	16.047
323	QLPGPYCPI	15.648
367	KLILAGNI!	14.971
316	YITKPSTQL	13.512
141	LQADNNFIT	12.523
214	QLEDNKWAC	9.777

Table VII-V1-HLA-A2-9mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Score
582	LMVTTPATT	9.149
758	NILEKEREL	8.812
17	SLHSQTPVL	8.759
182	FVPLTHLDL	8.598
609	VLILGLLIM	7.964
295	RMSTKTTSI	7.535
309	KAPGLIPYI	6.415
539	TVIDDILCT	6.149
618	FITIVFCAA	5.970
596	TILRSLTDA	5.813
432	LGLHNLEYL	5.437
479	FSGVPLTKV	4.804
517	NPWDCSCDL	4.745
544	ILCTSPGHL	4.721
531	WIQKLSKNT	4.713
597	ILRSLTDAV	4.403
524	DLVGLQQWI	4.304
290	SINDSRMST	4.201
681	HMVSPMVHV	3.928
425	KLSKGMFLG	3.479
608	SVILGLLI	3.378
336	KVLSPSGL	3.147
147	FITVIEPSA	3.142
48	CEAKGIKMV	3.111
722	LEQENHSPL	2895
16	ISLHSQTPV	2.856
99	NIADIEIGA	2.801
163	KVLILNDNA	2.758
92	SIHLGFNNI	2.726
400	EVLEEGSFM	2.720
384	VEYFTLEML	2.547
442	LEYNAIKEI	2.538
302	SILKLPTKA	2.527
453	GTFNPMPKL	2.525
154	SAFSKLNRL	2.525
45	LINCEAKGI	2.439
393	HLGNNRIEV	2.365
624	CAAGIVVLV	2.222
833	YLEVLEQQT	2.194
455	FNPMPKLKV	2.088
621	IVFCAAGIV	2.040

Table VII-V1-HLA-A2-9mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each slart position is specffed, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Stant	Subsequence	Score
408	MNLTRLQKL	2.017
646	EQMRDNSPV	1.957
481	GVPLTKVNL	1.869
780	AQLQPDMEA	1.864
196	QTLPYVGFL	1.805
604	AVPLSVLIL	1.763
473	VLPPHIFSG	1.690
487	VNLKTNQFT	1.683
675	ASLYEQHMV	1.680
612	LGLLIMFIT	1.674
821	FELKANLHA	1.644
175	LPPNIFRFV	1.613
494	FTHLPVSNI	1.533
474	LPPHIFSGV	1.466
709	KEGSDAKHL	1.454
620	TIVFCAAGI	1.435

Table VII-V3-HLA-A2-9mers-158P107 158P1D7		
Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
St	Subsequence	Score
2	SLYEQHMGA	65.180
8	MGAHEELKL	0.237
6	QHMGAHEEL	0.02
1	ASLYEQHMG	0.002
4	YEQHMGAHE	0.001
7	HMGAHEELK	0.000
5	EQHMGAHEE	0.000
3	LYEQHMGAH	0.000

1	IIHSLMKSI	5.609
4	SLMKSILWS	3.488
9	ILWSKASGR	0.210
8	SILWSKASG	0.038
6	MKSILWSKA	0.020
5	LMKSILWSK	0.011
2	IHSLMKSIL	0.010
7	KSILWSKAS	0.002
13	KASGRGRRE	0.000
3	HSLMKSILW	0.000
14	ASGRGRREE	0.000
11	WSKASGRGR	0.000
12	SKASGRGRR	0.000
10	LWSKASGRG	0.000

Table VII-V1-HLA-A2-10mers-
 158P1D7

Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is
10 amino acids, and the end
position for each peptide is the start position plus nine.

| Start | Subsequence | Score |
| :---: | :---: | :---: | :---: |
| 613 | GLLIMFITIV | 922.161 |
| 431 | FLGLHNLEYL | 609.108 |
| 616 | IMFITIVFCA | 301.064 |
| 600 | SLTDAVPLSV | 285.163 |
| 417 | YLNGNHLTKL | 226.014 |
| 473 | VLPPHIFSGV | 224.653 |
| 70 | SLLNNGLTML | 181.794 |
| 433 | GLHNLEYLYL | 176.240 |
| 166 | ILNDNAIESL | 167.806 |
| 407 | FMNLTRLQKI | 163.232 |
| 174 | SLPPNIFRFV | 145.364 |
| 425 | KLSKGMFLGL | 142.060 |
| 581 | YLMVTTPATT | 126.833 |
| 409 | NLTRLQKLYL | 117.493 |
| 610 | LILGLLIMFI | 114.142 |
| 746 | FLSFQDASSL | 98.267 |
| 213 | LQLEDNKWAC | 97.424 |
| 141 | LQADNNFITV | 93.387 |
| 465 | YLNNNLLQV | 92.666 |
| 369 | ILAGNIIHSL | 83.527 |
| 415 | KLYLNGNHLT | 83.462 |
| 140 | FLQADNNFIT | 81.516 |
| 158 | KLNRLKVLIL | 70.507 |
| 611 | ILGLLIMFIT | 69.289 |
| 78 | MLLTNDFFSGL | 69.001 |

Table VII-V1.HLA-A2-10mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position Is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start		
	LIMFITIVFC	
	TLMYSRPRK	
	WIQKLSKNTV	
	NLQV	
67	FQLSLLNNGL	36.864
803	LMYSRPRKVL	
	KQLHINHNSL	
462	KVLYNNNLL	
86	GLTNAISIHL	
401	VL	
44	MLINCEAKGI	
596	TILRSLTDAV	
	IVFCAAGIW	
501	NILDDLDLLT	
4	WIHLFYSSL	
486		
	KVLILNDNAI	
336		
60		
282	SLHLAATSSI	
110	GLGLL	10
76	LO	
12		
15	CI	
582	LMVTTPATT	
257	ILSRLKKESI	
517	NP	7.571
568	GL	
441	YLEYNAIKEI	7.06
295	RM	6.326
678	YEQHMVSP	
195	LO	6.055
770	GITEYLRKN	
322	TQLPGP	
382	YF	
促	GNQLQTL	
374	IIHSLMKSDL	4.993
647	QMRDNSPVH	4.807
623	FCAAGIWLV	4.804
305	KLPTKAPGLI	4.747
263	KESICPTPPV	4.733

Table VII-V1-HLA-A2-10mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
457	PMPKLKVLYL	4.294
428	KGMFLGLHNL	4.153
2	KLWHLFYSS	4.113
656	LQYSMYGHKT	4.110
574	SMPTQTSYLM	3.588
227	LQLKTWLENM	3.571
343	LLIHCQERNI	3.547
490	KTNQFTHLPV	3.381
220	WACNCDLLQL	3.139
232	WLENMPPQSI	3.071
738	KTTNQSTEFL	2.799
555	KELKALNSE	2.627
721	LIEQENHSPL	2.324
390	EMLHLGNNRI	2.091
328	YCPIPCNCKV	2.088
212	DLQLEDNKWA	2.049
526	VGLQQWIQKL	2.017
605	VPLSVLILGL	2.017
798	KLMETLMYSR	1.820
313	LIPYITKPST	1.742
577	TQTSYLMVTT	1.738
380	KSDLVEYFTL	1.698
204	LEHIGRILDL	1.624
188	LPYVGFLEHI	1.587
608	SVLILGLLIM	1.517
108	FNGLGLLKQL	1.475
6	HLFYSSLLAC	1.437
488	NLKTNQFTHL	1.421
814	EQTKNEYFEL	1.413
825	ANLHAEPDYL	1.391
512	IDLEDNPWDC	1.335
818	NEYFELKANL	1.329
575	MPTQTSYLMV	1.158
77	TMLHTNDFSG	1.155

Each peptide is a portion of SEQ ID NO: 7 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
8	HMGAHEELKL	0.525
3	SLYEQHMGAH	0.292
9	MGAHEELKLM	0.127
2	ASLYEQHMGA	0.120
6	EQHMGAHEEL	0.080
5	YEQHMGAHEE	0.001
1	SASLYEQHMG	0.001
7	QHMGAHEELK	0.000
4	LYEQHMGAHE	0.000

Table VIII-V4-HLA-A2-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Star	Subsequence	
	NIIHSLMKS	
2	SSLMKSIL	
5	SLMKSILWS	0.9
6	LMKSILWSKA	
10	LWSKASGR	
9	SILWSKASGR	0.0
8	,	0.002
	SLMKSILW	0.001
7	MKSILWSKAS	0.0
14	GRGR	0.000
3	IHSLMKSILW	0.000
13	SKASGRGRRE	0.0
12	WSKASGR	0.0
11	LWSKASGRGR	0.0

Table IX-V1-A3-9mers-158P1D7			682	MVSPMVHVY	1.800
			616	IMFITIVFC	1.500
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.			659	SMYGHKTTH	1.500
			628	IWLVLHRR	1.350
			614	LLIMFITIV	1.350
			323	QLPGPYCPI	1.350
Start	Subsequence		610	ULGLLIMF	1.350
		Score	729	PLTGSNMKY	1.200
754	SLYRNILEK	300.000	453	GTFNPMPKL	1.012
417	YLNGNHLTK	60.000	228	QLKTWLENM	0.900

Table [X-V1-A3-9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

Start	Subsequence	Score	Start	Subsequence	Score
450	ILPGTFNPM	0.900	393	HLGNNRIEV	0.400
615	LIMFITIVF	0.900	551	HLDKKELKA	0.400
609	VLILGLLIM	0.900	351	NIESLSDLR	0.400
255	GSILSRLKK	0.900	457	PMPKLKVLY	0.400
482	VPLTKVNLK	0.900	812	LVEQTKNEY	0.400
774	YLRKNIAQL	0.900	113	LLKQUHINH	0.400
164	KILNDNAI	0.900	372	GNIIHSLMK	0.360
655	HLQYSMYGH	0.900	604	AVPLSVLIL	0.360
86	GLTNAISIH	0.900	741	NQSTEFLSF	0.360
71	LINNGLTML	0.900	328	YCPIPCNCK	0.300
656	LQYSMYGHK	0.900	287	ATSSINDSR	0.300
246	VCNSPPFFK	0.900	738	KTTNQSTEF	0.300
798	KLMETLMYS	0.810	728	SPLTGSNMK	0.300
730	LTGSNMKYK	0.750	359	RPPPQNPRK	0.300

Table IX-V3-A3-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 7 ; each start position is specified, the length of peptide is 9 amino acds, and the end position for each peptide is the start position plus elght.		
Start	Subsequence	Score
7	HMGAHEELK	20.000
2	SLYEQHMGA	3.000
6	QHMGAHEEL	0.001
8	MGAHEELKL	0.001
5	EQHMGAHEE	0.000
1	ASLYEQHMG	0.000
3	LYEQHMGAH	0.000
4	YEQHMGAHE	0.000

Table IX-V4-A3-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 9 each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Score
5	LMKSILWSK	135.000
9	LWSKASGR	20.000
4	SLMKSILWS	0.180

1	IIHSLMKSI	0.045
3	HSLMKSILW	0.003
8	SILWSKASG	0.003
11	WSKASGRGR	0.002
7	KSILWSKAS	0.001
12	SKASGRGRR	0.001
2	IHSLMKSIL	0.001
6	MKSILWSKA	0.000
13	KASGRGRRE	0.000
14	ASGRGRREE	0.000
10	LWSKASGRG	0.000

Table X-V1:HLA-A3-10mers158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is .10 amino acids, and the end position for each peptide is the start position plus nine.

Start	Subsequence	Score
439	YLYLEYNAIK	300.000
798	KLMETLMYSR	121.500
632	VHRRRRYKK	60.000
768	QLGITEYLRK	40.000
477	HFSGVPLTK	30.000
210	ILLLQLEDNK	20.000
481	GVPLTKVNLK	18.000
681	HMVSPMVHVY	18.000
616	IMFITIVFCA	13.500
149	TVIEPSAFSK	13.500
158	KLNRLKVLIL	10.800
425	KLSKGMFLGL	10.800
815	QTKNEYFELK	9.000
609	VLILGLIMF	9.000
245	WCNSPPFFK	9.000
614	LLIMFITIVF	9.000
811	VLVEQTKNEY	9.000
377	SLMKSDLVEY	9.000
453	GTFNPMPKLK	7.500
781	QLQPDMEAHY	6.000
655	HLQYSMYGHK	6.000
378	LMKSDELVEYF	6.000
75	GLTMLHTNDF	6.000
106	GAFNGLGLLK	6.000
2	KLWIHLFYSS	5.400
86	GLTNAISIHL	5.400
401	VLEEGSFMNL	5.400
42	GTMLINCEAK	4.500
613	GLLIMFITIV	4.050

Table X-V1-HLA-A3-10mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position Is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
627	GIVLVLHRR	4.050
525	LVGLQQWIQK	4.000
134	GLENLEFLQA	3.600
433	GLHNLEYLY	3.600
110	GLGLLKQLHI	3.600
6	HLFYSSLLAC	3.000
470	LQVLPPHIF	3.000
194	QLQTLPYVGF	3.000
290	SINDSRMSTK	3.000
126	ILKEDTFHGL	2.700
357	DLRPPPQNPR	2.700
796	ELKLMETLMY	2.400
546	CTSPGHLDKK	2.250
803	LMYSRPRKVL	2.250
729	PLTGSNMKYK	2.250
369	ILAGNIIHSL	2.025
123	SLEILKEDTF	2.000
765	ELQQLGITEY	1.800
112	GLLKQLHINH	1.800
367	KLILAGNIIH	1.800
78	MLHTNDFSGL	1.800
488	NLKTNQFTHL	1.800
300	TTSILKLPTK	1.500
659	SMYGHKTTHH	1.500
415	KLYLNGNHLT	1.500
568	GLVNNPSMPT	1.350
473	VLPPHIFSGV	1.350
70	SLLNNGLTML	1.350
417	YLNGNHLTKL	1.350
528	LQQWIQKLSK	1.200
409	NLTRLQKLYL	1.200
197	TLPYVGFLEH	1.200
94	HLGFNNIADI	0.900
407	FMNLTRLQKL	0.800
166	ILNDNAIESL	0.900
393	HLGNNRIEVL	0.900
465	YLNNNLLQVL	0.900
469	NLLQVLPPHI	0.900
682	MVSPMVHVYR	0.900
431	FLGLHNLEYL	0.900
337	VLSPSGLLIH	0.900

Table X-V1-HLA-A3-10mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
232	WLENMPPQS!	0.900
767	QQLGITEYLR	0.810
382	DLVEYFTLEM	0.810
200	YVGFLEHIGR	0.800
611	ILGLIIMFIT	0.675
45	LINCEAKGIK	0.600
600	SLTDAVPLSV	0.600
182	FVPLTHLDLR	0.600
574	SMPTQTSYLM	0.600
647	QMRDNSPVHL	0.600
295	RMSTKTTSIL	0.600
310	APGLIPYITK	0.600
282	SLHLAATSSI	0.600
422	HLTKLSKGMF	0.600
721	LLEQENHSPL	0.600
746	FLSFODASSL	0.600
630	VLVLHRRRRY	0.600
257	ILSRLKKESI	0.600
336	KVLSPSGLLI	0.540
305	KLPTKAPGLI	0.540
801	ETLMYSRPRK	0.450
753	SSLYRNILEK	0.450
551	HLDKKELKAL	0.450
44	MLINCEAKGI	0.450
441	YLEYNAIKEI	0.450
189	DLRGNQLQTL	0.405
610	LILGLLIMFI	0.405
545	LCTSPGHLDK	0.400
451	LPGTFNPMPK	0.400
71	LLNNGLTMLH	0.400

Table X-V3-HLA-A3-10mers158P1D7

Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino aclds, and the end
position for each peptide is the start position plus nine.

Start	Subsequence	Score
7	QHMGAHEELK	0.045
6	EQHMGAHEEL	0.005
2	ASLYEQHMGA	0.003
1	SASLYEQHMG	0.000
9	MGAHEELKLM	0.000
5	YEQHMGAHEE	0.000
4	LYEQHMGAHE	0.000

Table X-V4.HLA.A3-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
5	SLMKSILWSK	202.500
9	SILWSKASGR	0.600
6	LMKSILWSKA	0.200
1	NIIISLLMKS	0.068
2	IIHSLMKSIL	0.060
10	ILWSKASGRG	0.030
12	WSKASGRGRR	0.006
4	HSLMKSILWS	0.001
8	KSILWSKASG	0.000
11	LWSKASGRGR	0.000
3	IHSLMKSILW	0.000
14	KASGRGRREE	0.000
7	MKSILWSKAS	0.000
13	SKASGRGRRE	0.000

Table X-V3-HLA-A3-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Sco
8	HMGAHEELKL	1.200
3	SLYEQHMGAH	0.675

Table XI-V1-A11-9mers-158P		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is : amino acids, and the end position for each peptide is the start position plus eight.		
Star	Subsequence	Sco
529	QQWIQKLSK	2.400
297	STKTTSILK	2.000
546	CTSPGHLDK	2.0

Table XI-V1-A11-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Score
754	SLYRNILEK	1.600
656	LQYSMYGHK	1.200
150	VIEPSAFSK	1.200
407	FMNLTRLQK	0.800
802	TLMYSRPRK	0.800
417	YLNGNHLTK	0.800
627	GIVVLVLHR	0.720
628	IVVLVLRRR	0.600
440	LYLEYNAIK	0.600
246	VCNSPPFFK	0.600
359	RPPPQQPRK	0.600
664	KTTHHTTER	0.600
43	TMLINCEAK	0.600
730	LTGSNMKYK	0.500
478	IFSGVPLTK	0.400
107	AFNGLGLLK	0.400
372	GNIIIHSLMK	0.360
342	GLLIHCQER	0.360
482	VPLTKUNLK	0.300
728	SPLTGSNMK	0.300
420	GNHLTKLSK	0.240
749	FQDASSLYR	0.240
287	ATSSINDSR	0.200
790	YPGAHEELK	0.200
328	YCPIPCNCK	0.200
255	GSILSRLKK	0.180
799	LMETLMYSR	0.160
768	QLGITEYLR	0.160
20	SQTPVLSSR	0.120
454	TFNPMPKLK	0.100
550	GHLDKKELK	0.090
809	RKVLVEQTK	0.090
336	KVLSPSGLL	0.090
462	KVLYLNNNL	0.090
163	KVLILNDNA	0.090
252	FFKGSILSR	0.080
351	NIESLSDLR	0.080
769	LGITEYLRK	0.060
526	VGLQQWIQK	0.060
453	GTFNPMPKL	0.060
42	GTMLINCEA	0.060
629	WLVLHRRR	0.060

Table XI-V1-A11-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specifled, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Score
608	SVLILGLLI	0.060
183	VPLTHLDLR	0.060
486	KVNLKTNQF	0.060
481	GVPLTKVNL	0.060
707	NEKEGSDAK	0.060
291	INDSRMSTK	0.040
182	FVPLTHLDL	0.040
383	LVEYFTLEM	0.040
120	NHNSLEILK	0.040
604	AVPLSVLIL	0.040
633	LHRRRRYKK	0.040
222	CNCDLLQLK	0.040
621	IVFCAAGIV	0.040
46	INCEAKGIK	0.040
632	VLHRRRRYK	0.040
390	EMLHLGNNR	0.036
613	GLLIMFTII	0.036
301	TSILKLPTK	0.030
211	LDLQLEDNK	0.030
738	KTTNQSTEF	0.030
815	QTKNEYFEL	0.030
711	GSDAKHLQR	0.024
433	GLHNLEYLY	0.024
429	GMFLGLHNL	0.024
415	KLYLNGNHL	0.024
816	TKNEYFELK	0.020
155	AFSKLNRLK	0.020
690	YRSPSFGPK	0.020
682	MVSPMVHVY	0.020
87	LTNAISIHL	0.020
601	LTDAVPLSV	0.020
245	WCNSPPFF	0.020
812	LVEQTKNEY	0.020
547	TSPGHLDKK	0.020
76	LTMLHTNDF	0.020
410	LTRLQKLYL	0.020
698	KHLEEEEER	0.018
367	KLILAGNII	0.018
57	SEISVPPSR	0.018
780	AQLQPDMEA	0.018
701	EEEEERNEK	0.018
615	LIMFITIVF	0.016

Table XI-V1-A11-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start postion Is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Score
201	VGFLEHIGR	0.016
6	HLFYSSUA	0.016
591	TNTADTILR	0.016
196	QTLPYVGFL	0.015
148	ITVIEPSAF	0.015
630	VLVLHRRRR	0.012
641	KKQVDEQMR	0.012
86	GLTNAISIH	0.012
527	GLQQWIQKL	0.012
70	SLLNNGLTM	0.012
174	SLPPNIFRF	0.012
488	NLKTNQFTH	0.012
368	LILAGNIIH	0.012

Table XI-V3-A11-9mers-158P1D7	
Each peptida is a portion of SEQ	
ID NO: 7 ; each start position is	
specified, the length of peptide is 9	
amino acids, and the end position	
for each peptide is the start	
position plus eight.	

Table Xl-V4-A11-9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 9 amino acids, and the end position for each pepitde is the start position plus eight.

Start	Subsequence	Score
5	LMKSILWSK	0.800
9	ILWSKASGR	0.160
12	SKASGRGRR	0.004

1	IIHSLMKSI	0.002
4	SLLMKSILWS	0.000
3	HSLMKSILW	0.001
8	SILWSKASG	0.001
11	WSKASGRGR	0.000
6	MKSLLWSKA	0.000
2	IHSLMKSL	0.000
13	KASGRGRE	0.000
7	KSILWSKAS	0.000
10	LWSKASGRG	0.000
14	ASGRGRREE	0.000

1	IIISLMKSI	0.002	Table XII-V1-HLA-A11-10mers-158P1D7		
4	SLMKSILWS	0.002			
3	HSLMKSILW	0.001	Each peptide is a portion of SEQ		
8	SILWSKASG	0.001	ID NO: 3 ; each start position is		
11	WSKASGRGR	0.000	10 amino acdss, and the end position for each peptide is the slart position plus nine.		
6	MKSILWSKA	0.000			
2	IHSLMKSIL	0.000			
13	KASGRGRRE	0.000	Start	Subsequence	Score
7	KSILWSKAS	0.000	45	LINCEAKGIK	400
10	LWSKASGRG	0.000	682	MVSPMVHVYR	0.400
14	ASGRGRREE	0.000	182	FVPLTHLDLR	0.40
			767	QQLGITEYLR	0.360
Table XII-V1-HLA-A11-10mers158P1D7			627	GIVMVLLRR	0.360
			631	LVLHRRRRYK	0.300
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.			221	ACNCDLLQLK	0.200
			336	KVLSPSGLLI	0.980
			706	RNEKEGSDAK	0.120
			254	KGSILSRLKK	0.120
			462	KVLYLNNNLL	0.090
Start	Subsequence	Score	163	KVLILNDNAI	0.090
149	TVIEPSAFSK	9.000	621	IVFCAAGIW	0.080
245	WCNSPPFFK	6.000	748	SFQDASSLYR	0.080
42	GTMLINCEAK	6.000	119	INHNSLELLK	0.080
481	GVPLTKVNLK	6.000	753	SSLYRNILEK	0.060
525	LVGLQQWIQK	4.000	60	SVPPSRPFQL	0.060
453	GTFNPMPKLK	3.000	490	KTNQFTHLPV	0.06
106	GAFNGLGLLK	2.400	700	LEEEEERNEK	0.06
477	HIFSGVPLTK	1.600	628	IVLLVLRRRR	0.060
416	LYLNGNHLTK	1.200	608	SVLILGLLIM	0.060
528	LQQWIOKLSK	1.200	629	WLVLHRRRR	. 06
815	QTKNEYFELK	1.000	296	MSTKTISILK	0.040
300	TSILKLPTK	1.000	755	LYRNILEKER	0.040
546	CTSPGHLDKK	1.000	327	PYCPIPCNCK	0.040
798	KLMETLMYSR	0.960	154	SAFSKLNRLK	0.040
200	YVGFLEHIGR	0.800	286	AATSSINDSR	0.040
406	SFMNLTRLQK	0.800	371	AGNIIHSLMK	0.040
439	YLYLEYNAIK	0.800	419	NGNHLTKLSK	0.040
768	QLITEYLRK	0.800	350	RNIESLSDLR	0.03
632	VHRRRRRYKK	0.800	112	GLLKQLHINH	0.036
801	ETLMYSRPRK	0.450	367	KLILAGNIIIH	0.03
310	APGLPYYTK	0.400	738	KTNQSTEFL	0.030
789	HYPGAHEELK	0.400	115	KQLHINHNSL	0.027
655	HLQYSMYGHK	0.400	433	GLHNLEYLY	0.024
451	LPGTFNPMPK	0.400	52	GIKMVSEISV	0.024
689	VYRSPSFGPK	0.400	110	GLGLLKQLHI	0.024
545	LCTSPGHLDK	0.400	172	IESLPPNIFR	0.024
210	LLDLQLEDNK	0.400	158	KLNRLKVLIL	0.024
590	TNTADTLLR	0.400	134	GLENLEFLQA	0.024
290	SINDSRMSTK	0.400	616	IMFITIVFCA	0.024

Table XII-V1-HLA-A11-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
425	KLSKGMFLGL	0.024
357	DLRPPPQNPR	0.024
86	GLTNAISIHL	0.024
152	EPSAFSKLNR	0.024
389	LEMLHLGNNR	0.024
297	STKTTSILKL	0.020
812	LVEQTKNEYF	0.020
727	HSPLTGSNMK	0.020
686	MVHVYRSPSF	0.020
383	LVEYFTLEML	0.020
358	LRPPPQNPRK	0.020
31	CDSLCNCEEK	0.020
729	PLTGSNMKYK	0.020
423	LTKLSKGMFL	0.020
613	GLLIMFTIV	0.018
181	RFVPLTHLDL	0.018
251	PFFKGSILSR	0.016
178	NIFRFVPLTH	0.016
619	ITIVFCAAGI	0.015
626	AGIWLVLHR	0.012
640	KKKQVDEQMR	0.012
141	LQADNNFITV	0.012
688	HVYRSPSFGP	0.012
75	GLTMLHTNDF	0.012
609	VLILGLLIMF	0.012
464	LYLNNNLLQV	0.012
614	UIMFITIVF	0.012
96	GFNNIADIEI	0.012
295	RMSTKTTSIL	0.012
610	ULGLLIMFI	0.012

Table XII-V3-HLA-A11-10mers158P1D7

Each peptide is a portion of SEQ ID NO: 7; each slart position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Start	Subsequence	Score
7	QHMGAHEELK	0.040
3	SLYEQHMGAH	0.008

Table XII-V3-HLA-A11-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 7 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptde is the start position plus nine.		
Start	Subsequence	Score
8	HMGAHEELKL	0.008
6	EQHMGAHEEL	0.002
2	ASLYEQHMGA	0.001
4	LYEQHMGAHE	0.000
1	SASLYEQHMG	0.000
9	MGAHEELKLM	0.000
5	YEQHMGAHEE	0.000

Table XII-V4-HLA-A11-10mers158P1D7		
Each peptide is a portion of SEQ ID NO: 9 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
5	SLMKSILWSK	1.600
9	SIL.WSKASGR	0.120
2.	IIHSLMKSIL	0.004
12	WSKASGRGRR	0.004
6	LMKSILWSKA	0.004
1	NIIHSLMKSI	0.003
10	LLWSKASGRG	0.001
11	LWSKASGRGR	0.000
3	IHSLMKSILW	0.000
8	KSILWSKASG	0.000
4	HSLMKSILWS	0.000
14	KASGRGRREE	0.000
7	MKSILWSKAS	0.000
13	SKASGRGRRE	0.000

Table XIII-V1 HLA-A24-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptida is 9 amino acids, and the end position for each peptide is the start position plus elght.		
Start	Subsequence	Sco
443	EYNAIKEIL	420.000
789	HYPGAHEEL	330.000
819	EYFELKANL	288.000

Table XIII-V1-HLA-A24-9mers158P1D7			Table XIII-V1.HLA-A24-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptlde is 9 amino acids, and the end postion for each peptide is the start position plus eight.			Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end postion for each peptide is the start position plus eight.		
Start	Subsequence	Score	Start	Subsequence	Score
804	MYSRPRKVL	200.000	347	CQERNIESL	6.000
8	FYSSLLACI	60.000	669	TTERPSASL	6.000
386	YFTLEMLHL	20.000	10	SSLLACISL	6.000
139	EFLQADNNF	18.000	590	TTNTADTIL	6.000
462	KVLYLNNNL	17.280	481	GVPLTKVNL	6.000
350	RNIESLSDL	14.400	432	LGLHNLEYL	6.000
599	RSLTDAVPL	12.000	61	VPPSRPFQL	6.000
336	KVLSPSGLL	12.000	394	LGNNRIEVL	6.000
305	KLPTKAPGL	12.000	574	SMPTQTSYL	6.000
736	KYKTTNQST	12.000	739	TTNQSTEFL	6.000
580	SYLMVTTPA	10.500	68	QLSLINNGL	5.760
415	KLYLNGNHL	9.600	625	AAGIVLVL	5.600
272	VYEEHEDPS	9.000	370	LAGNIIHSL	5.600
202	GFLEEHIGRI	9.000	593	TADTILRSL	5.600
438	EYLYLEYNA	9.000	657	QYSMYGHKT	5.500
466	LNNNLLQVL	8.640	154	SAFSKLNRL	4.800
767	QQLGITEYL	8.400	517	NPWDCSCDL	4.800
203	FLEHIGRIL	8.400	463	VLYLNNNLL	4.800
807	LSVLILGLL	8.400	752	ASSLYRNIL	4.800
87	LTNAISIHL	8.400	207	IGRILDLQL	4.800
537	KNTVTDDIL	8.000	713	DAKHLQRSL	4.800
219	KWACNCDLL	8.000	116	QUHINHNSL	4.800
758	NILEKEREL	7.920	187	HLDLRGNQL	4.800
408	MNLTRLQKL	7.920	426	LSKGMFLGL	4.800
527	GLQQWIQKL.	7.920	453	GTFNPMPKL	4.400
416	LYLNGNHLT	7.500	815	QTKNEYFEL	4.400
199	PYVGFLEHI	7.500	418	LNGNHLTKL	4.400
486	KVNLKTNQF	7.200	738	KTTNQSTEF	4.400
109	NGLGLLKQL	7.200	615	LIMFITIVF	4.200
196	QTLPYVGFL	7.200	89	NAISIHLGF	4.200
133	HGLENLEFL	7.200	4	WIHLFYSSL	4.000
225	DLLQLKTWL	7.200	26	SSṘGSCDSL	4.000
83	DFSGLTNAI	7.200	106	GAFNGLGLL	4.000
456	NPMPKLKVL	7.200	826	NLHAEPDYL	4.000
561	NSEILCPGL	7.200	429	GMFLGLHNL	4.000
501	NILDDLDLL	7.200	544	ILCTSPGHL	4.000
500	SNILDDLDL	6.000	458	MPKLKVLYL	4.000
221	ACNCDLLQL	6.000	159	LNRLKVLIL	4.000
71	LLNNGLTML	6.000	692	SPSFGPKHL	4.000
604	AVPLSVLIL	6.000	623	FCAAGIVVL	4.000
182	FVPLTHLDL	6.000	296	MSTKTTSIL	4.000

Table XIII-V1-HLA-A24-9mers- 158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Sco
17	HSQTPV	4.000
747	LSFQDASSL	4.000
316	TKPSTQL	4.000
119	NHNSLEIL	4.000
520	DCSCDLVGL	4.000
405	GSFMNLTRL	4.000
105	IGAFNGLGL	4.000
774	YLRKNIAQL	4.000
410	LTRLQKLYL	4.000
167	LNDNAIESL	4.000
130	DTFHGLENL	4.000
309	KAPGLIPYI	3.600
158	KLNRLKVLI	3.600
76	LTMLHTNDF	3.600
59	ISVPPSRPF	3.600

Table XIII-V3-HLA-A24-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Sco
8	MGAHEELKL	4.400
3	LYEQHMGAH	0.750
6	QHMGAHEEL	0.660
2	SLYEQHMGA	0.120
1	ASLYEOHMG	0.015
5	EQHMGAHEE	0.011
7	HMGAHEELK	0.010
4	YEQHMGAHE	0.002

$\begin{gathered} \text { Table XIII-V4-HLA-A24-9mers- } \\ \text { 158P1D7 } \end{gathered}$			158	KLNRLKVLIL	12.000
			131	TFHGLENLEF	11.000
			425	KLSKGMFLGL	9.600
Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.			150	VIEPSAFSKL	9.504
			139	EFLQADNNFI	9.000
			102	DIEIGAFNGL	8.640
			465	$\frac{\text { YLNNNLLQVL }}{\text { FQLSLLNNGL }}$	8.640
Start	Subsequence	Score			8.640

1	IIHSLMKSI	1.200
2	IHSLMKSIL	0.400
7	KSILWSKAS	0.300
4	SLMKSILWS	0.150
3	HSLMKSILW	0.150
13	KASGRGRRE	0.020
8	SILWSKASG	0.015
5	LMKSILWSK	0.014
6	MKSILWSKA	0.013
14	ASGRGRREE	0.011
10	LWSKASGRG	0.010
11	WSKASGRGR	0.010
9	ILWSKASGR	0.010
12	SKASGRGRR	0.001

Table XIV-V1-HLA-A24-10mers-
158P1D7

Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is

10 amino acids, and the end position for each peptide is the start position plus nine.

Start	Subsequence	Score
773	EYLRKNIAQL	300.000
385	EYFTLEM	20.0
438	EYLYLEYNA	90.000
181	RFVPLTHLDL	72.000
202	GFLEHIGRIL	50.400
	LYEQHMV	500
315	PYITKPSTQL	30.000
252	FFKGSILSRL	28.000
622	VFCAAGIVVL	, 000
	IFR	
359	RPP	15.840
462	KVLYLNNNL	14.400
	KO	14.400
757	RNILEKEREL	13.20
832	DYLEVLEQQT	12.960
691	RSPSFGP	12.000
428	KGMFLGLH	12.000
158	RL	12.000
131	TFHGLENLEF	11
425	KLSKGMFLGL	9.600
150	VIEPSAFSKL	9.504
139	EFLQADNNFI	,
102	DIEIGAFNGL	8.640
465	YLNNNLLQVL	8.640
67	FQLSLLNNGL	8.640

Table XIV-V1-HLA-A24-10mers 158P1D7		
Each peptide Is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
401	VLEEGSFMNL	$\cdot 8.640$
497	LPVSNILDDL	8.400
766	LQQLGITEYL	8.400
96	GFNNIADIEI	8.250
738	KTTNQSTEFL	8.000
380	KSDLVEYFTL	8.000
295	RMSTKTTSIL	8.000
526	VGLQQWIQKL	7.920
407	FMNLTRLQKL	7.920
580	SYLMVTTPAT	7.500
464	LYNNNLLQV	7.500
828	HAEPDYEV	7.200
329	CPIPCNCKVL	7.200
36	NCEEKDGTML	7.200
346	HCQERNIESL	7.200
166	ILNDNAIESL.	7.200
60	SVPPSRPFQL	7.200
605	VPLSVLILGL	7.200
480	SGVPLTKVNL	7.200
603	DAVPLSVLIL	7.200
494	FTHLPVSNIL	6.720
592	NTADTILRSL	6.720
417	YLNGNHLTKL	6.600
118	HINHNSLEIL	6.000
500	SNILDDLDLL	6.000
455	FNPMPKLKVL	6.000
70	SLLNNGLTML	6.000
16	ISLHSQTPVL	6.000
8	FYSSLLACIS	6.000
543	DILCTSPGHL	6.000
249	SPPFFKGSIL	6.000
3	LWIHLFYSSL	6.000
825	ANLHAEPDYL	6.000
398	RIEVLEEGSF	6.000
499	VSNILDDLDL	6.000
721	LLEQENHSPL	6.000
383	LVEYFTLEML	6.000
7	LFYSSLLACI	6.000
516	DNPWDCSCDL	6.000
560	LNSEILCPGL	5.760
126	ILKEDTFHGL	5.760

Table XVVV1.HLA-A24-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each slart position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
624	CAAGIWLVL	5.600
86	GLTNAIIIHL	5.6
369	LLAGNIIHSL	5.600
657	QYSMYGHKTT	5.00
804	MYSRPRKVLV	5.000
660	MYGHKTTHHT	5.000
493	QFTHLPVSNI	5.0
647	QMRDNSPVHL	4.800
206	HIGRIDLQL	4.800
488	NLKTNQFTHL	4.800
108	FNGLGLLKQL	4.800
668	HTTERPSASL	4.800
189	DLRGNQLQTL	4.800
78	MLHTNDFSGL	4.800
751	DASSLYRNIL	4.800
548	SPGHLDKKEL	4.400
790	YPGAHEELKL	4.40
297	STKTTSILKL	4.400
814	EQTKNEYFEL	4.400
614	LIMMFITIVF	4.200
217	DNKWACNCDL	4.000
9	YSSLLACISL	4.000
409	NLTRLQKLYL	4.000
713	DAKHLQRSLI	4.000
105	IGAFNGLGLL	4.000
431	FLGLHNLEYL	4.000
433	GLHNLEYLYL	4.000
551	HLDKKELKAL	4.000
556	ELKALNSEIL	4.000
374	IIHSLMKSDL	4.000
601	LTDAVPLSVL	4.000
104	EIGAFNGLGL	4.000
393	HLGNNRIEVL	4.000
404	EGSFMNLTRL	4.000

Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
8	HMGAHEELKL	4.400
6	EQHMGAHEEL	4.40
4	LYEQHMGAHE	0.750
9	MGAHEELKLM	0.500
2	ASLYEQHMGA	0.150
3	SLYEQHMGAH	0.012
1	SASLYEQHMG	0.010
5	YEQHMGAHEE	0.002
7	QHMGAHEELK	0.00

Table XV-V4HLA-A24-10mers-
158P1D7

Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 10 amino acdds, and the end position for each peptide is the start position plus nine.

Start	Subsequence	Score
2	IIHSLMKSIL	4.000
1	NIIHSLMKSI	1.800
4	HSLMKSILWS	0.150
6	LMKSILWSKA	0.132
8	KSILWSKASG	0.030
14	KASGRGRRE	0.022
5	SLMKSILWSK	0.021
9	SILWSKASGR	0.015
10	ILWSKASGRG	0.010
3	IHSLMKSILW	0.010
7	MKSILWSKAS	0.010
12	WSKASGRGRR	0.010
11	LWSKASGRGR	0.010
13	SKASGRGRRE	0.001

Table XV-V1-HLA-B7-9mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end posilion for each peptide is the start position plus eight.		
Start	Subsequence	Score
456	NPMPKLKM	240.000

Table XV-V1-HLA-B7-9mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is θ amino acids, and the end position for each peptide is the start positton plus eight.		
Start	Subsequence	Score
458	MPKLKVLYL	80.000
692	SPSFGPKHL	80.000
61	VPPSRPFQL	80.000
517	NPWDCSCDL	80.000
604	AVPLSVLIL	60.000
26	SSRGSCDSL	40.000
207	IGRILDLQL	40.000
410	LTRLQKLYL	40.000
159	LNRLKVLIL	40.000
774	YLRKNIAQL	40.000
625	AAGIVLVL	36.000
336	KVLSPSGLL	30.000
481	GVPLTKVNL	20.000
182	FVPLTHLDL	20.000
462	KVLYLNNNL	20.000
652	SPVHLQYSM	20.000
575	MPTQTSYLM	20.000
752	ASSLYRNIL	18.000
370	LAGNIIHSL	12.000
154	SAFSKLNRL	12.000
713	DAKHLQRSL	12.000
221	ACNCDLLQL	12.000
106	GAFNGLGLL	12.000
249	SPPFFKGSI	8.000
306	LPTKAPGLI	8.000
250	PPFFKGSIL	8.000
360	PPPQNPRKL	8.000
453	GTFNPMPKL	6.000
310	APGLIPYIT	6.000
316	YITKPSTQL	6.000
400	EVLEEGSFM	5.000
429	GMFLGLHNL	4.000
418	LNGNHLTKL	4.000
544	ILCTSPGHL	4.000
826	NLHAEPDYL	4.000
350	RNIESLSDL	4.000
4	WIHLFYSSL	4.000
501	NILDDLDLL	4.000
109	NGLGLLKQL	4.000
607	LSVLILGLL	4.000
71	LINNGLTML	4.000

Table XV-V1-HLA-B7-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peplide is 9 amino acids, and the end position for each peptide is the start position plus elght.		
Start	Subsequence	Score
599	RSLTDAVPL	4.000
739	TTNQSTEFL	4.000
87	LTNAISIHL	4.000
130	DTFHGLENL	4.000
415	KLYLNGNHL	4.000
175	LPPNIFRFV	4.000
105	IGAFNGLGL	4.000
296	MSTKTTSIL	4.000
63	PSRPFQLSL	4.000
590	TTNTADTIL	4.000
767	QQLGITEYL	4.000
133	HGLENLEFL	4.000
500	SNILDDLDL	4.000
305	KLPTKAPGL	4.000
394	LGNNRIEVL	4.000
815	QTKNEYFEL	4.000
466	LNNNLLQVL	4.000
520	DCSCDLVGL	4.000
747	LSFQDASSL	4.000
623	FCAAGIVVL	4.000
574	SMPTQTSYL	4.000
527	GLQQWIQKL	4.000
426	LSKGMFLGL	4.000
329	CPIPCNCKV	4.000
474	LPPHIFSGV	4.000
10	SSLLACISL	4.000
68	QLSLLNNGL	4.000
405	GSFMNLTRL	4.000
758	NILEKEREL	4.000
17	SLHSQTPVL	4.000
225	DLLQLKTWL	4.000
119	INHNSLEIL	4.000
408	MNLTRLQKL	4.000
463	VLYLNNNLL	4.000
537	KNTVTDDIL	4.000
116	QLHINHNSL	4.000
196	QTLPYVGFL	4.000
432	LGLHNLEYL	4.000
258	LSRLKKESI	4.000
593	TADTILRSL	3.600
792	GAHEELKLM	3.000

Table XV-V1.HLA-B7-9mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end postion for each peptide is the start position plus eight.		
Sta	Subsequence	Sco
	SASLYEC	3.0
	AGNIIISSLM	3.000
597	ILRSLTDAV	2.000
608	SVLILGLLI	2.00
807	RPRKVL	2.0
805	YS	2.00
488	VSNILDDL	2.00
364	NPRKLILAG	2.000
339	SPSGLLIHC	2.000
586	TPATTINTA	2.000
278	DPSGSLHLA	2.000
314	IPYITKPST	2.
714	AKHLQRSLL	1.800
361	PPQNPRKLI	1.8
669	TTERPSASL	1.800
234	ENMPPQSII	1.800
383	LVEYFTLEM	1.5

Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptlde is the start position plus eight.		
Start	Subsequence	Sco
1	IIHSLMKSI	0.4
2	IHSLMKSIL	0.4
4	SLMKSILWS	0.060
14	ASGRGRREE	0.0
13	KASGRGRRE	0.030
3	HSLMKSILW	0.020
7	KSILWSKAS	0.020
8	SILWSKASG	0.010
11	WSKASGRGR	0.010
9	ILWSKASGR	0.010
6	MKSILWSKA	0.010
5	LMKSILWSK	0.010
12	SKASGRGRR	0.002
10	LWSKASGRG	0.001

Table XV-V3-HLA-B7-9mers-158P1D7			10 amino acids, and the end position for each peptide is the start position plus nine.		
Each peptide is a portion of SEQ ID NO: 7; each slart position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.			Start	Subsequence	Score
			249	SPPFFKKGSIL	80.000
			548	SPGHLDKKEL	80.000
			497	LPVSNILDDL	80.000
			329	CPIPCNCKV	80.000
Start	Subsequence	Score	790	YPGAHEELKL	80.000
8	MGAHEELKL	4.000	605	VPLSVLILGL	80.000
6	QHMGAHEEL	1.200	359	RPPPQNPRKL	80.000
2	SLYEQHMGA	0.100	189	DLRGNQLQTL	40.000
1	ASLYEQHMG	0.030	647	QMRDNSPVHL	40.000
5	EQHMGAHEE	0.010	566	CPGLVNNPSM	20.000
7	HMGAHEELK	0.010	807	RPRKVLVEQT	20.000
4	YEQHMGAHE	0.001	462	KVLYLNNNLL	20.000
3	LYEQHMGAH	0.000	60	SVPPSRPFQL	20.000
Table XV-V4-HLA-B7-9mers-158P1D7			713	DAKHLQRSLL	18.000
			751	DASSLYRNIL	18.000
			603	DAVPLSVLIL	12.000
			624	CAAGIVLVL	12.000
			428	KGMFLGLHNL	12.000
			825	ANLHAEPDYL	12.000

Table XVI-VI-HLA-B7-10mers. 158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptde is the start position plus nine.		
Start	Subsequence	Score
220	WACNCDLLQL	12.000
803	LMYSRPRKVL	9.000
198	LPYVGFLEHI	8.000
361	PPQNPRKLIL	8.000
176	PPNIFRFVPL	8.000
475	PPHIFSGVPL	8.000
62	PPSRPFQLSL	8.000
179	IFRFVPLTHL	6.000
668	HTTERPSASL	6.000
383	LVEYFTLEML	6.000
608	SVLILGLLIM	5.000
393	HLGNNRIEVL	4.000
589	TTTNTADTIL	4.000
738	KTTNQSTEFL	4.000
78	MLHTNDFSGL	4.000
16	ISLHSQTPVL	4.000
9	YSSLLACISL	4.000
814	EQTKNEYFEL	4.000
407	FMNLTRLQKL	4.000
575	MPTQTSYLMV	4.000
4	WIHLFYSSLL	4.000
417	YLNGNHLTKL	4.000
63.	PSRPFQLSLL	4.000
757	RNILEKEREL	4.000
108	FNGLGLLKQL	4.000
409	NLTRLQKLYL	4.000
556	ELKALNSEIL	4.000
166	ILNDNAIESL	4.000
217	DNKWACNCDL	4.000
364	NPRKLILAGN	4.000
295	RMSTKTTSIL	4.000
517	NPWDCSCDLV	4.000
499	VSNILDDLDL	4.000
465	YLNNNLLQVL	4.000
104	EIGAFNGLGL	4.000
346	HCQERNIESL	4.000
691	RSPSFGPKHL	4.000
433	GLHNLEYLYL	4.000
126	ILKEDTFHGL	4.000
526	VGLQQWIQKL	4.000
488	NLKTNQFTHL	4.000

Table XVI-V1-HLA-B7-10mers-158P1D7			Table XVI-V3-HLA-B7-10mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.			Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score	Start	Subsequence	Score
297	STKTTSILKL	4.000	8	HMGAHEELKL	4.000
115	KQLHINHNSL	4.000	6	EQHMGAHEEL	4.000
560	LNSEILCPGL	4.000	9	MGAHEELKLM	1.000
334	NCKVLSPSGL	4.000	2	ASLYEQHMGA	0.300
156	FSKLNRLKVL	4.000	1	SASLYEQHMG	0.030
195	LQTLPYVGFL	4.000	3	SLYEQHMGAH	0.010
86	GLTNAISIHL	4.000	7	QHMGAHEELK	0.003
592	NTADTILRSL	4.000	5	YEQHMGAHEE	0.001
431	FLGLHNLEYL	4.000	4	LYEQHMGAHE	0.000

Table XVIV4-HLA-B7-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 9 , each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subseque	Score
2	MK	
1	NIIHSLMKS	
6	LMKSILW	0.100
14	K	
5	SLMKSILWSK	
4	HSLMKSILW	0.020
12	WSKASGRC	0.0
8	KSILWSKASG	0.0
10	LWSKASGRG	0.010
9	VSKASG	0.0
7	SILWSKA	0.002
3	IHSLMKSILW	0.002
13	SKASGRG	0.0
11	LW	0.001

Table XVII-V1-HLA-B35-9mers158P1D7
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each paptide is the start position plus eight.

Start	Subsequence	Score
458	MPKLKVLYL	60.000
652	SPVHLQYSM	40.000
575	MPTQTSYLM	40.000
517	NPWDCSCDL	40.000
456	NPMPKLKVL	20.000
692	SPSFGPKHL	20.000
61	VPPSRPFQL	20.000
792	GAHEELKLM	18.000
26	SSRGSCDSL	15.000
426	LSKGMFLGL	15.000
599	RSLTDAVPL	15.000
727	HSPLTGSNM	10.000
288	TSSINDSRM	10.000
713	DAKHLQRSL	9.000
378	LMKSDLVEY	9.000
306	LPTKAPGLI	8.000
249	SPPFFKGSI	8.000
747	LSFQDASSL	7.500
228	QLKTWLENM	6.000
674	SASLYEQHM	6:000
400	EVLEEGSFM	6.000
258	LSRLKKESI	6.000
796	ELKLMETLM	6.000
752	ASSLYRNIL	5.000
607	LSVLILGLL	5.000
10	SSLLACISL	5.000
59	ISVPPSRPF	5.000
296	MSTKTTSIL	5.000
405	GSFMNLTRL	5.000
815	QTKNEYFEL	4.500
350	RNIESLSDL	4.000
329	CPIPCNCKV	4.000
474	LPPHIFSGV	4.000
782	LQPDMEAHY	4.000
65	RPFQLSLLN	4.000
175	LPPNIFRFV	4.000
805	YSRPRKVLV	3.000
774	YLRKNIAQL	3.000
154	SAFSKLNRL	3.000
410	LTRLQKLYL	3.000
207	IGRILDLQL	3.000
370	LAGNIIHSL	3.000
106	GAFNGLGLL	3.000
156	FSKLNRLKV	3.000
501	NILDDLDLL	3.000
423	LTKLSKGMF	3.000
625	AAGIVLVL	3.000
159	LNRLKVLIL	3.000

Table XVII-V1-HLA-B35-9mers158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus elght.		
Start	Subsequence	Score
89	NAISIHLGF	3.000
309	KAPGLIPYI	2.400
609	VLILGLLIM	2.000
339	SPSGLLIHC	2.000
450	ILPGTFNPM	2.000
415	KLYLNGNHL	2.000
133	HGLENLEFL	2.000
360	PPPQNPRKL	2.000
278	DPSGSLHLA	2.000
738	KTTNQSTEF	2.000
422	HLTKLSKGM	2.000
586	TPATTTNTA	2.000
314	IPYITKPST	2.000
310	APGLIPYIT	2.000
336	KVLSPSGLL	2.000
778	NIAQLQPDM	2.000
766	LQQLGITEY	2.000
326	GPYCPIPCN	2.000
409	NLTRLQKLY	2.000
631	LVLTRRRRY	2.000
70	SLLNNGLTM	2.000
265	SICPTPPVY	2.000
572	NPSMPTQTS	2.000
462	KVLYLNNNL	2.000
305	KLPTKAPGL	2.000
192	GNQLQTLPY	2.000
825	ANLHAEPDY	2.000
566	CPGLVNNPS	2.000
684	SPMVHVYRS	2.000
250	PPFFKGSIL	2.000
433	GLHNLEYLY	2.000
486	KVNLKTNQF	2.000
331	IPCNCKVLS	2.000
537	KNTVTDDIL	2.000
431	FLGLHNLEY	2.000
758	NILEKEREL	2.000
22	TPVLSSRGS	2.000
152	EPSAFSKLN	2.000
682	MVSPMVHVY	2.000
371	AGNIIHSLM	2.000
650	DNSPVHLQY	2.000

Table XVII-V1-HLA-E35-9merb•158PiD7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptlde is 8 amino acids, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	
	AEP	
	SNIWDLD	
	VIEPSAF	1.500
	DCSCDLVG	
221	ACNCDLLQL	
561	SEILCPGL	
	PSRPFQLS	
293	MS	1.5
	NQSTEFLS	1.500
675	ASLYEQHMV	
100	IADIEIGAF	1.3

Table XVII-V3-HLA-B35-9mers-158P1D7		
Each peptlde is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus elght.		
Start	Subsequence	Score
8	MGAHEELKL	1.500
2	SLYEQHMGA	0.200
6	QHMGAHEEL	0.100
1	ASLYEQHMG	0.075
5	.EQHMGAHEE	0.010
7	HMGAHEELK	0.010
4	YEQHMGAHE	0.001
3	LYEQHMGAH	0.000

Table XVII-V4-HLA-B35-9mers158P1D7		
Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 9 amino aclds, and the end position for each peptide is the start position plus eight.		
Start	Subsequence	Score
3	HSLMKSILW	2.500
7	KSILWSKAS	1.000
1	IIHSLMKSI	0.400
11	WSKASGRGR	0.150

2	IHSLMKSIL	0.100
4	SLMKSILWS	0.100
13	KASGRGRRE	0.060
14	ASGRGRREE	0.050
5	LMKSILWSK	0.030
6	MKSILWSKA	0.010
9	ILWSKASGR	0.010
8	SLLWSKASG	0.010
10	LWSKASGRG	0.001
12	SKASGRGRR	0.001

Table XMII-V1-HLA-B35-10mers-158P1D7		
Each peptide is a porion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Sub	Score
	NP	
647	QM	6.000
	AlkEILPGTF	6.000
535	LSKNTVTDD	6.000
25	LSSRGSCDSL	5.000
9	YSSLLACIS	5.000
173	ES	5.000
16	ISLHSQT	5.000
380	KSDLVEYFTL	4.500
220	W	4.500
435	HNLEYLY	4.000
236	MPPQSIIGDV	4.000
382	DLVE	4.000
35	CNCEEKD	4.
575	MPTQTSYLMV	4.000
777	KN	4.000
191	RGNQLQT	4.000
65	RP	4.
811	VLVEO	4.
46	INCEAKGIKM	4.000
556	ELKALNSEIL	3.000
99	NIA	3.
378	LMKSDLVEYF	3.000
751	DASSLYRNIL	3.000
423	LTKLSK	3.000
488	NLKTNQFTHL	3.00
377	SLMKSDLVEY	3.000
33	NCKVLSP	3.
603	DAVPLSVLIL	3.000
624	CAAGIVVLVL	3.000
217	DNKWACNC	3.000
297	STKTTSILKL	3.000
189	DLRGNQLQTL	3.000
170	NAIESLPPNI	2.400
475	PPHIFSGVPL	2000
607	LSVLILGLLLI	2.0
346	HCQERNIESL	2.000
295	RMSTKTTSIL	2000
166	ILNDNAIESL	2.000
630	VLVLHRRRRY	2.000
765	ELQQLGITEY	2.000

Table XVIII-V1-HLA-B35-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptde is 10 amino acids, and the end position for each peplide is the start position plus nine.		
St	Sub	Score
115	KO	2.000
61	VP	
278	DP	2.000
432	LGLHNLE	2.
757	RN	2.000
227	LQLKTWLE	2.
91	ISIHLGF	2.000
738	KTTNQS	2.000
176	PPNIFRFVPL	2.
78	QLQPDMEAH	2.000
59	NTADT	2000
158	KLNRLKMLIL	20
84	FSGLTNAIS	2.000
668	HTTERPSAS	2.00
248	NSPPFFKGS	2.0
287	AT	2000
428	KGMFLGLH	2.000
681	HMVS	2.000
22	TPVLSSRGSC	2.000
449	EllPGTF	2.000
425	KLSKGMFLGL	2.000
408	MNLTRLQK	2.000
560	LNSEILCPGL	2.00
361	PPQNPRKLIL	2.000
62	PPSRPFQLSL	2.000
574	SMPTQTSY	2.00
482	VPLTKVNLKT	2.000
324	LPGPYCPIPC	2.0
462	KVLYLNNNLL	2.000
608	SVIILGLLIM	2.000

Table XVIII-V3-HLA-B35-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
9	MGAHEELKLM	3.000
8	HMGAHEELKL	1.500

Table XVII-V3-HLA-B35-10mers- 158P1D7		
Each peptide Is a portion of SEQ ID NO: 7 ; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Start	Subsequence	Score
6.	EQHMGAHEEL	1.000
2	ASLYEQHMGA	0.500
1	SASLYEQHMG	0.045
3	SLYEQHMGAH	0.020
5	YEQHMGAHEE	0.001
7	QHMGAHEELK	0.001
4	LYEQHMGAHE	0.000

| Table XVIII-V4-HLA-B35-10mers- | |
| :---: | :---: | :---: |
| 158P1D7 | |$|$

Table V - 158P1D7 v.6-7
HLA A1-9-mers
Each peptide is a portion of
SEQ ID NO: 13; each start
poslion is specified, the
length of peptide is 9 amino
acids, and the end position
for each peptide is the start
position plus eight.
Pos Subsequence

V V - 158P1D7 v.6-HLAA1-9-mers		
Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peplide is 9 amino acds, and the end position for each peptide is the start positton plus eight.		
Pos	Subsequence	
	LMNPSFG	
	HSLM	
	SLM	
15		

Table VI- 158P1D7 v.6-
HLAA1-10-mers

Each peptide is a portion of SEQ ID NO: 13; each slart position is specified, the length of peptide is 10 amino acids, and the end postion for each peptlde is the start position plus nine.

Pos		
	IIHSIMNP	
	SLMNp	0.20
	LMNPSFGP	
	NIIH	
9	N-	
2	ONT	
11	PS	
15	LeE	
	IHSLmNPSF	
12	SF	

Table VII - 158P1D7 v. 6 -HLA A0201-9-mers		
Each pepitde is a portion of SEQ ID NO: 13; each start position is specified, the length of pepidid is 9 amino acids, and the end position for each peplide is the start position plus eight.		
Pos		
	SLMNPSFG	
	NPSFGPKHL	
	IIHSLMNPS	
	HSLM	
	LMNPSFG	
	MNPSFGPKH	
12	FGPKHLEE	
	VIIHSLM	
5	LMNPSF	0.0
15	KHLEE	0.00
4	IHSLMNP	
11	SFGPKhL	
10	PSFGFKHLE	0.00
13	HLEEEE	0.000
14	PKHLEEEEE	

Table VIII - 158P1D7 v.6HLA A0201-10-mers
Each peptide is a portion of SEQID NO: 13; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	Subsequence	Score
8	LMNPsFGPKH	0.348
9	MNPSfGPKHL	0.237
3	NIIHSLMNPS	0.024
4	IIHSIMNPSF	0.017
7	SLMNpSFGPK	0.014
1	AGNIIHSLMN	0.000
5	IHSLmNPSFG	0.000
2	GNIISSLMNP	0.000
13	FGPKhLEEEE	0.000
10	NPSFgPKHLE	0.000
6	HSLMnPSFGP	0.000
12	SFGPkHLEEE	0.000
11	PSFGpKHLEE	0.000
14	GPKHIEEEEE	0.000
15	PKHLeEEEER	0.000

Table IX-158P1D7 v.6HLA A3-9-mers		
Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
os	Subsequence	Score
7	LMNPS	
6	LMNPSFG	0.13
5	KHLEEEEER	0.027
2	NIIHSLMN	0.00
3	HLMNPS	. 00
9	NPSFGPKHL	0.003
4	IHSLMNPSF	0.00
8	MNPSFGPKH	
13	GPKHLEEEE	0.001
1	GNIIHSLM	0.000
5	HSLMNPSF	0.000
10	PSFGPKHLE	0.000
11	SFGPKHLEE	0.000
12	FGPKHLEEE	0.000
14	PKHLEEEEE	0.00

Table X-158P107 v. 6 -
HLA A3-10-mers

Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	Subsequence	Score
7	LMNPSFGPK	27.
6	SLMNPSFGP	0.135
15	KHLEEEEER	0.0
2	NIIHSLMNP	0.0
3	IIHSLMNPS	0.00
9	NPSFGPKHL	0.003
4	HSLMNPSF	0.002
8	MNPSFGPKH	0.001
13	GPKHLEEEE	0.001
1	GNIIHSLMN	0.000
5	HSLMNPSFG	0.000
10	PSFGPKHLE	0.000
11	SFGPKHLEE	0.000
12	FGPKHLEEE	0.00
14	PKHLEEEEE	0.000

Table XI-158P1D7 v. 6 -HLAA1101-9-mers		
Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptde is 9 amino acids, and the end position for each peptide is the start postion plus eight.		
Pos	Subsequence	
10	PSFGPKHLE	0.0
14	PKHLEEEEE	

Table XII - 158P1D7 v.6HLA A1101-10-mers		
Each pepidide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	Subsequence	Score
7	SLMNPSFGPK	0.8
4	IIHSIMNPSF	0.0
8	LMNPsFGPKH	0.004
3	NIIHSLMNPS	0.0
14	GPKHIEEEEE	0.001
15	PKHLEEEEER	0.000
2	GNIIHSLMNP	0.000
9	MNPSTGPKHL	. 00
10	NPSFgPKHLE	0.000
12	SFGPKHLEEE	0.0
6	HSLMnPSFGP	0.00
1	AGNIIHSLMN	0.000
13	FGPKhLEEEE	0.000
5	IHSLMNPSFG	0.000
11	PSFGpKHLEE	0.00

Table XIII - 158P1D7 v. 6 HLA A24-9-mers		
Each peptide is a portion of SEQ ID NO: 13; өach start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	Subsequence	
9	NPSFGPKHL	4.0

le XIII - 158P1D7 v. 6 HLA A24-9-mers		
Each peptide is a portion o SEQID NO: 13; each'start position is specififad, the length of peptide is 9 amino aclds, and the end position for each peptide is the start position plus eight.		
os	Subsequence	
	L	
12		
	MNPSFGPR	
5		
	PSFGPKH	
	PKLEEE	

Table XIV-158P1D7 v.6HLA A24-10-mers		
Each peptida is a portion of SEQ ID NO: 13; each start postlion is specififed, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos		
	MNPS	
龶		
	Lips	
	GNIISL	
	HSLM	
	GPKH	
	NPSFg	

Table XIV - 158P1D7 v.6HLA A24-10-mers		
Each peptide is a portion of SEQID NO: 13; each start position is specified, the length of peptlde is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	Subsequence	
5		
15	PKHLEEEEER	

Table XV - 158P1D7 v.8HLA B7-9-mers			1	AGNILHSLMN	0.060
			7	SLMNDSFGPK	0.030
Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 9 amino actds, and the end position for each peptide is the start position plus elght.			4	IIHSIMNPSF	0.020
			3	NIIHSLMNPS	0.020
			6	HSLMnPSFGP	0.015
			13	FGPKhLEEEE	0.010
			8	LMNPSFGPKH	0.010
			2	GNIISSLMNP	0.010
Pos	Subsequence Score			SFGPkHLEEE	0.001
9	NPSFGPKHL	80.000	11	PSFGpKHLEE	0.001
13	GPKHLEEEE	0.200	5	IHSLmNPSFG	0.001
6	SLMNPSFGP	0.045	15	PKHLeEEEER	0.000
	IIHSLMNPS	0.020			

$\begin{gathered} \text { Table XVII - 158P1D7 v.6- } \\ \text { HLA B3501-9-mers } \end{gathered}$		
Each pepidde Is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 9 amino acids, and the end position for each pepitde is the start position plus eight.		
Pos	Subsequence	Sco
9	NPSFGPKHL	20.000
13	GPKHLEEEE	0.600
1	GNIIHSLMN	0.100
4	IHSLMNPSF	0.100
3	IIHSLMNPS	0.100
5	HSLMNPSFG	0.050
7	LMNPSFGPK	0.010
8	MNPSFGPKH	0.01
6	SLMNPSFGP	0.010
2	NIIHSLMNP	0.010
12	FGPKHLEEE	0.010
15	KHLEEEEER	0.006

Table XVII - 158P107 v.6HLA B3501-9-mers		
Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 9 amino aclds, and the end position for each peptide is the slart position plus eight.		
Pos	Subsequence	Sco
10	PSFGPKHLE	0.0
11	SFGPKHLE	0.00
14	PKHLEEEEE	0.0

$\begin{gathered} \text { Table XVIII - 158P1D7 v. } 6 \text { - } \\ \text { HLA B3501-10-mers } \end{gathered}$		
Each peptide Is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peplide is the start position plus nine.		
Pos	Subsequence	Sco
9	MNPSIGPKHL	1.000
4	IIHSIMNPSF	1.000
14	GPKHIEEEEE	0.900
10	NPSFgPKHLE	0.2
1	AGNIIHSLMN	0.100
3	NIIHsLMNPS	0.100
6	HSLMnPSFGP	0.050
2	GNIIhSLIMNP	0.010
8	LMNPsFGPKH	0.010
13	FGPKhLEEEE	0.010
7	SLMNpSFGPK	0.010
11	PSFGpKHLEE	0.005
12	SFGPkHLEEE	0.001
5	IHSLINNPSFG	0.001
15	PKHLeEEEER	0.000

Name	$\begin{aligned} & \text { avrg. \% } \\ & \text { pdentity } \end{aligned}$	Description	Potentlai Function
2f-C2H2	34\%	Zinc finger, ${ }^{\text {C2 }}$ H2 type	Nucleic acid-binding protein functions as transcription factor, nuclear location probable
cytochrome b N	68\%	$\begin{aligned} & \text { Cytochrome b(N- } \\ & \text { terminal)/b6/petB } \end{aligned}$	membrane bound oxidase, generate superoxide
-	19\%	immunoglobulin domain	domains are one hundred amino aclds long and include a conserved intradomaln disulfide bond.
-	18\%	WD domaln, G-beta repeat	tandem repeats of about 40 residues, each containing a Trp-Asp motif. Function in signal transduction and protein interaction
PDZ	23\%	PDZ domain	may function in targeting stgnaling molecules to sub-membranous sites
LRR	28\%	Leucine Rich Repeat	short sequence motifs involved in protein-protein interactions
pkinase	23\%	Protein kinase domaln	conserved calaytlc core common to both serine/threonine and tyrosine protein kinases containing an ATP binding site and a catalytic site
PH	16\%	PH domain	pleckstrin homology involved in intracellular signaling or as constituents of the cytoskeleton
EGF	34\%	EGF-like domain	30-40 amino-acid long found in the extracellular domain of membrane-bound proteins or in secreted proleins
rod	49\%	Reverse transcriptase (RNAdependent DNA polymerase)	
ank	25\%	Ank repeat	Cytoplasmic protein, associates Integral membrane protelns to the cytoskeleton
oxidored a1	32\%	NADH- Ubiquinone/plastoquinone (complex I), various chains	membrane assoclated. Involved in proton franslocation across the membrane
efhand	24\%	EF hand	calclum-binding domain, consists of a12 residue loop flanked on both sides by a 12 residue alphahelical domain
\square	79\%	Retroviral aspartyl protease	Aspartyl or acld proteases, centered on a catalytic aspartyl residue

Collagen	42\%	Coliagen triple helix repeat (20 copies)	lextracellular structural proteins involved in formation of connective tissue. The sequence consists of the G-X-Y and the polypeptide chains forms a triple helix.
fin	20\%	Fibronectin type III domain	Located in the extracellular ligand-binding region of receptors and is about 200 amino acid residues long with two pairs of cysteines involved in disulfide bonds
7 m 1	19\%	7 transmembrane receptor (rhodopsin family)	seven hydrophobic transmembrane regions, with the N -terminus located extracellularly while the C-leminus is cyloplasmic. Signal through \mathcal{G} proteins

Primary tumor (T)
The suffix (m) should be added to the appropriate T category to indicate multiple tumors. The suffix (is) may be added to any T to indicate the presence of associated carcinoma in situ.
TX Primary tumor cannot be assessed
TO No evidence of primary tumor
Ta Noninvasive papillary carcinoma
Tis Carcinoma in situr: "flat tumor"
T1 Tumor invades sub-epithellal connective tissue
T2 Tumor invades supericial muscle (inner half)
T3 Tumor invades deep muscle or perivesical fat
T3a Tumor invades deep muscle (outer half)
T3b Tumor invades perivesical fat
l. microscopically
ii. macroscopically (extravesical mass)

T4 Tumor invades any of the following: prostate, uterus, vagina, pelvic wall, or abdominal wall
T4a Tumor invades the proslate, uterus, vagina
T4b Tumor invades the pelvic wall or abdominal wall or both
Regional lymph nodes (N)
Regional lymph nodes are those within the true pelvis: all others are dislant nodes
NX Regional lymph nodes cannot be assessed
NO \quad No reglonal lymph node metastasis
N1 Metastasis in a single lymph node, 2 cm or less in greatest dimension
N2 Metastasis in a single lymph node, more than 2 cm but not more than 5 cm in greatest dimension, or multiple lymph nodes, none more than 5 cm in greatest dimension
N3 Metastasis in a lymph node more than 5 cm in greatest dimension
Distant metastasis (M)
MX Presence of distant metastasis cannot be assessed
MO No dislant metastasis
M1 Distanl metastasis

Stage grouping	0	Ta	NO	M0
Stage	Oa	Tis	NO	M0
	O	T1	NO	M0
	II	T2	NO	MO
		T3a	NO	M0
	III	T3b	NO	MO
		T4a	NO	MO
	IV	T4b	NO	MO
		Any ${ }^{\text {T }}$	N1-3	MO
		Any T	Any N	M1

Table XXII-V1-HLA-A1-9mers-158P1D7		
Each peptide is a portion of SEQID NO: 3 ; each start position is speciiied, the length of peptide is 9 amino acdds, and the end position for each peptide is the start position plus eight.		
Pos	123456789	
436	NLEYLYLEY	32
650	DNSPVHLQY	27
308	TKAPGLIPY	25
812	LVEQTKNEY	25
431	FLGLHNLEY	24
601	LTDAVPLSV	24
192	GNQLQTLPY	23
573	PSMPTQTSY	23
265	SICPTPPVY	22
797	LKLMETLMY	22
1	MKLWIHLFY	21
522	SCDLVGLQQ	21
670	TERPSASLY	21
682	MVSPMVHVY	21
711	GSDAKHLQR	20
729	PLTGSNMKY	20
828	HAEPDYLEV	20
320	PSTQLPGPY	19
441	YLEYNAIKE	19
502	ILDOLDLL	19
551	HLDKKELKA	19
748	SFODASSLY	19
223	NCDLLQLKT	18
409	NLTRLQKLY	18
433	GLHNLEYLY	18
546	CTSPGHLDK	18
653	PVHLQYSMY	18
743	STEFLSFQD	18
763	ERELQQLG	18
793	AHEELKLME	18
817	KNEYFELKA	18
39	EKDGTMLIN	17
47	NCEAKGIKM	17
81	TNDFSGLTN	17
142	QADNNFITV	17
276	HEDPSGSLH	17
388	TLEMLHLGN	17
457	PMPKLKVLY	17
540	VTDDILCTS	17
669	TTERPSASL	17
749	FQDASSLYR	17
766	LQQLGITEY	17
771	ITEYLRKNI	17

Table XXII-V1-HLA-A19 mers-158P1D7		
$\begin{aligned} & \text { Each } \\ & \text { of SE } \\ & \text { start } \\ & \text { the le } \\ & \text { aminc } \\ & \text { positic } \\ & \text { is the } \\ & \text { aight. } \end{aligned}$	peptide is a p EQID NO: 3; e position is spe englh of peptid no acids, and th tion for each pe slart position	
Pos	123456789	
56	VSEISVPPS	16
380	KSDLVEYFT	16
383	LVEYFTLEM	16
503	LDDLDLLTQ	16
554	KKELKALNS	16
631	LVLHRRRRY	16
825	ANLHAEPDY	16
150	VIEPSAFSK	15
337	VLSPSGLLI	15
378	LMKSDLVEY	15
401	VLEEGSFMN	15
782	LQPDMEAHY	15

Table XXII-V3.HLA-A1-9mers-158P1D7		
Each peptide is a portion of SEQID NO: 7 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	score
3	LYEQHMGAH	10
8	MGAHEELKL	8
1	ASLYEQHMG	6
2	SLYEQHMGA	5

Table XXII-V4.HLA-A1. 9mers-158P1D7
Each peptide is a portion of SEQID NO: 9 ; each start position is speclfied, the length of peptide is 8 amino acids, and the end position for each peptide is the start position plus elght.

Pos	123456789	score
3	HSLMKSILW	10
4	SLMKSILWS	9
14	ASGRGRREE	8

Table XXII-V4-HLA-A1- 9mers-158P1D7		
11	WSKASGRGR	5
12	SKASGRGRR	5
7	KSILWSKAS	4

Table XXIII-V1-HLA-A2-9mers-158P1D7		
Each peptids is a portion of SEQ ID NO: 3; each start position is specified, the length of pepida is 9 amino acids, and the end position for each peptide is the start position plus elght.		
Pos	123456789	score
71	LLNNGLTML	29
614	LLIMFITIV	29
465	YLNNNLLQV	28
774	YLRKNIAQL	28
429	GMFLGLHNL	27
527	GLQQWIQKL	27
597	ILRSLTDAV	26
17	SLHSQTPVL	25
501	NILDDLDLL	25
611	ILGLLIMFI	25
758	NILEKEREL	25
305	KLPTKAPGL	24
606	PLSVLILGL	24
609	VLILG凹M	24
624	CAAGIVLV	24
68	QLSLINNGL	23
116	QUHINHNSL	23
154	SAFSKLNRL	23
158	KLNRLKVL	23
164	VLILNDNAI	23
196	QTLPYVGFL	23
370	LAGNIIHSL	23
415	KLYLNGNHL	23
439	YLYLEYNAI	23
463	VLYLNNNLL	23
613	GLLIMFITI	23
803	LMYSRPRKV	23
106	GAFNGLGLL	22
225	DLLQLKTWL	22
312	GLIPYITKP	22
337	VLSPSGLLI	22

Table XXIII-V1-HLA-A2-9mers-158P1D7		
367	KLILAGNII	22
393	HLGNNRIEV	22
470	LLQVLPPHI	22
544	ILCTSPGHL	22
564	ILCPGLVNN	22
574	SMPTQTSYL	22
4	WHLFYSSL	21
70	SLLNNGLTM	21
92	SIHLGFNNI	21
187	HLDLRGNQL	21
295	RMSTKTTSI	21
309	KAPGLIPYI	21
323	QLPGPYCPI	21
391	MLHLGNNRI	21
446	AIKEILPGT	21
581	YLMVTTPAT	21
604	AVPLSVLIL	21
623	FCAAGIVL	21
625	AAGIWLVL	21
681	HMVSPMVHV	21
118	HINHNSLEI	20
130	DTFHGLENL	20
140	FLQADNNFI	20
203	FLEHIGRIL	20
240	SIIGDVVCN	20
316	YITKPSTQL	20
369	ILAGNIIHS	20
453	GTFNPMPKL	20
477	HIFSGVPLT	20
524	DLVGLQQWI	20
593	TADTILRSL	20
754	SLYRNILEK	20
826	NLHAEPDYL	20
45	LINCEAKGI	19
171	AIESLPPNI	19
178	NIFRFVPLT	19
302	SILKLPTKA	19
450	ILPGTFNPM	19
473	VLPPHIFSG	19
502	2 ILDDLDLLT	19
601	LTDAVPLSV	19
610	L LILGLLIMF	19
11	SLLACISLH	18
103	3 IEIGAFNGL	18

Table XXIII-V1-HLA-A2-9mers-158P1D7		
64	SRPFQLSLL	15
105	IGAFNGLGL	15
126	ILKEDTFHG	15
147	FITVIEPSA	15
161	RLKVLILND	15
209	RILDLQLED	15
226	LLQLKTWLE	15
241	IIGDVVCNS	15
253	FKGSILSRL	15
342	GLLIHCQER	15
347	CQERNIESL	15
354	SLSDLRPPP	15
384	VEYFTLEML	15
426	LSKGMFLGL	15
455	FNPMPKLKV	15
458	MPKLKVLYL	15
495	THLPVSNIL	15
498	PVSNILDDL	15
500	SNILDDLDL	15
504	DDLDLITOI	15
507	DLLTOIDLE	15
552	LDKKELKAL	15
590	TINTADTIL	15
627	GIWLVLR	15
659	SMYGHKTTH	15
676	SLYEQHMVS	15
713	DAKHLQRSL	15
747	LSFQDASSL	15
815	QTKNEYFEL	15
5	IHLFYSSLL	14
16	ISLHSQTPV	14
33	SLCNCEEKD	14
83	DFSGLTNAI	14
85	SGLTNAISI	14
86	GLTNAISIH	14
90	AISIHLGFN	14
111	LGLLKQLH	14
127	LKEDTFHGL	14
151	IEPSAFSKL	14
165	LILNDNAIE	14
207	IGRILDLQ	14
233	LENMPPQSI	14
257	ILSRLKKES	14
282	SLHLAATSS	14

Table XXIII-V1.HLA-A2-9mers-158P1D7		
303	ILKLPTKAP	14
330	PIPCNCKV	14
343	LLIHCQERN	14
368	LILAGNIIH	14
377	SLMKSDLVE	14
383	LVEYFTLEM	14
387	FTLEMLHLG	14
401	VLEEGSFMN	14
422	HLTKLSKGM	14
431	FLGLHNLEY	14
434	LHNLEYLYL	14
506	LDLITOID	14
508	LLTQIDLED	14
532	IQKLSKNTV	14
557	LKALNSEIL	4
562	SEILCPGLV	14
599	RSLTDAVPL	14
675	ASLYEQHMV	14
721	LLEQENHSP	14
722	LEQENHSPL	14
746	FLSFQDASS	14
752	ASSLYRNIL	14
789	HYPGAHEEL	14
792	GAHEELKLM	14
811	VLVEQTKNE	14

Table XXIII-3-HLAAAR	
9mers-158P1DA-	

Table XXIII-4-HLA-A2		
Each peptide is a portion of SEQ ID NO: 9 ; each start position is specified, the length of peptide is 9 amino acids, and the end postlion for each peptide is the start position plus eight.		
Pos	123456789	
	IHSLMKS	
	SLMKSILW	
	SILWSKA	16
	LMKSILWS	15
	ILWSKASGR	15
	IHSLMKSIL	

Table XXIV.V1-HLA-A0203-9mers-158P1D7		
Pos	123456789	score
NoResultsFound.		

Tabla XXIV-V3-HLA-	
A0203-9mers-158P1D7	
Pos	123456789
score	
NoResultsFound.	

Table XXIV-V4-HLA- A0203-9mers-158P1D7		
Pos	123456789	score
NoResultsFound.		

Table XXV-V1-HLA-A3-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus elght.		
	123456	
	SLY	
	YLNGNH	
	V	
	VL	
	SL	

Table XXV-V1-HLA-A3. 9mers-158P1D7		
478 IF	IFSGVPLTK	23
682 M	MVSPMVHV	23
11	SLLACISLH	22
486 K	KVNLKTNQF	22
107 A	AFNGLGLLK	21
189 D	DLRGNQLQT	21
291 IN	INDSRMSTK	21
415 K	KLYLNGNHL	21
534 K	KLSKNTVTD	21
564	ILCPGLVNN	21
631 L	LVLHRRRRY	21
653 P	PVHLQYSMY	21
676	SLYEQHMVS	21
688	HVYRSPSFG	21
802	TLMYSRPRK	21
158	KLNRLKVLI	20
367	KLILAGNII	20
431	FLGLHNLEY	20
563	EILCPGLVN	20
608	SVLILGLII	20
781	QLQPDMEAH	20
809	RKVLVEQTK	20
187	HLDLRGNQL	19
301	TSILKLPTK	19
337	VLSPSGLLI	19
400	EVLEEGSFM	19
409	NLTRLQKLY	19
436	NLEYLYLEY	19
488	NLKTNQFTH	19
609	VLILGLLIM	19
633	LHRRRRYKK	19
729	PLTGSNMKY	19
774	YLRKNIAQL	19
24	VLSSRGSCD	18
86	GLTNAISIH	18
161	1 RLKVLILND	18
174	4 SLPPNIFRF	18
179	IFRFVPLTH	18
209	RILDLQLED	18
240	S SIIGDVVCN	18
255	5 GSILSRLKK	18
282	2 SLHLAATSS	18
368	8 LILAGNIIH	18
372	2 GNIIHSLMK	18

Table XXV-V1-HLA-A3-9mers-158P1D7		
377	SLMKSDLVE	18
407 FI	FMNLTRLQK	18
529 Q	QQWIQKLSK	18
546 C	CTSPGHLDK	18
583 M	MVTTPATTT	18
628	IVLVHRR	18
634 H	HRRRRYKKK	18
670	TERPSASLY	18
44	MLINCEAKG	17
149	TVIEPSAFS	17
194	QLQTLPYG	17
305	KLPTKAPGL	17
311	PGLIPYITK	17
312	GLIPYITKP	17
342	G山HCQER	17
357	DLRPPPQNP	17
359	RPPPQNPRK	17
412	RLQKLYLNG	17
433	GLHNLEYLY	17
460	KLKVLYLNN	17
465	YLNNNLLQV	17
469	NLLQVLPPH	17
472	QVLPPHIFS	17
604	AVPLSVLIL	17
610	LILGLLIMF	17
613	GLLIMFITI	17
765	ELQQLGITE	17
768	QLGITEYLR	17
23	PVLSSRGSC	16
163	KVLILNDNA	16
166	ILNDNAIES	16
239	QSIIGDWC	16
245	WVCNSPPFF	16
284	HLAATSSIN	16
336	KVLSPSGLL	16
420	GNHLTKLSK	16
439	9 YLYLEYNAI	16
440	O LYLEYNAIK	16
502	2 ILDDLDLLT	16
556	6 ELKALNSEI	16
559	9 ALNSEILCP	16
568	8 GLVNNPSMP	16
597	7 ILRSLTDAV	16
615	5 LIMFITIVF	16

Table XXV-V1-HLA-A3-9mers-158P1D7		
621 IV	IVFCAAGIV	16
629 V	WLVLHRRR	16
630 VL	VLVLHRRRR	16
650 D	DNSPVHLQY	16
659 S	SMYGHKTTH	16
716 H	HLQRSLLEQ	16
728 S	SPLTGSNMK	16
769	LGITEYLRK	16
810 K	KVLVEQTKN	16
812 L	LVEQTKNEY	16
17 S	SLHSQTPV	15
55	MVSEISVPP	15
60	SVPPSRPFQ	15
71	LLNNGLTML	15
110	GLGLLKQLH	15
113	LLKQLHINH	15
116	QLHINHNSL	15
125	EILKEDTFH	15
164	VLILNDNAI	15
232	WLENMPPQS	15
257	ILSRLKKES	15
260	RLKKESICP	15
271	PVYEEHEDP	15
303	ILKLPTKAP	15
369	ILAGNIIHS	15
425	KLSKGMFLG	15
449	EILPGTFNP	15
462	KVLYLNNNL	15
463	VLYLNNNLL	15
473	VLPPHIFSG	15
481	GVPLTKVNL	15
526	6 VGLQQWIQK	15
626	AGMVVLH	15
627	7 GIWLVLHR	15
656	6 LQYSMYGHK	15
707	7 NEKEGSDAK	15
746	6 FLSFQDASS	15
788	8 AHYPGAHEE	15
798	8 KLMETLMYS	15

Table XXV-V3.HLA.A3-9mers-158P1D7		
Each peptide is a portion of SEQID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	score
2	SLYEQHMGA	17
7	HMGAHEELK	12

Table XXV-V4-HLA-A3-9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus elght.

Pos	123456789	score
9	ILWSKASGR	23
8	SILWSKASG	16
4	SLMKSILWS	15
5	LMKSILWSK	13
1	IIHSLMKSI	12

Table XXVI-V1-HLA-A26-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of papide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	score
130	DTFHGLENL	32
244	DVVCNSPPF	31
205	EHIGRILDL.	27
682	MVSPMVHVY	25
819	EYFELKANL	25
400	EVLEEGSFM	24
498	PVSNILDDL	24
604	AVPLSVLL	23
761	EKERELQQL	23
148	ITVIEPSAF	22

Table XXVI-V1-HLA-A26-9mers-158P1D7		
196	QTLPYVGFL	22
595 D	DTILRSLTD	22
653 PV	PVHLQYSMY	22
275 Et	EHEDPSGSL	21
453 G	GTFNPMPKL	21
650 DN	DNSPVHLQY	21
277 E	EDPSGSLHL	20
336 K	KVLSPSGLL	20
443	EYNAIKEIL	20
486 K	KVNLKTNQF	20
520 D	DCSCDLVGL	20
631 L	LVLLRRRRY	20
795	EELKLMETL	20
812 L	LVEQTKNEY	20
87	LTNAISIHL	19
154 S	SAFSKLNRL	19
182	FVPLTHLDL	19
350	RNIESLSDL	19
462	KVLYLNNNL	19
607	LSVLILGL	19
610	LILGUMF	19
139	EFLQADNNF	18
245	WCNSPPFF	18
423	LTKLSKGMF	18
481	GVPLTKVNL	18
539	TVTDDILCT	18
628	IWLVLHRR	18
669	TTERPSASL	18
713	DAKHLQRSL	18
801	ETLMYSRPR	18
106	GAFNGLGLL	17
136	ENLEFLQAD	17
149	TVIEPSAFS	17
225	DLLQLKTWL	17
308	TKAPGLIPY	17
405	GSFMNLTRL	17
410	LTRLQKLYL	17
501	1 NILDDLDLL	17
590	TTNTADTIL	17
738	KTTNQSTEF	17
739	9 TTNQSTEFL	17
76	LTMLHTNDF	16
89	NAISIHLGF	16
180	0 FRFVPLTHL	16

Table 9XVIV-V-158P1-HLA-A26-		
253	FKGSILSRL	16
265	SICPTPPVY	16
298	TKTTSILKL	16
299	KTTSILKLP	16
429	GMFLGLHNL	16
540	VTDDILCTS	16
563	EILCPGLVN	16
593	TADTILRSL	16
815	QTKNEYFEL	16
822	ELKANLHAE	16
58	EISVPPSRP	15
104	EIGAFNGLG	15
133	HGLENLEFL	15
174	SLPPNIFRF	15
250	PPFFKGSIL	15
353	ESLSDLRPP	15
370	LAGNIIHSL	15
378	LMKSDLVEY	15
385	EYFTLEMLH	15
449	EILPGTFNP	15
504	DDLDLLTQ	15
615	LIMFITIVF	15
621	IVFCAAGIV	15
705	ERNEKEGSD	15
725	ENHSPLTGS	15
758	NILEKEREL	15
832	DYLEVLEQQ	15

Table XXVI-V3-HLA-A26- 9mers-158P1D7	
Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight	
Pos	123456789
5	score
8	MGHMGAHEE
6	10

Table XXVI-V4-HLA-A26-9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

Pos	123456789	score
2	IHSLMKSIL	9
5	LMKSILWSK	8
1	IIHSLMKSI	7
4	SLMKSILWS	6
8	SILWSKASG	6
7	KSILWSKAS	5

Table XXVIIV1.-HLA-
B0702-9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3; each slart position is specified, the length of peptide is 9 amino acids, and the end position for each peplide is the start position plus eight.

Pos	123456789	score
456	NPMPKLKVL	23
458	MPKLKVLYL	23
692	SPSFGPKHL	22
250	PPFFKGSIL	21
61	VPPSRPFQL	20
278	DPSGSLHLA	20
360	PPPQNPRKL	20
361	PPQNPRKL	20
517	NPWWDCSCDL	20
310	APGLIPYIT	19
175	LPPNIFRFV	18
314	IPYITKPST	18
586	TPATTNTA	18
306	LPTKAPGLI	17
329	CPIPCNCKV	17
474	LPPHIFSGV	17
625	AAGIWLVL	17
804	MYSRPRKVL	17
62	PPSRPFQLS	16
237	PPQSIIGDV	16
249	SPPFFKGSI	16
364	NPRKLILAG	16
572	NPSMPTQTS	16
575	MPTQTSYLM	16
652	SPVHLQYSM	16

Table XXVII-V1-HLA- B0702-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptde is 9 amino acids, and the end position for each peplide is the slat position plus elght.		
Pos	123456789	Ore
807	RPRKVLVEQ	16
63	PSRPFQLSL	15
105	IGAFNGLGL	15
159	LNRLKVLIL	15
205	EHIGRILDL	
207	IGRILDLQL	15
267	CPTPPVYEE	15
316	YITKPSTQL	15
426	LSKGMFLGL	15
602	TDAVPLSVL	15
604	AVPLSVLIL	15
623	FCAAGIVVL	15
752	ASSLYRNIL	15
26	SSRGSCDSL	14
103	IEIGAFNGL	14
152	EPSAFSKL	14
177	PNIFRFVPL	14
180	FRFVPLTHL	14
221	ACNCDLLQL	14
275	EHEDPSGSL	14
19	KPSTQLPGP	14
326	GPYCPIPCN	14
36	KVLSPSGLL	14
339	SPSGLLIHC	14
410	LTRLQKLYL	14
453	GTFNPMPKL	14
476	PHIFSGVPL	14
520	DCSCDLVGL	14
599	RSLTDAVPL	14
606	PLSVLILGL	14
669	TTERPSASL	14
672	RPSASLYEQ	14
774	YLRKNIAQL	14
830	EPDYLEVLE	14
17	SLHSQTPVL	13
37	CEEKDGTML	13
65	RPFQLSLIN	13
196	QTLPYVGFL	13
198	LPYVGFLEH	13
264	ESICPTPPV	13
277	EDPSGSLLHL	13
324	LPGPYCPIP	13
331	IPCNCKVLS	13
359	RPPPQNPRK	13

Table XXVII-V1.HLA-
B0702-9mers-158P1D7

Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the
length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

Pos	123456789	score
362	PQNPRKLIL	13

375 IHSLMKSDL

402	LEEGSFMNL	13
648	MRDNSPVHL	13
7		

714	AKHLQRSLL	13
767	QQLGITEYL	13
7	PGAL	

791 PGAHEELKL

829	AEPDYLEVL
59	ISVPPSRRPF

68	QLSLLNNGL	12
83	DFSGLTNA	12

109 NGLGUKQL

151	IEPSAFSKL
172	

172	IESLPPNIF	
176	PPNIFRFVP	

182	FVPLTHLDL
187	

187	HLDLRGNQL
189 DLRGNQLQT	

219	KWACNCDLL

234	ENMPPQSII
296	MSTKTTSIL

298	TKTTSILKL
305	K PTKAPGL

305	KLPTKAPGL
323	QLPGPYCPI

337	VLSPSSGLLI	12
386	YFTLEMLHL	12
415	KLYLNGNHL	12
418	LNGNHLTKL	12
424	TKLSKGMFL	12
434	LHNLEYLYL	12
443	EYNAIKELL	12
451	LPGTFNPMP	12
481	GVPLTKVNL	12
489	LKTNQFTHL	12
497	LPVSNILDD	12
498	PVSNILDDL	12
500	SNILDDLDL	12
552	LOKKELKAL	12
566	CPGLVNNPS	12
624	CAAGIVLV	12
684	SPMVHVYRS	12
709	KEGSDAKHL	12
739	TTNQSTEFL	12
789	HYPGAHEEL	12

Table XXVI-V1-HLA-B0702-9mers-158P1D7		
Each peptide is a portion of		
SEQ ID NO: 3; each start position is specified, the		
length of peptide is 9 amino		
acids, and the end positionfor each peptide is the start		
position plus eight.		
Pos	123456789	score
741	NQSTEFLSF	11
61	EKERELQQL	11
780	AQLQPDMEA	11
783	QPDMEAHYP	11
805	YSRPRKVLV	11
826	NLHAEPDYL	11

Table XXVII-V3-HLA-	
B0702-9mers-158P1D7	
Each peptide is a portion of	
SEQ ID NO: 7; each start	
position is specified, the	
length of peptide is 9 amino	
acids, and the end position	
for each peptide is the start	
position plus eight.	
Pos	123456789
6	QHMGAHEEL
8	MGARE
2	MLYEELKLK

Table XXVII-V4-HLA-B0702-9mers-158P1D7		
Each peptide is a portion of SEQID NO: 9; each slart position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	score
2	IHSLMKSILL	13
6	MKSILWSKA	8
1	IIHSLMKSI	7
13	KASGRGRRE	6

Pos	123456789	Score
458	MPKLKVLYL	38
159	LNRLKVLL	28
456	NPMPKLKVL	27
758	NILEKEREL	27
154	SAFSKLNRL	26
187	HLDLRGNQL	26
250	PPFFKGSIL	26
305	KLPTKAPGL	26
556	ELKALNSEI	26
61	VPPSRPFQL	25
713	DAKHLQRSL	24
258	LSRLKKESI	23
774	YLRKNIAQL	23
552	LDKKELKAL	22
157	SKLNRLKVL	21
205	EHIGRILDL	21
638	RYKKKQVDE	21
734	NMKYKTTNQ	21
815	QTKNEYFEL	21
303	ILKLPTKAP	20
424	TKLSKGMFL	20
426	LSKGMFLGL	20
760	LEKERELQQ	20
126	ILKEDTFHG	19
177	PNIFRFVPL	19
394	LGNNRIELL	19
463	VLYLNNNL	19
692	SPSFGPKLLL	19
796	ELKLMETLM	19
822	ELKANLHAE	19
17	SLHSQTPVL	18
26	SSRGSCDSL	18
38	EEKDGTMLI	18
68	QLSLLNNGL	18
161	RLKVLILND	18
362	PQNPRKLIL	18
408	MNLTRLQKL	18
482	VPLTKVNLK	18
527	GLQQWIQKL	18
606	PLSVLILGL	18
636	RRRYKKKQV	18
696	GPKHLEEEE	18
813	VEQTKNEYF	18

Table XXVIII-V3-HLA-BOB- 9mers-158P1D7
Each peptide is a portion of
SEQ ID NO: 7; each start
position is specified, the
length of peptide is 9 amino
acdds, and the end position for
each peptide is the start
position plus eight.

Table XXVIII-V3-HLA-B08- 9mers-158P1D7		
Pos	123456789	score
6	QHMGAHEEL	11
2	SLYEQHMGA	10
8	MGAHEELKL	10

Table XXVIII-V4-HLA-B08 9mers-158P1D7		
Each peptide is a portion of SEQID NO: 9; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	-
9	ILWSKASGR	17
1	IIHSLMKSI	12
2	IHSLMKSIL	12
13	KASGRGRRE	12
3	HSLMKSILV	11
5	LMKSILWSK	10
11	WSKASGRGR	10
4	SLMKSILWS	

Table XXIX-V1-HLA-B1510-9mers-158P107		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the slart position plus eight.		
Pos	123456789	SCO
275	EHEDPSGSL	24
375	IHSLMKSDL	24
205	EHIGRILDL	23
495	THLPVSNIL	23
5	IHLFYSSLL	22
476	PHIFSGVPL	22
79	LHTNDFSGL	20
434	LHNLEYLYL	20
132	FHGLENLEF	17
623	FCAAGIVVL	17
687	VHVYRSPSF	17
602	TDAVPLSVL	16
18	LHSQTPVLS	15
360	PPPQNPRKL	15
804	MYSRPRKVL	15
105	IGAFNGLGL	14
345	IHCQERNIE	14
392	LHLGNNRIE	14

Table.XXIX-V1-HLA-B1510-9mers-15BP1D7			$\begin{gathered} \text { Table XXIX-V1-HLA-B1510. } \\ \text { 9mers-158P1D7 } \end{gathered}$		
Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.			Each peptide is a portion of SEQ ID NO: 3; each start position is spacified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	score	Pos	123456789	score
405	GSFMNLTRL	14	154	SAFSKLNRL	12
453	GTFNPMPKL	14	157	SKLNRLKVL	12
456	NPMPKLKVL	14	174	SLPPNIFRF	12
481	GVPLTKVNL	14	177	PNIFRFVPL	12
680	QHMVSPMVH	14	180	FRFVPLTHL	12
758	NILEKEREL	14	207	IGRILDLQL	12
774	YLRKNIAQL	14	218	KWACNCDLL	12
788	AHYPGAHEE	14	225	DLLQLKTWL	12
795	EELKLMETL	14	253	FKGSILSRL	12
17	SLHSQTPVL	13	277	EDPSGSLHL	12
59	ISVPPSRPF	13	298	TKITSILKL	12
93	IHLGFNNIA	13	381	SDLVEYFTL	12
103	IEIGAFNGL	13	386	YFTLEMLHL	12
186	THLDLRGNQ	13	402	LEEGSFMNL	12
196	QTLPYVGFL	13	429	GMFLGLHNL	12
203	FLEHIGRIL	13	443	EYNAIKEIL	12
316	YITKPSTQL	13	466	LNNNLLQVL	12
330	PIPCNCKVL	13	549	PGHLDKKEL	12
347	CQERNIESL	13	552	DKKELKAL	12
362	PQNPRKLL	13	557	LKALNSEIL	12
394	LGNNRIEVL	13	561	NSEILCPGL	12
520	DCSCDLVGL	13	599	RSLTDAVPL	12
527	GLQQWIQKL	13	662	GHKTTHHTT	12
544	ILCTSPGHL	13	667	HHTTERPSA	12
550	GHLDKKELK	13	698	KHLEEEEER	12
593	TADTILRSL	13	713	DAKHLQRSL	12
606	PLSVLILGL	13	722	LEQENHSPL	12
625	AAGIVLVL	13	739	TTNQSTEFL	12
648	MRDNSPVHL	13	752	ASSLYRNIL	12
666	THHTTERPS	13	761	EKERELQQL	12
669	TTERPSASL	13	789	HYPGAHEEL	12
692	SPSFGPKHL	13	26	SSRGSCDSL	11
726	NHSPLTGSN	13	61	VPPSRPFQL	11
793	AHEELKLME	13	68	QLSLLNNGL	11
819	EYFELKANL	13	71	LLNNGLTML	11
827	LHAEPDYLE	13	109	NGLGLLKQL	11
829	AEPDYLEVL	13	116	QLHINHNSL	11
37	CEEKDGTML	12	130	DTFHGLENL	11
63	PSRPFQLSL	12	159	LNRLKVLIL	11
106	GAFNGLGLL	12	167	LNDNAIESL	11
119	INHNSLEIL	12	172	IESLPPNIF	11
127	LKEDTFHGL	12	190	LRGNQLQTL	11
133	HGLENLEFL	12	288	TSSINDSRM	11
151	IEPSAFSKL	12	296	MSTKTTSIL	11

Table XXIX-V1-HLA-B1510-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	score
305	KLPTKAPGL	11
335	CKVLSPSGL	11
336	KVLSPSGLL	11
350	RNIESLSDL	11
370	LAGNIIHSL	11
410	LTRLQKLYL	11
415	KLYLNGNHL	11
424	TKLSKGMFL	11
426	LSKGMFLGL	11
432	LGLHNLEYL	11
447	IKEILPGTF	11
458	MPKLKVLYL	11
483	VLYLNNNLL	11
498	PVSNILDDL	11
501	NILDDLDU	11
517	NPWDCSCDL	11
537	KNTVTDDIL	11
590	TTNTADTIL	11
604	AVPLSVLIL	11
633	LHRRRRYKK	11
654	VHLQYSMYG	11
714	AKHLQRSLL	11
715	KHLQRSLLE	11
747	LSFQDASSL	11
767	QQLGITEYL	11
791	PGAHEELKL	11
815	QTKNEYFEL	11
826	NLHAEPDYL	11

Table XXIX-V3-HLA-B1510-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 7; each slart position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus elght.		
os	123456	
6	QHMGAHEEL	22
8	MGAHEELKL	

Table XXIX-V4-HLA-B1510-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 9 amino acids, and the end postion for each peptide is the start position plus eight.		
,	123456789	
	IHSLMKSIL	

Table XXX-V1-HLA-B2705. 9mers-158P1D7 Each pepud
SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

Pos	123456789	score
180	FRFVPLTHL	27
358	LRPPPQNPR	125
64	SRPFQLSLL	22
190	LRGNQLQL	22
429	GMFLGLHNL	22
634	HRRRRYKKK	22
648	MRDNSPVHL	22
690	YRSPSFGPK	22
756	YRNILEKER	22
405	GSFMNLTRL	21
637	RRYKKKQVD	21
255	GSILSRLKK	20
350	RNIESLSDL	20
453	GTFNPMPKL	20
527	GLQQWIQKL	20
719	RSLLEQENH	20
763	ERELQQLGI	20
106	GAFNGLGL	19
359	RPPPQNPRK	19
462	KVLYLNNNL	19
819	EYFELKANL	19
130	DTFHGLENL	18
139	EFLQADNNF	18
154	SAFSKLNRL	18
205	EHIGRILDL	18
225	DLLQLKTML	18
252	FFKGSILSR	18
481	GVPLTKVNL	18
599	RSLTDAVPL	18
747	LSFQDASSL	18
809	RKVLVEQTK	18
109	NGLGLLKQL	17

Table XXX-V1-HLA-B2705- 9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start postion plus eight.

Pos	123456789	score
160	NRLKVLILN	17
202	GFLEHIGRI	17
208	GRILDLQLE	17
211	LDLQLEDNK	17
298	TKTTSILKL	17
301	TSILKLPTK	17
316	YITKPSTQL	17
372	GNIIHSLMK	17
411	TRLQKLYLN	17
420	GNHLTKLSK	17
550	GHLDKKELK	17
610	LILGLLIMF	17
623	FCAAGIWL	17
627	GIVVVLLRR	17
628	IVVLVLHRR	17
635	RRRRYKKKQ	17
636	RRRYKKKQV	17
698	KHLEEEEER	17
754	SLYRNILEK	17
766	LQQLGITEY	17
774	YLRKNIAQL	17
103	IEIGAFNGL	16
125	EILKEDTFH	16
173	ESLPPNIFR	16
174	SLPPNIFRF	16
201	VGFLEHIGR	16
259	SRLKKESIC	16
336	KVLSPSGLL	16
342	GLLIHCQER	16
366	RKLIIAGNI	16
390	EMLHLGNNR	16
397	NRIEVLEEG	16
402	LEEGSFMNL	16
415	KLYLNGNHL	16
478	IFSGVPLTK	16
486	KVNLKTNQF	16
495	THLPVSNIL	16
506	LDLLTQIDL	16
526	VGLQQWIQK	16
659	SMYGHKTTH	16
711	GSDAKHLQR	16
728	SPLTGSNMK	16
738	KTTNQSTEF	16
769	LGITEYLRK	16

Table XXX-V1-HLA-B2705.9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	Scor
795	EELKLMETL	16
5	IHLFYSSLL	15
10	SSLLACISL	15
20	SQTPVLSSR	15
51	KGIKMVSEI	15
57	SEISVPPSR	15
59	ISVPPSRPF	15
63	PSRPFQLSL	15
71	UNNGLTML	15
86	GLTNAISIH	15
100	IADIEIGAF	15
107	AFNGLGLIK	15
124	LEILKEDTF	15
132	FHGLENLEF	15
153	PSAFSKLNR	15
155	AFSKLNRLK	15
207	IGRILDLQL	15
250	PPFFKGSIL	15
253	FKGSiLSRL	15
305	KLPTKAPGL	15
309	KAPGLIPYI	15
311	PGLIPYITK	15
370	LAGNIIHSL	15
399	IEVLEEGSF	15
408	MNLTRLQKL	15
418	LNGNHLTKL	15
440	LYLEYNAIK	15
463	VLYLNNNLL	15
469	NLLQVLPPH	15
482	VPLTKVNLK	15
500	SNILDDLDL	15
547	TSPGHLDKK	15
604	AVPLSVLIL	15
606	PLSVLILGL	15
609	VLILGLLIM	15
625	AAGIVVLV	15
629	WLVLHRRR	15
640	KKKQVDEQM	15
664	KTTHHTIER	15
691	RSPSFGPKH	15
708	EKEGSDAKH	15
729	PLTGSNMKY	15
758	NILEKEREL	15
767	QQLGITEYL	15

Table XXX-V1-HLA-B2705-9mers-158P1D7

Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

Pos	123456789	score
11	SLLACISLH	14
26	SSRGSCDSL	14
37	CEEKDGTML	14
68	QLSLLNNGL	14
89	NAISIHLGF	14
110	GLGLLKQLH	14
113	LIKQLHINH	14
133	HGLENLEFL	14
148	ITVIEPSAF	14
150	VIEPSAFSK	14
151	IEPSAFSKL	14
157	SKLNRLKLL	14
159	LNRLKVLL	14
167	LNDNAIESL	14
172	IESLPPNIF	14
196	QTLPYVGFL	14
198	LPYVGFLEH	14
221	ACNCDLLQL	14
254	KGSILSRLK	14
277	EDPSGSLHL	14
287	ATSSINDSR	14
294	SRMSTKTIS	14
295	RMSTKTTSI	14
335	CKVLSPSGL	14
347	CQERNIESL	14
349	ERNIESLSD	14
360	PPPQNPRKL	14
365	PRKLILAGN	14
368	LILAGNIIH	14
375	IHSLMKSLL	14
381	SDLVEYFIL	14
394	LGNNRIEVL	14
414	QKLYLNGNH	14
417	YLNGNHLTK	14
424	TKLSKGMFL	14
456	NPMPKLKVL	14
458	MPKLKVLYL	14
476	PHIFSGVPL	14
546	CTSPGHLDK	14
552	LDKKELKAL	14
573	PSMPTQTSY	14
598	LRSLTDAVP	14
602	TDAVPLSVL	14
607	LSVLIGLL	14

Table XXX-V1-HLA-B2705-9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

Pos	123456789	score
626	AGIVLVLH	14
630	VLVLHRRRR	14
652	SPVHLQYSM	14
669	TIERPSASL	14
687	VHVYRSPSF	14
701	EEEEERNEK	14
707	NEKEGSDAK	14
713	DAKHLQRSL	14
778	NIAQLQPDM	14
791	PGAHEELKL	14
792	GAHEELKLM	14
802	TLMYSRPRK	14
806	SRPRKVLVE	14
4	WIHLFYSSL	13
32	DSLCNCEEK	13
46	INCEAKGIK	13
87	LTNAISIHL	13
95	LGFNNIADI	13
111	LGLLKQLHI	13
119	INHNSLEIL	13
143	ADNNFITVI	13
177	PNIFRFVPL	13
183	VPLTHLDLR	13
187	HLDLRGNQL	13
192	GNQLQTLPY	13
195	LQTLPYVGF	13
244	DVVCNSPPF	13
275	EHEDPSGSL	13
291	INDSRMSTK	13
296	MSTKTTSIL	13
308	TKAPGLIPY	13
312	GLIPYTKP	13
362	PQNPRKLIL	13
384	VEYFTLEML	13
385	EYFTLEMLH	13
386	YFTLEMLHL	13
391	MLHLGNNRI	13
400	EVLEEGSFM	13
404	EGSFMNLTR	13
407	FMNLTRLQK	13
410	LTRLQKLYL	13
423	LTKLSKGMF	13
426	LSKGMFLGL	13
432	LGLHNLEYL	13

Table XXX-V1-HLA-B2705.

 9mers-158P1D7. Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus elght.| Pos | 123456789 | score |
| :---: | :---: | :---: |
| 433 | GLHNLEYLY | 13 |
| 434 | LHNLEYLYL | 13 |
| 447 | IKEILPGTF | 13 |
| 457 | PMPKLKMY | 13 |
| 466 | LNNNLLQVL | 13 |
| 471 | LQVLPPHII | 13 |
| 501 | NILDDLDLL | 13 |
| 504 | DDLDLLTQI | 13 |
| 529 | QQWIQKLSK | 13 |
| 537 | KNTVIDDIL | 13 |
| 549 | PGHLDKKEL | 13 |
| 567 | PGLVNNPSM | 13 |
| 590 | TTNTADTIL | 13 |
| 593 | TADTILRSL | 13 |
| 611 | ILGLIMMI | 13 |
| 613 | GLLIMFITI | 13 |
| 615 | LIMFITIVF | 13 |
| 633 | LHRRRRYKK | 13 |
| 705 | ERNEKEGSD | 13 |
| 709 | KEGSDAKHL | 13 |
| 714 | AKHLQRSLL | 13 |
| 718 | QRSLLEQEN | 13 |
| 739 | TTNQSTEFL | 13 |
| 741 | NQSTEFLSF | 13 |
| 749 | FQDASSLYR | 13 |
| 752 | ASSLYRNIL | 13 |
| 761 | EKERELQQL | 13 |
| 789 | HYPGAHEEL | 13 |
| 799 | LMETLMYSR | 13 |
| 801 | ETLMYSRPR | 13 |
| 808 | PRKVLVEQT | 13 |
| 812 | LVEQTKNEY | 13 |
| 829 | AEPDYLEVL | 13 |
| | | |

Table XXX -V3-HLA-B2705- 9merb-158P1D7		
8	MGAHEELKL	14
6	QHMGAHEEL	13
3	LYEQHMGAH	10
7	HMGAHEELK	10
1	ASLYEQHMG	6

Table XXX-V4-HLA-B2705- 9mers-158P1D7	
Each peptide is a portion of SEQ ID NO: $9 ;$ each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.	
Pos	123456789
2	IHSLMKSIL
5	score
9	LMKSILWSK
12	14
12	SKASGSRGR
11	WSKASGRGR
1	14
4	IIHSLMKSI
7	SLMKSILWS
8	KSILWSKAS
13	9
13	SILSSKASG

Table XXXI-V1-HLA.B2709-9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3 ; each start-position is specified, the length of peptide is 9 amino acids, and the end position for each peptlde is the start position plus eight.

Pos	123456789	score
636	RRRYKKKQV	23
180	FRFVPLTHL	22
648	MRDNSPVHL	21
64	SRPFQLSLL	20
190	LRGNQLQTL	20
599	RSLTDAVPL	19
763	ERELQQLGI	19
366	RKLILAGNI	16
405	GSFMNLTRL	16
429	GMFLGLHNL	16
453	GTFNPMPKL	16
637	RRYKKKQVD	16
106	GAFNGLGLL	15
208	GRILDLQLE	15
336	KVLSPSGLL	15
350	RNIESLSDL	15

Table XXXI-V1-HLA-B2709-9mers-158P1D7 Each peptide is a portion of SEQ ID NO: 3; each start position is specifiad, the length of peptide is 9 amino acids, and the end positlon for each peptide is the start position plus eight.

Pos	123456789	score
462	KVLYLNNNL	15
481	GVPLTKVNL	15
709	KEGSDAKLL	15
154	SAFSKLNRL	14
196	QTLPYVGFL	14
202	GFLEHIGRI	14
221	ACNCDLLQL	14
305	KLPTKAPGL	14
415	KLYLNGNHL	14
635	RRRRYKKKQ	14
747	LSFQDASSL	14
5	IHLFYSSLL	13
109	NGLGLLKQL	13
130	DTFHGLENL	13
207	IGRILDLQL	13
253	FKGSILSRL	13
411	TRLQKLYLN	13
424	TKLSKGMFL	13
495	THLPVSNIL	13
500	SNILDDLDL	13
501	NILDDLDLL	13
527	GLQQWIQKL	13
537	KNTVTDDIL	13
604	AVPLSVLIL	13
613	GLIMFITI	13
625	AAGIVVLVL	13
767	QQLGITEYL	13
819	EYFELKANL	13
10	SSLLACISL	12
17	SLHSQTPVL	12
51	KGIKMVSEI	12
61	VPPSRPFQL	12
63	PSRPFQLSL	12
79	LHTNDFSGL	12
89	NAISIHLGF	12
103	IEIGAFNGL	12
105	IGAFNGLGL	12
133	HGLENLEFL	12
151	IEPSAFSKL	12
157	SKLNRLKVL	12
159	LNRLKVLIL	12
160	NRLKVLILN	12
171	AIESLPPNI	12
177	PNIFRFVPL	12
205	EHIGRILDL	12

Table XXXI-V1-HLA-B2709. 9mers-158P1D7
Each peptide is a portion of SEQ
ID NO: 3; each start position is specified, the length of peptlde is 9 amino acids, and the end position for each peptide is the start position plus elght.

Pos	123456789	score
219	KWACNCDLL	12
225	DLLQLKTVL	12
250	PPFFKGSIL	12
259	SRLKKESIC	12
277	EDPSGSLHL	12
295	RMSTKTTS	12
298	TKITSILKL	12
316	YITKPSTQL	12
362	PQNPRKLL	12
381	SDLVEYFTL	12
384	VEYETLEML	12
386	YFTLEMLHL	12
408	MNLTRLQKL	12
432	LGLHNLEYL	12
458	MPKLKVLYL	12
463	VLYLNNNLL	12
476	PHIFSGVPL	12
506	LDLLTQIDL	12
520	DCSCDLVGL	12
607	LSVLILGLL	12
621	IVFCAAGIV	12
671	ERPSASLYE	12
758	NILEKEREL	12
775	LRKNIAQLQ	12
795	EELKLMETL	12
806	SRRRKVLVE	12
808	PRKVLVEQT	12
16	SLHSQTPV	11
27	SRGSCDSLC	11
37	CEEKDGTML	11
59	ISVPPSRRFF	11
70	SLLNNGLTM	11
85	SGLTNAISI	11
87	LTNAISIHL	11
119	LGLLKQLHI	11
119	INHNSLEIL	11
139	EFLQADNNF	11
158	KLNRLKVLI	11
182	FVPLTHLDL	11
187	HLDLRGNQL	11
193	NQLQTLPYV	11
203	FLEHIGRIL	11
294	SRMSTKTTS	11
296	MSTKTTSIL	11
309	KAPGLIPYI	11

Table XXXI-V1-HLA-B2709-
9mars-158P1D7

Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

Pos	123456789	score
335	CKVLSPSGL	11
349	ERNIESLSD	11
358	LRPPPQNPR	11
365	PRKLILAGN	11
367	KLILAGNII	11
370	LAGNIIHSL	11
375	IHSLMKSDL	11
397	NRIEVLEEG	11
402	LEEGSFMNL	11
410	LTRLQKLYL	11
426	LSKGMFLGL	11
434	LHNLEYYYL	11
443	EYNAIKEIL	11
456	NPMPKLKVL	11
486	KVNLKTNQF	11
489	LKTNQFTHL	11
498	PVSNILDDL	11
504	DDLDLLTQI	11
544	ILCTSPGHL	11
549	PGHLDKKEL	11
561	NSEILCPGL	11
567	PGLVNNPSM	11
593	TADTILRSL	11
603	DAVPLSVLI	11
606	PLSVLLLGL	11
608	SVLILGLLI	11
623	FCAAGIVL	11
624	CAAGIVLV	11
640	KKKQVDEQM	11
675	ASLYEQHMV	11
681	HMVSPMVHV	11
690	YRSPSFGPK	11
714	AKHLQRSLL	11
738	KTTNQSTEF	11
752	ASSLYRNLL	11
761	EKERELQQL	11
774	YLRKNIAQL	11
791	PGAHEELKL	11
792	GAHEELKLM	11
803	LMYSRPRKV	11
828	HAEPDYLEV	11
829	AEPDYLEVL	11

Table XXXI-V3-HLA-B2709 9mers-158P1D7		
Each peptide is a portion of SEO ID NO: 7; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	scor
8	MGAHEELKL	
6	QHMGAHEEL	10

Table XXXI-V4-HLA-B2709. 9mers.158P1D7	
Each peptide is a SEQID NO: 9; ea position is specfied of peptide Is 9 ami the end position fo peptide is the star eight.	ion of tart he length acids, and ach sition plus
Pos 123456789	score
2 IHSLMKSIL	11
1 IIISSLMKSI	10

Table XXXII-V1-HLA-B4402. 9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is spedified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus elght.

Pos	123456789	score
829	AEPDVLEVL	27
103	EIGAFNGL	26
124	LEILKEDTF	25
670	TERPSASLY	25
172	IESLPPNIF	24
442	LEYNAIKEI	24
709	KEGSDAKHL	24
795	EELKLMETL	24
38	EEKDGTMLI	23
151	IEPSAFSKL	23
402	LEEGSFMNL	22
205	EHIGRILDL	21
384	VEYFTLEML	21
399	IEVLEEGSF	21
722	LEQENHSPL	21
813	VEQTKNEYF	21
37	CEEKDGTML	20
174	SLPPNIFRF	19
233	LENMPPQSI	19
456	NPMPKLKVL	19

Table XXXIIVV1-HLA-B4402-
9mers-158P1D7

Pos	123456789	score
157	SKLNRLKVL	18
109	NGLGLLKOL	17
562	SEILCPGLV	17
604	AVPLSULL	17
682	MVSPMVHVY	17
752	ASSLYRNIL	17
89	NAISIHLGF	16
100	IADIEIGAF	16
143	ADNNFITV	16
164	VLILNDNAI	16
177	PNIFRFVPL	16
221	ACNCDLLQL	16
224	CDLLOLKTW	16
265	SICPTPPY	16
298	TKTTSILKL	16
370	LAGNIIHSL	16
394	LGMNRIEV	16
500	SNILDDLDL	16
625	AAGIVLVL	16
650	DNSPVHLQY	16
703	EEERNEKEG	16
714	AKHLQRSLL	16
804	MYSRPRKVL	16
818	NEYFELKAN	16
48	CEAKGIKMV	15
57	SEISVPPSR	15
95	LGFNNIADI	15
106	GAFNGLGLL	15
154	SAFSKLNRL	15
167	LNONAIESL	15
187	HLDLRGNQL	15
196	QTLPYVGFL	15
276	HEDPSGSLH	15
308	TKAPGLIPY	15
330	PIPCNCKV	15
347	CQERNIESL	15
360	PPPQNPRKL	15
362	PQNPRKLIL	15
408	MNLTRLQKL	15
409	NLTRLQKLY	15
429	GMFLGLHNL	15
448	KEILPGTFN	15
486	KVNLKTNQF	15
495	THLPVSNIL	15
501	NLLDDLDL	15

Table XXXII-V1-HLA-B4402-9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the stant position plus eight.

Pos	123456789	score
552	LOKKELKAL	15
593	TADTILRSL	15
606	PLSVLILGL	15
615	LIMFITIVF	15
623	FCAAGIVVL	15
692	SPSFGPKHL	15
741	NQSTEFLSF	15
761	EKERELQQL	15
774	YLRKNIAQL	15
10	SSLLACISL	14
59	ISVPPSRPF	14
61	VPPSRPFQL	14
63	PSRPFQLSL	14
64	SRPFQLSLI	14
76	LTMLHTNDF	14
83	DFSGLTNAI	14
85	SGLTNAISI	14
128	KEDTFHGLE	14
135	LENLEFLQA	14
138	LEFLQADNN	14
139	EFLQADNNF	14
234	ENMPPQSII	14
277	EDPSGSLHL	14
305	KLPTKAPGL	14
309	KAPGLIPYI	14
337	VLSPSGLLI	14
350	RNIESLSDL	14
367	KLILAGNII	14
403	EEGSFMNLT	14
405	GSFMNLTRL	14
415	KLYLNGNHL	14
453	GTFNPMPKL	14
463	VLYLNNNLL	14
476	PHIFSGVPL	14
498	PVSNILDDL	14
527	GLQQWIQKL	14
555	KELKALNSE	14
573	PSMPTQTSY	14
574	SMPTQTSYL	14
599	RSLTDAVPL	14
607	LSVLLGLL	14
610	LILGLLIMF	14
631	LVLHRRRRY	14
648	MRDNSPVHL	14
701	EEEEERNEK	14

Table XXXII-V1-HLA.B4402. 9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.

Pos	123456789	score
702	EEEERNEKE	14
744	TEFLSFQDA	14
766	LQQLGITEY	14
767	QQLGITEYL	14
819	EYFELKANL	14
825	ANLHAEPDY	14
1	MKLWHLLFY	13
17	SLHSQTPVL	13
51	KGIKMVSEI	13
68	QLSLLNNGL	13
127	LKEDTFHGL	13
130	DTFHGLENL	13
133	HGLENLEFL	13
148	ITVIEPSAF	13
159	LNRLKVLIL	13
180	FRFVPLTHL	13
182	FVPLTHLDL	13
190	LRGNQLQTL	13
192	GNQLQTLPY	13
204	LEHIGRILD	13
212	DLQLEDNKW	13
219	KWACNCDLL	13
263	KESICPTPP	13
274	EEHEDPSGS	13
275	EHEDPSGSL	13
336	KVLSPSGLL	13
348	QERNIESLS	13
352	IESLSDLRP	13
361	PPQNPRKKLI	13
379	MKSDLVEYF	13
381	SDLVEYFTL	13
389	LEMLHLGNN	13
418	LNGNHLTKL	13
426	LSKGMFLGL	13
432	LGLHNLEYL	13
443	EYNAIKEIL	13
457	PMPKKKVLY	13
458	MPKLKVLYL	13
462	KVLYLNNNL	13
466	LNNNLLQVL	13
471	LQVEPPHIF	13
481	GVPLTKVNL	13
506	LDLLTQIDL	13
511	QIDLEDNPW	13
520	DCSCDLVGL	13

Table XXXII-V1-HLA-B4402-9mers-158P1D7

 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus elght.| Pos | 123456789 | Score |
| :---: | :---: | :---: |
| 523 | CDLVGLQQW | 13 |
| 549 | PGHLDKKEL | 13 |
| 603 | DAVPLSVLI | 13 |
| 704 | EERNEKEGS | 13 |
| 707 | NEKEGSDAK | 13 |
| 724 | QENHSPLTG | 13 |
| 747 | LSFQDASSL | 13 |
| 748 | SFQDASSLY | 13 |
| 758 | NILEKEREL | 13 |
| 760 | LEKERELQQ | 13 |
| 772 | TEYLRKNIA | 13 |
| 786 | MEAHYPGAH | 13 |
| 797 | LKLMETLMY | 13 |

Table XXXII-V3-HLA-B4402-9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptlde is 9 amino acids, and the end position for each peptide is the slart position plus elght.

Pos	123456789	score
6	QHMGAHEEL	12
8	MGAHEELKL	12
4	YEQHMGAHE	10
1	ASLYEQHMG	5

Table XXXII-V4.HLA-B4402- 9mers-158P1D7	
Each pepilde is a portion of SEQ	
ID No: $9 ;$ each start position is	
specified, the length of peptide	
is 9 amino acids, and the end	
position for each peptide is the	
start position plus eight.	
Pos	123456789
3	HSLMKSILW
2	score
2	IHSLMKSIL
1	IIHSLMKSI
7	12
4	KSILWSKAS
4	SLMKSILWS
14	ASGRGRREE

Table XXXIII-V1-HLA-B5101-9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end posiltion for each peptide is the start position plus eight.

Pos	123456789	score
603	DAVPLSVLI	25
751	DASSLYRNI	25
306	LPTKAPGLI	24
625	AAGIVLVL	24
111	LGLLKQLHI	23
175	LPPNIFRFV	23
309	KAPGLIPYI	23
456	NPMPKLKVL	23
142	QADNNFITV	22
474	LPPHIFSGV	22
624	CAAGIVVV	22
85	SGLTNAISI	21
154	SAFSKLNRL	21
249	SPPFFKGSI	21
329	CPIPCNCKV	21
360	PPPQNPRKL	21
361	PPQNPRKLI	21
458	MPKLKVLYL	21
713	DAKHLQRSL	21
51	KGIKMVSEI	20
95	LGFNNIADI	20
593	TADTILRSL	20
61	VPPSRPFQL	19
237	PPQSIIGDV	19
370	LAGNIIHSL	19
504	DDLDLLTQI	19
517	NPWDCSCDL	19
692	SPSFGPKHL	19
828	HAEPDYLEV	19
106	GAFNGLGLL	18
109	NGLGLLKQL	18
198	LPYVGFLEH	18
250	PPFFKGSIL	18
394	LGNNRIEVL	18
442	LEYNAIKEI	18
482	VPLTKVNLK	18
803	LMYSRPRKV	18
133	HGLENLEFL	17
278	DPSGSLHLA	17
314	IPYITKPST	17
432	LGLHNLEYL	17
439	YLYLEYNAI	17
605	VPLSVLILG	17
613	GLLIMFITI	17
83	DFSGLTNAI	16

Table XXXIII-V1-HLA-B5101. 9mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specifled, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus elght

Pos	123456789	score
202	GFLEHIGRI	16
586	TPATTTNTA	16
105	IGAFNGLGL	15
143	ADNNFITVI	15
170	NAIESLPPN	15
183	VPLTHLDLR	15
207	IGRILDLQL	15
236	MPPQSIIGD	15
283	LHLAATSSI	15
285	LAATSSIND	15
326	GPYCPIPCN	15
524	DLVGLQQWI	15
589	TTTNTADTI	15
601	LTDAVPLSV	15
781	PGAHEELKL	15
807	RPRKVLVEQ	15
13	LACISLHSQ	14
16	ISLHSQTPV	14
45	LNCEAKGI	14
49	EAKGIKMVS	14
74	NGLTMLHTN	14
140	FLQADNNFI	14
269	TPPVYEEHE	14
339	SPSGLLIHC	14
364	NPRKLILAG	14
391	MLHLGNNRI	14
445	NAIKEILPG	14
451	LPGTFNPMP	14
470	LLQVLPPHI	14
497	LPVSNILDD	14
532	IQKLSKNTV	14
558	KALNSEILC	14
566	CPGLVNNPS	14
587	PATTTNTAD	14
622	VFCAAGIVV	14
728	SPLGGSNMK	14
792	GAHEELKLM	14
22	TPVLSSRGS	13
100	IADIEIGAF	13
157	SKLNRLKVL	13
176	PPNIFRFVP	13
193	NQLQTLPY	13
199	PYVGFLEHI	13
225	DLLQLKTWL	13
233	LENMPPQSI	13

Table XXXIII-V1-HLA-B5101-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	score
258	LSRLKKESI	13
286	AATSSINDS	13
295	RMSTKTTS	13
298	TKTTSILKL	13
324	LPGPYCPIP	13
331	IPCNCKVLS	13
337	VLSPSG以	13
344	LIHCQERN	13
359	RPPPQNPRK	13
366	RKLILAGNI	13
384	VEYFTLEML	13
408	MNLTRLQKL	13
455	FNPMPKLKV	13
463	VLYLNNNLL	13
475	PPHIFSGVP	13
479	FSGVPLTKV	13
494	FTHLPVSNI	13
536	SKNTVTDDI	13
548	SPGHLDKKE	13
549	PGHLDKKEL	13
572	NPSMPTQTS	13
608	SVLILGLLI	13
611	ILGLLIMFI	13
623	FCAAGIVV	13
672	RPSASLYEQ	13
684	SPMVHVYRS	13
758	NILEKEREL	13
771	ITEYLRKNI	13
779	IAQLQPDME	13
790	YPGAHEELK	13
829	AEPDYLEVL	13
8	FYSSLLACI	12
41	DGTMLINCE	12
53	IKMVSEISV	12
65	RPFQLSLLN	12
89	NAISIHLGF	12
92	SIHLGFNNI	12
97	FNNIADIEI	12
130	DTFHGLENL	12
151	IEPSAFSKL	12
152	EPSAFSKL	12
156	FSKLNRLKV	12
159	LNRLKVLIL	12
164	VILNDNAI	12
267	CPTPPVYEE	12

Table XXXIII-V1-HLA-B5101-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specifled, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	score
319	KPSTQLPGP	12
323	QLPGPYCPI	12
415	KLYLNGNHL	12
418	LNGNHLTKL	12
426	LSKGMFLGL	12
465	YLNNNLLQV	12
466	LNNNLLQVL	12
495	THLPVSNIL	12
506	LDLLTQIDL	12
520	DCSCDLVGL	12
544	ILCTSPGHL	12
556	ELKALNSEI	12
575	MPTQTSYLM	12
614	LIMFITIV	12
620	TIVFCAAGI	12
621	IVFCAAGIV	12
674	SASLYEQHM	12

Table XXXIII-V3.HLA-B5101-9mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 7 ; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the slart position plus eight.		
Pos	123456789	SCO
8	MGAHEELKL	16
6	QHMGAHEEL	7

Table XXXIII-V4HLA-B5101- 9mers-158P1D7	
Each peptide Is a portion of SEQ	
ID NO: 9 ; each start position is	
specifed, the length of peptide	
is 9 amino acids, and the end	
position for each peptide is the	
start position plus eight.	
Pos	123456789
1	IIHSLMKSI
13	score
2	KASGRGRRE
2	IHSLMKSIL

Table XXXIV-V1-HLA-A1- 10 mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the sfart position plus nine.		
Pos	1234567890	score
669	TTERPSASLY	33
307	PTKAPGUPY	25
430	MFLGLHNLEY	23
796	ELKLMETLMY	23
191.	RGNQLQTLPY	21
435	HNLEYLYLEY	21
456.	NPMPKLKVLY	21
649	RDNSPVHLQY	21
743	STEFLSFQDA	21
747	LSFQDASSLY	21
134	GLENLEFLQA	20
150	VIEPSAFSKL	20
264	ESICPTPPVY	20
276	HEDPSGSLHL	20
728	SPLTGSNMKY	20
781	QLQPDMEAHY	20
203	FLEHIGRILD	19
820	YFELKANLHA	19
377	SLMKSDLVEY	18
630	VLVLHRRRRY	18
652	SPVHLQYSMY	18
805	YSRPRKVLVE	18
128	KEDTFHGLEN	17
408	MNLTRLQKLY	17
432	LGLHNLEYLY	17
502	ILDDLDLLTQ	17
518	PWDCSCDLVG	17
540	VTDDILCTSP	17
601	LTDAVPLSVL	17
681	HMVSPMVHVY	17
759	ILEKERELQQ	17
811	VLVEQTKNEY	17
830	EPDYLEVLEQ	17
297	STKTTSILKL	16
317	ITKPSTQLPG	16
351	NIESLSDLRP	16
561	NSEILCPGLV	16
723	EQENHSPLTG	16
765	ELQQLGITEY	16
771	ITEYLRKNIA	16

Table XXXIV-V3-HLA-A110 mers-158P1D7

Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
4	LYEQHMGAHE	11
8	HMGAHEELKL	8
2	ASLYEQHMGA	5

Table XXXVV-V4-HLA-A1-$10 \mathrm{mers}-158 \mathrm{P} 1 \mathrm{D} 7$		
Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	1234567890	Scor
4	HSLMMKSILWS	10
3	IHSLMKSILW	6
12	WSKASGRGRR	5
8	KSILWSKASG	

Table XXXV-V1-HLA-A2. 10 mers -158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peplide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
369	ILAGNIIHSL	33
417	YLNGNHLTKL	31
166	LLNDNAIESL	30
70	SLLNNGLTML	28
158	KLNRLKVLIL	27
189	DLRGNQLQTL	27
465	YLNNNLLQVL	27
613	GLLIMFITIV	27
407	FMNLTRLQKL	26
610	LILGLIMMFI	26
126	ILKEDTFHGL	25
431	FLGLHNLEYL	25
600	SLTDAVFLSV	25
174	SLPPNIFRFV	24
393	HLGNNRIEVL	24

Table XXXV-V1-HLA-A2-10mers-158P1D7

Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
473	VPPPHIFSGV	24
551	HLDKKELKAL	24
94	HLGFNNIADI	23
318	HINHNSLEIL	23
425	KLSKGMFLGL	23
441	YLEYNAIKEI	23
592	NTADTILRSL	23
624	CAAGIVLVL	23
150	VIEPSAFSKL	22
257	ILSRLKKESI	22
282	SLHLAATSSI	22
297	STKTTSILKL	22
343	LLIHCQERNI	22
401	VEEGSFMNL	22
433	GLHNLEYLYL	22
746	FLSFQDASSL	22
802	TLMYSRPRKV	22
12	LUACISLHSQ	21
78	MLHTNDFSGL	21
377	SLMKSDLVEY	21
469	NLLQVLPPHI	21
531	WIQKLSKNTV	21
581	YLMVTTPATT	21
596	TILRSLTDAV	21
606	PLSVLLGLL	21
647	QMRDNSPVHL	21
721	LLEQENHSPL	21
44	MLNCEEAKGI	20
52	GIKMVSEISV	20
86	GLTNAISIHL	20
110	GLGLLKQLHI	20
374	IIHSLMKSDL	20
409	NLTRLQKLYL	20
457	PMPKLKVLYL	20
478	IFSGVPLTKV	20
502	ILDDLDLLTQ	20
601	LTDAVPLSVL	20
603	DAVPLSVLIL	20
803	LMYSRPRKVL	20
206	HIGRILDLQL	19
220	WACNCDLLQL	19
232	WLENMPPQSI	19
305	KLPTKAPGLI	19
464	LYLNNNLLQV	19

Table XXXV-V1-HLA-A2. 10mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
488	NLKTNQFTHL	19
505	DLDLLTQIDL	19
526	VGLQQWIQKL	19
543	DILCTSPGHL	19
564	ILCPGLVNNP	19
605	VPLSVLILGL	19
616	IMFITIVFCA	19
619	ITIVFCAAGI	19
623	FCAAGIVVV	19
668	HTTERPSASL	19
676	SLYEQHMMVP	19
720	SLLEQENHSP	19
754	SLYRNILEKE	19
827	LHAEPDYLEV	19
828	HAEPDYLEL	19
4	WHLFYSSL	18
15	CISLHSQTPV	18
60	SVPPSRPFQL	18
102	DIEIGAFNGL	18
240	SIIGDVVCNS	18
295	RMSTKTTSIL	18
304	LKLPTKAPGL	18
337	VLSPSGLIIH	18
346	HCQERNIESL	18
382	DLVEYFTLEM	18
383	LVEYFTLEML	18
392	LHLGNNRIEV	18
500	SNILDDLDLL	18
7	LFYSSLLACI	17
104	EIGAFNGLGL	17
105	IGAFNGLGLL	17
141	LQADNNFLTV	17
163	KVLILNDNAI	17
170	NAIESLPPNI	17
204	LEHIGRILDL	17
260	RLKKESICPT	17
308	TKAPGLIPYI	17
415	KLYLNGNHLT	17
462	KVLYLNNNLL	17
490	KTNQFTHLPV	17
519	WDCSCDLVGL	17
559	ALNSEILCPG	17
608	SVLILGLLIM	17
609	VLILGLUMF	17

Table XXXV-V1-HLA-A2-		
	10mers-158P1D7	
	Each peptide is a portion of	
SEQ ID NO: 3; each start		
positlon is specified, the length		
of peptide is 10 amino acids,		
and the end position for each		
peptide is the start position		
plus nine.		

Table XXXV-V3-HLA-A210 mers -158P1D7
Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
8	HMGAHEELKL	21
3	SLYEQHMGAH	16

Table XXXV-V4-HLA-A2.

 $10 \mathrm{mers}-158 \mathrm{P} 1 \mathrm{D} 7$Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
2	IIHSLMKSIL	20
1	NIISLLMKSI	19
5	SLMKSILWSK	19
6	LMKSILWSKA	15
9	SILWSKASGR	13
10	ILWSKASGRG	13
14	KASGRGRREE	9

Table XXXVI-V1-HLA-A0203-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	1234567890	sco
278	DPSGSLHLAA	19
617	MFITIVFCAA	19
279	PSGSLHLAAT	17
618	FITIVFCAAG	17
5	IHLFYSSLLA	10
41	DGTMLINCEA	10
81	TNDFSGLTNA	10
92	SIHLGFNNIA	10
98	NNIADIEIGA	10
134	GLENLEFLQA	10
146	NFITVIEPSA	10
162	LKVLILNDNA	10
212	DLQLEDNKWA	10
277	EDPSGSLHLA	10
301	TSILKLPTKA	10
362	PQNPRKLILA	10

Table XXXVI-V1-HLA.A0203-10mers-158P1D7		
437	LEYLYLEYNA	10
550	GHLDKKELKA	10
579	TSYLMVTTPA	10
585	TTPATTTNTA	10
595	DTILRSLTDA	10
616	IMFITIVFCA	10
666	THHTTERPSA	10
705	ERNEKEGSDA	10
743	STEFLSFQDA	10
771	ITEYLRKNIA	10
779	IAQLQPDMEA	10
784	PDMEAHYPGA	10
816	TKNEYFELKA	10
820	YFELKANLHA	10
6	HLFYSSLLAC	9
42	GTMLINCEAK	9
82	NDFSGLTNAI	9
93	IHLGFNNIAD	9
99	NIADIEIGAF	9
135	LENLEFLQAD	9
147	FITVIEPSAF	9
163	KVLILNDNAI	9
213	LQLEDNKWAC	9
302	SILKLPTKAP	9
363	QNPRKLILAG	9
438	EYLYLEYNAI	9
551	HLDKKELKAL	9
580	SYLMVTTPAT	9
586	TPATTTNTAD	9
596	TILRSLTDAV	9
667	HHTTERPSAS	9
706	RNEKEGSDAK	9
744	TEFLSFQDAS	9
772	TEYLRKNIAQ	9
780	AQLQPDMEAH	9
785	DMEAHYPGAH	9
817	KNEYFELKAN	9
821	FELKANLHAE	9

Table XXXVIV3-HLA-A0203-

 10mers-158P1D7 Each peptide is a portion of SEQ ID NO: 7; each start positlon Is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.| 1234567890 | | score |
| :---: | :---: | :---: |
| 2 | ASLYEQHMGA | 10 |
| 3 | SLYEQHMGAH | 9 |
| 4 | LYEQHMGAHE | 8 |

Table XXXVI-V4-HLA.A0203- 10mers-158P1D7	
Each peptide is a portion of SEQ	
ID NO: 9; each start position is	
specified, the length of peptide is	
10 amino acids, and the end	
position for each peptde is the	
start position plus nine.	
Pos	1234567890
6	LMKSILWSKA
7	Score
8	MKSILWSKAS
8	10

Table XXXVIL-V1-HLA-A3-10mers-158P1D7		
422	HLTKLSKGMF	16
425	KLSKGMFLGL	16
473	VLPPHIFSGV	16
633	LHRRRRYKKK	16
649	RDNSPVHLQY	16
686	MVHVYRSPSF	16
716	HLQRSLLEQE	16
720	SLLEQENHSP	16
753	SSLYRNILEK	16
774	YLRKNIAQLQ	16
822	ELKANLHAEP	16
80	AISIHLGFNN	15
161	RLKVLILNDN	15
166	ILNDNAIESL	15
182	FVPLTHLDLR	15
209	RILDLQLEDN	15
244	DVVCNSPPFF	15
260	RLKKESICPT	15
271	PVYEEHEDPS	15
300	TTSILKLPTK	15
305	KLPTKAPGLI	15
314	IPYITKPSTQ	15
393	HLGNNRIEVL	15
419	NGNHLTKLSK	15
450	ILPGTFNPMP	15
462	KVLYLNNNLL	15
465	YLNNNLLQVL	15
470	LLQVLPPHIF	15
507	DLLTQIDLED	15
528	LQQWIQKLSK	15
539	TVTDDILCTS	15
544	ILCTSPGHLD	15
562	SEILCPGLVN	15
564	ILCPGLVNNP	15
569	LVNNPSMPTQ	15
583	MVITPATITN	15
669	TTERPSASLY	15
706	RNEKEGSDAK	15
808	PRKVLVEQTK	15
810	KVLVEQTKNE	15
6	HLFYSSLLAC	14
68	QLSLLNNGLT	14
75	GLTMLHTNDF	14
110	GLGLLKOLHI	14
126	ILKEDTFHGL	14
150	VIEPSAFSKL	14
165	LILNDNAIES	14
174	SLPPNIFRFV	14
200	YVGFLEHIGR	14
226	LLQLKTWLEN	14
228	QLKTWLENMP	14
232	WLENMPPQSI	14

Table XXXVIIVV1-HLA-A3-		
10mers-158P1D7		
240	SIIGDVVCNS	14
264	ESICPTPPVY	14
323	QLPGPYCPIP	14
382	DLVEYFTLEM	14
400	EVLEEGSFMN	14
412	RLQKLYLNGN	14
433	GLHNLEYLYL	14
460	KLKVLYLNNN	14
483	PLTKVNLKTN	14
486	KVNLKTNQFT	14
501	NILDDLDLLT	14
534	KLSKNTVTDD	14
563	EILCPGLVNN	14
596	TILRSLTDAV	14
604	AVPLSVLILG	14
613	GLLMFFITIV	14
643	QVDEQMRDNS	14
689	VYRSPSFGPK	14
812	LVEQTKNEYF	14
815	QTKNEYFELK	14

Table XXXVII-V3.HLA-A3-10mers-158P1D7
Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
3	SLYEQHMGAH	22
7	QHMGAHEELK	14

Table XXXVII-V4-HLA•A310mers.158P1D7		
Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start postion plus nine.		
Pos	1234567890	Scor
5	SLMKSILWSK	23
9	SILWSKASGR	21
1	NIIIHSLMKSI	13
2	IIHSLMKSIL	13
10	ILWSKASGRG	13
8	KSILWSKASG	12

Table XXXVIII-V1-HLA-A26-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 10 amino adds, and the end postion for each peptide is the start position plus nine.		
Pos	1234567890	score
244	DVVCNSPPFF	30
603	DAVPLSVLIL	26
104	EIGAFNGLGL	24
264	ESICPTPPV	24
595	DTILRSLTDA	24
765	ELQQLGITEY	24
129	EDTFHGLENL	23
173	ESLPPNIFRF	23
297	STKTTSILKL	23
307	PTKAPGLIPY	23
349	ERNIESLSDL	23
383	LVEYFTLEML	23
385	EYFTLEMLHL	23
400	EVLEEGSFMN	23
773	EYLRKNIAQL	23
58	EISVPPSRPF	22
274	EEHEDPSGSL	22
404	EGSFMNLTRL	22
592	NTADTILRSL	22
796	ELKLMETLMY	22
60	SVPPSRPFQL	21
189	DLRGNQLQTL	21
543	DILCTSPGHL	21
601	LTDAVPLSVL	21
102	DIEIGAFNGL	20
130	DTFHGLENLE	20
688	HTTERPSASL	20
669	TTERPSASLY	20
99	NIADIEIGAF	19
681	HMVSPMVHVY	19
686	MVHVYRSPSF	19
814	EQTKNEYFEL	19
149	TVIEPSAFSK	18
205	EHIGRILDLQ	18
462	KVLYLNNNLL	18
539	TVTDDILCTS	18
556	ELKALNSEIL	18
563	EILCPGLVNN	18
589	TTTNTADTIL	18
609	VLILGLLIMF	18
708	EKEGSDAKHL	18
801	ETLMYSRPRK	18
812	LVEQTKNEYF	18
423	LTKLSKGMFL	17
497	LPVSNILDDL	17

Table XXXVIII-V1•HLA•A26. 10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start positlon plus nine.		
Pos	1234567890	score
00	SNILDDLDLL	17
505	DLDLLTQIDL	17
38	NTVTDDILCT	17
652	SPVHLQYSMY	17
713	DAKHLQRSLL	17
738	KITNQSTEFL	17
751	DASSLYRNIL	17
55	MVSEISVPPS	16
118	HINHNSLEEL	16
217	DNKWACNCDL	16
446	AIKEILPGTF	16
472	QVLPPHIFSG	16
494	FTHLPVSNIL	16
516	DNPWDCSCDL	16
608	SVLILGLLIM	16
621	IVFCAAGIW	16
811	VLVEQTKNEY	16
819	EYFELKANLH	16
39	EKDGTMLINC	15
147	FITVIEPSAF	15
150	VIEPSAFSKL	15
277	EDPSGSLHLA	15
346	HCQERNIESL	15
377	SLMKSDLVEY	15
382	DLVEYFTLEM	15
449	EILPGIFNPM	15
604	AVPLSVLILG	15
671	ERPSASLYEQ	15
747	LSFQDASSLY	15
760	LEKERELQQL	15
763	ERELQQLGIT	15
830	EPDYLEVLEQ	15
3	LWIHLFYSSL	14
63	PSRPFQLSLL	14
70	S L NNNGLTML	14
125	EILKEDTFHG	14
166	ILNDNAIESL	14
181	RFVPLTHLDL	14
182	FVPLTHLDLR	14
195	LQTLPYVGFL	14
206	HIGRILDLQL	14
220	WACNCDLLQL	14
300	TTSILKLPTK	14
374	IIISLMKSDL	14
398	RIEVLEEGSF	14

Table XXXVIII-V1.HLA.A26-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	1234567890	score
480	SGVPLTKVNL	14
481	GVPLTKVNLK	14
485	TKVNLKTNQF	14
546	CTSPGHLDKK	14
605	VPLSVLILGL	14
628	IWLVLHRRR	14
630	VLVLHRRRRY	14
705	ERNEKEGSDA	14

Table XXXVIII-V3-HLA-A26-10mers-158P1D
Each peptide is a portion of SEQ
ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
6	EQHMGAHEEL	18
8	HMGAHEELKL	10

Table XXXVIII-V4-HLA-A26$10 \mathrm{mers}-158 \mathrm{P} 1 \mathrm{D}$ Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
2	IIHSLMKSIL	14
1	NIIHSLMKSI	9
5	SLMKSILWSK	6
9	SILWSKASGR	6

Table XXXIX•V1•HLA•B0702-10mers-158P1D7 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
62	PPSRPFQLSL	24
176	PPNIFRFVPL	24

Table XXXIX.V1-HLA-B0702. 10 mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position Is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	1234567890	score
790	YPGAHEELKL	24
278	DPSGSLHLAA	23
475	PPHIFSGVPL	23
329	CPIPCNCKVL	22
359	RPPPQNPRKL	22
361	PPQNPRKLIL	22
605	VPLSVLILGL	22
548	SPGHLDKKEL	21
807	RPRKVLVEQT	21
249	SPPFFKGSIL	20
497	LPVSNILDDL	20
482	VPLTKVNLKT	18
566	CPGLVNNPSM	18
575	MPTQTSYLMV	18
237	PPQSIIGDVV	17
360	PPPQNPRKLI	17
425	KLSKGMFLGL	17
624	CAAGIVVLVL	17
152	EPSAFSKLNR	16
198	LPYVGFLEHI	16
236	MPPQSIIGDV	16
517	NPWDCSCDLV	16
104	EIGAFNGLGL	15
598	LRSLTDAVPL	15
830	EPDYLEVLEQ	15
16	ISLHSQTPVL	14
155	AFSKLNRLKV	14
158	KLNRLKVLIL	14
179	IFRFVPLTHL	14
181	RFVPLTHLDL	14
189	DLRGNQLQTL	14
276	HEDPSGSLHL	14
285	RMSTKTTSIL	14
319	KPSTQLPGPY	14
331	IPCNCKVLSP	14
339	SPSGLLIHCQ	14
364	NPRKLILAGN	14
369	ILAGNIIHSL	14
404	EGSFMNLTRL	14
456	NPMPKLKVLY	14
457	PMPKLKVLYL	14
603	DAVPLSVLIL	14
622	VFCAAGIWL	14
647	QMRDNSPVHL	14
672	RPSASLYEQH	14

Table XXXIX-V1-HLA-B070210 mers-158P1D7 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
63	PSRPFQLSLL	13
65	RPFQLSLLNN	13
206	HIGRILDLQL	13
306	LPTKAPGLIP	13
310	APGLIPYITK	13
324	LPGPYCPIPC	13
385	EYFTLEMLHL	13
417	YLNGNHLTKL	13
480	SGVPLTKVNL	13
551	HLDKKELKAL	13
560	LNSEILCPGL	13
572	NPSMPTQTSY	13
573	PSMPTQTSYL	13
586	TPATTNTTAD	13
601	LTDAVPLSVL	13
708	EKEGSDAKHL	13
738	KTTNQSTEFL	13
751	DASSLYRNIL	13
788	AHYPGAHEEL	13
9	YSSLLACISL	12
25	LSSRGSCDSL	12
105	IGAFNGLGLL	12
126	ILKEDTFHGL	12
132	FHGLENLEFL	12
150	VIEPSAFSKL	12
175	LPPNIFRFVP	12
183	VPLTHLDLRG	12
195	LQTLPYVGFL	12
204	LEHMGRILDL	12
220	WACNCDLLQL	12
252	FFKGSILSRL	12
263	KESICPTPPV	12
297	STKTTSILKL	12
304	LKLPTKAPGL	12
380	KSDLVEYFTL	12
393	HLGNNRIEVL	12
409	NLTRLQKLYL	12
428	KGMFLGLHNL	12
433	GLHNLEYLYL	12
451	LPGTFNPMPK	12
478	IFSGVPLTKV	12
488	NLKTNQFTHL	12
499	VSNILDDLDL	12
519	WDCSCDLVGL	12
556	ELKALNSEIL	12

Table XXXIX-V1-HLA-B0702-10mers-458P1D7 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end
position for each peptide is the start position plus nine.

Pos	1234567890	score
606	PLSVLILGLL	12
692	SPSFGPKHLE	12
712	SDAKHLQRSL	12
746	FLSFQDASSL	12
773	EYLRKNIAQL	12
783	QPDMEAHYPG	12
803	LMYSRPRKVL	12
814	EQTKNEYFEL	12
825	ANLHAEPDYL	12
828	HAEPDYLEVL	12
22	TPVLSSRGSC	11
36	NCEEKDGTML	11
60	SVPPSRPFQL	11
61	VPPSRPFQLS	11
70	SLLNNGLTML	11
78	MLHTNDFSGL	11
102	DIEIGAFNGL	11
108	FNGLGLIKQL	11
115	KQLHINHNSL	11
129	EDTFHGLENL	11
153	PSAFSKLNRL	11
156	FSKLNRLKVL	11
166	ILNDNAIESL	11
218	NKWACNCDLL	11
224	CDLLQLKTWL	11
267	CPTPPVYEEH	11
274	EEHEDPSGSL	11
314	IPYITKPSTQ	11
315	PYITKPSTQ	11
349	ERNIESLSDL	11
374	IIHSLMKSDL	11
401	VLEEGSFMNL	11
423	LTKLSKGMFL	11
431	FLGLHNLEYL	11
452	PGTFNPMPKL	11
455	FNPMPKLKVL	11
462	KVLYLNNNLL	11
465	YLNNNLLQVL	11
474	LPPHIFSGVP	11
505	DLDLLTQIDL	11
589	TTTNTADTIL	11
592	NTADTILRSL	11
623	FCAAGIVIV	11
668	HTTERPSASL	11
684	SPMVHVYRSP	11

Table XXXIX-V1-HLA-B0702. 10mers-158P1D7 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
691	RSPSFGPKHL	11
713	DAKHLQRSLL	11
721	LLEQENHSPL	11
757	RNILEKEREL	11
762	KERELQQLGI	11
766	LQQLGITEYL	11
818	NEYFELKANL	11

Table XXXIX-V3-HLA-B0702-10mers-158P1D7

Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
8	HMGAHEELKL	14
6	EQHMGAHEEL	11
2	ASLYEQHMGA	8
9	MGAHEELKLM	7

Table XXXIX-V4-HLA-B0702-10mers-458P1D7		
Each peptide is a portion of SEQ ID NO: 9; each slart position is specified, the length of peptide is 10 amino aclds, and the end position for each peptide is the start position plus nine.		
Pos	1234567890	sco
2	IIHSLMKSIL	11
1	NIIHSLMKSI	6
6	LMKSILWSKA	6
	KASGRGRREE	6

Table XL-V1-HLA-B08-10mers			
158P1D7			
Pos	234567890	score	
NoResultsFound.			

Table XL-V3-HLA-B08-10mers-		
158P1D7		
POS	1234567890	score
NoResultsFound.		

Table XLI-V1-HLA-B1510-	
10mers-158P1D7	
Pos 1234567890	score
NoResulitsFound.	

Table XLI-V3-HLA-B1510-		
10mers-158P1D7		
Pos	1234567890	score
NoResultsFound.		

Table XLI-V4-HLA-B1510. -10mers $158 \mathrm{P} 1 \mathrm{D7} 7$		
Pos	1234567890	score
NoResultsFound.		

Table XLII-V1-HLA-B2705-\|		
10mers-158P1D7		
Pos	1234567890	score
NoResultsFound.		

Table XLII-V3-HLA-B2705. 10mers-158P1D7		
Pos	1234567890	score
NoResultsFound.		

Table XUI-V4-HLA-B2705-\| 10mers-158P1D7		
Pos	1234567890 score	
NoResultsFound.		

Table XLIII-V1-HLA-B2709. 10mers-158P1D7		
Pos	1234567890	score
NoResultsFound.		

Table XLIII-V3-HLA-B2709- 10mers-158P1D7		
Pos	1234567890	score
NoResullsFound.		

Table XLIII-V4-HLA-B2709. 10 mers-158P1D7		
Os	1234567890	score
NoResulisFo		

Table XLIV-V1-HLA-B4402• 10 mers-158P1D7
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.

Pos	1234567890	score
276	HEDPSGSLHL	25
138	LEFLQADNNF	24
204	LEHIGRILDL	24
274	EEHEDPSGSL	22
760	LEKERELQQL	22
794	HEELKLMETL	22
442	LEYNAIKEIL	21
818	NEYFELKANL	21
37	CEEKDGTMLI	20
555	KELKALNSEI	20
762	KERELQQLGI	20
173	ESLPPNIFRF	19
329	CPIPCNCKVL	19
233	LENMPPQSII	18
773	EYLRKNIAQL	18
60	SVPPSRPFQL	17
99	NIADIEIGAF	17
223	NCDLLQLKTW	17
264	ESICPTPPVY	17
297	STKTTSILKL	17
359	RPPPQNPRKL	17
456	NPMPKLKVLY	17
500	SNILDDLDLL	17
562	SEILCPGLVN	17
829	AEPDYLEVLE	17
385	EYFTLEMLHL	16
448	KEILPGTFNP	16
551	HLDKKELKAL	16
609	VLILGLLIMF	16
614	LLIMFITIVF	16
708	EKEGSDAKHL	16
788	AHYPGAHEEL	16
44	MLINCEAKGI	15
57	SEISVPPSRP	15
63	PSRPFQLSLL	15
82	NDFSGLTNAI	15
103	IEIGAFNGLG	15
108	FNGLGLLKQL	15
150	VIEPSAFSKL	15
156	FSKLNRLKVL	15
171	AIESLPPNIF	15
304	KLPTKAPGL	15
315	PYITKPSTQL	15
369	ILAGNIIHSL	15

Table XLIV-V1-HLA-B4402-10mers-158P1D7
Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the slart position plus nine.

Pos	1234567890	score
393	HLGNNRIEVL	15
408	MNLTRLQKLY	15
446	AIKEILPGTF	15
455	FNPMPKIKVL	15
480	SGVPLTKVNL	15
510	TQIDLEDNPW	15
522	SCDLVGLQQW	15
526	VGLQQWIQKL	15
573	PSMPTQTSYL	15
603	DAVPLSVLIL	15
605	VPLSVLILGL	15
622	VFCAAGIVL	15
744	TEFLSFQDAS	15
757	RNILEKEREL	15
765	ELQQLGITEY	15
796	ELKLMETLMY	15
821	FELKANLHAE	15
825	ANLHAEPDYL	15
828	HAEPDYLEVL	15
38	EEKDGTMLI.	14
58	EISVPPSRPF	14
70	SLLNNGLTML	14
124	LEILKEDTFH	14
128	KEDTFHGLEN	14
135	LENLEFLQAD	14
142	QADNNFITVI	14
151	IEPSAFSKLN	14
158	KLNRLKVLIL	14
166	ILNDNAIESL	14
181	RFVPLTHLL	14
186	THLDLRGNQL	14
201	VGFLEHIGRI	14
220	WACNCCLLQL	14
308	TKAPGLPYI	14
319	KPSTQLPGPY	14
352	IESLSDLRPP	14
377	SLMKSDLVEY	14
380	KSDLVEYFTL	14
403	EEGSFMNLTR	14
404	EGSFMNLTRL	14
425	KLSKGMFLGL	14
428 KGMFLGLHNL	14	
438	EYLYLEYNAI	14
462	KVLYLNNNLL	14

Table XLIV-V1-HLA-B4402-10mers-158P107		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	1234567890	score
485	TKVNLKTNQF	14
588	ATTTNTADTI	14
592	NTADTILRSL	14
598	LRSLTDAVPL	14
624	CAAGIVLVL	14
670	TERPSASLYE	14
691	RSPSFGPKHL	14
702	EEEERNEKEG	14
728	SPLTGSNMKY	14
772	TEYLRKNIAQ	14
795	EELKLMETLM	14
803	LMYSRPRKVL	14
3	LWIHLFYSSL	13
9	YSSLLACISL	13
16	ISLHSQTPVL	13
62	PPSRPFQLSL	13
91	ISIHLGFNNI	13
104	EIGAFNGLGL	13
115	KQLHINHNSL	13
117	LHINHNSLEI	13
129	EDTFHGLENL	13
147	FITVIEPSAF	13
157	SKLNRLKVLI	13
163	KVLILNDNAI	13
170	NAIESLPPNI	13
172	IESLPPNIFR	13
189	DLRGNQLQTL	13
206	HIGRILDLQL	13
211	LDLQLEDNKW	13
215	LEDNKWACNC	13
248	NSPPFFKGSI	13
263	KESICPTPPV	13
295	RMSTKTTSIL	13
305	KLPTKAPGLI	13
346	HCQERNIESL	13
348	ERNIESLSDL	13
360	PPPQNPRKL	13
389	LEMLHLGNNR	13
402	LEEGSFMNLT	13
407	FMNLTRLQKL	13
409	NLTRLQKLYL	13
417	YLNGNHLTKL	13
430	MFLGLHNLEY	13
441	1 YLEYNAIKEI	13

Table XLIV-V1-HLA-B4402-10mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start posilion is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	1234567890	score
457	PMPKLKVLYL	13
465	YLNNNLLQVL	13
488	NLKTNQFTHL	13
505	DLDLLTQIDL	13
548	SPGHLDKKEL	13
601	LTDAVPLSVL	13
606	PLSVLILGLL	13
610	LLLGLLIMFI	13
612	LGLLIMFITI	13
630	VLVLHRRRRY	13
647	QMRDNSPVHL	13
669	TTERPSASLY	13
681	HMVSPMVHV	13
701	EEEEERNEKE	13
703	EEERNEKEGS	13
704	EERNEKEGSD	13
709	KEGSDAKHLQ	13
738	KTTNQSTEFL	13
747	LSFQDASSLY	13
751	DASSLYRNIL	13
764	RELQQLGITE	13
781	QLQPDMEAHY	13
4	WIHLFYSSLL	12
25	LSSRGSCDSL	12
50	AKGIKMVSEI	12
67	FQLSLLNNGL	12
75	GLTMLHTNDF	12
78	MLHTNDFSGL	12
86	GLTNAISIHL	12
102	DIEIGAFNGL	12
105	IGAFNGLGLL	12
123	SLEILKEDTF	12
126	ILKEDTFHGL	12
131	TFHGLENLEF	12
132	FHGLENLEFL	12
139	EFLOADNNFI	12
153	PSAFSKLNRL	12
176	PPNIFRFVPL	12
191	RGNQLQTLPY	12
194	QLQTLPYVGF	12
195	LQTLPYVGFL	12
202	GFLEHIGRIL	12
218	NKWACNCDLL	12
224	CDLLQLKTWL	12

Table XLIV-V1-HLA-B440210 mers -158P1D7		
Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the slart position plus nine.		
os	1234567890	Scors
249	SPPFFKGSIL	12
252	FFKGSILSRL	12
307	PTKAPGLIPY	12
322	TQLPGPYCPI	12
34	NCKVLSPSGL	12
335	CKVLSPSGLL	12
336	KVLSPSGLLI	12
343	LLIHCQERN	12
348	QERNIESLSD	12
361	PPQNPRKLIL	12
390	EMLHLGNNR	12
414	QKLYLNGNHL	12
431	FLGLHNLEYL	12
432	LGLHNLEYLY	12
433	GLHNLEYLYL	12
435	HNLEYLYLEY	12
461	LKVLYLNNNL	12
470	LLQVLPPHIF	12
494	FTHLPVSNIL	12
503	LDDLDLLTQ	12
514	LEDNPWDCSC	12
519	WDCSCDLVGL	12
536	SKNTVTDDIL	12
543	DILCTSPGHL	12
556	ELKA'LNSEIL	12
572	NPSMPTQTSY	12
619	ITIVFCAAGI	12
649	RDNSPVHLQY	12
700	LEEEEERNEK	12
707	NEKEGSDAKH	12
712	SDAKHLQRSL	12
713	DAKHLQRSL	12
740	TNQSTEFLSF	12
746	FLSFQDASSL	12
766	LQQLGITEYL	12
790	YPGAHEELKL	12
800	METLMYSRPR	12
814	EQTKNEYFEL	12
824	KANLHAEPDY	12

Table XLIV-V3-HLA-B4402- 10mers-158P1D7	
Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Pos 5 1234567890	
5	YEQHMGAHEE
6	EQHMGAHEEL
8	HMGAHEELKL

Table XLIV-V4-HLA-B4402-10mers-158P1D7		
Each.peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of pepide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	1234567890	score
1	NIIHSLMKSI	14
3	IHSLMKSILW	14
2	IIHSLMKSIL	

Table XLV.V1-HLA-B5101-10mers-158P1D7		
Pos	1234567890	SC
NoResulisFound.		

Table XLV.V3-HLA-B5101-10mers-158P1D7		
Pos	[1234567890]	score
NoResultsFound.		

Table XLV.V4-HLA-B5101• 10mers-158P1D7		
Pos	1234567890	score
NoResultsFound.		

Table XLVI-V1-HLA.DRB-0101• 15mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is		
specified, the length of peptide is 15		
amino aclds, and the end position for		
plus fo	ourteen.	
Pos	123456789012345	score
6	HLFYSSLLACISLHS	34
300	TTSILKLPTKAPGLI	33
73	NNGLTMLHTNDFSGL	32

Table XLVI-V1-HLA-DRB-0101-15mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each pepitde is the start position plus fourteen.		
Pos	123456789012345	score
554	KKELKALNSEILCPG	31
744	TEFLSFQDASSLYRN	31
145	NNFITVIEPSAFSKL	30
169	DNAIESLPPNIFRFV	30
468	NNLLQVLPPHIFSGV	30
153	PSAFSKLNRLKVLIL	29
444	YNAIKEILPGTFNPM	29
15	CISLHSQTPVLSSRG	28
42	GTMLINCEAKGIKMV	28
177	PNIFRFVPLTHLDLR	28
230	KTWLENMPPQSIIGD	28
467	NNNLLQVLPPHIFSG	28
572	NPSMPTQTSYMVTT	28
606	PLSVLILGLLIMFIT	28
121	HNSLEILKEDTFHGL	27
129	EDTFHGLENLEFLQA	27
161	RLKVLILNDNAIESL	27
179	IFRFVPLTHLDLRGN	27
200	WGFLEHIGRILDLQ	27
364	NPRKLILAGNIIHSL	27
383	LVEYFTLEMLHLGNN	27
420	GNHLTKLSKGMFLGL	27
436	NLEYLYLEYNAIKEI	27
491	TNQFTHLPVSNILDD	27
1	MKLWIHLFYSSLLAC	26
81	TNDFSGLTNAISIHL	26
102	DIEIGAFNGLGLLKQ	26
192	GNQLQTLPWGFLEH	26
452	PGTFNPMPKLKVLYL	26
455	FNPMPKLKVLYNNN	26
476	PHIFSGVPLTKVNLK	26
529	QQWIQKLSKNTVTDD	26
595	DTILRSLTDAVPLSV	26
611	ILGLIMMFITIVFCA	26
618	FITIVFCAAGIVVLV	26
817	KNEYFELKANLHAEP	26
19	HSQTPVLSSRGSCDS	25
94	HLGFNNIADIEIGAF	25
108	FNGLGLLKQLHINHN	25
132	FHGLENLEFLQADNN	25
135	LENLEFLQADNNFIT	25
156	FSKLNRLKVLILNDN	25
279	PSGSLHLAATSSIND	25
313	LIPYITKPSTQLPGP	25
314	IPYITKPSTQLPGPY	25

Table XLVL-V1-HLA.DRB.0101- 15mers-158P1D7			Table XLVI-V1-HLA-DRB-0101-15mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.			Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourtion.		
P	123456789012345	Score	Pos	123456789012345	score
332	PCNCKVLSPSGLLIH	25	683	VSPMVHVYRSPSFGP	23
388	TLEMLHLGNNRIEVL	25	718	QRSLLEQENHSPLTG	23
396	NNRIEVLEEGSFMNL	25	732	GSNMKYKTTNQSTEF	23
407	FMNLTRLQKLYLNGN	25	780	AQLQPDMEAHYPGA	23
431	FLGLHNLEYLYLEYN	25	-	HEELKLMETLMYSRP	23
	YLE	25	9.	YSSLLACISLHSQTP	22
503	LDOLDLLTQIDLEDN	25	12	LLACISLHSQTPVLS	22
	HLDKKELKALNSEIL	25	49	EAKGIKMVSEISVP	22
559	ALNSEILCPGLVNNP	25	53	IKMVSEISVPPSRP	2
50	AKGIKMVVSEISVPPS	24	58	EISVPPSRPFQLSLL	22
144	DNNFITVIEPSAFSK	24	166	ILNDNAIESLPPNIF	22
	KVLILNDNAIESLPP	24	204	LEHIGRILDLQLEDN	22
184	PLTHLDLRGNQLOTL	24	23	NCDLIQLKTWLENM	22
22	LKTWLENMPPQSIIG	24	235	NMPPQSIIGDVVCNS	22
255	GSILSRLKKESICPT	24	239	QSIIGDWCNSPPF	22
33	NCKVLSPSGLIHCQ	24	293	DSRMSTKTTSILKLP	22
34	ERNIESLSDLRPPPQ	24	303	ILKLPTKAPGUPYI	22
363	QNPRKLILAGNIIHS	24	,	IESLSDLRPPPQNPR	22
372	GNIIHSLMKSDLVEY	24	57	DLRPPPQNPRKLIL	22
41	RLOKLYLNGNHLTKL	24	541	TDDILCTSPGHLDK	22
460	KLKVLYLNNNLLQVL	24	577	TQTSYLMVITPATTT	22
60	AVPLSVLILGLLIMF	24	594	ADTILRSLTDAVPLS	22
605	VPLSVLILGLLIMFI	24	641	KKQVDEQMRDNSPV	22
608	SVLILGLUMFI	24	674	SASLYEQHMVSPMV	22
615	LIMFITIVFCAAGIV	24	684	SPMVHVYRSPSFG	22
619	ITIVFCAAGVVLVL	24	776	RKNIAQLQPDMEAHY	22
	DEQMRDNSPVHLQYS	24	10	IADIEIGAFNGLGLL	21
68	MVHVYRSPSFGPKHL	24	105	IGAFNGLGLLKQLL	21
	QENHSPLTGSNMKYK	24	260	RLKKESICPTPPVY	21
797	LKLMETLMYSRPRKV	24	373	NIIHSLMKSDLVEYF	21
800	METLMYSRPRKVLVE	24	487	VNLKTNQFTHLPVSN	21
	KLWIHLFYSSLLACI	23	651	NSPVHLQYSMYGHKT	21
22	TPVLSSRGSCDSLCN	23	736	KYKTTNQSTEFLSFQ	21
52	GIKMVSEISVPPSRP	23	55	MVSEISVPPSRPFQL	20
56	VSEISVPPSRPFQLS	23	182	FVPLTHLDLRGNQLQ	20
84	FSGLTNAISIHLGFN	23	198	LPYVGFLEHIGRILD	20
97	FNNIADIEIGAFNGL	23	410	LTRLQKLYLNGNHLT	20
242	IGDWCNSPPFFKGS	23	423	LTKLSKGMFLGLHNL	20
280	SGSLHLAATSSINDS	23	445	NAIKEILPGTFNPMP	20
310	APGLIPYITKPSTQL	23	472	QVLPPHIFSGVPLTK	20
380	KSDLVEYFTLEMLHL	23	497	LPVSNILDDLDLLTQ	20
483	PLTKVNLKTNQFTHL	23	549	PGHLDKKELKALNSE	0
578	QTSYLMVTTPATTTN	23	569	LVNNPSMPTQTSYLM	20
598	LRSLTDAVPLSVLIL	23	676	SLYEQHMVSPMVHVY	20
612	LGLLIMFITIVFCAA	23	760	LEKERELQQLGITEY	20

Table XLVI-V1-HLA-DRB-0101-15mers-158P1D7

Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position

plus fourteen.

Pos	123456789012345	score
772	TEYLRKNIAQLQPDM	20
88	TNAISIHLGFNNIAD	19
124	LEILKEDTFHGLENL	19
250	PPFFKGSILSRLKKE	19
304	LKLPTKAPGLIPYIT	19
397	NRIEVLEEGSFMNLT	19
405	GSFMNLTRLQKLYLN	19
415	KLYLNGNHLTKLSKG	19
438	EYLYLEYNAIKEILP	19
473	VLPPHIFSGVPLTKV	19
614	ШIMFITIVFCAAGI	19
620	TIVFCAAGIVLVLH	19
753	SSLYRNILEKERELQ	19
793	AHEELKLMETLMYSR	19
818	NEYFELKANLHAEPD	19
5	IHLFYSSULACISLH	18
13	LACISLHSQTPVLSS	18
39	EKDGTMLINCEAKGI	18
65	RPFQLSLLNNGLTML	18
68	QLSLNNGLTMLHTN	18
76	LTMLHTNDFSGLTNA	18
137	NLEFLQADNNFITVI	18
146	NFITVIEPSAFSKLN	18
187	HLDLRGNQLQTLPYV	18
210	ILDLQLEDNKWACNC	18
227	LQLKTWLENMPPQSI	18
286	AATSSINDSRMMSTKT	18
302	SILKLPTKAPGLPY	18
404	EGSFMNLTRLQKLYL	18
421	NHLTKLSKGMFLGLH	18
426	LSKGMFLGLHNLEYL	18
428	KGMFLGLHNLEYLYL	18
462	KVLYLNNNLLQVLPP	18
465	YLNNNLQVLPPHIF	18
471	LQVLPPHIFSGVPLT	18
481	GVPLTKVNLKTNQFT	18
486	KVNLKTNQFTHLPVS	18
580	SYLMVTTPATTTNTA	18
592	NTADTILRSLTDAVP	18
616	IMFITIVFCAAGIV	18
617	MFITIVFCAAGIWV	18
675	ASLYEQHMVSPMVHV	18
703	EEERNEKEGSDAKHL	18
743	STEFLSFQDASSLYR	18
763	ERELQQLGITEYLRK	18

Table XLVI-V1-HLA-DRB-0101-15mers-158P1D7			Table XLVI-V1-HLA-DRB-0101- 15mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is speciied, the length of peptide is 15 amino acids, and the end position for each peptide is the start postion plus fouteen.			Each peptide is a portion of SEQ ID NO: 3; each start position Is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position polus fourteen.		
Pos	123456789012345	Ore	Pos	123456789012345	
768	QLGITEYLRKNIAQL	18	596	TILRSLTDAVPLSVL	
771	ITEYLRKNIAQLQPD	18	601	LTDAVPLSVILGLL	17
802	TLMYSRPRKVLVEQT	18	607	LLIMFIT	7
7	LFYSSLLACISLHSQ	17	609	VLILGLLIMFITIVF	
34	LCNCEEKDGTMLINC	17	625	AAGIVVIVHRRRR	17
35	CNCEEKDGTMLINCE	17	626	AGIVVLVLHRRRRYK	
44	MLINCEAKGIKMVSE	17	627	GIVLVLHRRRRYKK	17
66	PFQLSLINNGLTMLH	17	637	RRYKKKQVDEQMRDN	
67	FQLSLLNNGLTMLHT	17	706	RNEKEGSDAKHLQR	17
82	NDFSGLTNAISIHLG	17	711	GSDAKHLQRSLLEQE	17
89	NAISIHLGFNNIADI	17	741	NQSTEFLSFQDASSL	17
30	AISIHLGFNNIADIE	17	801	ETLMYSRPRKVLVEQ	17
92	SIHLGFNNIADIEIG	17	820	YreLKanLHAEPDY	17
111	LGLLKQLHINHNSLE	17	21	QTPVLSSRGSCDSLC	16
	QLHINHNSLEILKED	17	110	GLGLLKQLHINHNSL	16
148	ITVIEPSAFSKLNRL	17	123	SLEILKEDTFHGLEN	16
159	LNRLKVLILNDNAIE	17	142	QADNNFITVIEPSAF	16
164	VLILNDNAIESLPPN	17	147	FITVIEPSAFSKLNR	16
17	IESLPPNIFRFVPLT	17	160	NRLKVLILNDNAUES	16
226	LLQLKTWLENMPPQS	17	0	IGRILDLQLEDNKWA	6
247	CNSPPFFKGSILSRL	17	222	CNCDLLQLKTWLENM	16
254	KGSILSRLKKESICP	17	233	LENMPPQSIIGDWC	16
257	ILSRLKKESICPTPP	17	238	PQSIIGDVVCNSPPF	16
261	LKKESICPTPPVYEE	17	248	NSPPFFKGSILSRLK	16
278	DPSGSLHLAATSSIN	17	269	TPPVYEEHEDPSGSL	16
299	KTTSILKLPTKAPGL	17	271	PVYEEHEDPSGSLLL	16
318	TKPSTQLPGPYCPIP	17	319	KPSTQLPGPYCPIPC	16
341	SGLLIHCQERNIESL	17	321	STQLPGPYCPIPCNC	16
376	HSLMKSDLVEYFTLE	17	325	PGPYCPIPCNCKVLS	16
386	YFTLEMLHLGNNRIE	17	328	YCPIPCNCKVLSPSG	16
419	NGNHLTKLSKGMFLG	17	333	CNCKVLSPSGLLIHC	16
429	GMFLGLHNLEYLYLE	17	36	RKLILAGNIIHSLMK	16
438	YLYLEYNAIKEILPG	17	367	KLILAGNNIHSLMKS	16
45	MPKLKVLYLNNNLLQ	17	369	ILAGNIIHSLMKSDL	16
463	VLYLNNNLLQVLPPH	17	378	LMKSDLVEYFTLEML	16
464	LYLNNNLLQVLPPHI	17	381	SDLVEYFTLEMLHL	16
478	IFSGVPLTKVNLKTN	17	391	MLHLGNNRIEVLEEG	16
52	SCDLVGLQQWIQKLS	17	395	GNNRIEVLEEGSFMN	16
525	LVGLQQWIQKLSKNT	17	399	IEVLEEGSFMNLTRL	16
52	LQQWIQKLSKNTVTD	17	402	LEEGSFMNLTRLQKL	16
537	KNTVTDDILCTSPGH	17	434	LHNLEYLYLEYNAIK	16
53	TVTDDILCTSPGHLD	17	446	AIKEILPGTFNPMPK	16
546	CTSPGHLDKKELKAL	17	447	IKEILPGTFNPMPKL	16
576	PTQTSYLMVTTPATT	17	448	KEILPGTFNPMPKLK	16
586	TPATITNTADTILRS	17	500	SNILDDLDLLTOIDL	16

Table XLVI-V1-HLA-DRB-0101-

 15mers-158P1D7 Each peptide is a portion of SEQID NO: 3; each slart position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourtean.| Pos | 123456789012345 | score |
| :---: | :---: | :---: |
| 511 | QIDLEDNPWDCSCDL | 16 |
| 519 | WDCSCDLVGLQQWIQ | 16 |
| 542 | DDILCTSPGHLDKKE | 16 |
| 558 | KALNSEILCPGLVNN | 16 |
| 562 | SEILCPGLVNNPSMP | 16 |
| 563 | EILCPGLVNNPSMPT | 16 |
| 581 | YLMVTTPATTTNTAD | 16 |
| 603 | DAVPLSVLILGLIM | 16 |
| 658 | YSMYGHKTTHHTTER | 16 |
| 671 | ERPSASLYEQHMVSP | 16 |
| 689 | VYRSPSFGPKHLEEE | 16 |
| 719 | RSLLEQENHSPLTGS | 16 |
| 735 | MKYKTTNQSTEFLSF | 16 |
| 746 | FLSFQDASSLYRNIL | 16 |
| 749 | FQDASSLYRNILEKE | 16 |
| 769 | LGITEYLRKNIAQLQ | 16 |
| 810 | KVLVEQTKNEYFELK | 16 |
| 821 | FELKANLHAEPDYLE | 16 |

Table XLVI-V3-HLA-DRB-0101• 15mers-158P1D7		
Each peptide is a portion of SEQID NO: 7; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.		
Pos	,	
1	HMGAHEEL	
-	YEQHMG	
6	SASLYEQHMGAHE	
5	PSASLYEQHMGAHE	10
12	GAHEELKL	
9	LYEQHMGA	
	MGAHEELKLM	

Table XLVI-V4HLA-DRB-0101-

 15mers-158P1D7Each peptide is a portion of SEQ ID NO: 9 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

Pos	123456789012345	score
10	SLMKSILWSKASGRG	26
5	GNIIHSLMKSILWSK	24
9	HSLMKSILWSKASGR	24
14	SILWSKASGRGRREE	23
12	MKSILWSKASGRGRR	18
4	AGNIIHSLMKSILWS	17
2	LLAGNIIHSLMKSIL	16
1	LILAGNIIHSLMKS	14
13	KSLLWSKASGRGRRE	14
6	NIIISLMKSILWSSKA	13
3	LAGNIIHSLMKSILW	12

Table XLVII-V1-HLA-DRB-0301-15mers-158P1D7

Each peptide is a portion of SEQID
NO: 3 ; each start position is specifled, the length of peptlde is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

Pos	123456789012345	score
779	IAQLQPDMEAHYPGA	36
376	HSLMKSDLVEYFTLE	31
124	LEILKEDTFHGLENL	30
460	KLKVLYLNNNLLQVL	28
809	RKVLVEQTKNEYFEL	27
138	LEFLQADNNFITVIE	26
407	FMNLTRLQKLYYNGN	26
420	GNHLTKLSKGMFLGL	26
628	IVVLVLLRRRRYKKK	26
801	ETLMYSRPRKVLVEQ	26
121	HNSLEILKEDFHGL	25
372	GNIIHSLMKSDLVEY	25
396	NNRIEVLEEGSFMNL	25
428	KGMFLGLHNLEYLYL	25
499	VSNILDDLDLLTQID	25
503	LDDLDLLTQIDLEDN	25
810	KVLVEQTKNEYFELK	25
129	EDTFHGLENLEFLQA	24
163	KVLILNDNAIESLPP	22
238	PQSIGDVVCNSPPF	22
794	HEELKLMETLMYSRP	22
68	QLSLLNNGLTMLHTN	21
73	NNGLTMLHTNDFSGL	21
145	NNFITVIEPSAFSKL	21

Table XLVII-V1-HLA-DRB-0301- 15mers-158P1D7		
Each peptide is a portion of SEQID		
NO: 3: each slart position is		
specified, the length of peptide is 15 amino acids, and the end position		
for each peptide is the start position plus fourteen.		
	DNAIESLPPNIFRF	
	IEV	
	GSF	
	YNAIKEILPGTFNP	
	PVS	
537	KNTVTDDILCTSPG	
	TDD	
607	LSVLILGLLIMFITI	
	DEQ	
756	YRN	
	KLWIHLFYSSLLACI	
41	DGTMLINCEAKGIK	
	TVIEPSAFSKLNR	
185	LTHLDL	
	HLDL	
	GNQLQTLPY	
	析	
	HIGRILDLQLE	
	LDLQLE	
	IGDVVCNSPPFFKG	
	KGSISRI	
272	VYEEHEDPSGSLHL	
	NIESLSDLRPPPQN	
	LSDLRPPPQNPRKL	
431	FLGLHNLEYLYLEY	
	FNP	
463	VLYLNNNLLQVL	
549	PGHLDKKELKALNS	
612	LGLLIMFITIVFCAA	
679	EQHMVSPA	
71	QRSLLEQENHSPLTG	
768	QLGITEYLRKNIAQL	
50	AKGIKMVSEISVPPS	
56	VSEISVPPSRPFQLS	
58	EISV	
5	RPFQLSLLNNGLTML	
	FSGLTNAISIHLG	
10	IADIEIGAFNGLGL	
	DIEIGAFNGLGLLK	
	FNGLGLLKQLHINHN	
116	QLHINHNSLEILKED	19
	AIES	

Table XLVII-V1-HLA-DRB-0301. 15mers-158P1D7		
Each peplide is a portion of SEQ ID NO: 3; each start position is spedfied, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.		
Pos	123456789012345	score
179	IFRFVPLTHLDLRGN	19
183	VPLTHLDLRGNQLQT	19
200	YVGFLEHIGRILDLQ	19
208	GRILDLQLEDNKWAC	19
226	LLQLKTWLENMPPQS	19
301	TSILKLPTKAPGLIP	19
365	PRKLILAGNIIHSLM	19
375	IHSLMKSDLVEYFTL	19
413	LQKLYLNGNHLTKLS	19
415	KLYLNGNHLTKLSKG	19
423	LTKLSKGMFLGLHNL	19
429	GMFLGLHNLEYLYLE	19
459	PKLKVLYLNNNLLQV	19
461	LKVLYLNNNLLQVLP	19
468	NNLLQVLPPHIFSGV	19
486	KVNLKTNOFTHLPVS	19
547	TSPGHLDKKELKALN	19
554	KKELKALNSEILCPG	19
604	AVPLSVLILGLIMF	19
697	PKHLIEEEEERNEKEG	19
745	EFLSFQDASSLYRNI	19
763	ERELQQLGITEYLRK	19
826	NLHAEPDYLEVLEQQ	19
13	LACISLHSQTPVLSS	18
66	PFQLSLLNNGLTMLH	18
76	LTMLHTNDFSGLTNA	18
90	AISIHLGFNNIADIE	18
164	VLILNDNAIESLPPN	18
177	PNIFRFVPLTHLDLR	18
201	VGFLEHIGRILDLQL	18
222	CNCDLLQLKTWLENM	18
287	ATSSINDSRMSTKTT	18
293	DSRMSTKTTSILKLP	18
328	YCPIPCNCKVLSPSG	18
340	PSGLLIHCQERNIES	18
341	SGLLIHCQERNIESL	18
342	GLLIHCQERNIESLS	18
367	KLILAGNIIHSLMKS	18
381	SDLVEYFTLEMLHLG	18
391	MLHLGNNRIEVLEEG	18
406	SFMNLTRLQKLYLNG	18
430	MFLGLHNLEYLYLEY	18
437	LEYLYLEYNAIKEIL	18
452	PGTFNPMPKLKVLYL	18
454	TFNPMPKLKVLYLNN	18

Table XLVII-V1-HLA-DRB-0301• 15mers-158P1D7

Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position
for each pepilde is the start position plus fourteen.

Pos	123456789012345	score
478	IFSGVPLTKVNLKTN	18
484	LTKVNLKTNQFTHLP	18
507	DLTQIDLEDNPWDC	18
514	LEDNPWDCSCDLVGL	18
529	QQWIQKLSKNTVTDD	18
620	TIVFCAAGIVLVLH	18
627	GIVVLLHRRRRYKK	18
629	WLVLHRRRRYKKKQ	18
641	KKQVDEQMRDNSPVH	18
684	SPMVHVYRSPSFGPK	18
707	NEKEGSDAKHLQRSL	18
719	RSLLEQENHSPLGGS	18
726	NHSPLTGSNMKYKTT	18
744	TEFLSFQDASSLYRN	18
31	CDSLCNCEEKDGTML	17
96	GFNNIADIEIGAFNG	17
114	LKQLHINHNSLEILK	17
137	NLEFLQADNNFITVI	17
210	ILDLQLEDNKWACNC	17
250	PPFFKGSILSRLKKE	17
255	GSILSRLKKESICPT	17
269	TPPVYEEHEDPSGSL	17
389	LEMLHLGNNRIEVLE	17
509	LTQIDLEDNPWDCSC	17
522	SCDLVGLQQWIQKLS	17
525	LVGLQQWIQKLSKNT	17
630	VLVLHRRRRYKKKQV	17
639	YKKKQVDEQMRDNSP	17
683	VSPMVHVYRSPSFGP	17
755	LYRNILEKERELQQL	17
757	RNILEKERELQQLGI	17
788	AHYPGAHEELKLMET	17
816	TKNEYFELKANLHAE	17

Table XLVII-V3.HLA-DRB-0301-15mers-158P1D7

Each peptide is à portion of SEQID NO: 7; each start position is
specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

Pos	123456789012345	score
11	EQHMGAHEE KLMET	27

Table XLVII-V4-HLA-DRB-0301•
15mers-158P1D7
Each peptide is a portion of SEQ ID NO: 9; each start position is
specified, the length of peptide is 15 amino acids, and the end position
for each peptide is the start position
plus fourtien.

Pos	123456789012345	score
5	GNIIHSLMKSILWSK	25
9	HSLMKSILWSKASGR	14
12	MKSILWSKASGRGRR	13
4	AGNIIHSLMKSILWS	12

Table:XLVIII-V1-HLA-DR1-0401- 		
Each peptide is a portion of SEQ ID NO: 3; each slart position is specifled, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.		
Pos	123456789012345	score
81	TNDFSGLTNAISIHL	28
137	NLEFLQADNNFITVI	28
153	PSAFSKLNRLKVLIL	28
179	IFRFVPLTHLDLRGN	28
404	EGSFMNLTRLQKLYL	28
578	QTSYLMVTTPATTTN	28
2	KLWIHLFYSSLLACI	26
66	PFQLSLLNNGLTMLH	26
84	FSGLTNAISIHLGFN	26
108	FNGLGLLKQLHINHN.	26
138	LEFLQADNNFITVIE	26
210	ILDLQLEDNKWACNC	26
280	SGSLHLAATSSINDS	26
388	TLEMLHLGNNRIEVL	26
398	RIEVLEEGSFMNLTR	26
437	LEYLYEYNAIKEIL	26
460	KLKVLYLNNNLQVL	26
503	LDDLDLLTQIDLEDN	26
522	SCDLVGLQQWIQKLS	26
554	KKELKALNSEILCPG	26
683	VSPMVHVYRSPSFGP	26
719	RSLEQENHSPLTGS	26
1.	MKLWIHLFYSSLLAC	22
6	HLFYSSLLACISLHS	22
94	HLGFNNIADIEIGAF	22
105	IGAFNGLGLLKQLHI	22
129	EDTFHGLENLEFLQA	22
144	DNNFITVIEPSAFSK	22
177	PNIFRFVPLTHLDLR	22
325	PGPYCPIPCNCKVLS	22
383	LVEYFTLEMLHLGNN	22

Table XLVIII-V1-HLA-DR1-0401-15mers-158P1D7		
NO: 3; each start position is specified, the length of pepilde is 15 amino acids, and the end position		
for each peptide is the stat position plus fourteen.		
Pos	123456789012345	e
414	QKLYLNGNHLTKLSK	22
428	KGMFLGLHNLEYLYL	22
436	NLEYLYLEYNAIKEI	22
476	PHIFSGVPLTKVNLK	22
491	TNQFTHLPVSNILDD	22
615	LIMFITIVFCAAGIV	22
620	TIVFCAAGIVVLVLH	22
655	HLQYSMYGHKTTHHT	22
743	STEFLSFQDASSLYR	22
746	FLSFQDASSLYRNIL	22
787	EAHYPGAHEELKLME	22
9	YSSULACISLHSQTP	20
10	SSLLACISLHSQTPV	20
13	LACISLHSQTPVLSS	20
43	TMLINCEAKGIKAVS	20
50	AKGIKMVSEISVPPS	20
52	GIKMVSEISVPPSRP	20
53	IKMVSEISVPPSRPF	20
73	NNGLTMLHTNDFSGL	20
90	AISIHLGFNNIADIE	20
102	DIEIGAFNGLGLLKQ	20
111	LGLLKQLHINHNSLE	20
123	SLEILKEDTFHGLEN	20
124	LEILKEDTFHGLENL	20
132	FHGLENLEFLQADNN	20
135	LENLEFLQADNNFIT	20
156	FSKLNRLKVLILNDN	20
159	LNRLKVLILNDNAIE	20
161	RLKVLILNDNAIESL	20
163	KVLILNDNAIESLPP	20
182	FVPLTHLDLRGNQLQ	20
198	LPYVGFLEEIGRILD	20
201	VGFLEHIGRILDLQL	20
204	LEHIGRILDLQLEDN	20
207	IGRILDLQLEDNKWA	20
223	NCDLLQLKTWLENMP	20
238	PQSIIGDVCNSPPF	20
255	GSILSRLKKESICPT	20
258	LSRLKKESICPTPPV	20
269	TPPVYEEHEDPSGSL	20
300	TTSILKLPTKAPGLI	20
310	APGLIPYITKPSTQL	20
311	PGLIPYITKPSTQLP	20
340	PSGLLIHCQERNIES	20
352	IESLSDLRPPPQNPR	20

Table XLVIII-V1-HLA-DR1-0401-
15mers-158P1D7

Each peptide is a portion of SEQID
NO: 3 ; each start position is
specified, the length of peptide is 15 amino acids, and the end position
for each peptide is the start position plus fourteen.

Pos	123456789012345	score
365	PRKLILAGNIIHSLM	20
372	GNIIHSLMKSOLVEY	20
380	KSDLVEYFTLEMLHL	20
381	SDLVEYFTLEMLHLG	20
386	YFTLEMLHLGNNRIE	20
407	FMNLTRLQKLYLNGN	20
410	LTRLQKLYLNGNHLT	20
413	LQKLYLNGNHLTKLS	20
431	FLGLHNLEYLYLEYN	20
434	LHNLEYLYLEYNAIK	20
455	FNPMPKLKVLYLNNN	20
458	MPKLKVLYLNNNLQ	20
461	LKVLYLNNNLLQV1P	20
467	NNNLLQVLPPHIFSG	20
481	GVPLTKVNLKTNQFT	20
499	VSNILDDLDLLTQID	20
500	SNILDDLDLLTQIDL	20
506	LDLLLQIDLEDNPWD	20
509	LTQIDLEDNPWDCSC	20
525	LVGLQQWIQKLSKNT	20
529	QQWIQKLSKNTVTDD	20
537	KNTVTDDILCTSPGH	20
566	CPGLVNNPSMPTQTS	20
572	NPSMPTQTSYLMVTT	20
581	YLMVTTPATTTNTAD	20
594	ADTILRSLTDAVPLS	20
598	LRSLTDAVPLSVLIL	20
604	AVPLSVLILGLLIMF	20
606	PLSVLILGLLIMFIT	20
608	SVLILGLLIMFITIV	20
609	VLILGLLIMFITIVF	20
612	LGLLIMFITIVFCAA	20
619	ITIVFCAAGIVLVL	20
626	AGIVLVLHRRRRYK	20
627	GIWLVLHRRRRYKK	20
641	KKQVDEQMRDNSPVH	20
757	RNIILEKERELQQLGI	20
768	QLGITEYLRKNIAQL	20
808	PRKVLVEQTKNEYFE	20
19	HSQTPVLSSRGSCDS	18
35	CNCEEKDGTMLINCE	18
39	EKDGTMLINCEAKGI	18
65	RPFQLSLLNNGLTML	18
77	TMLHTNDFSGLTNAL	18
113	LLKQLHINHNSLEIL	18

Table XLVIII.V1-HLA-DR1-0401-15mars-158P1D7
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

Pos	123456789012345	score
134	GLENLEFLQADNNFI	18
148	NFITVEPSAFSKLN	18
148	TVIEPSAFSKLNRLK	18
160	NRLKVLILNDNAIES	18
183	VPLTHLDLRGNQLQT	18
215	LEDNKWACNCDLLQL	18
220	WACNCDLLQLKTWLE	18
251	PFFKGSILSRLKKES	18
252	FFKGSILSRLKKESI	18
272	VYEEHEDPSGSLHLA	18
281	GSLHLAATSSINDSR	18
287	ATSSINDSRMSTKTT	18
343	LLIHCQERNIESLSD	18
368	LILAGNIIHSLMKSD	18
369	ILAGNIIHSLMKSDL	18
488	NLKTNQFTHLPVSNI	18
514	LEDNPWDCSCDLVGL	18
553	DKKELKALNSEILCP	18
563	EILCPGLVNNPSMPT	18
564	ILCPGLVNNPSMPTQ	18
582	LMVTTPATTTNTADT	18
591	TNTADTILRSLTDAV	18
673	PSASLYEQHMVSPMV	18
698	KHLEEEEERNEKEGS	18
704	EERNEKEGSDAKHLQ	18
711	GSDAKHLQRSLLEQE	18
749	FQDASSLYRNLEKKE	18
760	LEKERELQQLGITEY	18
807	RPRKVLVEQTKNEYF	18
313	LPYITKPSTQLPGP	17
528	LQQWIQKLSKNTVTD	17
658	YSMYGHKTTHHTTER	17
818	NEYFELKANLHAEPD	17
5	IHLFYSSLLACISLH	16
197	TLPYVGFLEHIGRIL	16
200	YGGFLEHIGRILDLQ	16
217	DNKWACNCDLLQLKT	16
229	LKTWLENMPPQSIIG	16
250	PPFFKGSILSRLKKE	16
384	VEYFTIEMLHLGNNR	16
441	YLEYNAIKEILPGTF	16
452	PGTFNPMPKLKVLYL	16
462	KVLYLNNNLLQVLPP	16
675	ASLYEQHMVSPMVHV	16
687	VHVYRSPSFGPKHLE	16

Table XLVIII-V1-HLA-DR1-0401-15mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 15 amino acds, and the end position for each peptide is the start postion plus fourtoen.		
Pos	123456789012345	score
734	NMKYKTTNQSTEFLS	16
753	SSLYRNILEKERELQ	16
802	TLMYSRPRKVLVEQT	16
817	KNEYFELKANLHAEP	16
22	TPVLSSRGSCDSLCN	15
185	LTHLDLRGNQLQTLP	15
293	DSRMSTKTTSILK-P	15
484	LTKVNLKTNQFTHLP	15
629	WLVLHRRRRYKKKQ	15
630	VLVLHRRRRYKKKQV	15
732	GSNMKYKTTNQSTEF	15
756	YRNILEKERELQQLG	15
801	ETLMYSRPRKVVEQ	15
15	CISLLSSQTPVLSSRG	14
42	GTMLINCEAKGIKMV	14
56	VSEISVPPSRPFQLS	14
58	EISVPPSRPFQLSLL	14
68	QLSLLNNGLTMLHTN	14
69	LSLLNNGLTMLHTND	14
76	LTMLHTNDFSGLTNA	14
88	TNAISIHLGFNNIAD	14
92	SIHLGFNNIADIEIG	14
97	FNNIADIEIGAFNGL	14
100	LADIEIGAFNGLGLL	14
110	GLGLLKQLHINHNSL	14
114	LKQLHINHNSLEILK	14
116	QLHINHNSLEILKED	14
121	HNSLEILKEDTFHGL	14
145	NNFITVIEPSAFSKL	14
147	FITVIEPSAFSKLNR	14
148	ITVIEPSAFSKLNRL	14
162	LKVLILNDNAIESLP	14
164	VLILNDNAIESLPPN	14
169	DNAIESLPPNIFRFV	14
172	IESLPPNIFRFVPLT	14
176	PPNIFRFVPLTHLDL	14
187	HLDLRGNQLQTLPYV	14
192	GNQLQTLPWGFLEH	14
195	LQTLPYVGFLEHIGR	14
208	GRILDLQLEDNKWAC	14
212	DLQLEDNKWACNCDL	14
230	KTWLENMPPQSIIGD	14
239	QSIIGDWCNSPPFF	14
243	GDVVCNSPPFFKGSI	14
282	SLHLAATSSINDSRM	14

$\begin{gathered} \text { Table XLVIII-V1-HLA-DR1-0401- } \\ \text { 15mers-158P1D7 } \\ \hline \end{gathered}$		
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.		
Pos	123456789012345	score
288	TSSINDSRMSTKTTS	14
314	IPYITKPSTQLPGPY	14
328	YCPIPCNCKVLSPSG	14
334	NCKVLSPSGLLIHCQ	14
341	SGLLIHCQERNIESL	14
342	GLLIHCQERNIESLS	14
349	ERNIESLSDLRPPPQ	14
355	LSDLRPPPQNPRKLI	14
366	RKLILAGNIIHSLMK	14
367	KLILAGNIIHSLMKS	14
376	HSLMKSDLVEYFTLE	14
389	LEMLHLGNNRIEVE	14
391	MLHLGNNRIEVLEEG	14
396	NNRIEVLEEGSFMNL	14
399	IEVLEEGSFMNLTRL	14
405	GSFMNLTRLQKLYLN	14
415	KLYLNGNHLTKLSKG	14
420	GNHLTKLSKGMFLGL	14
423	LTKLSKGMFLGLHNL	14
427	SKGMFLGLHNLEYLY	14
429	GMFLGLHNLEYLYLE	14
439	YLYLEYNAIKEILPG	14
444	YNAIKEILPGTFNPM	14
447	IKEILPGTFNPMPKL	14
448	KEILPGTFNPMPKLK	14
463	VLYLNNNLLQVLPPH	14
468	NNLLQVLPPHIFSGV	14
471	LQVLPPHIFSGVPLT	14
475	PPHIFSGVPLTKVNL	14
479	FSGVPLTKVNLKTNQ	14
486	KVNLKTNQFTHLPVS	14
496	HLPVSNILDDLOLLT	14
511	QIDLEDNPWDCSCDL	14
523	CDLVGLQQWIQKLSK	14
541	TDDILCTSPGHLDKK	14
557	LKALNSEILCPGLVN	14
561	NSEILCPGLVNNPSM	14
567	PGLVNNPSMPTQTSY	14
579	TSYLMVTTPATTTNT	14
580	SYLMVTTPATTTNTA	14
595	DTILRSLTDAVPLSV	14
611	ILGLLIMFITIVFCA	14
613	GUMFITIVFCAAG	14
614	LLIMFITIVFCAAGI	14
616	IMFITIVFCAAGIVV	14

$\begin{array}{\|c\|} \hline \text { Table XLVIII-V1-HLA-DR1-0401- } \\ \text { 15mers-158P1D7 } \\ \hline \end{array}$		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.		
Pos	123456789012345	SCO
618	FITIVFCAAGIWLV	14
625	AAGIVLVLHRRRRY	14
628	IWLVLHRRRRYKKK	14
645	DEQMRDNSPVHLQYS	14
651	NSPVHLQYSMYGHKT	14
653	PVHLQYSMYGHKTTH	14
657.	QYSMYGHKTTHHTTE	14
680	QHMVSPMVHVYRSPS	14
684	SPMVHVYRSPSFGPK	14
686	MVHVYRSPSFGPKHL	14
697	PKHLEEEEERNEKEG	14
718	QRSLLEQENHSPLTG	14
727	HSPLTGSNMKYKTTN	14
744	TEFLSFQDASSLYRN	14
763	ERELQQLGITEYLRK	14
766	LQQLGITEYLRKNIA	14
772	TEYLRKNIAQLQPDM	14
776	RKNIAQLQPDMEAHY	14
779.	LAQLQPDMEAHYPGA	14
794	HEELKLMETLMYSRP	14
797	LKLMETLMYSRPRKV	14
800	METLMYSRPRKVLVE	14
810	KVLVEQTKNEYFELK	14
820	YFELKANLHAEPDYL	14
824	KANLHAEPDYLEVLE	14

Table XLVIII-V3-HLA-DR1.0401-15mers-158P1D7

Each peptide is a portion of SEQ ID NO: 7; each start position is specified, the length of.peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

Pos	123456789012345	score
5	PSASLYEQHMGAHEE	18
11	EQHMGAHEELKLMET	14
1	TTERPSASLYEQHMG	12
3	ERPSASLYEQHMGAH	12
9	LYEQHMGAHEELKLM	12
10	YEQHMGAHEELKLME	12
12	QHMGAHEELKLMETL	12
14	MGAHEELKLMETLMY	12
7	ASLYEQHMGAHEELK	10
6	SASLYEQHMGAHEEL	8

Table XLVIII-V4-HLA-DR1-0401-15mers-158P1D7

Each peptide is a portion of SEQ ID NO: 9; each start position is specified, the length of peptide is 15 amino acids, and the end postion
for each peptide is the start position plus fourteen.

Pos	123456789012345	score
5	GNIIHSLMKSILWSK	20
9	HSLMKSILWSKASGR	20
1	LILAGNIIHSLMKSI	18
2	ILAGNIIHSLMKSIL	18
10	SLMKSILWSKASGRG	18
14	SILWSKASGRGREE	16
4	AGNIIHSLMKSILWS	14
8	IHSLMKSILWSKASG	14
13	KSILWSKASGRGRRE	9

Table XLIX-V1-HLA-DRB1-1101-15mers-158P1D7		
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peptide is 15 amino adds, and the end position for each peptide is the start position plus fourteen.		
Pos	123456789012345	score
683	VSPMVHVYRSPSFGP	26
153	PSAFSKLRRLKVLIL	25
452	PGTFNPMPKLKVLYL	25
179	IFRFVPLTHLDLRGN	24
404	EGSFMNLTRLQKLYL	24
615	LIMFITIVFCAAGIV	24
627	GIVVLVLHRRRRYKK	24
6	HLFYSSLLACISLHS	23
81	TNDFSGLTNAISIHL	23
441	YLEYNAIKEILPGTF	23
626	AGIVVLVHRRRRYK	23
144	DNNFITVIEPSAFSK	22
407	FMNLTRLQKLYLNGN	22
420	GNHLTKLSKGMFLGL	22
680	QHMVSPMVHVYRSPS	22
173	ESLPPNIFRFVPLTH	21
201	VGFLEHIGRILDLQL	21
328	YCPIPCNCKVLSPSG	21
769	LGITEYLRKNIAQLQ	21
198	LPYVGFLEHIGRILD	20
239	QSIIGDWCNSPPFF	20
254	KGSILSRLKKESICP	20
255	GSILSRLKKESICPT	20
301	TSILKLPTKAPGLIP	20
311	PGLIPYITKPSTQLP	20

Table XLIX-V1-HLA-DRB1-1101-

	-	
Each peptide is a portion of SEQ ID NO: 3 ; each start position is specified, the length of peplide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.		
Pos	123456789012345	score
349	ERNIESLSDLRPPPQ	20
372	GNIIHSLMKSDLVEY	20
529	QQWIQKLSKNTVTDD	20
616	IMFITIVFCAAGIW	20
641	KKQVDEQMRDNSPVH	20
797	LKLMETLMYSRPRKV	20
820	YFELKANLHAEPDYL	20
384	VEYFTLEMLHLGNNR	19
595	DTILRSLTDAVPLSV	19
802	TLMYSRPRKVLVEQT	19
53	IKMVSEISVPPSRPF	18
132	FHGLENLEFLQADNN	18
300	TTSILKLPTKAPGL	18
414	QKL YLNGNHLTKL.SK	18
491	TNQFTHLPVSNILDD	18
655	HLQYSMYGHKTTHHT	18
817	KNEYFELKANLHAEP	18
105	IGAFNGLGLLKQLHI	17
197	TLPYVGFLEHIGRIL	17
383	LVEYFTLEMLHLGNN	17
476	PHIFSGVPLTKVNLK	17
516	DNPWDCSCDLVGLQQ	17
625	AAGIVVLVHRRRRY	17
628	IVLVLHRRRRYKKK	17
1	MKLWIHLFYSSLLAC	16
18	LHSQTPVLSSRGSCD	16
64	SRPFQLSLLNNGLTM	16
94	HLGFNNIADIEIGAF.	16
129	EDTFHGLENLEFLQA	16
177	PNIFRFVPLTHLDLR	16
229	LKTWLENMPPQSIIG	16
270	PPVYEEHEDPSGSLH	16
297	STKTTSILKLPTKAP	16
325	PGPYCPIPCNCKVLS	16
427	SKGMFLGLHNLEYLY	16
428	KGMFLGLHNLEYLYL	16
436	NLEYLYLEYNAIKEI	16
578	QTSYLMVTTPATTTN	16
743	STEFLSFQDASSLYR	16
753	SSLYRNILEKERELQ	16
754	SLYRNILEKERELQQ	16
768	QLGITEYLRKNIAQL	16
818	NEYFELKANLHAEPD	18
43	TMLINCEAKGIKMVS	15
46	INCEAKGIKMVSEIS	15

Table XLIX-V1-HLA-DRE1-1101-15mers-158P1D7

Each peptide is a portion of SEQ ID NO: 3; each start position is
specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

	123456789012345	
49	EAKGIKMVSEISVPP	5
107	AFNGLGL	
14	NNFITVIEPSAFSK	15
182	FVPLTHLDLRGNQL	15
252	FFKGSILSRLKKE	15
314	IPYITKPSTQLPGP	15
342	GLLIH	15
368	LILAGNIIHSLMKSD	15
591	TNTADT	
602	TDAVPLSVLILG	5
	VVLVLHRRRRYKKK	
630	VLVLHRRRRYKKKK	
673	PSASLYEQHMVSPM	
	GSDAKHLQRSLEQ	
749	FQDASSLYRNILEK	
756	YRNILEKERELQQLG	15
801	ETLMYSRPRKVLVEQ	
19	HSQTPVLSSRGSCDS	
39	EKDGTMLINCEAK	
55	MVSEISVPPSR	
73	NNGLTMLHTNDFSG	
	GLGLLKQLHINHNSL	
	LLKQLHINHNSLEIL	
	NHNSLEILKED	
227	LQLKTWLENMPPQ	
23	PQSIIGDWCNSPPF	
	PTPPVYEEHEDPSGS	
	HEDPSGSLHLAATS	
	INDSRMSTKTTSILK	
	LS	
	NIESLSDLRPPP	
	EYFTLEMLHLGNN	
	TLEMLHLGNNRIEVL	
	YLNGNHLTKLSKG	
	NNLLQVLPPHIFSG	
469	NLLQVLPPHIFSG	
	IFSGVPLTKVNLKTN	
	GVPLTKVNLKTNQF	
5	LDLITQIDLEDNPWD	
	VGLQQWIQKLSKNT	
537	KNTVTDDILCTSPGH	
54	CTSPGHLDKKELKAL	
5	EILCPGLVNNPSMPT	14
	TQTSYLMVTTPATTT	

Table XLIX-V1•HLA-DRB1-1101-
Each peptide is a portion of SEQ ID NO: 3; each start position is specified, the length of peptide is 15 amino acids, and the end position
for each peptide is the start position plus fourtien.

Pos	123456789012345	score
604	AVPLSVLILGLIM	14
664	KTTHHTTERPSASLY	14
681	HMVSPMVHVYRSPSF	14
701	EEEEERNEKEGSDAK	14
719	RSLLEQENHSPLTGS	14
781	QLQPDMEAHYPGAHE	14
809	RKVLVEQTKNEYFEL	14
15	CISLHSQTPVLSSRG	13
41	DGTMLINCEAKGIKM	13
66	PFQLSLINNGLTMLH	13.
85	SGLTNAISIHLGFNN	13
90	AISIHLGFNNIADIE	13
156	FSKLNRLKVLILNDN	13
159	LNRLKVLILNDNAIE	13
169	DNAIESLPPNIFRFV	13
223	NCDLLQLKTWLENMP	13
240	SIIGDVCNSPPFFK	13
321	STQLPGPYCPIPCNC	13
396	NNRIEVLEEGSFMNL	13
458	MPKLKVLYLNNNLLQ	13
460	KLKVLYLNNNLLQVL	13
464	LYLNNNLLQVLPPHI	13
472	QVLPPHIFSGVPLTK	13
496	HLPVSNILDDLDLLT	13
522	SCDLVGLQQWIQKLS	13
525	LVGLQQWIQKLSKNT	13
554	KKELKALNSEILCPG	13
606	PLSVLILGLLIMFIT	13
609	VLILGLLIMFITIVF	13
611	ILGLLIMFITIVFCA	13
614	ШIMFITIVFCAAGI	13
9	YSSLLACISLHSQTP	12
10	SSLLACISLHSQTPV	12
12	LLACISLHSQTPVLS	12
22	TPVLSSRGSCDSLCN	12
31	CDSLCNCEEKDGTML	12
50	AKGIKMVSEISVPPS	12
52	GIKMVSEISVPPSRP	12
75	GLTMLHTNDFSGLTN	12
97	FNNIADIEIGAFNGL	12
99	NIADIEIGAFNGLGL	12
108	FNGLGLLKQLHINHN	12
111	LGLLKQLHINHNSLE	12
121	HNSLEELLKEDTFHGL	12
123	SLEILKEDTFHGLEN	12

Table XLIX.V1-HLA-DRB1-1101-

 15mers-158P1D7Each peptide is a portion of SEQID NO: 3; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourtien.

Pos	123456789012345	score
135	LENLEFLQADNNFIT	12
142	QADNNFITVIEPSAF	12
160	NRLKVLIL NDNAIES	12
161	RLKVLILNDNAIESL	12
163	KVLILNDNAIESLPP	12
166	ILNDNAIESLPPNIF	12
192	GNQLQTLPYVGFLEH	12
195	LQTLPYVGFLEHIGR	12
200	YVGFLEHIGRILDLQ	12
204	LEHIGRILDLQLEDN	12
207	IGRILDLQLEDNKWA	12
210	ILDLQLEDNKWACNC	12
226	LLQLKTMLENMPPQS	12
230	KTWLENMPPQSIIGD	12
250	PPFFKGSILSRLKKE	12
260	RLKKESICPTPPVYE	12
269	TPPVYEEHEDPSGSL	12
279	PSGSLHLAATSSIND	12
310	APGLIPYITKPSTQL	12
331	IPCNCKVLSPSGLL	12
352	IESLSDLRPPPQNPR	12
366	RKLILAGNIIHSLMK	12
386	YFTLEMLHLGNNRIE	12
395	GNNRIEVLEEGSFMN	12
410	LTRLQKLYLNGNHLT	12
431	FLGLHNLEYLYLEYN	12
434	LHNLEYLYLEYNAIK	12
444	YNAIKEILPGTFNPM.	12
448	KEILPGTFNPMPKLK	12
455	FNPMPKLKVLYLNNN	12
465	YLNNNLLQVLPPHIF	12
467	NNNLLQVLPPHIFSG	12
470	LLQVLPPHIFSGVPL	12
500	SNILDDLDLLITQIDL	12
503	LODLOLLTQIDLEDN	12
511	QIDLEDNPWDCSCDL	12
538	NTVTDDILCTSPGHL	12
539	TVTODILCTSPGHLD	12
551	HLDKKELKALNSEIL	12
557	LKALNSEILCPGLVN	12
562	SEILCPGLVNNPSMP	12
569	LVNNPSMPTQTSYLM	12
576	PTQTSYLMVTTPATT	12
608	SVLILGLLIMEITIV	12
613	GLLIMFITIVFCAAG	12

Table XLIX-V1.HLA-DRB1-1101-15mers-158P107
Each paptide is a portion of SEQID NO: 3 ; each start position is specified, the length of peptlde is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

Pos	123456789012345	score
642	KQVDEQMRDNSPVHL	12
648	MRDNSPVHLQYSMYG	12
651	NSPVHLQYSMYGHKT	12
674	SASLYEQHMVSPMVH	12
686	MVHVYRSPSFGPKHL	12
718	QRSLLEQENHSPLTG	12
732	GSNMKYKTTNQSTEF	12
741	NQSTEFLSFQDASSL	12
763	ERELQQLGITEYLRK	12
773	EYLRKNIAQLQPDME	12
776	RKNIAQLQPDMEAHY	12
780	AQLQPDMEAHYPGAH	12
794	HEELKLMETLMYSRP	12

Tabla XLIX-V3-HLA-DRB-1101-15mers-158P1D7

Each pepilde is a portion of SEQ ID NO: 7; each start position is
specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.

Pos	123456789012345	score

5	PSASLYEQHMGAHEE	14
7	ASLYEQHMGAHEELK	10
9	LYEQHMGAHEELKLM	8
13	HMGAHEELKLMETLM	8
11	EQHMGAHEELKLMET	7
3	ERPSASLYEQHMGAH	6
4	RPSASLYEQHMGAHE	6
6	SASLYEQHMGAHEEL	6
8	SLYEQHMGAHEELKL	6
14	MGAHEELKLMELMY	6

Table XLIX-V4-HLA-DRB-1101-15mers-158P1D7

Each peptide is a portion of SEQID
NO: $9 ;$ each start position is
specified, the length of peptide is 15 amino acids, and the end position
for each peptide is the start position plus fourteen.

Pos	123456789012345	score
5	GNIIHSLMKSILWSK	21
9	HSLMKSILWSKASGR	18

Table XLIX-V4-HLA-DRB-1101-		
15mers-158P1D7		
1	LILAGNIIHSLMKSI	15
11	LMKSILWSKASGRGR	14
13	KSiLWSKASGRGRRE	14
10	SLMKSILWSKASGRG	12
14	SILWSKASGRGRREE	11

Table XXII-158P1D7 v. 6 - HLA-A1-9-mers		
Each peplide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
Pos	123456789	
11	SFGPKHLEE	12
10	PSFGPKHLE	
1	GNIIHSLMN	
7	LMNPSFGPK	7

$\begin{array}{\|c\|} \hline \text { Table XXIII - 158P1D7 } \\ \text { v. } 6 \text {-HLA-A0201-9-mers } \end{array}$		
Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 9 amino aclds, and the end position for each peptide is the start position plus eight.		
S	123456789	
6	SLMNPSFGP	
2	NIIHSLMNP	
7	LMNPSFGP1	
	IIHSLMNPS	
9	NPSFGPKHL	10
11	SFGPKHLEE	8

$\begin{gathered} \text { Table XXIV - 158P1D7 v. } 6 \\ \text { - HLA-A0203-9-mers } \end{gathered}$		
Pos	123456789	score
	No results found	

Table XXV - 158P1D7 v.6-HLA-A3-9-mers		
Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 9 amino acids, and the end position for each peptide Is the start position plus elght.		
Pos	123456789	sco
7	LMNPSFGPK	
2	NIIHSLMNP	12
6	SLMNPSFGP	12
3	IHSLMNPS	10
15	KHLEEEEER	10
4	IHSLMNPSF	
1	GNIIHSLMN	8
11	SFGPKHLEE	8
8	MNPSFGPKH	7

Table XXVI-158P1D7 v. 6 - HLA-A26-9-mers		
Each peptide is a portion of SEQID NO: 13; each start position is specifled, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight.		
0s	123456789	
2	NIIHSLMNP	1
4	IHSLMNPSF	
9	SFFGPK	
1	GNIIHSLMN	
3	IIHSLMNPS	6

Table XXVII - 158P1D7 v. 6 - HLA-B0702-9-mers

[^3]

$\begin{aligned} & \hline \text { Table XXXII-158P1D7 } \\ & \text { v. } 6 \text {-HLA-B4402-9-mers } \end{aligned}$		
Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of pepide is 9 amino acids, and the end position for each peptide is the start posilion plus elght.		
	123	
	NPSFGPK	
	IHSLMNPSF	

[^4]| Each peptide is a portion of SEQ ID NO: 13; each slart position is specified, the length of peptide is 9 amino acids, and the end position for each peptide is the start position plus eight. | | |
| :---: | :---: | :---: |
| Pos | 123456789 | |
| 析 | NPSFGPKHL | 20 |
| 12 | GPKHLEEE | 1 |
| 13 | GPKHLEEEE | 10 |

> Table XXXIX - 158P1D7 v. 6 - HLA-A0702-10-mers

> Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine. Pos 1234567890 score

$\begin{aligned} & \text { Table XXXIX - 158P1D7 } \\ & \text { v. } 6 \text {-HLA-A0702-10-mers } \end{aligned}$		
Each peptide is a portion of SEQID NO: 13; each start position is specified, the length of peptide is 10 amino acids, and the end position for each peptide is the start position plus nine.		
Pos	1234567880	
10	NP	
	MN	
14	GPKHLEEEE	
	IIHSLMNPS	

Table XLIV - 158P1D7 v.6
-HLA-B4402-10-mers

Each peptide is a portion of	
SEQ.ID NO: 13; each start	
position is specified, the	
length of peptide is 10	
amino acids, and the end	
position for each peptide is	
the slart position plus nine.	
Pos	1234567890
9	score
4	MNPSFGPKHL
4	IIHSLMNPSF

Table XLVI - 158P1D7 v. 6 - HLA-
DRB 0101-15-mers

Each peptide is a portion of SEQ		
ID NO: 13 ; each start position is		
speclified, the length of peptide is		
15 amino acids, and the end		
position for each peptide is the		
start position plus fourteen.		
Pos	123456789012345	score
7	GNIIHSLMNPSFGPK	24
11	HSLMNPSFGPKHLEE	18
9	IHSLLMNPSFGPKHL	17
1	RKLILAGNIIHSLMN	16
2	KLILAGNIIHSLMNP	16
4	ILAGNIIHSLMNPSF	16
6	AGNIIHSLMNPSFGP	16
12	SLMNPSFGPKHLEEE	16
3	LILAGNIIHSLMNPS	14
8	NIIHSLMNPSFGPKH	13

Table XLVII - 158P1D7 v.6- HLA-DRB -0301-15-mers
Each peptide is a portion of SEQ
ID NO: 13; each start position is
specified, the length of peptide is
15 amino aclds, and the end
position for each peptide is the
start position plus fourteen.
Pos 123456789012345

Table XLVII - 158P1D7 v.6-HLA-DRB -0301-15-mers		
Each peptide is a portion of SEQ ID NO: 13; өach start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.		
Pos	123456789012345	
	KLILAGNIIHSLMN	
	AGNIIHSL	
	RKLILAGNIII	
11	HSLMNPSFGPKHEE	

$\begin{gathered} \text { Table XLVIII - 158P1D7 v.6- } \\ \text { HLA-DRB 0410-15-mers } \\ \hline \end{gathered}$		
Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptide is 15 amino acids, and the end position for each peptide is the start position plus fourteen.		
Pos	123456789012345	score
7	GNIIHSLMNPSFGPK	20
3	LILAGNIIHSLMNPS	18
4	ILAGNIIHSLMNPSF	18
1	RKLILAGNIIHSLMN	14
2	KLILAGNIIHSLMNP	14
6	AGNIIHSLMNPSFGP	14
10	IHSLMNPSFGP.KHLE	14
12	SLMNPSFGPKHLEEE	12

$\begin{gathered} \text { Table XLIX - 158P1D7 v. } 6 \text { - HLA- } \\ \text { DRB 1101-15-mers } \\ \hline \end{gathered}$		
Each peptide is a portion of SEQ ID NO: 13; each start position is spectiled, the length of peptde is 15 amino acids; and the end postion for each peptide is the start position plus fourteen.		
Pos	123456789012345	
	LILAGNIIHSLMNPS	
	RKLILAGNIIHSLMN	12
6	AGNIIHSLMNPSFG	

Table XUX -158 P1D7 v. 6 -HLA-DRB 1101-15-mers		
Each peptide is a portion of SEQ ID NO: 13; each start position is specified, the length of peptlde is 15 amino acids, and the end position for each peptide is the start position plus fourteen.		
Pos,	123456789012345	score
7	GNIIHSLMNPSFGPK	12
8	NIIHSLMNPSFGPKH	12
15	NPSFGPKHLEEEEER	10
13	LMNPSFGPKHLEEEE	9
14	MNPSFGPKHLEEEEE	9
11	HSLMNPSFGPKHLEE	7

Table L. Exon boundaries of transcript 158P1DT v. 1

Exon	Start	End	Length
1	1	2555	2555

Table LI(a). Nucleotide sequence of transcript variant 158P1D7 v.3 (SEQ ID NO: 70)
tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctcct 60 tgcctgtata tctttacact cccaaactcc agtgctctca tccagaggct cttgtgattc 120 tctttgcaat tgtgaggaaa aagatggcac aatgctaata aattgtgaag caaaaggtat 180 caagatggta tctgaaataa gtgtgccacc atcacgacct ttccaactaa gcttattaaa 240 taacggcttg acgatgcttc acacaaatga cttttctggg cttaccaatg ctatttcaat 300 acaccttgga tttaacaata ttgcagatat tgagataggt gcatttaatg gccttggcet 360 cctgaaacaa cttcatatca atcacaattc tttagaaatt cttaaagagg atactttcca 420 tggactggaa aacctggaat tcctgcaagc agataacaat tttatcacag tgattgaacc 480 aagtgccttt agcaagctca acagactcaa agtgttaatt ttaaatgaca atgctattga 540 gagtcttcct ccaaacatct tccgatttgt tcctttaacc catctagatc ttcgtggaaa 600 tcaattacaa acattgcctt atgttggttt tctcgaacac attggccgaa tattggatct 660 tcagttggag gacaacaaat gggcctgcaa ttgtgactta ttgcagttaa aaacttggtt 720 ggagaacatg cctccacagt ctataattgg tgatgttgtc tgcaacagce ctccattttt 780 taaaggaagt atactcagta gactaaagaa ggaatctatt tgccctactc caccagtgta 840 tgaagaacat gaggatcctt caggatcatt acatctggca gcaacatctt caataaatga 900 tagtcgcatg tcaactaaga ccacgtccat tctaaaacta cccaccaaag caccaggttt 960 gataccttat attacaaagc catccactca acttccagga cettactgce ctattccttg 1020 taactgcaaa gtcctatccc catcaggact tctaatacat tgtcaggagc gcaacattga 1080 aagcttatca gatctgagac ctcctccgca aaatcetaga aagctcattc tagcgggaaa 1140 tattattcac agtttaatga agtctgatct agtggaatat ttcactttgg aaatgcttca 1200 cttgggaaac aatcgtattg aagttcttga agaaggatcg tttatgaace taacgagatt 1260 acaaaaactc tatctaaatg gtaaccacct gaccaaatta agtaaaggca tgttccttgg 1320 tctccataat cttgaatact tatatcttga atacaatgcc attaaggaaa tactgccagg 1380 aacctttaat ccaatgccta aacttaaagt cctgtattta aataacaacc tcctccaagt 1440 tttaccacca catatttttt caggggttcc tctaactaag gtaaatctta aaacaaacca 1500 gtttacccat ctacctgtaa gtaatatttt ggatgatctt gatttactaa cccagattga 1560 ccttgaggat aacccctggg actgctcctg tgacctggtt ggactgcagc aatggataca 1620 aaagttaagc aagaacacag tgacagatga catcctctgc acttcccccg ggcatctcga 1680 caaaaaggaa ttgaaagccc taaatagtga aattctctgt ccaggtttag taaataaccc 1740 atccatgcca acacagacta gttaccttat ggtcaccact cctgcaacaa caacaaatac 1800 ggctgatact attttacgat ctcttacgga cgctgtgcca ctgtctgttc taatattggg 1860 acttctgatt atgttcatca ctattgtttt ctgtgctgca gggatagtgg ttcttgttct 1920 tcaccgcagg agaagataca aaaagaaaca agtagatgag caaatgagag acaacagtcc 1980 tgtgcatctt cagtacagca tgtatggcca taaaaccact catcacacta ctgaaagacc 2040 ctctgcctca ctctatgaac agcacatggg agcccacgaa gagctgaagt taatggaaac 2100 attaatgtac tcacgtccaa ggaaggtatt agtggaacag acaaaaaatg.agtattttga 2160 acttaaagct aatttacatg ctgaacctga ctatttagaa gtcctggagc agcaaacata 2220 gatggaga

Table Lll(a). Nucleotide sequence alignment of 158P1D7 v. 1 (SEQ ID NO: 71) and 158P107 v. 3 (SEQ ID NO: 72)

v. 3																																						
	201	GTGTGCCACCATCACGACCTTTCCAACTAAGCTTATTAAATAACGGCTTG	250																																			
v. 1	251	ACGATGCTTCACACAAATGACTTTTCTGGGCTTACCAATGCTATTTCAAT	300																																			
v. 3	251	ACGATGCTTCACACAAATGACTTTTCTGGGCTTACCAATGCTATTTCAAT	300																																			
v. 1	301	ACACCTTGGATTTAACAATATTGCAGATATTGAGATAGGTGCATTTAATG	350																																			
v. 3	301	ACACCTTGGATTTAACAATATTGCAGATATTGAGATAGGTGCATTTAATG	350																																			
V. 1	351	GCCTTGGCCTCCTGAAACAACTTCATATCAATCACAATTCTTTAGAAATT	400																																			
		\|																																				
v. 3	351	GCCTTGGCCTCCTGAAACAACTTCATATCAATCACAATTCTTTAGAAATT	400																																			
v. 1	401	CTtAAAGAGGATACTTTCCATGGACTGGAAAACCTGGAATTCCTGCAAGC	450																																			
v,3	401	CTTAAAGAGGATACTTTCCATGGACTGGAAAACCTGGAATTCCTGCAAGC	450																																			
V. 1	451	AGATAACAATTTTATCACAGTGATTGAACCAAGTGCCTTTAGCAAGCTCA	500																																			
v. 3	451	AGATAACAATTTTATCACAGTGATTGAACCAAGTGCCTTTAGCAAGCTCA	500																																			
v. 1	501	ACAGACTCAAAGTGTTAATTTTAAATGACAATGCTATTGAGAGTCTTCCT	550																																			
v. 3	501	ACAGACTCAAAGTGTTAATTTTAAATGACAATGCTATTGAGAGTCTTCCT	550																																			
v. 1	551	ССАAACATCTTCCGATTTGTTCCTTTAACCCATCTAGATCTTCGTGGAAA	600																																			
v. 3	551	CCAAACATCTTCCGATTTGTTCCTTTAACCCATCTAGATCTTCGTGGAAA	600																																			
V. 1	601	TCAATTACAAACATTGCCTTATGTTGGTTTTCTCGAACACATTGGCCGAA	650																																			
マ. 3	601	TCAATTACAAACATTGCCTTATGTTGGTTTTCTCGAACACATTGGCCGAA	650																																			
v. 1	651	TATTGGATCTTCAGTTGGAGGACAACAAATGGGCCTGCAATTGTGACTTA	700																																			
v. 3	651	TATTGGATCTTCAGTTGGAGGACAACAAATGGGCCTGCAATTGTGACTTA	700																																			
v. 1	701	TTGCAGTTAAAAACTTGGTTGGAGAACATGCCTCCACAGTCTATAATTGG	750																																			
V. 3	701	TTGCAGTTAAAAACTTGGTTGGAGAACATGCCTCCACAGTCTATAATTGG	750																																			
v.1	751	TGATGTTGTCTGCAACAGCCCTCCATTTTTTAAAGGAAGTATACTCAGTA	800																																			
v. 3	751	TGATGTTGTCTGCAACAGCCCTCCATTTTTTAAAGGAAGTATACTCAGTA	800																																			
v. 1	801	GACTAAAGAAGGAATCTATTTGCCCTACTCCACCAGTGTATGAAGAACAT	850																																			
v. 3	801	GACTAAAGAAGGAATCTATTTGCCCTACTCCACCAGTGTATGAAGAACAT	850																																			
v. 1	851	GAGGATCCTTCAGGATCATTACATCTGGCAGCAACATCTTCAATAAATGA	900																																			
v. 3	851	GAGGATCCTTCAGGATCATTACATCTGGCAGCAACATCTTCAATAAATGA	900																																			
v. 1	901	TAGTCGCATGTCAACTAAGACCACGTCCATTCTAAAACTACCCACCAAAG	950																																			
v. 3	901	TAGTCGCATGTCAACTAAGACCACGTCCATTCTAAAACTACCCACCAAAG	950																																			
v. 1	951	CACCAGGTTTGATACCTTATATTACAAAGCCATCCACTCAACTTCCAGGA	1000																																			
v. 3	951	CACCAGGTTTGATACCTTATATTACAAAGCCATCCACTCAACTTCCAGGA	1000																																			
v. 1	1001	CCTTACTGCCCTATTCCTTGTAACTGCAAAGTCCTATCCCCATCAGGACT	1050																																			
v. 3	1001	CCTTACTGCCCTATTCCTTGTAACTGCAAAGTCCTATCCCCATCAGGACT	1050																																			
v.1	1051	TCTAATACATTGTCAGGAGCGCAACATTGAAAGCTTATCAGATCTGAGAC	1100																																			
v. 3	1051	TCTAATACATTGTCAGGAGCGCAACATTGAAAGCTTATCAGATCTGAGAC	1100																																			

*. 3	1951	\|l	l	111111111111111111	1111111111111111111111111 AGTAGATGAGCAAATGAGAGACAACAGTCCTGTGCATCTTCAGTACAGCA	2000	
V. 1	2001	TGTATGGCCATAAAACCACTCATCACACTACTGAAAGACCCTCTGCCTCA 	2050				
-. 3	2001	TGTATGGCCATAAAACCACTCATCACACTACTGAAAGACCCTCTGCCTCA	2050				
v. 1	2051	CTCTATGAACAGCACATGGTGAGCCCCATGGTTCATGTCTATAGAAGTCC 1111111111111111111	2100				
v. 3	2051		2069				
*. 1	2101	ATCCTTTGGTCCAAAGCATCTGGAAGAGGAAGAAGAGAGGAATGAGAAAG	2150				
จ. 3	2070		2069				
- 1	2151	AAGGAAGTGATGCAAAACATCTCCAAAGAAGTCTTTTGGAACAGGAAAAT	2200				
v. 3	2070		2069				
*. 1	2201	CATTCACCACTCACAGGGTCAAATATGAAATACAAAACCACGAACCAATC	2250				
V. 3	2070		2069				
V. 1	2251	AACAGAATTTTTATCCTTCCAAGATGCCAGCTCATTGIACAGAAACATTT	2300				
จ. 3	2070		2069				
จ. 1	2301	TAGAAAAAGAAAGGGAACTTCAGCAACTGGGAATCACAGAATACCTAAGG	2350				
マ. 3	2070		2069				
V. 1	2351	AAAAACATTGCTCAGCTCCAGCCTGATATGGAGGCACATTATCCTGGAGC	2400				
v. 3	2070		2073				
V. 1	2401	CCACGAAGAGCTGAAGTTAATGGAAACATTAATGTACTCACGTCCAAGGA 	2450				
v. 3	2074	CCACGAAGAGCTGAAGTTAATGGAAACATTAATGTACTCACGTCCAAGGA	2123				
- 1	2451	AgGtattagtggancagacananantgagtattutganctranacctant 11	2500				
จ. 3	2124	AGGTATTAGTGGAACAGACAAAAAATGAGTATTTTGAACTTAAAGCTAAT	2173				
v. 1	2501	tTACATGCTGAACCTGACTATTTAGAAGTCCTGGAGCAGCAAACATAGAT 	2550				
v. 3	2174	TTACATGCTGAACCTGACTATTTAGAAGTCCTGGAGCAGCAAACATAGAT	2223				
v. 1	2551	$\begin{aligned} & \text { GGAGA } 2555 \\ & \text { \\|\\|\\|\\| } \end{aligned}$					
v. 3	2224	GGAGA 2228					

Table Lill(a). Peptide sequences of protein coded by 158P1D7 v. 3 (SEQ ID NO: 73)
MKLWIHLFYS SLLACISLHS QTPVLSSRGS CDSLCNCEEK DGTMLINCEA KGIKMVSEIS 60
VPPSRPFQLS LLNNGLTMLH TNDFSGLTNA ISIHLGFNNI ADIEIGAFNG LGLLKQLHIN 120
hnsletlked trhglenlef lQadnneitv Iepsafskln rlkvillndn aiesippnif 180
RFVPLTHLDL RGNQLQTLPY VGFLEHIGRI LDLQLEDNKW ACNCDLLQLK TWLENMPPQS • 240
IIGDVVCNSP PFFKGSILSR LKKESICPTP PVYEEHEDPS GSLHLAATSS INDSRMSTKT 300 TSILKLPTKA PGLIPYITKP STQLPGPYCP IPCNCKVLSP SGLLIHCQER NIESLSDLRP 360 PPQNPRKLIL AGNIIHSLMK SDLVEYFTLE MLHLGNNRIE VLEEGSFMNL TRLQKLYLNG 420 NHLTKLSKGM ELGLHNLEYL YLEYNAIKEI LPGTFNPMPK LKVLYLNNNL LQVLPPHIES 480 GVPLTKVNLK TNQFTHLPVS NILDDLDLLT QIDLEDNPWD CSCDLVGLQQ WIQKLSKNTV 540 TDDILCTSPG HLDKKELKAL NSEILCPGLV NNPSMPTQTS YLMVTTPATT TNTADTIIRS 600 LTDAVPLSVL ILGLLIMFIT IVFCAAGIVV LVLHRRRRYK KKQVDEQMRD NSPVHLQYSM 660 YGHKTTHHTT ERPSASLYEQ HMGAHEELKL METLMYSRPR KVLVEQTKNE YFELKANLHA 720 EPDYLEVLEQ QT

Table LIV(a). Amino acid sequence allgnment of 158P1D7 v. 1 (SEQ ID NO: 74) and 158P1D7 v. 3 (SEQ ID NO: 75)

Table LI(b). Nucleotide sequence of transcript variant 158P1D7 v. 4 (SEQ ID NO: 76)
tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctcct 60
tgcetgtata tctttacact cccaaactcc agtgctctca tccagagget cttgtgattc 120
tctttgcaat tgtgaggaaa aagatggcac aatgctaata aattgtgaag caaaaggtat caagatggta tctgaaataa gtgtgccacc atcacgacct ttccaactaa gcttattaaa taacggcttg acgatgcttc acacaaatga cttttctggg cttaccaatg ctatttcaat taacggcttg acgatgcttc acacaaatga cttttctggg cttaccaatg ceatt acaccttgga tttaacaata ttgcagatat tgagataggt gcatttaatg gccttggcet cetgaaacaa cttcatatca atcacaattc tttagaaatt cttaaagagg atactttcca tggactggaa aacctggaat tcctgcaagc agataacaat tttatcacag tgattgaacc aagtgccttt agcaagctca acagactcaa agtgttaatt ttaaatgaca atgctattga gagtcttcct ccaaacatct tccgatttgt tcctttaacc catctagatc ttcgtggaaa tcaattacaa acattgcett atgttggttt tctcgaacac attggcegaa tattggatet tcagttggag gacaacaaat gggcctgcaa ttgtgactta ttgcagttaa aaacttggtt ggagaacatg cctccacagt ctataattgg tgatgttgtc tgcaacagcc ctccattttt taaaggaagt atactcagta gactaaagaa ggaatctatt tgccctactc caccagtgta tgaagaacat gaggatcctt caggatcatt acatctggca gcaacatctt caataaatga tagtcgcatg tcaactaaga ccacgtccat tctaaaacta cccaccaaag caccaggttt gataccttat attacaaagc catccactca acttccagga ccttactgcc ctattccttg taactgcaaa gtcctatccc catcaggact tctaatacat tgtcaggagc gcaacattga aagcttatca gatctgagac ctcctccgca aaatcctaga aagctcattc tagcgggaaa tattattcac agtttaatga agtccatcct ttggtccaaa gcatctggaa gaggaagaag agaggaatga gaaagaagga agtgatgcaa aacatctcca aagaagtctt ttggaacagg aaatcattc accactcaca gggtcaaata tgaaatacaa aaccacgaac caatcaaca, g aatttttatc cttccaagat gccagctcat tgtacagaaa cattttagaa .aaagaaaggg aacttcagca actgggaatc acagaatacc taaggaaaaa cattgctcag ctccagcctg atatggaggc acattatcct ggagcccacg aagagctgaa gttaatggaa acattaatgt actcacgtcc aaggaaggta ttagtggaac agacaaaaa tgagtatttt gaacttaaag ctaatttaca tgctgaacct gactatttag aagtcctgga gcagcaaaca tagatggaga

Table LIl(b). Nuclootide sequence allgnment of 158P1D7 v. 1 (SEQ ID NO: 77) and 158P1D7 v. 4 (SEQ ID NO: 78)
 501 ACAGACTCAAAGTGTTAATTTTAAATGACAATGCTATTGAGAGTCTTCCT

จ. 1	1401 AACTTAAAGTCCTGTATTTAAATAACAACCTCCTCCAAGTTTTACCACCA	1450
v. 4	1165	1164
v. 1	1451 CATATTTTTTCAGGGGTtCCTCPAACTAAGGTAAATCTTAAAACAAACCA	1500
v. 4	1165	1164
v. 1	1501 GTTTACCCATCTACCTGTAAGTAATATTTTGGATGATCTTGATTTACTAA	1550
v. 4	1165	1164
v. 1	1551 CCCAGATTGACCTTGAGGATAACCCCTGGGACTGCTCCTGTGACCTGGTT	1600
v. 4	1165	1164
v. 1	1601 GGACTGCAGCAATGGATACAAAAGTTAAGCAAGAACACAGTGACAGATGA	1650
v. 4	1165	1164
v. 1	1651 CATCCTCTGCACTTCCCCCGGGCATCTCGACAAAAAGGAATTGAAAGCCC	1700
v. 4	1165	1164
v.1	1701 TAAATAGTGAAATTCTCTGTCCAGGTtTAGTAAATAACCCATCCATGCCA	1750
v. 4	1165	1164
v. 1	1751 ACACAGACTAGTTACCTTATGGTCACCACTCCTGCAACAACAACAAATAC	1800
V. 4	1165	1164
v. 1	1801 GGCTGATACTATTTTACGATCTCTTACGGACGCTGTGCCACTGTCTGTTC	1850
v. 4	1165	1164
v. 1	1851 TAATATTGGGACTTCTGATTATGTTCATCACTATTGTtTTTCTGTGCTGCA	1900
v. 4	1165	1164
v. 1	1901 GGGATAGTGGTTCTTGTTCTTCACCGCAGGAGAAGATACAAAAAGAAACA	1950
v. 4	1165	1164
v. 1	1951 AGTAGATGAGCAAATGAGAGACAACAGTCCTGTGCATCTTTCAGTACAGCA	2000
v. 4	1165	1154
v. 1	2001 tgtatgcccatanaiccactcatcacactactganagaccetctacctca	2050
v. 4	1165	1164
v. 1	2051 CTCTATGAACAGCACATGGTGAGCCCCATGGTTCATGTCTATAGAAGTCC	2100
v. 4	1165 ---C.	1155
v. 1	2101 ATCCTTTGGTCCAAAGCATCTGGAAGAGGAAGAAGAGAGGAATGAGAAAG 	2150
v. 4	1166 ATCCTTTGGTCCAAAGCATCTGGAAGAGGAAGAAGAGAGGAATGAGAAAG	1215
v. 1	2151 AAGGAAGTGATGCAAAACATCTCCAAAGAAGTCTTTTGGAACAGGAAAAT 	2200
v. 4	1216 AAGGAAGTGATGCAAAACATCTCCAAAGAAGTCTTTTGGAACAGGAAAAT	1255
v. 1	2201 CATTCACCACTCACAGGGTCAAATATGAAATACAAAACCACGAACCAATC 	2250
v. 4	1266 CATTCACCACTCACAGGGTCAAATATGAAATACAAAACCACGAACCAATC	1315
v. 1	2251 AACAGAATTTTTATCCTTCCAAGATGCCAGCTCATTGTACAGAAACATTT	2300

Table LIV(b). Amino acid sequence alignment of 158P1D7 v. 1 (SEQ ID NO: 80) and 158P1D7 v. 4 (SEQ ID NO: 81)

v.1		MKLWIHLFYSSLLACISLHSQTPVLSSRGSCDSLCNCEEKDGTMLINCEA MKLWIHLFYSSLLACISLHSQTPVLSSRGSCDSLCNCEEKDGTMITMCEA	50	
		MKLWIHLFYSSLLACISLHSQTPVLSSRGSCDSLCNCEEKDGTMLINCEA	50	
v. 1	51	KGIKMVSEISVPPPSRPFOLSLLNNGLTMLHTNDFSGLTNAISIHLGFNNI 	100	
v. 4	51	KGIKMVSEISVPPSRPFQLSLLNNGLTMLHTNDESGLTNAISIHLGENNI	100	
v. 1	101	ADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEFLQADNNFITV 11	150	
v. 4	101	ADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEFLQADNNFITV	150	
v. 1	151	IERSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY \|	11	200
v. 4	151	IEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY	200	
v. 1	201	VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDVVCNSP	250	
จ. 4	201	VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDVVCNSP	250	
v. 1	251	PFFKGSILSRLKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKT 	300	
v. 4	251	PFFKGSILSRLKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKT	300	
v. 1	301	TSILKLPTKAPGLIPYITKPSTRLPGPYCPIPCNCKVLSPSGLLIIHCQER	350	
v. 4	301	I11	350	
v. 1	351	NIESLSDLRPPPQNPRKLILAGNITHSLMKSDLVEYFTLEMLHLGNNRIE	0	
		11111111111111111111111111111.1		
v. 4	351	NIESLSDLRPPPQNPRKLILAGN	383	

v. 1	401 VLEEGSFMNLTRLQKLYLNGNHLTKLSKGMFLGLHNLEYLYLEYNAIKEI	450
		383
v. 4	384	
v. 1	451 LPGTENPMPKLKVLYLNNNLLQVLPPHIFSGVPLTKVNLKTNQFTHLPVS	500
v. 9	384	383
V. 1	501 NILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG	550
v. 4	384 -----------------W--	386
v. 1	551 HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVITRATMTTNTADTILRS	600
V. 4	387	386
$\nabla .1$	601 LTDAVPLSVLILGLLIMFITIVFCAAGIVVLVLHRRRRYKKKQVDEQMRD	650
v. 4		393
V. 1	651 NSPVHLQYSMYGHKTTHHTTERPSASLYEQHMVSPMVHVYRSPSEGPKHL	700
v. 4	394	393
v. 1	701 EEEEERNEKEGSDAKHLQRSLLEQENHSPLTGSNMKYKTTNQSTEFLSFQ	750
จ. 4	394	393
v. 1	751 DASSLYRNILEKERELQQLGITEYLRKNLAQLQPDMEAHYPGAHEELKLM	800
v. 4	394	393
v. 1	801 ETLMYSRPRKVLVEQTKNEYEELKANLHAEPDYLEVLEQQT 841	
v. 4		

Table LI(c). Nucleotide sequence of transcript variant 158P1D7 v. 5 (SEQ ID NO: 82) gcgtcgacaa caagaaatac tagaaaagga ggaaggagaa cattgctgca gcttggatct 60 acaacctaag aaagcaagag tgatcaatct cagctctgtt aaacatcttg tttacttact 120 gcattcagca gettgcaaat ggttaactat atgcaaaaaa gtcagcatag ctgtgaagta 180 tgccgtgaat tttaattgag ggaaaaagga caattgcttc aggatgctct agtatgcact 240 ctgcttgaaa tattttcaat gaaatgctca gtattctatc tttgaccaga ggttttaact 300 ttatgaagct atgggacttg acaaaaagtg atatttgaga agaaagtacg cagtggttgg 360 tgttttcttt tttttaataa aggaattgaa ttactttgaa cacctcttcc agctgtgcat 420 tacagataac gtcaggaaga gtctctgctt tacagaatcg gatttcatca catgacaaca 480 tgaagctgtg gattcatctc ttttattcat ctctccttgc ctgtatatct ttacactccc 540 aaactccagt gctctcatcc agaggctctt gtgattctct ttgcaattgt gaggaaaaag 600 atggcacaat gctaataaat tgtgaagcaa aaggtatcaa gatggtatct gaaataagtg 660 tgccaccatc acgacctttc caactaagct tattaaataa cggcttgacg atgcttcaca 720 caaatgactt ttctgggctt accaatgcta tttcaataca ccttggattt aacaatattg 780 cagatattga gataggtgca tttaatggce ttggcctcct gaaacaactt catatcaatc 840 acaattcttt agaaattctt aaagaggata ctttccatgg actggaaaac ctggaattcc 900 tgcaagcaga taacaatttt atcacagtga ttgaaccaag tgcctttagc aagctcaaca 960 gactcaaagt gttaatttta aatgacaatg ctattgagag .tcttcctcca aacatcttcc 1020 gatttgttce tttaacccat etagatcttc gtggaaatca attacaaaca ttgcettatg 1080 ttggttttct cgaacacatt ggccgaatat tggatcttca gttggaggac aacaaatggg 1140 cctgcaattg tgacttattg cagttaaaaa cttggttgga gaacatgcct ccacagtcta 1200 taattggtga tgttgtctgc aacagccotc cattttttaa aggaagtata ctcagtagac 1260 taaagaagga atctatttgc cctactccac cagtgtatga agaacatgag gatccttcag 1320 gatcattaca tctggcagca acatcttcaa taaatgatag tcgcatgtca actaagacca 1380 cgtccattct aaaactacce accaaagcac caggtttgat accttatatt acaaagccat 1440 ccactcaact tccaggacct tactgcceta ttcettgtaa ctgcaaagtc ctatccccat 1500 caggacttct aatacattgt caggagcgca acattgaaag cttatcagat ctgagacctc 1560 ctccgcaaaa tcctagaaag ctcattctag cgggaaatat tattcacagt ttaatgaagt 1620 ctgatctagt ggaatatttc actttggaaa tgcttcactt gggaaacaat cgtattgaag 1680 ttcttgaaga aggatcgttt atgaacctaa cgagattaca aaaactctat ctaaatggta 1740 $\begin{array}{ll}\text { accacctgac caaattaagt aaggcatgt tccttggtct ccataatctt gaatacttat } & 1800 \\ 1860\end{array}$ atcttgaata caatgecatt aaggaaatac tgccaggaac ctttaatcca atgcctaaac

0

| ttaaagtcct gtatttaaat aacaacctcc tccaagtttt accaccacat attttttcag | 1920 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| gggttcctct aactaaggta aatcttaaaa caaccagtt tacccatcta cctgtaagta | 1980 |
| atattttgga tgatcttgat ttactaaccc agattgacct tgaggataac ccctgggact | 2040 |
| gctcctgtga cctggttgga ctgcagcaat ggatacaaaa gttaagcaag aacacagtga | 2100 |
| cagatgacat cctctgcact tcccccgggc atctcgacaa aaaggaattg aaagccctaa | 2160 |
| atagtgaaat tctctgtcca ggtttagtaa ataacccatc catgccaaca cagactagtt | 2220 |
| accttatggt caccactcct gcaacaacaa caaatacggc tgatactatt ttacgatctc | 2280 |
| ttacggacgc tgtgccactg tctgttctaa tattgggact tctgattatg ttcatcacta | 2340 |
| ttgtttctg tgctgcaggg atagtggttc ttgttcttca ccgcaggaga agatacaaaa | 2400 |
| agaaacaagt agatgagcaa atgagagaca acagtcctgt gcatcttcag tacagcatgt | 2460 |
| atggccataa aaccactcat cacactactg aaagaccctc tgcctcactc tatgaacagc | 2520 |
| acatggtgag ccccatggtt catgtctata gaagtccatc ctttggtcca aagcatctgg | 2580 |
| aagaggaaga agagaggaat gagaaagaag gaagtgatgc aaaacatctc caaagaagtc | 2640 |
| ttttggaaca ggaaaatcat tcaccactca cagggtcaaa tatgaaatac aaaaccacga | 2700 |
| accaatcaac agaattttta tccttccaag atgccagctc attgtacaga aacattttag | 2760 |
| aaaagaaag ggaacttcag caactgggaa tcacagaata cctaaggaaa aacattgctc | 2820 |
| agctccagcc tgatatggag gcacattatc ctggagccca cgaagagctg aagttaatgg | 2880 |
| aaacattaat gtactcacgt ccaaggaagg tattagtgga acagacaaaa aatgagtatt | 2940 |
| ttgaacttaa agctaattta catgctgaac ctgactattt agaagtcctg gagcagcaaa | 3000 |
| catagatgga gagttgaggg ctttcgccag aaatgctgtg attctgttat taagtccata | 3060 |
| cctgtaaat aagtgcctta cgtgagtgtg tcatcaatca gaacctaagc acagagtaaa | 3120 |
| ctatggggaa aaaaaagga gacgaaacag aaactcaggg atcactggga gaagccatgg | 3180 |
| cataatcttc aggcaattta gtctgtccca aataaacata catccttggc atgtaaatca | 3240 |
| tcaagggtaa tagtaatatt catatacctg aaacgtgrct cataggagtc ctctctgcac | 3300 |

Table LII(c). Nucleotide sequence alignment of 158P1D7 v. 1 (SEQ ID NO: 83) and 158P1D7 v. 5 (SEQ ID NO: 84)
v. 1

v. 51 GCGTCGACAACAAGAAATACTAGAAAGGAGGAAGGAGAACATTGCTGCA 50

v. 5.	51 GCTTGGATCTACAACCTAAGAAAGCAAGAGTGATCAATCTCAGCTCTGTT	100
v.1.	1	0

| v. 5 | 101 AAACATCTTGTTTACTTACTGCATTCAGCAGCTTGCAAATGGTTAACTAT | 150 |
| :--- | ---: | ---: | ---: | ---: |
| v. 1 | 1 | 0 |

v. 5151 ATGCAAAAAGTCAGCATAGCTGTGAAGTATGCCGTGAATTTTAATTGAG 200

v. 5201 GGAAAAAGGACAATTGCTTCAGGATGCTCTAGTATGCACTCTGCTTGAAA 250

v. 5251 tATITTCAATGAAATGCTCAGTATTCTATCTTTGACCAGAGGTTTTAACT 300

จ. 5301 TTATGAAGCTATGGGACTTGACAAAAAGTGATATTTGAGAAGAAAGTACG 350

จ. 5351 CAGTGGTTGGTGTTTTCTTTTTTTTAATAAAGGAATTGAATTACTTTGAA 400

V. 5401 CACCTCTTCCAGCTGTGCATTACAGATAACGTCAGGAAGAGTCTCTGCTT 450
V. 1 1------TCGGATTTCATCACATGACAACATGAAGCTGTGGATTCATCTC 43
จ. 5451 TACAGAATCGGATTTCATCACATGACAACATGAAGCTGTGGATTCATCTC 500
V. 144 TTTTATTCATCTCTCCTTGCCTGTATATCTTTACACTCCCAAACTCCAGT 93
v. $5 \quad 501$ mTrTATTCATCTOTCCTTGCCTGTATAII1111111111111111111
550

v. 1		GCTCTCATCCAGAGGCTCTTGTGATTCTCTTTGCAATTGTGAGGAAAAAG 																															
v. 5	551	GCTCTCATCCAGAGGCTCTTGTGATTCTCTTTGCAATTGTGAGGAAAAAG	600																														
v. 1	144	ATGGCACAATGCTAATAAATTGTGAAGCAAAAGGTATCAAGATGGTATCT	193																														
v. 5	601	AtGGCACAATGCTAATAAATTGTGAAGCAAAAGGTATCAAGATGGTATC	650																														
v.l	194	GAAATAAGTGTGCCACCATCACGACCTTTCCAACTAAGCTTATTAAATAA	243																														
		\|																															
จ. 5	651	GAAATAAGTGTGCCACCATCACGACCTTTCCAACTAAGCTTATTAAATAA	700																														
v. 1	244	CGGCTTGACGATGCTYCACACAAATGACTTTTCTGGGCTTACCAATGCTA	293																														
v. 5	701	CGGCTTGACGATGCTTCACACAAATGACTITTCTGGGCTTACCAATGCTA	750																														
v. 1	294	TTTCAATACACCTTGGATTTAACAATATTGCAGATATTGAGATAGGTGCA 	343																														
v. 5	751	CAATACACCTTGGATTTAACAATATTGCAGATATTGAGATAGGTGC	800																														
V. 1	344	TTTAATGGCCTTGGCCTCCTGAAACAACTTCATATCAATCACAATTCTTT 	393																														
v. 5	801	TTTAATGGCCTTGGCCTCCTGAAACAACTTCATATCAATCACAATTC	850																														
V. 1	394	aganattcttanagaggatactttccatggactgganancctggantrcc 	443																														
*. 5	851	AGAAATTCTTAAAGAGGATACTTTCCATGGACTGGAAAACCTGGAATTCC	900																														
v. 1	444	TGCAAGCAGATAACAATTTTATCACAGTGATTGAACCAAGTGCCTTTAGC 	493																														
v. 5	901	TGCAAGCAGATAACAATTTTATCACAGTGATTGAACCAAGTGCCTTTAGC	950																														
v. 1	494	AAGCTCAACAGACTCAAAGTGTTAATTTTAAATGACAATGCTATTGAGAG $11 \mid 1111$	543																														
v. 5	951	AAGCTCAACAGACTCAAAGTGTTAATTTTAAATGACAATGCTATTGAGAG	1000																														
v. 1	544	TCTTCCTCCAAACATCTTCCGATTTGTTCCTTTAACCCATCTAGATCTTC 	593																														
v. 5	1001	TCTTCCTCCAAACATCTTCCGATTTGTTCCTTTAACCCATCTAGATCTTC	1050																														
v. 1	594	gTGGAAATCAATTACAAACATTGCCTTATGTTGGTTTTCTCGAACACATT 	643																														
v. 5	1051	GTGGAAATCAATTACAAACATTGCCIPATGTTGGTTTTCTCGAACACATT	1100																														
v. 1	644	GGCCGAATATTGGATCTTCAGTTGGAGGACAACAAATGGGCCTGCAATTG 	693																														
v. 5	1101	GGCCGAATATTGGATCTTCAGTTGGAGGACAACAAATGGGCCTGCAATTG	1150																														
v. 1	694	TGACTTATTGCAGTTAAAAACTTGGTTGGAGAACATGCCTCCACAGTCTA 	743																														
v. 5	1151	TGACTTATTGCAGTTAAAAACTTGGTTGGAGAACATGCCTCCACAGTCTA	1200																														
V. 1	744	TAATTGGTGATGTTGTCTGCAACAGCCCTCCATTTTTTAAAGGAAGTATA 	793																														
v. 5	1201	TAATTGGTGATGTTGTCTGCAACAGCCCTCCATTTTTTAAAGGAAGTATA	1250																														
v. 1	794	CTCAGTAGACTAAAGAAGGAATCTATTTGCCCTACTCCACCAGTGTATGA 	843																														
v. 5	1251	. CTCAGTAGACTAAAGAAGGAATCTATTTGCCCTACTCCACCAGTGTATGA	1300																														
V. 1	844	AgAACATGAGGATCCTTCAGGATCATTACATCTGGCAGCAACATCTTCAA 	893																														
v. 5	1301	AGAACATGAGGATCCTTCAGGATCATTACATCTGGCAGCAACATCTTCAA	1350																														
*. 1	894	TAAATGATAGTCGCATGTCAACTAAGACCACGTCCATTCTAAAACTACCC 	943																														
$\nabla .5$$\nabla .1$	1351	TAAATGATAGTCGCATGTCAACTAAGACCACGTCCATTCTAAAACTACCC	1400																														
	94	4 ACCAAAGCACCAGGTTTGATACCTTATATTACAAAGCCATCCACTCAACT	993																														

v. 5	1401	111 ACCAAAGCACCAGGTTTGATACCTTATATTACAAAGCCATCCACTCAACT	1450																																	
v. 1	994	TCCAGGACCTTACTGCCCTATTCCTTGTAACTGCAAAGTCCTATCCCCAT	1043																																	
	994																																			
v. 5	1451	TCCAGGACCTTACTGCCCTATTCCTTGTAACTGCAAAGTCCTATCCCCAT	1500																																	
v. 1	1044	CAGGACTTCTAATACATTGTCAGGAGCGCAACATTGAAAGCTTATCAGAT	1093																																	
v. 5	1501	CAGGACTTCTAATACATTGTCAGGAGCGCAACATTGAAAGCTTATCAGAT	1550																																	
v. 1	1094	CTGAGACCTCCTCCGCAAAATCCTAGAAAGCTCATTCTAGCGGGAAATAT	1143																																	
v. 5	1551	CTGAGACCTCCTCCGCAAAATCCTAGAAAGCTCATTCTAGCGGGAAATAT	1600																																	
v. 1	1144	TATTCACAGTTTAATGAAGTCTGATCTAGTGGAATATTTCACTTTGGAAA	1193																																	
v. 5	1601	tattcacagtrtaltgang ctgatctagtgeantattrcactrtgcana	1650																																	
v. 1	1194	TGCTTCACTTGGGAAACAATCGTATTGAAGTTCTTGAAGAAGGATCGTTT	1243																																	
v. 5	1651	TGCTTCACTTGGGAAACAATCGTATTGAAGTTCTTGAAGAAGGATCGTTT	1700																																	
v. 1	1244	ATGAACCTAACGAGATTACAAAAACTCTATCTAAATGGTAACCACCTGAC	1293																																	
v. 5	1701	ATGAACCTAACGAGATTACAAAAACTCTATCTAAATGGTAACCACCTGAC	1750																																	
V.1	1294	CAAATTAAGTAAAGGCATGTTCCTTGGTCTCCATAATCTTGAATACTTAT	1343																																	
*. 5	1751	CAAATTAAGTAAAGGCATGTTCCTTGGTCTCCATAATCTTGAATACTTAT	1800																																	
*. 1	1344	ATCTTGAATACAATGCCATTAAGGAAATACTGCCAGGAACCTTTAATCCA	1393																																	
v. 5	1801	ATCTTGAATACAATGCCATTAAGGAAATACTGCCAGGAACCTTTAATCCA	1850																																	
จ. 1	1394	ATGCCTAAACTTAAAGTCCTGTATTTAAATAACAACCTCCTCCAAGTTTT	1443																																	
v. 5	1851	ATGCCTAAACTTAAAGTCCTGTATTTAAATAACAACCTCCTCCAAGTTTT	1900																																	
v. 1	1444	ACCACCACATATTTTTTCAGGGGTTCCTCTAACTAAGGTAAATCTTAAAA	1493																																	
		\|		l		l																														
v. 5	1901	ACCACCACATATTTTTTCAGGGGTTCCTCTAACTAAGGTAAATCTTAAAA	1950																																	
v. 1	1494	CAAACCAGTTTACCCATCTACCTGTAAGTAATATTTTGGATGATCTTGAT	1543																																	
v. 5	1951	CAAACCAGTTTACCCATCTACCTGTAAGTAATATTTTGGATGATCTTGAT	2000																																	
v. 1	1544	TTACTAACCCAGATTGACCTTGAGGATAACCCCTGGGACTGCTCCTGTGA	1593																																	
		\|l		l		l		l	l	l																										
จ. 5	2001	TTACTAACCCAGATTGACCTTGAGGATAACCCCTGGGACTGCTCCTGTGA	2050																																	
v. 1	1594	CCTGGTTGGACTGCAGCAATGGATACAAAAGTTAAGCAAGAACACAGTGA	1643																																	
จ. 5	2051	CCTGGTTGGACTGCAGCAATGGATACAAAAGTTAAGCAAGAACACAGTGA	2100																																	
v.1.	1644	CAGATGACATCCTCTGCACTICCCCCGGGCATCTCGACAAAAAGGAATTG	1693																																	
v. 5	2101	CAGATGACATCCTCTGCACTTCCCCCGGGCATCTCGACAAAAAGGAATTG	2150																																	
v. 1	1694	AAAGCCCTAAATAGTGAAATTCTCTGTCCAGGTTTAGTAAATAACCCATC	1743																																	
		\\|\|\|\|\|\|																																		
v. 5	2151	AAAGCCCTAAATAGTGAAATTCTCTGTCCAGGTTTAGTAAATAACCCATC	2200																																	
v. 1	1744	CATGCCAACACAGACTAGTTACCTTATGGTCACCACTCCTGCAACAACAA	1793																																	
		\|																							l		l									
v. 5	2201	1 CATGCCAACACAGACTAGTTACCTTATGGTCACCACTCCTGCAACAACAA	2250																																	
v. 1v. 5	1794	CAAATACGGCTGATACTATTTTACGATCTCTTACGGACGCTGTGCCACTG	1843																																	
	1794	11																																		
	2251	1 CAAATACGGCTGATACTATTTTACGATCTCTTACGGACGCTGTGCCACTG	2300																																	

v. 1	1844	tCTGTTCTAATATTGGGACTTCTGATTATGTTCATCACTATTGTTTTCTG $1\|1111\| 11111111111111111111111111111111111111$	1893																															
v. 5	2301	tCTGTTCTAATATTGGGACTTCTGATTATGTTCATCACTATTGTTTTCTG	2350																															
v. 1	1894	tGCTGCAGGGATAGTGGTTCTTGTTCTTCACCGCAGGAGAAGATACAAAA 	1943																															
v. 5	2351	tGCTGCAGGGATAGTGGTTCTTGTTCTTCACCGCAGGAGAAGATACAAAA	2400																															
v. 1	1944	aganacang tagatgagcanatgagagacancagtcctgtgcatcttcag 11	1993																															
v. 5	2401	AGAAACAAGTAGATGAGCAAATGAGAGACAACAGTCCTGTGCATCTTCAG	2450																															
v. 1	1994	tacagcatgtatggccatananccactcatcacactactganagaccctc 111	2043																															
v. 5	2451	tacagcatgtatg ccatananccactcatcacactactganagaccctc	2500																															
v. 1	2044	tGcctcactctatgancagcacatggtgagccccatgertcatgrctata 11	2093																															
v. 5	2501	tGCCTCACTCTATGAACAGCACATGGTGAGCCCCATGGTtCATGTCTATA	2550																															
v. 1	2094	GAAGTCCATCCTTTGGTCCAAAGCATCTGGAAGAGGAAGAAGAGAGGAAT	2143																															
v. 5	2551	gangrccatcctttgctccanagcatctggangaggangangagaggait	2600																															
V. 1	2144	gaganagang anactgatgcanancatctccanagang ctrtegaica	2193																															
	2601		2650																															
v. 1	2194	gGanaAtcattcaccactcacaggercanatatganatacananccacga	2243																															
v. 5	2651	gGanaftcattcaccactcacaggetcanatatganatacananccacga	2700																															
v. 1	2244	ACCAATCAACAGAATTTTTTATCCTTCCAAGATGCCAGCTCATTGTACAGA	2293																															
		$\\|$																																
v. 5	2701	ACCAATCAACAGAATTTTTATCCTTCCAAGATGCCAGCTCATtGTACAGA	2750																															
v. 1	2294	AACATTTTAGAAAAAGAAAGGGAACTTCAGCAACtGGGAATCACAGAATA	2343																															
		$111111111111111111111111111 \mid 1111111111111111111$																																
จ. 5	2751	AACATTTTAGAAAAAGAAAGGGAACTTCAGCAACTGGGAATCACAGAATA	2800																															
v. 1	2344	CCTAAGGAAAAACATTGCTGAGCTCCAGCCTGATATGGAGGCACATtatc	2393																															
v. 5	2801	CCTAAGGAAAACATTGCTCAGCTCCAGCCTGATATGGAGGCACATTATC	2850																															
v. 1	2394	CtgGagcccacgangagctgangttantgganacattantgtactcacgt	2443																															
0.1																																		
v. 5	2851	CTGGAGCCCACGAAGAGCTGAAGTTAATGGAAACATTAATGTACTCACGT	2900																															
V. 1	2444	CCAAGGAAGGTATtAGTGGAACAGACAAAAAATGAGTATTTTGAACTTAA	2493																															
v. 5	2901	CCAAGGAAGGTATTAGTGGAACAGACAAAAAATGAGTATTTTGAACTTAA	2950																															
v. 1	2494	agctantttacatgctgancctgactatttagangtcctggagcagcana	2543																															
v. 5	2951	AgCtanttetacatgctgancctgactatttagang cctganceagcana	3000																															
v. 1	2544	4 Catagatggaga	2555																															
		111111111111																																
v. 5	3001	1 CATAGATGGAGAGTTGAGGGCTTTCGCCAGAAATGCTGTGATTCTGTTAT	3050																															
v. 1	2556		2555																															
v. 5	3051		3100																															
V. 1	2556		2555																															
จ. 5	3101	1 gancctangcacagagtanactatgggeanamanamagnagacganacag	3150																															
V. 1	255		2555																															

$\nabla .5$	3151 AAACTCAGGGATCACTGGGAGAAGCCATGGCATAATCTTCAGGCAATTTA	3200
$\nabla .1$	2556	3201 GTCTGTCCCAAATAAACATACATCCTTGGCATGTAAATCATCAAGGGAA
$\nabla .5$	2556	3250
$\nabla .1$	3251 TAGTAATATTCATATACCTGAAACGTGTCTCATAGGAGTCCTCTCTGCAC	330

Table LIII(c). Peptide sequences of protein coded by 158P1D7 v. 5 (SEQ ID NO: 85)
MKLWIHLFYS SLLACISLHS QTPVLSSRGS CDSLCNCEEK DGTMLINCEA KGIKMVSEIS 60 VPPSRPFQLS LLNNGLTMLH TNDFSGLTNA ISIHLGFNNI ADIEIGAFNG LGLLKQLHIN 120 HNSLEILKED TFHGLENLEF LQADNNFITV IEPSAFSKLN RLKVLILNDN AIESLPPNIE 180 RFVPLTHLDL RGNQLQTLPY VGFLEHIGRI LDLQLEDNKW ACNCDLLQLK TWLENMPPQS 240 IIGDVVCNSP PFEKGSILSR LKKESICPTP PVYEEHEDPS GSLHLAATSS INDSRMSTKT 300 TSILKLPTKA PGLIPYITKP STQLPGPYCP IPCNCKVLSP SGLLIHCQER NIESLSDLRP 360 PPQNPRKLIL AGNIIHSLMK SDLVEYFTLE MLHLGNNRIE VLEEGSFMNL TRLQKLYLNG 420 NHLTKLSKGM FLGLHNLEYL YLEYNAIKEI LPGTFNPMPK LKVLYLNNNL LQVLPPHIFS 480 GVPLTKVNLK TNQFTHLPVS NILDDLDLLT QIDLEDNPWD CSCDLVGLQQ WIQKLSKNTV 540 TDDILCTSPG HLDKKELKAL NSEILCPGLV NNPSMPTQTS YLMVTTPATT TNTADTILRS 600 ITDAVPLSVL ILGLLIMEIT IVFCAAGIVV LVLHRRRRYK KKQVDEQMRD.NSPVHLQYSM 660 YGHKTTHHTT ERPSASLYEQ HMVSPMVHVY RSPSFGPKHL EEEEERNEKE GSDAKHLQRS 720 LLEQENHSPL TGSNMKYKTT NQSTEFLSFQ DASSLYRNIL EKERELQQLG ITEYLRKNIA 780 QLQPDMEAHY PGAHEELKLM ETLMYSRPRK VLVEQTKNEY FELKANLHAE PDYLEVLEQQ 840 T

Table LIV(c). Amino acid sequence alignment of 158P1D7 v. 1 (SEQ ID NO: 86) and 158P1D7 v. 5 (SEQ ID NO: 87)

- 5 \|

1 MKLWIHLFYSSLLACISIHSQTPVLSSRGSCDSLCNCEEKDGTMLINCEA 50
V. 151 KGIKMVSEISVPPSRPFQLSLLNNGLTMLHTNDESGLTNAISIHLGENNI 100

จ. 551 KGIKMVSEISVPPSRPFQLSLLNNGLTMLHTNDFSGLTNAISIHLGFNNI
v. 101 ADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEFLQADNNFITV

v. 5101 ADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEFLQADNNFITV
V. 151 IEPSAFSKLNRLKVLILNDNAIESLPPNIERFVPLTHLDLRGNQLQTLPY

v. 5151 IEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
v. 1201 VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDVVCNSP

v. 5201 VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDVVCNSP
V. 1251 PFFKGSILSRLKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKT

v. 5251 PFFKGSILSRLKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKT
V. 1301 TSILKLPTKAPGLIPYITKPSTQLPGPYCPI PCNCKVLSPSGLLIHCQER

I\||
v. 501 TSILKLPTKAPGLIPYITKPSTQLPGPYCPIPCNCKVLSPSGLLIHCQER
v. 1351 NIESLSDLRPPPQNPRKLILAGNIIHSLMKSDLVEYETLEMLHLGNNRIE

จ. 5351 NIESLSDLRPPPQNPRKLILAGNIIHSLMKSDLVEYETLEMLHLGNNRIE
v. 1401 VLEEGSFMNLTRLQKLYLNGNHLTKLSKGMFLGLHNLEYLYLEYNAIKEI

V. 1451 LPGTFNPMPKLKVLYLNNNLLQULPPHIFSGVPLTKVNLKTNQFTHLPVS
\|l\|
v. 5

451 LPGTFNPMPKLKVLYLNNNLLQVLPPHIFSGVPLTKVNLKTNQFTHLPVS 501 NILDDLDLLTOIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG

551 HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRS
111111111111111111111111111!11111111111111111111 551 HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRS

601 LTDAVPLSVLILGLLIMFITIVFCAAGIVVLVLHRRRRYKKKQVDEQMRD
 601 LTDAVPLSVLILGLLIMFITIVFCAAGIVVLVLHRRRRYKKKKVDEQMRD

651 NSPVHLQYSMYGHKTTHHTTEERPSASLYEQHMVSPMVHVYRSPSEGPKHL
 651 NSPVHLQYSMYGHKTTHHTTERPSASLYEQHMVSPMVHVYRSPSFGPKHL

701 EEEEERNEKEGSDAKHLQRSLLEQENHSPLTGSNMKYKTTNQSTEFLSFQ
 701 EEEEERNEKEGSDAKHLQRSLLEQENHSPLTGSNMKYKTTNQSTEFLSFQ
751 DASSLYRNILEKERELQQLGITEYLRKNIAQLQPDMEAHYPGAHEELKLM
11 751 DASSLYRNILEKERELQQLGITEYLRKNIAQLQPDMEAHYPGAHEELKLM

Table LI(d). Nucleotide sequence of transcript variant 158P1D7 v. 6 (SEQ ID NO: 88)
tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctcct

60

Table LII(d). Nucleotide sequence alignment of 158P1D7 v. 1 (SEQ ID NO: 89) and 158P1D7 v. 6 (SEQ ID NO: 90)

Table LIII(d). Peptide sequences of proteln coded by 158P1D7 v.6 (SEQ ID NO: 91) MKLWIHLFYS SLLACISLHS QTPVLSSRGS CDSLCNCEEK DGTMLINCEA KGIKMVSEIS VPPSRPFOLS LLNNGLTMLH TNDESGLTNA TSTHLGFNNT ADIEIGAFNG IGILKOEI HNSLEILKED TFHGLENLEF LQADNNFITV TEPSAFSKIN RLKVLILNDN AIESLPPNIE 120 RFVPLTHLDL RGNQLQTLPY VGFLEHIGRI LDLQLEDNKW ACNCDLLQLK TWLENMPPQS 240 IIGDVVCNSP PFFKGSILSR LKKESICPTP PVYEEHEDPS GSLHLAATSS INDSRMSTKT 300 TSILKLPTKA PGLIPYITKP STQLPGPYCP IPCNCKVLSP SGLLIHCQER NIESLSDLRP 360 PPQNPRKLIL AGNIIHSLMN PSFGPKHLEE EEERNEKEGS DAKHLQRSLL EQENHSPLTG 420

Table LV: Search peptides
158P1D7,variant 1: 9 -mers 10 -mers and 15 -mers (SEQ ID NO: 94)
MKLWIHLFYS SLLACISLHS QTPVLSSRGS CDSLCNCEEK DGTMLINCEA KGIKMVSEIS
VPPSRPFQLS LLNNGLTMLH TNDESGLTNA ISIHLGENNI ADIEIGAFNG LGLLKQLHIN
HNSLEILKED TFHGLENLEF LQADNNEITV IEPSAFSKLN RLKVLILNDN AIESLPPNIF RFVPLTHLDL RGNQLQTLPY VGFLEHIGRI LDLQLEDNKW ACNCDLLQLK TWLENMPPQS IIGDVVCNSP PFEKGSILSR LKKESICPTP PVYEEHEDPS GSLHLAATSS INDSRMSTKT TSILKLPTKA PGLIPYITKP STQLPGPYCP IPCNCKVLSP SGLLIHCQER NIESLSDLRP PPQNPRKLIL AGNIIHSLMK SDLVEYFTLE MLHLGNNRIE VLEEGSFMNL TRLQKLYLNG NHLTKLSKGM FLGLHNLEYL YLEYNAIKEI LPGTENPMPK LKVLYLNNNL LQVLPPHIES GVPLTKVNLK TNQFTHLPVS NILDDLDLLT QIDLEDNPWD CSCDLVGLQQ WIQKLSKNTV TDDILCTSPG HLDKKELKAL NSEILCPGLV NNPSMPTQTS YLMVTTPATT TNTADTILRS LTDAVPLSVL ILGLLIMFIT IVFCAAGIVV LVLHRRRRYK KKQVDEQMRD NSPVHLQYSM YGHKTTHHTT ERPSASLYEQ HMVSPMVHVY RSPSFGPKHL EEEEERNEKE GSDAKHLQRS LLEQENHSPL TGSNMKYKTT NQSTEFLSFQ DASSLYRNIL EKERELQQLG ITEYLRKNIA QLQPDMEAHY PGAHEELKLM ETLMYSRPRK VLVEQTKNEY EELKANLHAE PDYLEVLEQQ T

158P1D7 Variant 3:
9 -mers
ASLYEQHMGAHEELKL (SEQ ID NO: 95)start position 675
10-mers
SASLYEQHMGAHEELKLM (SEQ ID NO: 96) start position 674
15 -mers
TTERPSASLYEQHMGAHEELKLMETLMY (SEQ ID NO: 97)start position 669

158P1D7 Variant 4:

9 -mers
IIHSLMKSILWSKASGRGRREE (SEQ ID NO: 98) start position 674
10-mers
NIIHSLMKSILWSKASGRGRREE (SEQ ID NO: 99) start position 673
15 -mers
LILAGNIIHSLMKSILWSKASGRGRREE (SEQ ID NO: 100) start position 668

158P1D7 Variant 6:

9 -mers

GNIIHSLMNPSFGPKHLEEEEER (SEQ ID NO: 101) start position 372
10-mers
AGNIIHSLMNPSFGPKHLEEEEEER (SEQ ID NO: 102) start position 371
15-mers
RKLILAGNIIHSLMNPSFGPKHLEEEEER (SEQ ID NO: 103) start postion 366

Table LVI: Protein Characteristics of 158P1D7

	Bioinformatic Program	URL	Outcome
ORF	ORF finder		2555 bp
Protein length			$\begin{aligned} & 2555 \mathrm{bl} \\ & .841 \mathrm{aa} \end{aligned}$
Transmembrane region	TM Pred	http://www.ch.embnet.org/	One TM, aa609-aa633
	HMMTop	http://www.enzim.hu/hmmtop/	One TM, aa609-aa633
	Sosui	http://www.genome.ad.jp/SOSuil	One TM, aa608-aa630
	TMHMM	http://www.cbs.dtu.dk/services/TMHMM	One TM, aa611-aa633
Signal Peptide pl Molecular weight Localization	Signal P	http://www.cbs.dtu.dk/services/Signalp/	Signal peptide, aa3-aa25
	PIMMW tool	http:/www.expasy.ch/tools!	pl 6.07
	pIMWW tool	htip://www.expasy.ch/tools/	95.1 kD
	PSORT	htp://psort.nibb.ac.jp/	Plasma membrane
	PSORT II	htp://psort.nibb.ac.jp/	65% nuclear, 8% cytoplasmic, 4\% plasma membrane
Motifs	Pfam	http://www.sanger.ac.uk/Pfam/	Leucine-rich repeat mannosyl transferase
	Prints	http://biolnf.man.ac.uk/cgl-bin/dbbrowser	Leucine-rich repeats; Relaxin receptor
	Elocks	http://www.blocks.fhcrc.org/	Leucine rich repeats; cyslaine-rich flanking region

Table LVII. Characteristics of 158P1D7 specific antibodies

mAb	1 sotype	Affinity (nM)	FACS	Internalization	Western
X68(2)22.1.1	IgG2b/k	3.8	+	+	+
X68(2)31.1.1	lgG2alk	14	+	+	+
X68(2)18.1.1	IgG2ak	19	+	+	+
X68(2)120.1.1	lgG2a/k	19	+	+	+

Table LVIII: Detection of 158P1D7 protein by Immunohistochemistry in varlous cancer. patient specimens.

TISSUE	Number Positive	Number tested	\% No. Posillve
Bladder TCC	35	71	49.3
Lung Carcinoma	26	6	23.1
Breast Carcinoma	11	10	90.9.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A viral expression vector encoding a polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the sequence of SEQ ID NO:72, which encodes variant 3 of the 158P1D7 protein;
(b) a polynucleotide comprising the sequence of SEQ ID NO:76, which encodes variant 4 of the 158P1D7 protein;
(c) a polynucleotide comprising the sequence of SEQ ID NO:84, which encodes variant 5 of the 158P1D7; or
(d) a polynucleotide comprising the sequence of SEQ ID NO:90, which encodes variant 6 of the 158P1D7.
2. The viral expression vector of claim 1 that encodes the polypeptide sequence shown in SEQ ID NO:73, SEQ ID NO:81, SEQ ID NO:85 or SEQ ID NO:91.
3. The viral expression vector of claims 1 or 2 , wherein the viral vector is derived from a virus of the group vaccinia, fowlpox, canarypox, adenovirus, influenza, poliovirus, adeno-associated virus, lentivirus, or sindbis virus.
4. A host cell that contains the viral expression vector of any one of claims 1 to 3 .
5. A process for isolating a recombinant virus, comprising:
culturing the host cell of claim 4 in culture media under conditions sufficient for the production of viral particles, and
isolating recombinant virus particles from the culture media.
6. An isolated recombinant virus particle, wherein the particle comprises a polynucleotide that encodes the amino acid sequence of SEQ ID NO:73, SEQ ID NO:81, SEQ ID NO:85 or SEQ ID NO:91.
7. A composition comprising a pharmaceutically acceptable carrier and the viral particle of claim 6.
8. Use of the viral particle of claim 6 for the preparation of a medicament to induce an immune response in a subject.
9. The use of claim 8, wherein the immune response comprises activation of a B cell, wherein the activated B cells generate antibodies that specifically bind to a protein comprising the amino acid sequence of SEQ ID NO:73, SEQ ID NO:81, SEQ ID NO:85 or SEQ ID NO:9.
5
10 The use of claim 9, wherein the immune response comprises activation of a T cell, wherein the activated T cell is a cytotoxic T cell (CTL), which, when activated kills an autologous cell that expresses the protein.

10 11. The use of claim 9 , wherein the immune response comprises activation of a T cell, wherein the activated T cell is a helper T cell (HTL), which, when activated secretes cytokines that facilitate cytotoxic activity of a CTL or antibody producing activity of a B cell.

15 12. A viral expression vector according to claim 1 substantially as hereinbefore described with reference to any one of the Examples or Figures.

Figure 1: 158P1D7 SSH sequence (SEQ ID NO: 1).
1 GATCTGATAA GCTtTCAATG tTGCGCTCCT GACAATGTAT TAGAAGTCCT GATGGGGATA
61 GGACTTTGCA GTTACAAGGA ATAGGGCAGA AAGGTCCTGG AAGTTGAGTG GATGGCTTTG 121 TAATATAAGG TATCAAACCT GGTGCTITGG TGGGTAGTTT TAGAATGGAC GTGGTCTTAG 181 tTGACATGCG ACTATCATTT ATTGAAGATG TTGCTGCCAG ATGTAATGAT C

Figure 2:
Figure 2A. The cDNA (SEQ ID NO: 2) and amino acid sequence (SEQ ID NO: 3) of 158P1D7 v.1. The start methionine is underlined. The open reading frame extends from nucleic acid 23-2548 including the stop codon.

1
$\begin{array}{lllllllllllll}M & K & L & W & I & H & L & E & Y & S & S & L & L\end{array}$
1 tcggatttcatcacatgacaacATGAAGCTGTGGATTCATCTCTTTTATTCATCTCTCCT
 61. TGCCTGTATATCTTTACACTCCCAAACTCCAGTGCTCTCATCCAGAGGCTCTTGTGATTC
 121 TCTTTGCAATTGTGAGGAAAAAGATGGCACAATGCTAATAAATTGTGAAGCAAAAGGTAT
$\begin{array}{lllllllllllllllllllll}54 & K & M & V & S & E & I & S & V & P & P & S & R & P & F & Q & L & S & L & L & N\end{array}$ 181 CAAGATGGTATCTGAAATAAGTGTGCCACCATCACGACCTTTCCAACTAAGCTTATTAAA
$\begin{array}{lllllllllllllllllllll}74 & \mathrm{~N} & \mathrm{G} & \mathrm{L} & \mathrm{T} & \mathrm{M} & \mathrm{L} & \mathrm{H} \cdot & \mathrm{T} & \mathrm{N} & \mathrm{D} & \mathrm{F} & \mathrm{S} & \mathrm{G} & \mathrm{L} & \mathrm{T} & \mathrm{N} & \mathrm{A} & \mathrm{I} & \mathrm{S} & \mathrm{I}\end{array}$ 241 TAACGGCTTGACGATGCTTCACACAAATGACTTTTCTGGGCTTACCAATGCTATTTCAAT $\begin{array}{lllllllllllllllllllll}94 & H & L & G & E & N & N & I & A & D & I & E & I & G & A & F & N & G & L & G & L\end{array}$ 301 ACACCTTGGATTTAACAATATTGCAGATATTGAGATAGGTGCATTTAATGGCCTTGGCCT $\begin{array}{llllllllllllllllllllll}114 & L & K & Q & L & H & I & N & H & N & S & L & E & I & \mathrm{~L} & \mathrm{~K} & \mathrm{E} & \mathrm{D} & \mathrm{T} & \mathrm{F} & \mathrm{H}\end{array}$ 361 CCTGAAACAACTTCATATCAATCACAATTCTTTAGAAATTCTTAAAGAGGATACTTTCCA $\begin{array}{llllllllllllllllllllll}134 & G & L & E & N & L & E & F & L & Q & A & D & N & N & F & I & T & V & I & E & P\end{array}$ 421 TGGACTGGAAAACCTGGAATTCCTGCAAGCAGATAACAATTTTATCACAGTGATTGAACC
 481 AAGTGCCTTTAGCAAGCTCAACAGACTCAAAGTGTTAATTTTAAATGACAATGCTATTGA $\begin{array}{lllllllllllllllllllll}174 & S & L & P & P & N & I & F & R & F & V & P & L & T & H & L & D & L & R & G & N\end{array}$ 541 GAGTCTTCCTCCAAACATCTTCCGATTTGTTCCTTTAACCCATCTAGATCTTCGTGGAAA $\begin{array}{lllllllllllllllllllll}194 & \mathbf{Q} & \mathrm{~L} & \mathbf{Q} & \mathbf{T} & \mathrm{~L} & \mathrm{P} & \mathrm{Y} & \mathrm{V} & \mathrm{G} & \mathrm{E} & \mathrm{L} & \mathrm{E} & \mathbf{H} & \mathrm{I} & \mathbf{G} & \mathrm{R} & \mathrm{I} & \mathrm{L} & \mathrm{D} & \mathrm{L}\end{array}$ 601 TCAATTACAAACATTGCCTTATGTTGGTTTTCTCGAACACATTGGCCGAATATTGGATCT
 661 TCAGTTGGAGGACAACAAATGGGCCTGCAATTGTGACTTATTGCAGTTAAAAACTTGGTT $\begin{array}{lllllllllllllllllllll}234 & E & N & M & P & P & Q & S & I & I & G & D & V & V & C & N & S & P & P & F & F\end{array}$ 721 GGAGAACATGCCTCCACAGTCTATAATTGGTGATGTTGTCTGCAACAGCCCTCCATTTTT $\begin{array}{llllllllllllllllllllll}254 & K & G & S & I & L & S & R & L & K & K & E & S & I & C & P & T & P & P & V & Y\end{array}$ 781 TAAAGGAAGTATACTCAGTAGACTAAAGAAGGAATCTATTTGCCCTACTCCACCAGTGTA
 841 TGAAGAACATGAGGATCCTTCAGGATCATTACATCTGGCAGCAACATCTTCAATAAATGA
 901 TAGTCGCATGTCAACTAAGACCACGTCCATTCTAAAACTACCCACCAAAGCACCAGGTTT $\begin{array}{lllllllllllllllllllll}314 & I & P & Y & I & T & K & P & S & T & \mathbf{Q} & \mathbf{L} & \mathbf{P} & \mathbf{G} & \mathbf{P} & \mathbf{Y} & \mathbf{C} & \mathbf{P} & \mathrm{I} & \mathrm{P} & \mathbf{C}\end{array}$ 961 GATACCTTATATTACAAAGCCATCCACTCAACTTCCAGGACCTTACTGCCCTATTCCTTG $\begin{array}{llllllllllllllllllllll}334 & N & C & K & V & L & S & P & S & G & L & I & I & H & C & Q & E & R & N & I & E\end{array}$ 1021 TAACTGCAAAGTCCTATCCCCATCAGGACTTCTAATACATTGTCAGGAGCGCAACATTGA

```
354 Sllllllllllllllllllllllllllll
```

1081 AAGCTTATCAGATCTGAGACCTCCTCCGCAAAATCCTAGAAAGCTCATTCTAGCGGGAAA
 1141 TATTATTCACAGTTTAATGAAGTCTGATCTAGTGGAATATTTCACTTTGGAAATGCTTCA $\begin{array}{llllllllllllllllllll}394 & L & G & N & N & R & I & E & V & L & E & E & G & S & E & M & N & L & T & R\end{array}$ 1201 CTTGGGAAACAATCGTATTGAAGTTCTTGAAGAAGGATCGTTTATGAACCTAACGAGATT
 1261 ACAAAAACTCTATCTAAATGGTAACCACCTGACCAAATTAAGTAAAGGCATGTTCCTTGG $\begin{array}{lllllllllllllllllllll}434 & \mathrm{~L} & \mathrm{H} & \mathrm{N} & \mathrm{L} & \mathrm{E} & \mathrm{Y} & \mathrm{L} & \mathbf{Y} & \mathrm{L} & \mathrm{E} & \mathrm{Y} & \mathrm{N} & \mathrm{A} & \mathrm{I} & \mathrm{K} & \mathrm{E} & \mathrm{I} & \mathrm{L} & \mathrm{P} & \mathbf{G}\end{array}$ 1321 TCTCCATAATCTTGAATACTTATATCTTGAATACAATGCCATTAAGGAAATACTGCCAGG
 1381. AACCTTTAATCCAATGCCTAAACTTAAAGTCCTGTATTTAAATAACAACCTCCTCCAAGT $\begin{array}{lllllllllllllllllllll}474 & L & P & P & H & I & F & S & G & V & P & L & T & K & V & N & L & K & T & N & Q\end{array}$ 1441 TTTACCACCACATATTTTTTCAGGGGTTCCTCTAACTAAGGTAAATCTTAAAACAAACCA $\begin{array}{llllllllllllllllllllll}494 & \mathrm{~F} & \mathrm{~T} & \mathrm{H} & \mathrm{L} & \mathrm{P} & \mathrm{V} & \mathrm{S} & \mathrm{N} & \mathrm{I} & \mathrm{L} & \mathrm{D} & \mathrm{D} & \mathrm{L} & \mathrm{D} & \mathrm{L} & \mathrm{L} & \mathrm{T} & \mathbf{Q} & \mathrm{I} & \mathrm{D}\end{array}$ 1501 GTTTACCCATCTACCTGTAAGTAATATTTTGGATGATCTTGATTTACTAACCCAGATTGA $\begin{array}{llllllllllllllllllllll}514 & L & E & D & N & P & W & D & C & S & C & D & L & V & G & L & Q & Q & W & I & Q\end{array}$ 1561 CCTTGAGGATAACCCCTGGGACTGCTCCTGTGACCTGGTTGGACTGCAGCAATGGATACA
 1621 AAAGTTAAGCAAGAACACAGTGACAGATGACATCCTCTGCACTTCCCCCGGGCATCTCGA $\begin{array}{lllllllllllllllllllll}554 & \text { K } & \text { K } & \text { E } & \text { L } & \text { K } & \text { A } & \text { L } & \mathrm{N} & \mathrm{S} & \mathrm{E} & \mathrm{I} & \mathrm{L} & \mathrm{C} & \mathrm{P} & \mathrm{G} & \mathrm{L} & \mathrm{V} & \mathrm{N} & \mathrm{N} & \mathrm{P}\end{array}$ 1681 CAAAAAGGAATTGAAAGCCCTAAATAGTGAAATTCTCTGTCCAGGTTTAGTAAATAACCC $\begin{array}{llllllllllllllllllllll}574 & S & M & P & T & Q & T & S & Y & L & M & V & T & T & P & A & T & T & T & N & T\end{array}$ 1741 ATCCATGCCAACACAGACTAGTTACCTTATGGTCACCACTCCTGCAACAACAACAAATAC
 1801 GGĊTGATACTATtTTACGATCTCTTACGGACGCTGTGCCACTGTCTGTTCTAATATTGGG $\begin{array}{llllllllllllllllllllll}614 & \mathrm{~L} & \mathrm{~L} & \mathrm{I} & \mathrm{M} & \mathrm{F} & \mathrm{I} & \mathrm{T} & \mathrm{I} & \mathrm{V} & \mathrm{F} & \mathrm{C} & \mathrm{A} & \mathrm{A} & \mathrm{G} & \mathrm{I} & \mathrm{V} & \mathrm{V} & \mathrm{L} & \mathrm{V} & \mathrm{I}\end{array}$ 1861 ACTTCTGATIATGTTCATCACTATTGTTTTCTGTGCTGCAGGGATAGTGGTTCTTGTTCT
 1921 TCACCGCAGGAGAAGATACAAAAAGAAACAAGTAGATGAGCAAATGAGAGACAACAGTCC $\begin{array}{lllllllllllllllllllll}654 & \mathrm{~V} & \mathrm{H} & \mathrm{L} & \mathbf{Q} & \mathrm{Y} & \mathrm{S} & \mathrm{M} & \mathbf{Y} & \mathrm{G} & \mathrm{H} & \mathrm{K} & \mathrm{T} & \mathrm{T} & \mathrm{H} & \mathrm{H} & \mathrm{T} & \mathrm{T} & \mathrm{E} & \mathrm{R} & \mathrm{P}\end{array}$ 1981 tgTGCATCTTCAGTACAGCATGTATGGCCATAAAACCACTCATCACACTACTGAAAGACC
 2041 CTCTGCCTCACTCTATGAACAGCACATGGTGAGCCCCATGGTTCATGTCTATAGAAGTCC $694 . \operatorname{S.E}$.. G. P K. H L E E. E E E R.. N E. K E G . S D 2101 ATCCTTTGGTCCAAAGCATCTGGAAGAGGAAGAAGAGAGGAATGAGAAAGAAGGAAGTGA
 2161 TGCAAAACATCTCCAAAGAAGTCTTTTGGAACAGGAAAATCAT́TCACCACTCACAGGGTC
 2221 AAATATGAAATACAAACCACGAACCAATCAACAGAATTITTATCCTTCCAAGATGCCAG $\begin{array}{llllllllllllllllllllll}754 & \mathrm{~S} & \mathrm{~L} & \mathbf{Y} & \mathrm{R} & \mathrm{N} & \mathrm{I} & \mathrm{L} & \mathrm{E} & \mathrm{K} & \mathrm{E} & \mathrm{R} & \mathrm{E} & \mathrm{L} & \mathbf{Q} & \mathbf{Q} & \mathrm{L} & \mathrm{G} & \mathrm{I} & \mathbf{T} & \mathrm{E}\end{array}$ 2281 CTCATTGTACAGAAACATTTTAGAAAAAGAAAGGGAACTTCAGCAACTGGGAATCACAGA $\begin{array}{lllllllllllllllllllll}774 & Y & I & R & K & N & I & A & Q & L & Q & P & D & M & E & A & H & Y & P & G & A\end{array}$

```
2341 ATACCTAAGGAAAAACATTGCTCAGCTCCAGCCTGATATGGAGGCACATTATCCTGGAGC
    794 H E E L K K L M E T L L M Y S S R P
2401 CCACGAAGAGCTGAAGTTAATGGAAACATTAATGTACTCACGTCCAAGGAAGGTATTAGT
    814 E E O T T K N N E F Y F F
2461 GGAACAGACAAAAAATGAGTATTTTGAACTTAAAGCTAATTTACATGCTGAACCTGACTA
834 I E V I E Q Q T *
2521 TTTAGAAGTCCTGGAGCAGCAAACATAGatggaga
```

Figure 2B. The cDNA (SEQ ID NO: 4) and amino acid sequence (SEQ ID NO: 5) of 158P1D7 v.2. The start methionine is underlined. The open reading frame extends from nucleic acid 23-2548 including the stop codon.

1
$\begin{array}{lllllllllllll}M & K & \text { I } & \text { W } & \text { I } & \text { H } & \text { L } & \text { F } & \mathbf{Y} & \text { S } & \text { S } & \text { L } & \text { L }\end{array}$
1 tcggatttcatcacatgacaacATGAAGCTGTGGATTCATCTCTTTTATTCATCTCTCCT
$\begin{array}{lllllllllllllllllllll}14 & A & C & I & S & L & H & S & Q & T & P & V & L & S & S & R & G & S & C & D & S\end{array}$
61 TGCCTGTATATCTTTACACTCCCAAACTCCAGTGCTCTCATCCAGAGGCTCTTGTGATTC
 121 TCTTTGCAATTGTGAGGAAAAAGATGGCACAATGCTAATAAATTGTGAAGĊAAAAGGTAT $\begin{array}{lllllllllllllllllllll}54 & K & M & V & S & E & I & S & V & P & P & S & R & P & F & Q & L & S & L & L & N\end{array}$ 181 CAAGATGGTATCTGAAATAAGTGTGCCACCATCACGACCTTTCCAACTAAGCTTATTAAA
$\begin{array}{lllllllllllllllllllll}74 & \mathrm{~N} & \mathrm{G} & \mathrm{L} & \mathrm{T} & \mathrm{M} & \mathrm{L} & \mathrm{H} & \mathrm{T} & \mathrm{N} & \mathrm{D} & \mathrm{F} & \mathrm{S} & \mathrm{G} & \mathrm{L} & \mathrm{T} & \mathrm{N} & \text { A } & \mathrm{I} & \mathrm{S} & \mathrm{I}\end{array}$ 241 TAACGGCTTGACGATGCTTCACACAAATGACTTTTCTGGGCTTACCAATGCTATTTCAAT
$\begin{array}{lllllllllllllllllllll}94 & \mathrm{H} & \mathrm{L} & \mathrm{G} & \mathrm{E} & \mathrm{N} & \mathrm{N} & \mathrm{I} & \mathrm{A} & \mathrm{D} & \mathrm{I} & \mathrm{E} & \mathrm{I} & \mathrm{G} & \mathrm{A} & \mathrm{F} & \mathrm{N} & \mathrm{G} & \mathrm{I} & \mathrm{G} & \mathrm{L}\end{array}$ 301 ACACCTTGGATTTAACAATATTGCAGATATTGAGATAGGTGCATTTAATGGCCTTGGCCT $\begin{array}{lllllllllllllllllllll}114 & L & K & Q & L & H & I & N & H & N & S & L & E & I & L & K & E & D & T & F & \text { H. }\end{array}$ 361 CCTGAAACAACTTCATATCAATCACAATTCTTTAGAAATTCTTAAAGAGGATACTTTCCA $\begin{array}{lllllllllllllllllllll}134 & G & L & E & N & L & E & F & L & Q & A & D & N & N & F & I & T & V & I & E & P\end{array}$ 421 TGGACTGGAAAACCTGGAATTCCTGCAAGCAGATAACAATTTTATCACAGTGATTGAACC
 481 AAGTGCCTTTAGCAAGCTCAACAGACTCAAAGTGTTAATTTTAAATGACAATGCTATTGA $\begin{array}{lllllllllllllllllllll}174 & S & L & P & F & N & I & F & R & F & V & \text { P } & \text { L } & \mathbf{T} & \mathbf{H} & \mathbf{L} & \mathrm{D} & \mathrm{L} & \mathbf{R} & \mathbf{G} & \mathrm{N}\end{array}$ 541 GAGTCTTCCTCCAAACATCTTCCGATTTGTTCCTTTAACCCATCTAGATCTTCGTGGAAA $\begin{array}{llllllllllllllllllllll}194 & Q & L & Q & T & L & P & Y & V & G & F & L & E & H & I & G & R & I & L & D & L\end{array}$ 601 TCAATTACAAACATTGCCTTATGTTGGTTTTCTCGAACACATTGGCCGAATATTGGATCT $\begin{array}{llllllllllllllllllllll}214 & Q & L & E & D & N & K & W & A & C & N & C & D & L & L & Q & L & K & T & W & L\end{array}$ 661 TCAGTTGGAGGACAACAAATGGGCCTGCAATTGTGACTTATTGCAGTTAAAAACTTGGTT $\begin{array}{lllllllllllllllllllll}234 & E & N & M & P & P & Q & S & I & I & G & D & V & V & C & N & S & P & P & F & F\end{array}$ 721 GGAGAACATGCCTCCACAGTCTATAATTGGTGATGTTGTCTGCAACAGCCCTCCATTTTT
 781 taAAGGAAGTATACTCAGTAGACTAAAGAAGGATCTATTTGCCCTACTCCACCAGTGTA
 841 TGAAGAACATGAGGATCCTTCAGGATCATTACATCTGGCAGCAACATCTTCAATAAATGA
 901 TAGTCGCATGTCAACTAAGACCACGTCCATTCTAAAACTACCCACCAAAGCACCAGGTTT $\begin{array}{lllllllllllllllllllll}314 & I & P & Y & I & T & K & P & S & T & Q & L & P & G & P & Y & C & P & I & P & C\end{array}$ 961 GATACCTTATATTACAAAGCCATCCACTCAACTTCCAGGACCTTACTGCCCTATTCCTTG
 1021 TAACTGCAAAGTCCTATCCCCATCAGGACTTCTAATACATTGTCAGGAGCGCAACATTGA
 1081 AAGCTTATCAGATCTGAGACCTCCTCCGCAAAATCCTAGAAAGCTCATTCTAGCGGGAAA
 1141 TATTATTCACAGTTTAATGAAGTCTGATCTAGTGGAATATTTCACTTTGGAAATGCTTCA
 1201 CTTGGGAAACAATCGTATTGAAGTTCTTGAAGAAGGATCGTTTATGAACCTAACGAGATT
 1261 ACAAAAACTCTATCTAAATGGTAACCACCTGACCAAATTAAGTAAAGGCATGTTCCTTGG $\begin{array}{llllllllllllllllllllll}434 & \text { L } & \mathbf{H} & \mathrm{N} & \mathbf{I} & \mathrm{E} & \mathbf{Y} & \mathrm{L} & \mathbf{Y} & \mathrm{L} & \mathrm{E} & \mathbf{Y} & \mathrm{N} & \mathrm{A} & \mathrm{I} & \mathrm{K} & \mathrm{E} & \mathrm{I} & \mathrm{L} & \mathrm{P} & \mathrm{G}\end{array}$ 1321 TCTCCATAATCTTGAATACTTATATCTTGAATACAATGCCATTAAGGAAATACTGCCAGG $\begin{array}{llllllllllllllllllllll}454 & T & F & N & P & M & P & K & L & K & V & L & Y & I & N & N & N & L & L & Q & V\end{array}$ 1381 AACCTTTAATCCAATGCCTAAACTTAAAGTCCTGTATTTAAATAACAACCTCCTCCAAGT $\begin{array}{llllllllllllllllllllll}474 & I & P & P & H & I & F & S & G & V & P & L & T & K & V & N & L & K & T & N & Q\end{array}$ 1441 TTTACCACCACATATTTTTTCAGGGGTTCCTCTAACTAAGGTAAATCTTAAAACAAACCA $494 \quad \mathrm{~F} \quad \mathrm{~T} \quad \mathrm{H} \quad \mathrm{L} \quad \mathrm{P}$ 1501 GTTTACCCATCTACCTGTAAGTAATATTTTGGATGATCTTGATTTGCTAACCCAGATTGA
 1561 CCTTGAGGATAACCCCTGGGACTGCTCCTGTGACCTGGTTGGACTGCAGCAATGGATACA
 1621 AAAGTTAAGCAAGAACACAGTGACAGATGACATCCTCTGCACTTCCCCCGGGCATCTCGA
 1681 CAAAAAGGAATTGAAAGCCCTAAATAGTGAAATTCTCTGTCCAGGTTTAGTAAATAACCC
 1741 ATCCATGCCAACACAGACTAGTTACCTTATGGTCACCACTCCTGCAACAACAACAAATAC
 1801 GGCTGATACTATTTTACGATCTCTTACGGACGCTGTGCCACTGTCTGTTCTAATATTGGG
 1861 ACTTCTGATTATGTTCATCACTATTGTTTTCTGTGCTGCAGGGATAGTGGTTCTTGTTCT
 1921 TCACCGCAGGAGAAGATACAAAAAGAAACAAGTAGATGAGCAAATGAGAGACAACAGTCC
 1981 TGTGCATCTTCAGTACAGCATGTATGGCCATAAAACCACTCATCACACTACTGAAAGACC
 2041. CTCTGCCTCACTCTATGAACAGCACATGGTGAGCCCCATGGTTCATGTCTATAGAAGTCC
 2101 ATCCTTTGGTCCAAAGCATCTGGAAGAGGAAGAAGAGAGGAATGAGAAAGAAGGAAGTGA

Figure 2C. The cDNA (SEQ ID NO: 6) and amino acid sequence (SEQ ID NO: 7) of 158P1D7 v.3. The start methionine is underlined. The open reading frame extends from nucleic acid 23-2221 including the stop codon.
$1 \begin{array}{llllllllllllll} & \text { M } & \text { K } & \text { L } & \text { W } & \text { I } & \text { H } & \text { L } & \text { F } & \text { Y } & \text { S } & \text { S } & \text { L } & \text { L }\end{array}$
1 tcggatttcatcacatgacaacATGAAGCTGTGGATTCATCTCTTPTTATTCATCTCTCCT
 61 TGCCTGTATATCTTTACACTCCCAAACTCCAGTGCTCTCATCCAGAGGCTCTTGTGATTC $\begin{array}{lllllllllllllllllllll}34 & L & C & N & C & E & E & K & D & G & T & M & L & I & N & C & E & A & K & G & I\end{array}$ 121 TCTTTGCAATTGTGAGGAAAAAGATGGCACAATGCTAATAAATTGTGAAGCAAAAGGTAT $\begin{array}{lllllllllllllllllllll}54 & K & M & V & S & E & I & S & V & P & P & S & R & P & F & Q & L & S & L & L & N\end{array}$ 181 CAAGATGGTATCTGAAATAAGTGTGCCACCATCACGACCTTTCCAACTAAGCTTATTAAA
$\begin{array}{lllllllllllllllllllll}74 & \mathrm{~N} & \mathrm{G} & \mathrm{L} & \mathrm{T} & \mathrm{M} & \mathrm{L} & \mathrm{H} & \mathrm{T} & \mathrm{N} & \mathrm{D} & \mathrm{F} & \mathbf{S} & \mathbf{G} & \mathrm{L} & \mathbf{T} & \mathrm{N} & \mathrm{A} & \mathrm{I} & \mathbf{S} & \mathrm{I}\end{array}$ 241 TAACGGCTTGACGATGCTTCACACAAATGACTTTTCTGGGCTTACCAATGCTATTTCAAT $\begin{array}{lllllllllllllllllllll}94 & \mathrm{H} & \mathrm{L} & \mathrm{G} & \mathrm{F} & \mathrm{N} & \mathrm{N} & \mathrm{I} & \mathrm{A} & \mathrm{D} & \mathrm{I} & \mathrm{E} & \mathrm{I} & \mathbf{G} & \mathrm{A} & \mathrm{F} & \mathrm{N} & \mathrm{G} & \mathrm{L} & \mathrm{G} & \mathrm{L}\end{array}$ 301 ACACCTTGGATTTAACAATATTGCAGATATTGAGATAGGTGCATTTAATGGCCTTGGCCT $\begin{array}{lllllllllllllllllllll}114 & L & K & Q & L & H & I & N & H & N & S & L & E & I & L & K & E & D & T & \mathbf{F} & \text { H }\end{array}$ 361 CCTGAAACAACTTCATATCAATCACAATTCTTTAGAAATTCTTAAAGAGGATACTTTCCA
 421 TGGACTGGAAAACCTGGAATTCCTGCAAGCAGATAACAATTTTATCACAGTGATTGAACC $\begin{array}{lllllllllllllllllllll}154 & S & A & F & S & K & L & N & R & L & K & V & L & I & L & \text { i } & D & N & A & I & E\end{array}$ 481 AAGTGCCTTTAGCAAGCTCAACAGACTCAAAGTGTTAATTTTAAATGACAATGCTATTGA $\begin{array}{lllllllllllllllllllll}174 & S & L & P & P & N & I & F & R & F & V & P & L & T & H & L & D & I & R & G & N\end{array}$ 541 GAGTCTTCCTCCAAACATCTTCCGATTTGTTCCTTTAACCCATCTAGATCTTCGTGGAAA
 601 TCAATTACAAACATTGCCTTATGTTGGTTTTCTCGAACACATTGGCCGAATATTGGATCT $\begin{array}{llllllllllllllllllllll}214 & Q & L & E & D & N & K & W & A & C & N & C & D & L & L & Q & L & K & T & & \text { W } & \text { L }\end{array}$

661 TCAGTTGGAGGACAACAAATGGGCCTGCAATTGTGACTTATTGCAGTTAAAAACTTGGTT $\begin{array}{lllllllllllllllllllll}234 & E & N & M & P & P & Q & S & I & I & G & D & V & V & C & N & S & P & P & F & F\end{array}$ 721 GGAGAACATGCCTCCACAGTCTATAATTGGTGATGTTGTCTGCAACAGCCCTCCATTTTT
 781 TAAAGGAAGTATACTCAGTAGACTAAAGAAGGAATCTATTTGCCCTACTCCACCAGTGTA $\begin{array}{llllllllllllllllllllll}274 & E & E & H & E & D & P & S & G & S & L & H & L & A & A & T & S & S & I & N & D\end{array}$ 841 TGAAGAACATGAGGATCCTTCAGGATCATTACATCTGGCAGCAACATCTTCAATAAATGA $\begin{array}{lllllllllllllllllllllll}294 & S & R & M & S & T & K & T & T & S & I & L & K & L & P & T & K & \mathbf{K} & \mathbf{A} & \mathbf{P} & \mathbf{G} & \mathbf{L}\end{array}$ 901 TAGTCGCATGTCAACTAAGACCACGTCCATTCTAAAACTACCCACCAAAGCACCAGGTTT $\begin{array}{llllllllllllllllllllll}314 & I & P & Y & I & T & K & P & S & T & \mathbf{Q} & \mathbf{L} & \mathrm{P} & \mathbf{G} & \mathrm{P} & \mathbf{Y} & \mathbf{C} & \mathrm{P} & \mathrm{I} & \mathrm{P} & \mathbf{C}\end{array}$ 961 GATACCTTATATTACAAAGCCATCCACTCAACTTCCAGGACCTTACTGCCCTATTCCTTG
 1021 TAACTGCAAAGTCCTATCCCCATCAGGACTTCTAATACATTGTCAGGAGCGCAACATTGA $\begin{array}{lllllllllllllllllllllll}354 & \mathrm{~S} & \mathrm{~L} & \mathrm{~S} & \mathrm{D} & \mathrm{L} & \mathrm{R} & \mathrm{P} & \mathrm{P} & \mathrm{P} & \mathrm{Q} & \mathrm{N} & \mathrm{P} & \mathrm{R} & \mathrm{K} & \mathrm{L} & \mathrm{I} & \mathrm{L} & \mathrm{A} & \mathrm{G} & \mathrm{N}\end{array}$ 1081 AAGCTTATCAGATCTGAGACCTCCTCCGCAAAATCCTAGAAAGCTCATTCTAGCGGGAAA
 1141 TATTATTCACAGTTTAATGAAGTCTGATCTAGTGGAATATTTCACTTTGGAAATGCTTCA $\begin{array}{llllllllllllllllllllll}394 & L & G & N & N & R & I & E & V & L & E & E & G & S & F & M & N & L & T & R & L\end{array}$ 1201 CTTGGGAAACAATCGTATTGAAGTTCTTGAAGAAGGATCGTTTATGAACCTAACGAGATT $\begin{array}{llllllllllllllllllllll}414 & Q & K & L & Y & L & N & G & N & H & L & T & K & L & S & K & G & M & F & L & G\end{array}$ 1261 ACAAAAACTCTATCTAAATGGTAACCACCTGACCAAATTAAGTAAAGGCATGTTCCTTGG
 1321 TCTCCATAATCTTGAATACTTATATCTTGAATACAATGCCATTAAGGAAATACTGCCAGG
 1381 AACCTTTAATCCAATGCCTAAACTTAAAGTCCTGTATTTAAATAACAACCTCCTCCAAGT $\begin{array}{lllllllllllllllllllll}474 & \mathrm{~L} & \mathrm{P} & \mathbf{P} & \mathrm{H} & \mathrm{I} & \mathrm{F} & \mathrm{S} & \mathbf{G} & \mathrm{V} & \mathbf{P} & \mathrm{L} & \mathrm{T} & \mathrm{K} & \mathrm{V} & \mathrm{N} & \mathrm{L} & \mathrm{K} & \mathrm{T} & \mathbf{N} & \mathbf{Q}\end{array}$ 1441 TTTACCACCACATATTTTTTCAGGGGTTCCTCTAACTAAGGTAAATCTTAAAACAAACCA $\begin{array}{lllllllllllllllllllllll}494 & \mathrm{~F} & \mathrm{~T} & \mathrm{H} & \mathrm{L} & \mathbf{P} & \mathrm{V} & \mathrm{S} & \mathrm{N} & \mathrm{I} & \mathrm{L} & \mathrm{D} & \mathrm{D} & \mathrm{L} & \mathrm{D} & \mathrm{L} & \mathrm{L} & \mathrm{T} & \mathbf{Q} & \mathrm{I} & \mathrm{D}\end{array}$ 1501 GTTTACCCATCTACCTGTAAGTAATATTTTGGATGATCTTGATTTACTAACCCAGATTGA
 1561 CCTTGAGGATAACCCCTGGGACTGCTCCTGTGACCTGGTTGGACTGCAGCAATGGATACA
 1621 AAAGTTAAGCAAGAACACAGTGACAGATGACATCCTCTGCACTTCCCCCGGGCATCTCGA
 1681 CAAAAAGGAATTGAAAGCCCTAAATAGTGAAATTCTCTGTCCAGGTTTAGTAAATAACCC $\begin{array}{llllllllllllllllllllll}574 & \mathrm{~S} & \mathrm{M} & \mathrm{P} & \mathbf{T} & \mathbf{Q} & \mathrm{T} & \mathrm{S} & \mathrm{Y} & \mathrm{L} & \mathrm{M} & \mathrm{V} & \mathbf{T} & \mathbf{T} & \mathbf{P} & \mathrm{A} & \mathrm{T} & \mathbf{T} & \mathbf{T} & \mathbf{N} & \mathbf{T}\end{array}$ 1741 ATCCATGCCAACACAGACTAGTTACCTTATGGTCACCACTCCTGCAACAACAACAAATAC
 1801 GGCTGATACTATTTTACGATCTCTTACGGACGCTGTGCCACTGTCTGTTCTAATATTGGG
 1861 ACTTCTGATTATGTTCATCACTATTGTTTTCTGTGCTGCAGGGATAGTGGTTCTTGTTCT

| 634 | H | R | R | R | R | Y | K | K | K | Q | V | D | E | Q | M | R | D | N | S | P |
| :--- |

 2041 стстббсстсастстат

 2161 ACTTAAAGCTAATTTACATGCTGAACCTGACTATTTAGAAGTCCTGGAGCAGCAAACATA 2221 Gatggaga

Figure 2D. The cDNA (SEQ ID NO: 8) and amino acid sequence (SEQ ID NO: 9) of 158P1D7 v.4. The start methionine is underlined. The open reading frame extends from nucleic acid 23-1210 including the stop codon.
 1 tcggatttcatcacatgacaacATGAAGCTGTGGATTCATCTCTITTATTCATCTCTCCT 14 A \quad C \quad I $\quad \mathrm{S} \quad \mathrm{L}$ 61 TGCCTGTATATCTTTACACTCCCAAACTCCAGTGCTCTCATCCAGAGGCTCTTGTGATTC
 121 TCTTTGCAATTGTGAGGAAAAAGATGGCACAATGCTAATAAATTGTGAAGCAAAAGGTAT
 181 CAAGATGGTATCTGAAATAAGTGTGCCACCATCACGACCTTTCCAACTAAGCTTATTAAA $\begin{array}{llllllllllllllllllllll}74 & \mathrm{~N} & \mathrm{G} & \mathrm{L} & \mathrm{T} & \mathrm{M} & \mathrm{L} & \mathrm{H} & \mathrm{T} & \mathrm{N} & \mathrm{D} & \mathrm{F} & \mathbf{S} & \mathrm{G} & \mathrm{L} & \mathrm{T} & \mathrm{N} & \mathrm{A} & \mathrm{I} & \mathbf{S} & \mathrm{I}\end{array}$ 241 TAACGGCTTGACGATGCTTCACACAAATGACTTTTCTGGGCTTACCAATGCTATTTCAAT
 301 ACACCTTGGATTTAACAATATTGCAGATATTGAGATAGGTGCATTTAATGGCCTTGGCCT
 361 CCTGAAACAACTTCATATCAATCACAATTCTITAGAAATTCTTAAAGAGGATACTTTCCA $\begin{array}{lllllllllllllllllllll}134 & G & L & E & N & L & E & E & L & Q & A & D & N & N & E & I & T & V & I & E & \mathbf{P}\end{array}$ 421 TGGACTGGAAAACCTGGAATTCCTGCAAGCAGATAACAATTTTATCACAGTGATTGAACC
 481 AAGTGCCTTTAGCAAGCTCAACAGACTCAAAGTGTTAATTTTAAATGACAATGCTATTGA
 541 GAGTCTTCCTCCAAACATCTTCCGATTTGTTCCTTTAACCCATCTAGATCTTCGTGGAAA
 601 TCAATTACAAACATTGCCTTATGTTGGTTTTCTCGAACACATTGGCCGAATATTGGATCT
 661 TCAGTTGGAGGACAACAAATGGGCCTGCAATTGTGACTTATTGCAGTTAAAAACTTGGTT $\begin{array}{lllllllllllllllllllll}234 & \mathrm{E} & \mathrm{N} & \mathrm{M} & \mathrm{P} & \mathrm{P} & \mathrm{Q} & \mathrm{S} & \mathrm{I} & \mathrm{I} & \mathrm{G} & \mathrm{D} & \mathrm{V} & \mathrm{V} & \mathrm{C} & \mathrm{N} & \mathrm{S} & \mathrm{P} & \mathrm{P} & \mathrm{F} & \mathrm{F}\end{array}$ 721 GGAGAACATGCCTCCACAGTCTATAATTGGTGATGTTGTCTGCAACAGCCCTCCATTTTT $\begin{array}{llllllllllllllllllllll}254 & K & G & S & I & L & S & R & I & K & K & \mathbf{K} & \mathbf{S} & \mathbf{I} & \mathbf{C} & \mathbf{P} & \mathrm{~T} & \mathrm{P} & \mathrm{P} & \mathrm{V} & \mathbf{Y}\end{array}$

Figure 2E. The cDNA (SEQ ID NO: 10) and amino acid sequence (SEQ ID NO: 11) of 158P1D7 v.5. The start methionine is underlined. The open reading frame extends from nucleic acid 480-3005 including the stop sodon.

1 gcgtcgacaacaagaaatactagaaaaggaggaaggagaacattgctgcagcttggatct
61 acaacctaagaaagcaagagtgatcaatctcagctctgttaaacatcttgtttacttact
121 gcattcagcagcttgcaaatggttaactatatgcaaaaaagtcagcatagctgtgaagta
181 tgccgtgaattttaattgagggaaaaaggacaattgcttcaggatgctctagtatgcact
241 ctgcttgaaatattttcaatgaaatgctcagtattctatctttgaccagaggttttaact
301 ttatgaagctatgggacttgacaaaagtgatatttgagaagaaagtacgcagtggttgg
361 tgttttcttttttttaataaaggaattgaattactttgaacacctcttccagctgtgcat

421 tacagataacgtcaggaagagtctctgctttacagaatcggatttcatcacatgacaacA
$\begin{array}{lllllllllllllllllllll}2 & K & L & W & I & H & L & F & Y & S & S & L & L & A & C & I & S & L & H & S & \mathbf{Q}\end{array}$ 481 TGAAGCTGTGGATTCATCTCTTTTATTCATCTCTCCTTGCCTGTATATCTTTACACTCCC $\begin{array}{llllllllllllllllllll}T & P & V & L & S & S & R & G & S & C & D & S & L & C & N & C & E & E & K & D\end{array}$ 541 AAACTCCAGTGCTCTCATCCAGAGGCTCTTGTGATTCTCTTTTGCAATTGTGAGGAAAAAG
 601 ATGGCACAATGCTAATAAATTGTGAAGCAAAAGGTATCAAGATGGTATCTGAAATAAGTG

| 62 | P | P | S | R | P | F | Q | L | S | L | L | N | N | G | L | T | M | L | H | T |
| :--- |

661 TGCCACCATCACGACCTTTCCAACTAAGCTTATTAAATAACGGCTTGACGATGCTTCACA
 721 CAAATGACTTTTCTGGGCTTACCAATGCTATTTCAATACACCTTGGATTTAACAATATTG
 781 CAGATATTGAGATAGGTGCATTTAATGGCCTTGGCCTCCTGAAACAACTTCATATCAATC $\begin{array}{lllllllllllllllllllll}122 & \mathrm{~N} & \mathrm{~S} & \mathrm{~L} & \mathrm{E} & \mathrm{I} & \mathrm{L} & \mathrm{K} & \mathrm{E} & \mathrm{D} & \mathrm{T} & \mathrm{F} & \mathrm{H} & \mathrm{G} & \mathrm{L} & \mathrm{E} & \mathrm{N} & \mathrm{L} & \mathrm{E} & \mathrm{F} & \mathrm{L}\end{array}$ 841 ACAATTCTTTAGAAATTCTTAAAGAGGATACTTTCCATGGACTGGAAAACCTGGAATTCC $\begin{array}{lllllllllllllllllllll}142 & Q & A & D & N & N & F & I & T & V & I & E & P & S & A & F & S & K & L & N & R\end{array}$ 901 TGCAAGCAGATAACAATTTTATCACAGTGATTGAACCAAGTGCCTTTAGCAAGCTCAACA $\begin{array}{lllllllllllllllllllll}162 & \mathrm{~L} & \mathrm{~K} & \mathrm{~V} & \mathrm{~L} & \mathrm{I} & \mathrm{L} & \mathrm{N} & \mathrm{D} & \mathrm{N} & \mathrm{A} & \mathrm{I} & \mathrm{E} & \mathrm{S} & \mathrm{L} & \mathrm{P} & \mathrm{P} & \mathrm{N} & \mathrm{I} & \mathrm{F} & \mathrm{R}\end{array}$ 961 GACTCAAAGTGTTAATTTTAAATGACAATGCTATTGAGAGTCTTCCTCCAAACATCTTCC $\begin{array}{lllllllllllllllllllll}182 & \mathrm{~F} & \mathrm{~V} & \mathrm{P} & \mathrm{L} & \mathrm{T} & \mathrm{H} & \mathrm{L} & \mathrm{D} & \mathrm{L} & \mathrm{R} & \mathrm{G} & \mathrm{N} & \mathbf{Q} & \mathrm{L} & \mathbf{Q} & \mathbf{T} & \mathrm{L} & \mathrm{P} & \mathbf{Y} & \mathrm{V}\end{array}$ 1021 GATTTGTTCCTTTAACCCATCTAGATCTTCGTGGAAATCAATTACAAACATTGCCTTATG
 1081 TTGGTITTCTCGAACACATTGGCCGAATATTGGATCTTCAGTTGGAGGACAACAAATGGG 222 1141 CCTGCAATTGTGACTTATTGCAGTTAAAAACTTGGTTGGAGAACATGCCTCCACAGTCTA $\begin{array}{lllllllllllllllllllll}242 & I & G & D & V & V & C & N & S & P & P & F & F & K & G & S & I & L & S & R & L\end{array}$ 1201 TAATTGGTGATGTTGTCTGCAACAGCCCTCCATTTTTTAAAGGAAGTATACTCAGTAGAC $\begin{array}{lllllllllllllllllllll}262 & K & K & E & S & I & C & P & T & P & P & V & Y & E & E & H & E & D & P & S & G\end{array}$ 1261 TAAAGAAGGAATCTATTTGCCCTACTCCACCAGTGTATGAAGAACATGAGGATCCTTCAG $\begin{array}{lllllllllllllllllllll}282 & S & L & H & L & A & A & T & S & S & I & N & D & S & R & M & S & T & K & T & T\end{array}$ 1321 GATCATTACATCTGGCAGCAACATCTTCAATAAATGATAGTCGCATGTCAACTAAGACCA $\begin{array}{lllllllllllllllllllll}302 & S & I & L & K & L & P & T & K & A & P & G & L & I & P & Y & I & T & K & P & S\end{array}$ 1381 CGTCCATTCTAAAACTACCCACCAAAGCACCAGGTTTGATACCTTATATTACAAAGCCAT $\begin{array}{llllllllllllllllllllll}322 & T & Q & L & P & G & P & Y & C & P & I & P & C & N & C & K & V & L & S & P & S\end{array}$ 1441 CCACTCAACTTCCAGGACCTTACTGCCCTATTCCTTGTAACTGCAAAGTCCTATCCCCAT $\begin{array}{lllllllllllllllllllll}342 & G & L & L & I & H & C & Q & E & R & N & I & E & S & I & S & D & I & R & P & P\end{array}$ 1501 CAGGACTTCTAATACATTGTCAGGAGCGCAACATTGAAAGCTTATCAGATCTGAGACCTC $\begin{array}{llllllllllllllllllllll}362 & \mathrm{P} & \mathrm{Q} & \mathrm{N} & \mathrm{P} & \mathrm{R} & \mathrm{K} & \mathrm{L} & \mathrm{I} & \mathrm{L} & \mathrm{A} & \mathrm{G} & \mathrm{N} & \mathrm{I} & \mathrm{I} & \mathrm{H} & \mathrm{S} & \mathrm{L} & \mathrm{M} & \mathrm{K} & \mathrm{S}\end{array}$ 1561 CTCCGCAAAATCCTAGAAAGCTCATTCTAGCGGGAAATATTATTCACAGTTTAATGAAGT $\begin{array}{lllllllllllllllllllll}382 & D & L & V & E & Y & E & T & L & E & M & L & H & L & G & N & N & R & I & E & V\end{array}$ 1621 CTGATCTAGTGGAATATTTCACTTTGGAAATGCTTCACTTGGGAAACAATCGTATTGAAG
 1681 TTCTTGAAGAAGGATCGTTTATGAACCTAACGAGATTACAAAAACTCTATCTAAATGGTA
 1741 ACCACCTGACCAAATTAAGTAAAGGCATGTTCCTTGGTCTCCATAATCTTGAATACTTAT $\begin{array}{lllllllllllllllllllll}442 & \mathbf{L} & \mathrm{E} & \mathbf{Y} & \mathrm{N} & \mathbf{A} & \mathrm{I} & \mathrm{K} & \mathrm{E} & \mathrm{I} & \mathrm{L} & \mathrm{P} & \mathbf{G} & \mathbf{T} & \mathbf{F} & \mathrm{N} & \mathrm{P} & \mathrm{M} & \mathrm{P} & \mathrm{K} & \mathrm{L}\end{array}$ 1801 ATCTTGAATACAATGCCATTAAGGAAATACTGCCAGGAACCTTTAATCCAATGCCTAAAC $\begin{array}{lllllllllllllllllllll}462 & K & V & L & Y & L & N & N & N & L & L & Q & V & L & P & P & H & I & E & S & G\end{array}$ 1861 TTAAAGTCCTGTATTTAAATAACAACCTCCTCCAAGTTTTACCACCACATATTTTTTCAG $\begin{array}{llllllllllllllllllllll}482 & V & P & L & T & K & V & N & L & K & T & N & \mathbf{Q} & F & T & H & L & P & V & S & N\end{array}$

1921 GGGTTCCTCTAACTAAGGTAAATCTTAAAACAAACCAGTTTACCCATCTACCTGTAAGTA
 1981 ATATTTTGGATGATCTTGATTTACTAACCCAGATTGACCTTGAGGATAACCCCTGGGACT $\begin{array}{lllllllllllllllllllll}522 & \mathrm{~S} & \mathrm{C} & \mathrm{D} & \mathrm{L} & \mathrm{V} & \mathrm{G} & \mathrm{L} & \mathrm{Q} & \mathrm{Q} & \mathrm{W} & \mathrm{I} & \mathrm{Q} & \mathrm{K} & \mathrm{L} & \mathrm{S} & \mathrm{K} & \mathrm{N} & \mathrm{T} & \mathrm{V} & \mathrm{T}\end{array}$ 2041 GCTCCTGTGACCTGGTTGGACTGCAGCAATGGATACAAAAGTTAAGCAAGAACACAGTGA
 2101 CAGATGACATCCTCTGCACTTCCCCCGGGCATCTCGACAAAAAGGAATTGAAAGCCCTAA $\begin{array}{lllllllllllllllllllll}562 & S & E & I & L & C & P & G & L & V & N & N & P & S & M & P & T & Q & T & S & Y\end{array}$ 2161 ATAGTGAAATTCTCTGTCCAGGTTTAGTAAATAACCCATCCATGCCAACACAGACTAGTT $\begin{array}{lllllllllllllllllllll}582 & L & M & V & T & T & P & A & T & T & T & N & T & A & D & T & I & L & R & S & L\end{array}$ 2221 ACCTTATGGTCACCACTCCTGCAACAACAACAAATACGGCTGATACTATTTTACGATCTC
 2281 TTACGGACGCTGTGCCACTGTCTGTTCTAATATTGGGACTTCTGATTATGTTCATCACTA
 2341 TTGTTTTCTGTGCTGCAGGGATAGTGGTTCTTGTTCTTCACCGCAGGAGAAGATACAAAA
 2401 AgAAACAAGTAGATGAGCAAATGAGAGACAACAGTCCTGTGCATCTTCAGTACAGCATGT
 2461 ATGGCCATAAAACCACTCATCACACTACTGAAAGACCCTCTGCCTCACTCTATGAACAGC $\begin{array}{lllllllllllllllllllll}682 & M & V & S & P & M & V & H & V & Y & R & S & P & S & F & G & P & K & H & L & E\end{array}$ 2521 ACATGGTGAGCCCCATGGTTCATGTCTATAGAAGTCCATCCTTTGGTCCAAAGCATCTGG $\begin{array}{lllllllllllllllllllll}702 & E & E & E & E & R & N & E & K & E & G & S & D & A & K & H & L & Q & R & S & L\end{array}$ 2581 AAGAGGAAGAAGAGAGGAATGAGAAAGAAGGAAGTGATGCAAAACATCTCCAAAGAAGTC
 2641 TTTTGGAACAGGAAAATCATTCACCACTCACAGGGTCAAATATGAAATACAAAACCACGA $\begin{array}{lllllllllllllllllllll}742 & Q & S & T & E & F & I & S & F & Q & D & A & S & S & L & Y & R & N & I & L & E\end{array}$ 2701 ACCAATCAACAGAATTTTTATCCTTCCAAGATGCCAGCTCATTGTACAGAAACATTTTAG $\begin{array}{lllllllllllllllllllll}762 & K & E & R & E & L & Q & \mathbf{Q} & \mathbf{L} & G & I & T & E & Y & L & R & K & N & I & A & Q\end{array}$ 2761 AAAAAGAAAGGGAACTTCAGCAACTGGGAATCACAGAATACCTAAGGAAAAACATTGCTC
 2821 AGCTCCAGCCTGATATGGAGGCACATTATCCTGGAGCCCACGAAGAGCTGAAGTTAATGG $\begin{array}{llllllllllllllllllllll}802 & T & L & M & Y & S & R & P & R & K & V & L & V & E & Q & T & K & N & E & Y & F\end{array}$ 2881 AAACATTAATGTACTCACGTCCAAGGAAGGTATTAGTGGAACAGACAAAAAATGAGTATT
 2941 TTGAACTTAAAGCTAATTTACATGCTGAACCTGACTATTTAGAAGTCCTGGAGCAGCAAA 842
3001 CATAGatggagagttgagggctttcgccagaaatgctgtgattctgttattaagtccata 3061 cettgtaaataagtgccttacgtgagtgtgtcatcaatcagaacctaagcacagagtaaa 3121 ctatggggaaaaaaaaagaagacgaaacagaaactcagggatcactgggagaagccatgg
3181 cataatcttcaggcaatttagtctgtcccaaataaacatacatccttggcatgtaaatca
3241 tcaagggtaatagtaatatticatatacctgaaacgtgtctcataggagtcctctctgcac

Figure 2F. The cDNA (SEQ ID NO: 12) and amino acid sequence (SEQ ID NO: 13) of 158P1D7 v.6. The start methionine is underlined. The open reading frame extends from nucleic acid 23-1612 including the stop codon.

1141 TATtATtCACAGTTTAATGAATCCATCCTTTGGTCCAAAGCATCTGGAAGAGGAAGAAGA
 1201 GAGGAATGAGAAAGAAGGAAGTGATGCAAAACATCTCCAAAGAAGTCTTTTGGAACAGGA $\begin{array}{lllllllllllllllllllll}414 & N & H & S & P & L & T & G & S & N & M & K & Y & K & T & T & N & Q & S & T & E\end{array}$ 1261 AAATCATTCACCACTCACAGGGTCAAATATGAAATACAAAACCACGAACCAATCAACAGA

1321 ATTTTTATCCTTCCAAGATGCCAGCTCATTGTACAGAAACATTTTAGAAAAAGAAAGGGA $\begin{array}{lllllllllllllllllllll}454 & L & Q & Q & L & G & I^{\prime} & T & E & Y & L & R & K & N & I & A & Q & L & Q & P & D\end{array}$ 1381 ACTTCAGCAACTGGGAATCACAGAATACCTAAGGAAAAACATTGCTCAGCTCCAGCCTGA $\begin{array}{lllllllllllllllllllll}474 & M & E & A & H & Y & P & G & A & H & E & E & I & K & L & M & E & T & L & M & Y\end{array}$ 1441 TATGGAGGCACATTATCCTGGAGCCCACGAAGAGCTGAAGTTAATGGAAACATTAATGTA $\begin{array}{lllllllllllllllllllll}494 & S & R & P & R & K & V & L & V & E & Q & T & K & N & E & Y & F & E & L & K & A\end{array}$
1501 CTCACGTCCAAGGAAGGTATTAGTGGAACAGACAAAAAATGAGTATTTTGAACTTAAAGC $\begin{array}{llllllllllllllllll}514 & \mathrm{~N} & \mathrm{~L} & \mathrm{H} & \mathrm{A} & \mathrm{E} & \mathrm{P} & \mathrm{D} & \mathrm{Y} & \mathrm{L} & \mathrm{E} & \mathrm{V} & \mathrm{L} & \mathrm{E} & \mathrm{Q} & \mathrm{Q} & \mathrm{T} & \text { * }\end{array}$ 1561 TAATTTACATGCTGAACCTGACTATTTAGAAGTCCTGGAGCAGCAAACATAGatggaga

Figure 3:
Figure 3A. Amino acid sequence 158P1D7 v. 1 (SEQ ID NO: 14). The 158P1D7 v. 1 protein has 841 amino acids.

Abstract

1 MKLWIHLFYS SLLACISLHS QTPVLSSRGS CDSLCNCEEK DGTMLINCEA KGIKMVSEIS 61 VPPSRPFQLS LLNNGLTMLH TNDFSGLTNA ISIHLGFNNI ADIEIGAFNG LGLLKQLHIN 121 HNSLEILKED TFHGLENLEF LQADNNFITV IEPSAFSKLN RLKVLILNDN AIESLPPNIF 181 RFVPLTHLDL RGNQLQTLPY VGFLEHIGRI LDLQLEDNKW ACNCDLLQLK TWLENMPPQS 241 IIGDVVCNSP PFFKGSILSR LKKESICPTP PVYEEHEDPS GSLHLAATSS INDSRMSTKT 301 TSILKLPTKA PGLIPYITKP STQLPGPYCP IPCNCKVLSP SGLLIHCQER NIESLSDLRP 361 PPQNPRKLIL AGNITHSLMK SDLVEYFTLE MLHLGNNRIE VLEEGSFMNL TRLQKLYLNG 421 NHLTKLSKGM FLGLANLEYL YLEYNAIKEI LPGTFNPMPK LKVLYLNNNL LQVLPPHIFS 481 GVPLTKVNLK TNQFTHLPVS NILDDLDLLT QIDLEDNPWD CSCDLVGLQQ WIQKLSKNTV 541 TDDILCTSPG HLDKKELKAL NSEILCPGLV NNPSMPTQTS YLMVTTPATT TNTADTILRS 601 LTDAVPLSVL ILGLLIMEIT IVFCAAGIVV LVLHRRRRYK KKQVDEQMRD NSPVHLQYSM' 661 YGHKTTHHTT ERPSASLYEQ HMVSPMVHVY RSPSFGPKHL EEEEERNEKE GSDAKHLQRS 721 LLEQENHSPL TGSNMKYKTT NQSTEFLSFQ DASSLYRNIL EKERELQQLG ITEYLRKNIA 781 QLQPDMEAHY PGAHEELKLM ETLMYSRPRK VLVEQTKNEY FELKANLHAE PDYLEVLEQQ 841 T

Figure 3B. Amino acid sequence 15BP1D7 v. 3 (SEQ ID NO: 15). The 158P1D7 v. 3 protein has 732 amino acids.

1 MKLWIHLFYS SLLACISLHS QTPVLSSRGS CDSLCNCEEK DGTMLINCEA KGIKMVSEIS 61 VPPSRPFRQLS LLNNGLTMLH TNDFSGLTNA ISIHLGFNNI ADIEIGAFNG LGLLKOLHIN 121 HNSLEILKED TFHGLENLEE LQADNNFITV IEPSAFSKLN RLKVLILNDN AIESLPPNIF 181 RFVPLTHLDL RGNQLQTLPY VGFLEHIGRI LDLQLEDNKW ACNCDLLQLK TWLENMPPQS 241 IIGDVVCNSP PFFKGSILSR LKKESICPTP PVYEEHEDPS GSLHLTAATSS INDṢRMSTKT 301 TSILKLPTKA PGLIPYITKP STQLPGPYCP IPCNCKVLSP SGLLIHCQER NIESLSDLRP 361 PPQNPRKLIL AGNIIHSLMK SDLVEYFTLE MLHLGNNRIE VLEEGSFMNL TRLQKLYLNG 421 NHLTKLSKGM FLGLHNLEYL YLEYNAIKEI LPGTFNPMPK LKVLYLNNNL LQVLPPPHTES 481 GVPLTKVNLK TNQFTHLPVS NILDDLDLLT QIDLEDNPWD CSCDLVGLQQ WIQKLSKNTV 541 TDDILCTSPG HLDKKELKAL NSEILCPGLV NNPSMPTQTS YLMVTTPATT TNTADTILRS 601 LTDAVPLSVL ILGLLIMFIT IVFCAAGIVV LVLHRRRRYK KKQVDEQMRD NSPVELQYSM 661 YGHKTTHHTT ERPSASLYEQ HMGAHEELKL METLMYSRPR KVLVEQTKNE YFELKANLHA 721 EPDYLEVLEQ QT

Figure 3C. Amino acld sequence 158P1D7 v. 4 (SEQ ID NO: 16). The 158P1D7 v. 4 protein has 395 amino acids.

1 MKLWIHLFYS SLLACISLHS QTPVLSSRGS CDSLCNCEEK DGTMLINCEA KGIKMVSEIS 61 VPPSRPFQLS LLNNGLTMLH TNDESGLTNA ISIHLGFNNI ADIEIGAFNG LGLLKQLHIN 121 HNSLEILKED TEHGLENLEF LQADNNFITV IEPSAFSKLN RLKVLILNDN AIESLPPNIF 181 RFVPLTHLDL RGNQLQTLPY VGFLEHIGRI LDLQLEDNKW ACNCDLLQLK TWLENMPPQS 241 IIGDVVCNSP PFFKGSILSR LKKESICPTP PVYEEHEDPS GSLHLAATSS INDSRMSTKT

301 TSILKLPTKA PGLIPYITKP STQLPGPYCP IPCNCKVLSP SGLLIHCQER NIESLSDLRP 361 -PPQNPRKLIL AGNIIHSLMK SILWSKASGR

Figure 3D. Amino acid sequence 158P1D7 v. 6 (SEQ ID NO: 17). The 158P1D7 v. 6 protein has 529 amino acids.

> 1 MKLWIHLFYS SLLACISLHS QTPVLSSRGS CDSLCNCEEK DGTMLINCEA KGIKMVSEIS 61 VPPSRPFQLS LLNNGLTMLH TNDFSGLTNA ISIHLGFNNI ADIEIGAFNG LGLLKQLHIN 121 HNSLEILKED TEHGLENLEF LQADNNFITV IEPSAFSKLN RLKVLILNDN AIESLPPNIF 181 RFVPLTHLDL RGNQLQTLPY VGFLEHIGRI LDLQLEDNKW ACNCDLLQLK TWLENMPPQS 241 IIGDVVCNSP PFFKGSILSR LKKESICPTP PVYEEHEDPS GSLHLAATSS INDSRMSTKT 301 TSILKLPTKA PGLIPYITKP STQLPGPYCP IPCNCKVLSP SGLLIHCQER NIESLSDLRP 361 PPQNPRKLIL AGNIIHSLMN PSFGPKHLEE EEERNEKEGS DAKHLQRSLL EQENHSPLTG $421 ~ S N M K Y K T T N Q ~ S T E F L S F Q D A ~ S S L Y R N I L E K ~ E R E L Q Q L G I T ~ E Y L R K N I A Q L ~ Q P D M E A H Y P G ~$ $481 ~ A H E E L K L M E T ~ L M Y S R P R K V L ~ V E Q T K N E Y F E ~ L K A N L H A E P D ~ Y L E V L E Q Q T ~$

Figure 4: 158P1D7 v. 1 amino acid (SEQ ID NO: 18) BLAST homology to hypothetical protein FL22774 (SEQ ID NO: 19). Idenitites $=798 / 98(100 \%)$
Query: $44 \begin{aligned} & \text { MLINCEAKGIKMUSEISVPPSRPFQLSLLNNGLTMLHTNDFSGLTNAISIHLGFNNIADI } 103 \\ & \text { MLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLHTNDFSGLTNAISIHLGFNNIADI }\end{aligned}$
Sbjct: 1 MLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLHTNDFSGLTNAISIHLGENNIADI 60
Query: 104 EIGAFNGLGLLKQLLHINHNSLEILKEDTFHGLENLEFLQADNNFITVIEPSAFSKLNRLK 163 EIGAFNGLGLLKOLHINHNSLEILKEDTFHGLENLEFLQADNNFITVIEPSAFSKLNRLK
Sbjct: 61 EIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEFLQADNNFITVIEPSAFSKLNRLK 120
Query: 164 VLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPYVGFLEHIGRILDLOLEDNKWACN 223 VLILNDNAIESLPPNN FRFVPLTHLDLRGNQLQTLPYVGFLEHIGRILDLQLEDNKWACN
Sbjct: 121 VLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPYVGFLEHIGRIIDLQLEDNKWACN 180
Query: 224 CDLLQLKTwLENMPPQSIIGDVVCNSPPFFKGSILSRLKKESICPTPPVYEEHEDPSGSL 283 CDLLQLKTWLENMPPQSIIGDVVCNSPPFFKGSILSRLKKESICPTPPVYEEHEDPSGSL
Sbjct: 181 CDLLQLKTWLENMPPQSIIGDVVCNSPPFFKGSILSRLKKESICPTPPVYEEHEDPSGSL 240
Query: 284 HLAATSSINDSRMSTKTTSILLKLPTKAPGLIPYITKPSTQLPGPYCPIPCNCKVLSPSGL 343 HLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKPSTQLPGPYCPIPCNCKVLSPSGL
Sbjct: 241 HLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKPSTQLPGPYCPIPCNCKVLSPSGL 300
Query: 344 LIHCQERNIESLSDIRPPPQNPRKLILAGNIIHSLMKSDLVEYFTLEMLHLGNNRIEVLE 403 LIHCQERNIESLSDLRPPPQNPRKLILAGNITHSIMKSDLVEYFTLEMLHLGNNRIEVLE
Sbjct: 301 LIHCQERNIESLSDLRPPPQNPRKLILAGNIIHSLMKSDLVEYFTLEMLHLGNNRIEVLE 360
Query: 404 EGSFMNLTRLQKLYLNGNHLTKLSKGMFLGLHNLEYLYIEYNATKEILPGTENPMPKLKV 463 EGSFMNLTRLQKLYLNGNHLTKLSKGMFLGLHNLEYLYLEYNAIKEILPGTFNPMPKLKV
Sbjct: 361 EGSFMNLTRLQKLYLNGNHLTKLSKGMFLGLHNLEYLYLEYNAIKEILPGTFNPMPKLKV 420
Query: 464 LYYNNNLLLVLPPHIFSGVPLTKVNLKTNQFTHLPVSNILDDLDLLTQIDLEDNPNDCSC 523
Sbjct: 421 LYLNNNLLQVLPPHIFSGVPLTKVNLKTNQFTHLPVSNILDDLDLLTTOIDLEDNPWDCSC
Query: 524 DLVGLQQWIQKLSKNTVTDDILCTSPGHLDKKELKAINSEILCPGLUNNPSMPTQTSYLM 583
Sbjct: 481 DLVGLQQWIQKLSKNTVTDDILCTSPGHLDKKELKALNSEILCPGLVNNPSMPTQTSYLM 540
Query: 584 VTTPATTTNTADTILLSLLTDAVPLSVLILGLLIMFITIVFCAAGIVVLVLLRRRRRYKKKQ 643 VTTPATTTNTADTILRSLTDAVPLSVLILGLLIMFITIVFCAAGIVVLVLHRRRRYKKKQ
Sbjct: 54.1 VTTPATTTNTADTILRSLTDAVPLSVLIILGLLIMFITTVFCAAGIVVLVLARRRRYKKKQ 600
Query: 644 VDEQMRDNSPVHLQYSMYGHKTTHHTTERPSASLYEQHMVSPMVHVYRSPSFGPKHLEEE 703
Sbjct: 601 VDEQMRDNSPVHLQYSMYGHKTTHHTTERPSASLYEQHMSSPMVHYYRSPSFGPKHLEEE 660
Query: 704 EERNEKEGSDAKHLQRSLLEQENHSPLTGSNMKYKTTNOSTEFLSFQDASSLYRNILEKE 763
Sbjct: 661 EERNEKEGDAKHLQRSLLEEENHSPLTGSNMKYKTTNQSTEFLSFQDASSLYRNILEKE
Query: 764 RELQQLGITEYLRRNIAQLQPDMEAHYPGAHEELKLMETLMYSRPRKVLVEQTKNEYFEL 823
Sbjct: 721 RELQQLGITEYLRKNIAQLQPDMEAHYPGAHEELKLMETLMYSRPRKVLVEQTKNEYFEL
Query: $824 \begin{gathered}\text { KANLHAEPDYLEVLEQQT } \\ \text { KANLHAEPDYLEVLEQQT }\end{gathered}$
Sbjct: 781 KANLHAEPDYLEVLEQQT 798

Flgure 5:
Figure 5A: Alignment of 158P1D7 v.1 (SEQ ID NO: 20) with human FLJ22774, CLONE KAIA1575.|Homo sapiens] (SEQ ID NO: 21)

```
Identities = 405/415 (97%), Positives = 405/415 (97%)
158P1D7: 44 MLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLHTNDESGLTNAISIHLGFNNIADI 103
    MLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLHTNDESGLTNAISIHLGFNNIADI
    SbJct: 1 MLINCEAKGIKMVSEISVPPSRPEQLSLLNNGLTMLHTNDFSGLTNAISIHLGFNNIADI }6
158P1D7:104 EIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEFLQADNNEITVIERSAFSKLNRLK 163
    EIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEFLQADNNFITVIEPSAFSKINRLK
    Sbjct: 61 EIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEELQADNNFITVIEPSAFSKLNRLK }12
158P1D7:164 VLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPYVGFLEHIGRILDLQLEDNKWACN 223
    VLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPYVGFLEHIGRILDLQLEDNKWACN
    Sbjct: 121 VLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPYYGFLEHIGRILDLQLEDNKWACN 180
158P1D7:224 CDLLOLKTWLENMPPQSIIGDVVCNSPPFEKGSILSRLKKESICPTPPVYEEHEDPSGSL }28
    CDLLQLKTWLENMPPQSIIGDVVCNSPPFFKGSILSRLKKESICPTPPVYEEHEDPSGSL
    Sbjct: 181 CDLLQLKTWLENMPPQSIIGDVVCNSPPFFKGSILSRLKKESICPTPPVYEEHEDPSGSL 240
158P1D7:284 HLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKPSTQLPGPYCPIPCNCKVLSPSGL 343
    HLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKPSTQLPGPYCPIPCNCKVLSPSGL
    Sbjct: 241 HLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKPSTOLPGPYCPIPCNCKVLSPSGL 300
158P1D7:344 LIHCQERNIESLSDLRPPPQNPRKLILAGNIIHSLMKSDLVEYFTLEMLHLGNNRIEVLE 403
    LIHCQERNIESLSDLRPPPQNPRKLILAGNIIHSLMKSDLVEYFTLEMLHLGNNRIEVIE
    Sbjct: 301 LIHCQERNIESLSDLRPPPPQNPRKLILAGNIIHSLMKSDLVEYETLENLHLGNNRIEVLE }36
158P1D7:404 EGSEMNLTRLQKLYLNGNHLTKLSKGMFLGLLHXXXXXXXXXXAIKEILPGTFNPM 458
    EGSFMNLTRLQKLYLNGNHLTKLSKGMFLGLH AIKEILPGTFNPM
    Sbjct: 361 EGSFMNLTRLQKLYLNGNHLTKLSKGMFLGLHNLEYLYLEYNAIKEILPGTFNPM 415
```

Figure 5b: Alignment of 158P1D7 v. 1 protein. (SEQ ID NO: 22) with a human protein similar to IGFALS (SEQ ID NO: 23)

[^5]158P1D7:1 MKLWIHLEYSSLLACISLHSQTPVLSSRGSCDSLCNCEEKDGTMLTNCEAKGIKMVSEIS 60

- $\mathrm{MLW}+\mathrm{L} \mathrm{S}+\mathrm{L}++\quad+\mathrm{S} V \quad++\mathrm{C}+\mathrm{C}+\quad++\mathrm{NCE}+\quad+++$

Sbjct: 17 MFLWLELILSALISSTNADSDISV-----EICNVCSCVSVENVLYVNCEKVSVYRPNQLK 71
158R1D7:61 VPPSRPFQLSLLNNGLTMLHTNDFSGLTNAISIHLGENNIADIEIGAFNGLGLLKQLHIN 120 PS $+\mathrm{L}+\mathrm{NN} \mathrm{L} \mathrm{+L+NE} \mathrm{+iA+S+HLGN++IEGAFGL} \mathrm{\quad LKQLH+N}$
Sbjct: 72 PPWSNFYHLNFQNNFLNILYPNTELNFSHAVSLHLGNNKLQNIEGGAFLGLSALKQLHLN 131
158P1D7:121 HNSLEILKEDTEHGLENLEFLQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIF 180 +N L+IL+ DTE G+ENLE+IQAD N I IE AF+KL++LKVLILNDN I LP NIF
Sbjct: 132 NNELKILRADTFLGIENLEYLQADYNLIKYIERGAFNKLHKLKVLILNDNLISELPDNIF 191
158P1D7:181 RFVPLTHLDLRGNQLQTLPYVGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQS 240 RE LTHLD + RGN $++Q$ LPY+G LEHIGR+++LQLEDN W C+CDLL LK WLENMP
Sbjct: 192 RFASLTHLDIRGNRIQKLPYIGVLEHIGRVVELQLEDNPWNCSCDLLPLKANLENMPYNI 251
158P1D7:241 IIGDVVCNSPPEFKGSILSRLKKESICP----------TPPVYEEHEDPSGSLHLAATS 289 $\mathrm{IG}++\mathrm{C}+\mathrm{P} \quad \mathrm{G}+\dot{\mathrm{L}} \quad \mathrm{K}++\mathbf{C} P \quad \mathrm{PP} \quad \mathrm{E}+\quad++\mathrm{H} \quad \mathrm{TS}$ Sbjct: 252 YIGEAICETPSDLYGRLLKETNKQELCPMGTGSDFDVRILPPSQLENGYTTPNGHTTQTS 311

158P1D7:290 SINDSRMSTKTTSILKLPTKAPGLI----------PYITKPSTQLPG-PYCPIPCNCKV- 337 KTT+ P+K G++ I T++P CP PC CK
Sbjct: 312 LHRLVTKPPKTTN----PSKISGIVAGKALSNRNLSQIVSYQTRVPPLTPCPAPCFCKTH 367
158P1D7:338 LSPSGLLIHCQERNIESLSDLRPPPQNPRKLILAGNIIHSLMKSDLVEYFTLEMLHLGNN 397 S GL ++CQE+NI+S+S+LEPN +KL + GN I + SD ++ Lt+LHLG+N
Sbjct: 368 PSDLGLSVNCQEKNIQSMSELIPKPLNAKKLHVNGNSIKDVDVSDETDFEGLDLLHLGSN 427
158P1D7:398 RIEVLEEGSFMNLTRLQKLYLNGNHLTKLSKGMFLGLHXXXXXXXXXXAIKEILPGTFNP 457 $+I$ V+t E NLT L++LYLNGN + +I + G GLH IKEI GTE+
Sbjct: 428 QITVIKGDVEHNLTNLRRLYLNGNQIERLYPEIFSGLHNLQYLYLEYNLIKEISAGTFDS 487

Expression of 158P1D7 by RT-PCR
 Figure 6.

1) Vital Pool 1
 2) Vital Pool 2
 3) Xenograft Pool
 4) Prostate Cancer Pool
 6) Colon Cancer Pool
 7) Lung Cancer Pool
 8) Ovary Cancer Pool
 9) Breast Cancer Pool
 10) Metastasis Pool
 11) H 2 O

Figure 7. Expression of 158P1D7 in Normal Tissues
∞

《
Figure 8A. Expression of 158P1D7 in Bladder Cancer Patient Specimens
$C L$ = Cell lines listed in order) Patient
$N=$ Normal Bladder
$\begin{array}{ll}N \text { AT } & =\text { Normal adjacent tissue } \\ T & =\text { Tumor }\end{array}$

Figure 8B. Expression of 158P1D7 in Bladder Cancer Patient Specimens P1 - Transitional, grade 2
P2 - Transitional, grade $3 / 2$
P3 - Transitional,
P4 - Polypoid Cystitis
P5 - Papillary, grade $3 / 3$ $C L=$ Cell lines (from left to right): UM-UC-3, J82, SCaBER $P=$ Patient
$N=$ Normal
$\begin{aligned} N_{A T} & =\text { Normal adjacent tissue } \\ & =\text { Tumor }\end{aligned}$

Figure 10. Expression of 158P1D7 in Breast Cancer Patient Specimens
P1 - Grade 1
P2 - Grade 1
P3-Grade 2
CL $=$ cell lines (isted in order):
$P=$ DU4475, MCF7, CAMA-1
$P=$ Patient
$N=$ Normal breast
$T=T u m o r$

Figure 11a-158P1D7 variant 1 Hydrophilicity profile
(Hopp T.P., Woods K.R., 1981.
Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828)

Figure 11b-158P1D7 variant 3 Hydrophilicity profile (Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828)

Figure 11c-158P1D7 variant 4 Hydrophilicity profile (Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828)

Figure 11d - 158P1D7 variant 6
Hydrophilicity profile (Hopp T.P., Woods K.R., 1981.
Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828)

Figure 12a-158P1D7 variant 1 Hydropathicity Profile (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132)

Figure 12b-158P1D7 variant 3 Hydropathicity Profile
(Kyyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132)

Figure 12c-158P1D7 variant 4 Hydropathicity Profile
(Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132)

Figure 12d-158P1D7 variant 6 Hydropathicity Profile
(Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132)

Figure 13a-158P1D7 variant 1 \% Accessible Residues Profile (Janin J., 1979. Nature 277:491-492)

Figure 13b-158P1D7 variant 3 \% Accessible Residues Profile (Janin J., 1979. Nature 277:491-492)

Figure 13c-158P1D7 variant 4 \% Accessible Residues Profile (Janin J., 1979. Nature 277:491-492)

Figure 13d-158P1D7 variant 6 \% Accessible Residues Profile (Janin J., 1979. Nature 277:491-492)

Figure 14a-158P1D7 variant 1 Average Flexibility Profile (Bhaskaran R., Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255)

Figure 14B-158P1D7 variant 3 Average Flexibility Profile (Bhaskaran R., Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255)

Figure 14c-158P1D7 variant 4 Average Flexibility Profile (Bhaskaran R., Ponnuswamy P.K., 1988.

Int. J. Pept. Protein Res. 32:242-255)

Figure 14d - 158P1D7 variant 6 Average Flexibility Profile (Bhaskaran R., Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255)

Figure 15a-158P1D7 variant 1 Beta-turn Profile
 (Deleage, G., Roux B. 1987.
 Protein Engineering 1:289-294)

Figure 15b-158P1D7 variant 3
Beta-turn Profile
(Deleage, G., Roux B. 1987.
Protein Engineering 1:289-294)

Figure 15c-158P1D7 variant 4 Beta-turn Profile (Deleage, G., Roux B. 1987. Protein Engineering 1:289-294)

Figure 15d - 158P1D7 variant 6 Beta-turn Profile (Deleage, G., Roux B. 1987. Protein Engineering 1:289-294)

Secondary structure prediction of 158P1D7 variant 1
80 - MKLWIHLFYSSLILACISLHSQTPVLSSRGSCDSLCNCEEKDGTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH cchhhhhhhhhhhhheecccccceeecccccccccccccceeeeeecccceeeeeeecccocccceeehhcccceeee TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEFLQADNNFITVIEPSAFSKTM ccccchhhhheeeeecchhhhhhhhhhhcchhhhhhheecccceeeeehcccccccheeeeecccceeeeecccchcccc RLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPYVGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQS ceeeeeecccchhhcccchhhecccceecccccccccccchhhhhhhhhhhheccccccchhchhhhhhhhhhhcccccc IIGDVVCNSPPFFKGSILSRLKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKITSILKLPTKAPGLIPYITKP eeececccccccccchhhhhhchccccccccccccccccccceeeeeccccccccccccceeeeecccccccceeeecc STQLPGPYCPIPCNCKVLSPSGLLIHCQERNIESLSDLRPPPQNPRKIILAGNIIHSLMKSDLVEYFTLEMLHLGNNRIE
 VLEEGSFMNLTRLQKLYLNGNHLTKLSKGMFLGLFNLLEYLYLEYNAIKEILPGTFNPMPKLKVLYLNNNLLQVLPPHIFS eeeccchhhhhhhhhhbccccchhhhchhhhhchhhhhhhhhhhhhhhhhhccccchhcceeeeeeccchhhhccccccc GVPLTKVNLKTNQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPGHLDKKELKAI ccccceeeecccccccccchhhhhhhceeeeeecccccccccchhhhhhhhhhhhcoccccccheeccccccchhhhhhh NSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVLILGLLIMFITIVFCAAGIVVLVLHRRRRYK ccceecceccecceccecceeeeeeccccccchhhhhhhhhhhhcchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhc KKQVDEQMRDNSPVHLQYSMYGHKTTHHTTEERPSASLYEQHMVSPMVHVYRSPSFGPKHLEEEEERNEKEGSDAKHLQRS hhchhhhhcccccceeeeeccccccccccccccccchhhhcccccceeeeecccccccccchhhocccccccchhhhhhh LLEQENHSPLTGSNMKYKITNQSTEFLSFQDASSLYRNILEKERELQQLGITEYLRKNIAQLQPDMEAHYPGAHEELKLM hhihhccceccccccceccccccceeeeccchhhhhhhhhhhhhhhhhcchhhhhhhhhhhhccccccccccchhhhhhhAlpha helix $(\mathrm{h}): \quad 35.32 \%$
Extended strand (e): 15.93%
Random coil $(\mathrm{c}): 48.75 \%$ ETLMYSRPRKVLVEQTKNEYFELKANLEAEPDYLEVLEQQT hhhhhccccceeeecccchhhhhhhhcccccchhhhhhccc
Fig 16A
10
1
MKLWIHLFYSSLLACI

안
60
T $\boldsymbol{\alpha}$ I S

V 0 o . . a 4

200820305310 Jul 2008

Secondary structure prediction of 158P1Dĩ variant 3

80 1HTH cchhhhhhhhhhhhheecccccceeecccccccccccccccceeeeeecccceeeeeeecccccccceeehhcccceeee TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEFLQADNNFITVIEPSAFSKLN ccccchhhbheeeeecchhhhhhhhhhhcchhhhhhheecccceeeeehcccccccheeeeecccceeeeecccchcccc RLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPYVGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQS ceeeeeecccchhhcccchbhecccccecceccccccccchhhhhhhhhhhheccccccchhchhhhhhhhhhhcccccc IIGDVVCNSPPFFFKGSILSRLKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLIPTKAPGLIPYITKP eeececccccccccchhhhhhchccccccccccccccccccceeeeeccccccccccccceeeeecccccccceeeeccc STQLPGPYCPIPCNCKVLSPSGLLIHCQERNIESLSDLRPPPQNPRKLILAGNIIHSLMKSDLVVEYFTLEMLHLGNNRIE
 VLEEGSFMNLTRLQKUYLNGNHLTKLSKGMFLGLHNLEYLYLEYNAIKEILPGTFNPMPKLIKVLYINNNLLQVLPPHIFS eeeccchhhhhhhhhhhccccchhhhchhhhhchhhhhhhhhhhhhhhhhhccccchhcceeeeeeccchhhhccccecc GVPLTKVNLKTNQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVIDDILCTSPGHLDKKELKAL ccccceeeecccccccccchhhhhhhceeeeeecccccccccchhhhhhhhhhhhcccccccccheeccocccchhhhhhh NSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVLILGLLIMFITIVFCAAGIVVLVLHRRRRYK сссеесссссссссссссееeeeeccсосссhhhhhhhhhhhhcchhhhhhhhhhhhhhhinhhhhhhhhhhhhhhhhhhc KKQVDEQMRDNSPVHLQYSMYGHKTTHHTTERPSASLYEQHMGAHEELKLMETLMYSRPRKCVLVEQTKNEYFELKANLHA hhchhhhhcccecceeeeecccccccceccccoccchhhhhhcchhhhhhhhhhhhccocceeeecccchhhhhhhhccc EPDYLEVLEQQT:
ccchhhhhhcec
$.94 \%$

10 Jul 2008
 2008203053

Secondary structure prediction of 158P1D7 variant 4
Fig 16C

> ©
MKLWIHLFYSSLLACISLHSQTPVLSSRGSCDSLCNCEEKDGTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH cchhhhhhhhhhhhheecccccceeeccccccccccccccceeeeeecccceeeeeeecccccocceeehhcccceeee TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEFLQADNNFITVIEPSAFSKIN ccccchhhhheeeeecchhhhhhhhhhhcchhhhhhheecccceeeeehcccccccheeeeecccceeeeecccchcccc RLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPYVGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQS ceeeeeecccchhhcccchhhecccccecccccccccccchhhhhhhhhhhheccccccchhchhhhhhhhhhhcccccc IIGDVVCNSPPFFKGSILSRLKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP eeececcoccccocchhhhhhchcccccoccccccccocceeeeeccccccccocciceeeeeccocccceeeeccc STQLPGPYCPIPCNCKVLSPSGLLIHCQERNIESLSDLRPPPQNPRKLILAGNIIHSLMKSILWSKASGRGRREE

Alpha helix(h): 24.56%
Extended strand (e): 20.76% Random coil (c) : 54.68\%

200820305310 Jul 2008

Predicted transmembrane region

Fig 16E
 1 transmembrane
 domain
 predicted

Fig 16F

[^6]Transmembrane prediction for 158P1D7 variant 3

Fig 16G
1 transmembrane
domain
predicted
Fig 16H
1 transmembrane

predicted
200820305310 Jul 2008
Transmembrane prediction for 158Р1D7 variant 4

Fig $16 i$

No transmembrane domain, Potential signal peptic

Fig 16J
 No transmembrane
 domain

200820305310 Jul 2008

Fig 16K

No transmembrane
 domain, Potential signal peptide

Fig 16L
No transmembrane
domain

Figure 17

Figure 18

200820305310 Jul 2008

Figure 19

158P1D7 v. 3
2228 bp
ORF: $23-2221$
158P1D7 v. 4
1620 bp
ORF:23-1210
158P1D7 v. 6
1619 bp
ORF:23-1612
158P1D7 v. 5
3300 bp
ORF:480-3005

200820305310 Jul 2008

$\because r \operatorname{Ho}$ No expression

Figure 22: Detection of AGS15 protein in recombinant cells

Figure 25: Monocionai antibody-mediated internaiization of endogenous
 surface 158P1D7 in NCI-H146 small cell lung cancer cells

Control lgG M15-68(2)18.1.1

Control lgG
 M15-68(2)22.1.1

 Figure 26: Binding of the 158P1D7 extracellular domain to human umbilical vein endothelial cells (HUVEC)

$\begin{array}{lr}\qquad 2008203053 & 10 \text { Jul } 2008 \\ \text { Figure 32: Effect of 158P1D7 on Proliferation of Rat1 cells }\end{array}$

200820305310 Jul 2008

	Figure 33: 158P1D7 Enhances Entry Into the S Phase			
Cells	Percent Cells			
	0.5\% FBS	92.7	2.6	2.2
	10\% FBS	72.8	11.4	14.7
3T3-neo	0.5\% FBS	95.1	1.4	2.3
	10\% FBS	59.6	14.1	18.3
3T3-158P1D7	0.5\% FBS	90.1	3.3	4.4
	10\% FBS	68.4	$\mathbf{2 1 . 2}$	1.7

Figure 34A. The cDNA and amino acid sequence of M15/X68(2) 18 VH clone \#1.

Figure 34B. The CDNA and amino acid sequence of M15/X68(2)18 VL clone \#2.

gacattcagctgacccagtctcctgcttccttagctgtatctctggggcagagggccacc
$\begin{array}{llllllllllllllllllllll}21 & I & S & Y & R & A & S & K & S & V & S & T & S & G & Y & S & Y & M & H & W & N\end{array}$
61 atctcatacagggccagcaaaagtgtcagtacatctggctatagttatatgcactggaac
$\begin{array}{lllllllllllllllllllll}41 & Q & Q & K & P & G & Q & P & P & R & L & L & I & Y & L & V & S & N & L & E & S\end{array}$
121 caacagaaaccaggacagccacccagactcctcatctatcttgtatccaacctagaatct
$\begin{array}{lllllllllllllllllllll}61 & G & V & P & A & R & F & S & G & S & G & S & G & T & D & F & T & L & N & I & H\end{array}$
181 ggggtccctgccaggttcagtggcagtgggtctgggacagacttcaccctcaacatccat
$81 \mathrm{P} \cdot \mathrm{V} \quad \mathrm{E} \quad \mathrm{E} \quad \mathrm{E} \quad \mathrm{D} \quad \mathrm{A} \quad \mathrm{A} \quad \mathrm{T}$
241 cctgtggaggaggaggatgctgcaacctattactgtcagcacattagggagcttacacgt
101 S E G G P S W R S N
301 tcggaggggggaccaagctggagatctaac

Figure 35A: The amino acid sequence of M15/X68(2)18 VH cione \#1.
1 QTAGVRSWPG GALTEPVHHM HRLRILIDRI WCKIGSPASR KGSGVAGNDL 51 GRWKHRLYFS SPIQTEHQEG QFKSQTFLKN NSLQTDDTAR YYCARDEGRG 101 LCLIAGAKGP RSPSP

Figure 35B: The amino acid sequence of M15/X68(2) 18 VL clone $\# 2$.
1 DIQLTQSPAS LAVSLGQRAT ISYRASKSVS TSGYSYMHWN QQKPGQPPRL
51 LIYLVSNLES GVPARFSGSG SGTDFTLNIH PVEEEDAATY YCQHIRELTR 101 SEGGPSWRSN

Figure 36: Detection of 158P1D7 protein by immunohistochemistry in various cancer patient specimens.

SEQUENCE LISTING

```
<110> Agensys, Inc.
    Jakobovits, Aya
    Morrison, Robert Kendall
    Raitano, Arthur B.
    Challita-Eid, Pia M.
    Perez-Villar, Juan J.
    Morrison, Karen Jane Meyrick
    Faris, Mary
    Ge, Wangmao
    Gudas, Jean
    Kanner, Steven B.
<120> Nucleic Acids and Corresponding Proteins
    Named 158P1D7 Useful in the Treatment and Detection of
    Bladder and Other Cancers
```

```
<130> 51158-20050.43
<140> PCT/US2004/003984
<141> 2004-02-10
<150> 60/446,633
<151> 2003-02-10
<160> 113
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 231
<212> DNA
<213> Homo sapiens
<400> 1
gatctgataa gctttcaatg ttgcgctcct gacaatgtat tagaagtcct gatggggata 60
ggactttgca gttacaagga atagggcaga aaggtcctgg aagttgagtg gatggctttg 120
taatataagg tatcaaacct ggtgctttgg tgggtagttt tagaatggac gtggtcttag 180
ttgacatgcg actatcattt attgaagatg ttgctgccag atgtaatgat c 231
```

<210> 2
<211> 2555
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (23)...(2548)
<400> 2
tcggatttca tcacatgaca ac atg aag ctg tgg att cat ctc tet tat tca
Met Lys Leu Trp Ile His Leu the Tyr Ser
150
tct ctc ctt gec tgt ata tet tta cac lec caa act cea gtg ctc rea
Ser Leu Leu Ala Cys Ile Ser heu His Ser Gln Thr Pro Vall Leu Ser
$1520 \quad 2.5$
tcc aga ggc tct tgt gat. tet ott tgc aat tigt gag gaa aaa gat gge
Ser Arg Gly Ser Cys Asp Ser Leu Cys Asn Cys Glu Glu Lys Asp Gily
30
35
aca atg cta ata aat tgt gaa gca aaa ggt atc aag atg gta tct gaa196
Thr Met Leu Ile Asn Cys Glu Ala Lys Gly Ile Lys Met Val Ser Glu55
ata agt gtg cca cca tca cga cct ttc caa cta agc tta tta aat aacIle Ser Val Pro Pro Ser Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn
60244ggc ttg acg atg ctt cac aca aat gac ttt tct ggg ctt acc aat gct
75 Leu Thr Met Leu His Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala 80 85
90
90292
att tca ata cac ctt gga ttt aac aat att gca gat att gag ata ggtIle Ser Ile His Leu Gly Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly95100105
gca ttt aat ggc ctt ggc ctc ctg aaa caa ctt cat atc aat cac aat Ala Phe Asn Gly Leu Gly Leu Leu Lys Gln Leu His Ile Asn His Asn 110115120tct tta gaa att ctt aaa gag gat act ttc cat gga ctg gaa aac ctg$\begin{array}{ll}\text { Gl.u Ile Leu Lys Glu Asp } \\ 125 & 130\end{array}$135
gaa ttc ctg caa gca gat acc aat tet atc aca gtg att gaa cca agtGlu Phe Leu Gln Ala Asp Asn Asn Phe Ile Thr Val Ile Glu Pro Ser$140145 \quad 150$
gcc ttt agc aag ctc aac aga ctc aaa gtg tta att tta aat gac aatAla Phe Ser Lys Leu Asn Arg Leu Lys Val Leu Ile Leu Asn Asp Asn155160165170
gct att gag agt ctt cet cca aac atc ttc cga ttt gtt cct tta accAla Ile Glu Ser Leu Pro Pro Asn Ile Phe Arg Phe Val Pro Leu Thr$175180 \quad 185$cat cta gat ctt cgt gga aat caa tta caa aca ttg cct tat gtt ggtHis Leu Asp Leu Arg Gly Asn Gln Leu Gln Thr Leu Pro Tyr Val gly$190195 \quad 200$
ttt ctc gaa cac att ggc cga ata ttg gat ctt cag ttg gag gac aac
Phe Leu Glu His Ile Gly Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn 205210215
aaa tgg gcc tgc aat tgt gac tta ttg cag tta aaa act tgg ttg gagLys Trp Ala Cys Asn Cys Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu$220225 \quad 230$
aac atg cct cca cag tot ata att ggt gat gtt gtc tgc aac agc cetAsn Met Pro Pro Gln Ser Ile Ile Gly Asp Val Val Cys Asn Ser Pro
235$235 \quad 240 \quad 245 \begin{array}{rrr} \\ 250\end{array}$cca tet ttt aaa gga agt ata ctc agt aga cta aag aag gaa tct attPro Phe Phe Lys Gly Ser Ile Leu Ser Arg Leu Lys Lys Glu Ser Tlee255260265484532580628676
tgc cct act cca cca gtg tat gaa gaa cat gag gat cot tca gga tea Cys Pro Thr Pro Pro Val. Tyr Glu Glu His Glu Asp Pro Ser Gly Ser $270 \quad 2.75 \quad 280$
tta cat ctg gca gea aca tct tea ata ad gat agt cge atg tea aci
Leu His Leu Ala Ala Thr Ser Ser Ile Asn Asp Ser Arg Mel Ser Th: 285290295
Lys Thr Thr Ser Ile Leu Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile300305310
cct tat att aca aag cca tcc act caa ctt cca gga cot tac tgc cetPro Tyr Ile Thr Lys Pro Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro
315
320$315320325 \quad 330$att cet tgt aac tgc aaa gtc cta tec cca tca gga ctt cta ata catIle Pro Cys Asn Cys Lys Val Leu Ser Pro Ser Gly Leu Leu Ile His335340345
tgt cag gag cgc aac att gaa agc tta toa gat ctg aga cot cot cogCys Gln Glu Arg Asn Ile Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro350355
caa at cet aga aag ctc att cta gcg gga aat att att cac agt tta Gln Asn Pro Arg Lys Leu Ile Leu Ala Gly Asn Ile Ile His Ser Leu
365
370 375
atg aag tct gat cta gtg gaa tat ttc act ttg gaa atg ctt cac ttg
Met Lys Ser Asp Leu Val Glu Tyr Phe Thr Leu Glu Met Leu His Leu 380
385 390
gga aac aat cgt att gaa gtt ctt gaa gaa gga tog ttt atg aac ctaGly Asn Asn Arg Ile Glu Val Leu Glu Glu Gly Ser Phe Met Asn Leu395400405410
acg aga tta caa aaa ctc tat cta aat ggt aac cac ctg acc aaa tta
Thr Arg Leu Gln lys Leu Tyr Leu Asn Gly Asn His Leu Thr Lys Leu1300
agt aaa ggc atg ttc ctt ggt ctc cat at ctt gaa tac tta tat ctt 1348
Ser Lys Gly Met Phe Leu Gly Leu His Asn Leu Glu Tyr Leu Tyr Leu 430435 440
gaa tac aat gec att aag gaa ata ctg cca gga acc ttt aat cca atgGlu Tyr Asn Ala Ile Lys Glu Ile Leu Pro Gly Thr Phe Asn Pro Met445450455
cct aaa ctt aaa gtc ctg tat tta aat aac aac ctc ctc caa gtt tta 14441396Pro Lys Leu lys Val Leu Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu$460 \quad 465 \quad 470$
cca cca cat att ttt tca ggg gtt cct cta act aag gta aat ctt aaaPro Pro His Ile Phe Ser Gly Val Pro Leu Thr Lys Val Asn Leu Lys
475$4754480 \quad 485$ Yys Asn Leu Lys1492gat tta cta acc cag att gac ctt gag gat aac ccc tgg gac tgc tcctgt gac ctg gtt gga ctg cag caa tgg ata caa aag tta agc aag aacCys Asp Leu Val Gly Leu Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn$525 \quad 530 \quad 535$
aca gtg aca gat gac ate cte tge act toc coc ggg cat cte gac aad12521204aca ace cag ttt acc cat cta cct gta agt at att ttg gat gat cttThr Asn Gln Phe Thr His Leu Pro Val Ser Asn Ile Leu Asp Asp Leu$495 \quad 500$ Asn $\begin{array}{r}\text { Ile Leu Asp Asp } \\ 505\end{array}$
Asp Leu Leu Thr Gln Ile Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser $510515 \quad 520$ 5151636
Thr Val Thr Asp Asp Ile Leu Cys 'lhr Ser Pro
540 545 550

```
aag gaa ttg aaa gcc cta aat agt gaa att ctc tgt cca ggt tta gta
Lys Glu Leu Lys Ala Leu Asn Ser Glu Ile Leu Cys Pro Gly Leu Val
aat aac cca tcc atg cca aca cag act agt tac ctt atg gtc acc act
Asn Asn Pro Ser Met Pro Thr Gln Thr Ser Tyr Leu Met Val Thr Thr
    S75 580
    585
cct gca aca aca aca aat acg gct gat act att tta cga tct ctt acg
Pro Ala Thr Thr Thr Asn Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr
        590
                            595
                                    6 0 0
gac gct gtg cca ctg tct gtt cta ata ttg gga ctt ctg att atg ttc
Asp Ala Val Pro Leu Ser Val Leu Ile Leu Gly Leu Leu Ile Met Phe
    605 610 615
atc act att gtt ttc tgt gct gca ggg ata gtg gtt ctt gtt ctt cac
Ile Thr Ile Val Phe Cys Ala Ala Gly Ile Val Val Leu Val Leu His
        6 2 0
                625
                        6 3 0
cgc agg aga aga tac aaa aag aaa caa gta gat gag caa atg aga gac
Arg Arg Arg Arg Tyr Lys Lys Lys Gln Val Asp Glu Gln Met Arg Asp
635 640 645 650
aac agt cct gtg cat ctt cag tac agc atg tat ggc cat aaa acc act
Asn Ser Pro Val His Leu Gln Tyr Ser Met Tyr Gly His Lys Thr Thr
    655 660 665
cat cac act act gaa aga ccc tct gcc tca ctc tat gaa cag cac atg
His Ais Thr Thr Glu Arg Pro Ser Ala Ser Leu Tyr Glu Gln His Met
            670 675 680
gtg agc ccc atg gtt cat gtc tat aga agt cca tcc ttt ggt cca aag
Val Ser Pro Met Val His Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys
        6 8 5
                        690
                        6 9 5
cat ctg gaa gag gaa gaa gag agg aat gag aaa gaa gga agt gat gca
His Leu Glu Glu Glu Glu Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala
    700 705 710
aaa cat ctc caa aga agt ctt ttg gaa cag gaa aat cat tca cca ctc
Lys His Leu Gln Arg Ser Leu Leu Glu Gln Glu Asn His Ser Pro Leu
715 720 725 730
aca ggg tca aat atg aaa tac aaa acc acg aac caa tca aca gaa ttt
Thr Gly Ser Asn Met Lys Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe
            73
                                    7 4 0
                                    7 4 5
tta tcc ttc caa gat gcc agc tca ttg tac aga aac att tta gaa aaa
Leu Ser Phe Gln Asp Ala Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys
                        750 755 760
gaa agg gaa ctt cag caa ctg gga atc aca gaa tac cta agg aaa aac
Glu Arg Glu Leu Gln Gln Leu Gly Ile Thr Glu Tyr Leu Arg L.ys Asn
                        7 7 5
att gct cag ctc cag cct gat atg gag gca cat tat cct gga gcc cac
Ile Ala Gln Leu Gln Pro Asp Met Glu Ala His Tyr Pro Gly Ala His
        780 7% 785 (%)
gaa gag ctg aag tta atg gaa aca tra atg tac: tca cgt cca agg aag
Glu Glu Leu Lys Leu Met Cilu Thr Leu Met Tyr Ser Arg Pro Arg Lys
```



```
<210> 3
<211> 841
<212> PRT
<213> Homo sapiens
```

<400> 3

Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile 1 5 $10 \quad 15$ Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp $2025 \quad 30$
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys 354045
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser 505560
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His $65 \quad 70 \quad 75 \quad 80$ Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
85
90 Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly 100105110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys 115120125
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp $130135 \quad 140$
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn $145150155 \quad 160$
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro 165170175
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly 180185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly $195200 \quad 205$
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys 210215220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser
225
225 Ile Gly Asp Val 230 235 240
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser
Ile Leu Ser Arg 245 250 255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr
275
Ser Ser Ile Asn Asp Ser Arg Met Ser. Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys pro
$\begin{array}{lll}305 & 310 & 315 \\ & 320\end{array}$
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys
Val Leu Ser pro Ser Gly $330 \quad 335$
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn IJe $340 \quad 345 \quad 350$
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu $355360 \quad 365$
Ile Leu Ala Gly Asn ile Ile His Ser Leu Met Lys Ser Asp Leu Val

Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu $385390 \quad 395400$ Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu 405410415
Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425430
Gly Leu His Asn Leu Glu Tyr Leu Tyr Leu Glu tyr Asn Ala Ile Lys 435440

445
Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu 450455460
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser $465470 \quad 475 \quad 480$ Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile 500505 510
Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu 515520525
Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile 530535540
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu
$545 \quad 550 \quad 555 \quad 560$
Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro 565570575
Thr Gln Thr Ser Tyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn 580585590
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser 595600605
Val Leu Ile Leu Gly Leu Leu Ile Met Phe Ile Thr Ile Val Phe Cys $610615 \quad 620$
Ala Ala Gly Ile Val Val Leu Val Leu His Arg Arg Arg Arg Tyr Lys $625630635 \quad 640$ Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu
Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr Thr Glu Arg $660 \quad 665$ 670
Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val Ser Pro Met Val His 675680685
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys His Leu Glu Glu glu Glu 690695700
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser $705710 \quad 715 \quad 720$
Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys 725730735
Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala $740745 \quad 750$
Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys Glu Arg Glu Leu Gln Gin 755760765
Leu Gly Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro $770775 \quad 780$
Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met $785790 \quad 795 \quad 800$ Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glu Gln Thr 805810 . 815 Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu Hiss Ala Glu Pro Asp
820.
825
Tyr Leu Glu Val Leu Glu Gln Gln Thr 835840

```
<210> 4
<21.1> 2555
<212> DNA
```

```
<213> Homo sapiens
<220>
<221> CDS
<222> (23)...(2548)
<400> 4
tcggatttca tcacatgaca ac atg aag ctg tgg att cat ctc ttt tat tca
                                    Met Lys Leu Trp Ile His Leu Phe Tyr Ser
                                    1 5 10
tct ctc ctt gcc tgt ata tct tta cac tcc caa act cca gtg ctc tca Ser Leu Leu Ala Cys Ile Ser Leu His Ser Gln Thr Pro Val Leu Ser 152025
tcc aga ggc tct tgt gat tct ctt tgc aat tgt gag gaa aaa gat ggc Ser Arg Gly Ser Cys Asp Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly 303540
aca atg cta ata aat tgt gaa gca aaa ggt atc aag atg gta tct gaa Thr Met Leu Ile Asn Cys Glu Ala Lys Gly Ile Lys Met Val Ser Glu 455055
ata agt gtg cca cca tca cga cct ttc caa ctia agc tta tta aat aac Ile Ser Val Pro Pro Ser Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn \(60 \quad 65 \quad 70\)
ggc ttg acg atg ctt cac aca aat gac tet tct ggg ctt acc aat gct Gly Leu Thr Met Leu His Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala 7580850
att tca ata cac ctt gga ttt aac aat att gca gat att gag ata ggt Ile Ser Ile His Leu Gly Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly 95100105
gca ttt aat ggc ctt ggc ctc ctg aaa caa ctt cat atc aat cac aat Ala Phe Asn Gly Leu Gly Leu Leu Lys Gln Leu His Ile Asn His Asn 110115120
tct tta gaa att ctt aaa gag gat act ttc cat gga ctg gaa aac ctg Ser Leu Glu Ile Leu Lys Glu Asp Thr Phe His Gly Leu Glu Asn Leu 125130135
```

```
gaa ttc ctg caa gca gat aac aat ttt atc aca gtg att gaa cca agt
```

gaa ttc ctg caa gca gat aac aat ttt atc aca gtg att gaa cca agt
Glu Phe Leu Gln Ala Asp Asn Asn Phe Ile Thr Val Ile Glu Pro Ser
140 145 150
gcc ttt agc aag ctc aac aga ctc aaa gtg tta att tta aat gac aat
Ala Phe Ser Lys Leu Asn Arg Leu Lys Val Leu Ile Leu Asn Asp Asn
155 160 165 170
gct att gag agt ctt cct cca aac atc ttc cga ttt gtt cot tta acc
Ala Ile Glu Ser Leu Pro Pro Asn J.le Phe Arg Phe Val Pro Leu Thr
1.75 180 185
cat cta gat ctt cgt gga aat cala tta caa aca ttg cct tat gtt ggt
His Leu Asp Leu Arg Gly Asn Gln Leu Gln Thr Leu Pro Tyr Val Giy
190 195 200
ttt ctc gaa cac att ggo cog ata ttg gat ctt cag ttg gag gac aac
Lys Trp Ala Cys Asn Cys Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu
220
225
230
aac atg cot cca cag tet ata att ggt gat gtt gtc tgc aac agc cet Asn Met Pro Pro Gln Ser Ile Ile Gly Asp Val Val Cys Asn Ser Pro $235240 \quad 245 \quad 250$
cca ttt ttt aaa gga agt ata. ctc agt aga cta aag aag gaa tct att Pro Phe Phe Lys Gly Ser Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile 255 260 265
tgc cct act cca cca gtg tat gaa gaa cat gag gat cot tca gga tca Cys Pro Thr Pro Pro Val Tyr Glu Glu His Glu Asp Pro Ser Gly Ser
tta cat ctg gca gca aca tct tca ata at gat agt cgc atg tca act Leu His Leu Ala Ala Thr Ser Ser Ile Asn Asp Ser Arg Met Ser Thr 285290 295
aag acc acg tcc att cta aaa cta ccc acc aad gca cca ggt ttg ata Lys Thr Thr Ser Ile Leu Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile 300305310
cct tat att aca aag cca tcc act caa ctt cca gga cct tac tgc cct Pro Tyr Ile Thr Lys Pro Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro $315320325 \quad 330$
att cct tgt aac tgc aaa gtc cta tcc cca tca gga ctt cta ata cat Ile Pro Cys Asn Cys Lys Val Leu Ser Pro Ser Gly Leu Leu Ile His 335340345
tgt cag gag cgc aac att gaa agc tta tca gat ctg aga cot cot ccg Cys Gln Glu Arg Asn Ile Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro $350 \quad 355 \quad 360$
caa aat cct aga aag ctc att cta gcg gga aat att att cac agt tta Gln Asn Pro Arg Lys Leu Ile Leu Ala Gly Asn Ile Ile His Ser Leu
365
370
atg aag tct gat cta gtg gaa tat thc act ttg gaa atg ctt cac ttg
Met Lys Ser Asp Leu Val Glu Tyr Phe Thr Leu Glu Met Leu His Leu 380 385 390
gga aac aat cgt att gaa gtt ctt gaa gaa gga tcg tet atg aac cta Gly Asn Asn Arg Ile Glu Val Leu Glu Glu Gly Ser Phe Met Asn Leu $395400 \quad 405 \quad 410$
acg aga tta caa aaa ctc tat cta aat ggt aac cac ctg acc aaa tta Thr Arg Leu Gln Lys Leu Tyr Leu Asn Gly Asn His Leu Thr Lys Leu $415 \quad 420 \quad 425$
agt aaa ggc atg ttc ctt ggt ctc cat at ctt gaa tac tta tat ctt
Ser Lys Gly Met Phe Leu Gly Leu His Asn Leu Glu Tyr Leu Tyr Leu $430 \quad 435 \quad 440$
gaa tac aat gcc att aag gaa ata ctg cca gga acc ttt at cca atg Glu Tyr Asn Ala Ile Lys Glu Ile Leu Pro Gly Thr Phe Asn Pro Met 445450455
cct aaa ctt aaa gtc ctg tat tha at aac aac ctc ctc caa get lita
Pro Lys Leu Lys Val Leu Tyr Leu Asn Asn Asn Leu Leu Gln Val ieu $460 \quad 465470$
cca cca cat att lit tca ggg gtt cet cta act aag gta aat ctt aad

```
Mro Pro His Ile Phe Ser Gly Val Pro Leu Thr Lys Val Asn Leu Lys
aca aac cag ttt acc cat cta cct gta agt aat att ttg gat gat ctt 1540
Thr Asn Gln Phe Thr His Leu Pro Val Ser Asn Ile Leu Asp Asp Leu
    495 500 505
gat ttg cta acc cag att gac ctt gag gat aac ccc tgg gac tgc tcc
Asp Leu Leu Thr Gln Ile Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser
        510
                                    515
                                    520
tgt gac ctg gtt gga ctg cag caa tgg ata caa aag tta agc aag aac
Cys Asp Leu Val Gly Leu Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn
            525
                530
                            535
aca gtg aca gat gac atc ctc tgc act tcc ccc ggg cat ctc gac aaa
Thr Val Thr Asp Asp Ile Leu Cys Thr Ser Pro Gly His Leu Asp Lys
    540 545 550
aag gaa ttg aaa gcc cta aat agt gaa att ctc tgt cca ggt tta gta
Lys Glu Leu Lys Ala Leu Asn Ser Glu Ile Leu Cys Pro Gly Leu Val
555 560 565 570
aat aac cca tcc atg cca aca cag act agt tac ctt atg gtc acc act
Asn Asn Pro Ser Met Pro Thr Gln Thr Ser Tyx Leu Met Val Thr Thr
            575 580 585
cct gca aca aca aca aat acg gct gat act att tta cga tct ctt acg
Pro Ala Thr Thr Thr Asn Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr
        590 595 600
gac gct gtg cca ctg tct gtt cta ata ttg gga ctt ctg att atg ttc
Asp Ala Val Pro Leu Ser Val Leu Ile Leu Gly Leu Leu Ile Met Phe
    605 610 615
atc act att gtt ttc tgt gct gca ggg ata gtg gtt ctt gtt ctt cac
Ile Thr Ile Val Phe Cys Ala Ala Gly Ile Val Val Leu Val Leu His
        620 625 630
cgc agg aga aga tac aaa aag aaa caa gta gat gag caa atg aga gac
Arg Arg Arg Arg Tyr Lys Lys Lys Gln Val Asp Glu Gln Met Arg Asp
635 640 645 650
aac agt cct gtg cat ctt cag tac agc atg tat ggc cat aaa acc act
Asn Ser Pro Val His Leu Gln Tyr Ser Met Tyr Gly His Lys Thr Thr
                        655 660 665
cat cac act act gaa aga ccc tct gcc tca ctc tat gaa cag cac atg
His His Thr Thr Glu Arg Pro Ser Ala Ser Leu Tyr Glu Gin His Met
            670 675 680
gtg agc ccc atg gtt cat gtc tat aga agt cca tcc ttt ggt cca aag
Val Ser Pro Met Val. His Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys
        685 690 695
cat ctg gaa gag gaa gaa gag agg aat gay aaa gaa gqa agt gat gca
His Leu Glu Glu Glu Glu Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala
    700 705 710
aaa cal: ctc caa aga agt: ctt ttg gaa cag gaa aat cat tca coa ctc
Lys His Leu Gln Arg Ger Leu Leu Glu Gln Gilu Asn His Ser Pro Leu
715 720 725 730
aca ggg tca aat atg ada tac aad acc acg aac caa tca aca gaa ttt
```


Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser 245250255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val 260265270
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr 275280285
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro $305310 \quad 315 \begin{array}{ll}320\end{array}$
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys $325330 \quad 335$
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile $340 \quad 345 \quad 350$
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu $355360 \quad 365$
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Asp Leu Val $370375 \quad 380$
385 Gyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu
$\begin{array}{ll}385 \\ V a l \\ & 390\end{array} \frac{395}{} \quad 400$
Val Leu Glu glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu $4054410 \quad 415$
Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425430
Gly Leu His Asn Leu Glu Tyr Leu Tyr Leu Glu Tyr Asn Ala Ile Lys 435 - 440 445
Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu $450 \quad 455 \begin{aligned} & 460\end{aligned}$
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser $465470475 \quad 480$
Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His
Leu Pro val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile $500 \quad 505 \quad 510$
Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu $515520 \quad 525$
Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile $530535 \quad 540$
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu
$545550 \quad 555 \quad 560$
Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro 565

570
575
Thr Gln Thr Ser Tyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn $580585 \quad 590$
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser 595600605
Val Leu Ile Leu Gly Leu Leu Ile Met Phe Ile Thr Ile Val Phe Cys $610 \quad 615 \quad 620$
Ala Ala Gly $I l e$ Val. Val Leu Val. Leu His Arg Arg Arg Arg Tyr Lys $625 \quad 630 \quad 635$ 640
Lys Lys Gln Val. Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu 645650655
Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr thr Glu Arg 660665670
Pro Ser Ala Ser Leu Tyr Glu Gln His Met val Ser Pro Met Vall His $675680 \quad 685$
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys his Leu Glu Glu glu glu $690695 \quad 700$
Glu Arg Asn Glu lys Glu gly Ser Asp Ala Lys His Leu Gln Arg Ser $705 \quad 710 \quad 715 \quad 720$
Leu Leu Glu gln glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys $725730 \quad 735$
Tyr Lys Thr 'thr Asn Gin Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala
Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys Glu Arg Glu Leu Gln Gln
7 5 5 ~ 7 6 0 ~ 7 6 5
Leu Gly Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro
7 7 0 7 7 5 ~ 7 8 0
Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met
785 790 795 800
Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glu Gln Thr
8 0 5 ~ 8 1 0 ~ 8 1 5 ~
Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp
820 825 830
Tyr Leu Glu Val Leu Glu Gln Gln Thr
835 840

```
```

<210> 6

```
<210> 6
<211> 2228
<211> 2228
<212> DNA
<212> DNA
<213> Homo sapiens
<213> Homo sapiens
<220>
<220>
<221> CDS
<221> CDS
<222> (23)... (2221)
<222> (23)... (2221)
<400> 6
<400> 6
tcggatttca tcacatgaca ac atg aag ctg tgg att cat ctc ttt tat tca
tcggatttca tcacatgaca ac atg aag ctg tgg att cat ctc ttt tat tca
                                    Met Lys Leu Trp Ile His Leu Phe Tyr Ser
                                    Met Lys Leu Trp Ile His Leu Phe Tyr Ser
                                    1 5 10
                                    1 5 10
tct ctc ctt gcc tgt ata tct tta cac tcc caa act cca gtg ctc tca
Ser Leu Leu Ala Cys Ile Ser Leu His Ser Gln Thr Pro Val Leu Ser
        15 20 25
tcc aga ggc tct tgt gat tct ctt tge aat tgt gag gaa aaa gat ggc
Ser Arg Gly Ser Cys Asp Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly
                                    30 35 40
aca atg cta ata aat tgt gaa gca aaa ggt atc aag atg gta tct gaa
Thr Met Leu Ile Asn Cys Glu Ala Lys Gly Ile Lys Met Val Ser Glu
        45 50 55
ata agt gtg cca cca tca cga cct ttc caa cta agc tta tta aat aac
Ile Ser Val Pro Pro Ser Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn
            6 0
                            65 70
ggc ttg acg atg ctt cac aca aat gac ttt tct ggg ctt acc aat gct
Gly Leu Thr Met Leu His Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala
                    80 85
                                    90
att tca ata cac ctt gga ttt aac aat att gca gat att gag ata ggt
Ile Ser Ile His Leu Gly Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly
gca ttt aat ggc ctt ggc ctc ctg aaa caa ctt cat atc aat cac aat
Ala Phe Asn Gly Leu Gly Leu Leu Lys Gln Leu His Ile Asn His Asn
            110 115 120
tct tta gaa att ctt aaa gag gat act ttc cat gga ctg gaa aac ctg
Ser Leu Glu ile Leu Lys Glu Asp Thr Phe His Gly Leu Glu Asn Leu
        125 130}13
gaa ttce etg caa gca gat aac aat ttt atc aca gty att gaa cca agt
Glu fhe Led Gln Ala Asp Asn Asn Phe Jle Thr Val Ile glu Pro Ser: 140145150
att tca ata cac ctt gga ttt aac aat att gca gat att gag ata ggt110115120
tct tta gaa att ctt aaa gag gat act ttc cat gga ctg gaa aac ctg
```

```
gcc ttt agc aag ctc aac aga ctc aaa gtg tta att tta aat gac aat
Ala Phe Ser Lys Leu Asn Arg Leu Lys Val Leu Ile Leu Asn Asp Asn
155 160 165 170
gct att gag agt ctt cct cca aac atc ttc cga ttt gtt cet tta acc
Ala Ile Glu Ser Leu Pro Pro Asn Ile Phe Arg Phe Val Pro Leu Thr
175 180 185
cat cta gat ctt cgt gga aat caa tta caa aca ttg cct tat gtt ggt
His Leu Asp Leu Arg Gly Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly
                    190 195 200
ttt ctc gaa cac att ggc cga ata ttg gat ctt cag ttg gag gac aac
Phe Leu Glu His Ile Gly Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn
        205 210 215
aaa tgg gcc tgc aat tgt gac tta ttg cag tta aaa act tgg ttg gag
Lys Trp Ala Cys Asn Cys Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu
    220
                                    225
                                    230
aac atg cct cca cag tct ata att ggt gat gtt gtc tgc aac agc cot
Asn Met Pro Pro Gln Ser Ile Ile Gly Asp Val Val Cys Asn Ser Pro
235 240 . 245 250
cca ttt ttt aaa gga agt ata ctc agt aga cta aag aag gaa tct att
Pro Phe Phe Lys Gly Ser Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile
    255 260 265
tgc cct act cca cca gtg tat gaa gaa cat gag gat cct tca gga tca
Cys Pro Thr Pro Pro Val Tyr Glu Glu His Glu Asp Pro Ser Gly Ser
    270 275 280
tta cat ctg gca gca aca tct tca ata aat gat agt cgc atg tca act
Leu His Leu Ala Ala Thr Ser Ser Ile Asn Asp Ser Arg Met Ser Thr
    285 290 295
aag acc acg tcc att cta aaa cta ccc acc aaa gca cca ggt ttg ata
Lys Thr Thr Ser Ile Leu Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile
    300 305 310
cct tat att aca aag cca tcc act caa ctt cca gga cot tac tgc cct
Pro Tyr Ile Thr Lys Pro Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro
315 320 325 330
att cet tgt aac tgc aaa gtc cta tcc cca tca gga ctt cta ata cat
Ile Pro Cys Asn Cys Lys Val Leu Ser Pro Ser Gly Leu Leu lle His
    335 340 345
tgt cag gag cgc aac att gaa agc tta tca gat ctg aga cct cot cog
Cys Gln Glu Arg Asn Ile Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro
        350 355 360
caa aat cct aga aag ctc att cta gcg gga aat att att cac agt tta
Gln Asn Pro Arg L.ys Leu Ile Leu Ala Gly Asn Ile Ile His Ser. Leu
        365
        370
        375
atg aag tct gat cta gty gaa tat ttc act ttg gaa atg ctt cac ttg
Met Lys Ser Asp Leu Val Glu Tyr Phe Thr Leu Glu Met Leu His Leu
    380 385 390
gga aac aat. cgt att gaa gtt ctt gaa gaa gga tcg ttt atg aac cta
Gly Asn Asn Arg Jle Glu Val Leu Glu glu Gily Ser Phe Met Asn Leu
395 400 405 410
```



```
cat cac act act gaa aga ccc tct gcc tca ctc tat gaa cag cac atg
His His Thr Thr Glu Arg Pro Ser Ala Ser Leu Tyr Glu Gln His Met
                        6 7 0
                    675
                                    680
gga gcc cac gaa gag ctg aag tta atg gaa aca tta atg tac tca cgt
Gly Ala His Glu Glu Leu Lys Leu Met Glu Thr Leu Met Tyr Ser Arg
    685 690}69
cca agg aag gta tta gtg gaa cag aca aaa aat gag tat ttt gaa ctt
Pro Arg Lys Val Leu Val Glu Gln Thr Lys Asn Glu Tyr Phe Glu Leu
aaa gct aat tta cat gct gaa cct gac tat tta gaa gtc ctg gag cag
Lys Ala Asn Leu His Ala Glu Pro Asp Tyr Leu Glu Val Leu Glu Gln
715 720 725 730
caa aca tag atggaga
Gln Thr *
<210> 7
<211> 732
<212> PRT
<213> Homo sapiens
<400> }
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
    1 5 10 15
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
        20 25 30
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
    35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
        50 55 60
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 70
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
    85 90 95
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
    1 1 5 ~ 1 2 0 ~ 1 2 5
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
        1 3 0 ~ 1 3 5 ~ 1 4 0
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
145 150 155 160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
        1 6 5 ~ 1 7 0 ~ 1 7 5
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr. Hi.s Leu Asp Leu Arg Gi.y
        180 185 190
Asn Gl.n Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly
        195 200 205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys
        210 215 220
Asp Leu Lell Gl.n Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser
225 230 235 240
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser
        2 4 5 ~ 2 5 0 ~ 2 5 5
I.le Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val
        2 6 0 ~ 2 6 5 ~ 2 7 0
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr
```



```
<210> 8
<211> 1620
<212> DNA
<213> Homo sap.iens
<220>
```

```
<221> CDS
<222> (23)...(1210)
<400> 8
tcggatttca tcacatgaca ac atg aag ctg tgg att cat ctc ttt tat tca
                                    Met Lys Leu Trp Ile His Leu Phe Tyr Ser
                                    1 5
                                    10
0
tct ctc ctt gcc tgt ata tct tta cac tcc caa act cca gtg ctc tcaSer Leu Leu Ala Cys Ile Ser Leu His Ser Gln Thr Pro Val Leu Ser
tcc aga ggc tet tgt gat tct ctt tgc aat tgt gag gaa aaa gat ggc Ser Arg Gly Ser Cys Asp Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly 303540
aca atg cta ata at tgt gaa gca aaa ggt atc aag atg gta tct gaa Thr Met Leu Ile Asn Cys Glu Ala Lys Gly Ile Lys Met Val Ser Glu 455055
ata agt gtg cca cca tca cga cct ttc caa cta agc tta tta aat aac Ile Ser Val Pro Pro Ser Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn \(60 \quad 65 \quad 70\)
ggc ttg acg atg ctt cac aca aat gac tet tct ggg ctt acc aat gct Gly Leu Thr Met Leu His Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala
75
80
att tca ata cac ctt gga ttt aac aat att gca gat att gag ata ggt Ile Ser Ile his Leu Gly Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly 95100105
gca tet aat ggc ctt ggc ctc ctg aaa caa ctt cat atc aat cac aat Ala Phe Asn Gly Leu Gly Leu Leu Lys Gln Leu His Ile Asn His Asn 110115120
tct tta gaa att ctt aaa gag gat act ttc cat gga ctg gaa aac ctg Ser Leu Glu Ile Leu Lys Glu Asp Thr Phe his Gly Leu Glu Asn Leu \(125130 \quad 135\)
gaa ttc ctg caa gca gat aac aat tet atc aca gtg att gaa cca agt
Glu Phe Leu Gln Ala Asp Asn Asn Phe Ile Thr Val Ile Glu Pro Ser \(140 \quad 145 \begin{array}{ll}150\end{array}\)
gcc ttt agc aag ctc aac aga ctc aaa gtg tta att tta aat gac aat Ala Phe Ser Lys Leu Asn Arg Leu Lys Val Leu Ile Leu Asn Asp Asn 155160165170
gct att gag agt ctt cct cca aac atc ttc cga ttt gtt cct tta acc Ala Ile Glu Ser Leu Pro Pro Asn Ile Phe Arg Phe Val. Pro Leu Thr \(175180 \quad 185\)
```

```
cat cta gat ctt cgt gga aat caa tta caa aca ttg cot tat gtt ggt 628
```

cat cta gat ctt cgt gga aat caa tta caa aca ttg cot tat gtt ggt 628
His Leu Asp Leu Arg Gly Asn Gln Leu Gln Thr Leu Pro Tyr val. Gly
190 195 200
ttt ctc gaa cac att ggc cga ata ttg gat ctt cag ttg gag gac aac 205 210 215
aaa tgg gcc tgc aat tgt gac tta ttg cag tta aaa act tgg ttg gag
$220 \quad 225 \begin{array}{r}230\end{array}$

```
aac atg cct cca cag tct ata att ggt gat gtt gtc tgc aac agc cct Asn Met Pro Pro Gin Ser Ile Ile Gly Asp Val Val Cys Asn Ser Pro \(235240245 \quad 250\) cca tet ttt aaa gga agt ata ctc agt aga cta aag aag gaa tct att Pro Phe Phe Lys Gly Ser Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile 255 260 265
\[
\begin{gathered}
\text { tgc cct act cca cca gtg tat gaa gaa cat gag gat cct tca gga tca } \\
\text { Cys Pro Thr Pro Pro Val Tyr Glu Glu His Glu Asp Pro Ser Gly Ser } \\
270
\end{gathered}
\]
tta cat ctg gca gca aca tct tca ata aat gat agt cgc atg tca act Leu His Leu Ala Ala Thr Ser Ser Ile Asn Asp Ser Arg Met Ser Thr 285290295
aag acc acg tcc att cta aaa cta ccc acc aaa gca cca ggt ttg ata Lys Thr Thr Ser Ile Leu Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile 300 305 310
cct tat att aca aag cca tce act caa ctt cca gga cot tac tgc cct
Pro Tyr Ile Thr Lys Pro Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro
315 \(3153320 \quad 325 \quad 330\)
att cct tgt aac tgc aaa gtc cta tcc cca tca gga ctt cta ata cat \(\begin{array}{rl}\text { Ile Pro Cys Asn Cys Lys Val Leu Ser Pro Ser Gly Leu Leu Ile His } \\ 345 & 340 \\ 345\end{array}\)
tgt cag gag cgc aac att gaa agc tta tca gat ctg aga cot cot cog Cys Gln Glu Arg Asn Ile Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro 350 355
360
caa aat cct aga aag ctc att cta gcg gga aat att att cac agt tta Gln Asn Pro Arg Lys Leu Ile Leu Ala Gly Asn Ile Ile His Ser Leu 365370375
atg aag tcc atc ctt tgg tcc aaa gca tct gga aga gga aga aga gag
Met Lys Ser Ile Leu Trp Ser Lys Ala Ser Gly Arg Gly Arg Arg Glu \(380 \quad 385 \quad 390\)
gaa tga gaaagaagga agtgatgcaa aacatctcca aagaagtctt ttggaacagg
Glu *
395
```

```
aaaatcattc accactcaca gggtcaaata tgaaatacaa aaccacgaac caatcaacag 1320
```

aaaatcattc accactcaca gggtcaaata tgaaatacaa aaccacgaac caatcaacag 1320
aatttttatc cttccaagat gccagctcat tgtacagaaa cattttagaa aaagaaaggg 1380
aatttttatc cttccaagat gccagctcat tgtacagaaa cattttagaa aaagaaaggg 1380
aacttcagca actgggaatc acagaatacc taaggaaaaa cattgctcag ctccagcctg 1440
aacttcagca actgggaatc acagaatacc taaggaaaaa cattgctcag ctccagcctg 1440
atatggaggc acattatcct ggagcccacg aagagctgaa gttaatggaa acattaatgt 1500
atatggaggc acattatcct ggagcccacg aagagctgaa gttaatggaa acattaatgt 1500
actcacgtcc aaggaaggta ttagtggaac agacaaaaaa tgagtatttt gaacttaaag 1560
actcacgtcc aaggaaggta ttagtggaac agacaaaaaa tgagtatttt gaacttaaag 1560
ctaatttaca tgctgaacct gactatttag aagtcctgga gcagcaaaca tagatggaga 1620

```
ctaatttaca tgctgaacct gactatttag aagtcctgga gcagcaaaca tagatggaga 1620
```

```
<210> 9
<211> 395
<212> PRT
<213> Homo sapiens
<400> 9
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
    1 5 10 15
Ser Leu His Ser Gln 'lhr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
            20 25 30
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu tle Asn Cys
```

Glu	$\begin{aligned} & \text { Ala L } \\ & 50 \end{aligned}$	Lys	Gly I			Met 55					$\begin{aligned} & \text { Ser } \\ & 60 \end{aligned}$				
$\begin{aligned} & \text { Arg } \\ & 65 \end{aligned}$	Pro P	Phe	Gln L	Leu	$\begin{aligned} & \text { Ser } \\ & 70 \end{aligned}$	Leu	Leu	Asn	Asn	$\begin{aligned} & \text { Gly } \\ & 75 \end{aligned}$	Leu	Thr			
Thr A	Asn A	Asp	Phe S	$\begin{aligned} & \text { Ser } \\ & 85 \end{aligned}$	Gly	Leu	Thr	Asn	$\begin{aligned} & \text { Ala } \\ & 90 \end{aligned}$	Ile	Ser	Ile	His	$\begin{aligned} & \text { Leu } \\ & 95 \end{aligned}$	Gly
Phe A	Asn A	Asn 1	$\begin{aligned} & \text { Ile A } \\ & 100 \end{aligned}$	Ala	Asp	Ile	Glu	$\begin{aligned} & \text { Ile } \\ & 105 \end{aligned}$	Gly	Ala	Phe	Asn	$\begin{aligned} & \text { Gly } \\ & 110 \end{aligned}$	Leu	Gly
Leu L	Leu L	$\begin{aligned} & \text { Lys } \\ & 115 \end{aligned}$	Gln L	Leu	His	Ile	$\begin{aligned} & \text { Asn } \\ & 120 \end{aligned}$	His	Asn	Ser	Leu	$\begin{aligned} & \text { Glu } \\ & 125 \end{aligned}$	Ile	Leu	Lys
Glu A	$\begin{aligned} & \text { Asp T } \\ & 130 \end{aligned}$	Thr P	Phe H	His	Gly	$\begin{aligned} & \text { Leu } \\ & 135 \end{aligned}$	Glu	Asn	Leu	Glu	$\begin{aligned} & \text { Phe } \\ & 140 \end{aligned}$	Leu	Gln	Ala	Asp
$\begin{aligned} & \text { Asn A } \\ & 145 \end{aligned}$	Asn P	Phe I	e T	Thr V	$\begin{aligned} & \text { Val } \\ & 150 \end{aligned}$	Ile	Glu	Pro	Ser	$\begin{aligned} & \text { Ala } \\ & 155 \end{aligned}$	Phe	Ser	Lys	Leu	$\begin{aligned} & \text { Asn } \\ & 160 \end{aligned}$
Arg L	Leu L	Lys V	val L	$\begin{aligned} & \text { Leu } \\ & 165 \end{aligned}$	Ile	Leu	Asn	Asp	$\begin{aligned} & \text { Asn } \\ & 170 \end{aligned}$	Ala	Ile	Glu	Ser	$\begin{aligned} & \text { Leu } \\ & 175 \end{aligned}$	Pro
Pro A	Asn I	Ile P	$\begin{aligned} & \text { Phe A } \\ & 180 \end{aligned}$	Arg P	Phe	Val	Pro	$\begin{aligned} & \text { Leu } \\ & 185 \end{aligned}$	Thr	His	Leu	Asp	$\begin{aligned} & \text { Leu } \\ & 190 \end{aligned}$	Arg	Gly
Asn G	Gln L	$\begin{aligned} & \text { Leu } \\ & 195 \end{aligned}$	Gln T	Thr L	Leu P	Pro	$\begin{aligned} & \text { Tyr } \\ & 200 \end{aligned}$	Val	Gly	Phe	Leu	$\begin{aligned} & \text { Glu } \\ & 205 \end{aligned}$	His	Ile	Gly
Arg 1	$\begin{aligned} & \text { Ile L } \\ & 210 \end{aligned}$	Leu A	Asp L	Leu G	Gln	$\begin{aligned} & \text { Leu } \\ & 215 \end{aligned}$	Glu	Asp	Asn	Lys	$\begin{aligned} & \text { Trp } \\ & 220 \end{aligned}$	Ala	Cys	Asn	Cys
$\begin{aligned} & \text { Asp L } \\ & 225 \end{aligned}$	Leu L	Leu G	Gln L	Leu L	$\begin{aligned} & \text { Lys T } \\ & 230 \end{aligned}$	Thr	Trp	Leu	Glu	$\begin{aligned} & \text { Asn } \\ & 235 \end{aligned}$	Met	Pro	Pro	Gln	$\begin{aligned} & \text { Ser } \\ & 240 \end{aligned}$
Ile I	Ile G	Gly A	Asp V	$\begin{aligned} & \text { Val V } \\ & 245 \end{aligned}$	Val C	Cys	Asn	Ser	$\begin{aligned} & \text { Pro } \\ & 250 \end{aligned}$	Pro	Phe	Phe	Lys	$\begin{aligned} & \text { Gly } \\ & 255 \end{aligned}$	Ser
Ile L	Leu S	Ser $\begin{array}{r}\text { A } \\ 2\end{array}$	$\begin{aligned} & \text { Arg L } \\ & 260 \end{aligned}$	Leu L	Lys L	Lys	Glu	$\begin{aligned} & \text { Ser } \\ & 265 \end{aligned}$	Ile	Cys	Pro	Thr	$\begin{aligned} & \text { Pro } \\ & 270 \end{aligned}$	Pro	Val
Tyr G	Glu G	$\begin{aligned} & \text { Glu H } \\ & 275 \end{aligned}$	His G	Glu A	Asp P	Pro	$\begin{aligned} & \text { Ser } \\ & 280 \end{aligned}$	Gly	Ser	Leu	His	$\begin{aligned} & \text { Leu } \\ & 285 \end{aligned}$	Ala	Ala	Thr
$\begin{aligned} & \text { Ser } 5 \\ & 2 乌 \end{aligned}$	$\begin{aligned} & \text { Ser I } \\ & 290 \end{aligned}$	Ile A	Asn Asp	Asp S	Ser ${ }^{\text {A }}$	$\begin{aligned} & \text { Arg } \\ & 295 \end{aligned}$	Met	Ser	Thr	Lys	$\begin{aligned} & \text { Thr } \\ & 300 \end{aligned}$	Thr	Ser	Ile	Leu
$\begin{aligned} & \text { Lys L } \\ & 305 \end{aligned}$	Leu Pro	Pro T	Thr Ly	-ys Al	$\begin{aligned} & \text { Ala } \mathrm{E} \\ & 310 \end{aligned}$	Pro	Gly	Leu	Ile	$\begin{aligned} & \text { Pro } \\ & 315 \end{aligned}$	Tyr	Ile	Thr	Lys	$\begin{aligned} & \text { Pro } \\ & 320 \end{aligned}$
Ser Thr	Thr Gl	Gln L	Leu Pr	$\begin{aligned} & \text { ro G. } \\ & 325 \end{aligned}$	Gly P	Pro	Tyr	Cys	$\begin{aligned} & \text { Pro } \\ & 330 \end{aligned}$	Ile	Pro	Cys	Asn	$\begin{aligned} & \text { Cys } \\ & 335 \end{aligned}$	Lys
Val Leu	Leu Se	Ser Pr	$\begin{aligned} & \text { Pro S } \\ & 340 \end{aligned}$	Ser G	Gly L	Leu	Leu	$\begin{aligned} & \text { Ile } \\ & 345 \end{aligned}$	His	Cys	Gln	Glu	$\begin{aligned} & \text { Arg } \\ & 350 \end{aligned}$	Asn	Ile
Glu Se	$\begin{aligned} \text { Ser Le } \\ 35 \end{aligned}$	$\begin{aligned} & \text { Leu } S \\ & 355 \end{aligned}$	Ser As	sp Le	Leu A	Arg	$\begin{aligned} & \text { Pro } \\ & 360 \end{aligned}$	Pro	Pro	Gln	Asn	$\begin{aligned} & \text { Pro } \\ & 365 \end{aligned}$	Arg	Lys	Leu
$\begin{array}{r} \text { Ile } \mathrm{Le} \\ 37 \end{array}$	370	Ala Gl	Gly As	sn I	Ile 1	$\begin{aligned} & \text { Ile } \\ & 375 \end{aligned}$	His	Ser	Leu	Met	$\begin{aligned} & \text { Lys } \\ & 380 \end{aligned}$	Ser			Trp
Ser Ly 385	ys Al	Ala Ser	Ser Gl	$\begin{aligned} \text { ily } A \\ 3 \end{aligned}$	$\begin{aligned} & \text { Arg G. } \\ & 390 \end{aligned}$	Gly A	Arg	Arg	Glu	$\begin{aligned} & \text { G1. } 1 \\ & 395 \end{aligned}$					

```
<210> 10
```

<211> 3300
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (480)...(3005)
<400> 10
gcgtcgacaa caagaaatac tagaaaagga ggaaggagaa cattgctgca gcttggatct 60
acaacctaag aaagcaagag tgatcaatct cagctctgtt aaacatcttg tttacttact 120
gcattcagca gcttgcaaat ggttaactat atgcaaaaaa gtcagcatag ctgtgaagta 180
tgccgtgaat tttaattgag ggaaaaagga caattgcttc aggatgctct agtatgcact 240
ctgcttgaaa tattttcaat gaaatgctca gtattctatc tttgaccaga ggttttaact 300
ttatgaagct atgggacttg acaaaaagtg atatttgaga agaaagtacg cagtggttgg 360
tgtttectt ttttactaa aggattgaa ttactttgaa cacctcttcc agctgtgcat. 420
tacagataac gtcaggaaga gtctotgctt tacagatcg gatttcatca catgacaac 479

gac ctt gag gat aac ccc tgg gac tge tcc tgt gac ctg gtt gga ctgAsp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu
cag caa tgg ata caa aag tta agc aag aac aca gtg aca gat gac atc
Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile
530
535
540
ctc tgc act tcc cec ggg cat ctc gac aaa aag gaa ttg aaa gcc cta
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu
$545 \quad 550 \quad 555 \quad 560$
aat agt gaa att ctc tgt cca ggt tta gta aat aac cca tcc atg cca
Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro
$565 \quad 570$
575
aca cag act agt tac ctt atg gtc acc act cct gca aca aca aca at
Thr Gln Thr Ser Tyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn
$580 \quad 585 \quad 590$
acg gct gat act att tta cga tct ctt acg gac gct gtg cca ctg tct
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser
595
600
605
gtt cta ata ttg gga ctt ctg att atg ttc atc act att gtt ttc tgt
Val Leu Ile Leu Gly Leu Leu Ile Met Phe Ile Thr Ile Val Phe Cys
610
615
620
gct gca ggg ata gtg gtt ctt gtt ctt cac cge agg aga aga tac aaa
Ala Ala Gly Ile Val Val Leu Val Leu His Arg Arg Arg Arg Tyr Lys
625
aag aaa caa gta gat gag caa atg aga gac aac agt cct gtg cat ctt
Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu
645
650
655
cag tac agc atg tat ggc cat aaa acc act cat cac act act gaa aga
$\begin{array}{rl}\text { Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr Thr Glu Arg } \\ 660 & 665 \\ 670\end{array}$
ccc tct gcc tca ctc tat gaa cag cac atg gtg agc ccc atg gtt cat
Pro Ser Ala Ser Leu Tyr Glu Gln His Met Vaj. Ser Pro Met Val His
675680685
gtc tat aga agt cca tcc ttt ggt cca aag cat ctg gaa gag gaa gaa
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys His Leu Glu Glu Glu Glu
690
695
700
gag agg aat gag aaa gaa gga agt gat gca aaa cat ctc caa aga agt
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser
$705710 \quad 715 \quad 720$
ctt ttg gaa cag gaa aat cat tca cca ctc aca ggg tca aat atg aaa
Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys
$725 \quad 730 \quad 735$
tac aaa acc acg aac caa tca aca gaa ttt tta tcc ttc caa gat gcc
agc tca ttg tac aga aac att tta gaa aaa gaa agg gaa ctt cag caa
Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys Gilu Arg glu Leu Gln Gl.n

```
ctg gga atc aca gaa tac cta agg aaa aac att gct cag ctc cag cct
Leu Gly Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro
    7 7 0
                        775
                                    780
gat atg gag gca cat tat cct gga gcc cac gaa gag ctg aag tta atg
Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met
785
                        70
                                    7 9 5
                                    800
gaa aca tta atg tac tca cgt cca agg aag gta tta gtg gaa cag aca
Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glu Gln Thr
                    805 810 815
aaa aat gag tat tet gaa ctt aaa gct aat tta cat gct gaa cot gac
Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp
                        820 825 830
tat tta gaa gtc ctg gag cag caa aca tag atggagagtt gagggctttc
Tyr Leu Glu Val Leu Glu Gln Gln Thr *
        835
                840 835840
gccagaaatg ctgtgattct gttattaagt ccataccttg taataagtg ccttacgtga 3085
gtgtgtcatc aatcagaacc taagcacaga gtaaactatg gggaaaaaaa aagaagacga 3145
aacagaaact cagggatcac tgggagaagc catggcataa tcttcaggca atttagtctg 3205
tcccaataa acatacatcc ttggcatgta aatcatcaag ggtaatagta atattcatat 3265
acctgaacg tgtctcatag gagtcctctc tgcac 3300
<210> 11
<211> 841
<212> PRT
<213> Homo sapiens
<400> 11
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile \(1510 \quad 15\)
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp \(2025 \quad 30\)
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys \(3540 \quad 45\)
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser \(5055 \quad 60\)
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His \(657075 \quad 80\)
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly \(8590 \quad 95\)
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly \(100105 \quad 110\)
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu glu Ile Leu Lys \(115120 \quad 125\)
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp \(130 \quad 135 \quad 140\)
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn \(145150 \quad 155\) 160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro \(165170 \quad 175\)
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr his Leu Asp Leu Arg Gly 180185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly 195200205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys \(210 \quad 21.5 \quad 220\)
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser: \(225 \quad 230 \quad 235 \quad 240\) Ile Tle Gly Asp Val Val Cys Asn Ser Pro Pro the Phe thy Gily Ser \(245250 \quad 255\)
```

Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr $275 \quad 280$ 285
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro $305 \quad 310 \quad 315 \quad 320$
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys $325330 \quad 335$
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu 355360365
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Asp Leu Val $370 \quad 375 \begin{array}{r}380\end{array}$
Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu $385390395 \quad 400$ Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu $4054410 \quad 415$
Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425 430
Gly Leu His Asn Leu Glu Tyr Leu Tyr Leu Glu Tyr Asn Ala Ile Lys 435440 445
Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu $450 \quad 455 \quad 460$
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser 465 470 475 His lle Phe Ser
Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His 485490495
Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile
Asp Leu Glu $\begin{aligned} & 500 \\ & 515\end{aligned} \quad 505$ Asp Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu $515 \quad 520 \quad 525$
Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile 530 535 540
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu 545 550 $555 \quad 560$
Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro $565 \quad 570 \quad 575$
Thr Gln Thr Ser Tyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn 580585590
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser 595600605
Val Leu Ile Leu Gly Leu Leu Ile Met phe Ile Thr Ile Val Phe Cys $6106.15 \quad 620$
Ala Ala Gly Ile Val Val Leu Val Leu His Arg Arg Arg Arg Tyr Lys $625630635 \quad 640$
Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu
Gln Tyr Ser Met Tyr Gly His Lys Thr $\begin{aligned} & 650 \\ & 655\end{aligned}$
$\begin{array}{rl}\text { Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr Thr Glu Arg } \\ 660 & 665\end{array}$
Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val Ser Pro Met Val His 675680685
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys Hi.s Leu Glu Glu Glu Glu $690 \quad 695 \quad 700$
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser $705710715 \quad 720$ Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys
Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala 740745 750
Ser Ser Leu Tyr Arg Asn ile Leu Glu lys Glu Arg Gilu Leu Gln Gin $\begin{gathered}760 \\ 755\end{gathered}$

acc acg aac caa tca aca gaa ttt tta tcc ttc caa gat gec age tca Thr Thr Asn Gln Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala Ser Ser 430435440
ttg tac aga aac att tta gaa aaa gaa agg gaa ctt cag caa ctg gga Leu Tyr Arg Asn Ile Leu Glu Lys Glu Arg Glu Leu Gln Gln Leu Gly 445 450 455

```
```

atc aca gaa tac cta agg aaa aac att gct cag ctc cag cct gat atg

```
atc aca gaa tac cta agg aaa aac att gct cag ctc cag cct gat atg
Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro Asp Met
Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro Asp Met
                        470
                        470
gag gca cat tat cct gga gcc cac gaa gag ctg aag tta atg gaa aca
gag gca cat tat cct gga gcc cac gaa gag ctg aag tta atg gaa aca
Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met Glu Thr
Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met Glu Thr
475 480 485 490
475 480 485 490
tta atg tac tca cgt cca agg aag gta tta gtg gaa cag aca aaa aat
tta atg tac tca cgt cca agg aag gta tta gtg gaa cag aca aaa aat
Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glu Gln Thr Lys Asn
Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glu Gln Thr Lys Asn
    4 9 5
    4 9 5
                        500
                        500
                                    505
                                    505
gag tat ttt gaa ctt aaa gct aat tta cat gct gaa cot gac tat tta
gag tat ttt gaa ctt aaa gct aat tta cat gct gaa cot gac tat tta
Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp Tyr Leu
Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp Tyr Leu
                        510 515 520
                        510 515 520
gaa gtc ctg gag cag caa aca tag atggaga
```

gaa gtc ctg gag cag caa aca tag atggaga

```
```

<210> 13

```
<210> 13
<211> 529
<211> 529
<212> PRT
<212> PRT
<213> Homo sapiens
<213> Homo sapiens
<400> 13
<400> 13
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
    1 5 10 15
    1 5 10 15
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
    2 0 ~ 2 5 ~ 3 0
    2 0 ~ 2 5 ~ 3 0
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
            35 40 45
            35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
    5 0 ~ 5 5 ~ 6 0
    5 0 ~ 5 5 ~ 6 0
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
    85 90 95
    85 90 95
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
        100 105 110
        100 105 110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
            1 1 5 ~ 1 2 0 ~ 1 2 5
            1 1 5 ~ 1 2 0 ~ 1 2 5
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
        1 3 0 ~ 1 3 5 ~ 1 4 0
        1 3 0 ~ 1 3 5 ~ 1 4 0
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
145 150 155 160
145 150 155 160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
    1 6 5 ~ 1 7 0 ~ 1 7 5
    1 6 5 ~ 1 7 0 ~ 1 7 5
Pro Asn Ile fhe Arg Phe Val Pro Leu Thr His Leu Asp l.eu Arg Gly
Pro Asn Ile fhe Arg Phe Val Pro Leu Thr His Leu Asp l.eu Arg Gly
        180 185 190
        180 185 190
Asn Gln Leu Gln Thr Leu Pro Tyr Val. Gly Phe Leu Glu His Tle Gly
Asn Gln Leu Gln Thr Leu Pro Tyr Val. Gly Phe Leu Glu His Tle Gly
    195 200 205
    195 200 205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys
```

Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 210 & & & & & 215 & & & & & & 220 & & & & \\
\hline Asp L & Leu & Leu & Gln & Leu & Lys & Thr & Trp & Leu & Glu & A & & Met & Pro & Pro & Gln & Ser \\
\hline 225 & & & & & 230 & & & & & 23 & & & & & & 240 \\
\hline Ile I & Ile & Gly & Asp & Val & Val & Cys & Asn & Ser & Pro & Pr & & Phe & Phe & Lys & Gly & Ser \\
\hline & & & & 245 & & & & & 250 & & & & & & 255 & \\
\hline Ile L & Leu & Ser & Arg & Leu & Lys & Lys & Glu & Ser & Ile & Cy & & Pro & Thr & Pro & Pro & Val \\
\hline & & & 260 & & & & & 265 & & & & & & 270 & & \\
\hline Tyr G & Glu & \[
\begin{aligned}
& \text { Glu } \\
& 275
\end{aligned}
\] & His & Glu & Asp & Pro & \[
\begin{aligned}
& \text { Ser } \\
& 280
\end{aligned}
\] & Gly & Ser & Le & & His & \[
\begin{aligned}
& \text { Leu } \\
& 285
\end{aligned}
\] & Ala & Ala & Thr \\
\hline Ser S & \[
\begin{aligned}
& \text { Ser } \\
& 290
\end{aligned}
\] & Ile & Asn & Asp & Ser & \[
\begin{aligned}
& \text { Arg } \\
& 295
\end{aligned}
\] & Met & Ser & Thr & L & & & Thr & Ser & Ile & Leu \\
\hline Lys L & Leu & Pro & Thr & Lys & Ala & Pro & Gly & Leu & Ile & Pr & & Tyr & Ile & Thr & Lys & Pro \\
\hline 305 & & & & & 310 & & & & & 31 & & & & & & 320 \\
\hline Ser T & Thr & Gln & Leu & Pro & Gly & Pro & Tyr & Cys & Pro & Il & & Pro & Cys & Asn & Cys & Lys \\
\hline & & & & 325 & & & & & 330 & & & & & & 335 & \\
\hline Val L & Leu & Ser & Pro & Ser & Gly & Leu & Leu & Ile & His & Cy & & Gln & Glu & Arg & Asn & Ile \\
\hline & & & 340 & & & & & 345 & & & & & & 350 & & \\
\hline Glu S & Ser & \[
\begin{aligned}
& \text { Leu } \\
& 355
\end{aligned}
\] & Ser & Asp & Leu & Arg & \[
\begin{aligned}
& \text { Pro } \\
& 360
\end{aligned}
\] & Pro & Pro & Gln & & Asn & \[
\begin{aligned}
& \text { Pro } \\
& 365
\end{aligned}
\] & Arg & Lys & Leu \\
\hline Ile L & \[
\begin{aligned}
& \text { Leu } \\
& 370
\end{aligned}
\] & Ala & Gly & Asn & Ile & \[
\begin{aligned}
& \text { Ile } \\
& 375
\end{aligned}
\] & His & Ser & Leu & Met & & \[
\begin{aligned}
& \text { Asn } \\
& 380
\end{aligned}
\] & Pro & Ser & Phe & Gly \\
\hline Pro Ly & Lys & His & Leu & Glu & Glu & Glu & Glu & Glu & Arg & Asn & & Glu & Lys & Glu & Gly & Ser \\
\hline 385 & & & & & 390 & & & & & A95 & & & & & & 400 \\
\hline Asp A & Ala & Lys & His & \[
\begin{aligned}
& \text { Leu } \\
& 405
\end{aligned}
\] & Gln & Arg & Ser & Leu & \begin{tabular}{l}
Leu \\
410
\end{tabular} & Glu & & Gln & Glu & Asn & \begin{tabular}{l}
His \\
415
\end{tabular} & Ser \\
\hline Pro Le & Leu & Thr & \[
\begin{aligned}
& \text { Gly } \\
& 420
\end{aligned}
\] & Ser & Asn & Met & Lys & \[
\begin{aligned}
& \text { Tyr } \\
& 425
\end{aligned}
\] & Lys & Thr & & Thr & Asn & Gln & Ser & Thr \\
\hline Glu Ph & Phe L & \[
\begin{aligned}
& \text { Leu } \\
& 435
\end{aligned}
\] & Ser & Phe & Gln & Asp & \begin{tabular}{l}
Ala \\
440
\end{tabular} & Ser & Ser & Leu & & Tyr & Arg 445 & Asn & Ile & Leu \\
\hline Glu Ly & Lys & Glu & Arg & G.u & Leu & Gln & Gln & Leu & Gly & Ile & & Thr & Glu & Tyr & Leu & Arg \\
\hline Lys As & Asn I & I.le & Ala & Gln & Leu & Gln & Pro & Asp & Met & Glu & & Ala & His & Tyr & Pro & \\
\hline 465 & & & & & 470 & & & & & 475 & & & & & & 480 \\
\hline Ala Hi & His G & Glu & Glu & Leu & Lys & Leu & Met & Glu & Thr & Leu & & Met & Tyr & Ser & Arg & Pro \\
\hline & & & & 485 & & & & & 490 & & & & & & 495 & \\
\hline Arg Ly & Lys V & Val & Leu & Val & Glu & Gln & Thr & Lys & Asn & Glu & & Tyr & Phe & Glu & Leu & Lys \\
\hline & & & 500 & & & & & 505 & & & & & & 510 & & \\
\hline Ala As & Asn L & \[
\begin{aligned}
& \text { Leu } \\
& 515
\end{aligned}
\] & His & Ala & Glu & Pro & \[
\begin{aligned}
& \text { Asp } \\
& 5>0
\end{aligned}
\] & T'yr & Leu & Glu & & Val & Leu
\[
525
\] & Glu & Gln & Gln \\
\hline Thr & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
```

<210> 14
<211> 841
<212> PRT
<213> Homo sapiens
<400> 14
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
1. 5 10 15
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
2 0 2 5 ~ 3 0
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu lle Asn Cys
35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu lle Ser Val Pro Pro Ser
5 0 5 5 6 0
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser tle His Leu Gly
85 90 95
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
100 105 110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys

```

Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
130
135 Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn 145150155160 Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro 165170175
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly 180185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly 195200205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys 210215220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser \(225 \quad 230 \quad 235 \quad 240\)
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser \(245 \quad 250 \quad 255\)
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val 260265270 Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr \(275280 \quad 285\)
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro \(305 \quad 310 \quad 315 \quad 320\)
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys 325330 335
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile \(340 \quad 345 \quad 350\)
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu 355360365
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Asp Leu Val 370375380
Glu Tyr. Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu \(385390 \quad 395 \quad 400\)
Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu 405410415
Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425430
Gly Leu his Asn Leu Glu Tyr Leu Tyr Leu Glu Tyr Asn Ala Ile Lys \(435440 \quad 445\)
Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu 450455460
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser \(465470475 \quad 480\)
Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His 485490495
Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile 50050551.0

Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu 51.5 520 525

Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile 530535540
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu \(545 \quad 550 \quad 555 \quad 560\)
Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro
Thr Gln Thr Ser Tyr Leu Met Val Thr 560 Thr Pro Ala Thr Thr Thr Asn 580585590
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser 5956600605
Val Leu Ile Leu Gly Leu Leu Ile Met Phe Ile Thr Ile val phe Gys \(610615 \quad 620\)
Ala Ala Gly Ile Val Val Leu Val Leu His Arg Arg Arg Arg tyr Lys
```

 6 2 5
 Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu
 Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr Thr Glu Arg
6 6 0 6 6 5 ~ 6 7 0
Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val Ser Pro Met Val His
6 7 5 6 8 0 ~ 6 8 5
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys His Leu Glu Glu Glu Glu
6 9 0 6 9 5 ~ 7 0 0
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser
7 0 5 ~ 7 1 0 ~ 7 1 5 ~ 7 2 0
Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys
7 2 5 ~ 7 3 0
7 3 5
Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala
7 4 0 ~ 7 4 5 ~ 7 5 0
Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys Glu Arg Glu Leu Gln Gln
7 5 5 ~ 7 6 0 ~ 7 6 5
Leu Gly Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro
7 7 0 7 7 5 ~ 7 8 0
Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met
785 790 795 705 800
Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glu Gln Thr
8 0 5 ~ 8 1 0 ~ 8 1 5 ~
Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp
Tyr Leu Glu Val Leu Glu Gln Gln Thr
<210> 15
<211> 732
<212> PRT
<213> Homo sapiens
<400> 15
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
l 5 10 15
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
5 0 ~ 5 5 ~ 6 0
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
8.5 90 95
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala fhe Asn Gly Leu Gly
100 105 110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
1 1 5 1 2 0 ~ 1 2 5
Glu Asp Thr Phe Hiss Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
1 3 0 ~ 1 . 3 5 ~ 1 4 0
Asn Asn Phe Ile Thr Val. Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn

```

```

Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
1 6 5 ~ 1 7 0 ~ 1 7 5
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly
180 185 190
Asn Gln Leu Giln Thr Leu Pro Tyr val Gly Phe Leu Glu His fle Gily
195 200 205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys
210 215 220
Asp Leu Leu Gln Leu Lys Thr. Trp Leu Glu Asn Met Pro ProgGln Ser

```

Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser 245250255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val
260
265
270

Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr 275280 285
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro
\(3053310 \quad 315 \quad 320\)
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys 325330335
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile 340345350
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu 355360365
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Asp Leu Val 370375380
Glu
385 \(385 \quad 390 \quad 395\) 400 Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu \(405410 \quad 415\)
Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425 5430
Gly Leu his Asn Leu Glu Tyr Leu Tyr Leu Glu Tyr Asn Ala Ile Lys 435440445
Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu \(450 \quad 455 \quad 460\)
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser \(4654770 \quad 475 \quad 480\)
Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His
485 485490495
Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile \(500 \quad 505 \quad 510\)
Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu \(515 \quad 520\) Cys
Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile \(530535 \quad 540\)
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu
545 550 \(555 \quad 560\)
Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro
565570575
Thr Gln Thr Ser Tyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn 580585590
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser 595600605
Val Leu Ile Leu Gly Leu Leu Ile Met Phe Ile Thr Ile Val Phe Cys 610615620
Ala Ala Gly Ile Val Val Leu Val. Leu His Arg Arg Arg Arg Tyr Lys 625630635640
Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu 645660655
Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr Thr Glu Arg
Pro Ser Ala Ser Leu 'lyr Glu Gln His Met Gly Ala His Glu Glu Leu
Lys Leu Met Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val \(690695 \quad 700\)
Glu Gln Thr Lys Asn Glu lyr Phe Glu Leu Lys Ala Asn Leu llis Ala \(705710 \quad 715 \quad 720\) Glu Pro Asp 'lyr Leu Glu Val heu Glu Gln Gln Thi 72.5730
```

<210> 16
<211> 390
<212> PRT
<213> Homo sapiens
<400> 16
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
1 5 10 15
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
20 25 30
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
5 0 5 5 6 0
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
85 90 95
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
1 1 5 ~ 1 2 0 ~ 1 2 5
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
130 135 140
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
1 4 5 ~ 1 5 0 ~ 1 5 5 ~ 1 6 0
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
1 6 5 ~ 1 7 0 ~ 1 7 5
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly
180 185 190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly
195 200 205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys
210 215 220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser
2 2 5 ~ 2 3 0 ~ 2 3 5 ~ 2 4 0
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser
2 4 5 ~ 2 5 0 ~ 2 5 5
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val
2 6 0 ~ 2 6 5 ~ 2 7 0
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr
275 280 285
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu
2 9 0 2 9 5 ~ 3 0 0
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro
305 310 315 320
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys
3 2 5 ~ 3 3 0 ~ 3 3 5
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile
3 4 0 ~ 3 4 5 ~ 3 5 0
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu
355 360 365
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Tle Leu Trp
370 375 380
Ser Lys Ala Ser Gly Arg
385 390

```
<210> 17
<211> 529
<212> PRT
<213> Homo sapjens:
<400> 17
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile \(1510 \quad 15\)
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp 202530
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys 354045
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser 505560
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His \(65 \quad 70 \quad 75 \quad 80\)
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile his Leu Gly 85. \(90 \quad 95\)

Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly 100105110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys \(115120 \quad 125\)
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp 130135140
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn 145150155160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro \(165170 \quad 175\)
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly 180185190
Asn Gln Leu Gln Thr Leu pro Tyr Val Gly Phe Leu Glu His Ile Gly
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys 210215 220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser
\(\begin{array}{rrrr}225 & 230 & 235 & 240\end{array}\)
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser 245250255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr \(275280 \quad 285\)
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr fle Thr Lys Pro
\(\begin{array}{lll}305 & 310 & 315 \\ \text { Ser Thr Gln Leu Pro } & 320\end{array}\)
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys 325330335
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn fle \(340 \quad 345 \quad 350\)
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu \(355360 \quad 365\)
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Asn Pro Ser Phe Gly \(370 \quad 375 \begin{array}{r}380\end{array}\)
Pro Lys His Leu Glu Glu Glu Glu Glu Arg Asn Glu Lys Glu Gly Ser
385 \(385390 \quad 395 \quad 400\)
Asp Ala Lys His Leu Gln Arg Ser Leu Leu Glu gln Glu Asn His Ser
Pro Leu Thr Gly Ser Asn Met Lys Tyr Lys Thr Thr Asn Gln Ser: Thr 415 420425

430
Glu Phe Leu Ser Phe Gln Asp Ala Ser Ser Leu Tyr Arg Asn Ile Leu 435440445
Glu Lys Glu Arg Glu Leu Gln Gln Leu Gly Ile Thr Glu Tyr Leu Arg \(450 \quad 455\) A 460
Lys Asn Ile Ala Gin Leu Gln Pro Asp Met glu Ala His Tyr Pro Gly \(465470 \quad 475 \quad 480\)
\(\begin{array}{rl}\text { Ala His Glu Glu Leu Lys Leu Met Glu Thr Leu Met Tyr Ser Arg Pro } \\ 485 & 490\end{array}\)
Arg Lys Vall Leu Val Giu Gin Thr Lys Asn Glu lyr phe Glu deu Lys

Thr
<210> 18
<211> 798
<212> PRT
<213> Homo sapiens
<400> 18
Met Leu Ile Asn Cys Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile \(1510 \quad 15\) Ser Val Pro Pro Ser Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly 202530
Leu Thr Met Leu His Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile 354045
Ser Ile His Leu Gly Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala 505560
Phe Asn Gly Leu Gly Leu Leu Lys Gln Leu His Ile Asn His Asn Ser \(657075 \quad 70\)
Leu Glu Ile Leu Lys Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu 859095
Phe Leu Gln Ala Asp Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala 100105110
Phe Ser Lys Leu Asn Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala 115120125
Ile Glu Ser Leu Pro Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His 130135140
Leu Asp Leu Arg Gly Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe 145150155160
Leu Glu His Ile Gly Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys 165170175
Trp Ala Cys Asn Cys Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn 180185190
Met Pro Pro Gln Ser Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro 195200205
Phe Phe Lys Gly Ser Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys 210215220
Pro Thr Pro Pro Val Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu \(225230235 \quad 240\)
His Leu Ala Ala Thr Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys 245250255
Thr Thr Ser Ile Leu Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile pro
Tyr Ile Thr Lys Pro Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile 275280285
Pro Cys Asn Cys Lys Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys 290295300
Gln Glu Arg Asn Ile Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln
\(305310 \quad 315 \quad 320\)
Asn Pro Arg Lys Leu Ile Leu Ala Gly Asn Ile tle His Ser Leu Met 325330335
Lys Ser Asp Leu Val Glu tyr Phe Thr Leu Glu Met Leu His Leu Gly 340345350
Asn Asn Arg Ile Glu Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr 355360365
Arg Leu Gln Lys Leu Tyr Leu Asn Gly Asn His Len Thr Lys Leu Ser 370375380
Lys Gly Met Phe Leu Gly Leu His Asn Leu Glu Tyr Leu tyr Leu glu \(385 \quad 390 \quad 395 \quad 400\) Pyr Asn Ala Jle Lys Glu Ile Leu pro Gly Thr the Asn fro Met Pro

50
55
60
Phe Asn Gly Leu Gly Leu Leu Lys Gln Leu His Ile Asn His Asn Ser \(657075 \quad 70\) Leu Glu Ile Leu Lys Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu 8590
95
Phe Leu Gln Ala Asp Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala 100
105110
Phe Ser Lys Leu Asn Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala 115120
125
Ile Glu Ser Leu Pro Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His 130135140
Leu Asp Leu Arg Gly Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe 145150155160
Leu Glu His Ile Gly Arg Ile Leu Asp Leu Gln Leu Glu Asp Aṣn Lys \(165170 \quad 175\)
Trp Ala Cys Asn Cys Asp Leu Leu Gln Leu Lys Thr \(\operatorname{Trp}\) Leu Glu Asn 185
190
Met Pro Pro Gln Ser Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro 195200205
Phe Phe Lys Gly Ser Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys 210215220
Pro Thr Pro Pro Val Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu \(225 \quad 230 \quad 235 \quad 240\)
His Leu Ala Ala Thr Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys 245250255
Thr Thr Ser Ile Leu Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro 260265270
Tyr Ile Thr Lys Pro Ser Thr Gln Leu Pro Gly Pro Tyr Cys pro Ile 275280285
Pro Cys Asn Cys Lys Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys 290295300
Gln Glu Arg Asn Ile Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln \(305310315 \quad 320\)
Asn Pro Arg Lys Leu Ile Leu Ala Gly Asn Ile rle His Ser Leu Met 325330335
Lys Ser Asp Leu Val Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly 340345350
Asn Asn Arg Ile Glu Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr 355360365
Arg Leu Gln Lys Leu Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser \(370375 \quad 380\)
Lys Gly Met Phe Leu Gly Leu his Asn Leu Glu Tyr Leu Tyr Leu glu 385390395400
Tyr Asn Ala Ile Lys Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro 405410415
Lys Leu Lys Val Leu Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu pro \(420425 \quad 430\)
Pro His Ile Phe Ser Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr 435440445
Asn Gln Phe Thr His Leu Pro Val Ser Asn Tle Leu Asp Asp Leu Asp \(450455 \quad 460\)
Leu Leu Thr Gln Ile Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys \(465 \quad 470 \quad 475 \quad 480\)
Asp Leu Val Gly Leu Gln Gin Trp Ile Gln Lys Leu Ser Lys Asn Thr
485 Val Thr Asp Asp Ile Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys \(500505 \quad 510\)
Glu Leu Lys Ala Leu Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn \(515 \quad 520 \quad 525\)
Asn Pro Ser Met Pro Thr Giln Thr Ser lyr Leu Met Val Thr Thr Pro \(530 \quad 535 \quad 540\)
Ala Thr Thr Thr Asn Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp \(545 \quad 550 \quad 565 \quad 560\) Ala Val Pro Leu Ser val heu Tle Leu Gly l.ou leu Ile Met the Ile

Thr Ile Val Phe Cys Ala Ala Gly Ile Val Val Leu Val Leu His Arg 580585590
Arg Arg Arg Tyr Lys Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn 595600

605
Ser Pro Val His Leu Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His \(610615 \quad 620\)
His Thr Thr Glu Arg Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val 625 630635 640 Ser Pro Met Val His Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys His 645650655
Leu Glu Glu Glu Glu Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys 660665670
His Leu Gln Arg Ser Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr 675680685
Gly Ser Asn Met Lys Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe Leu 690695700
Ser Phe Gln Asp Ala Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys Glu \(705710715 \quad 720\) Arg Glu Leu Gln Gln Leu Gly Ile Thr Glu Tyr Leu Arg Lys Asn Ile
Ala Gln Leu Gln Pro Asp Met Glu Ala His Tyr Pro Gly Ala His Glu 740745750
Glu Leu Lys Leu Met Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val \(760 \quad 765\)
Leu Val Glu Gln Thr Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu 770775780 His Ala Glu Pro Asp Tyr Leu Glu Val Leu Glu Gln Gln Thr
785 785790795
```

<210> 20
<211> 405
<212> PRT
<213> Homo sapiens
<400> 20

```
Met Leu Ile Asn Cys Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile
    \(1510 \quad 15\)
Ser Val Pro Pro Ser Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly
            202530
Leu Thr Met Leu His Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile
            354045
Ser Ile His Leu Gly Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala
    505560
Phe Asn Gly Leu Gly Leu Leu Lys Gln Leu His Ile Asn His Asn Ser
\(6570 \quad 75 \quad 80\)
Leu Glu Ile Leu Lys Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu
            859095
Phe Leu Gln Ala Asp Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala
                100105110
Phe Ser Lys Leu Asn Arg Leu Lys Val Leu lile Leu Asn Asp Asn Ala
            115120125
Jle Glu Ser Leu Pro Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His
        130135140
Leu Asp Leu Arg Gly Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe
145150155160
Leu Glu His Ile Gly Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys
                165170175
Trp Ala Cys Asn Cys Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn
                180185190
Met Pro pro Gln Ser lile fle Gly Asp Val Val Cys Asn Ser Pro Pro
                1952002.05
Phe Phe l.ys Gly Ser Ile Leu Ser Arg Leu Lys lys Glu Ser Ile Cys
```

 210
 215
 220
 Pro Thr Pro Pro Val Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu
 225 230 235 240
 His Leu Ala Ala Thr Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys
 2 4 5 ~ 2 5 0 ~ 2 5 5
 Thr Thr Ser Ile Leu Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro
 2 6 0 ~ 2 6 5 ~ 2 7 0
 Tyr Ile Thr Lys Pro Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile
 2 7 5 ~ 2 8 0 ~ 2 8 5
 Pro Cys Asn Cys Lys Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys
290 295 300
Gln Glu Arg Asn Ile Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln
305 310 315 320
Asn Pro Arg Lys Leu Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met
3 2 5 ~ 3 3 0 ~ 3 3 5
Lys Ser Asp Leu Val Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly
3 4 0 ~ 3 4 5 ~ 3 5 0
Asn Asn Arg Ile Glu Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr
3 5 5 ~ 3 6 0 ~ 3 6 5
Arg Leu Gln Lys Leu Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser
3 7 0 3 7 5 ~ 3 8 0
Lys Gly Met Phe Leu Gly Leu His Ala Ile Lys Glu Ile Leu Pro Gly
385 390 395 400
Thr Phe Asn Pro Met
4 0 5

```
```

<210> 21

```
<210> 21
<211> 415
<211> 415
<212> PRT
<212> PRT
<213> Homo sapiens
<213> Homo sapiens
<400> 21
<400> 21
Met Leu Ile Asn Cys Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile
Met Leu Ile Asn Cys Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile
    1 5 10 l5
    1 5 10 l5
Ser Val Pro Pro Ser Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly
Ser Val Pro Pro Ser Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly
            20 25 30
            20 25 30
Leu Thr Met Leu His Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile
Leu Thr Met Leu His Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile
    35 40 45
    35 40 45
Ser Ile His Leu Gly Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala
Ser Ile His Leu Gly Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala
    50 55 60
    50 55 60
Phe Asn Gly Leu Gly Leu Leu Lys Gln Leu His Ile Asn His Asn Ser
Phe Asn Gly Leu Gly Leu Leu Lys Gln Leu His Ile Asn His Asn Ser
65 70 75 80
65 70 75 80
Leu Glu Ile Leu Lyys Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu
Leu Glu Ile Leu Lyys Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu
    85 90 95
    85 90 95
Phe Leu Gln Ala Asp Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala
Phe Leu Gln Ala Asp Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala
                    1 0 0 ~ 1 . 0 5 ~ 1 1 0
                    1 0 0 ~ 1 . 0 5 ~ 1 1 0
Phe Ser Lys Leu Asn Arg Leu lys Val Leu Ile Leu Asn Asp Asn Ala
Phe Ser Lys Leu Asn Arg Leu lys Val Leu Ile Leu Asn Asp Asn Ala
        1 1 5 ~ 1 2 0 ~ 1 2 5
        1 1 5 ~ 1 2 0 ~ 1 2 5
Ile Glu Ser Leu Pro Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His
Ile Glu Ser Leu Pro Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His
        1 3 0 ~ 1 3 5 ~ 1 4 0
        1 3 0 ~ 1 3 5 ~ 1 4 0
Leu Asp Leu Arg Gly Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe
Leu Asp Leu Arg Gly Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe
1 4 5 ~ 1 5 0 ~ 1 5 5 ~ 1 . 6 0
1 4 5 ~ 1 5 0 ~ 1 5 5 ~ 1 . 6 0
Leu Glu His Ile Gly Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys
Leu Glu His Ile Gly Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys
            165 170 175
            165 170 175
Trp Ala Cys Asn Cys Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn
Trp Ala Cys Asn Cys Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn
            180 185 190
            180 185 190
Met Pro Pro Gln Ser Ile IJe Gly Asp Val Val Cys Asn Ser Pro Pro
Met Pro Pro Gln Ser Ile IJe Gly Asp Val Val Cys Asn Ser Pro Pro
            195 200 205
            195 200 205
Phe Rhe Lys Gly Ser Ile Ieu Ser Arg t.eu Lys Lys Glu Ser Ile Cys
Phe Rhe Lys Gly Ser Ile Ieu Ser Arg t.eu Lys Lys Glu Ser Ile Cys
    210 21% 220
    210 21% 220
Pro Thr Pro fro Val fyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu
Pro Thr Pro fro Val fyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu
2 2 5 ~ 2 3 0 ~ 2 3 5 ~ 2 . 4 0
2 2 5 ~ 2 3 0 ~ 2 3 5 ~ 2 . 4 0
His Leu Ala Ala Thr Ger Ser Ile Asn Asp Ser Arg Met Ser Thr Lys
```

His Leu Ala Ala Thr Ger Ser Ile Asn Asp Ser Arg Met Ser Thr Lys

```

Thr Thr Ser Ile Leu Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro 260265270
Tyr Ile Thr Lys Pro Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile 275280

285
Pro Cys Asn Cys Lys Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys 290295300
Gln Glu Arg Asn Ile Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln \(305310315 \quad 320\)
Asn Pro Arg Lys Leu Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met 325330335
Lys Ser Asp Leu Val glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly 340345350
Asn Asn Arg Ile Glu Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr 355360 365
Arg Leu Gln Lys Leu Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser 370 375

380
Lys Gly Met Phe Leu Gly Leu His Asn Leu Glu Tyr Leu Tyr Leu Glu \(385390 \quad 395 \quad 400\) Tyr Asn Ala Ile Lys Glu Ile Leu Pro Gly Thr Phe Asn Pro Met
405
410
```

<210> 22
<211> 777
<212> PRT
<213> Homo sapiens
<400> 22
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
l 5 10 15
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
20 25 30
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
50 55 60
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
Phe Asn Asn Tle Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
100 105 110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
1 . 1 5 1 2 0 ~ 1 2 5
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
1 3 0 ~ 1 3 5 ~ 1 4 0
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
1 4 5 ~ 1 5 0 ~ 1 5 5 ~ 1 6 0
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser I,eu Pro
1 6 5 ~ 1 7 0 ~ 1 7 5
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly
180 185 190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly
195 200 205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys
210 21.5 220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser
2 2 5 ~ 2 3 0 ~ 2 3 5 ~ 2 4 0
Ile Ile Gly Asp Vall Vall Cys Asn Ser Pro Pro Phe phe Lys Gly Ser
2 4 5 ~ 2 5 0 ~ 2 5 5
J.le Le| Ser Arg Leu lys Lys Glu Ser Ile Cys Pro Thr fro Pro Val
2 6 0 2 6 5 ~ 2 7 0
Tyr Glughu His Glu Asp Pro Ser Gly Ser leu His Leu Ala Ala Thr

```
```

 275
 280
 285
 Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro $305310315 \quad 320$
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys 325330335
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile 340345350
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu 355360365
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Asp Leu Val 370375380
Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu $385390 \quad 395 \quad 400$ Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu 405410415
Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425430
Gly Leu His Ala Ile Lys Glu Ile Leu Pro Gly Thr Phe Asn Pro Met $435440 \quad 445$
His Ile Phe Ser Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn 450455460
Gln Phe Thr His Leu Pro Val Ser Asn Ile Asn Pro Trp Asp Cys Ser 465470475480
Cys Asp Leu Val Gly Leu Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn 485490495
Thr Val Thr Asp Asp Ile Leu Cys Thr Ser Pro Gly His Leu Asp Lys
Lys Glu Leu Lys Ala Leu Asn Ser Glu Ile Leu Cys Pro Gly Leu Val 515520525
Asn Asn Pro Ser Met Pro Thr Gln Thr Ser Tyr Leu Met Val. Ile Leu 530535540
Arg Ser Leu Thr Asp Ala Val Pro Leu Ser Val Leu Ile Leu Gly Leu $545550555 \quad 560$
Leu Ile Met Phe Ile Thr Ile Val Phe Cys Ala Ala Gly Ile Val Val 565570575
Leu Val Leu His Arg Arg Arg Arg Tyr Lys Lys Lys Gln Val Asp Glu 580585590
Gln Met Arg Asp Asn Ser Pro Val His Leu Gln Tyr Ser Met Tyr Gly 595600605
His Lys Thr Thr His His Thr Thr Glu Arg Pro Ser Ala Ser Leu Tyr 610615620
Glu Gln His Met Val Ser Pro Met Val His Val Tyr Arg Ser Pro Ser 625630635640 Phe Gly Pro Lys His Leu Gly Ser Asp Ala Lys His Leu Gln Arg Ser 645650655
Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys $660665 \quad 670$
Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala 675680685
Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys Glu Arg Glu Leu Gln Gln 690695700
Leu Gly lle Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro 705710715 720 Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met 725730735
Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Giu Gln Thr $740745 \quad 750$
Lys Asn Glu Tyr Phe Glu Led t.ys Ala Asn Leu His Ala Glu Pro Asp Tyr Leu Glu val Leu Glu Gin 765 Tyr Leu Glu Val Leu Glu Gin Gin Thr $770 \quad 775$

```
```

<210> 23
<211> 832
<212> PRT
<213> Homo sapiens
<400> 23
Met Phe Leu Trp Leu Phe Leu Ile Leu Ser Ala Leu Ile Ser Ser Thr
l 5 10 15
Asn Ala Asp Ser Asp Ile Ser Val Glu Ile Cys Asn Val Cys Ser Cys
20 25
30
Val Ser Val Glu Asn Val Leu Tyr Val Asn Cys Glu Lys Val Ser Val
35 40 45
Tyr Arg Pro Asn Gln Leu Lys Pro Pro Trp Ser Asn Phe Tyr His Leu
5 0 ~ 5 5 ~ 6 0
Asn Phe Gln Asn Asn Phe Leu Asn Ile Leu Tyr Pro Asn Thr Phe Leu
65 70 75 80
Asn Phe Ser His Ala Val Ser Leu His Leu Gly Asn Asn Lys Leu Gln
85 90 95
Asn Ile Glu Gly Gly Ala phe Leu Gly Leu Ser Ala Leu Lys Gln Leu
1 0 0 1 0 5 ~ 1 1 0
His Leu Asn Asn Asn Glu Leu Lys Ile Leu Arg Ala Asp Thr Phe Leu
1 1 5 1 2 0 1 2 5
Gly Ile Glu Asn Leu Glu Tyr Leu Gln Ala Asp Tyr Asn Leu`Ile Lys
130 135 140
Tyr Ile Glu Arg Gly Ala Phe Asn Lys Leu His Lys Leu Lys Val Leu
145 150 155 160
Ile Leu Asn Asp Asn Leu Ile Ser Phe Leu Pro Asp Asn Ile Phe Arg
1 6 5 ~ 1 7 0 ~ 1 7 5
Phe Ala Ser Leu Thr His Leu Asp Ile Arg Gly Asn Arg Ile Gln Lys
180 185 190
Leu Pro Tyr Ile Gly Val Leu Glu His Ile Gly Arg Val Val Glu Leu
1 9 5 ~ 2 0 0 ~ 2 0 5
Gln Leu Glu Asp Asn Pro Trp Asn Cys Ser Cys Asp Leu Leu Pro Leu
210 215 220
Lys Ala Trp Leu Glu Asn Met Pro Tyr Asn Ile Tyr Ile Gly Glu Ala
225 230 235 240
Ile Cys Glu Thr Pro Ser Asp Leu Tyr Gly Arg Leu Leu Lys Glu Thr
245 250 255
Asn Lys Gln Glu Leu Cys Pro Met Gly Thr Gly Ser Asp Phe Asp Val
2 6 0 2 6 5 ~ 2 7 0
Arg Ile Leu Pro Pro Ser Gln Leu Glu Asn Gly Tyr Thr Thr Pro Asn
2 7 5 2 8 0 ~ 2 8 5
Gly His Thr Thr Gln Thr Ser Leu His Arg Leu Val Thr Lys Pro Pro
2 9 0 2 9 5 ~ 3 0 0
Lys Thr Thr Asn Pro Ser Lys Ile Ser Gly Ile Val Ala Gly Lys Ala
305 310 315 320
Leu Ser Asn Arg Asn Leu Ser Gln Ile Val Ser Tyr Gln Thr Arg Val.
325 330 335
Pro Pro Leu Thr Pro Cys Pro Ala Pro Cys Phe Cys Lys Thr His Pro
3 4 0 ~ 3 4 5 ~ 3 5 0
Ser Asp Leu Gly Leu Ser Val Asn Cys Gln Glu Lys Asn Ile Gln Ser
355 360 365
Met Ser Glu Leu Ile Pro Lys Pro Leu Asn Ala Lys Lys Leu His Val
3 7 0 3 7 5 ~ 3 8 0
Asn Gly Asn Ser Ile Lys Asp Val Asp Val Ser Asp Phe Thr Asp Phe
385 390 395 400
Glu Gly Leu Asp Leu Leu His Leu Gly Ser Asn Gln Ile Thr val Ile
Lys Gly Asp Val Phe His Asn Leu Thr Asn Leu Arg Arg Leu Tyr Leu
4 2 0 4 2 5 ~ 4 3 0
Asn Gly Asn Gln Ile Glu Arg Leu Tyr Pro Glu lle Phe Ser Gly Leu
4 3 5 4 4 0 0 4 4 5
His Asn Lell Gln Tyr Leu Tyr Leu Glu Tyr Asn Leu Ile Lys Glu Ile

```
```

 450
 455
 4 6 0
 Ser Ala Gly Thr Phe Asp Ser Met Pro Asn Leu Gln Leu Leu Tyr Leu
465 470 475 480
Asn Asn Asn Leu Leu Lys Ser Leu Pro Val Tyr Ile Phe Ser Gly Ala
4 8 5 4 9 0
4 9 5
Pro Leu Ala Arg Leu Asn Leu Arg Asn Asn Lys Phe Met Tyr Leu Pro
5 0 0 5 0 5
510
Val Ser Gly Val Leu Asp Gln Leu Gln Ser Leu Thr Gln Ile Asp Leu
5 1 5 ~ 5 2 0 ~ 5 2 5
Glu Gly Asn Pro Trp Asp Cys Thr Cys Asp Leu Val Ala Leu Lys Leu
530 535 540
Trp Val Glu Lys Leu Ser Asp Gly Ile Val Val Lys Glu Leu Lys Cys
545 550 555 560
Glu Thr Pro Val Gln Phe Ala Asn Ile Glu Leu Lys Ser Leu Lys Asn
5 6 5 ~ 5 7 0 ~ 5 7 5
Glu Ile Leu Cys Pro Lys Leu Leu Asn Lys Pro Ser Ala Pro Phe Thr
5 8 0 ~ 5 8 5 ~ 5 9 0
Ser Pro Ala Pro Ala Ile Thr Phe Thr Thr Pro Leu Gly Pro Ile Arg
5 9 5 6 0 0 6 0 5
Ser Pro Pro Gly Gly Pro Val Pro Leu Ser Ile Leu Ile Leu Ser Ile
6 1 0 6 1 5 ~ 6 2 0
Leu Val Val Leu Ile Leu Thr Val Phe Val Ala Phe Cys Leu Leu Val
6 2 5 6 3 0 ~ 6 3 5 ~ 6 4 0
Phe Val Leu Arg Arg Asn Lys Lys Pro Thr Val Lys His Glu Gly Leu
6 4 5 6 6 0 ~ 6 5 5
Gly Asn Pro Asp Cys Gly Ser Met Gln Leu Gln Leu Arg Lys His Asp
His Lys Thr Asn Lys Lys Asp Gly Leu Ser Thr Glu Ala Phe Ile Pro
6 7 5 6 6 8 0 ~ 6 8 5
Gln Thr Ile Glu Gln Met Ser Lys Ser His Thr Cys Gly Leu Lys Glu
6 9 0 6 9 5 ~ 7 0 0
Ser Glu Thr Gly Phe Met Phe Ser Asp Pro Pro Gly Gln Lys Val Val
7 0 5 ~ 7 1 0 ~ 7 1 5 ~ 7 2 0 ~
Met Arg Asn Val Ala Asp Lys Glu Lys Asp Leu Leu His Val Asp Thr
7 2 5 ~ 7 3 0 ~ 7 3 5
Arg Lys Arg Leu Ser Thr Ile Asp Glu Leu Asp Glu Leu Phe Pro Ser
740 745 750
Arg Asp Ser Asn Val Phe Ile Gln Asn Phe Leu Glu Ser Lys Lys Glu
755 760 765
Tyr Asn Ser Ile Gly Val Ser Gly Phe Glu Ile Arg Tyr Pro Glu Lys
770 775 780
Gln Pro Asp Lys Lys Ser Lys Lys Ser Leu Ile Gly Gly Asn His Ser
785 790 795 800
Lys Ile Val Val Glu Gln Arg Lys Ser Glu Tyr Phe Glu Leu Lys Ala
8 0 5 ~ 8 1 0 ~ 8 1 5 ~
Lys Leu Gln Ser Ser Pro Asp Tyr Leu Gln Val Leu Glu Glu Gln Thr
<210> 24
<211> 1.4
<212> PRT
<213> Tetanus toxoid
<400> 24
Gln Tyr Ile Lys Ala Asn Ser Lys Phe tle Gly Ile Thr Glu

```
```

<210> 25

```
<210> 25
<211> 21
<211> 21
<212> PRT
<212> PRT
<213> Plasmodium falciparum
```

<213> Plasmodium falciparum

```
```

<400> 25
Asp Ile Glu Lys Lys Ile Ala Lys Met Glu Lys Ala Ser Ser Val Phe
1 5 10
Asn Val Val Asn Ser
20
<210> 26
<211> 16
<212> PRT
<213> Streptococcus
<400> 26
Gly Ala Val Asp Ser Ile Leu Gly Gly Val Ala Thr Tyr Gly Ala Ala
1 5 10 15
<210> 27
<211> 13
<212> PRT\
<213> Artificial Sequence
<220>
<223> pan-DR binding epitope
<221> VARIANT
<222> 3
<223> Xaa = cyclohexylalanine, phenylalanine, or
tyrosine
<221> VARIANT
<222> 1, 13
<223> Xaa = D-alanine or L-alanine
<400> 27
Xaa Lys Xaa Val Ala Ala Trp Thr Leu Lys Ala Ala Xaa
1 5 10
<210> 28
<211> 14
<212> DNA
<213> Artificiall Sequence
<220>
<223> Primer
<400> 28
ttttgatcaa gctt
<210> 29
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 29
ctaatacgac tcactatagg gctcgagcgg cogcccgggc ag
<210> 30
<211> 12
<212> DNA

```
```

<213> Artificial Sequence
<220>
<223> Primer
<400> 30
gatcctgcec gg
<210> 31
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 31
gtaatacgac tcactatagg gcagcgtggt cgcggccgag 40
<210> 32
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 32
gatcctcggc 10
<210> 33
<211> 22
<212> DNA
<213> Artificial. Sequence
<220>
<223> Primer
<400> 33
ctaatacgac tcactatagg gc 22
<210> 34
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 34
tcgagcggcc gcccgggcag ga 22
<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 35
agegtggtcg cqgccgagga 20
<210> 36

```
```

<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 36
atatcgccgc gctcgtcgtc gacaa
<210> 37
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 37
agccacacgc agctcattgt agaagg 26
<210> 38
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 38
ataagctttc aatgttgcgc tcct 24
<210> 39
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 39
tgtcaactaa gaccacgtcc attc 24
<210> 40
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Flag Tag
<400> 40
gattacaagg atgacgacga raag 24
<210> 41
<211> 12
<212> PRT
<213> Homo sapiens
<900> 41
Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu
1 5 10

```
```

<210> 42

```
<210> 42
<211> 21
<211> 21
<212> DNA
<212> DNA
<213> Homo sapiens
<213> Homo sapiens
<400> 42
<400> 42
aagctcattc tagcgggaaa t
aagctcattc tagcgggaaa t
<210> 43
<210> 43
<211> 24
<211> 24
<212> DNA
<212> DNA
<213> Homo sapiens
<213> Homo sapiens
<400> 43
<400> 43
aagggacgaa gacgaacacu uctt 24
aagggacgaa gacgaacacu uctt 24
<210> 44
<210> 44
<211> 23
<211> 23
<212> DNA
<212> DNA
<213> Homo sapiens
<213> Homo sapiens
<400> 44
<400> 44
aactgaagac ctgaagacaa taa 23
aactgaagac ctgaagacaa taa 23
<210> 45
<210> 45
<211> 4
<211> 4
<212> PRT
<212> PRT
<213> Homo sapiens
<213> Homo sapiens
<400> 45
<400> 45
Asn Asp Ser Arg
Asn Asp Ser Arg
    1
    1
<210> 46
<210> 46
<211> 4
<211> 4
<212> PRT
<212> PRT
<213> Homo sapiens
<213> Homo sapiens
<400> 46
<400> 46
Asn Leu Thr Arg
Asn Leu Thr Arg
    l
    l
<210> 47
<210> 47
<211> 4
<211> 4
<212> PRT
<212> PRT
<213> Homo sapiens
<213> Homo sapiens
<400> 47
<400> 47
Asn Gln Ser Thr
Asn Gln Ser Thr
    1.
    1.
<210> 48
<211> 4
<212> PRT
<213> Homo sapiens
<400> 48
Lys Lys Glu Ser
1.
```

<210> 49
<211> 4
<212> PRT
<213> Homo sapiens
<400> 49
Thr Val Ile Glu
1
<210> 50
<211> 4
<212> PRT
<213> Homo sapiens
<400> 50
Thr His Leu Asp
l

```
```

<210> 51

```
<210> 51
<211> 4
<211> 4
<212> PRT
<212> PRT
<213> Homo sapiens
<213> Homo sapiens
<400> 51
<400> 51
Thr Trp Leu Glu
Thr Trp Leu Glu
    1
    1
<210> 52
<211> 4
<212> PRT
<213> Homo sapiens
<400> 52
Ser Ile Asn Asp
    l
<210> 53
<211> 4
<212> PRT
<213> Homo sapiens
<400> 53
Ser Leu Ser Asp
    l
<210> 54
<211> 4
<212> PRT
<213> Homo sapiens
<400> 54
Thr Gln Tle Asp
    l
<210> 55
<211> 4
<2.12> PRT
<213> Homo sapiens
```

```
<400> 55
Thr Val Thr Asp
    l
<210> 56
<211> 4
<212> PRT
<213> Homo sapiens
<400> 56
Ser Leu Thr Asp
    l
<210> 57
<211> 4
<212> PRT
<213> Homo sapiens
<400> 57
Ser Leu Tyr Glu
    l
<210> 58
<211> 4
<212> PRT
<213> Homo sapiens
<400> 58
Ser Leu Leu Glu
l
<210> 59
<211> 4
<212> PRT
<213> Homo sapiens
<400> 59
Ser Phe Gln Asp
    1
<210> 60
<211> 4
<212> PRT
<213> Homo sapiens
<400> 60
Thr Lys Asn Glu
l
<210> 61
<211> 8
<212> PRT
<213> Homo sapiens
<400> 6.1
Lys Leu Met.Glu Thr Leu Met Tyr
J
```

```
<210> 62
<211> 6
<212> PRT
<213> Homo sapiens
<400> 62
Gly Ser Cys Asp Ser Leu
l
                                    5
```

```
<210> 63
<211> 6
<212> PRT
<213> Homo sapiens
<400> 63
Gly Leu Thr Asn Ala Ile
1 5
```

<210> 64
<211> 6
<212> PRT
<213> Homo sapiens
<400> 64
Gly Ala Phe Asn Gly Leu
1

```
<210> 65
<211> 6
<212> PRT
<213> Homo sapiens
<400> 65
Gly Ser Ile Leu Ser Arg
    1
```

<210> 66
<211> 6
<212> PRT
<213> Homo sapiens
<400> 66
Gly Ser Phe Met Asn Leu
15
<210> 67
$\langle 211\rangle 6$
<212> PR'
<213> Homo sapiens
<400> 67
Gly Asn His Leu Thr Lys
<210> 68
<2.1.> 6

```
<212> PRT
<213> Homo sapiens
<400> 68
Gly Met Phe Leu Gly Leu
    1 5
<210> 69
<211> 6
<212> PRT
<213> Homo sapiens
<400> 69
Gly Val pro Leu Thr Lys
    1 5
<210> 70
<211> 2228
<212> DNA
<213> Homo sapiens
<400> 70
tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctcct 60
tgcctgtata tctttacact cccaaactcc agtgctctca tccagaggct cttgtgattc 120
tctttgcaat tgtgaggaaa aagatggcac aatgctaata aattgtgaag caaaaggtat 180
caagatggta tctgaaataa gtgtgccacc atcacgacct ttccaactaa gcttattaaa 240
taacggcttg acgatgcttc acacaaatga cttttctggg cttaccaatg ctatttcaat 300
acaccttgga tttaacaata ttgcagatat tgagataggt gcatttaatg gccttggcct 360
cctgaaacaa cttcatatca atcacaattc tttagaaatt cttaaagagg atactttcca 420
tggactggaa aacctggaat tcctgcaagc agataacaat tttatcacag tgattgaacc 480
aagtgccttt agcaagctca acagactcaa agtgttaatt ttaaatgaca atgctattga 540
gagtcttcct ccaaacatct tccgatttgt tcctttaacc catctagatc ttcgtggaaa 600
tcaattacaa acattgcctt atgttggttt tctcgaacac attggccgaa tattggatct 660
tcagttggag gacaacaaat gggcctgcaa ttgtgactta ttgcagttaa aaacttggtt }72
ggagaacatg cctccacagt ctataattgg tgatgttgtc tgcaacagce ctccattttt }78
taaaggaagt atactcagta gactaaagaa ggaatctatt tgccctactc caccagtgta }84
tgaagaacat gaggatcctt caggatcatt acatctggca gcaacatctt caataaatga 900
tagtcgcatg tcaactaaga ccacgtccat tctaaaacta cccaccaaag caccaggttt 960
gataccttat attacaaagc catccactca acttccagga ccttactgcc ctattccttg 1020
taactgcaaa gtcctatccc catcaggact tctaatacat tgtcaggagc gcaacattga 1080
aagcttatca gatctgagac ctcctccgca aatcctaga aagctcattc tagcgggaaa 1140
tattattcac agtttaatga agtctgatct agtggaatat ttcactttgg aaatgcttca 1200
cttgggaaac aatcgtattg aagttcttga agaaggatcg tttatgaacc taacgagatt 1260
acaaaaactc tatctaaatg gtaaccacct gaccaaatta agtaaaggca tgttccttgg 1.320
tctccataat cttgatact tatatcttga atacaatgcc attaaggaaa tactgccagg 1380
aacctttaat ccaatgccta aacttaaagt cctgtattta aataacaacc tcctccaagt 1440
tttaccacca catatttttt caggggttcc tctaactaag gtaaatctta aaacaaacca }150
gtttacccat ctacctgtaa gtaatatttt ggatgatctt gatttactaa cccagattga 1560
ccttgaggat aacccctggg act.gctcctg tgacctggtt ggactgcagc aatggataca 1620
aaagttaagc aagaacacag tgacagatga catcctctgc acttcccccg ggcatctcga 1680
caaaaaggaa ttgaaagccc taaatagtga aattctctgt ccaggtttag taaataaccc 1740
atccatgcca acacagacta gttaccttat ggtcaccact cctgcaacaa caacaaatac 1800
ggctgatact attttacgat ctcttacgga cgctgtgcca ctgtctgttc taatattggg 1860
acttctgatt atgttcatca ctattgtttt ctgtgctgca gggatagtgg ttcttgttct }192
tcaccgcagg agaagataca aaaagaaaca agtagatgag caaatgagag acaacagtcc 1980
tgtgcatctt cagtacagca tgtatggcca taaaaccact catcacacta ctgaaagacc 2040
ctctgcctca ctctatgaac agcacatggg agcccacgaa gagctgaagt taatggaaac 2100
attaatgtac tcacgtccaa ggaaggtatt agtggaacag acaaaaatg agtattttga 2160
acttaaagct aatttacatg ctgaacctga ctatttagaa gtcctggagc agcaaacata 2220
gatggaga
2228
```


<400> 71

tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctcct 60 tgcctgtata tctttacact cccaaactcc agtgctctca tccagaggct cttgtgattc 120 tctttgcaat tgtgaggaaa aagatggcac aatgctaata aattgtgaag caaaaggtat 180 caagatggta tctgaaataa gtgtgccacc atcacgacct ttccaactaa gcttattaaa 240 taacggcttg acgatgcttc acacaaatga cttttctggg cttaccaatg ctatttcaat 300 acaccttgga tttaacaata ttgcagatat tgagataggt gcatttaatg gcettggcct 360 cctgaaacaa cttcatatca atcacaattc tttagaaatt cttaaagagg atactttcca 420 tggactggaa aacctggaat tcctgcaage agataacaat tttatcacag tgattgaacc 480 aagtgccttt agcaagctca acagactcaa agtgttaatt ttaaatgaca atgctattga 540 gagtcttcct ccaaacatct tccgatttgt tcctttaacc catctagatc ttcgtggaaa 600 tcaattacaa acattgcctt atgttggttt tctcgaacac attggccgaa tattggatct 660 tcagttggag gacaacaaat gggcctgcaa ttgtgactta ttgcagttaa aaacttgatt 720 ggagaacatg cctccacagt ctataattgg t taaaggaagt atactcagta gactaaagaa g tgaagaacat gaggatcctt tagtcgcatg tcaactaaga gataccttat attacaaagc cat taactgcaaa gtcctatcce ca aagcttatca gatctgagac ct tattattcac agtttaatga agtctcgea ct tgggaaac aatcgtattg aagttcttga agaaggatcg t acaaaaactc tatctaaatg gtaaccacct ga tctccataat cttgaatact tatatcttga a tttaccacca catatttttt ca gtttacccat ctacctgtaa gtaatattt ccttgaggat aacccctggg actgctcctg t aagttaagc aagaacacag tgacagatga c caaaaaggaa ttgaaagccc taaatagtga a atccatgcca acacagacta gttaccttat g ggctgatact attttacgat ctcttacgga c acttctgatt atgttcatca ctattgtttt c tcaccgcagg agaagataca aaagaaaca a tgtgcatctt cagtacagca tgtatggcca t
ctctgcctca ctatac atcctttggt ccaaagcatc tggaagagga a tgcaaaacat ctccaaagaa gtcttttgga a aatatgaaa tacaaaacca cgaaccaatc a ctcattgtac agaaacattt tagaaaaga a atacctaagg aaaaacattg ctcagctcca g ccacgaagag ctgaagttaa tggaaacatt aatgtactca cgtccaagga aggtattagt 2460 tttagaagtc ctggagcagc aacatagat ggaga 2555
<210> 72
<211> 2228
<212> DNA
<213> Homo sapiens
<400> 72
tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctcct 60 tgcctgtata tctttacact cccaactcc agtgctctca tccagaggct cttgtgattc 120 tctttgcaat tgtgaggaaa aagatggcac aatgctaata aattgtgaag caaaaggtat 180 caagatggta tctgaaataa gtgtgccacc atcacgacct ttccaactaa gcttattaaa 240 taacggcttg acgatgcttc acacaatga cttttctggg cttaccaatg ctatttcaat 300 acaccttgga tttaacaata ttgcagatat tgagataggt gcarttaatg gccttggcct: 360 cctgaacaa cttcatatca atcacaattc tttagaatt cttaagagg atactttcca 420 tggactggaa aacctggat tcctgcaage agataacaat tttatcacag tgategaacc 180 aagtgccttt agcaagctca acagactcaa agtgttaatt ttaatigaca atgctattga j 40
gagtcttcct ccaaacatct tccgatttgt tcctttaacc catctagatc ttcgtggaaa 600 tcaattacaa acattgcctt atgttggttt tctcgaacac attggccgaa tattggatct 660 tcagttggag gacaacaaat gggcctgcaa ttgtgactta ttgcagttaa aaacttggtt 720 ggagaacatg cctccacagt ctataattgg tgatgttgtc tgcaacagcc ctccattttt 780 taaaggaagt atactcagta gactaaagaa ggaatctatt tgccctactc caccagtgta 840 tgaagaacat gaggatcctt caggatcatt acatctggca gcaacatctt caataaatga 900 tagtcgcatg tcaactaaga ccacgtccat tctaaacta cccaccaaag caccaggttt 960 gataccttat attacaaagc catccactca acttccagga cettactgce ctattccttg 1020 taactgcaaa gtcctatccc catcaggact tctaatacat tgtcaggagc gcaacattga 1080 aagcttatca gatctgagac ctcctccgca aaatcctaga aagctcattc tagcgggaaa 1140 tattattcac agtttaatga agtctgatct agtggaatat ttcactttgg aaatgcttca 1200 cttgggaaac aatcgtattg aagttcttga agaaggatcg tttatgaacc taacgagatt 1260 acaaaaactc tatctaaatg gtaaccacct gaccaaatta agtaaaggca tgttccttgg 1320 tctccataat cttgaatact tatatcttga atacaatgcc attaaggaaa tactgccagg 1380 a acctttaat ccaatgccta aacttaaagt cctgtattta aataacaacc tcctccaagt 1440 tttaccacca catatttttt caggggttcc tctaactaag gtaaatctta aaacaaacca 1500 gtttacccat ctacctgtaa gtaatatttt ggatgatctt gatttactaa cccagattga 1560 ccttgaggat aacccctggg actgctcctg tgacctggtt ggactgcagc aatggataca 1620 aaagttaagc aagaacacag tgacagatga catcctctgc acttcccccg ggcatctcga 1680 caaaaaggaa ttgaaagccc taaatagtga aattctctgt ccaggtttag taaataaccc 1740 atccatgcca acacagacta gttaccttat ggtcaccact cctgcaacaa caacaaatac 1800 ggctgatact attttacgat ctcttacgga cgctgtgcca ctgtctgttc taatattggg 1860 acttctgatt atgttcatca ctattgtttt ctgtgctgca gggatagtgg ttcttgttct 1920 tcaccgcagg agaagataca aaaagaaaca agtagatgag caaatgagag acaacagtcc 1980 tgtgcatctt cagtacagca tgtatggcca taaaaccact catcacacta ctgaaagacc 2040 ctctgcctca ctctatgaac agcacatggg agcccacgaa gagctgaagt taatggaaac 2100 attaatgtac tcacgtccaa ggaaggtatt agtggaacag acaaaaatg agtattttga 2160 acttaaagct aatttacatg ctgaacctga ctatttagaa gtcctggagc agcaaacata 2220 gatggaga

```
<210> 73
<211> 732
<212> PRT
<213> Homo sapiens
<400> 73
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
    1 5 10 15
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
Ser Leu Cys 20 25 Cys Glu Glu Lys 25
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
    35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val. Pro Pro Ser
        5 0 ~ 5 5 ~ 6 0
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
Phe Asn Asn Ile Ala Asp Ile Glu tle Gly Ala Phe Asn Gly Leu Gly
        100 105 11.0
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Tle Leu Lys
        1 1 5 1 2 0 ~ 1 2 5
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
145 150 155 160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
                1 6 5 1 7 0 1 7 5
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly
        180 185 190
Asn Gln Leu Gln Thr Leu fro Tyr val Gly Phe Leu Glu llis Ile Gl.y
        1 9 5 2 0 0 ~ 2 0 5
Arg Ile Leu Asp Leu Gln L,eu Glu Asp Asn L.ys Trp Ala Cys Asn Cys
        210 2.15 220
```

$\begin{aligned} & \text { Asp } \\ & 225 \end{aligned}$				Leu	$\begin{aligned} & \text { Lys } \\ & 230 \end{aligned}$				Glu	$\begin{aligned} & \text { Asn } \\ & 235 \end{aligned}$					$\begin{aligned} & \text { Ser } \\ & 240 \end{aligned}$
Ile	Ile	Gly	Asp V	Val	Val	Cys	Asn	Ser	Pro	Pro	Phe	Phe	Lys	Gly	Ser
				245					250					255	
Ile	Leu	Ser	Arg L	Leu	Lys L	Lys	Glu	Ser	Ile	Cys	Pro	Thr	Pro	Pro	Val
Tyr	Glu	Glu	His G	Glu	Asp P	Pro	Ser	265	Ser I	Leu	His		270		
		275					280					285		Ala	Thr
Ser		Ile	Asn A	Asp	Ser A	Arg	Met	Ser	Thr	Lys	Thr	Thr	Ser	Ile	Leu
	290					295					300				
Lys	Leu	Pro	Thr L	Lys	Ala P	Pro	Gly L	Leu	Ile P	Pro	Tyr	Ile	Thr	Lys	Pro
305					310					315					320
Ser	Thr	Gln L	Leu P	Pro	Gly P	Pro	Tyr	Cys	Pro I	Ile	Pro	Cys	Asn	Cys	Lys
				325					330					335	
Val	Leu	Ser	Pro S	Ser	Gly L	Leu	Leu	Ile	His C	Cys	Gln	Glu	Arg	Asn	Ile
			340					345					350		
Glu	Ser	Leu	Ser A	Asp 1	Leu A	Arg	Pro P	Pro	Pro G	Gln	Asn	Pro	Arg	Lys	Leu
		355					360					365			
Ile	Leu	Ala	Gly A	Asn I	Ile I	Ile	His S	Ser	Leu M	Met	Lys	Ser	Asp	Leu	Val
	370					375					380				
Glu	Tyr	Phe	Thr L	Leu	Glu M	Met	Leu H	His	Leu G	Gly	Asn	Asn	Arg	Ile	Glu
385					390					395					400
Val	Leu	Glu	Glu G	Gly	Ser P	Phe	Met A	Asn	Leu T	Thr	Arg	Leu	Gln	Lys	Leu
				405					410					415	
Tyr	Leu	Asn	$\begin{aligned} & \text { Gly } A \\ & 420 \end{aligned}$	Asn H	His L	Leu	Thr L	Lys	Leu S	Ser	Lys	Gly	Met	Phe	eu
Gly	Leu	His A	Asn L	Leu G	Glu T	Tyr	Leu T	Tyr	Leu G	Glu	Tyr	Asn	Ala	Ile	s
		435					440					445			
Glu	Ile 450	Leu Pr	Pro G	Gly T	Thr P	Phe 455	Asn P	Pro M	Met P	Pro		Leu	Lys	Val	Leu
Tyr	Leu	Asn A	Asn A	Asn L	Leu L	Leu	Gln V	Val L	Leu P	Pro	Pro	His	Ile	Phe	Ser
465					470					475					480
Gly	Val	Pro L	Leu Th	Thr L	ys V	Val A	Asn L	Leu I	Lys T	Thr	Asn	Gln	Phe	Thr	His
				485					490					495	
Leu	Pro	Val S	Ser A	Asn I	le L	Leu A	Asp A	Asp L	Leu A	Asp	Leu	Leu	Thr	Gln	Ile
			500					505					510		
Asp	Leu	Glu A	Asp As	Asn P	Pro T	Trp A	Asp C	Cys	Ser C	Cys	Asp	Leu	Val	Gly	Leu
		515					520					525			
Gln	$\begin{aligned} & \text { Gln } \\ & 530 \end{aligned}$	Trp I	Ile G	Gln L	ys L	$\begin{aligned} & \text { Leu S } \\ & 535 \end{aligned}$	Ser L	Lys A	Asn T	Thr	Val	Thr	Asp	Asp	Ile
Leu	Cys	Thr S	Ser Pro	Pro G	Gly H	His L	Leu A	Asp L	Lys L	Lys	G.lu	Leu	Lys	Ala	u
545					50					555					560
Asn	Ser	Glu I	Ile Le	Leu C	Cys P	Pro G	Gly L	Leu V	Val A	Asn A	Asn	Pro	Ser	Met	Pro
				565					570					575	
Thr	Gln	Thr S	$\begin{aligned} & \text { Ser T, } \\ & 580 \end{aligned}$	Tyr L	Leu M	Met V	Val T	$\begin{aligned} & \text { Thr T } \\ & 585 \end{aligned}$	Thr P	Pro	Ala	Thr	Thr 590	Thr	Asn
Thr	Ala	Asp 7	Thr If	le L	eu A	Arg S	Ser L	Leu T	Ihr A	Asp	Ala	val.	Pro	cu	r
		595					600					605			
Val	Leu	Ile L	Leu Gl	Gly L	eu L	Leu I	Ile M	Met P	Phe I	le T	Thr	Ile	val	Phe	Cys
	610					615					620				
Ala	Ala	Gly I	Ile Va	Val V	al Le	Leu V	Val	L.eu 1 H	His A	Arg A	Arg	Arg	Arg	Tyr	Lys
625					30					635					640
Lys	Lys	Gln V	Val Asp		lu G	Gln M	Met A	Arg A	Asp A	Asn S	Ser	Pro	Val	His	Leu
				645					650					655	
Gln	Tyr	Ser M	Met Ty	yr G	l.y H	His L	Lys T	Thr T	Thr His	His H	His	I'hr	Thr	Glu	Arg
			660					665					670		
Pro	Ser	Ala S	Ser Leu	Leu T	yr Gl	Glu G	Gln H	His M	Met G	Gly A	Ala	His	Glu	Glu	Leu
		675					680					685			
Leys	Leu	Met G	Glu Th	hr L	eu Me	Met T	'yr S	Ser A	Arg P	Pro A	Arg	Lys	Val	L.eu	Val
	690					695					700				
Glu	Gln	The I	Itys As	Asn G	lu T	yr P	Phe G	Glu L	.eu Lys	ys A	Ala	Asn	Leu	His	Ala
705					10					15					720
Glu	Pro	Asp T	Tyr Leu	eu G	lu va	Val L	eい	1.1 G	Gln GI	Sn T	Thr				
				25					730						

```
<210> 74
<211>> 841
<212> PRT
<213> Homo sapiens
<400> 74
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
1 5 10 15
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
20 25 30
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
            35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
    50
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
                                    85 90 95
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly 100105110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys 115. 120125
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp 130135140
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn \(145150 \quad 155 \quad 160\)
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro 165170175
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly 180185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu his Ile Gly 195200205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys 210215220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser 225230235240
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser 245250255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val 260265270
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr 275280285
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro \(305310315 \quad 320\)
Ser Thr Gln Leu Pro Gly Pro tyr Cys Pro Ile Pro Cys Asn Cys Lys 325330335
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Tle 340345350
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu 355360365
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Asp Leu Val 370375380
Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu 385390395400
Val Leu Glu Glu gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu 405410 415
Tyr Leu Asn Gly Asn his Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425430
Gly Leu His Asn
435 435
```

 Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu
 4 5 0 4 5 5 4 6 0
 Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser
 465 470 475 480
 Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His
 4 8 5 ~ 4 9 0 ~ 4 9 5
 Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile
 500 505 510
 Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu
 5 1 5 ~ 5 2 0 ~ 5 2 5
 Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile
 5 3 0 5 3 5 5 ~ 5 4 0
 Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu
 5 4 5 ~ 5 5 0 ~ 5 5 5 ~ 5 6 0
 Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro
 565 570 575
 Thr Gln Thr Ser Tyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn
 580 585 590
 Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser
Val Leu Ile Leu Gly Leu Leu Ile Met Phe Ile Thr Ile Val Phe Cys
6 1 0 6 1 5 6 2 0
Ala Ala Gly Ile Val Val Leu Val Leu His Arg Arg Arg Arg Tyr Lys
625 630 635 640
Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu
6 4 5 ~ 6 5 0 ~ 6 5 5
Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr Thr Glu Arg
6 6 0 6 6 6 5 ~ 6 7 0
Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val Ser Pro Met Val His
6 7 5 6 8 0 6 8 5
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys His Leu Glu glu glu Glu
6 9 0 6 9 5 ~ 7 0 0
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser
7 0 5 7 1 0 7 1 5 ~ 7 2 0
Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys
725
7 3 0 ~ 7 3 5
Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala
740 745 750
Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys Glu Arg Glu Leu Gln Gln
7 5 5 ~ 7 6 0 ~ 7 6 5
Leu Gly Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro
7 7 0 7 7 5 ~ 7 8 0
Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met
785 790 795 800
Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glu Gln Thr
8 0 5 ~ 8 1 0 ~ 8 1 5 ~
Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp
Tyr Leu Gluval LeuGuGlnGln Thr 825
Tyr Leu Glu val Leu Glu Gln Gln Thr
<210> 75
<211> 732
<212> PRT
<213> Homo sapiens
<400> 75
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys IJe
1 5 10 10 15
Ser Leu His Ser Gln Thr Pro Val. Leu Ser Ser Arg Gly Ser Cys Asp
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ille Asn Cys
35 40 45

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline lu & \[
\begin{aligned}
& \text { Ala } \\
& 50
\end{aligned}
\] & Lys & & & Lys & \[
\begin{aligned}
& \text { Met } \\
& 55
\end{aligned}
\] & & & & & \[
\begin{aligned}
& \text { Ser } \\
& 60
\end{aligned}
\] & & & & Se \\
\hline \[
\begin{aligned}
& \text { Arg } \\
& 65
\end{aligned}
\] & Pro & Phe & Gln L & Leu & \[
\begin{aligned}
& \text { Ser } \\
& 70
\end{aligned}
\] & Leu & Leu & Asn & Asn & \[
\begin{aligned}
& \text { Gly } \\
& 75
\end{aligned}
\] & Leu & Thr & Met & Leu & \\
\hline Thr A & Asn & Asp & Phe S & \[
\begin{aligned}
& \text { Ser } \\
& 85
\end{aligned}
\] & Gly & Leu & Thr & Asn & \[
\begin{aligned}
& \text { Ala } \\
& 90
\end{aligned}
\] & Ile & Ser & Ile & His & \[
\begin{aligned}
& \text { Leu } \\
& 95
\end{aligned}
\] & Gly \\
\hline Phe & Asn & Asn & \[
\begin{aligned}
& \text { Ile A } \\
& 100
\end{aligned}
\] & Ala \(A\) & Asp & Ile & Glu & \[
\begin{aligned}
& \text { Ile } \\
& 105
\end{aligned}
\] & Gly & Ala & Phe & Asn & Gly & Leu & Gly \\
\hline Leu L & Leu & \[
\begin{aligned}
& \text { Lys } \\
& 115
\end{aligned}
\] & Gln L & Leu & His & Ile & \[
\begin{aligned}
& \text { Asn } \\
& 120
\end{aligned}
\] & His & Asn & Ser & Leu & \[
\begin{aligned}
& \text { Glu } \\
& 125
\end{aligned}
\] & Ile & Leu & Lys \\
\hline Glu & \[
\begin{aligned}
& \text { Asp } \\
& 130
\end{aligned}
\] & Thr & Phe H & His & Gly & \[
\begin{aligned}
& \text { Leu } \\
& 135
\end{aligned}
\] & Glu & Asn & Leu & Glu & \begin{tabular}{l}
Phe \\
140
\end{tabular} & Leu & Gln & Ala & Asp \\
\hline \[
\begin{aligned}
& \text { Asn } \\
& 145
\end{aligned}
\] & Asn & Phe & Ile \(T\) & Thr V & \[
\begin{aligned}
& \text { Val I } \\
& 150
\end{aligned}
\] & Ile & Glu & Pro & Ser & \[
\begin{aligned}
& \text { Ala } \\
& 155
\end{aligned}
\] & Phe & Ser & Lys & Leu & \[
\begin{aligned}
& \text { Asn } \\
& 160
\end{aligned}
\] \\
\hline Arg L & Leu & Lys & Val L & \[
\begin{aligned}
& \text { Leu } \\
& 165
\end{aligned}
\] & Ile L & Leu & Asn & Asp & \[
\begin{aligned}
& \text { Asn } \\
& 170
\end{aligned}
\] & Ala & Ile & Glu & Ser & \[
\begin{aligned}
& \text { Leu } \\
& 175
\end{aligned}
\] & Pro \\
\hline Pro \(A\) & Asn & Ile & \[
\begin{aligned}
& \text { Phe } \\
& 180
\end{aligned}
\] & Arg P & Phe V & Val & Pro & Leu & Thr & His & Leu & Asp & Leu & Arg & Gly \\
\hline Asn G & Gln & \[
\begin{aligned}
& \text { Leu } \\
& 195
\end{aligned}
\] & Gln T & Thr L & Leu P & Pro & \[
\begin{aligned}
& \text { Tyr } \\
& 200
\end{aligned}
\] & Val & Gly & Phe & Leu & \[
\begin{aligned}
& \text { Glu } \\
& 205
\end{aligned}
\] & His & Ile & Gly \\
\hline Arg 1 & \[
\begin{aligned}
& \text { Ile } \\
& 210
\end{aligned}
\] & Leu & Asp L & Leu & Gln & \[
\begin{aligned}
& \text { Leu } \\
& 215
\end{aligned}
\] & Glu & Asp & Asn & Lys & \[
\begin{aligned}
& \operatorname{Trp} \\
& 220
\end{aligned}
\] & Ala & cys & Asn & Cys \\
\hline \[
\begin{aligned}
& \text { Asp } \\
& 225
\end{aligned}
\] & Leu & Leu & Gln L & Leu L & \[
\begin{aligned}
& \text { Lys } \\
& 230
\end{aligned}
\] & Thr & Trp & Leu & Glu & \[
\begin{aligned}
& \text { Asn } \\
& 235
\end{aligned}
\] & Met & Pro & Pro & Gln & \[
\begin{aligned}
& \text { Ser } \\
& 240
\end{aligned}
\] \\
\hline Ile I & Ile & Gly A & Asp V & \[
\begin{aligned}
& \text { Val } \\
& 245
\end{aligned}
\] & Val C & Cys & Asn & Ser & \[
\begin{aligned}
& \text { Pro } \\
& 250
\end{aligned}
\] & Pro & Phe & Phe & Lys & \[
\begin{aligned}
& \text { Gly } \\
& 255
\end{aligned}
\] & Ser \\
\hline Ile L & Leu & Ser & \[
\begin{aligned}
& \text { Arg L } \\
& 260
\end{aligned}
\] & Leu L & Lys L & Lys & Glu & \[
\begin{aligned}
& \text { Ser } \\
& 265
\end{aligned}
\] & Ile & Cys & Pro & Thr & \[
\begin{aligned}
& \text { Pro } \\
& 270
\end{aligned}
\] & Pro & Val \\
\hline Tyr G & Glu & \[
\begin{aligned}
& \text { Glu H } \\
& 275
\end{aligned}
\] & His G & Glu A & Asp P & Pro & \[
\begin{aligned}
& \text { Ser } \\
& 280
\end{aligned}
\] & Gly & Ser & Leu & His & \[
\begin{aligned}
& \text { Leu } \\
& 285
\end{aligned}
\] & Ala & Ala & Thr \\
\hline Ser 5 & \[
\begin{aligned}
& \text { Ser } \\
& 290
\end{aligned}
\] & Ile A & Asn A & Asp S & Ser A & \[
\begin{aligned}
& \text { Arg } \\
& 295
\end{aligned}
\] & Met & Ser & Thr & Lys T & \[
\begin{aligned}
& \text { Thr } \\
& 300
\end{aligned}
\] & Thr & Ser & Ile & Leu \\
\hline \[
\begin{aligned}
& \text { Lys L } \\
& 305
\end{aligned}
\] & Leu & Pro T & Thr L & Lys A & & Pro & Gly & Leu & Ile & \[
\begin{aligned}
& \text { Pro } \\
& 315
\end{aligned}
\] & Tyr & Ile & Thr & Lys & Pro
320 \\
\hline Ser T & Thr & Gln L & Leu P & \[
\begin{aligned}
& \text { Pro } \\
& 325
\end{aligned}
\] & Gly P & Pro & Tyr & Cys & \[
\begin{aligned}
& \text { Pro } \\
& 330
\end{aligned}
\] & Ile & Pro & Cys & Asn & \[
\begin{aligned}
& \text { Cys } \\
& 335
\end{aligned}
\] & Lys \\
\hline Val L & Leu & Ser P & \[
\begin{aligned}
& \text { Pro S } \\
& 340
\end{aligned}
\] & Ser G & Gly L & Leu & Leu & \[
\begin{aligned}
& \text { Ile } \\
& 345
\end{aligned}
\] & His & Cys & G].n & Glu & \[
\begin{gathered}
\text { Arg } \\
350
\end{gathered}
\] & Asn & Ile \\
\hline Glu S & Ser & \[
\begin{aligned}
& \text { Leu S } \\
& 355
\end{aligned}
\] & Ser A & Asp L & Leu & \(g\) & \[
\begin{aligned}
& \text { Pro } \\
& 360
\end{aligned}
\] & Pro & Pro & Gln & Asn & \[
\begin{aligned}
& \text { Pro } \\
& 365
\end{aligned}
\] & Arg & Lys & Leu \\
\hline Ile L & \[
\begin{aligned}
& \text { Leu } \\
& 370
\end{aligned}
\] & Ala G & Gly A & Asn I & Ile 1 & \[
\begin{aligned}
& \text { Ile } \\
& 375
\end{aligned}
\] & His & Ser & Leu & Met L & \[
\begin{aligned}
& \text { Lys } \\
& 380
\end{aligned}
\] & Ser & Asp & Leu & Val \\
\hline \[
\begin{aligned}
& \text { Glu T } \\
& 385
\end{aligned}
\] & Tyr & Phe T & Thr L & Leu G & \[
\begin{aligned}
& \text { Glu M } \\
& 390
\end{aligned}
\] & Met & Leu & His & Leu & \[
\begin{aligned}
& \text { Gly } \\
& 395
\end{aligned}
\] & Asn & Asn & Arg & Ile & \[
\begin{aligned}
& \text { Glu } \\
& 400
\end{aligned}
\] \\
\hline Val L & Leu & Glu G & Glu G & \[
\begin{array}{ll}
\mathrm{Gly} \\
405
\end{array}
\] & Ser P & She M & Met & Asn & \[
\begin{aligned}
& \text { Leu } \\
& 410
\end{aligned}
\] & Thr & Arg & Leu & Gln & \[
\begin{aligned}
& \text { Lys } \\
& 415
\end{aligned}
\] & Leu \\
\hline Tyr L & Leu \(A\) & Asn G & \[
\begin{aligned}
& \text { Gly } \mathrm{A} \\
& 420
\end{aligned}
\] & Asn H & His L & Leu & Thr & \[
\begin{aligned}
& \text { Lys } \\
& 425
\end{aligned}
\] & Leu & Ser & Lys & Gly & \[
\begin{aligned}
& \text { Met } \\
& 430
\end{aligned}
\] & Phe & Leu \\
\hline Gly L & Leu & \[
\begin{aligned}
& \text { His A } \\
& 435
\end{aligned}
\] & Asn L & Leu G & Glu T & Pyr & \[
\begin{aligned}
& \text { Leu } \\
& 440
\end{aligned}
\] & Tyr & Leu & Glu & Tyr & \[
\begin{aligned}
& \text { Asn } \\
& 445
\end{aligned}
\] & Ala & Ile & Lys \\
\hline Glu I & \[
\begin{aligned}
& \text { Ile } \\
& 450
\end{aligned}
\] & Leu P & Pro G & Gly T' & Thr Pr & \[
\begin{aligned}
& \text { Phe } \\
& 455
\end{aligned}
\] & Asn & Pro & Met & Pro & \[
\begin{aligned}
& \text { Lys } \\
& 460
\end{aligned}
\] & Leu & Lys & Val & Leu \\
\hline \[
\begin{aligned}
& \text { Tyr L } \\
& 465
\end{aligned}
\] & Leu \(A\) & Asn A & Asn A & Asn L & \[
\begin{aligned}
& \text { Leu L } \\
& 470
\end{aligned}
\] & eu & Gln & Val & Leu & \[
\begin{aligned}
& \text { Pro } \\
& 475
\end{aligned}
\] & Pro & His & Il.e & Phe & \[
\begin{aligned}
& \text { Ser } \\
& 480
\end{aligned}
\] \\
\hline Gly V & Val P & Pro L & Leu T & \[
\begin{aligned}
& \text { rhr L } \\
& 485
\end{aligned}
\] & us Va & Val & Asn & Leu & \[
\begin{aligned}
& \text { Lys } \\
& 490
\end{aligned}
\] & Thr & Asn & Gln & Phe & \[
\begin{aligned}
& \mathrm{Thr} \\
& 495
\end{aligned}
\] & His \\
\hline Leu P & Pro V & Vall \({ }^{\text {l }}\) S & \[
\begin{aligned}
& \text { Ser A } \\
& 500
\end{aligned}
\] & Asn I & IJ.e Le & eu A & Asp & \[
\begin{aligned}
& \text { Asp } \\
& 505
\end{aligned}
\] & Leu & Asp & Leu & Leu & \[
\begin{aligned}
& \text { Thr } \\
& 510
\end{aligned}
\] & Gln & Ile \\
\hline Asp L & Leu & \[
\begin{aligned}
& \text { G.1. A } \\
& 51.5
\end{aligned}
\] & Asp A & Asn Pr & Pro & rp A & \[
\begin{aligned}
& \text { Asp } \\
& 520
\end{aligned}
\] & Cys & Ser & Cys A & Asp & \[
\begin{aligned}
& \text { Leu } \\
& 525
\end{aligned}
\] & Val & Gly & Leu \\
\hline Gln G & \[
\begin{aligned}
& \text { Gln } 7 \\
& 530
\end{aligned}
\] & Trp l & lie G & Gn L & Lys Le & \[
\begin{aligned}
& \text { Leu S } \\
& 535
\end{aligned}
\] & Ser & Lys & Asn & Thr v & \[
\begin{aligned}
& \text { Val } \\
& 540
\end{aligned}
\] & Thr & Asp & Asp & Ile \\
\hline \[
\begin{aligned}
& \text { Leu C } \\
& 545
\end{aligned}
\] & Cys \({ }^{\text {I }}\) & The S & Ser P & Pro 6 & \[
\begin{aligned}
& \mathrm{Cly} \mathrm{H} \\
& 550
\end{aligned}
\] & is & Leu & Asp & Lys & \[
\begin{aligned}
& \text { Lys } \\
& 555
\end{aligned}
\] & Glu & Lieu & Lys & Ala & L.eu
560 \\
\hline
\end{tabular}

```

<210> 76
<211> 1620
<212> DNA
<213> Homo sapiens

```
<400> 76
tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctcct 60
tgcctgtata tctttacact cccaaactcc agtgctctca tccagaggct cttgtgattc 120
tctttgcaat tgtgaggaaa aagatggcac aatgctaata aattgtgaag caaaaggtat 180
caagatggta tctgaaataa gtgtgccacc atcacgacct ttccaactaa gcttattaaa 240
taacggcttg acgatgcttc acacaatga cttttctggg cttaccaatg ctatttcaat 300
acaccttgga tttaacaata ttgcagatat tgagataggt gcatttaatg gccttggcct 360
cctgaaacaa cttcatatca atcacaattc tttagaaatt cttaaagagg atactttcca 420
tggactggaa aacctggaat tcctgcaagc agataacaat tttatcacag tgattgaacc 480
aagtgccttt agcaagctca acagactcaa agtgttaatt ttaaatgaca atgctattga 540
gagtcttcct ccaaacatct tccgatttgt tcctttaacc catctagatc ttcgtggaaa 600
tcaattacaa acattgcctt atgttggttt tctcgaacac attggccgaa tattggatct 660
tcagttggag gacaacaaat gggcctgcaa ttgtgactta ttgcagttaa aacttggtt 720
ggagaacatg cctccacagt ctataattgg tgatgttgtc tgcaacagcc ctccattttt 780
taaaggaagt atactcagta gactaaagaa ggaatctatt tgccctactc caccagtgta 840
tgaagaacat gaggatcctt caggatcatt acatctggca gcaacatctt caataaatga 900
tagtcgcatg tcaactaaga ccacgtccat tctaaacta cccaccaaag caccaggttt 960
gataccttat attacaaagc catccactca acttccagga ccttactgcc ctattccttg 1020
taactgcaaa gtcctatccc catcaggact tctaatacat tgtcaggagc gcaacattga 1080
aagcttatca gatctgagac ctcctccgca aatcctaga aagctcattc tagcgggaaa 1140
tattattcac agtttaatga agtccatcct ttggtccaaa gcatctggaa gaggaagaag 1200
agaggaatga gaaagaagga agtgatgcaa aacatctcca aagaagtctt ttggaacagg 1260
aaatcattc accactcaca gggtcaata tgaatacaa aaccacgaac catcaacag 1320
aatttttatc cttccaagat gccagctcat tgtacagaaa cattttagaa aaagaaaggg 1380
aacttcagca actgggaatc acagaatacc taaggaaaaa cattgctcag ctccagcctg 1.440
atatggaggc acattatcct ggagcccacg aagagctgaa gttaatggaa acattaatgt 1500
actcacgtcc aaggaaggta ttagtggaac agacaaaaaa tgagtatttt gaacttaaag 1560
ctaatttaca tgctgacct gactatttag aagtcctgga gcagcaaaca tagatggaga 1620
```

<210> 77
<211> 2555
<212> DNA
<213> Homo sapiens

```
tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctcct 60 tgcctgtata tctttacact cccaaactcc agtgctctca tccagaggct cttgtgattc 120 tctttgcaat tgtgaggaaa aagatggcac aatgctaata aattgtgaag caaaaggtat 180 caagatggta tctgaaataa gtgtgccacc atcacgacet ttccaactaa gcttattaaa 240 taacggcttg acgatgcttc acacaaatga cttttctggg cttaccaatg ctatttcaat 300 acaccttgga tttaacaata ttgcagatat tgagataggt gcatttaatg gcettggcct 360 cctgaaacaa cttcatatca atcacaattc tttagaaatt cttaaagagg atactttcca 420 tggactggaa aacctggaat tcctgcaagc agataacaat tttatcacag tgattgaacc 480 aagtgccttt agcaagctca acagactcaa agtgttaatt ttaaatgaca atgctattga 540 gagtcttcct ccaaacatct tccgatttgt tcctttaacc catctagatc ttcgtggaaa 600 tcaattacaa acattgcctt atgttggttt tctcgaacac attggccgaa tattggatct 660 tcagttggag gacaacaaat gggectgcaa ttgtgactta ttgcagttaa aaacttggtt 720 ggagaacatg cctccacagt ctataattgg tgatgttgtc tgcaacagcc ctccattttt 780 taaaggaagt atactcagta gactaaagaa ggaatctatt tgccctactc caccagtgta 840 tgaagaacat gaggatcctt caggatcatt acatctggca gcaacatctt caataaatga 900 tagtcgcatg tcaactaaga ccacgtccat tctaaaacta cccaccaaag caccaggttt 960 gataccttat attacaaagc catccactca acttccagga ccttactgcc ctattccttg 1020 taactgcaaa gtcctatccc catcaggact tctaatacat tgtcaggagc gcaacattga 1080 aagcttatca gatctgagac ctcctccgca aatcctaga aagctcattc tagcgggaaa 1140 tattattcac agtttaatga agtctgatct agtggaatat ttcactttgg aaatgcttca 1200 cttgggaaac aatcgtattg aagttcttga agaaggatcg tttatgaacc taacgagatt 1260 acaaaactc tatctaaatg gtaaccacct gaccaaatta agtaaaggca tgttccttgg 1320 tctccataat cttgaatact tatatcttga atacaatgcc attaaggaaa tactgcciagg 1380 aacctttaat ccaatgccta aacttaagt cctgtattta aataacaacc tcctccaagt 1440 tttaccacca catattttt caggggttcc tctaactaag gtaaatctta aaacaaacca 1500 gtttacccat ctacctgtaa gtaatatttt ggatgatctt gatttactaa cccagattga 1560 ccttgaggat aacccctggg actgctcctg tgacctggtt ggactgcagc aatggataca 1620 aaagttaagc aagaacacag tgacagatga catcctctgc acttcccccg ggcatctcga 1680 caaaaaggaa ttgaaagccc taaatagtga aattctctgt ccaggtttag taaataaccc 1740 atccatgcca acacagacta gttaccttat ggtcaccact cctgcaacaa caacaaatac 1800 ggctgatact attttacgat ctcttacgga cgctgtgcca ctgtctgttc taatattggg 1860 acttctgatt atgttcatca ctattgtttt ctgtgctgca gggatagtgg ttcttgttct 1920 tcaccgcagg agaagataca aaagaaaca agtagatgag caaatgagag acaacagtcc 1980 tgtgcatctt cagtacagca tgtatggcca taaaaccact catcacacta ctgaaagacc 2040 ctctgcctca ctctatgaac agcacatggt gagccccatg gttcatgtct atagaagtcc 2100 atcctttggt ccaaagcatc tggaagagga agaagagagg aatgagaaag aaggaagtga 2160 tgcaaaacat ctccaaagaa gtcttttgga acaggaaaat cattcaccac tcacagggtc 2220 aaatatgaaa tacaaaacca cgaaccaatc aacagaattt ttatccttcc aagatgccag 2280 ctcattgtac agaaacattt tagaaaaaga aagggaactt cagcaactgg gaatcacaga 2340 atacctaagg aaaaacattg ctcagctcca gcctgatatg gaggcacatt atcctggagc 2400 ccacgaagag ctgaagttaa tggaaacatt aatgtactca cgtccaagga aggtattagt 2460 ggaacagaca aaaaatgagt attttgaact taagctaat ttacatgctg aacctgacta 2520 tttagaagtc ctggagcagc aaacatagat ggaga 2555
<210> 78
<211> 1620
<212> DNA
<213> Homo sapiens
<400>78
tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctect 60 tgcctgtata tctttacact cccaactcc agtgctctca tccagaggct cttgtgattc 120 tctttgcaat tgtgaggaaa aagatggcac aatgctaata aattgtgaag caaaaggtat 180 caagatggta tctgaaataa gtgtgccacc atcacgacct ttccaactaa gcttattaaa 240 taacggcttg acgatgcttc acacaaatga cttttctggg cttaccaatg ctatttcaat 300 acaccttgga tttaacaata ttgcagatat tgagataggt gcatttaatg gcettggcct 360 cctgaaacaa cttcatatca atcacaattc tttagaatt cttaaagagg atactttcca 420 tggactggaa aacctggaat tcctgcaagc agataacaat tttatcacag tgattgaacc 480 aagtgcctt: agcaagctca acagactcaa agtgttaatt ttaategaca atgctattga 540 gagtctect ccaaacatct t.ccgattigt trctttaacc catctagate tocgtggaaa 600 tcaattacaa acattgectt atgttggtt tectegacac attggcegaa tatlggatct 660 tcagttggag gacaacaaat gggcctgcaa ttgrgactta ttgcagttan aacitggtt 72.0 ggagaacatg cetccacagt ctatategg tgaleftgte lgcaacagce ctcoatitte 780
taaggaagt atactcagta gactaaagaa ggaatctatt tgccctactc caccagtgta 840 tgaagaacat gaggatcctt caggatcatt acatctggca gcaacatctt caataaatga 900 tagtcgcatg tcaactaaga ccacgtccat tctaaacta cccaccaaag caccaggttt 960 gataccttat attacaaagc catccactca acttccagga ccttactgcc ctattccttg 1020 taactgcaaa gtcctatccc catcaggact tctaatacat tgtcaggagc gcaacattga 1080 aagcttatca gatctgagac ctcctccgca aaatcctaga aagctcattc tagcgggaaa 1140 tattattcac agtttaatga agtccatcct ttggtccaaa gcatctggaa gaggaagaag 1200 agaggaatga gaaagaagga agtgatgcaa aacatctcca aagaagtctt ttggaacagg 1260 aaatcattc accactcaca gggtcaaata tgaaatacaa aaccacgaac caatcaacag 1320 aatttttatc cttccaagat gccagctcat tgtacagaaa cattttagaa aagaaaggg 1380 aacttcagca actgggaatc acagaatacc taaggaaaaa cattgctcag ctccagcctg 1440 atatggaggc acattatcct ggagcccacg aagagctgaa gttaatggaa acattaatgt 1500 actcacgtcc aaggaaggta ttagtggaac agacaaaaaa tgagtatttt gaacttaaag 1560 ctaatttaca tgctgaacct gactatttag aagtcctgga gcagcaaaca tagatggaga 1620
```

<210> 79
<211> 395
<212> PRT
<213> Homo sapiens
<400> 79
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
1 5 . 10 15
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
20 25 30
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
5 0 ~ 5 5 ~ 6 0
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
85 90 95
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
100 105 110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
1 1 5 ~ 1 2 0 ~ 1 2 5
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
130 135 140
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
145 150 155 160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
1 6 5 ~ 1 7 0 ~ 1 7 5
Pro Asn Ile fhe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly
1 8 0 1 8 5 ~ 1 9 0
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly
195 200 205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys
2 1 0 2 1 5 ~ 2 2 0
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Glri Ser
2 2 5 ~ 2 3 0 ~ 2 3 5 ~ 2 4 0
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser
245 250 255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val
2 6 0 ~ 2 6 5 ~ 2 7 0
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Lelu Ala Ala Thr
2 7 5 ~ 2 8 0 ~ 2 8 5
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr l.ys Thr Thr Ser Ile Leu
2 9 0 2 9 5 ~ 3 0 0
Lys Leu Pro Thr Lys Ala [ro Gly Leu Ile Pro Tyyr IJ.e Thr Lys Pro
305 310 315 320
Ser Thr Gln Leu Pro Gly bro Tyr Cys Profle Pro Cys Asn Cys L.ys
325 330 335

```

<210> 80
<211> 841
<212> PRT
<213> Homo sapiens
<400> 80
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile \(1510 \quad 15\) Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp 202530
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys 354045
Glu Ala lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser - \(50 \quad 5560\)

Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His \(657075 \quad 80\)
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly 859095
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly 100105110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys 115120125
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp \(130 \quad 135 \quad 140\)
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn \(145150 \quad 155 \quad 160\)
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro 165170175
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly 180185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu tis Ile Gly 195200205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys 210215220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser \(225230235 \quad 240\)
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser 245250255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val. 260265270
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr 275280285
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu lie pro Tyr Ile Thr Lys Pro
\(305310315 \quad 320\)
Ser Thr Giln Leu Pro Gly Pro Tyr Cys Pro Ile pro Cys Asn Cys Lys 325330335
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn The
Glu Ser Leu Ser Asp Leu Arg fro Pro Pro Gln Asn Pro Arg Lys Leu \(355360 \quad 365\)
Ile Leu Ala Gly Asn the ILe His Ger Leu Met hys Ser Asp Leu Val 370375380

Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu
385

390
Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu


405 Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425430
Gly Leu His Asn Leu Glu tyr Leu Tyr Leu Glu tyr Asn Ala Ile Lys 435440 445
Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu \(450455 \quad 460\)
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser \(465470 \quad 475 \quad 480\) Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His
Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile \(500505 \quad 510\)
Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu 515520525
Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile 530535540
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu
\(545 \quad 550 \quad 555 \quad 560\)
Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro 565570575
Thr Gln Thr Ser Tyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn \(580585 \quad 590\)
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser 595600605
Val Leu Ile Leu Gly Leu Leu Ile Met phe Ile Thr Ile Val phe Cys 610615620
Ala Ala Gly Ile Val Val Leu Val Leu His Arg Arg Arg Arg tyr Lys \(6256630 \quad 635 \quad 640\)
Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu \(6456650 \quad 655\)
Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr Thr Glu Arg 660665670
Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val Ser Pro Met Val His \(675680 \quad 685\)
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys His Leu Glu glu glu Glu 690695700
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser \(705710 \quad 715 \quad 720\) Leu Leu Glu Gln glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys \(725730 \quad 735\)
Tyr Lys Thr Thr Asn Gin Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala
740745750
Ser Ser Leu Tyr. Arg Asn Ile Leu Glu Lys Glu Arg Glu Leu G.ln Gln 755760765

Asp Met Glu Ala His Tyr Pro Gly Ala his Glu Glu Leu Lys Leu Met \(785790 \quad 795 \quad 800\)
Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glu Gln Thr \(805810 \quad 815\)
Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp
Tyr Leu Glu Val Leu Glu Gln Gln \(\begin{array}{r}825 \\ \hline\end{array}\) 835840
```

<210> 81
<211> 395
<212> PRT
<213> Homo sapj.ens

```

```

<210> 82
<211> 3300
<212> DNA
<213> Homo sapiens
<400> 82

```
gcgtcgacaa caagaatac tagaaaagga ggaaggagaa cattgctgca gcttggatct 60
acaacctaag aagcaagag tgatcaatct cagctctgtt aacatcttg tetacttact 120
gcattcagca gettgcaaat ggttaactat atgcaaada gtcagcatag ctgtgaagta 180
tgecgtgaat tttaattgag ggaaaagga caattgcttc aggat:gctct agtatgcact 240
ctgcttgaaa tattttcaat gaaatgctca gtattctatc tttgaccaga ggttttaact 300
 tacagataac gtcaggaag 420 tgaagctgtg gattcatctc ttttattcat aaactccagt gctctcatcc agaggctctt atggcacaat gctaataaat tgtgaagcaa tgccaccatc acgacctttc caactaagct caaatgactt ttctgggctt cagatattga gataggtgca acaattcttt agaaattctt tgcaagcaga taacaatttt gactcaaagt gttaatttta gatttgttcc tttaacccat ttggttttct cgaacacatt cctgcaattg tgacttattg taattggtga tgttgtctgc taaagaagga atctatttgc gatcattaca tctggcagca cgtccattct aaaactaccc ccactcaact tccaggacct caggacttct aatacattgt ctccgcaaaa tcctagaaag ctgatctagt ggaatatttc ttcttgaaga aggatcgttt accacctgac caaattaagt a atcttgata caatgccatt ttaaagtcct gtatttaaat gggttcctct aactaaggta a atattttgga tgatcttgat t gctcctgtga cctggttgga c cagatgacat cctctgcact atagtgaaat tctctgtcca accttatggt caccactcct ttacggacgc tgtgccactg t ttgttttctg tgctgcaggg agaaacaagt agatgagcaa atggccataa aaccactcat acatggtgag ccccatggtt aagaggaaga agagaggaat ttttggaaca ggaaaatcat accaatcaac agaattttta aaaaagaaag ggaacttcag agctccagcc tgatatggag aacattaat gtactcacgt ttgaacttaa agctaattta catagatgga gagttgaggg cottgtaat aagtgcctta ctatggggaa aaaaaaagaa cataatcttc aggcaattta tcaagggtaa tagtaatatt
accaatgcta tttaatggcc aaagaggata atcacagtga aatgacaatg ctagatcttc ggccgaatat cagttaaaaa aacagccctc cctactccac acatcttcaa accaaagcac tactgcceta caggagcgca ctcattctag actttggaaa atgaacctaa aaaggcatgt t aaggaaatac aacaacctcc aatcttaaaa tactaaccc agaccagtt ctgcagcaat ggatacaaaa tcccccggge atctcgacaa ggtttagtaa ataacccatc c gcaacaacaa caaatacggc t tctgttctaa tattgggact t atagtggttc ttgttcttca atgagagaca acagtcctgt g cacactactg aaagaccetc t catgtctata gaagtccatc gagaaagaag gaagtgatgc a tcaccactca cagggtcaaa tccttccaag atgccagctc a caactgggaa tcacagaata c gcacattatc ctggagccca ccaaggaagg tattagtgga a catgctgaac ctgactattt a ctttcgccag aaatgctgtg a cgtgagtgtg tcatcaatca g gacgaaacag aaactcaggg gtct:gtccca aataaacata ca aacgtgtct
tgtatatct ttacactccc 540 tgcaattgt gaggaaaaag 600 gatggtatct gaaataagtg 660 cggcttgacg atgcttcaca 720 ccttggattt aacaatattg 780 gaacaactt catatcaatc 840 actggaaaac ctggaattcc 900 tgcctttagc aagctcaaca 960 tcttcctcca aacatcttcc 1020 attacaaaca ttgccttatg 1080 gttggaggac aacaaatggg 1140 gaacatgcct ccacagtcta 1200 aggaagtata ctcagtagac 1260 agaacatgag gatccttcag 1320 tcgcatgtca actaagacca 1380 accttatatt acaaagccat 1440 ctgcaaagtc ctatccccat 1500 cttatcagat ctgagacctc 1560 tattcacagt ttaatgaagt 1620 gggaaacaat cgtattgaag 1680 aaactctat ctaaatggta 1740 ccataatctt gaatacttat 1800 ctttaatcca atgcctaaac 1860 accaccacat attttttcag 1920 tacccatcta cctgtaagta 1980 tgaggataac cectgggact 2040 gttaagcaag aacacagtga 2100 aaaggaattg aaagccctaa 2160 catgccaaca cagactagtt 2220 gatactatt ttacgatctc 2280 tctgattatg ttcatcacta 2340 ccgcaggaga agatacaaaa 2400 gcatcttcag tacagcatgt 2460 tgcctcactc tatgaacagc 2520 ctttggtcca aagcatctgg 2580 aaacatctc caaagaagtc 2640 tatgaaatac aaaaccacga 2700 attgtacaga aacattttag 2760 cctaaggaaa aacattgctc 2820 cgaagagctg aagttaatgg 2880 acagacaaaa aatgagtatt 2940 agaagtcctg gagcagcaaa 3000 attctgttat taagtccata 3060 gaacctaagc acagagtaaa 3120 tcactggga gaagccatgg 3180 catccttggc atgtaatca 3240 cataggagtc ctctctgcac 3300
```

<210> 83
<211> 2555
<212> DNA
<213> Homo sapiens

```
<400> 83
tcggatteca tcacatgaca acatgaagct giggattcat ctettttatt catctctcct 60 tgcctgtata tctttacact cccaactcc agtgctctca tccagagget cttgtgattc 120 tctttgcat tgtgaggaaa aagatggcac aatgctaata aattgtgaag caaaggtat 180 caagat.ggta tctgaataa gt.gt-gccac:c atcacgacct ttccaactaa gettattaaa 240 taacggcttg acgatgcttc acacaatiga cttttctggg cttaccaatg ctatttcaat 300
acaccttgga tttaacaata ttgcagatat tgagataggt gcatttaatg gccttggcet 360 cctgaaacaa tggactggaa aagtgccttt gagtcttcct tcaattacaa tcagttggag ggagaacatg taaaggaagt tgaagaacat tagtcgcatg gataccttat taactgcaaa aagcttatca tattattcac cttgggaaac acaaaaactc t tctccataat aacctttaat tttaccacca gtttacccat ccttgaggat aaagttaagc a caaaaaggaa atccatgcca ggctgatact acttctgatt tcaccgcagg tgtgcatctt
ctctgcctca atcotttggt tgcaaaacat aatatgaaa
\(<210\rangle 84\)
\(\langle 211\rangle 3300\)
\(<212\rangle\) DNA
\(<213\rangle\) Homo sapiens.
<400> 84
gcgtcgacaa caagaatac tagaaaagga ggaaggagaa cattgctgca gcttggatct 60 acaacctaag aaagcaagag tgatcaatct cagctctgtt aacatcttg tttacttact 120 gcattcagca gcttgcaaat ggttaactat a tgccgtgaat tttaattgag ggaaaaagga c ctgcttgaaa ttatgaagct tgtttectt tacagataac tgaagctgtg aaactccagt atggcacaat tgccaccatc caaatgactt cagatattga acaattcttt tgcaagcaga gactcaaagt gatttgttcc ttggtettct
ctcattgtac atacctaagg aaaaacattg ctcagctcca ccacgaagag ctgaagttaa tggaaacatt ggaacagaca aaaatgagt attttgaact ta tttagaagtc ctggagcagc aaacatagat ggaga
cttcatatca atcacaattc tttagaaatt cttaagagg atactttcca 420 aacctggaat tcctgcaagc agataacaat tttatcacag tgattgaacc 480 agcaagctca acagactcaa agtgttaatt ttaaatgaca atgctattga 540 ccaaacatct tccgatttgt tcetttaacc catctagatc ttcgtggaaa 600 acattgcett atgttggttt tctcgaacac attggccgaa tattggatct 660 gacaacaaat gggcctgcaa ttgtgactta ttgcagttaa aaacttggtt 720 cctccacagt ctataattgg t tgatgttgtc tgcaacagcc ctccattttt 780 ggaatctatt tgccctactc caccagtgta 840 acatctggca gcaacatctt caataaatga 900 tctaaaacta cccaccaaag caccaggttt 960 acttccagga cottactgcc ctattccttg 1020 tctaatacat tgtcaggagc gcaacattga 1080 aatcctaga aagctcattc tagcgggaaa 1140 agtggaatat ttcactttgg aaatgcttca 1200 agaaggatcg tttatgaacc taacgagatt 1260 gaccaatta agtaaaggca tgttccttgg 1320 atacaatgcc attaaggaaa tactgccagg 1380 cctgtattta aataacaace tcctccaagt 1440 tctaactaag gtaaatctta aaacaaacca 1500 ggatgatctt gatttactaa cccagattga 1560 tgacctggtt ggactgcagc aatggataca 1620 catcctctgc acttcccccg ggcatctcga 1680 aattctctgt ccaggtttag taaataaccc 1740 ggtcaccact cetgcaacaa caacaaatac 1800 cgctgtgcca ctgtctgttc taatattggg 1860 ctgtgctgca gggatagtgg ttcttgttct 1920 agtagatgag caaatgagag acaacagtcc 1980 taaaccact catcacacta ctgaaagacc 2040 gagccccatg gttcatgtct atagaagtcc 2100 agaagagagg aatgagaaag aaggaagtga 2160 acaggaaat cattcaccac tcacagggtc 2220 aacagaattt ttatccttcc aagatgccag 2280 aagggaactt cagcaactgg gaatcacaga 2340 gcctgatatg gaggcacatt atcctggagc 2400 atgtactca cgtccaagga aggtattagt 2460 taagctaat ttacatgctg aacctgacta 2520 ggaga
cctgcaattg tgacttattg cagttaaaa cttggttgga gaacatgcct ccacagtcta 1200 taattggtga tgttgtctgc aacagccetc cattttttaa aggaagtata ctcagtagac 1260 taaagaagga atctatttgc cctactccac cagtgtatga agaacatgag gatccttcag 1320 gatcattaca tctggcagca acatcttcaa taaatgatag tcgcatgtca actaagacca 1380 cgtccattct aaaactaccc accaaagcac caggtttgat accttatatt acaaagccat 1440 ccactcaact tccaggacct tactgccota ttccttgtaa ctgcaaagtc ctatccccat 1500 caggacttct aatacattgt caggagcgca acattgaaag cttatcagat ctgagacctc 1560 ctccgcaaaa tcctagaaag ctcattctag cgggaaatat tattcacagt ttaatgaagt 1620 ctgatctagt ggaatatttc actttggaaa tgcttcactt gggaaacaat cgtattgaag 1680 ttcttgaaga aggatcgttt atgaacctaa cgagattaca aaaactctat ctaaatggta 1740 accacctgac caaattaagt aaaggcatgt tccttggtct ccataatctt gaatacttat 1800 atcttgaata caatgccatt aaggaaatac tgccaggaac ctttaatcca atgcctaaac 1860 ttaaagtcct gtatttaaat aacaacctcc tccaagtttt accaccacat attttttcag 1920 gggttcctct aactaaggta aatcttaaa caaccagtt tacccatcta cctgtaagta 1980 atattttgga tgatcttgat ttactaaccc agattgacct tgaggataac coctgggact 2040 gctcctgtga cctggttgga ctgcagcaat ggatacaaaa gttaagcaag aacacagtga 2100 cagatgacat cctctgcact tcccccgggc atctcgacaa aaaggaattg aaagccctaa 2160 atagtgaat tctctgtcca ggtttagtaa ataacccatc catgccaaca cagactagtt 2220 accttatggt caccactcct gcaacaacaa caatacggc tgatactatt ttacgatctc 2280 ttacggacgc tgtgccactg tctgttctaa tattgggact tctgattatg ttcatcacta 2340 ttgttttctg tgctgcaggg atagtggttc ttgttcttca ccgcaggaga agatacaaaa 2400 agaaacaagt agatgagcaa atgagagaca acagtcctgt gcatcttcag tacagcatgt 2460 atggccataa aaccactcat cacactactg aaagaccctc tgcctcactc tatgaacagc 2520 acatggtgag ccccatggtt catgtctata gaagtccatc ctttggtcca aagcatctgg 2580 aagaggaaga agagaggaat gagaaagaag gaagtgatgc aaaacatctc caaagaagtc 2640 ttttggaaca ggaaaatcat tcaccactca cagggtcaaa tatgaaatac aaaaccacga 2700 accaatcaac agaattttta tccttccaag atgccagctc attgtacaga aacattttag 2760 aaaaagaaag ggaacttcag caactgggaa tcacagaata cctaaggaaa aacattgctc 2820 agctccagcc tgatatggag gcacattatc ctggagccca cgaagagctg aagttaatgg 2880 aaacattaat gtactcacgt ccaaggaagg tattagtgga acagacaaaa aatgagtatt 2940 ttgaacttaa agctaattta catgctgaac ctgactattt agaagtcctg gagcagcaaa 3000 catagatgga gagttgaggg ctttcgccag aatgctgtg attctgttat taagtccata 3060 ccttgtaat aagtgcctta cgtgagtgtg tcatcaatca gaacctaagc acagagtaaa 3120 ctatggggaa aaaaaagaa gacgaaacag aaactcaggg atcactggga gaagccatgg 3180 cataatcttc aggcaattta gtctgtccca aataacata catccttggc atgtaaatca 3240 tcaagggtaa tagtaatatt catatacctg aaacgtgtct cataggagtc ctctctgcac 3300
```

<210> }8
<211> 841
<212> PRT
<213> Homo sapiens
<400> 85
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
1 4 1 0 \mp@code { 1 5 }
Ser Leu His Ser Gln Thr Pro Val Leu Ser. Ser Arg Gly Ser Cys Asp
2 0 2 5 ~ 3 0
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
35 40 45
Glu Ala Lys Gly Ile Lys Met Val. Ser Glu Ile Ser Val. Pro Pro Ser
5 0 ~ 5 5 ~ 6 0
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 70 70
Thr Asn Asp Phe Ser Gily Leu Thr Asn Ala Ile Ser Ile His Leu Gly
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
100 105 1.10
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
1 1 5 1 2 0 ~ 1 2 5
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
1 3 0 1 1 3 5 \quad 1 4 0
Asn Asn the tle thr val tle Glu fro Ser Ala Phe Ser Lys Leu Asn
145 150 155 1.60

```

Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
165
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly 180185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly 195

200
205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys 210215220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser \(225 \quad 230 \quad 235 \quad 240\)
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser 245250255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val \(260 \quad 265\) 270
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr 275280285
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro 305 310 \(315 \quad 320\)
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys 325330335
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile 340345350
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu \(355360 \quad 365\)
Ile Leu Ala Gly Asn Ile Ile his Ser Leu Met Lys Ser Asp Leu Val \(370375 \quad 380\)
Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu 385390395400 Val Leu Glu Glu Gly Ser phe Met Asn Leu Thr Arg Leu Gln Lys Leu 405410445
Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu \(420425 \quad 430\)
Gly Leu His Asn Leu Glu tyr Leu Tyr Leu Glu Tyr Asn Ala Ile Lys 435440445
Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu 450455460
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser \(4654470475 \quad 480\) Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His \(\begin{array}{r}495 \\ 495\end{array}\) Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile
Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu \(515 \quad 520\) A25
Gln Gln Trp Ile Gin Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile 530535 540
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu
\(545 \quad 550 \quad 555 \quad 560\)
Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro 565570575
Thr Gln Thr Ser Tyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn 580585590
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser
Val 595 600 605
Val Leu Ile Leu Gly Leu Leu Ile Met Phe Ile Thr Ile Val Phe Cys 610615620
Ala Ala Gly rle Val val. Leu Val Leu his Arg Arg Arg Arg Tyr Lys
\(625630635 \quad 640\)
Lys Lys Gln Val Asp Glu Gin Met Arg Asp Asn Ser Pro Val His Leu 645650655
Glen Tyr Ser Met Tyr Cly His Lys Thr Thr His His Thr Thr Glu Arg

Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val Ser Pro Met Val His \(675680 \quad 685\)
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys His Leu Glu Glu glu glu \(690695 \quad 700\)
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser \(705710715 \quad 720\)
Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys 725730735
Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala \(740745 \quad 750\)
Ser Ser Leu Tyr Arg Asn Ile Leu Glu lys Glu Arg Glu Leu Gln Gln \(755760 \quad 765\)
Leu Gly Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro 770775780
Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met \(785790795 \quad 800\) Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glu Gln Thr 8058810815
Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp
820
825 Tyr Leu Glu Val Leu Glu Gln Gln Thr
835
```

<210> 86
<21l> 841
<212> PRT
<213> Homo sapiens
<400> 86

```
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
    \(1510 \quad 15\)
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
    202530
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
    354045
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
    505560
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
\(65 \quad 70 \quad 75 \quad 80\)
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
            \(8590 \quad 95\)
Phe Asn Asn Ile Ala Asp Tle Glu Tle Gly Ala Phe Asn Gly Leu Gly
        100105110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
        \(115 \quad 120 \quad 125\)
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
    130135140
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
\(145150 \quad 155 \quad 160\)
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
            165170175
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly
                \(180185 \quad 190\)
Asn Gln Leu Gln thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly
    \(195200 \quad 205\)
Arg Ile Leu Asp Leu Gin Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys
        \(210215 \quad 220\)
Asp Leu Lelu Gin Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser
\(225 \quad 230 \quad 235 \quad 240\)
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe lys Gly Ser
IJe Leu Ser Arg Leu Lys Lys Glu Ser \(\begin{aligned} & 250 \\ & \text { rle cys Pro Thr Pro Pro Val }\end{aligned}\)
        \(260 \quad 265 \quad 270\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Tyr & Glu & \[
\begin{aligned}
& \text { Glu } \\
& 275
\end{aligned}
\] & His & Glu & Asp & Pro & \[
\begin{aligned}
& \text { Ser } \\
& 280
\end{aligned}
\] & & & & & \[
\begin{aligned}
& \text { Leu } \\
& 285
\end{aligned}
\] & & Ala & Thr \\
\hline Ser & \[
\begin{aligned}
& \text { Ser } \\
& 290
\end{aligned}
\] & Ile & Asn & Asp & Ser A & \[
\begin{aligned}
& \text { Arg } \\
& 295
\end{aligned}
\] & Met & Ser & Thr L & Lys & \[
\begin{aligned}
& \text { Thr } \\
& 300
\end{aligned}
\] & Thr & Ser & Ile & Leu \\
\hline Lys & Leu & Pro & Thr & Lys & Ala & Pro & Gly & Leu & Ile P & Pro & Tyr & Ile & Thr & Lys & Pro \\
\hline 305 & & & & & 310 & & & & & 315 & & & & & 320 \\
\hline Ser & Thr & Gln & Leu & Pro & Gly & Pro & Tyr & Cys & Pro I & Ile & Pro & Cys & Asn & Cys & Lys \\
\hline & & & & 325 & & & & & 330 & & & & & 335 & \\
\hline Val & Leu & Ser & Pro & Ser & Gly & Leu & Leu & Ile & His C & Cys & Gln & Glu & Arg & Asn & Ile \\
\hline & & & 340 & & & & & 345 & & & & & 350 & & \\
\hline Glu & Ser & Leu & Ser & Asp & Leu \(A\) & Arg & Pro & Pro & Pro G & Gln & Asn & Pro & Arg & Lys & Leu \\
\hline & & 355 & & & & & 360 & & & & & 365 & & & \\
\hline Ile & Leu & Ala & Gly & Asn & Ile & Ile & His & Ser & Leu M & Met & Lys & Ser & Asp & Leu & Val \\
\hline & 370 & & & & & 375 & & & & & 380 & & & & \\
\hline Glu & Tyr & Phe & Thr & Leu & Glu & Met & Leu & His & Leu G & Gly & Asn & Asn & Arg & Ile & Glu \\
\hline 385 & & & & & 390 & & & & & 395 & & & & & 400 \\
\hline Val & Leu & Glu & Glu & Gly & Ser & Phe & Met & Asn & Leu T & Thr & Arg & Leu & Gln & Lys & Leu \\
\hline & & & & 405 & & & & & 410 & & & & & 415 & \\
\hline Tyr & Leu & Asn & \[
\mathrm{Gl}_{Y}
\] & Asn & His L & Leu & Thr & Lys & Leu S & Ser & Lys & Gly & Met & Phe & Leu \\
\hline Gly & Leu & His & Asn & Leu & Glu T & Tyr & u & Tyr & Leu & \(u\) & Tyr & Asn & Ala & Ile & \\
\hline & & 435 & & & & & 440 & & & & & 445 & & & \\
\hline Glu & Ile & Leu & Pro & Gly & Thr & Phe & Asn & Pro & Met & ro & Lys & Leu & Lys & Val & Leu \\
\hline & & & & & & 455 & & & & & 460 & & & & \\
\hline Tyr & Leu & Asn & Asn & Asn L & Leu & Leu & Gln & Val & Leu P & Pro & Pro & His & Ile & Phe & Ser \\
\hline 465 & & & & & 470 & & & & & 475 & & & & & 480 \\
\hline Gly & Val & Pro & Leu & Thr & Lys V & Val & Asn & Leu L & Lys T & Thr A & Asn & Gln & Phe & Thr & His \\
\hline & & & & 485 & & & & & 490 & & & & & 495 & \\
\hline Leu & Pro & Val & Ser & Asn I & Ile L & Leu A & Asp A & Asp L & Leu A & Asp & Leu & Leu & Thr & Gln & Ile \\
\hline & & & 500 & & & & & & & & & & 510 & & \\
\hline A & Leu & & Asp & Asn P & Pro T & Trp A & Asp & Cys & Ser C & Cys A & Asp & Leu & Val & Gly & Leu \\
\hline Gln & Gln & Trp & Ile & Gln & ys L & Leu & Ser & Lys A & Asn T & Thr & al & & & & \\
\hline & 530 & & & & & 535 & & & & & 540 & & & & \\
\hline Leu & Cys & Thr S & Ser & Pro G & Gly H & His & Leu \(A\) & Asp L & Lys L & Lys G & Glu & Leu & Lys & Ala & Leu \\
\hline 545 & & & & & 550 & & & & & 555 & & & & & 560 \\
\hline Asn & Ser & Glu & Ile & Leu & Cys P & Pro G & Gly & Leu V & Val A & Asn A & Asn & Pro & Ser & Met & Pro \\
\hline & & & & 565 & & & & & 570 & & & & & 575 & \\
\hline Thr & Gln & Thr S & Ser & Tyr L & Leu M & Met V & Val & Thr T & Thr Pr & Pro A & Ala & The & Thr & Thr & Asn \\
\hline & & & 580 & & & & & 585 & & & & & 590 & & \\
\hline Thr & Ala & Asp T & Thr & Ile L & Leu \(A\) & Arg S & Ser & Leu T & Thr A & Asp A & Ala & Va.l & Pro & Leu & Ser \\
\hline & & 595 & & & & & 600 & & & & & 605 & & & \\
\hline Val & \[
\begin{aligned}
& \text { Leu } \\
& 610
\end{aligned}
\] & Ile L & Leu & Gly L & Leu L & \[
\begin{aligned}
& \text { Leu } \\
& 615
\end{aligned}
\] & Ile M & Met P & Phe I & Ile T & Thr 620 & Ile & Val & Phe & Cys \\
\hline Ala & Ala & Gly & Ile V & Val V & Val L & Leu V & Val L & Leu H & His A & Arg A & Arg & Arg & Arg & Tyr & Lys \\
\hline 625 & & & & & 630 & & & & & 635 & & & & & 640 \\
\hline Lys & Lys & Gln Va & Val A & Asp G & Glu G & Gln M & Met A & Arg A & Asp A & Asn S & Ser & Pro & Val & His & Leu \\
\hline & & & & 645 & & & & & 650 & & & & & 655 & \\
\hline Gln & Tyr & Ser M & \[
\begin{aligned}
& \text { Met I } \\
& 660
\end{aligned}
\] & Tyr G & Gly H & His L & Lys T & \[
\begin{aligned}
& \text { Thr Tr } \\
& 665
\end{aligned}
\] & Thr His & His H & His & Thr & \[
\begin{aligned}
& \text { Thr } \\
& 670
\end{aligned}
\] & Glu & Arg \\
\hline Pro & Ser & Ala S & Ser L & Leu T & Tyr G & Glu G & Gln H & His M & Met Val & Val S & Ser & Pro & Met & Val & s \\
\hline & & 675 & & & & & 680 & & & & & 685 & & & \\
\hline Val & Tyr & Arg S & Ser P & Pro S & Ser P & Phe G & Gly P & Pro L & Lys His & His L & Leu & Glu & Glu & Glu & Glu \\
\hline & 690 & & & & & 695 & & & & & 700 & & & & \\
\hline Glu & Arg & Asn & Glu L & Lys G & Glu G & Gly S & Ser A & Asp A & Ala Ly & Lys H & His & Leu & Gln & Arg & Ser \\
\hline 705 & & & & & 710 & & & & & 715 & & & & & 720 \\
\hline Leu & Leu & Glu G & Gln G & Glu A & Asn H & Iis S & Ser P & Pro L & Leu Th & Thr G & Gly & Ser & Asn & Met & Lys \\
\hline & & & & 725 & & & & & 730 & & & & & 735 & \\
\hline Tyr L & Lys & Thr 't & Thr A & Asn G & Gln S & Ser T & Thr G & Glu P & Phe Leu & Leu S & Ser & Phe & Gln & Asp & Ala \\
\hline & & & 740 & & & & & 745 & & & & & 750 & & \\
\hline Ser S & Ser & Leu T & Tyr. A & Arg A & Asn I & le L & Leu G & Glu L & Lys Gl & Glu A & Arg & Glu & Leu & Gln & Gln \\
\hline & & 755 & & & & & 760 & & & & & 765 & & & \\
\hline Leu & Gl. Y & I.le T & Thr G & G.lu T & Tyr Leu & Leu A & Arg L & Lys A & Asn [1 & le A & Ala & Gln & Leu & Gln & Pro \\
\hline & 770 & & & & & 775 & & & & & 780 & & & & \\
\hline
\end{tabular}
 Tyr Leu Glu Val Leu Glu Gln Gln Thr 835840
```

<210> 87
<211> 841
<212> PRT
<213> Homo sapiens
<400> }8

```

Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
    \(1510 \quad 15\)
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
                202530
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
    354045
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
        505560
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
\(65 \quad 70 \quad 75 \quad 80\)
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
                859095
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
                \(100 \quad 105 \quad 110\)
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
    115120 - 125
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
    130135140
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
\(145150 \quad 155 \quad 160\)
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Fro
Pro Asn Ile Qhe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly
            180185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly
        195200205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys
        210215220
Asp Leu Leu Gin Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser
\(225230235 \quad 240\)
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser
            245250255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val
        260265270
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr
        275280285
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu
    290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Jle Pro Tyr Ile Thr Lys Pro
305310315320
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys
                325330335
Val Leu Ser Pro Ser Gly Leu Leu Ite His Cys Gln Glu Arg Asn Ile
    340345350
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu
        355360365
Ile Lell Ala Gly Asn lle Ile His Ser Leu Met Lys Ser Asp Lell Val
        \(370 \quad 375 \quad 380\)

Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu \(385390395 \quad 400\) Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu \(405410 \quad 415\)
Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425430
Gly Leu His Asn Leu Glu Tyr Leu Tyr Leu Glu Tyr Asn Ala Ile Lys \(435440 \quad 445\)
Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu 450455460
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser
465470475480
Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His \(485490 \quad 495\)
Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile \(500 \quad 505\) 510
Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu 515520525
Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile \(530535 \quad 540\)
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu \(545 \quad 550 \quad 555 \quad 560\)
Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro 565.570 . 575

Thr Gln Thr Ser Tyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn \(580585 \quad 590\)
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser 5956600605
Val Leu Ile Leu Gly Leu Leu Ile Met Phe Ile Thr Ile Val Phe Cys 610615620
Ala Ala Gly Ile Val Val Leu Val Leu His Arg Arg Arg Arg Tyr Lys 625630635640
Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu 645650655
Gln Tyr Ser Met Tyr Gly his Lys Thr Thr His His Thr Thr Glu Arg 660665670
Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val Ser Pro Met Val His 675680685
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys His Leu Glu Glu Glu Glu 690695700
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser \(705710715 \quad 720\)
Leu Leu Glu gln Glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys 725730735
Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala 740745750
Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys Glu Arg Glu Leu Gln Gin 755760765
Leu Gly Ile Thr Glu Tyr Leu Arg lys Asn Ile Ala Gln Leu Gln Pro \(770775 \quad 780\)
Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met \(785790 \quad 795 \quad 800\) Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val. Glu Gln Thr 80581081.5

Lys Asn Glu ryr. Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp
Tyr Leu Glu Val Leu Glu Gln Gln Thr
```

<210> 88
<211> 1619
<212> DNA
<213> Homo sapiens

```
<400> 88
tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctcct 60 tgcctgtata tctttacact cccaaactcc agtgctctca tccagaggct cttgtgattc 120 tctttgcaat tgtgaggaaa aagatggcac aatgctaata aattgtgaag caaaaggtat 180 caagatggta tctgaaataa gtgtgccacc atcacgacct ttccaactaa gcttattaaa 240 taacggcttg acgatgcttc acacaaatga cttttctggg cttaccaatg ctatttcaat 300 acaccttgga tttaacaata ttgcagatat tgagataggt gcatttaatg gccttggcct 360 cotgaaacaa cttcatatca atcacaattc tttagaaatt cttaagagg atactttcca 420 tggactggaa aacctggaat tcctgcaage agataacaat tttatcacag tgattgaacc 480 aagtgccttt agcaagctca acagactcaa agtgttaatt ttaatgaca atgctattga 540 gagtcttcct ccaaacatct tccgatttgt tcctttaacc catctagatc ttcgeggaaa 600 tcaattacaa acattgcctt atgttggttt tctcgaacac attggccgaa tattggatct 660 tcagttggag gacaacaaat gggcctgcaa ttgtgactta ggagaacatg cctccacagt ctataattgg tgatgttgtc tgcaacagcc ctccattttt 780 taaggaagt atactcagta gactaaagaa ggaatctatt tgccctactc caccagtgta 840 tgaagaacat gaggatcctt caggatcatt acatctggca gcaacatctt caataaatga 900 tagtcgcatg tcaactaaga ccacgtccat tctaaacta cccaccaaag caccaggttt 960 gataccttat attacaaagc catccactca acttccagga cottactgcc ctattccttg 1020 taactgcaaa gtcctatccc catcaggact tctaatacat tgtcaggagc gcaacattga 1080 aagcttatca gatctgagac ctcctccgca aatcctaga aagctcattc tagcgggaaa 1140 tattattcac agtttaatga atccatcctt tggtccaaag catctggaag aggaagaaga 1200 gaggaatgag aaagaaggaa gtgatgcaaa acatctccaa agaagtcttt tggaacagga 1260
aatcattca ccactcacag ggtcaatat gaatacaaa accacgaacc aatcaacaga 1320 atttttatcc ttccaagatg ccagctcatt gtacagaaac attttagaaa agaaaggga 1380 acttcagcaa ctgggaatca cagaatacct aaggaaaaac attgctcagc tccagcctga 1440 tatggaggca cattatcctg gagcccacga agagctgaag ttatggaaa cattatgta 1500 ctcacgtcca aggaaggtat tagtggaaca gacaaaaat gagtattttg aacttaaagc 1560 taatttacat gctgaacctg actatttaga agtcctggag cagcaacat agatggaga 1619
\(<210\rangle 89\)
<211> 1619
\(<212\rangle\) DNA
<213> Homo sapiens
<400> 89
tcggatttca tcacatgaca acatgaagct gtggattcat ctcttttatt catctctcct 60 tgcctgtata tctttacact cccaaactcc agtgctctca tctttgcaat tgtgaggaaa aagatggcac aatgctaata a caagatggta tctgaaataa gtgtgccacc atcacgacct \(t\) taacggcttg acgatgcttc acacaaatga cttttctggg acaccttgga tttaacaata ttgcagatat tgagataggt g cctgaaacaa cttcatatca atcacaattc tttagaaatt tggactggaa aacctggaat tcctgcaagc agataacaat aagtgccttt agcaagctca acagactcaa agtgttaatt gagtcttcct ccaaacatct tccgatttgt tcctttaacc tcaattacaa acattgcctt atgttggttt tctcgaacac tcagttggag gacaacaaat gggcctgcaa ttgtgactta ggagaacatg cctccacagt ctataattgg tgatgttgtc t taaaggaagt atactcagta gactaaagaa ggaatctatt tgaagaacat gaggatcctt caggatcatt acarctggca tagtcgcatg tcaactaaga ccacgtccat tctaaaacta gataccttat attacaagc catccactca acttccagga taactgcaaa gtcctatccc catcaggact tctaatacat aagcttatca gatctgagac ctcctccgca aatcctaga a tattattcac agtttaatga atccatcctt tggtccaaag gaggaatgag aaagaaggaa gtgatgcaaa acatctccaa aatcattca ccactcacag ggtcaatat gaatacaaa a atttttatcc ttccaagatg ccagctcatt gtacagaaac acttcagcad ctgggaatca cagaatacct agggaaaac tatggaggca cattatcctg gagcccacga agagctgaag t ctcacgtcca aggaaggtat tagtggaaca gacaaaaaat g
tattacat gctgarcotg actatttaga agtcotggag ccagaggct cttgtgattc 120 attgtgaag caaaggtat 180 ttccaactaa gcttattaaa 240 cttaccaatg ctatttcaat 300 gcatttaatg gccttggcct 360 cttaaagagg atactttcca 420 tttatcacag tgattgaacc 480 ttaatgaca atgctattga 540 catctagatc ttcgtggaaa 600 attggccgaa tattggatct 660 ttgcagttaa aaacttggtt 720 tgcaacagcc ctccattttt 780 tgccctactc caccagtgta 840 gcaacatctt caataaatga 900 cccaccaaag caccaggttt 960 ccttactgcc ctattccttg 1020 tgtcaggagc gcaacattga 1080 aagctcattc tagcgggaaa 1140 catctggaag aggaagaaga 1200 agaagtcttt tggaacagga 1260 accacgaacc aatcaacaga 1320 attttagaaa aagaaaggga 1380 attgctcagc tccagcctga 1440 ttaatggaaa cattaatgta 1500 gagtattttg aacttaagc 1560 cagcaaacat agatggaga 161.9

<210> 91
<211> 529
<212> PRT
<213> Homo sapiens
<400> 91
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
    \(1510 \quad 15\)
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
        202530
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
            354045
Glu Ala Lys Gly fle lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
        505560
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
\(657075 \quad 80\)
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Tle Ser Ile His feu Gly
                859095
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
                \(100 \quad 105 \quad 110\)
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
    \(115120 \quad 125\)
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
130
135
Asn Asn Phe Ile 'Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
\(145150155 \quad 160\)
Ary Leu fys Val. Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
    165170175
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Led Asp Leu Arg Gly
        180185190

```

<210> 92
<211> 841.
<212> PRT
<213> Homo sapiens
<400> 92
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
1 5 10}1
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
20 25 30
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
35 40 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
5 0 5 5 6 0
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr. Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly

```

Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly 100105110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys \(115120 \quad 125\)
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp 130135140
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn 145150155160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro 165170 175
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly 180185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu glu His Ile gly 195200205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys \(210215 \quad 220\)
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser \(225230 \quad 235 \quad 240\) Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val 260265270
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr \(275280 \quad 285\)
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro
\(305310 \quad 315 \quad 320\)
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys 325330335
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile 340345350
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu \(355360 \quad 365\)
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Asp Leu Val 370375380
Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu \(385390 \quad 395 \quad 400\)
Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu \(405410 \quad 415\)
Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425430
Gly Leu his Asn Leu Glu Tyr Leu Tyr Leu Glu Tyr Asn Ala Ile Lys
Glu Ile Leu Pro Gly Thr phe Asn Pro Met Pro Lys Leu Lys Val Leu \(450 \quad 455 \quad 460\)
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser 465470475480 Gly Val Pro Leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His 485490495
Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ife 500505 510
Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu 515520525
Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile \(\begin{aligned} & 535 \\ & 530\end{aligned}\)
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu \(545 \quad 550 \quad 555 \quad 560\) Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro
Thr Gln Thr Ser Pyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn \(580585 \quad 590\)
Thr Ala Asp Thr
595 595600605
```

Val Leu Ile Leu Gly Leu Leu Ile Met Phe Ile Thr Ile Val Phe Cys
6 1 0 6 1 5 ~ 6 2 0
Ala Ala Gly Ile Val Val Leu Val Leu His Arg Arg Arg Arg Tyr Lys
6 2 5 6 6 0 ~ 6 3 5 ~ 6 4 0
Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu
6 4 5 6 5 0 ~ 6 5 5
Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr Thr Glu Arg
6 6 0 6 6 5 ~ 6 7 0
Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val Ser Pro Met Val His
6 7 5 6 8 0 6 8 5
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys His Leu Glu Glu Glu Glu
6 9 0 6 9 5 ~ 7 0 0
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser
7 0 5 7 1 0 7 1 5 ~ 7 2 0
Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys
7 2 5 ~ 7 3 0 ~ 7 3 5
Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala
740 745 750
Ser Ser leu Tyr Arg Asn Ile Leu Glu Lys Glu Arg glu Leu Gln Gln
Leu Gly Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro
70 775 780
Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met
785 790 795 800
Glu Thr Leu Met Tyr Ser Arg Pro Arg lys Val Leu val glu gln Thr
Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp
820 825 830
Tyr Leu Glu Val Leu Glu Gln Gln Thr
835
840

```
<210> 93
<211> 529
<212> PRT
<213> Homo sapiens
<400> 93
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
    \(1510 \quad 15\)
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
        202530
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
        3540 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro pro Ser
    505560
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65707580
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Jle His Leu Gly
                                    859095
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
        \(100 \quad 105 \quad 110\)
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Gilu ile Leu Lys
    \(115120 \quad 125\)
Glu Asp Thr Phe his Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
130
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala
140
140
\(145150 \quad 155 \quad 1.60\)
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
    Pro Asn Ile Phe Arg Phe Val Pro Leu 'Ihr His Leu Asp Leu Arg Gly
        180185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His fle Gly
195
200

```

<210> 94
<211> 841
<212> PRT
<213> Homo sapiens
<400> 94
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
1 5 10 1.5
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
20 25 30
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
5 0 ~ 5 5 ~ 6 0
Arg Pro Phe Glr Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
85 90 95
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
100 105 110

```

Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys 115120 125
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp 130135140
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
150155
160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro 165 170 175
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly 180185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly 195200205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys 210215220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser \(225 \quad 230 \quad 240\)
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser 245250255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val 260

265
270
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr 275280285
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290 . 295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro

Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys 325330335
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile 340345350
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu 355360365
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Asp Leu Val 370375380
Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg Ile Glu \(385390395 \quad 400\) Val Leu glu glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu
\(\because y r\) Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu \(420425 \quad 430\)
Gly Leu His Asn Leu Glu Tyr Leu Tyr Leu Glu Tyr Asn Ala Ile Lys
Glu Ile Leu Pro Gl.y Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu 450455460
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser \(465 \quad 470 \quad 475 \quad 480\)
Gly Val Pro leu Thr Lys Val Asn Leu Lys Thr Asn Gln Phe Thr His 485490495
Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile
A.sp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu

515520525
Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile \(530535 \quad 540\)
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu
\(545 \quad 550 \quad 555 \quad 560\)
Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro 565570575
Thr Gln Thr Ser Tyr Leu Met Val Thr Thr Pro Ala Thr Thr Thr Asn 580585590
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser 595600605
Val Leu Il.e Leu Gly Leu Leu Ile Met Phe Ile Thr Tle val phe cys
610
610
```

Ala Ala Gly Ile Val Val Leu Val Leu His Arg Arg Arg Arg Tyr Lys
625 630 635 640
Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu
6 4 5 6 5 0 6 5 5
Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr Thr Glu Arg
6 6 0 6 6 5 6 7 0
Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val Ser Pro Met Val His
6 7 5 6 8 0 6 8 5
Val Tyr Arg Ser Pro Ser Phe Gly Pro Lys His Leu Glu Glu Glu Glu
6 9 0 6 9 5 ~ 7 0 0
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser
7 0 5 7 1 0 7 1 5 ~ 7 2 0
Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr Gly Ser.Asn Met Lys
7 2 5 7 3 0 ~ 7 3 5
Tyr Lys Thr Thr Asn Gln Ser Thr Glu Phe Leu Ser Phe Gln Asp Ala
7 4 0 7 7 4 5 ~ 7 5 0
Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys Glu Arg Glu Leu Gln Gln
7 5 5 ~ 7 6 0 ~ 7 6 5
Leu Gly Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro
7 7 0 7 7 5 ~ 7 8 0
Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met
785 790 795 800
Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glu Gln Thr
8 0 5 ~ 8 1 0 ~ 8 1 5 ~
Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp
Tyr Leu Glu Val Leu Glu Gln Gln Thr
835 840
<210> 95
<211> 16
<212> PRT
<213> Homo sapiens
<400> 95
Ala Ser Leu Tyr Glu Gln His Met Gly Ala His Glu Glu Leu Lys Leu

```
\(\therefore 210>96\)
<211> 18
-212> PRT
:213> Homo sapiens
: \(400>96\)
Ser Ala Ser Leu Tyr Glu Gln His Met Gly Ala His Glu Glu Leu Lys
    151015
Leu Met
```

<210> 97
<211> 28
<212> PRT
<213> Homo sapiens
<400> 97
Thr Thr Glu Arg Pro Ser Ala Ser Leu Tyr Glu Gln His Met Gly Ala
1 5 10 15
His Glu Glu leu Lys Leu Met Glu Thr Leu Me: Tyr
20 25

```
```

<210> 98
<211> 22
<212> PRT
<213> Homo sapiens
<400> 98
Ile Ile His Ser Leu Met Lys Ser Ile Leu Trp Ser Lys Ala Ser Gly
1.5 10 15
Arg Gly Arg Arg Glu Glu
20

```
```

<210> 99
<211> 23
<212> PRT
<213> Homo sapiens
<400> 99
Asn Ile Ile His Ser Leu Met Lys Ser Ile Leu Trp Ser Lys Ala Ser
Gly Arg Gly Arg Arg Glu Glu
20

```
```

<210> 100
<211> 28
<212> PRT
<213> Homo sapiens
<400> 100
Leu Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Ile Leu
l 5 10 15
Trp Ser Lys Ala Ser Gly Arg Gly Arg Arg Glu Glu

```
\(\because 210>101\)
\(<211>23\)
\(<212\rangle\) PRT
\(<213>\) Homo sapiens
<400> 101
Gly Asn Ile Ile His Ser Leu Met Asn Pro Ser Phe Gly Pro Lys His
    151015
Leu Glu Glu Glu Glu Glu Arg
    20
<210> 102
\(\langle 211\rangle 24\)
\(<212\rangle\) PRT
<213> Homo sapiens
<400> 102
Ala Gly Asn Ile Ile His Ser Leu Met Asn Pro Ser Phe Gly Pro Lys
151015
His Leu Glu Glu Glu Glu Glu Arg
<210> 103
<211> 29
<212> PRT
<213> Homo sapiens
```

<400> 103
Arg Lys Leu Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Asn Pro
1 5 10 15
Ser Phe Gly Pro Lys His Leu Glu Glu Glu Glu Glu Arg
25

```
```

<210> 104

```
<210> 104
<211> 841
<211> 841
<212> PRT
<212> PRT
<213> Homo sapiens
<213> Homo sapiens
<400> 104
<400> 104
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
    1 5 10 15
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
                                    20 25 30
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
            35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
    5 0 5 5 6 0
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
    85 90 95
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
            1 0 0 ~ 1 0 5 ~ 1 1 0
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
        1 1 5 1 2 0 ~ 1 2 5
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
        130 135 140
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn
145 150 155 160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
            1 6 5 ~ 1 7 0 ~ 1 7 5
Pro Asn Ile Phe Arg Phe val Pro Leu Thr His Leu Asp Leu Arg Gly
    180 185 190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu His Ile Gly
    195 200 205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys
        210 215 220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser
225 230 235 240
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser
            2 4 5 ~ 2 5 0 ~ 2 5 5
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val.
            2 6 0 ~ 2 6 5 ~ 2 7 0
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr
        2 7 5 2 8 0 ~ 2 8 5
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu
        2 9 0 ~ 2 9 5 ~ 3 0 0
Lys Leu Pro Thr Lys Ala Pro Gly Leu Tle Pro Tyr Ile Thr Lys Pro
305 310 315 320
Ser Thr Gln Leu Pro Gly Pro Tyr Cys Pro Ile Pro Cys Asn Cys Lys
            3 2 5 ~ 3 3 0 ~ 3 3 5
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile
            340 345 350
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu
        355 360 365
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Asp Leu Val
        3 7 0 3 7 5 ~ 3 8 0
Glu Tyr Phe Thr leu Glu Met Leu His L.eu Gly Asn Asn Arg, lle Glu
```

Val Leu Glu Glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu Tyr Leu Asn Gly Asn His Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425430
Gly Leu His Asn Leu Glu tyr Leu Tyr Leu Glu Tyr Asn Ala Ile Lys $435440 \quad 445$
Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu 450455460
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Ile Phe Ser $4654470475 \quad 480$ Gly Val Pro Leu Thr Lys Val. Asn Leu Lys Thr Asn Gln Phe Thr His 485490495 Leu Pro Val Ser Asn Ile Leu Asp Asp Leu Asp Leu Leu Thr Gln Ile 500505510
Asp Leu Glu Asp Asn Pro Trp Asp Cys Ser Cys Asp Leu Val Gly Leu $515520 \quad 525$
Gln Gln Trp Ile Gln Lys Leu Ser Lys Asn Thr Val Thr Asp Asp Ile 530535540
Leu Cys Thr Ser Pro Gly His Leu Asp Lys Lys Glu Leu Lys Ala Leu $545 \quad 550 \quad 555 \quad 560$ Asn Ser Glu Ile Leu Cys Pro Gly Leu Val Asn Asn Pro Ser Met Pro Thr Gln Thr Ser Tyr Leu Met Val Thr $\begin{aligned} & 565 \\ & \text { Thr Pro Ala Thr Thr Thr Asn }\end{aligned}$ 580585

590
Thr Ala Asp Thr Ile Leu Arg Ser Leu Thr Asp Ala Val Pro Leu Ser 595600605
Val Leu Ile Leu Gly Leu Leu Ile Met Phe Ile Thr Ile Val Phe Cys 610615620
Ala Ala Gly Ile Val Val Leu Val Leu His Arg Arg Arg Arg Tyr Lys $625630635 \quad 640$ Lys Lys Gln Val Asp Glu Gln Met Arg Asp Asn Ser Pro Val His Leu Gln Tyr Ser Met Tyr Gly His Lys Thr Thr His His Thr Thr Glu Arg 660665670
Pro Ser Ala Ser Leu Tyr Glu Gln His Met Val Ser Pro Met Val His 675680685
Val Tyr Arg Ser pro Ser Phe Gly pro Lys his Leu Glu Glu Glu Glu 690695700
Glu Arg Asn Glu Lys Glu Gly Ser Asp Ala Lys His Leu Gln Arg Ser $705 \quad 710 \quad 715 \quad 720$ Leu Leu Glu Gln Glu Asn His Ser Pro Leu Thr Gly Ser Asn Met Lys 725730735
Tyr Lys Thr Thr Asn Gln Ser. Thr Glu Phe Leu Ser Phe Gln Asp Ala 740745750
Ser Ser Leu Tyr Arg Asn Ile Leu Glu Lys Glu Arg Glu Leu Gln Gln $755 \quad 760 \quad 765$
Leu Gly Ile Thr Glu Tyr Leu Arg Lys Asn Ile Ala Gln Leu Gln Pro 770775780
Asp Met Glu Ala His Tyr Pro Gly Ala His Glu Glu Leu Lys Leu Met $785790795 \quad 800$ Glu Thr Leu Met Tyr Ser Arg Pro Arg Lys Val Leu Val Glı Gln Thr 805810815 Lys Asn Glu Tyr Phe Glu Leu Lys Ala Asn Leu His Ala Glu Pro Asp Tyr Leu Glu val. Leu Glu Giln Gln 'lhr

$$
835 \quad 840
$$

```
<210> 105
<211> 732
<212> PRT
<213> Homo sapiens
<400> 105
```

Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile 151015
Ser Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp 202530
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys 354045
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser 5055 60
Arg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His $65 \quad 70 \quad 75 \quad 80$ Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly 859095
Phe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly $100 \quad 105110$
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys $115120 \quad 125$
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp 130

135
140
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser Ala Phe Ser Lys Leu Asn 145150155160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro 165170175
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly 180 - 185190
Asn Gln Leu Gln Thr Leu Pro Tyr Val Gly Phe Leu Glu his fle Gly 195200205
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lys Trp Ala Cys Asn Cys 210215220
Asp Leu Leu Gln Leu Lys Thr Trp Leu Glu Asn Met Pro Pro Gln Ser $225230235 \quad 240$
Ile Ile Gly Asp Val Val Cys Asn Ser Pro Pro Phe Phe Lys Gly Ser 245250255
Ile Leu Ser Arg Leu Lys Lys Glu Ser Ile Cys Pro Thr Pro Pro Val 260265270
Tyr Glu Glu His Glu Asp Pro Ser Gly Ser Leu His Leu Ala Ala Thr 275280285
Ser Ser Ile Asn Asp Ser Arg Met Ser Thr Lys Thr Thr Ser Ile Leu 290295300
Lys Leu Pro Thr Lys Ala Pro Gly Leu Ile Pro Tyr Ile Thr Lys Pro
$305310 \quad 315 \quad 320$
Ser Thr Gln Leu Pro Gly Pro Pyr Cys Pro Ile Pro Cys Asn Cys Lys 325330335
Val Leu Ser Pro Ser Gly Leu Leu Ile His Cys Gln Glu Arg Asn Ile $340345 \quad 350$
Glu Ser Leu Ser Asp Leu Arg Pro Pro Pro Gln Asn Pro Arg Lys Leu $355360 \quad 365$
Ile Leu Ala Gly Asn Ile Ile His Ser Leu Met Lys Ser Asp Leu Val $370 \quad 375 \quad 380$
Glu Tyr Phe Thr Leu Glu Met Leu His Leu Gly Asn Asn Arg tle Glu $385390 \quad 395400$
Val. Leu Glu Glu Gly Ser Phe Met Asn Leu Thr Arg Leu Gln Lys Leu 40541.0 415

Tyr Leu Asn Gly Asn his Leu Thr Lys Leu Ser Lys Gly Met Phe Leu 420425430
Gly Leu His Asn Leu Glu Tyr Leu Tyr Leu Glu Tyr Asn Ala Ile Lys
Glu Ile Leu Pro Gly Thr Phe Asn Pro Met Pro Lys Leu Lys Val Leu 450455460
Tyr Leu Asn Asn Asn Leu Leu Gln Val Leu Pro Pro His Jile Phe Ser $465470 \quad 475 \quad 480$ Gly Val Pro Leu Thr Lys val Asn Leu tys Thr Asn Gln Phe Thr His
Leu Pro Val Ger Asn Ile Leu Asp Asp Leu Asp Leu leu Thr Giln ile 500 505 510

p I	Leu 5	$\begin{aligned} & \text { Glu A } \\ & 515 \end{aligned}$					$\begin{aligned} & \text { Asp } \\ & 520 \end{aligned}$					$\begin{aligned} & \text { Leu } \\ & 525 \end{aligned}$			
Gln	$\begin{aligned} & G \ln \mathrm{~T} \\ & 530 \end{aligned}$	Trp I	Ile	Gln	Lys	$\begin{aligned} & \text { Leu } \\ & 535 \end{aligned}$	Ser	Lys	Asn		$\begin{aligned} & \text { Val } \\ & 540 \end{aligned}$		Asp	Asp	Ile
$\begin{aligned} & \text { Leu } \\ & 545 \end{aligned}$	Cys T	Thr S	Ser	Pro	$\begin{aligned} & \text { Gly } \\ & 550 \end{aligned}$	His	Leu	Asp	Lys	Lys 555	Glu	Leu	Lys	Ala	Leu 560
Asn	Ser G	Glu I	Ile	$\begin{aligned} & \text { Leu } \\ & 565 \end{aligned}$	Cys	Pro	Gly	Leu	$\begin{aligned} & \text { Val } \\ & 570 \end{aligned}$	Asn	Asn	Pro	Ser	$\begin{aligned} & \text { Met } \\ & 575 \end{aligned}$	Pro
Thr G	Gln T	Thr S	$\begin{aligned} & \text { Ser } \\ & 580 \end{aligned}$	Tyr	Leu	Met	Val	$\begin{aligned} & \text { Thr } \\ & 585 \end{aligned}$	Thr	Pro	Ala	Thr	$\begin{aligned} & \text { Thr } \\ & 590 \end{aligned}$	Thr	Asn
Thr A	Ala A	$\begin{aligned} & \text { Asp T } \\ & 595 \end{aligned}$	Thr	Ile	Leu	Arg	$\begin{aligned} & \text { Ser } \\ & 600 \end{aligned}$	Leu	Thr	Asp	Ala	$\begin{aligned} & \text { Val } \\ & 605 \end{aligned}$	Pro	Leu	Ser
Val	$\begin{aligned} & \text { Leu I } \\ & 610 \end{aligned}$	Ile L	Leu	Gly	Leu	$\begin{aligned} & \text { Leu } \\ & 615 \end{aligned}$	Ile	Met	Phe	Ile	$\begin{aligned} & \text { Thr } \\ & 620 \end{aligned}$	Ile	Val	Phe	Cys
$\begin{aligned} & \text { Ala A } \\ & \text { 625 } \end{aligned}$	Ala G	Gly I	Ile V	Val V	Val 630	Leu	Val	Leu	His	Arg 635	Arg	Arg	Arg	Tyr	Lys 640
Lys L	Lys G	Gln V	Val	$\begin{aligned} & \text { Asp } \\ & 645 \end{aligned}$	Glu	Gln	Met	Arg	Asp 650	Asn	Ser	Pro	Val	$\begin{aligned} & \mathrm{His} \\ & 655 \end{aligned}$	Leu
Gln T	Tyr S	Ser Met	$\begin{aligned} & \text { Met } \\ & 660 \end{aligned}$	Tyr G	Gly	His	Lys	$\begin{aligned} & \text { Thr } \\ & 665 \end{aligned}$	Thr	His	His	Thr	$\begin{aligned} & \text { Thr } \\ & 670 \end{aligned}$	Glu	Arg
Pros	Ser A	$\begin{aligned} & \text { Ala S } \\ & 675 \end{aligned}$	Ser	Leu T	Tyr	Glu	$\begin{aligned} & G l n \\ & 680 \end{aligned}$	His	Met	Gly	Ala	$\begin{aligned} & \text { His } \\ & 685 \end{aligned}$	Glu	Glu	Leu
Hys L	$\begin{aligned} & \text { Leu M } \\ & 690 \end{aligned}$	Met G	Glu T	Thr L	Leu	$\begin{aligned} & \text { Met } \\ & 695 \end{aligned}$	Tyr	Ser	Arg	Pro	$\begin{aligned} & \text { Arg } \\ & 700 \end{aligned}$	Lys	Val	Leu	Val
$\begin{aligned} & \text { Glu } \\ & 705 \end{aligned}$	Gln T	Thr Ly	Lys A	Asn 7	Glu	Tyr	Phe	Glu	Leu	$\begin{aligned} & \text { Lys } \\ & 715 \end{aligned}$	Ala	Asn	Leu	His	$\begin{aligned} & \text { Ala } \\ & 720 \end{aligned}$
Glu P	Pro A	Asp Ty	Tyr	$\begin{aligned} & \text { Leu } \\ & 725 \end{aligned}$	Glu	Val	Leu	Glu	$\begin{aligned} & \mathrm{Gln} \\ & 730 \end{aligned}$	Gln	Thr				

```
<210> 106
<211> 395
<212> PRT
<213> Homo sapiens
<400> 106
Met Lys Leu Trp Ile His Leu Phe Tyr Ser Ser Leu Leu Ala Cys Ile
    1 5 10 15
Ger Leu His Ser Gln Thr Pro Val Leu Ser Ser Arg Gly Ser Cys Asp
            20 25 30
Ser Leu Cys Asn Cys Glu Glu Lys Asp Gly Thr Met Leu Ile Asn Cys
    35 40 45
Glu Ala Lys Gly Ile Lys Met Val Ser Glu Ile Ser Val Pro Pro Ser
        5 0 ~ 5 5 ~ 6 0
frg Pro Phe Gln Leu Ser Leu Leu Asn Asn Gly Leu Thr Met Leu His
65 70 75 80
Thr Asn Asp Phe Ser Gly Leu Thr Asn Ala Ile Ser Ile His Leu Gly
    85 90 95
Fhe Asn Asn Ile Ala Asp Ile Glu Ile Gly Ala Phe Asn Gly Leu Gly
                100 105 110
Leu Leu Lys Gln Leu His Ile Asn His Asn Ser Leu Glu Ile Leu Lys
            1 1 5 1 2 0 ~ 1 2 5
Glu Asp Thr Phe His Gly Leu Glu Asn Leu Glu Phe Leu Gln Ala Asp
        1 3 0 1 3 5 1 4 0
Asn Asn Phe Ile Thr Val Ile Glu Pro Ser. Ala Phe Ser Lys Leu Asn
145 150 155 160
Arg Leu Lys Val Leu Ile Leu Asn Asp Asn Ala Ile Glu Ser Leu Pro
    1 6 5 ~ 1 7 0 ~ 1 7 5
Pro Asn Ile Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg Gly
            180 185 190
Asn Gln Leu Gln Thr Leu fro Tyr Val Gly The Leu Glu His Ile Gly
        1 9 5 2 0 0 ~ 2 0 5
Arg Ile Leu Asp Leu Gln Leu Glu Asp Asn Lyy Trp Ala Cys Asn Cys
        210 215 220
```



```
<210> 108
<211> 347
<212> DNA
<213> Homo sapiens
<400> 108
caaactgcag gagtcaggag ttggcctggt ggcgccctca cagagcctgt ccatcacatg 60
caccgtctca ggattctcat tgaccggcta tggtgtaaac tgggttcggcc agcctccagg 120
aaagggtctg gggtggctgg gaatgatttg gggcgatgga agcacagatt atacttcagc 180
t.ctccaatcc agactgagca tcaggaagga caattcaaga gccaaacttt cttaaaaaat 240
aacagtctgc aaactgatga cacagccagg tattactgtg ccagagatga agggagggga 300
ctctgtttga ttgctggggc caagggacca cggtcaccgt ctcctca 347
```

<210> 109
<211> 115
<212> PRT
<213> Homo sapiens
<400> 109
©iln Thr Ala Gly Val. Arg Ser Trp Pro Gly Gly Ala Leu Thr Glu Pro
$1510 \quad 15$
Val His His Met His Arg Leu Arg Ile Leu Ile Asp Arg Leu Trp Cys
202530
Lys Ieu Gly Ser Pro Ala Ser Arg Lys Gly Ser Gly Val Ala Gly Asn
354045
Asp Leu Gly Arg Trp Lys His Arg Leu Tyr the Ser Ser Pro fle Gin
505560
Thr Glu His Gin Glu Gly Gln Phe Lys Ger Gln Thr Phe Leu Lys asn

```
65 70
Asn Ser Leu Gln Thr Asp Asp Thr Ala Arg Tyr Tyr Cys Ala Arg Asp 859095 Glu Gly Arg Gly Leu Cys Leu Ile Ala Gly Ala Lys Gly Pro Arg Ser
``` Pro Ser Pro 115
```

<210> 110
<211> 330
<212> DNA
<213> Homo sapiens
<400> 110
gacattcagc tgacccagtc tcctgcttcc ttagctgtat ctctggggca gagggccacc 60
atctcataca gggccagcaa aagtgtcagt acatctggct atagttatat gcactggaac 120
caacagaaac caggacagcc acccagactc ctcatctatc ttgtatccaa cctagaatct 180
ggggtccctg ccaggttcag tggcagtggg tctgggacag acttcaccct caacatccat 240
cctgtggagg aggaggatgc tgcaacctat tactgtcagc acattaggga gcttacacgt 300
t:cggaggggg gaccaagctg gagatctaac

```
<210> 111
<211> 110
<212> PRT
<213> Homo sapiens
<400> 111
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
 1 5 10 15
Gin Arg Ala Thr Ile Ser Tyr Arg Ala Ser Lys Ser Val Ser Thr Ser
 2 0 2 5 ~ 3 0
Gly Tyr Ser Tyr Met His Trp Asn Gln Gln Lys Pro Gly Gln Pro Pro
 35 40 45
Frg Leu Leu Ile Tyr Leu Val Ser Asn Leu Glu Ser Gly Val Pro Ala
 5 0 5 5 ~ 6 0
Frg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
F'ro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys Gln His Ile Arg
 85 90 95
Giu Leu Thr Arg Ser Glu Gly Gly Pro Ser Trp Arg Ser Asn
100 105 110
```

```
<210> 112
<211> 115
<212> PRT
<213> Homo sapiens
<400> 112
Gln Thr Ala Gly Val Arg Ser Trp Pro Gly Gly Ala Leu Thr Glu Pro
 l 5 10 15
Val His His Met His Arg Leu Arg Ile Leu Ile Asp Arg Leu Trp Cys
 20 25 30
L.ys Leu Gly Ser Pro Ala Ser Arg Lys Gly Ser Gly Val Ala Gly Asn
 35 40 45
Asp Leu Gly Arg Trp Lys His Arg Leu Tyr Phe Ser Ser Pro Ile Gin
 5 0 ~ 5 5 ~ 6 0
Thr Glu His Gln Glu Gly Gln Phe Lys Ser Gln Thr Phe Leu Lys Asn
65 70 75 80
Asn Ser Leu Gln Thr Asp Asp Thr Ala Arg Tyr Tyr Cys Ala Arg Asp
 85 90 95
Glu Gly Arg Gly Leu Cys Leu Ile Ala Gly Ala Lys Gly fro Arg :er
 100 105 110
```

```
Pro Ser Pro
 115
```

```
<210> 113
```

<210> 113
<211> 110
<211> 110
<212> PRT
<212> PRT
<213> Homo sapiens
<213> Homo sapiens
<400> 113
<400> 113
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
1 5 10 15
Gln Arg Ala Thr Ile Ser Tyr Arg Ala Ser Lys Ser Val Ser Thr Ser
Gln Arg Ala Thr Ile Ser Tyr Arg Ala Ser Lys Ser Val Ser Thr Ser
2 0 2 5 ~ 3 0
2 0 2 5 ~ 3 0
Gly Tyr Ser Tyr Met His Trp Asn Gln Gln Lys Pro Gly Gln Pro Pro
Gly Tyr Ser Tyr Met His Trp Asn Gln Gln Lys Pro Gly Gln Pro Pro
Arg Leu Leu Ile Tyr Leu Val Ser Asn Leu Glu Ser Gly Val Pro Ala
Arg Leu Leu Ile Tyr Leu Val Ser Asn Leu Glu Ser Gly Val Pro Ala
5 0 ~ 5 5 ~ 6 0
5 0 ~ 5 5 ~ 6 0
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
65 70 75 80
Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys Gln His Ile Arg
Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys Gln His Ile Arg
glu Leu Thr Arg Ser Glu Gly Gly Pro Ser Trp Arg Ser Asn
glu Leu Thr Arg Ser Glu Gly Gly Pro Ser Trp Arg Ser Asn
100 105 1 110

```
 100 105 1 110
```


[^0]:    Ollgonucleotides:
    The following HPLC purified oligonucleotides were used.

[^1]:    Measurement of CTL lytic activity by ${ }^{51} \mathrm{Cr}$ release.

[^2]:    Table V-V4-HLA-A1-9mers-
    158P1D7
    Each peptide is a portion of SEQ
    ID NO: 9; each start position Is
    specified, the length of peptide is

[^3]:    Table XXX- 158P1D7
    v.6-HLA-B2705-9-mers

[^4]:    Table XXXIII-158P1D7 v. 6 - HLA-B5101-9-mers

[^5]:    Identities $=316 / 864(36 \%)$, Positives $=459 / 864(52 \%)$

[^6]:    1 transmembrane
    domain
    predicted

