Title: RESISTIVE HEATED SURGICAL STAPLE CARTRIDGE WITH PHASE CHANGE SEALANT

Abstract: An apparatus for endoscopic use includes an instrument having an end effector and a staple cartridge insertable into the end effector. The staple cartridge includes staples, staple apertures, a resistive member, and a medical fluid. When coupled to a power source, the medical fluid is vaporized by the resistive member and expelled out the staple apertures onto the stapled tissue. The power source may be contained within the instrument. In one configuration, a resistive strip with strip contacts may electrically couple to a conductor in the end effector. The medical fluid may also be divided into a plurality of sealant pads corresponding to the staple apertures, and the medical fluid may be a depolymerizable cyanoacrylate, a sprayable thermoplastic urethane, or any vaporizable medicament or pharmaceutical. The staple drivers may include one or more apertures to permit the medical fluid to pass through or around the staple drivers.
Published:

— with international search report (Art. 21(3))
RESISTIVE HEATED SURGICAL STAPLE CARTRIDGE WITH PHASE CHANGE SEALANT

BACKGROUND

[0001] In some settings, endoscopic surgical instruments may be preferred over traditional open surgical devices since a smaller incision may reduce the post-operative recovery time and complications. Consequently, some endoscopic surgical instruments may be suitable for placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors may engage tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, stapler, clip applier, access device, drug/gene therapy delivery device, and energy delivery device using ultrasound, RF, laser, etc.). Endoscopic surgical instruments may include a shaft between the end effector and a handle portion, which is manipulated by the clinician. Such a shaft may enable insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby facilitating positioning of the end effector within the patient. Positioning of an end effector may be further facilitated through inclusion of one or more articulation joints or features, enabling the end effector to be selectively articulated or otherwise deflected relative to the longitudinal axis of the shaft.

[0002] Examples of endoscopic surgical instruments include surgical staplers. Some such staplers are operable to clamp down on layers of tissue, cut through the clamped layers of tissue, and drive staples through the layers of tissue to substantially seal the severed layers of tissue together near the severed ends of the tissue layers. Merely exemplary surgical staplers are disclosed in U.S. Pat. No. 4,805,823, entitled “Pocket Configuration for Internal Organ Staplers,” issued February 21, 1989; U.S. Pat. No.

[0003] While various kinds of surgical stapling instruments and associated components have been made and used, it is believed that no one prior to the inventor(s) has made or used the invention described in the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The accompanying drawings, which are incorporated in and constitute a part of
this specification, illustrate embodiments of the invention, and, together with the general
description of the invention given above, and the detailed description of the embodiments
given below, serve to explain the principles of the present invention.

[0005] FIG. 1A depicts a perspective view of an articulating surgical instrument with an
end effector in a nonarticulated position;

[0006] FIG. 1B depicts a perspective view of the surgical instrument of FIG. 1A with an
end effector in an articulated position;

[0007] FIG. 2 depicts a perspective view of an opened end effector of the surgical
instrument of FIGS. 1A-1B;

[0008] FIG. 3A depicts a side cross-sectional view of the end effector of FIG. 2, taken
along line 3-3 of FIG. 2, with the firing bar in a proximal position;

[0009] FIG. 3B depicts a side cross-sectional view of the end effector of FIG. 2, taken
along line 3-3 of FIG. 2, but showing the firing bar in a distal position;

[0010] FIG. 4 depicts an end cross-sectional view of the end effector of FIG. 2, taken
along line 4-4 of FIG. 2;

[0011] FIG. 5 depicts an exploded perspective view of the end effector of FIG. 2;

[0012] FIG. 6 depicts a perspective view of the end effector of FIG. 2, positioned at
tissue and having been actuated once in the tissue;

[0013] FIG. 7 depicts a perspective view of an exemplary staple cartridge;

[0014] FIG. 8A depicts a partial side cross-sectional view of the cartridge of FIG. 7;

[0015] FIG. 8B depicts a portion of the side cross-sectional view of FIG. 8A showing a
wedge sled vertically camming a staple driver;
FIG. 8C depicts a portion of the side cross-sectional view of FIG. 8A showing a resistive strip vaporizing a sealant;

FIG. 8D depicts a portion of the side cross-sectional view of FIG. 8A showing the vaporized sealant being expelled through a staple driver channel;

FIG. 9 depicts a partial side cross-sectional view of an exemplary alternative arrangement for a staple cartridge;

FIG. 10 depicts a partial side cross-sectional view of yet another exemplary arrangement for a staple cartridge;

FIG. 11 depicts a partial perspective view pair of exemplary channels formed within a staple cartridge body;

FIG. 12 depicts a partial perspective view of an exemplary staple cartridge having channels coupling to a lower jaw of the instrument of FIG. 1A-1B;

FIG. 13 depicts a perspective view of an exemplary staple driver having a staple driver aperture;

FIG. 14 depict a perspective view of an alternative exemplary staple driver having a pair of notches;

FIG. 15 depicts a side cross-sectional view of yet another exemplary staple driver having a plurality of integrated resistive strips and sealants; and

FIG. 16 depicts a partial side cross-sectional view of an end effector of the instrument of FIG. 1A-1B.

The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the
invention; it being understood, however, that this invention is not limited to the precise arrangements shown.

DETAILED DESCRIPTION

[0027] The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.

[0028] 1. Exemplary Surgical Stapler

[0029] FIGS. 1-6 depict an exemplary surgical stapling and severing instrument (10) that is sized for insertion, in a nonarticulated state as depicted in FIG. 1A, through a trocar cannula passageway to a surgical site in a patient for performing a surgical procedure. Surgical and stapling and severing instrument (10) includes handle portion (20) connected to implement portion (22), the latter further comprising shaft (23) distally terminating in an articulating mechanism (11) and a distally attached end effector (12). Once articulation mechanism (11) and distally end effector (12) are inserted through the cannula passageway of a trocar, articulation mechanism (11) may be remotely articulated, as depicted in FIG. 1B, by articulation control (13). Thereby, end effector (12) may reach behind an organ or approach tissue from a desired angle or for other reasons. It should be understood that terms such as “proximal” and “distal” are used herein with reference to a clinician gripping handle portion (20) of instrument (10). Thus, end effector (12) is distal with respect to the more proximal handle portion (20). It will be further appreciated that for convenience and clarity, spatial terms such as “vertical” and “horizontal” are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
End effector (12) of the present example includes a lower jaw (16) and a pivotable anvil (18). Handle portion (20) includes pistol grip (24) toward which closure trigger (26) is pivotally drawn by the clinician to cause clamping, or closing, of the anvil (18) toward lower jaw (16) of end effector (12). Such closing of anvil (18) is provided through an outmost closure sleeve (32), which longitudinally translates relative to handle portion (20) in response to pivoting of closure trigger (26) relative to pistol grip (24). A distal closure ring (33) of closure sleeve (32) is indirectly supported by frame (34) of implement portion (22). At articulation mechanism (11), a proximal closure tube (35) of closure sleeve (32) communicates with the distal portion (closure ring) (33). Frame (34) is flexibly attached to lower jaw (16) via articulation mechanism (11), enabling articulation in a single plane. Frame (34) also longitudinally slidingly supports a firing drive member (not shown) that extends through shaft (23) and communicates a firing motion from firing trigger (28) to firing bar (14). Firing trigger (28) is farther outboard of closure trigger (26) and is pivotally drawn by the clinician to cause the stapling and severing of clamped tissue in end effector (12), as will be described in greater detail below. Thereafter, release button (30) is depressed to release the tissue from end effector (12).

FIGS. 2-5 depict end effector (12) employing an E-beam firing bar (14) to perform a number of functions. As best seen in FIGS. 3A-3B, firing bar (14) includes a transversely oriented upper pin (38), a firing bar cap (44), a transversely oriented middle pin (46), and a distally presented cutting edge (48). Upper pin (38) is positioned and translatable within an anvil pocket (40) of anvil (18). Firing bar cap (44) slidingly engages a lower surface of lower jaw (16) by having firing bar (14) extend through channel slot (45) (shown in FIG. 3B) that is formed through lower jaw (16). Middle pin (46) slidingly engages a top surface of lower jaw (16), cooperating with firing bar cap (44). Thereby, firing bar (14) affirmatively spaces end effector (12) during firing, overcoming pinching that may occur between anvil (18) and lower jaw (16) with a minimal amount of clamped tissue and overcoming staple malformation with an excessive amount of clamped tissue.
FIG. 2 shows firing bar (14) proximally positioned and anvil (18) pivoted to an open position, allowing an unspent staple cartridge (37) to be removably installed into a channel of lower jaw (16). As best seen in FIGS. 4-5, staple cartridge (37) of this example includes a cartridge body (70), which presents an upper deck (72) and is coupled with a lower cartridge tray (74). As best seen in FIG. 2, a vertical slot (49) is formed through part of staple cartridge (37). As also best seen in FIG. 2, three rows of staple apertures (51) are formed through upper deck (70) on one side of vertical slot (49), with another set of three rows of staple apertures (51) being formed through upper deck (70) on the other side of vertical slot (49). Referring back to FIGS. 3-5, a wedge sled (41) and a plurality of staple drivers (43) are captured between cartridge body (70) and tray (74), with wedge sled (41) being located proximal to staple drivers (43). Wedge sled (41) is movable longitudinally within staple cartridge (37); while staple drivers (43) are movable vertically within staple cartridge (37). Staples (47) are also positioned within cartridge body (70), above corresponding staple drivers (43). In particular, each staple (47) is driven vertically within cartridge body (70) by a staple driver (43) to drive staple (47) out through an associated staple aperture (51). As best seen in FIGS. 3A-3B and 5, wedge sled (41) presents inclined cam surfaces that urge staple drivers (43) upwardly as wedge sled (41) is driven distally through staple cartridge (37).

With end effector (12) closed as depicted in FIG. 3A, firing bar (14) is advanced in engagement with anvil (18) by having upper pin (38) enter a longitudinal anvil slot (42). A pusher block (80) is located at the distal end of firing bar (14), and is configured to engage wedge sled (41) such that wedge sled (41) is pushed distally by pusher block (80) as firing bar (14) is advanced distally through staple cartridge (37). During such firing, cutting edge (48) of firing bar (14) enters vertical slot (49) of staple cartridge (37), severing tissue clamped between staple cartridge (37) and anvil (18). As shown in FIGS. 3A-3B, middle pin (46) and pusher block (80) together actuate staple cartridge (37) by entering into a firing slot within staple cartridge (37), driving wedge sled (41) into upward camming contact with staple drivers (43) that in turn drive staples (47) out through staple apertures (51) and into forming contact with staple forming pockets (53) on the inner surface of anvil (18). FIG. 3B depicts firing bar (14) fully distally translated after completing severing and stapling tissue.
FIG. 6 shows end effector (12) having been actuated through a single stroke through tissue (90). As shown, cutting edge (48) has cut through tissue (90), while staple drivers (43) have driven three alternating rows of staples (47) through the tissue (90) on each side of the cut line produced by cutting edge (48). Staples (47) are all oriented substantially parallel to the cut line in this example, though it should be understood that staples (47) may be positioned at any suitable orientations. In the present example, end effector (12) is withdrawn from the trocar after the first stroke is complete, spent staple cartridge (37) is replaced with a new staple cartridge, and end effector (12) is then again inserted through the trocar to reach the stapling site for further cutting and stapling. This process may be repeated until the desired amount of cuts and staples (47) have been provided. Anvil (18) may need to be closed to facilitate insertion and withdrawal through the trocar; and anvil (18) may need to be opened to facilitate replacement of staple cartridge (37).

It should be understood that cutting edge (48) may sever tissue substantially contemporaneously with staples (47) being driven through tissue during each actuation stroke. In the present example, cutting edge (48) just slightly lags behind driving of staples (47), such that a staple (47) is driven through the tissue just before cutting edge (48) passes through the same region of tissue, though it should be understood that this order may be reversed or that cutting edge (48) may be directly synchronized with adjacent staples. While FIG. 6 shows end effector (12) being actuated in two layers (92, 94) of tissue (90), it should be understood that end effector (12) may be actuated through a single layer of tissue (90) or more than two layers (92, 94) of tissue. It should also be understood that the formation and positioning of staples (47) adjacent to the cut line produced by cutting edge (48) may substantially seal the tissue at the cut line, thereby reducing or preventing bleeding and/or leaking of other bodily fluids at the cut line. Various suitable settings and procedures in which instrument (10) may be used will be apparent to those of ordinary skill in the art in view of the teachings herein.

It should be understood that instrument (10) may be configured and operable in accordance with any of the teachings of U.S. Pat. No. 4,805,823; U.S. Pat. No. 5,415,334; U.S. Pat. No. 5,465,895; U.S. Pat. No. 5,597,107; U.S. Pat. No. 5,632,432; U.S. Pat. No. 5,632,432; U.S. Pat. No.
5,673,840; U.S. Pat. No. 5,704,534; U.S. Pat. No. 5,814,055; U.S. Pat. No. 6,978,921;
U.S. Pat. No. 7,434,715; and/or U.S. Pat. No. 7,721,930. As noted above, the disclosures
of each of those patents are incorporated by reference herein. Additional exemplary
modifications that may be provided for instrument (10) will be described in greater
detail below. Various suitable ways in which the below teachings may be incorporated into
instrument (10) will be apparent to those of ordinary skill in the art. Similarly, various
suitable ways in which the below teachings may be combined with various teachings of
the patents cited herein will be apparent to those of ordinary skill in the art. It should also
be understood that the below teachings are not limited to instrument (10) or devices
taught in the patents cited herein. The below teachings may be readily applied to various
other kinds of instruments, including instruments that would not be classified as surgical
staplers. Various other suitable devices and settings in which the below teachings may be
applied will be apparent to those of ordinary skill in the art in view of the teachings
herein.

[0037] II. Exemplary Alternative Staple Cartridges

[0038] FIG. 7 depicts an exemplary alternative staple cartridge (100) for use with
instrument (10). Cartridge (100) comprises a cartridge body (102), a cartridge tray (104),
a vertical slot (106), an upper deck (110), and a plurality of staple apertures (112) formed
in upper deck (110). Vertical slot (106) extends longitudinally through cartridge body
(102) and upper deck (110) such that firing bar (14) and cutting edge (48) pass through at
least a portion of cartridge body (102). It should be understood that vertical slot (106)
may longitudinally extend only partially through cartridge body (102) or along the entire
length of cartridge body (102). Cartridge (100) of the present example has a proximal
end (120) that includes a support portion (122). Support portion (122) further includes
cartridge contacts (130) in this example, as will be described later herein, to electrically
couple cartridge (100) with a power source (98) when cartridge (100) is inserted into end
effector (12). As one of ordinary skill in the art will appreciate, cartridge contacts (130)
are not limited to the proximal end (120) of cartridge (100). Indeed, cartridge contacts
(130) may be located on the bottom surface of cartridge (100), such as on or through cartridge tray (104), or anywhere on cartridge body (102). Cartridge contacts (130) may alternatively be configured such that electrical power is communicated inductively, capacitively, and/or in any other suitable fashion. Furthermore, cartridge contacts (130) are merely optional.

A. Exemplary Configuration and Operation of an Alternative Staple Cartridge Having a Conductor and Resistive Strip

FIGS. 8A-8D depict a sequential internal view of exemplary cartridge (100) when inserted into lower jaw (16) of end effector (12) and used to cut and staple tissue, such as tissue (90) of FIG. 6. Referring first to FIG. 8A, a plurality of staples (114), and staple drivers (180) are shown disposed within cartridge (100). In the present example, lower jaw (16) comprises a conductor (150) having a plurality of conductor contacts (152) extending from the top surface of conductor (150). Conductor (150) may comprise a metallic member having ridged contacts, a plastic member having an embedded metallic member and a plurality of contacts protruding from the plastic member, a printed circuit board (or PCB) with thin conductive channels and contacts (e.g., exposed traces, etc.), or any other suitable components and/or features to transmit electrical power to conductor contacts (152). Conductor contacts (152) are shown as a plurality of raised portions configured to electrically couple with a corresponding plurality of raised portions of strip contacts (162), though other suitable contact configurations will be apparent to one of ordinary skill in the art in view of the teachings herein. A thin resistive strip (160) having strip contacts (162) is coupled to cartridge body (102) such that when cartridge (100) is inserted into lower jaw (16), strip contacts (162) and conductor contacts (152) electrically couple. In one alternative, strip contacts (162) may extend through cartridge tray (104) or resistive strip (160) having strip contacts (162) may be integrated into cartridge tray (104). In another merely exemplary alternative, strip contacts (162) and conductor contacts (152) may be omitted and resistive strip (160) and conductor (150) may be a unitary piece, within cartridge tray (104), within cartridge body (102), or on lower jaw (16). As shown in the present example, the plurality of strip contacts (162) and conductor contacts (152) are each aligned with a respective staple aperture (112) such
that when a charge is applied to conductor (150), resistive strip (160) heats a corresponding portion of resistive strip (160) below each staple aperture (112). As will be explained further below, alternative configurations for cartridge (100), conductor (150), and resistive strip (160) may be utilized.

[0041] A layer of sealant (170) is disposed above resistive strip (160). In the present example, sealant (170) is a substantially homogeneous continuum disposed within cartridge body (102). It should be understood that sealant (170) is not limited to sealants; rather, a variety of vaporizable items may be used without departing from the scope of the present disclosure. For instance, sealant (170) may comprise a depolymerizable cyanoacrylate, a sprayable thermoplastic urethane, a polyurethane prepolymer, medicaments, hemostatic agents, mucoadhesive polymers, polyvinylpyrrolidone (PVP), methyl cellulose (MC), sodium carboxy methylcellulose (SCMC), hydroxy propyl cellulose (HPC), and other cellulose derivatives, anionic hydrogels, cationic hydrogels, neutral hydrogels (such as carbopol, polyacrylates, chitosan or Eudragits), polyacrylic-polyethylene glycol copolymers (so-called buccal adhesives), thrombin, lyophilized thrombin (such as that used in Surgiflo® of Ethicon, Inc. in Somerville, New Jersey), platelet poor plasma (PPP) platelet rich plasma (PRP), mussel-based or derived adhesives, calcium alginate, fibrin, adhesives, image enhancing agents, necrosing agents, sclerosing agents, coagulants, therapeutics agents, analeptic agents, anesthesia agents, antidiuretic agents, analgesic agents, antiseptic agents, antispasmodic agents, cardiac agents, depressant agents, diuretic agents, hormonal agents, sedative agents, stimulant agents, vascular agents, time release agents, drugs, absorbable materials, colorants, plasticizing agents, bulking agents, tamponade materials, thixotropic agents, antibacterial agents, buffers, catalysts, fillers, micro particles, thickeners, solvents, natural or synthetic rubbers, stabilizers, pH modifiers, bioactive agents, cross-linking agents, chain transfer agents, fibrous reinforcements, colorants, preservatives, formaldehyde reducing or scavenging agents, and/or any other fluid, including liquids, gels, pastes, etc., or any other suitable medical fluid or hemostatic agent as will be apparent to one of ordinary skill in the art in view of the teachings herein.
Furthermore, sealant (170) may be impregnated with additional materials, such as various medicines (including pain killers or other suitable medicines), marking materials (such as radiopaque or echogenic markers and/or fluids), or any other suitable material that may be dispersed with sealant (170). Sealant (170) may further be a solidified material that may vaporize when subjected to thermal heating from resistive strip (160), or sealant (170) may be a liquid or semi-solid. If sealant (170) is a liquid or semi-solid, sealant may be contained within a reservoir or channel formed within resistive strip (160) or in an alternative structure located above resistive strip (160), such as a portion of cartridge body (102). One such alternative channel-type structure will be discussed below in reference to FIG. 11.

A plurality of staple drivers (180) are located above sealant (170). In the present example, staple drivers (180) each define a respective staple driver channel (182) formed through each staple driver (180) such that a vaporized material may pass through staple driver (180) once a staple (114) is ejected through staple aperture (112). Staple driver channel (182) may include an aperture formed through staple driver (180), such as driver aperture (510) shown in FIG. 13, or may include notches formed in one or more sides of staple driver (180), such as semi-circular notches (610) shown in FIG. 14, or other suitable configurations for staple driver channel (182). Staples (114) are located above staple drivers (180), and, in FIG. 8A, both staples (114) and staple drivers (180) are shown in an undeployed configuration. Staples (114) may further be detachably secured to staple drivers (180), such as through an adhesive, to ensure staples (114) remain aligned and atop staple drivers (180).

Referring now to FIG. 8B, wedge sled (41) and firing bar (14) are shown driving staple (114) through tissue (90) while also severing tissue (90). As described above, anvil (18) compresses tissue (90) against upper deck (110) while staple driver (180) is cammed vertically by wedge sled (41) to drive staple (114) through tissue (90) and into staple forming pocket (53). While staple (114) is driven through tissue (90), conductor (150) and resistive strip (160) may remain inactive, though it should be understood that this is merely optional. Indeed, in one configuration, conductors (150) may be sequentially activated soon after cutting edge (48) severs tissue (90). For instance, wedge
sled (41) and/or firing bar (14) may comprise a conducting portion that may electrically couple to conductor (150) and/or resistive strip (160) to provide power from power source (98). Alternatively, conductors (150) and/or resistive strip (160) and sealant (170) may be disposed on the side of staple driver (180) or elsewhere on the interior of cartridge body (102) as will be apparent to one of ordinary skill in the art in view of the teachings herein.

[0045] Referring back to the present example, as shown in FIG. 8C, while anvil (18) is still compressing tissue (90), power source (98) is activated and applied to conductor (150). Power source (98) may be activated through a toggle switch or button located on handle portion (20) of instrument (10) or through another control mechanism, including, but not limited to, a third trigger or an automated system receiving a signal from a sensor indicating the advancement of firing bar (14). Furthermore, power source (98) may be external to instrument (10) or power source (98) may be contained within instrument (10). One merely exemplary configuration for instrument (10) having an internal power source is disclosed by U.S. Pat. No. 7,738,971, entitled “Post-Sterilization Programming of Surgical Instruments,” issued June 15, 2010, the disclosure of which is incorporated by reference herein. Alternatively, power source (98) may be an external power source.

[0046] When power source (98) sends power to conductor (150), conductor (150) transfers the power to resistive strip (160) through conductor contacts (152) and strip contacts (162). Resistive strip (160) then heats appropriate portions of resistive strip (160) and portions of sealant (170) to vaporize sealant (170) into droplets (172). It should be understood that sealant (170) may be liquefied, atomized, or turned into any fluid and/or gaseous form such that sealant (170) may be expelled from cartridge (100). In the present example, the resistive heating vaporizes sealant (170) and produces a rapid pressure wave that expels sealant (170) from cartridge (100). Such resistive heating may further be accomplished in a substantially similar manner to thermal inkjets. Alternatively, droplets (172) may be formed through vibratory or pressure mechanisms, such as piezoelectric inkjet technology. As droplets (172) are formed, droplets (172) are expelled through a staple driver channel (182) and out staple aperture (112), as shown in FIG. 8D. In the present configuration, staple driver (180) is shown abutted against upper
deck (110), though it should be understood that staple driver (180) may alternatively return to rest atop sealant (170) prior to vaporizing sealant (170). In an alternative configuration, a separate aperture may be provided through which droplets (172) may be expelled. After staple (114) has pierced tissue (90) and coupled thereto, droplets (172) of sealant (170) may settle on staple (114) and tissue (90). Droplets (172) then reconstitute on staple (114) and/or tissue (90). Such reconstitution may include repolymerization (such as for cyanoacrylate or polyacrylates), addition polymerization (such as for polyurethane prepolymer), and/or solidification from a liquid to a solid polymer. Once droplets (172) reconstitute, sealant (170) formed on staple (114) and tissue (90) may further aid in sealing tissue (90). A user of instrument (10) may delay releasing anvil (18) until a predetermined amount of time such that droplets (172) sufficiently reconstitute sealant (170) on tissue (90) and staple (114). As described above, a user may then change cartridges (100), and repeat the process to sever and seal additional portions of tissue (90).

[0047] While one merely exemplary construction for cartridge (100) has been described, other suitable alternative constructions for cartridge (100) having a resistive heating portion will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, as shown in FIG. 9, an alternative arrangement for cartridge (100) shows sealant (170) divided into a plurality of individual sealant pads (174). Sealant pads (174) of the present example are aligned above strip contacts (162) and conductor contacts (152) and below staple apertures (112). Alternatively, conductor (150) having conductor contacts (152) may be located on or within cartridge tray (104) while resistive strip (160) and strip contacts (162) are located on or within cartridge body (102). Further still, a single strip contact (162) may be located on support portion (122) and a single conductor contact (152) may be located on a corresponding portion of lower jaw (16) instead of a plurality of contacts on cartridge (100) and lower jaw (16). In yet a further configuration, lower jaw (16) may comprise a resistive strip (160) coupled to power source (98) while cartridge tray (104) and/or cartridge body (102) comprise a plurality of apertures having sealant (170) contained therein. Thus, when cartridge (100) is coupled to lower jaw (16), the plurality of apertures having sealant (170) contained therein align with portions of resistive strip (160) in order to resistively heat sealant (170) when resistive strip (160) is
coupled to power source (98). Furthermore, while the cartridges disclosed herein have been described in reference to a single-sided stapling cartridge, it should be understood that such cartridges may be modified to include dual-sided stapling cartridges.

[0048] B. Exemplary Alternative Resistive Assemblies

[0049] In yet another configuration, shown in FIG. 10, a plurality of individual resistive assemblies (200) are arranged below each staple aperture (112) formed in upper deck (110). In this configuration, resistive assemblies (200) each comprise a conductor (202), a resistive strip (206), a sealant (210), a strip contact (208) and a conductor contact (204). Sealant (210) is not limited to a sealant, but may include any of the medical fluids and/or other items recited for sealant (170). As shown in the present example, conductors (202) having conductor contacts (204) are disposed within cartridge tray (104) while sealants (210) and resistive strips (206) having exposed strip contacts (208) are disposed within cartridge body (102). Thus, when cartridge body (102) is coupled to cartridge tray (104), strip contacts (208) electrically couple to conductor contacts (204). In one alternative configuration, conductors (202) may be embedded within lower jaw (14) while sealants (210) and resistive strips (206) are within cartridge body (102) and/or cartridge tray (104). Electrical leads (220) extend from conductors (202) and resistive strips (206) through one or more lead apertures (222) to electrically couple to power source (98), as described above. Electrical leads (220) may alternatively be integrated into the structure of lower jaw (16), cartridge tray (104), and/or cartridge body (102) in a similar manner to a PCB or in any other suitable manner as will be apparent to one of ordinary skill in the art in view of the teachings herein.

[0050] C. Exemplary Sealant Channels

[0051] Still a further configuration for a staple cartridge is presented in FIG. 11. A plurality of channels (300) are formed within cartridge body (102). Each channel (300) comprises a channel head (302) and a channel body (304). Channel bodies (304) may extend various distances such that each channel head (302) corresponds to a staple aperture, such as staple apertures (51, 112), when the staple apertures are distributed at different locations. For instance, in the exemplary cartridge (100) shown in FIG. 7, staple
apertures (112) form three rows on either side of vertical slot (106) with staggered staple apertures (112). A plurality of channel bodies (304) of the present example are further configured to be in fluid communication with one or more other channel bodies (304) via ports (306). Ports (306) may be used to inject a sealant (320) into channels (300) during assembly to distribute sealant (320) throughout the plurality of channels (300) prior to sealant (320) solidifying, or, if a liquid or semi-solid sealant (320) is used, ports (306) may permit the plurality of channels (300) to draw from a common reservoir of sealant (320). Sealant (320) is not limited to a sealant, but may include any of the medical fluids and/or other items recited for sealant (170). It should be understood, however, that ports (306) are merely optional and channels (300) may be independent from each other, or a plurality of subsets of channels (300) may be connected by ports (306).

[0052] A resistive channel plate (310) is located within each channel head (302) such that resistive channel plate (310) may heat and vaporize sealant (320) below a corresponding staple aperture for ejection to the stapled tissue. Resistive channel plate (310) may be configured as an independent assembly, such as resistive assemblies (200), or resistive channel plate (310) may comprise only a resistive strip, such as resistive strip (160). If channel plate (310) comprises a resistive strip, one or more channel plate connectors (312) may be provided to electrically couple the resistive channel plates (310) to a conductor and/or power source. In the present configuration, plate connectors (312) are embedded within cartridge body to electrically couple to a single conductor, though it should be understood that channel plate connectors (312) may be configured in a variety of other manners as will be apparent to one of ordinary skill in the art in view of the teachings herein.

[0053] For instance, plate connectors (312) may be configured in a similar manner to strip conductors (162) of FIGS. 8A-8D, 9, and 10 and protrude out (or otherwise be exposed through) the bottom of cartridge body (102) and/or cartridge tray (104). One such configuration is shown in FIG. 12. Channels (300) having resistive plates (310) with plate connectors (312) are shown configured to be within a cartridge body (402) of a cartridge (400). Cartridge (400) is substantially similar in construction to cartridge (100) and cartridge (37), and cartridge (400) comprises a plurality of staple apertures (412), an
upper deck (410), a cartridge body (402), and a vertical slot (406). Channels (300) are aligned with corresponding staple apertures (412). In the present example, lower jaw (16) comprises complementary end effector contacts (420) to electrically couple to plate connectors (312) when cartridge (400) is inserted into lower jaw (16). Alternatively, as noted with some of the above implementations, lower jaw (16) may comprise a single contact to electrically couple to a single contact on cartridge (400). In another alternative, lower jaw (16) may include a single conductor plate to electrically couple to plate connectors (312) or lower jaw (14) itself may have a portion that electrically couples to plate connectors (312).

[0054] While various configurations for channels (300) and cartridge (400) have been disclosed, other suitable configurations will be apparent to one of ordinary skill in the art in view of the teachings herein.

[0055] D. Exemplary Staple Drivers

[0056] Referring now to FIGS. 13-14, different staple drivers may be utilized with the aforementioned configurations for expelling the vaporized sealants. FIG. 13 depicts a staple driver (500) having a staple driver body (502) with a driver aperture (510) formed therein and a pair of alignment tabs (520). Driver aperture (510) extends vertically through staple driver body (502) and is configured to permit the vaporized sealant to be expelled out through the staple apertures of a cartridge. Staple alignment tabs (520) extend vertically from staple driver body (520) and are configured to align a staple on staple driver (500) prior to deployment. Alignment tabs (520) may be further configured to detachably retain the staple, such as through an adhesive or a detachable mechanical connection. In yet a further configuration, alignment tabs (520) may be configured to couple to a receiving notch (not shown) formed within an upper deck of a cartridge, such as upper deck (110), such that staple driver (500) couples to and remains abutted against the upper deck, even when firing bar (14) is retracted. In such a configuration, any of the foregoing configurations may then be activated to expel a sealant through driver aperture (510). An alternative staple driver (600) is depicted in FIG. 14. Alternative staple driver (600) is substantially similar in configuration to staple driver (500), except staple driver
(600) comprises a pair of semi-circular notches (610) formed on the sides of staple driver body (602) to permit a sealant to pass through the notches and past staple driver (600). Of course, as with other components described herein, other suitable configurations for staple drivers (500, 600) will be apparent to one of ordinary skill in the art in view of the teachings herein.

[0057] In yet a further configuration shown in FIG. 15, one or more resistive strips (712) and sealants (714) are embedded within a corresponding chamber (710) in staple driver (700) or coupled to staple driver body (702) of staple driver (700). Sealant (714) is not limited to a sealant, but may include any of the medical fluids and/or other items recited for sealant (170). In this configuration, staple driver (700) has a plurality of staple driver contacts (708) on the bottom surface of staple driver (700), though it should be understood that staple driver contacts (708) may be located anywhere on staple driver (700). A connector (722) electrically couples driver contacts (708) to resistive strips (712), though it should be understood that this is merely optional, and resistive strips (712) may be integrally coupled to driver contacts (708). One or more apertures (720) formed within staple driver body (702) are configured to permit the expulsion of the vaporized sealant (716) to seal the staple and tissue. In the present configuration, driver contacts (708) are configured to electrically couple to one or more contacts located on firing bar (14) and/or wedge sled (41). When firing bar (14) is fully extended (and therefore the staples from the cartridge have been expelled out from the staple apertures), power source (98) may applied to the one or more contacts on firing bar (14), thereby triggering resistive strips (712) to vaporize sealant (714) to be expelled out through apertures (720). Alternatively, if wedge sled (41) comprises contacts, or if wedge sled (41) comprises conductive material, power source (98) may be coupled to wedge sled (41) while wedge sled (41) cams staple driver (700) vertically. As will be appreciated, this may vaporize sealants (714) while the staples are being driven through the tissue. This may reduce the time needed for sealant (714) to reconstitute to seal the staples and tissue. In yet a further configuration, driver contacts (708) may be on one or more sides of staple driver body (702) to electrically couple to corresponding contacts on the sidewall of the pocket through which staple driver (700) moves.
While various configurations for staple drivers (500, 600, 700) have been disclosed, other suitable configurations will be apparent to one of ordinary skill in the art in view of the teachings herein.

E. Exemplary Configuration For End Effector Electrical Coupling

FIG. 16 shows an end effector (12) having one or more electrical contacts (800) coupled to a remote power source, such as power source (98), via connector (810). As noted previously, power source (98) may be located within handle portion (20) (shown in FIG. 1A-1B), or power source (98) may be external to instrument (10). Electrical contact (800) in the present arrangement couples to a corresponding cartridge contact, such as cartridge contacts (130) of cartridge (100), when a cartridge is inserted into lower jaw (16). Electrical contact (800) may be configured to be used multiple times with multiple staple cartridges during the use of instrument (10). While only a single electrical contact (800) is depicted, it should be understood that more than one electrical contact (800) may be utilized. Indeed, it may be useful to provide redundant electrical contacts (800) for instances where blood or other bodily fluids may interfere with the electrical connection of one or more of electrical contacts (800), though it should be understood that this redundancy is merely optional. Furthermore, while electrical contact (800) is shown located near the proximal end of lower jaw (16), other suitable locations for electrical contact (800) on lower jaw (16), anvil (18), or firing bar (14) will be apparent to one of ordinary skill in the art in view of the teachings herein.

It should be understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
Versions of the devices described above may have application in conventional medical treatments and procedures conducted by a medical professional, as well as application in robotic-assisted medical treatments and procedures.

Versions of described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.

By way of example only, versions described herein may be sterilized before and/or after a procedure. In one sterilization technique, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.

Having shown and described various versions in the present disclosure, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the
examples, versions, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
I/We claim:

1. An apparatus comprising:
 (a) an instrument comprising:
 i. a handle portion,
 ii. an end effector comprising:
 (1) a lower jaw,
 (2) a pivotable anvil; and
 (b) a staple cartridge insertable into the end effector, the staple cartridge comprising:
 i. a cartridge body having an upper deck, the upper deck comprising:
 (1) a vertical slot formed in the upper deck and extending longitudinally from a proximal end of the upper deck, wherein a cutting edge is translatable longitudinally through the vertical slot, and
 (2) a plurality of staple apertures,
 ii. one or more staple drivers vertically translatable relative to the cartridge body,
 iii. a plurality of staples disposed above the one or more staple drivers, wherein the plurality of staples are vertically translatable relative to the cartridge body,
 iv. a resistive member disposed within the cartridge body,
 v. a medical fluid having at least a portion in communication with the resistive member.

2. The apparatus of claim 1 wherein the resistive member comprises a resistive strip.

3. The apparatus of claim 2 wherein the lower jaw comprises a conductor, wherein the conductor is selectively coupled to a power source.

4. The apparatus of claim 3 wherein the resistive strip comprises strip contacts,
wherein the conductor comprises conductor contacts, wherein the strip contacts are operable to electrically couple to the conductor contacts.

5. The apparatus of claim 4 wherein at least a portion of the strip contacts is in substantial vertical alignment with the plurality of staple apertures.

6. The apparatus of claim 1 wherein the medical fluid comprises a plurality of sealant pads.

7. The apparatus of claim 6 wherein at least a portion of each of the sealant pads is in substantial vertical alignment with the plurality of staple apertures.

8. The apparatus of claim 1 wherein the one or more staple drivers comprise an aperture extending vertically through the one or more staple drivers.

9. The apparatus of claim 1 wherein the one or more staple drivers comprise a notch extending vertically on a side of the one or more staple drivers.

10. The apparatus of claim 1 wherein the medical fluid comprises a depolymerizable cyanoacrylate or a sprayable thermoplastic urethane.

11. The apparatus of claim 1 wherein the medical fluid is a vaporizable medicament or pharmaceutical.

12. The apparatus of claim 1 wherein the cartridge body comprises a channel formed in a base portion of the cartridge body, wherein the resistive member and the medical fluid are disposed within the channel.

13. The apparatus of claim 1 further comprising a contact coupled to the resistive member and operable to electrically couple the resistive member to a power source.
14. The apparatus of claim 13 wherein the cartridge body comprises a proximal end having a support portion and wherein the contact is located on the support portion.

15. The apparatus of claim 13 wherein the power source is contained within the instrument.

16. An apparatus for endosurgical use, the apparatus comprising:
 (a) a cartridge body having an upper deck, the upper deck comprising:
 i. a vertical slot formed in the upper deck and extending longitudinally from a proximal end of the upper deck, and
 ii. a plurality of staple apertures;
 (b) one or more staple drivers vertically translatable relative to the cartridge body;
 (c) a plurality of staples, wherein the plurality of staples are vertically translatable relative to the cartridge body;
 (d) a plurality of resistive members disposed within the cartridge body;
 (e) a medical fluid having at least a portion in communication with the plurality of resistive members; and
 (f) a contact coupled to the plurality of resistive members and operable to electrically couple the plurality of resistive members to a power source.

17. The apparatus of claim 16 further comprising a plurality of channels formed in the cartridge body, wherein the plurality of resistive members are disposed within the plurality of channels.

18. The apparatus of claim 17 further comprising a port, wherein the port is configured to provide fluid communication between two or more of the plurality of channels.

19. The apparatus of claim 17 wherein at least a portion of the medical fluid is
contained within a reservoir in fluid communication with one or more channels of the plurality of channels.

20. A method for stapling and sealing tissue using an instrument, a staple cartridge, and a power source, wherein the instrument comprises an end effector configured to receive a staple cartridge, wherein the end effector comprises one or more staple forming pockets, wherein the staple cartridge comprises an upper deck having a one or more staple apertures, one or more staple drivers disposed within the staple cartridge, one or more staples translatable by the one or more staple drivers, one or more resistive members selectively coupled to the power source, and a medical fluid at least partially in communication with the one or more resistive members, the method comprising:

(b) positioning the end effector at the tissue;

(c) using the one or more staple drivers to drive the one or more staples out of the one or more staple apertures, through the tissue, and at least partially into the one or more staple forming pockets;

(d) activating the power source coupled to the one or more resistive members;

(e) heating at least part of the medical fluid using the resistive members; and

(f) expelling at least part of the medical fluid out through the upper deck.
FIG. 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61B17/072 A61B17/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched: (classification system followed by classification symbols)
A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where applicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2006/122592 A1 (TREAT MICHAEL R [US]) 8 June 2006 (2006-06-08) paragraphs [0043], [0057], [0090], [0095]; figures 6,1</td>
<td>1,2</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☑ See patent family annex.

* Special categories of cited documents:
 * Document defining the general state of the art which is not considered to be of particular relevance
 * Earlier application or patent but published on or after the international filing date
 * Document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * Document referring to an oral disclosure, use, exhibition or other means
 * Document published prior to the international filing date but later than the priority date claimed

*’ later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*” document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*” document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*” document member of the same patent family

Date of the actual completion of the international search: 27 November 2012
Date of mailing of the international search report: 04/12/2012

Name and mailing address of the ISA/Authorized officer:
European Patent Office, P.B. 5618 Patentiaan 2 NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016
Barton, Simon
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [X] Claims Nos.: 20
 because they relate to subject matter not required to be searched by this Authority, namely:
 Excluded method of treatment by surgery, see Rules 39,67 EPC.

2. [X] Claims Nos.: 16-19
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
 see FURTHER INFORMATION sheet PCT/ISA/210

3. [] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 8.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- [] The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- [] The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- [] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)
Continuation of Box II.1

Claims Nos.: 20

Excluded method of treatment by surgery, see Rules 39, 67 EPC.

Continuation of Box II.2

Claims Nos.: 16-19

The presence of two independent device claims 1, 16 with various selections of features renders unclear the definition of the claimed invention, contrary to the requirements of Article 6 PCT.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.2), should the problems which led to the Article 17(2) declaration be overcome.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2006122592 A1</td>
<td>08-06-2006</td>
<td>AU 2003279219 A1</td>
<td>04-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003129382 A1</td>
<td>10-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006122592 A1</td>
<td>08-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004032596 A2</td>
<td>22-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 3433302 A</td>
<td>14-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 2384950 A1</td>
<td>07-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1386477 A</td>
<td>25-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 66203024 D1</td>
<td>31-03-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 66203024 T2</td>
<td>16-03-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2236446 T3</td>
<td>16-07-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4248803 B2</td>
<td>02-04-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002369820 A</td>
<td>24-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA02004507 A</td>
<td>16-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002165562 A1</td>
<td>07-11-2002</td>
</tr>
</tbody>
</table>