(12) PATENT (11) Application No. - Al 200060685 B2
(19) AUSTRALIAN PATENT OFFICE (10) Patent No. 775495

(54)

(51)6

(74)

Title
Method and apparatus for monitoring traffic in a network

International Patent Classification(s)

GOeF 015-173

Application No: 200060685 (22) Application Date: 2000 . 06 . 30
WIPO No: W001-01272

Priority Data

Number (32) Date (33) Country

60141903 1999 .06 .30 us

Publication Date : 2001 .01.31

Publication Journal Date : 2001 .03 .29

Accepted Journal Date : 2004 .08.05

Applicant(s)
Apptitude Acgqguisition Corporation

Inventor(s)

Russell 5. Dietz: Joseph R. Maixner: Andrew A,
Eoppenhaver : William H. Bares: Haig A.
Sarkissian : James F. Torgerson

Agent/Attorney

Baldwin Shelston Waters.,Level 21,60 Margaret Street. 3YDNEY
2000

Related Art

Us 5351243
Us 5917821
Us 5414704

NSW

AU 200060685

(12) INTERNATIONAL 'APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Org:
International Burcau

1 1 10T

(43) laternational Publication Date (10) International Publication Number
4 January 2001 (04.01.2001) PCT WO 01/01272 A3
(51) International Patent Classification: GO6F 15/173 San Antonio, TX 78255 (US). TORGERSON, James,
F. [US/US]; 227 157th Ave., N.W.. Andover, MN 55304
(21) International Application Number: PCT/US0(/18330 (US).

(22) International Fiting Date: 30 June 2000 (30.06.2000) (74) Agent: ROSEN FELD, Dov: Inventek. 5507 College Av-
enuc, Suitc 2, Oakland, CA 94618 (US).

(35) Filing Language: English (81) Designated States (national): AE, AL, AM. AT. AU. AZ,

BA, BB, BG, BR, BY, CA, CH, CN, CR, CU,CZ, DE, DK,

DM, EE, ES, FI1, GB. GD, GE, GH, GM, HR, HU., ID, IL,

IN.1S,JP, KE, KG. KP. KR, KZ, LC, LK. LR, LS, LT, LU,

LV, MA, MD, MG. MK, MN, MW, MX, NO, NZ, PL, PT,

(26) Publication Language: English

(30} Priority Data:
60/141.903 30 June 1999 (30.06.1999) US

e€C

AQh O Noehitude o Canponabion RO, RU, SD, SE, SG, S, SK, SL, T}, TM, TR, TT, TZ, UA,
QQ (71) Applicant (/or all des;gmm-ﬂes except US): ARRF- UG, US, UZ. VN. YU. ZA. ZW.
Zent S WW (84) Designated States (regional): ARIPO patent (GH. GM.
| o ETSTERRNITASE e B A
(75) Inventors/Applicants (for US orly): DIETZ, Rus- g?j“f:fﬁgﬁf” ﬁrcz'ﬁl))%fé' :;cs(:f: gf‘gkgg‘
; sell, S. [US/US]; 6146 Ostenberg Drive. San Jose. CA C1. CM, GA. GN, GW, ML. MR, NE. SN.TD.TG).

95120-2736 (US). MAIXNER, Joseph, R. (US/US}, 121

Drifiwood Court, Aptos, CA 95003 (US). KOPPEN- pyblished:

HAVER, Andrew, A. [US/US]; 10400 Kenmore Drive, — v ih international search report

Fairfax, VA 22030 (1JS). BARES, William, H. [UiS/US]:

9005 Glenalden Drive, Germantown, TN 38139 (US). (88) Date of publication of the international search report:
SARKISSIAN, Haig, A. [US/US]: 8701 Mountain Top, 7 September 2001 '

[Continued on next page]

$4) Titie: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

)
<«

(57) Abstract: A monitor for and a method of examining packets passing through a connection point on a computer network. Each
packet conforms 1o one or more protocols. The system {100] has a computer nciwork [102) that communicates packets between
™~ various clients [104-107] and servers [110] and {112]. The method includes a network packet monitor [300] recciving a packet
(: [302] from a packet acquisition device [123} and ing one or more parsing/s jon operations on the packet (o creale a
= parser record comprising a function of selected portions of the packet. The parsing/extraction oper:mons depcnd on one or more
= protocols to which the packu conforms, The method turther 1nCIVdES I0OXING UP 2 [1OW-ENLTY Gatabase {324) vusiwiing H5% 22
for previously d c ional flows. The lookup usts the selected packel portions and determining if the packet is of an
extensing flow. If the packet is of an existing flow, the method classifies the packet as belonging 10 the found existing flow. and if
the packet is of a new clow, the method stores a new flow-entry for the new flow in the flow-cntry database, including identifying
3 information for future packets to be identified with the new flow-entry. The method thus examiaes each and every packcl passmg
through the connection paint in real time until the appli program jated with the ional flow is

2

'O 01/1

WO 01/01272 A3 MUK RRCTER R MRS G A

For two-letter codes and other abbreviations, refer 1o the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 01/01272 PCT/US00/18330
1

METHOD AND APPARATUS FOR MONITORING
TRAFFIC IN A NETWORK

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time
5 elucidation of packets communicated within a data network, including classification

according to protocol and application program.

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No.
60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
10 NETWORK to inventors Dietz, et al., filed June 30, 1999 and assigned to APPTITUDE,

Inc., the assignee of the present invention.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material that is
subject to copyright protection. The copyright owner has no objection to the facsimile
15 reproduction by anyone of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

BACKGROUND TO THE PRESENT INVENTION

There has long been a need for network activity monitors. This need has become

20 especially acute, however, given the recent popularity of the Internet and other internets— 1
an “internet” being any plurality of interconnected networks which forms a larger, single
network. With the growth of networks used as a colection of clients obtaining services
from one or more servers on the network, it is increasingly important to be able to
monitor the use of those services and to rate them accordingly. Such objective

25 information, for example, as which services (i.e., application programs) are being used,
who is using them, how often they have been accessed, and for how long, is very useful in
the maintenance and continued operation of these networks. It is especially important that
selected users be able to access a network remotely in order to generate renorts on
network use in real time. Similarly, a need exists for a real-time network monitor that can

30 provide alarms notifying selected users of problems that may occur with the network or i

WQ 01/01272 PCT/US00/18330

site.

One prior art monitoring method uses log files. In this method, selected network
activities may be analyzed retrospectively by reviewing log files, which are maintained by
network servers and gateways. Log file monitors must access this data and analyze

5 (“mine”) its contents to determine statistics about the server or gateway. Several problems
exist with this method, however. First, log file information does not provide a map of
real-time usage; and secondly, log file mining does not supply complete information. This
method relies on logs maintained by numerous network devices and servers, which
requires that the information be subjected to refining and correlation. Also, sometimes

10 information is simply not available to any gateway or scrver in order to make a log file

entry.

One such case, for example, would be information concerning NetMeeting®
(Microsoft Corporation, Redmond, Washington) sessions in which two computers

connect directly on the network and the data is never seen by a server or a gateway.

15 Another disadvantage of creating log files is that the process requires data logging
features of network elements to be enabled, placing a substantial load on the device ,
which results in a subsequent decline in network performance. Additionally, log files can
grow rapidly, there is no standard means of storage for them, and they require a

significant amount of maintenance. i

20 Though Netflow® (Cisco Systcms, Inc., San Jose, California), RMON2, and other
network monitors are available for the real-time monitoring of networks, they lack .
visibility into application content and are typically limited to providing network layer

level information.

Pattern-matching parser techniques wherein a packet is parsed and pattern filiers
35 are applied are also known, but these too are limited in how deep into the protocol stack

they can examine packets.

Some prior art packet monitors classify packets into connection flows. The term
“connection flow” is commonly used to describe all the packets involved with a single
conmection, A convomsational 110w, On iue vilier band, is (i sequence Of packets that are
30 exchanged in any direction as a result of an activity—for instance, the running of an

application on a server as requested by a client. It is desirable to be able to identify and

WO 01/01272 PCT/US00/18330

3

classify conversational flows rather than only connection flows. The reason for this is that
some conversational flows involve more than one connection, and some even involve
more than one exchange of packets between a client and server. This is particularly true
when using client/server protocols such as RPC, DCOMP, and SAP, which enable a

5 service to be set up or defined prior to any usc of that service.

An example of such a case is the SAP (Service Advertising Protocel), a NetWare

(Novell Systems, Provo, Utah) protocol used to identify the services and addresses of
servers attached to a network. In the initial exchange, a client might send a SAP request to
a server for print service. The server would then send a SAP reply that identifies a

10 particular address—for example, SAP#5—as the print service on that server. Such
responses might be used to update a table in a router, for instance, known as a Scrver
Information Table. A client who has inadvertently seen this reply or who has access to the
table (via the router that has the Service Information Table) would know that SAP#3 for
this particular server is a print service. Therefore, in order to print data on the server, such

15 aclient would not need to make a request for a print service, but would simply send data
to be printed specifying SAP#S. Like the previous exchange, the transmission of data to
be printed also involves an exchange between a client and a server, but requires a second
connection and is therefore independent of the initial exchange. In order to eliminate the
possibility of disjointed conversational exchanges, it is desirable for a network packet

20 monitor to be able to “virtually concatenate”—that is, to link—the first exchange with the
second. If the clients were the same, the two packet exchanges would then be correctly

identified as being part of the same conversational flow.

Other protocols that may lead to disjointed flows, include RPC (Remote Procedure

Call); DCOM (Distributed Component Object Model), formerly called Network OLE

25 (Microsoft Corporation, Redmond, Washington); and CORBA (Common Object Request
Broker Architecture). RPC is a programming interface from Sun Microsystems (Palo
Alto, California) that allows one program (o use the services of another program in a
remote machine. DCOM, Microsoft’s counterpart to CORBA, defines the remote
procedure call that allows those objects—objects are self-contained software modules—to

30 be run remotely over the network. And CORBA. a standard from the Obiect Management
Group (OMG) for communicating between distributed objects, provides a way to exccute

programs (objects) written in different programming languages running on different

20

25

30

—

WO 01/01272 PCT/US00/18330

4

platforms regardless of where they reside in a network.

What is needed, therefore, is a network monitor that makes it possible to
continuously analyze all user sessions on a heavily trafficked network. Such a monitor
should cnable non-intrusive, remote detection, characterization, analysis, and capture of
all information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for cach of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within cach application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and anatyzed; to undertake real time analysis; and to receive timely notification

of network problems.

Considering the previous SAP example again, because one features of the
invention is to correctly identify the second exchange as being associated with a print
service on that server, such exchange would even be recognized if the clients were not the
same. What distinguishes this invention from prior art network monitors is that it has the

ability to recognize disjointed flows as belonging to the same conversational flow.

The data value in monitoring network communications has been recognized by
many inventors. Chiu, et al., describe a method for collecting information at the session
level in a computer network in United States Patent 5,101,402, titled “APPARATUS
AND METHOD FOR REAL-TIME MONITORING OF NETWORK SESSIONS AND
A LOCAL AREA NETWORK?” (the “402 patent™). The 402 patent specifies fixed
locations for particular types of packets to extract information to identify session of a
packet. For example, if a DECnet packet appears, the 402 patent looks at six specific
fields (at 6 locations) in the packet in order to identify the session of the packet. If, on the
other hand, an IP packet appears, a different set of six different locations is specified for
an IP packet. With the proliferation of protocols, clearly the specifying of all the possible

places to look to determine the session becomes more and more difficult. Likewise,

W

20

25

30

WO 01/01272 PCT/US00/18330

5

adding a new protocol or application is difficuit. In the present invention, the locations
examined and the information extracted from any packet are adaptively determined from
information in the packet for the particular type of packet. There is no fixed definition of
what to look for and where to look in order to form an identifying signature. A monitor
implementation of the present invention, for example, adapts to handle differently IEEE
802.3 packet from the older Ethernet Type 2 (or Version 2) DIX (Digital-Intel-Xerox)

packet.

The 402 patent system is able to recognize up to the session layer. In the present
invention, the number of levels examined varies for any particular protocol. Furthermore,
the present invention is capable of examining up to whatever level is sufficient to
uniquely identify to a required level, even all the way to the application level (in the OSI
model).

Other prior art systems also are known. Phael describes a network activity monitor
that processes only randomly selected packets in United States Patent 5,315,580, titled
“NETWORK MONITORING DEVICE AND SYSTEM.” Nakamura teaches a network
monitoring system in United States Patent 4,891,639, titled “MONITORING SYSTEM
OF NETWORK.” Ross, et al., teach a method and apparatus for analyzing and
monitoring network activity in United States Patent 5,247,517, titled “METHOD AND
APPARATUS FOR ANALYSIS NETWORKS,” McCreery, et al., describe an Internet
activity monitor that decodes packet dat at the Intemet protocol level layer in United
States Patent 5,787,253, titled “APPARATUS AND METHOD OF ANALYZING
INTERNET ACTIVITY.” The McCreery method decodes IP-packets. It goes through the
decoding operations for each packet, and therefore uses the processing overhead for both
recognized and unrecognized flows. In a monitor implementation of the present invention,
a signature is built for every flow such that future packets of the flow are easily
recognized. When a new packet in the flow arrives, the recognition process can
commence from where it last left off, and a new signature built to recognize new packets

of the flow.

A network analyzer should be able to analyze many different protocols. At a base
level, there are a number of standards used in digital telecommunications, including
Ethernet, HDLC, ISDN, Lap B, ATM, X.25, Frame Relay, Digital Data Service, FDDI
(Fiber Distributed Data Interface), T1, and others. Many of these standards employ

WO 01/01272 PCT/US00/18330

6

different packet and/or frame formats. For example, data is transmitted in ATM and
frame-relay systems in the form of fixed length packets (called “cells™) that are 53 octets
(i.e., bytes) long. Several such cells may be needed to make up the information that might
be included in the packet employed by some other protocol for the same payload

5 information—for example in a conversational flow that uses the frame-relay standard or

the Ethernet protocol.

In order for a network monitor to be able to analyze different packet or frame
formats, the monitor needs to be able to perform protocol specific operations on each
packet with each packet carrying information conforming to different protocols and

10 related to different applications. For example, the monitor needs to be able to parse
packets of different formats into fields to understand the data encapsulated in the different
fields. As the number of possible packet formats or types increases, the amount of logic

required to parse these different packet formats also increases.

Prior art network monitors exist that parse individual packets and look for

15 information at different fields to use for building a signature for identifying packets. Chiu,
et al., describe a method for collecting information at the session level in a computer
nerwork in United States Patent 5,101,402, titled “APPARATUS AND METHOD FOR
REAL-TIME MONITORING OF NETWORK SESSIONS AND A LOCAL AREA
NETWORK.” In this patent, there are fixed locations specified for particular types of

20 packets. For example, if a DECnet packet appears, the Chiu system looks at six specific
fields (at 6 locations) in the packet in order to identify the scssion of the packet. If, on the
other hand, an IP packet appears, a different set of six locations is examined. The system
looks only at the lowest levels up to the protocol layer. There are fixed locations for each
of the fields that specified the next level. With the proliferation of protocols, clearly the

25 specifying of all the possible places to look to determine the session becomes more and

more difficult. Likewise, adding a new protocol or application is difficult.

It is desirable to be able to adaptively determine the locations and the information
extracted from any packet for the particular type of packet. In this way, an optimal
signature may be defined using a protocol-dependent and packet-content-dependent

30 definition of what to look for and where to look for it in order to form a signature.

There thus is also a need for a network monitor that can be tailored or adapted for

e — \
WO 0101272 PCT/US00/18330

7

different protocols and for different application programs. There thus is also a need for a
network monitor that can accommodate new protocols and for new application programs.
There also is a need for means for specifying new protocols and ncw levels, including
new applications. There also is a need for a mechanism to describe protocol specific

5 operations, including, for example, what information is relevant to packets and packets
that need to be decoded, and to include specifying parsing operations and extraction
operations. There also is a need for a mechanism to describe state operations to perform
on packets that are at a particular state of recognition of a flow in order to further

recognize the flow.

10 It is advantageous 1o collect statistics on packets passing through a point in 2
network rather than to simply count each and every packet. By maintaining statistical
measures in the flow-entries related to a conversational flow, embodiments of the present
invention enable specific metrics to be collected in real-time that otherwise would not be
possible. For example, it is desirable to maintain metrics related to bi-directional

15 conversations based on the entire flow for each exchange in the conversation. By
maintaining the state of flow, embodiments of the present invention also enable certain

metrics related to the states of flows to be determined.

Most prior-art network traffic monitors that use statistical metrics collect only
end-point and end-of-session related statistics. Examples of such commonly used metrics
20 include packet counts, byte counts, session connection time, session timeouts, session and
transport response times and others, All of these deal with events that can be directly
related to an event in a single packet. These prior-art systems cannot collect some
important performance metrics that are related to a complete sequence of packets ofa

flow or to several disjointed sequences of the same flow in a network.

25 Time based metrics on application data packets are important. Such metrics could
be determined if all the timestamps and related data could be stored and forwarded for
later analysis. However when faced with thousands or millions of conversations per
second on ever faster networks, storing all the data, even if compressed, would take too

much processing, memory, and manager down load time to be practical.

30 Thus there is a need for maintaining and reporting time-base metrics from

statistical measures accumulated from packets in a flow.

-10-

WO 01/01272 PCT/US00/18330

8

Network data is properly modeled as a population and not a sample. Thus, all the
data needs to be processed. Because of the nature of application protocols, just sampling
some of the packets may not give good measures related to flows. Missing just one
critical packet, such as one the specified an additional port that data will be transmitted

5 on, or what application will be run, can cause valid data to be lost.

Thus there is also a need for maintaining and reporting time-base metrics from

statistical measures accurnulated from every packet in a flow.

There also is a need to determine metrics related to a scquence of events. A good
example is relative jitter. Measuring the time from the end of one packet in one direction
10 to another packet with the same signature in the same direction collects data that relates
normal jitter. This type of jitter metric is good for measuring broad signal quality in a
packet network. However, it is not specific to the payload or data item being transported

in a cluster of packets.

Because of the high speed that packets may be entering the system, embodiments
15 of the present invention include a cache. It is desirable to maximize the hit rate in a cache

system.

Typical prior-art cache systems are used to expediting memory accesses to and
from microprocessor systems. Various mechanisms are available in such prior art systems
to predict the lookup such that the hit rate can be maximized. Prior art caches, for

20 cxample, can use a lookahead mechanism to predict both instruction cache lookups and
data cache lookups. Such lookahead mechanisms are not available for a cache subsystem
for the packet monitoring application. When a new packet enters the monitor, the next
cache access, for example from the lookup engine, may be for a totally different
conversational flow than the last cache lookup, and there is no way ahead of time of

25 knowing what flow the next packet will belong to.

Thus there is a need in the art for a cache subsystem suitable for use in a packet
monitor. One desirable property of such a cache system is a least recently used (LRU)
replacement policy that replaces the LRU flow-entry when a cache replacement is needed.
Kepiacing ieast recentiy used fiow-entries is preiermed because i s likely diat a pavkel

30 following a recent packet will belong to the same flow. Thus, the signature of a new

packet will likely match a recently used flow record. Conversely, it is not highly likely

11-

WO 01/01272 PCT/US00/18330

9

that a packet associated with the least recently used flow-entry will soon arrive.

A hash is often used to facilitate lookups. Such a hash may spread entries

randomly in a database. In such a case, an associative cache is desirable.

There thus is a need for an associative cache subsystem that also includes a LRU

5 replacement policy.

It is desirable for a packet monitor to maintain the state of a flow and to perform
any state processing necessary to further the process of determining the application
program associated with a flow. Thus there is a need for a state processor that analyzes

both new and existing flows in order to classify them by application.

10 Ore of the common operations that may be require of a state processor is to search
the contents of a packet for the existence of one of a set of known strings. Such
identification may be useful for furthering the process of identifying the application

content of a conversational flow. For example, it may be desired to search for the uniform

resource locator (URL) of packets related to the http protocol, or there may be a need to
15 search for particular strings that identify protocols or aspects of protocols, for example,

the strings “port”, “get”, “post,” and so forth. Any of these strings may be in a packet, and

which string and wherein the packet the string resides is often unknown.

In most common processing systems, the set of instructions implemented are
general purpose in nature. All processing systems have a typical set of instructions related
20 to the analysis and manipulation of the Instruction and program counters. These
instructions include Jump, Call and Return. In addition, these same processing systems
contain the appropriate instructions to analyze and manipulate registers and memory
locations. These instructions include Increment, Decrement and Move, Compare and

Logical manipulation.

25 While a state processor can includes such a basic set of standard instructions,
implementing searches for known for one or more known strings in a target data stream
may take too long using such a set of standard instructions in order to accommodate the
high speed of packet arrival. It is therefore desirable to have a processor that can perform
some specific search functions that are required to evaluate the content of and data within

30 packets on networks extremely rapidly.

12-

WO 01/01272 PCT/US00/18330

10

Specifically, there is a need for a searching apparatus that may be part of the state
processor and that can rapidly search a target data stream for a specified reference string.
Furthermore, there is a nced for a programmable processor that includes instructions that

invoke the searching apparatus to perform such a search.

5 Using such a processor in a network monitor enables the monitor to scale and

meet any network speed requirements.

SUMMARY |

In its various embodiments the present invention provides a network monitor that

can accomplish one or more of the following objects and advantages:

10 ¢ Recognize and classify all packets that are exchanges between a client and

server into respective clicnt/server applications.

¢ Recognize and classify at all protocol layer levels conversational flows that

pass in either direction at a point in a network.

¢ Determine the connection and flow progress between clients and servers

15 according to the individual packets exchanged over a network.

¢ Be used to help tune the performance of a network according to the current

mix of client/server applications requiring network resources.

» Maintain statistics relevant to the mix of client/server applications using

network resources. |

20 « Report on the occurrences of specific sequences of packets used by particular

applications for client/server network conversational flows.
Other aspects of embodiments of the invention are:

» Properly analyzing each of the packets exchanged between a client and a
server and maintaining information relevant to the current statc of each of

25 these conversational flows,

= ~ndneatad ne marn

o Providing a fiexibic processiuy sysicini ihat can be tailorcd o adapied 2o

applications enter the client/server market.

13-

WO 01/01272 PCT/US00/18330

11

¢ Maintaining statistics relevant to the conversational flows in a client/sever

network as classificd by an individual application.

o Reporting a specific identifier, which may be used by other network-oriented
devices to identify the series of packets with a specific application for a

5 specific client/server network conversational flow.

In general, the embodiments of the present invention overcome the problems and

disadvantages of the art.

As described herein, one embodiment analyzes each of the packets passing
through any point in the network in either direction, in order to derive the actual
10 application used to communicate between a client and a server. Note that there could be
several simultaneous and overlapping applications executing over the network that are

independent and asynchronous.

A monitor embodiment of the invention successfully classifies each of the

individual packets as they are seen on the nctwork. The contents of the packets are parsed

15 and selected parts are assembled into a signature (also called a key) that may then be used
identify further packets of the same conversational flow, for example to further anatyze
the flow and ultimately to recognize the application program. Thus the key is a function
of the selected parts, and in the preferred embodiment, the function is a concatenation of
the selected parts. The preferred embadiment forms and remembers the state of any

20 conversational flow, which is determined by the relationship between individual packets
and the entire conversational flow over the network. By remembering the state of a flow
in this way, the embodiment determines the context of the conversational flow, including
the application program it relates to and parameters such as the time, length of the

conversational flow, data rate, etc.

25 The monitor is flexible to adapt to future applications developed for client/server
networks. New protocols and protocol combinations may be incorporated by compiling

files written in a high-level protocol description language.

The monitor embodiment of the present invention is preferably implemented in
application-specific integrated circuits (ASIC) or field programmable gate arrays (FPGA).

30 Inone embodiment, the monitor comprises a parser subsystem that forms a signature from

14-

w0 01/01272 PCT/US00/18330

12

a packet. The monitor further comprises an analyzer subsystem that reccives the signature

from the parser subsystem.

A packet acquisition device such as a media access controller (MAC) or a
segmentation and reassemble module is used to provide packets to the parser subsystem

5 of the monitor.

In a hardware implementation, the parsing subsystem comprises two sub-parts, the
pattern analysis and recognition engine (PRE), and an extraction engine (slicer). The PRE
interprets each packet, and in particular, interprets individual fields in each packet

according to a pattern database.

10 The different protocols that can exist in different layers may be thought of as
nodes of one or more trees of linked nodes. The packet type is the root of a tree. Each
protocol is either a parent node or a terminal node. A parent node links 2 protocol to other
protocols (child protocols) that can be at higher layer levels. For example, An Ethernet
packet (the root node) may be an Ethertype packet—also called an Ethernet Type/Version

15 2 and a DIX (DIGITAL-Intel-Xerox packet}—or an [EEE 802.3 packet. Continuing with
the IEEE 802.3-type packet, one of the children nodes may be the IP protocol, and one of
the children of the IP protocol may be the TCP protocol.

The pattern database includes a description of the different headers of packets and
their contents, and how these relate to the different nodes in a tree. The PRE traverses the
20 tree as far as it can. If a node docs not include a link 1o a deeper level, pattern matching is
declared complete. Note that protocols can be the children of several parents. If a unique
node was generated for each of the possible parent/child trees, the pattern database might
become excessively large. Instead, child nodes are shared among multiple parents, thus

compacting the pattern database.

25 Finally the PRE can be used on its own when only protocol recognition is

required.

For each protocol recognized, the slicer extracts important packet elements from
the packet. These form a signature (i.e., key) for the packet. The slicer also preferably
generates a hash for rapidly identifying a flow that may have this signature from a

30 database of known flows.

-15-

WO 01/01272 PCTAUS00/18330

13

The flow signature of the packet, the hash and at least some of the payload are
passed to an analyzer subsystem. In a hardware cmbodiment, the anatyzer subsystem
includes a unified flow key buffer (UFKB) for receiving parts of packets from the parser
subsystem and for storing signatures in process, a lookup/update engine (LUE) to lookup

5 adatabase of flow records for previously encountered conversational flows to determine
whether a signature is from an existing flow, a state processor (SP) for performing state
processing, a flow insertion and deletion engine (FIDE) for inserting new flows into the
database of flows, a memory for storing the database of flows, and a cache for speeding
up access to the memory containing the flow database. The LUE, SP, and FIDE are all

10 coupled to the UFKB, and to the cache.

The unified flow key buffer thus contains the flow signature of the packet, the
hash and at least some of the payload for analysis in the analyzer subsystem. Many
operations can be performed to further elucidate the identity of the application program
content of the packet involved in the client/server conversational flow while a packet

15 signature exists in the unified flow signature buffer. In the particular hardware
embodiment of the analyzer subsystem several flows may be processed in parallel, and
multiple flow signatures from all the packets being analyzed in parallel may be held in the
one UFKB.

The first step in the packet analysis process of a packet from the parser subsystem

20 is to lookup the instance in the current database of known packet flow signatures. A
lookupfupdate engine (LUE) accomplishes this task using first the hash, and then the flow
signature. The search is carried out in the cache and if there is no flow with a matching
signature in the cache, the lookup engine attempts to retrieve the flow from the flow
database in the memory. The flow-entry for previously encountered flows preferably

25 includes state information, which is used in the state processor to execute any operations
defined for the state, and to determine the next state. A typical state operation may be to
search for one or more known reference strings in the payload of the packet stored in the
UFKB.

Once the lookup processing by the LUE has been completed a flag stating whether
30 1t1s found or is new is set within te unified fiow signawre buiior sisuciute fur tis pachel
flow signature. For an existing flow, the flow-entry is updated by a calculator component

of the LUE that adds values to counters in the flow-entry database used to store one or

-16-

WO 01/01272 PCT/US00/18330

14

more statistical measures of the flow. The counters are used for determining network

usage metrics on the flow.

After the packet flow signature has been looked up and contents of the current
flow signature are in the database, a state processor can begin analyzing the packet
5 payload to further elucidate the identity of the application program component of this
packet. The exact operation of the state processor and functions performed by it will vary
depending on the current packet sequence in the stream of a conversational flow. The
state processor moves to the next logical operation stored from the previous packet seen
with this same flow signature. If any processing is required on this packet, the statc
10 processor will exccute instructions from a database of state instruction for this state until

there are either no more left or the instruction signifies processing.

In the preferred embodiment, the state processor functions are programmable to
provide for analyzing new application programs, and new sequences of packets and states

that can arise from using such application.

15 If during the lookup process for this particular packet flow signature, the flow is
required to be inserted into the active database, a flow insertion and deletion engine
(FIDE) is initiated. The state processor also may create new flow signatures and thus may
instruct the flow insertion and deletion engine to add a new flow to the database as a new

item.

20 In the preferred hardware embodiment, each of the LUE, state processor, and

FIDE operate independently from the other two engines.

Another aspect of the invention is collecting metrics related to a flow. Using the
state processing described herein, because the state processor can search for specific data
payloads, embodiments of the inventive monitor described herein can be programmed to

25 collect the same jitter metric for a group of packets in a flow that are all related to a
specific data payload. This allows the inventive system to provide metrics more focused
on the type of quality related to a set of packets. This in general is more desirable than
metrics related to single packets when evaluating the performance of a system in a

network.

30 Specifically, the monitor system can be programmed to maintain any type of

metric at any state of a conversational flow. Also the monitor can have the actual statistics

A7-

WO 01/01272 PCT/US00/18330

15

programmed into the state at any point. This enables embodiments of the monitor system
to collect metrics related to network usage and performance, as well as metrics related to

specific states or sequences of packets.

Some of the specific metrics that can be collected only with states are events
s related to a group of traffic in one direction, events related to the status of a
communication sequence in one or both directions, events related to the exchange of
packets for a specific application in a specific sequence. This is only a small sample of the

metrics that requires an engine that can relate the state of a flow to a set of metrics.

In addition, because the monitor provides greater visibility to the specific
10 application in a conversation or flow, the monitor can be programmed to collect metrics
that may be specific to that type of application or service. In other word, if a flow is for an
Oracle Database server, an embodiment of monitor could collect the number of packets
required to complete a transaction. Only with both state and application classification can

this type of metric be derived from the network.

15 Because the monitor can be programmed to collect a diverse set of metrics, the
system can be used as a data source for metrics required in a number of environments. In
particular, the metrics may be used to monitor and analyze the quality and performance of
traffic flows related to a specific set of applications. Other implementation could include
metrics related to billing and charge-back for specific traffic flow and events with the

20 traffic flows. Yet other implementations could be programmed to provide metrics useful
for troubleshooting and capacity planning and related directly to a focused application and

service.

Another aspect of the invention is determining quality of service metrics based on

each and every packet.

25 Thus, disclosed herein is a method of and monitor apparatus for analyzing a flow
of packets passing through a connection point on a computer network are disclosed that
may include such quality of service metrics. The method includes receiving a packet from
a packet acquisition device, and looking up a flow-cntry database containing flow-entries
for previously encountered conversational flows. The looking up to determine if the

30 reccived packet is of an existing flow. Each and every packet is processed. If the packet is

of an existing flow, the method updates the flow-entry of the existing flow, including

18-

WO 01/01272 PCT/US00/18330

16

storing one or more statistical measures kept in the flow-entry. If the packet is of a new
flow, the method stores a new flow-entry for the new flow in the flow-entry database,
including storing one or more statistical measures kept in the flow-entry. The statistical
measures are used to determine metrics related to the flow. The metrics may be base

5 metrics from which quality of service metrics are determined, or may be the quality of

service metrics.

Also described herein is an associative cache system for looking up one or more
clements of an external memory. The cache system comprises a set of cache memory
elements coupled to the external memory, a set of content addressable memory cells

10 (CAMs) containing an address and a pointer to one of the cache memory elements, and
including a matching circuit having an input such that the CAM asserts a match output
when the input is the same as the address in the CAM cell. Which cache memory element
a particular CAM points to changes over time. In the preferred implementation, the
CAMs are connected in an order from top to bottom, and the bottom CAM points to the

15 least recently used cache memory element.

Also disclosed herein is a processor for processing contents of packets passing
through a connection point on a computer network. The processor includes a searching
apparatus having one or more comparators for searching for a reference string in the
contents of a packet. The processor processes contents of all packets passing through the

20 connection point in real time. In one implementation, the processor is programmable and
has an instruction set that includes an instruction for invoking the searching apparatus to
search for a specified reference string in the packet starting at an unknown location within

arange of the packet.

Embodiments of searching apparatus that can be used in the processor also are
25 disclosed. The searching apparatus is configured to search for a reference string of Ng
units in target data starting from any of a set of starting positions within the target data.
The searching apparatus includes a reference register configured to receive the N units
of a reference string, one or more target data registers coupled in series to receive the
target data; and, a plurality of comparator sets, one comparator set corresponding to cach
30 of the starting positions. The comparator set of a particular starting position is coupled to

each unit of the reference register and to Ny units of the target data registers starting from

19-

WO 01/01272 PCT/US00/18330

17

the particular starting position and comparing the reference register contents to
corresponding contents of Ny contiguous units of the target data registers starting from
the particular starting position. Each comparator set indicates if there is a match of the
first reference string in the target data starting from its corresponding different starting
5 position. The first plurality of comparator sets indicates in parallel if the first reference

string is contained in the target data registers starting at any of the starting positions.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed

preferred embodiments, these should not be taken to limit the present invention to any

10 specific embodiment because such embodiments are provided only for the purposes of
explanation. The embodiments, in turn, are explained with the aid of the following

figures.

FIG. 1 is a functional block diagram of a network embodiment of the present
invention in which a monitor is connected to analyze packets passing at a connection

15 point.

FIG. 2 is a diagram sepresenting an example of some of the packets and their
formats that might be exchanged in starting, as an illustrative example, a conversational
flow between a client and server on a network being monitored and analyzed. A pair of
flow signatures particular to this example and to embodiments of the present invention is

20 also illustrated. This represents some of the possible flow signatures that can be generated
and used in the process of analyzing packets and of recognizing the particular server

applications that produce the discrete application packet exchanges.

FIG. 3 is a functional block diagram of a process embodiment of the present
invention that can operate as the packet monitor shown in FIG. 1. This process may be

25 implemented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and optimization

process, which in one embodiment may be used to generate data for monitoring packets

according to versions of the present invention.

FIG. § is a flowchart of a packet parsing process uscd as part of the parser in an

30 embodiment of the inventive packet monitor.

-20-

WO 01/01272 PCT/US00/18330

18

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

5 FIG. 8 is a flowchart of a monitor lookup and update process that is used as part of

the analyzer in an embodiment of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including
10 the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine
15 process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process embodiment of the I
20 present invention that can operate as the packet monitor shown in FIG. 1. This process

may be implemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of
25 the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of
FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

-21-

WO 01/01272 PCT/US00/18330

19

FIG. 17B is an example of an IP packet, for cxample, of the Ethertype packet
shown in FIGs. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

FIG. 18A is a three-dimensional structure that can be used to store elements of the
5 pattern, parse and extraction database used by the parser subsystem in accordance to one

embodiment of the invention.

FIG. 18B is an altemate form of storing elements of the pattern, parse and
extraction database used by the parser subsystem in accordance to another embodiment of

the invention.

10 FIG. 19 is a block diagram of the state processor component of the analyzer
subsystem of FIG. 11.

FIG. 20 is a block diagram of the search engine component of the analyzer
subsystem of FIG. 11.

FIG. 21 is a dataflow block diagram showing four individual search modules of

15 the search engine.

FIG. 22A is a block diagram of the search engine core; FIG 22B shows a
comparator component of the core that compares a plurality of inputs to another plurality

of inputs.

FIG. 23A shows an implementation of the input core in more detail; FIG 23B

20 shows a comparator component of the core.

FIG. 26 is a block diagram of the cache memory part of the cache subsystem 1115
of the analyzer subsystem of FIG. 11.

FIG. 27 is a block diagram of the cache memory controller and the cache CAM

controller of the cache subsystem.

25 FIG. 28 is a block diagram of one implementation of the CAM array of the cache
subsystem 11135.

FIG. 24 shows various PDL file modules to be compiled together by the compiling
process illustrated in FIG. 20 as an example, in accordance with a compiling aspect of the

invention.

22

WO 01/01272 PCT/US00/18330

20

FIG. 25 is a flowchart of the process of compiling high-level language files

according to an aspect of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may
s include signal names. In most cases, the names are sufficiently descriptive, in other cases
however the signal names are not needed to understand the operation and practice of the

invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to

10 herein by the general reference numeral 100. The system 100 has a computer network 102
that communicates packets (e.g., [P datagrams) between various computers, for example
between the clients 104—-107 and servers 110 and 112. The network is shown
schematically as a cloud with several network nodes and links shown in the interior of the
cloud. A monitor 108 examines the packets passing in either direction past its connection

15 point 121 and, according to one aspect of the invention, can elucidate what application
programs are associated with each packet. The monitor 108 is shown examining packets
(i.e., datagrams) between the network interface 116 of the server 110 and the network.
The monitor can also be placed at other points in the network, such as connection point
123 between the network 102 and the interface 118 of the client 104, or some other

20 location, as indicated schematically by connection point 125 somewhere in network 102.
Not shown is a network packet acquisition device at the location 123 on the network for
converting the physical information on the network into packets for input into monitor

108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the
25 required communication, ¢.g., TCP/IP, etc. Any network activity—for example an
application program run by the client 104 (CLIENT 1) communicating with arother
running on the server 110 (SERVER 2)—will produce an exchange of a sequence of
packets over network 102 that is characteristic of the respective programs and of the
network protocois. Such characlerisiics uuy uui Ue compiciely ievoaing at the individel
30 packet level. It may require the analyzing of many packets by the monitor 108 to have

enough information needed to recognize particular application programs. The packets

23-

w0 01/01272 PCT/US00/18330

21

may need to be parsed then analyzed in the context of various protocols, for example, the
transport through the application session layer protocols for packets of a type conforming

to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol stack.
5 The ISO (Intemational Standardization Organization) has defined a general model that
provides a framework for design of communication protocol layers. This model, shown in
table form below, serves as a basic reference for understanding the functionality of

existing communication protocols.

ISO MODEL

Layer | Functionality | Example

7 Application Telnet, NFS, Novell NCP, HTTP,
H.323

6 Presentation XDR

5 Session RPC, NETBIOS, SNMP, etc.

4 Transport TCP, Novel SPX, UDP, etc.

3 Network IP, Novell IPX, VIP, AppleTalk, etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer

1 Physical Ethernet, Token Ring, Frame Relay,
ATM, T1 (Hardware Connection)

10 Different communication protocols employ different levels of the ISO model or
may use a layered model that is similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may not be visible to protocols employed at other
layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2-3).

15 In some communication arts, the term “frame” gencrally refers to encapsulated

data at OSI layer 2, including a destination address, control bits for flow control, the data

24-

20

25

an
au

e

WO 01/01272 PCT/US00/18330

22

or payload, and CRC (cyclic redundancy check) data for crror checking. The term
“packet” generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the
term “datagram” is also used. In this specification, the term “packet” is intended to
encompass packets, datagrams, frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields and headers for transmission
across a network. For example, a data packet typically includes an address destination
field, a length field, an error correcting code (ECC) field, or cyclic redundancy check
(CRC) field, as well as headers and footers to identify the beginning and end of the
packet. The terms “packet format” and “frame format,” also referred to as “cell format,”

are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.
However, not every packet carries the sume information useful for recognizing all levels
of the protocol. For example, in a conversational flow associated with a particular
application, the application will cause the server to send a type-A packet, but so will
another. If, though, the particular application program always follows a type-A packet
with the sending of a type-B packet, and the other application program does not, then in
order to recognize packets of that application’s conversational flow, the monitor can be
available to recognize packets that match the type-B packet to associate with the type-A
packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be
identified as being associated with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying other packet exchanges that are
parts of conversational flows associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of a flow is an indication of all
previous events in the flow that lead to recognition of the content of all the protocol
levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a
signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

| R IR I [Epipy- DY Ry TN 1. anloatn mem thhn cnteninsle 107
201 TOm U0 USES UL W6 1na0hndl 1wy e Guiiives Ul puciues Vil tiv avemmvin ave

passing by the monitor 108's connection point can exceed a million per second.

Consequently, the moritor has very little time available to analyze and type each packet

25-

WO 01/01272 PCT/US00/18330

23

and identify and maintain the state of the flows passing through the connection point. The
monitor 108 therefore masks out all the unimportant parts of each packet that will not
contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

5 The recognition of the packet type, and ultimately of the associated application
programs according to the packets that their executions produce, is a multi-stcp process
within the monitor 108. At a first level, for example, several application programs will all
produce a first kind of packet. A first “signature” is produced from selected parts of a
packet that will allow monitor 108 to identify efficiently any packets that belong to the

10 same flow. In some cases, that packet type may be sufficiently unique to enable the
monitor to identify the application that generated such a packet in the conversational flow.
The signature can then be used to efficiently identify all futurc packets generated in traffic

related to that application.

In other cases, that first packet only starts the process of analyzing the

15 conversational flow, and more packets are necessary to identify the associated application
program. In such a case, a subsequent packet of a second type—but that potentially
belongs to the same conversational flow——is recognized by using the signature. At such a
second level, then, only a few of those application programs will have conversational
flows that can produce such a second packet type. At this level in the process of

20 classification, all application programs that are not in the set of those that lead to such a
sequence of packet types may be excluded in the process of classifying the conversational
flow that includes these two packets. Based on the known patterns for the protocol and for
the possible applications, a signature is produced that allows recognition of any future

packets that may follow in the conversational flow.

25 Tt may be that the application is now recognized, or recognition may need to
proceed to a third level of analysis using the second level signature. For each packet,
therefore, the monitor parses the packet and generates a signature to determine if this
signature identified a previously encountered flow, or shall be used to recognize future
packets belonging to the same conversational flow. In real time, the packet is further

30 anaiyzed in the cOnext of e SeyuEHLT U PIGYivuly cuLvunigisd packets (he state), and
of the possible future sequences such a past sequence may generate in conversational

flows associated with different applications. A new signature for recognizing future

-26-

WO 01/01272 PCT/US00/18330

24

packets may also be generated. This process of analysis continues until the applications
are identified. The last generated signature may then be used to efficiently recognize
future packets associated with the same conversational flow. Such an arrangement makes
it possible for the monitor 108 to cope with millions of packets per second that must be

5 inspected.

Another aspect of the invention is adding Eavesdropping. In alternative
embodiments of the present invention capable of eavesdropping, once the monitor 108
has recognized the executing application programs passing through some point in the
network 102 (for example, because of execution of the applications by the client 105 or

10 server 110), the monitor sends a message to some general purpose processor on the
network that can input the same packets from the same location on the network, and the
processor then loads its own executable copy of the application program and uses it to
read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

15 The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present
invention that can be implemented with computer hardware and/or software. The system
300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet
acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,
20 for example in an attempt to determine its characteristics, e.g., all the protocol information

in a multileve! model, including what server application produced the packet.

The packet acquisition device is a common interface that converts the physical
signals and then decodes them into bits, and into packets, in accordance with the
particular network (Ethemet, frame relay, ATM, efc.). The acquisition device indicates to

25 the monitor 108 the type of network of the acquired packet or packets. |

Aspects shown here include: (1) the initialization of the monitor to generate what i
operations need to occur on packets of different types—accomplished by compiler and

optimizer 310, (2) the processing—parsing and extraction of selected portions—of

maslinen ¢o mamaenta an idontifuing cimature—accnmnliched hy narcer snhsvstem 301. and
¥ o oo 2o TR v 4 7

30 (3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific

27-

WO 01/01272 PCT/US00/18330

25
information to parser subsystem 301 and to analyzer subsystem 303. The initialization I

oceurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addresses in the
5 network. For each protocol there are known to be several fields, such as the destination
(recipient), the source (the sender), and so forth, and these and other fields are used in
monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identiftcation.

Parser subsystem 301 examines the packets using pattern recognition process 304
10 that parses the packet and determines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction process 306 in parser subsystem
301 extracts characteristic portions (signature information) from the packet 302. Both the

pattern information for parsing and the related extraction operations, e.g., extraction

masks, are supplicd from a parsing-pattern-structures and extraction-operations database

15 (parsing/extractions database) 308 filled by the compiler and optimizer 310. |

The protocol description language (PDL) files 336 describes both patterns and
states of all protocols that an occur at any layer, including how to interpret header
information, how to determine from the packet header information the protocols at the
next layer, and what information to extract for the purpose of identifying a flow, and

20 ultimately, applications and services. The layer selections database 338 describes the
particular layering handled by the monitor. That is, what protocols run on top of what
protocols at any layer levcl. Thus 336 and 338 combined describe how one would decode,
analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310,

25 When compiler and optimizer 310 executes, it generates two sets of internal data
structures. The first is the set of parsing/extraction operations 308. The pattern structures
include parsing information and describe what will be recognized in the headers of
packets; the extraction operations are what elements of a packet are to be extracted from
the packets based on the patterns that get matched. Thus, database 308 of

30 parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that indicate

-28-

WO 01/01272 PCT/US00/18330

26

a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state
patterns and processes 326. These are the different states and state transitions that occur in
different conversational flows, and the state operations that need to be performed (e.g.,

5 patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the
information it needs to begin processing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually or otherwise generated. Note

10 that in some embodiments the Jayering selections information is inherent rather than
explicitly described. For example, since a PDL file for a protocol includes the child

protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input
into a packet buffer. The pattern recognition process 304 is carried out by a pattern
15 analysis and recognition (PAR) engine that analyzes and recognizes patterns in the
packets. In particular, the PAR locates the next protocol field in the header and
determines the length of the header, and may perform certain other tasks for certain types
of protocol headers. An example of this is type and length comparison to distinguish an
IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also
20 called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures
and extraction operations database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the next protocol layer. Once a
pattern or a set of patterns has been identified, it/they will be associated with a set of none
or more extraction operations. These extraction operations (in the form of commands and
25 associated parameters) are passed to the extraction process 306 implemented by an
extracting and information identifying (EII) engine that extracts selected parts of the
packet, including identifying information from the packet as required for recognizing this
packet as part of a flow. The extracted information is put in sequence and then processed
in block 312 to build a unique flow signature (also called a “key”) for this flow. A flow
20 signoturc doponds on the prolocols used in e packel. FUr sUME Prowcois, the extracted
components may include source and destination addresses. For example, Ethernet frames

have end-point addresses that are useful in building a better flow signature. Thus, the

-29-

WO 01/01272 PCT/US00/18330

27

signature typically includes the client and server address pairs. The signature is used to

recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key includes generating a
hash of the signature using a hash function. The purpose if using such a hash is
5 conventional—to spread flow-entries identified by the signature across a database for
efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.

In one embodiment, the parser passes data from the packet—a parser record—that
includes the signature (i.e., selected portions of the packet), the hash, and the packet itself
10 to allow for any state processing that requires further data from the packet. An improved
embodiment of the parser subsystem might generate a parser record that has some
predefined structure and that includes the signature, the hash, some flags related to some
of the fields in the parser record, and parts of the packet’s payload that the parser
subsystem has determined might be required for further processing, ¢.g., for state

1S processing.

Note that alternate embodiments may use some function other than concatenation
of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal
20 data store of records of known flows that the system has already encountered, and decides
(in 316) whether or not this particular packet belongs to a known flow as indicated by the
presence of a flow-entry matching this flow in a database of known flows 324. A record

in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The
25 UFKB stores the data on flows in a data structure that is similar to the parser tecord, but
that includes a field that can be modificd. In particular, one or the UFKB record fields
stores the packet sequence number, and another is filled with state information in the form

of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a record with the same signature already
30 exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses
the hash in the UFKB record to lookup if there is a matching known flow. In the

-30-

WO 01/01272 PCT/US00/18330

28

particular embodiment, the database of known flows 324 is in an external memory. A
cache is associated with the database 324. A lookup by the LUE for a known record is
carried out by accessing the cache using the hash, and if the entry is not already present in

the cache, the entry is looked up (again using the hash) in the external memory.

5 The flow-entry database 324 stores flow-entries that include the unique flow-
signature, state information, and extracted information from the packet for updating
flows, and one or more statistical about the flow. Each entry completely describes a flow.
Database 324 is organized into bins that contain a number, denoted N, of flow-entries
(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment. |

10 Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser
subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the
database to allow for fast lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory attached to the monitor, and
the number of bits of the hash data value used. For example, in one embodiment, each

15 flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a
16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

20 that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a
new flow, then a protocol and state identification process 318 further determines the state
and protocol. That is, process 318 determines the protocols and where in the state
sequence for a flow for this protocol’s this packet belongs. Identification process 318 uses

25 the extracted information and makes reference to the database 326 of state patterns and
processes. Process 318 is then followed by any state operations that need to be executed

on this packet by a statc processor 328.

If the packet is found to have a matching flow-entry in the database 324 (e.g., in
the cache), then a process 320 determines, from the looked-up flow-entry, if more
30 classification by state processing of the flow signature is necessary. If not, a process 322

updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating

-31-

20

25

30

—

WO 01/01272 PCT/US00/18330

29

includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor
328 carries out any state operations specified for the state of the flow and updates the state
to the next state according to a set of state instructions obtained form the state pattern and

processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze
all levels of the protocol stack, ultimately classifying the flows by application (level 7 in
the ISO model). It does this by proceeding from state-to-state based on predefined state
transition rules and state operations as specified in state processor instruction database
326. A state transition rule is a rule typically containing a test followed by the next-state i
to proceed to if the test result is true. An operation is an operation to be performed while
the state processor is in a particular statc—for cxample, in order to evaluate a quantity
needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a packet,
and carrying out the operation or operations may leave one in a state that causes exiting
the system prior to completing the identification, but possibly knowing more about what
state and state processes are needed to execute next, i.e., when a next packet of this flow
is encountered. As an example, a state process (set of state operations) at a particular state

may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up
using the information from previously encountered flows, the network traffic monitor 300
provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet
protocol recognition of flows. Monitor 300 can even recognize the application program
from onc or more disjointed sub-flows that occur in server announcement type flows.
What may seem to prior art monitors to be some unassociated flow, may be recognized by
the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Thus, state processor 328 applies the first state operation to the packet for this

particular flow-entry. A process 330 decides if more operations need to be performed for

-32-

15

20

WO 01/01272 PCT/US00/18330

30

this state. If so, the analyzer continues looping between block 330 and 328 applying
additional state operations to this particular packet until ail those operations are
completed—that is, there are no more operations for this packet in this state. A process
332 decides if there are further states to be analyzed for this type of flow according to the
state of the flow and the protocol, in order to fully characterize the flow. If not, the
conversational flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing by
using the last protocol recognized by the parser as an offset into a jump table (jump
vector). The jump table finds the state processor instructions to use for that protocol in the
state patterns and processes database 326. Most instructions test something in the unified
flow key buffer, or the flow-entry in the database of known flows 324, if the entry exists.
The state processor may have to test bits, do comparisons, add, or subtract to perform the
test. For example, a common operation carried out by the state processor is searching for

one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an
end state. If not at an end state, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process 322.

The flow-entry also is updated after classification finalization so that any further
packets belonging to this flow will be readily identified from their signature as belonging
to this fully analyzed conversational flow.

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically
maintains flow-entries, which in one aspect includes storing states. The monitor of FIG. 3
also generates characteristic parts of packets—the signatures—that can be used to
recognize flows. The flow-entries may be identified and accessed by their signatures.
Once a packet is identified to be from a known flow, the state of the flow is known and

this knowledge enables state transition analysis to be performed in real time for each

-33-

WO 01/01272 PCT/US00/18330

31

different protocol and application. In a complex analysis, state transitions are traversed as
more and more packets are examined. Future packets that are part of the same
conversational flow have their state analysis continued from a previously achieved state.
When enough packets related to an application of interest have been processed, a final

5 recognition state is ultimately reached, i.e., a set of states has been traversed by state
analysis to completely characterize the conversational flow. The signature for that final
state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.

10 Once a particular set of state transitions has been traversed for the first time and ends ina
final state, a short-cut recognition pattern—a signature—can be generated that will key on
every new incoming packet that relates to the conversational flow. Checking a signature
involves a simple operation, allowing high packet rates to be successfully monitored on

the network.

15 In improved cmbodiments, several state analyzers are run in parallel so that a large
number of protocols and applications may be checked for. Every known protocol and
application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are
20 automatically gencrated on-the-fly, and as further packets in the conversational flow are
encountered, signatures are updated and the states of the set of state transitions for any
potential application are further traversed according to the state transition rules for the
flow. The new states for the flow—those associated with a set of state transitions for one
or more potential applications—are added to the records of previously encountered states

25 for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation process.
That is, part of the initialization generates the patier structures and extraction operations
database 308 and the state instruction database 328. Such injtialization can occur off-line

30 or from a central location.

-34-

WO 01/01272 PCT/USD0/18330

32

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called
level 0). Each protocol is either a parent node or a terminal node. A parent node links a
protocol to other protocols (child protocols) that can be at higher layer levels. Thus a

s protocol may have zero or more children. Ethernet packets, for example, have several
variants, each having a basic format that remains substantially the same. An Ethernct
packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet
Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE 803.2 packet.
Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP protocol,

10 and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complcte Ethernet frame (i.e.,
packet) of information and includes information on the destination media access control
address (Dst MAC 1602) and the source media access control address (Src MAC 1604).
Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

15 for extraction the signature.

FIG. 17A now shows the header information for the next level (level-2) for an
Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the
packet that indicates the next layer level is a two-byte type field 1702 containing the child
recognition pattern for the next level. The remaining information 1704 is shown hatched
20 because it not relevant for this level. The list 1712 shows the possible children for an
Ethertype packet as indicated by what child recognition pattern is found offset 12.
FIG. 17B shows the structure of the header of onc of the possible next levels, that of the

IP protocol. The possible children of the IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern recognition database, or PRD)
25 308 gencrated by compilation process 310, in one embodiment, is in the form of a three
dimensional structure that provides for rapidly searching packet headers for the next
protocol. FIG. 18A shows such a 3-D representation 1800 (which may be considered as
an indexed set of 2-D representations). A compressed form of the 3-D structure is

preferred.

30 An alternate embodiment of the data structure used in database 308 is illustrated in

FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid

-35-

WO 01/01272 PCT/US00/18330

33

searches to be performed by the pattern recognition process 304 by indexing locations in a
memory rather than performing address link computations. In this alternate embodiment,
the PRD 308 includes two parts, a single protocol table 1850 (PT) which has an entry for
each protocol known for the monitor, and a series of Look Up Tables 1870 (LUT’s) that
5 are used to identify known protocols and their children. The protocol table includes the

parameters needed by the pattern analysis and recognition process 304 (implemented by
PRE 1006) to evaluate the header information in the packet that is associated with that
protocol, and parameters necded by extraction process 306 (implemented by slicer 1007)
to process the packet header. When there are children, the PT describes which bytes in the

10 header to evaluate to determine the child protocol. In particular, each PT entry contains

the header length, an offsct to the child, a slicer command, and some flags.

The pattern matching is carried out by finding particular “child recognition codes”
in the header fields, and using these codes to index one or more of the LUT’s. Each LUT
entry has a node code that can have one of four values, indicating the protocol that has

15 been recognized, a code to indicate that the protocol has been partially recognized (more
LUT lookups are needed), a code to indicate that this is a terminal node, and a null node

to indicate a null entry. The next LUT to lookup is also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source-code information in the
form of protocol description files is shown as 402. In the particular embodiment, the high

20 level decoding descriptions includes a set of protocol description files 336, one for each
protocol, and a set of packet layer selections 338, which describes the particular layering

(sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract
operations 406 is generated (404), and a set of packet state instructions and operations
25 407 is generated (405) in the form of instructions for the state processor that implements
state processing process 328. Data files for each type of application and protocol to be
recognized by the analyzer are downloaded from the pattern, parse, and extraction
database 406 into the memory systems of the parser and extraction engines. (See the
parsing process 500 description and FIG. 5; the extraction process 600 description and
30 FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each
type of application and protocol to be recognized by the analyzer are also downloaded

from the state-processor instruction database 407 into the state processor. (see the state

-36-

WO 01/01272 PCTAUS00/18330

34

processor 1108 description and FIG. 11.).

Note that generating the packet parse and extraction operations builds and links
the three dimensional structure (one embodiment) or the or all the lookup tables for the
PRD.

5 Because of the large number of possible protocol trees and subtrees, the compiler
process 400 includes optimization that compares the trees and subtrees to see which
children share common parents. When implemented in the form of the LUTs, this
process can generate a single LUT from a plurality of LUT’s. The optimization process
further includes a compaction process that reduces the space needed to store the data of

10 the PRD.

As an example of compaction, consider the 3-D structure of FIG. 18A that can be
thought of as a set of 2-D structures each representing a protocol. To enable saving space
by using only one array per protocol which may have several parents, in one embodiment,
the pattern analysis subprocess keeps a “current header” pointer. Each location (offset)

15 index for each protocol 2-D array in the 3-D structure is a relative location starting with
the start of header for the particular protocol. Furthermore, each of the two-dimensional
arrays is sparse. The next step of the optimization, is checking all the 2-D arrays against
all the other 2-D arrays to find out which ones can share memory. Many of these 2-D
arrays are often sparsely populated in that they each have only a small number of valid

20 entries. So, a process of "folding” is next used to combine two or more 2-D arrays
together into one physical 2-D array without losing the identity of any of the original 2-D
arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur between any
2-D arrays irrespective of their location in the tree as long as certain conditions are met.
Multiple arrays may be combined into a single array as long as the individual entries do

25 not conflict with each other. A fold number is then used to associate each element with its
original array. A similar folding process is used for the set of LUTs 1850 in the alternate
embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting
30 at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next

Fimieiatlee shn Ficeo) mnaleas mmammm s fom Al o b ANA T I .
(aitally thC IS packLl Componiii 10 Wil Pt JUL. LUC PALACL LULLPULISIES AT

-37-

WO 01/01272 PCT/US00/18330

35

extracted from each packet 302 one element at a time. A check is made (504) to determine
if the load-packet-component operation 503 succeeded, indicating that there was more in
the packet to process. If not, indicating all components have been loaded, the parser

subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

s If a component is successfully loaded in 503, the node and processes are fetched
(505) from the pattern, parse and extraction database 308 to provide a set of patterns and
processes for that node to apply to the loaded packet component. The parser subsystem
301 checks (506) to determine if the fetch pattern node operation 505 completed
successfully, indicating there was a pattern node that loaded in 505. If not, step 511

10 moves to the next packet component. If yes, then the node and pattern matching process
are applied in 507 to the component extracted in 503, A pattern match obtained in 507 (as
indicated by test 508) means the parser subsystem 301 has found a node in the parsing

elements; the parser subsystem 301 proceeds to step 509 Lo extract the elements.

If applying the node process to the component does not produce a match (test
15 508), the parser subsystem 301 moves (510) to the next pattern node from the pattern
database 308 and to step 505 to fetch the next node and process. Thus, there is an
“applying patterns” loop between 508 and 505. Once the parser subsystem 301 completes
all the patterns and has either matched or not, the parser subsystem 301 moves to the next

packet component (511).

20 Once all the packet components have been the loaded and processed from the
input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6

FIG. 6 is a flow chart for extracting the information from which to build the
packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this
25 point parser subsystem 301 has a completed packet component and a patiern node
available in a buffer (602). Step 603 loads the packet component available from the
pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there
was indeed another packet component, the parser subsystem 301 fetches in 605 the
extraction and process elements received from the pattern node component in 602. If the
30 fetch was successful (test 606), indicating that there are extraction elements to apply, the

parser subsystem 301 in step 607 applies that extraction process to the packet component

-38-

WO 01/01272 PCT/US00/18330

36

based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this
component, and if not, the parser subsystem 301 moves back to 603 to load the next
s packet component at hand and repeats the process. If the answer is yes, then the parser
subsystem 301 moves to the next packet component ratchet. That new packet component
is then loaded in step 603. As the parser subsystem 301 moved through the loop between
608 and 603, extra extraction processes are applied either to the same packet component if

there is more to extract, or to a different packet component if there is no more to extract.

10 The extraction process thus builds the signature, extracting more and more
components according to the information in the patterns and extraction database 308 for
the particular packet. Once loading the next packet component operation 603 fails (test
604), all the components have been extracted. The built signature is loaded into the
signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

15 signature generation process.

Referring now to FIG. 7, the process continues at 701, The signature buffer and
the pattern node elements are available (702). The parser subsystem 301 loads the next
pattern node element. If the load was successful (test 704) indicating there are more
nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

20 hash clements that are found in the pattern node that is in the element database. In 706 the
resulting signature and the hash are packed. In 707 the parser subsystem 301 moves on to

the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left
(test 704). Once all the patterns of elements have been hashed, processes 304, 306 and
25 312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particuiar, into the UFKB in the
form of a UFKB record which is similar to a parser record, but with one or more different
fields.

30 FIG. 8 is a flow diagram describing the operation of the lookup/update engine
(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with

-39-

wO 01/01272 PCT/US00/18330

37

the parser record that includes a signature, the hash and at least parts of the payload. In
802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the
lookup engine 314 computes a “record bin number” from the hash for a flow-entry. A bin
herein may have one or morc “buckets” each containing a flow-entry. The preferred

5 embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the

hash. If the cache successfully returns with a bucket from the bin number, indicating there

10 are more buckets in the bin, the lookup/update engine compares (807) the current
signature (the UFKB-entry’s signature) from that in the bucket (i.e., the flow-entry
signature). If the signatures match (test 808), that record (in the cache) is marked in step
810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the
UFKB-entry in 802 has a status of “found.” The “found” indication allows the state

15 processing 328 to begin processing this UFKB element. The preferred hardware
embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

In the preferred embodiment, a set of statistical operations is performed by a

calculator for every packet analyzed. The statistical operations may include onc or more

20 of counting the packets associated with the flow; determining statistics related to the size
of packets of the flow; compiling statistics on differences between packets in each
direction, for example using timestamps; and determining statistical relationships of
timestamps of packets in the same direction. The statistical measures are kept in the flow-
entries. Other statistical measures also may be compiled. These statistics may be used

25 singly or in combination by a statistical processor component to analyze many different
aspects of the flow. This may include determining network usage metrics from the
statistical measures, for example to ascertain the network’s ability to transfer information
for this application. Such analysis provides for measuring the quality of service of a
conversation, measuring how well an application is performing in the network, measuring

30 network resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more

-40-

WO 01/01272 PCT/US00/18330

38

counters that are part of the flow-entry (in the cache) in step 812. The process exils at 813.
In our embodiment, the counters include the total packets of the flow, the time, and a

differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In
5 such acase, the analyzer in 809 moves to the next bucket for this bin. Stcp 804 again
looks up the cache for another bucket from that bin. The lookup/update engine thus
continues lookup up buckets of the bin until there is either a match in 808 or operation
804 is not successful (test 805), indicating that there are no more buckets in the bin and no

match was found.

10 If no match was found, the packet belongs to a new (not previously encountered)
flow. In 806 the system indicates that the record in the unified flow key buffer for this
packet is new, and in 812, any statistical updating operations are performed for this packet
by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

15 Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

“new” status or a “found” status.

Note that the above system uses a hash to which more than one flow-entry can
match. A longer hash may be used that corresponds to a single flow-entry. In such an

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

20 The hardware system

Each of the individual hardware elements through which the data flows in the
system are now described with reference to FIGS. 10 and 11. Note that whilc we are
describing a particular hardware implementation of the invention embodiment of FIG. 3,
it would be clear to one skilled in the art that the flow of FIG. 3 may altematively be

25 implemented in software running on one or more general-purpose processors, or only
partly implemented in hardware. An implementation of the invention that can operate in
software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate
at over a million packets per second, while the software system of FIG. 14 may be
suitable for slower networks. To one skilled in the art it would be clear that more and

30 more of the system may be implemented in software as processors become faster. |

-41-

WO 01/01272 PCT/US00/18330

39

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem
1000) as implemented in hardware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is
the extraction-operation database memory, in which the extraction instructions are stored.
s Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3. Typically, the
i system is initialized from a mjcroprocessor (not shown) at which time these memorics are
i loaded through a host interface multiplexor and control register 1005 via the internal
i buses 1003 and 1004. Note that the contents of 1001 and 1002 are preferably obtained by
‘ compiling process 310 of FIG. 3.

10 A packet enters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which control an input buffer interface
controller 1022. The buffer 1008 and interface control 1022 connect to a packet
acquisition device (not shown). The buffer acquisition device generates a packet start
signal 1021 and the interface control 1022 generates a next packet (i.c., ready to receive
15 data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a
packet starts loading into the buffer memory 1008, pattern recognition engine (PRE) 1006
carries out the operations on the input buffer memory described in block 304 of FIG. 3.
That is, protocol types and associated headers for each protocol layer that exist in the

packel are determined.

20 The PRE searches database 1001 and the packet in buffer 1008 in order to
recognize the protocols the packet contains. In one implementation, the database 1001
includes a series of linked lookup tables. Each lookup table uses eight bits of addressing,
The first lookup table is always at address zcro. The Pattern Recognition Engine uses a
base packet offset from a control register to start the comparison. It foads this value into a

25 current offsct pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a
terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

30 The PRE 1006 includes of a comparison engine. The comparison engine has a first

stage that checks the nrataenl tyne field 1o determine if it is an 802.3 packet and the field

-42-

WO 01/01272 PCT/US00/18330

40

should be treated as a length. If it is not a length, the protocol is checked in a second
stage. The first stage is the only protocol level that is not programmable. The second stage
has two full sixteen bit content addressable memories (CAMs) defined for future protocol

additions.

5 Thus, whenever the PRE recognizes a pattern, it also generates a command for the
extraction engine (also called a “slicer”) 1007. The recognized patterns and the commands
are sent to the extraction engine 1007 that extracts information from the packet to build
the parser record. Thus, the operations of the extraction engine are those carried out in
blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to slicer 1007 in

10 the form of extraction instruction pointers which tell the extraction engine 1007 where to
a find the instructions in the extraction operations database memory (i.e., slicer instruction

database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol

identifier and a process code 1o the cxtractor. The protocol identifier is added to the flow

15 signature and the process code is used to fetch the first instruction from the instruction
database 1002. Instructions include an operation code and usually source and destination
offsets as well as a length. The offsets and length arc in bytes. A typical opcration is the
MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data
unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains a

20 byte-wise barrel shifter so that the bytes moved can be packed into the flow signature.
The extractor contains another instruction calied HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the
input buffer memory and transferring the data to a parser output buffer memory 1010.

25 Some instructions also gencrate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction
engine 1007 performs extraction operations on data in input buffer 1008 already
processed by PRE 1006 while more (i.c., later arriving) packet information is being
simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

30 accommodate the high arrival rate speed of packets.

Once aii the seiected parts of tie packet used to forin the signature are exiravied,

-43-

WO 01/01272 PCT/US00/18330

41

the hash is loaded into parser output buffer memory 1010. Any additional payload from
the packet that is required for further analysis is also included. The parser output memory
1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once
all the information of a packet is in the parser output buffer memory 1010, a data ready

5 signal 1025 is asserted by analyzer interface control. The data from the parser subsystem
1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. {1 shows the hardware components and dataflow for the analyzer subsystem
that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is
10 initialized prior to operation, and initialization includes loading the state processing
information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1 109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an analyzer
host interface controller 1118, which in turn has access to a cache system 1115. The cache
15 system has bi-directional access to and from the state processor of the system 1108. State
processor 1108 is responsible for initializing the state processor instruction database

memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records
comprising packet signatures and payloads that come from the parser into the unified flow
20 key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB
records. A UFKB record is essentially a parser record; the UFKB holds records of packets
that are to be processed or that are in process. Furthermore, the UFKB provides for one or
more fields to act as modifiable status flags to allow different processes to run

concurrently.

25 Three processing engines run concurrently and access records in the UFKB 1103:
the lookup/update engine (LLUE) 1107, the state processor (SP) 1108, and the flow
insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more
finite state machines (FSM's). There is bi-directional access between each of the finite
state machines and the unified flow key buffer 1103. The UFKB record includes a field

30 that stores the packet sequence number, and another that is filled with state information in

the form of a program counter for the state processor 1108 that implements state

-44-

WO 01/01272 PCT/US00/18330

42

processing 328. The status flags of the UFKB for any entry includes that the LUE is done
and that the LUE is transferring processing of the entry to the state processor. The LUE
done indicator is also used to indicate what the next entry is for the LUE. There also is
provided a flag to indicate that the state processor is done with the current flow and to

5 indicate what the next entry is for the state processor. There also is provided a flag to .
indicate the state processor is transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been

processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB
10 record data may be processed by the flow insertion/deletion engine 1110 after being

processed by the state processor 1108 or only by the LUE. Whether or not a particular .

engine has been applied to any unified flow key buffer entry is determined by status ficlds

set by the engines upon completion. In one embodiment, a status flag in the UFKB-entry

indicates whether an entry is new or found. In other embodiments, the LUE issucs a flag
15 to pass the entry to the state processor for processing, and the required operations for a

new record are included in the SP instructions.

Note that each UFKB-cntry may not need to be processed by all three engines.
Furthermore, some UFKB entries may need to be processed more than once by a

particular engine.

20 Each of these three engines also has bi-directional access to a cache subsystem
1115 that includes a caching engine. Cache 1115 is designed to have information flowing
in and out of it from five different points within the system: the three engines, external
memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and
a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host

25 interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor) can

thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content
addressable memory cells (CAMs) each including an address portion and a pointer
portion pointing to the cache memory (e.g., RAM) containing the cached flow-entres.

30 The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The
bottom CAM’s pointer points to the least recently used (LRU) cache memory entry.

-45-

WO 01/01272 PCT/US00/18330

43

Whenever there is a cache miss, the contents of cache memory pointed to by the bottom
CAM are replaced by the flow-entry from the flow-entry database 324. This now becomes
the most recently used entry, so the contents of the bottom CAM are moved to the top
CAM and all CAM contents are shifted down. Thus, the cache is an associative cache

5 with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the operation
of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE 1o indicate that a “new”
UFKB-entry is available. The LUE uses the hash in the UFKB-entry to read a matching
bin of up to four buckets from the cache. The cache system attempts to obtain the

10 matching bin. If a matching bin is not in the cache, the cache 1115 makes the request to

the UMC 1119 to bring in a matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket
and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

15 If there is no match, or if the cache failed to provide a bin of flow-entries from the
cache, a time stamp in set in the flow key of the UFKB record, a protocol identification
and state determination is made using a table that was loaded by compilation process 310
during initialization, the status for the record is set to indicate the LUE has processed the
record, and an indication is made that the UFKB-entry is ready to start state processing.

20 The identification and state determination generates a protocol identifier which in the
preferred embodiment is a “jump vector” for the state processor which is kept by the
UFKB for this UFKB-entry and uscd by the state processor to start state processing for
the particular protocol. For example, the jump vector jumps to the subroutine for

processing the state.

25 If there was a match, indicating that the packet of the UFKB-entry is for a
previously encountered flow, then a calculator component enters one or more statistical
measures stored in the flow-entry, including the timestamp. In addition, a time difference
from the last stored timestamp may be stored, and a packet count may be updated. The
state of the flow is obtained from the flow-entry is examined by looking at the protocol

30 identifier stored in the flow-entry of database 324. If that value indicates that no more

classification is required, then the status for the record is set to indicate the LUE has

-46-

20

WO 01/01272 PCT/US00/18330

44

processed the record. In the preferred embodiment, the protocol identifier is a jump
vector for the state processor to a subroutine to state processing the protocol, and no more
classification is indicated in the preferred embodiment by the jump vector being zero. If
the protocol identifier indicates more processing, then an indication is made that the
UFKB-entry is ready to start state processing and the status for the record is set to indicate

the LUE has processed the record.

The state processor 1108 processes information in the cache system according to a
UFKB-entry after the LUE has completed. State processor 1108 includes a state processor
program counter SPPC that gencrates the address in the state processor instruction
database 1109 loaded by compiler process 310 during initialization. It contains an
Instruction Pointer (SPIP) which generates the SPID address. The instruction pointer can
be incremented or loaded from a Jump Vector Multiplexor which facilitates conditional
branching. The SPIP can be loaded from one of three sources: (1) A protocol identifier
from the UFKR, (2) an immediate jump vector form the currently decoded instruction, or

(3) a value provided by the arithmetic logic unit (SPALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with 1 known protocol
identifier, the Program Counter is initialized with the last protocol recognized by the
Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and String
Compare functions necessary to implement the State Processor instructions. The main
blocks of the SPALU are: The A and B Registers, the Instruction Decode & State
Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Scarch Enginc in turn contains the Target Search Register sct, the Reference
Search Register set, and a Compare block which compares two operands by exclusive-or-

ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state
operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor is

-47-

WO 01/01272 PCT/US00/18330

45

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is
new or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified
flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used
to set the state processor’s instruction counter. The state processor 1108 starts the process
5 by using the last protocol recognized by the parser subsystem 301 as an offset into a jump
table. The jump table takes us to the instructions to use for that protocol. Most
instructions test something in the unified flow key buffer or the flow-entry if it exists. The
state processor 1108 may have 1o test bits, do comparisons, add or subtract to perform the

test.

10 The first state processor instruction is fetched in 1304 from the state processor
instruction database memory 1109. The state processor performs the one or more fetched
operations (1304). In our implementation, each single state processor instruction is very
primitive (e.g., a move, a compare, etc.), so that many such instructions need to be
performed on each unified flow key buffer entry. One aspect of the state processor is its

15 ability to search for one or more (up to four) reference strings in the payload part of the
UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

In 1307, a check is made to determine if there are any more instructions to be
performed for the packet. If yes, then in 1308 the system sets the state processor
20 instruction pointcr (SPIP) to obtain the next instruction. The SPIP may be sct by an
immediate jump vector in the currently decoded instruction, or by a value provided by the

SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This
state processing loop between 1304 and 1307 continues until there are no more

25 instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet
has resulted in a final state. That is, is the analyzer is done processing not only for this
particular packet, but for the whole flow to which the packet belongs, and the flow is fully
determined. If indeed there are no more states to process for this flow, then in 1311 the

30 processor finalizes the processing. Some final states may need to put a state in place that

tells the system to remove a flow—for example, if a connection disappears from a lower

-48-

WO 01/01272 PCT/US00/18330

46

level connection identifier. In that case, in 1311, a flow removal state is set and saved in
the flow-entry. The flow removal state may be a NOP (no-op) instruction which means

there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP or
s otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in
1310 the system saves the state processor instruction pointer in the current flow-entry in
the current flow-cntry. That will be the next operation that will be performed the next
10 time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313,

Note that state processing updates information in the unified flow key buffer 1 103
and the flow-entry in the cache. Once the state processor is done, a flag is set in the
UFKB for the entry that the statc processor is done. Furthermore, If the flow needs to be

15 inserted or deleted from the database of flows, control is then passed on to the flow
insertion/deletion engine 1110 for that flow signature and packet entry. This is done by
the state processor setting another flag in the UFKB for this UFKB-entry indicating that
the state processor is passing processing of this entry to the flow insertion and deletion

engine.

20 The flow insertion and deletion engine 1110 is responsible for maintaining the
flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are
grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that
25 may be new or that the state processor otherwise has indicated needs to be created.
FIG. 12 shows the casc of a new entry being created. A conversation record bin
(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that
matches the hash of the UFKB, so this bin may already have been sought for the UFKB-
entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be
30 maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the

L N S Ty ey lfara + H n 1
Sinfbucket Is cmpty, sicp 1207 inserts the fow eianamea (wyith the hach) inin the hicket

-49-

20

25

30

WO 01/01272 PCT/US00/18330

47

and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp that
is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and
bucket record flow signature to the packet to verify that all the elements are in place to
complete the record. In 1211 the system marks the record bin and bucket as “in process™
and as “new” in the cache system (and hence in the extemal memory). In 1212, the initial
statistical measures for the flow-record are set in the cache system. This in the preferred
embodiment clears the set of counters used to maintain statistics, and may perform other
procedures for statistical operations requires by the analyzer for the first packet seen fora

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next
bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,
1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid bucket,
the unified flow key buffer entry for the packet is sct as “drop,” indicating that the systcm
cannot process the particular packet because there are no buckets left in the system. The
process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow insertion and
deletion operations are completed for this UFKB-entry. This also lets the UFKB provide
the FIDE with the next UFKB record.

Once a sct of operations is performed on a unificd flow key buffer entry by all of
the engines required to access and manage a particular packet and its flow signature, the
unified flow key buffer entry is marked as “completed.” That element will then be used
by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow-entries are maintained in the external memory and some arc maintained
in the cache 1115. The cache system 1115 is intelligent enough to access the flow
database and to understand the data structures that exists on the other side of memory
interface 1123. The lookup/update engine 1107 is able to request that the cache system
pull a particular flow or “buckets” of flows from the unified memory controller 1119 into
the cache system for further processing. The state processor 1108 can operate on
information found in the cache system once it is looked up by means of the lookup/update
engine request, and the flow insertion/deletion engine 1110 can create new entries in the
cache system if required based on information in the unified flow key buffer 1103. The

cache retrieves information as required from the memory through the memory intertace

-50-

WO 01/01272 PCT/US00/18330

48

1123 and the unified memory controller 1119, and updates information as required in the

memory through the memory controller 1119.

There are several interfaces to components of the system external to the module of
FIG. 11 for the particular hardware implementation. These include host bus interface
5 1122,which is designed as a generic interface that can operate with any kind of cxternal
processing system such as a microprocessor or a multiplexor (MUX) system.
Consequently, one can connect the overall traffic classification system of FIGS. 11 and 12
into some other processing system to manage the classification system and to extract data

gathered by the system.

10 The memory interface 1123 is designed to interface to any of a variety of memory
systems that one may want to use to store the flow-entries. One can use different types of
memory systems like regular dynamic random access memory (DRAM), synchronous
DRAM, synchronous graphic memory (SGRAM), static fandom access memory (SRAM),
and so forth. '

15 FIG. 10 also includes some “generic” interfaces. There is a packet input interface
1012—a general interface that works in tandem with the signals of the input buffer
interface control 1022. These are designed so that they can be used with any kind of
generic systems that can then feed packet information into the parser. Another generic
interface is the interface of pipes 1031 and 1033 respectively out of and into host interface

20 multiplexor and control registers 1005. This enables the parsing system to be managed by i
an external system, for example a microprocessor or another kind of extemal logic, and

enables the external system to program and otherwise control the parser.

The preferred embodiment of this aspect of the invention is described in a
hardware description language (HDL) such as VHDL or Verilog. It is designed and
25 created in an HDL so that it may be used as a single chip system or, for instance,
integrated into another general-purpose system that is being designed for purposes related
to creating and analyzing traffic within a network. Verilog or other HDL implementation

is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in FIGS. 10
30 and 11 are implemented in a set of six field programmable logic arrays (FPGA’s). The

poundaries of 1ese FPGAS ate as (uliuws. Thé paisiing suosysicm of FIC. 105

-51-

WO 01/01272 PCT/US00/18330

49

implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and 1012, parts
of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013, 1011 parts of
1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented as a single
FPGA. State processor 1108 and part of state processor instruction database memory

5 1109 is another FPGA. Portions of the state processor instruction database memory 1109
are maintained in external SRAM’s. The lookup/update engine 1107 and the flow
insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes the cache
system 1115, the unified memory control 1119, and the analyzer host interface and

control 1118.

10 Note that one can implement the system as one or more VSLI devices, rather than
as a set of application specific integrated circuits (ASIC’s) such as FPGA's. Ttis
anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub-unit (a “core”) of a larger single chip unit.

Operation of the Invention

15 Fig. 15 shows how an embodiment of the network monitor 300 might be used to
analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all packets passing point 121 in either
direction are supplied to monitor 300. Monitor 300 comprises the parser sub-system 301,
which determines flow signatures, and analyzer sub-system 303 that analyzes the flow

20 signamre of each packet. A memory 324 is used to store the database of flows that are
determined and updated by monitor 300. A host computer 1504, which might be any
processor, for example, a general-purpose computer, is used to analyze the flows in
memory 324. As is conventional, host computer 1504 includes 2 memory, say RAM,

shown as host memory 1506. In addition, the host might contain a disk. In one

25 application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred cmbodiment of the invention is supported by an optional Simple
Network Management Protocol (SNMP) implementation. Fig. 15 describes how one
would, for example, implement an RMON probe, where a network interface card is used
30 to send RMON information to the network. Commercial SNMP implementations also are

availahle and nsing such an imnlementation can simplifv the process of porting the

-52-

WO 01/01272 PCT/US00/1833¢

50

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

5 Monitor 300, and in particular, analyzer 303 is capable of carrying out state
analysis for packet exchanges that are commonly referred to as “server announcement”
type exchanges. Server announcement is a process used to ease communications between
a server with multiple applications that can all be simultaneously accessed from multiple
clicnts. Many applications use a server announcement process as a means of multiplexing

10 asingle port or socket into many applications and services. With this type of exchange,
messages are sent on the network, in either a broadcast or multicast approach, (0
announce a server and application, and all stations in the network may receive and decode
these messages. The messages enable the stations to derive the appropriate connection
point for communicating that particular application with the particular server. Using the

15 server announcement method, a particular application communicates using a service
channel, in the form of a TCP or UDP socket or port as in the IP protocol suite, or using a

SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out “in-stream analysis” of packet
exchanges. The “in-stream analysis” method is used either as a primary or secondary
20 recognition process. As a primary process, in-stream analysis assists in extracting detailed
information which will be used to further recognize both the specific application and
application component. A good example of in-stream analysis is any Web-based
application. For example, the commonly used PointCast Web information application can
be recognized using this process; during the initial connection between a PointCast server
25 and client, specific key tokens exist in the data exchange that will result in a signature

being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server
announcement process. In many cases in-stream analysis will augment other recognition
processes. An example of combining in-stream analysis with server announcement can be

\
1 30 found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking

-53-

WO 01/01272 PCT/US00/18330

51

applications in client/server packet exchanges. The process of tracking sessions requires
an initial connection to a predefined socket or port number. This method of
communication is used in a variety of transport layer protocols. It is most commonly seen

in the TCP and UDP transport protocols of the IP protocol.

5 During the session tracking, a client makes a request to a server using a specific
port or socket number. This initial request will cause the server to create a TCP or UDP
port to exchange the remainder of the data between the client and the server. The server
then replies to the request of the client using this newly created port. The original port
used by the client to connect to the server will never be used again during this data

10 exchange.

One example of session tracking is TFTP (Trivial File Transfer Protocol), a
version of the TCP/IP FTP protocol that has no directory or password capability. During
the client/server exchange process of TFTP, a specific pért (port number 69) is always
used to initiate the packet exchange. Thus, when the client begins the process of

15 communicating, a request is made to UDP port 69. Once the server receives this request, a
new port number is created on the server. The server then replies to the client using the
new port. In this example, it is clear that in order to recognize TFTP; network monitor
300 analyzes the initial request from the client and generates a signature for it. Monitor
300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

20 the server with the key port information, and uses this to create a signature for monitoring

the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular
connections in the network. Connection-oriented exchanges often benefit from state
tracking to correctly identify the application. An example is the common TCP transport

25 protocol that provides a reliable means of sending information between a client and a
server. When a data exchange is initiated, a TCP request for synchronization message is
sent. This message contains a specific sequence number that is used to track an
acknowledgement from the server. Once the server has acknowledged the synchronization
request, data may be exchanged between the client and the server. When communication

30 is no longer required, the client sends a finish or complete message to the server, and the
server acknowledges this finish request with a reply containing the sequence numbers

from the request. The states of such a connection-oriented exchange relate to the various

-54-

WO 01/01272 PCT/US00/18330

52

types of connection and maintcnance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the
basic underlying process remains similar. A typical server announcement message is sent
5 1o one or more clients in a network. This type of announcement message has specific
content, which, in another aspect of the invention, is salvaged and maintained in the
database of flow-entries in the systemn. Because the announcement is sent to one or morc
stations, the client involved in a future packet exchange with the server will make an
assumption that the information announced is known, and an aspect of the inventive

10 monitor is that it too can make the same assumption.

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto, California) !
of the Remote Procedure Call (RPC), a programming interface that allows one program to
use the services of another on a remote machine. A Sun-RPC example is now used to !

explain how monitor 300 can capture server announcements.

15 A remote program or client that wishes to use a server or procedure must establish

a connection, for which the RPC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database
called the port Mapper. The port Mapper creates a direct association between a Sun-RPC
program or application and a TCP or UDP socket or port (for TCP or UDP

20 implementations). An application or program number is a 32-bit unique identifier
assigned by ICANN (the Internet Corporation for Assigned Names and Nurbers,
www.icann.org), which manages the huge number of parameters associated with Internet
protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on |
a Sun-RPC server can present the mappings between a unique program number and a

25 specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC. I

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1) making |
a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined
UDP or TCP socket. Once the port Mapper process on the sun RPC server receives the

0 reauest the enecific manning is returned in a directed reply to the client. i

-55-

WO 01/01272 PCT/US00/18330

53

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2
(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request
(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This
request specifies the program (as a program identifier), version, and might

5 specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and
version identifier from the request. The server also uses the fact that this
packet came in using the TCP transport and that no protocol was specified, and

thus will use the TCP protocol for its reply.

10 3. The server 110 sends a TCP packet to port number 111, with an RPC Bind
Lookup Reply. The reply contains the specific port number (e.g., port number
‘port’) on which future transactions will be accepted for the specific RPC
program identifier (e.g., Program ‘program’) and the protocol (UDP or TCP)

for use.

15 It is desired that from now on every time that port number ‘port” is used, the
packet is associated with the application program ‘program’ until the number ‘port’ no
longer is to be associated with the program ‘program’. Network monitor 300 by creating a
flow-entry and a signature includes a mechanism for remembering the exchange so that

futare packets that use the port number ‘port’ will be associated by the network monitor

20 with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways
that a particular program—say ‘program’—might be associated with a particular port
number, for example number ‘port’. One is by a broadcast announcement of a particular
association between an application service and a port number, called a Sun RPC

25 portMapper Announcement. Another, is when some server—say the same SERVER 2—
replies to some client—say CLIENT 1—requesting some portMapper assignment with a
RPC portMapper Reply. Some other client—say CLIENT 2—might inadvertently see this
request, and thus know that for this particular server, SERVER 2, port number ‘port” is
associated with the application service ‘program’. It is desirable for the network monitor

30 300 to be able to associate any packets to SERVER 2 using port number ‘port’ with the

annlication nrogram ‘program’.

-56-

w0 01/01272 PCT/USD0/18330

54

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3
for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is
communicating via its interface to the nctwork 118 to a server 110 (e.g., SERVER 2 in
FIG. 1) via the server’s interface to the network 116. Further assume that Remote

5 Procedure Call is used to communicate with the server 110. One path in the data flow 900
starts with a step 910 that a Remote Procedure Call bind Jookup request is issued by client
106 and ends with the server state creation step 904. Such RPC bind lookup request
includes values for the ‘program,” *version,” and ‘protocol’ to use, e.g., TCP or UDP. The

process for Sun RPC analysis in the network monitor 300 includes the following aspects. :

10 o Process 909: Extract the ‘program,’ ‘version,” and ‘protocol’ (UDP or TCP).
Extract the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

o Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If
value is portMapper, save paired socket (i.e., dest for destination address, src
for source address). Decode ports and mapping, save ports with socket/addr

15 key. There may be more than one pairing per mapper packet. Form a signature

(e.g., akey). A flow-entry is created in database 324. The saving of the request

is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The
packet monitor 300 will extract a signature from the packet and recognize it from the
20 previously stored flow. The monitor will get the protocol port number (906) and lookup
the request (905). A new signature (i.c., a key) will be created and the creation of the
server state (904) will be stored as an entry identified by the new signature in the flow-
entry database. That signature now may be used to identify packets associated with the

server.

25 The server state creation step 904 can be reached not only from a Bind Lookup
Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an
RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol can
announce that it is able to provide a particular application service. Embodiments of the
present invention preferably can analyze when an exchange occurs between a client and a

30 server, and also can track those stations that have received the announcement of a service

in the network.

-57-

WO 01/01272 PCT/US00/18330

55

The RPC Announcement portMapper announcement 902 is a broadcast. Such
causes various clients to execute a similar set of operations, for example, saving the
information obtained from the announcement. The RPC Reply portMapper step 901 could
be in reply to a portMapper request, and is also broadcast. It includes all the service

5 parameters.

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun

10 Microsystems Remote Procedure Call protocol. A methed embodiment of the present
invention might generate a pair of flow signatures, “signamre-1" 210 and “signature-2"
212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds

15 tosuch a request sent from CLIENT 3 to SERVER 2. This packet contains important
information that is used in building a signature according to an aspect of the invention. A
source and destination network address occupy the first two fields of each packet, and
according to the patterns in pattern database 308, the {low signature (shown as KEY1 230
in FIG. 2) will also contain these two ficlds, so the parser subsystem 301 will include

20 these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address identifics the
client 106 (shown also as 202), the label used in the drawing is “C,”. If such address
identifies the server 110 (shown also as server 204), the label used in the drawing is S,
The first two fields 214 and 215 in packet 206 are “S;” and C," because packet 206 is
provided from the server 110 and is destined for the client 106. Suppose for this example,

25 “S” is an address numerically less than address “C;”. A third field “pl” 216 identifies the

particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate
port numbers that are used. The conversation direction determines where the port number
field is. The diagonal pattern in field 217 is used to identify a source-port pattern, and the

30 hash pattern in field 218 is used to identify the destination-port pattemn. The order

indicates the client-server message direction. A sixth tield denoted “15" 219 15 an element

-58-

WO 01/81272 PCT/US00/18330

56
that is being requested by the client from the server. A seventh field denoted “sja” 220 is
the service requested by the client from server 110. The following eighth field “QA™ 221
(for question mark) indicates that the client 106 wants to know what to use to access
application “s;a”. A tenth field “QP” 223 is used to indicate that the client wants the

s server to indicate what protocol to use for the particular application.

Packet 206 initiates the sequence of packet exchanges, e.g., a
RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the
packets, and is transmitted to the server 110 on a well-known service connection identifier

(port 111 indicating Sun RPC).

10 Packet 207 is the first sent in reply to the client L06 from the server. It is the
RPC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224-233. The destination and source addresses are
carricd in fields 224 and 225, e.g., indicated “C,” and “S;”, respectively. Notice the order
is now reversed, since the client-server message direction is from the server 110 to the

15 client 106. The protocol “p!” is used as indicated in field 226. The request “i!” is in field
229. Values have been filled in for the application port number, e.g., in field 233 and
protocol “*p2”™" in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a

20 first flow signature 210 is built in the parser subsystem 301 according to the pattern and
extraction operations database 308. This signature 210 includes a destination and a source
address 240 and 241. One aspect of the invention is that the flow keys are built
consistently in a particular order no matter what the direction of conversation. Several
mechanisms may be used 10 achieve this. In the particular embodiment, the numerically

25 lower address is always placed before the numerically higher address. Such least to
highest order is used to get the best spread of signatures and hashes for the lookup
operations. In this case, therefore, since we assume “S;”<“C”, the order is address “S;”

followed by client address “C,". The next field used to build the signature is a protocol

field 242 extracted from packet 206°s field 216, and thus is the protocol “p!”. The next
30 field used for the signature is field 243, which contains the destination source port number

shown as a crosshatched pattern from the field 218 of the packet 206. This pattern will be

-59-

WO 01/01272 PCT/US00/18330

57

recognized in the payload of packets to derive how this packet or sequence of packets
exists as a flow. In practice, these may be TCP port numbers, or a combination of TCP
port numbers. In the case of the Sun RPC example, the crosshatch represents a set of port
numbers of UDS for p! that will be used to recognize this flow (e.g., port 111). Port 111
5 indicates this is Sun RPC. Some applications, such as the Sun RPC Bind Lookups, are
directly determinable (“known™) at the parser level. So in this case, the signature KEY-1
points to a known application denoted “al” (Sun RPC Bind Lookup), and a next-state that
the state processor should proceed to for more complex recognition jobs, denoted as state

“stp” is placed in the field 245 of the flow-entry.

10 When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built
by the parser. This flow signature is identical to KEY-1. Hence, when the signature enters
the analyzer subsystem 303 from the parser subsystem 301, the complete flow-entry is
obtained, and in this flow-entry indicates state “stp". The operations for state “stp,” in the
state processor instruction database 326 instructs the state processor to build and store a

15 new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature built by the
state processor also includes the destination and a source addresses 250 and 251,
respectively, for server “S;” followed by (the numerically higher address) client “C,". A
protocol field 252 defines the protocol 1o be used, e.g., “p2” which is obtained from the
reply packet. A field 253 contains a recognition pattern also obtained from the reply

20 packet. In this case, the application is Sun RPC, and field 254 indicates this application
“a2”, A next-state field 255 defines the next state that the state processor should proceed
to for more complex recognition jobs, e.g., a state “st!”. In this particular example, this is
a final state. Thus, KEY-2 may now be used to recognize packets that are in any way
associated with the application “a2”. Two such packets 208 and 209 are shown, one in

25 each direction. They use the particular application service requested in the original Bind
Lookup Request, and each will be recognized because the signature KEY-2 will be built

in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “S;” followed by client “C,”. Such values are automatically

30 filled in when the addresses are first created in a particular flow signature. Preferably,

-60-

WO 01/01272 PCT/US00/18330

58

large collections of flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented
by request packet 208 and response packet 209. The client 106 sends packets 208 that
5 have a destination and source address S; and Cy, in a pair of fields 260 and 261. A field

262 defines the protocol as *p2”, and a field 263 defines the destination port number.

Some network-server application recagnition jobs are so simple that only a single
state transition has to occur 10 be able 1o pinpoint the application that produced the packet.
Others require a sequence of state transitions to occur in order to match a known and

10 predefined climb from state-to-state.

Thus the flow signature for the recognition of application “a2” is automatically set
up by predefining what packet-exchange sequences occur for this example when a
refatively simple Sun Microsystems Remote Procedure Call bind Jookup request

instruction executes. More complicated exchanges than this may generate more than two

15 flow signatures and their corresponding states. Each recognition may involve setting up 4
complex stale transition diagram to be traversed before a “final” resting state such as “sty” !
in ficld 255 is reached. All these are used to build the final set of flow signatures for

recognizing a particular application in the future.

The State Processor in Detail

20 The state processor | 108 analyzes both new and existing flows in order to classify
them by application. It does this by proceeding from state to state based on rules defined
by the engineer. A rule is a test followed by the next state to proceed to if the test is true.
The state processor 1108 goes through each rule until the test is true or there are no more
tests 10 perform. The state processor 1108 starts the process by using the last protocol

25 recognized by parser subsystem 1000 as an offset into a jump table (the jump vector). The
jump table takes us to the instructions to use for that protocol. Most instructions test
something in the unified flow key buffer 1103 or the flow-entry if it exists. The state

processor 1108 may have 10 test bits, do comparisons, add or subtract to perform the test.

In most common processing systems, the set of instructions implemented are

30 general purpose in nature. All processing systems have a typical set of instructions related

61-

WO 01/01272 PCT/US00/18330

59

to the analysis and manipulation of the Instruction and program counters. These
instructions include Jump, Call and Return. In addition, these same processing systems
contain the appropriate instructions to analyze and manipulate registers and memory

locations. These instructions include Increment, Decrement and Move, Compare and

w

Logical manipulation.

The state processor 1108 of the preferred embodiment also includes such a basic
set of standard instructions. However, the preferred cmbodiment state processor 1108 has
some very specific functions that are required in order to evaluate the content of and data
within packets on networks. There are four specific functions performed by the preferred

10 embodiment state processor to meet these objectives. Two of these are speciatized
conversion instructions designed to interpret and transpose text elements in a specific for
into a mathematical and numerical format. These instructions are AH2B (ASCII
Hexadecimal to Binary) and AD2D (ASCII Decimal to Binary). These instructions are
single cycle in nature. These instructions are novel and included to provide for the time

15 sensitive nature of the functions performed by the preferred embodiment state processor.

In order to have the system make speed and mect the objective for classification,
there are several other special functions provided in the State Processor. These functions
primarily deal with sceking, locating, analyzing and evaluating sequences of strings.

These strings can be either formatted or unformatted.

20 The primary high lcvel instructions are the In_Find and In_Find CONTINUE
instructions, and are implemented by a searching apparatus (search engine) that is part of
the state processor. These functions and the searching apparatus have been designed to
make the state processor 1108 capable of simultancous searching payload content from a
packet sent into the monitor 300. This enables the monitor to scale and meet any network

25 speed requirements.

The state processor is shown in FIG. 19 as processor 1108. It executes its
instructions from the state processor instruction database (SPID) 1109 which if filled by
the host CPU as part of the compilation process 310. The SP 1108 contains several sub
blocks including a program counter 1903 (SPPC) a control block 1905 (SPCB), an

30 arithmetic logic unit 1907 (SPALU), address generators and data bus multiplexors

{(Muxes) to enable the movement of data from various sources to various destinations. The

-62-

WO 01/01272 PCT/US00/18330

60 !
two address generators are a SP flow key address generator 1911 (SPFKAG) that points
to the UFKB and a SP flow-entry address generator 1913 (SPFEAG) that points to the
cache subsystem 1115. The SP 1108 also includes four data Muxes: SP ALU Data Mux A
1919, SP ALU Data Mux B 1921, SP UFKB Data Mux 1915, and SP Cache Data Mux

5 1917. These Muxes facilitate the movement of data within the various blocks of the state

processor 1108 and to/from the UFKB 1103 and the cache subsystem 1115.

The SP control block 1905 decodes instructions coming out of the SPID 1109 and
separates them into various fields to control the state processor 1108. The main function
of the SPCB 1905 is instruction decoding and control signal generation. There are two

10 classes of instructions. One that are executed completely by the SPCB and one that are
passed along to the SPALU 1907 for partial or complete execution. Some of the SP

instructions arc described herein below.

When an instruction needs to be passed to the SPALU 1907, the SPCB 1905
decodes the instruction and supplies the SPALU 1907 instruction code on a bus and

15 asserts a “Go” signal.

When an instruction, e.g., a move or jump instruction, can be completely executed
by the SPCB 1905, the SPCB generates the appropriate control signals to the SP program
counter 1903, SP Address Generators 1911 and/or 1913, and the SP Muxes in order to

implement the specific move or jump instruction.

20 Words in the SPID 1109 are 40 bits long and partitioned into various fields by the
SPCB 1905 depending on the instruction code. One field is the instruction code. The
remaining bits in the SPID word is partitioned into various fields depending on the
accompanying instruction. For example, the SP 1108 can implement Jump, Call, Wait,
and WaitR) instructions that are followed by a condition code and a jump address. The SP

25 1108 also can execute a Move Immediate instruction that is followed by the constant
value. Furthermore, SP 1008 can execute Load Address Generator instructions that are
followed by the address to be loaded. Upon decoding the instruction field, the SPCB
generates a combination of control signals from an included decode PAL. These control
signals select the various Muxes that facilitate data movement and generate strobe signals

30 that load values in various registers.

‘I'he program counter SFFC 1903 generates the a0aress [0 e stae provessus

-63-

WO 01/01272 PCT/US00/18330

61

instruction database. It contained an instruction pointer that generates the SPID 1109
address. The instruction pointer can be incremented or loaded from a jump vector
multiplexor that facilitates conditional branching. The instruction pointer can be loaded
from one of three sources: (1) a protocol identifier from the UFKB, (2) an immediate

5 jump vector form the currently decoded instruction or (3) a value provided by the SPALU
1907.

After a flow signature is placed tn the UFKB by the LUE with a known protocol
identifier, the program counter 1903 is initialized with the last protocol recognized by the
parser subsystem. This first instruction is a jump to the subroutine that analyzes the

10 protocol that was decoded.

In order to facilitate JUMP immediate instructions, the program counter takes an
input field from the SPCB 1905 with the jump vector and loads the instruction pointer

with the jump vector. i

The state processor ALU 1907 contains all the arithmetic, logical and string
15 compare functions necessary to implement the state processor instructions. The main
blocks of the SP ALU 1907 are: an A register and a B register, instruction decode & state
machines, a reference string memory, a search engine 1930, an output data register and an

output control register.

The state processor ALU search engine 1930 (SPALU_SE) in turn contains a
20 target search register set, a reference search register set, and a compare block. The search
engine 1930 is able to scarch for up to several (four in our embodiment) reference strings
anywhere in a target, and, if one of the reference strings is found, returns which reference

string and the position in the target of the reference string.

The flow key address generator 1911 generates the address to where the state
25 processor 1108 is accessing in the unified flow key buffer. The main blocks of the
SPFKAG are a flow key address pointer register, and a ROM decode that generates

addresses.

The flow-entry address generator 1913 provides the address where the state
processor 1108 is accessing the flow-entry in the cache subsystem 1115. If a flow-entry
30 exists, the upper address bits come from the hash is used to lookup the bucket in the flow

database 324. The middle bits come from the bucket entry found. The lower bits come

-64-

WO 01/01272 PCT/US00/18330

62

from the offset the state processor 1108 is using.

The main blocks of the SPFKAG are a flow key pointer register, and a ROM

decode that gencrates addresses.

The state processor UFKB Data Mux 19135 selects the data source destined to the
5 UFKB. It multiplexes one of three sources of data into the UFKB. The threc sources are
an ALU output data bus, the cache output data bus and the SPCB data. The select signal is
a 2-bit signal.

The state processor Cache Data Mux 1917 selects the data source destined to the
cache subsystem out of four sources of data into the cache subsystem. The four sources
10 are: the ALU output data bus, the lower bits of the UFKB data bus, the upper bits of the
UFKB data bus and the SPCB Data. The select signal is a 2-bit signal. In order to allow
for 16bit moves, the SPMUXCA incorporates two 16bit Muxes that supply information to

the lower and upper 16bits of the cache subsystem.

The State Processor ALU Data Mux A 1919 selects the data source destined to the
15 UFKB and multiplexes one of three sources of 32 bit data into the A side of the ALU. The
three sources are the cache subsystem data bus, the lower 32 bits of the UFKB data bus

and the upper 32 bits of the UFKB data bus. The select signal is a 2-bit signal.

The state processor ALU Data Mux B 1919 selects the data source destined to the
B side of the SP ALU and multiplexes one of two sources of 32 bit data into the B side of
20 the ALU. The two sources are the cache subsystem data bus, and the SPCB data word.

The select signal is a 1-bit signal.

State Processor Instruction Definitions

The following sections describe some of the instructions available in the state
processor 1108. It should be noted that typically, no asserbler is provided for the state
25 processor 1108. This is because the engincer typically need not write code for this
processor. The Compiler writes the code and loads it into the state processor instruction

database from the protocols defined in the Protocol List (PDL files).

The table is divided into two embodiments, embodiment 1, and embodiment 2
which is a more complex embodiment that inclades more complex versions of

30 embodiment | MSucuons and 4ddidonat WsLUCULILS.

-65-

w0 01/01272

PCT/US00/18330

63

State Processor Instruction Definition

EMBODIMENT 1 Instructions (a simpler embodiment)

Instruction Description

In_Noop No Operation

In_Wait Wait for a condition to occur, jump absolute based on the
condition

In_Call Call a subroutine

In_Return Return from a subroutine

In_WaitJR Wait for a condition to occur, jump relative based on the
condition

In_Jump Jump to an immediate jump vector based on a condition

In_Move Move Data from Location X, to Location Y

In_Load_FKAG Load the FK Address Generator 1911

In_Inc_FKAG Increment the FK Address Generator 1911

In_Dec_FKAG Decrement the FK Address Generator 1911

In_Load_FEAG Load the FE Address Generator 1913

In_Inc_FEAG Increment the FE Address Generator 1913

In_Dec_FEAG Decrement the FE Address Generator 1913

In_Set_SPDone

Set the SP Done Bit, a bot to indicate SP1108 done

-66-

WO 01/01272 PCT/US00/18330
64
EMBODIMENT 1 ALU Instructions
Instruction Description
In_INC Increment the value in the A Register
In_DEC Decrement the value in the A Register
In_ADD ADD Register A + Register B
In_SUB Subtract Register A - Register B
In_AND Bitwise OR Register A, Register B
In_OR Bitwise OR Register A, Register B
In_XOR Bitwise XOR Register A , Register B
In_COM Bitwise Complement Register A
In_Simple_Compare Comlpare Reg A, with Reg B. Retums a SPALU_MATCH if
equal

EMBODIMENT 2 ALU Instructions (more complex implementation)

Instruction Description

In_Compare See if the string at a fixed location matches one in a reference
string array of reference strings

In_Find Find a string (or a set of strings) in a range, with the starting
position unknown

In_rindContinue Perform a Find operation starting from the location where the
last string was found.

In_AD2B Convert an ASCII Decimal character to Binary

In_AD2BContinue Convert an ASCII Decimal character to Binary
In_AH2B Convert an ASCII Hex character to Binary
In_AH2BContinue Convert an ASCIT Hex character to Binary

Some of these instructions are now described in more detail.
Move

5 The move instruction set includes specific move instructions that deal with
moving different size words from a source to a destination. The set of Move instructions
has been developed to ensure the word sizes always match, and includes 32 bit and 16 bit

Move instructions

The Move instruction moves data from: immediate data to the SP ALU B register.

67-

WO 01/01272 PCT/US00/18330

65

immediate data to the cache subsystem, immediate data to the UFKB, the SP ALU Output
to the UFKB, the SP ALU Output to the cache subsystem, the cache to the UFKB, the
cache 1o the SP ALU A register, the cache to the SP ALU B register, UFKB to the cache
subsystem, and the UFKB to the SP ALU A register.

5 1n_Compare

The In_Compare instruction instructs the ALU 1907 to perform a corpare
operation and return a MATCH signal along with the matched string information. A
compare operation compares a target data whose first character is located at a known
location in the UFKB, and a known reference string in the reference string memory. Prior
10 toexecuting this instruction, the SP UFKB address generator 1911 is loaded with the
address pointing to the target character. A location in the ALU reference memory holds a

list of reference characters to compare.
ASCII Decimal to Binary
This instruction passes the location of an ASCII code string representing a decimal
15 value. The result is the binary equivalent value. This is carried out in one cycle.
ASCII Hex to Binary

This instruction passcs the location of an ASCII code string representing a hex

value. The result is the binary equivalent value. This is carried out in one cycle.
In_Find
20 In_Find_Continue

These instructions are described in more detail in the following section describing the

search engine 1930.

The Search Engine and SP Instructions Invoking the Search Engine

One aspect of the monitor 300 is its ability to analyze each and every packet in
25 real time. Network traffic may move at a very fast rate. One of the tasks of the state
processor 1107 is to search for one or more known strings of data. Such searches are
carried out on the UFKB records, for example, in the payload section of the record. The
searches may be in known parts of the record, or may be in unknown parts of the record,
for example, anywhere in the payload part of a UFKB record. Furthermore, the searches

30 may need to be carried out at extremely high rates.

-68-

WO 01/01272 PCT/US00/18330

66

The state processor ALU includes a search engine SPALU_SE 1930 for carrying
out such searches. The search engine 1930 is capable of searching up to four reference
strings in a target area in the UFKB, and in parallel indicates (1) if any of the four strings
are found anywhere in the target, (2) which string was found, and (3) where in the target

5 the string was found.

The search engine provides for carrying out the following state processor

instructions.
In_Find

The In_Find instruction provides information to the ALU-Search Engine to
10 perform a Find operation and return a match signal along with the matched string

information and the location at which the string was found in the target.
The instruction format is as follows:

In_rind [Reference String Ammay Address], [UFKB Byte Offset], [Range]

Instruction Word Definition

Bit Description

In_Find 0OpCode

N (size of Reference String Array Address in the ALU Reference Memory.
Abus)

the ALU Reference Memory can store an array of one to four
reference strings to be found. Each reference string is Ny units long,

in our implementation, a unit is a byte, and Np is 16.
Offset (2:0) UFKB Byte Offset

This is the offset address pointing to a byte in the selected UFKB
entry.

The offset is used to determine which byte within the selected
UFKB entry is the first byte location to start the find operation. If
the UFKB is 64 bits (8 bytes) this field would be 3 bits wide and
point to the first target byte to start the find operation.

Range (7:0) The Range, in number of bytes, in the UFKB area to be searched.

This means the number of bytes to search. It typically specifies how
many bytes of a particular field in the particular UFKB record to
search.

If a full MATCH does not result after comparing this range, the find
operation is concluded.

-69-

WO 01/01272 PCT/US00/18330
67
Reference String Memory Data Structure for In_Find Operations
Bit Field Description
of Strings # of Strings in Array indicates the total number of strings in this
(8 bits) array. Valid numbers are 0,1,2,3 for 1,2,3 or 4 strings.
8 bits are allocated for future expansion and to simplify the
implementation.
Size of 1" This parameter indicates the size of the 1% string in bytes. The value
String placed here is Ny -1. Valid numbers are 0-F for a string as small as
(4 bits) 1 character and as large as OxF characters.
Size of 2™ This parameter indicates the size of the 2" siring in bytes. The value
String placed here is Ny, -1. Valid numbers are O-F for a string as small as
(4 bits) 1 character and as large as OxF characters.
Size of 3¢ This parameter indicates the size of the 3% string in bytes. The value
String placed here in Ng3 -1. Valid numbers are 0-F for a string as small as
{4 bits) 1 character and as large as OxF characters.
Size of 4 This parameter indicates the size of the 4% string in bytes. The value
String placed here in Npy -1. Valid numbers are 0-F for a string as small as
(4 bits) 1 character and as large as OxF characters.
Stringl 1 to 16 (=Ng) characters of string1.
String2 1 to 16 (=Ng) characters of string2.
String3 1 to 16 (=Ng) characters of string3.
Stringd 1 to 16 (=NR) characters of string4.
Vector This is a 16 bit (i.e., Ng-bit) vector returned to the program counter
(16 bits) to point to an area in the SPID that processes the result of the
In_Find.

When the search is complete, a Search Done bit is asserted. A MATCH bit is
asserted or reset based on the result of the search. A bus in the ALU, called the
5 ALU_DATA bus, will hold the following information:

. Jump_Vector[15:0] — this is a vector stored in the Reference String Array
and indicates what instructions (e.g., subroutine) the state processor jumps to

when a reference string is iound.

-70-

WO 01/01272 PCT/US00/18330

68

. String Code[1:0] — this is the string code indicating which of tbe reference
strings was found, i.c., 0, 1, 2, or 3 for the four reference string

implementation.

The location at which the string was found in the Flow Key Buffer is maintained.
5 This is a combination of the UFKB word address and the byte location of the first

character of the target found string.

The search is done if the first occurrence of any of the reference strings is found,

or if there is no MATCH in the entire search range.

Consider the following example. Assume we wish to search for a reference string
10 in the payload area of the UFKB and search starting at byte location 5 of the payload and
stop searching at byte location 100. Assume the reference string is located at location

0050h. The instruction format for this example would be as follows:
In_Load_FKAG, payload addresas

In_Find, 005014, 5, 604
15 The range would be 100 -5 + 1 =96 =60

Consider as a second example, searching locations 12,¢ to location 2A ¢ in the

UFKB. The following state processor instructions will achieve this.

In_Load FKAG 024
In Find [Reference String Address),2,194
20 Note that 2A 6~ 121 +1 = 19;¢.

In_Find_ Continue

This instruction follows an In_Find instruction and tells the ALU-Search Engine
1930 10 perform a Find operation starting from the location where the last string was
found and return a MATCH along with the matched string information and the location at
25 which the target string was found. The purpose for this instruction is to facilitate
searching for a new reference string starting from the location where a previous search
ended. Therefore, an offset is not provided since the Search Engine will remember the

tocation where 1t finished its previous searcii.

71-

W0 01/01272 PCT/US00/18330

69

The instruction format is as follows:

In_Find_Continue [Reference String Array Address], [0], [Range]

Instruction Word Definition

Bit Description

In_Find Opcode

N (size of Reference String Array Address in the ALU Reference Memory.
Abus)

At this location, there is an array of one to four reference strings to
be found. A Reference String Data Structure of the array is defined
in the Reference Memory Data Structure section below.

(Default N = 16)
Offset (2:0) UFKB Byte Offset
Always Zero.

Range (7:0) The Range, in number of byte, in the UFKB area to be searched.
This means the number of bytes to search.

If a full MATCH does not result after comparing this range, the find
operation is concluded.

As an example, assume we wish to In_Find a string (String A) in the payload
5 area of the UFKB and search starting at byte location 5 of the payload and stop searching
at byte location 100. Assume the reference string (String A) is located at location 0050,6.
After finding the first reference string, assume we wish to continue searching for a new

string (String B) in the following 30;¢gbytes. Assume String B is located at location

0080h.
10 The instruction format for this example would be as follows:
In_Load_FKAG, payload address
In_Find, 005016, 5, 6016
In_Find_Continue, 0080;¢, 5, 3055
15 The range would be 100 -5 +1=96=60,4

FIG. 20 is an overall block diagram of the search engine (SPALU_SE) 1930 that

72-

WO 01/01272 PCT/US00/18330

70

is part of the ALU 1907 and that executes the In_Find and In_Find_Continue
instructions issued to the ALU 1907. The In_Find Instructions searches an area of the
UFKB and looks for up to four possible reference strings in the target (UFKB) area. The

reference strings are stored in the ALU Reference String Memory.

5 As shown in Fig. 20, the Search Engine is coupled with the following

components:

(a) ALU String Reference Memory 2003 where the reference strings are

stored.

(b) SPALU Data Mux A 1919 through which the target data 2011 for
10 matching with the reference string is supplied. This is coupled to the UFKB during
operation of the In_F4ind instruction using SP_UFKB Data Mux 1915.

(c) SPALU Data Mux B 1921 through which the instruction code is supplied,
including the “Go” signal SPALUGO 2005 to start the search.

(d) The state processor flow key address genecrator 1911 used to increment and
15 decrement the UFKB address.

(e) The state processor program counter 1903 where the results of the search

are reported.

The system is run by a clock signal CLK 2001 and may be reset by a RESET

signal. An instruction decode block SE_INST 2009 decodes the instruction code for

20 In_Findand In_Find_Continue and starts the Search Engine upon the activation of
the SPALUGO signal 2005. The Search Engine continuously monitors the SPMuxB 1921
output bus 2007 and SPALUGO signal 2005 to detect the In_Find and
In_Find_Continue instructions. During operation of the search engine 1930 the engine
receives the target data 2011, in word size, from the UFKB 1103 through SPMUXA

25 1919. Similasly, the reference string(s) from the appropriate address of a reference string
memory 2003 arrives as data SP_Data_RMB 2013.

A Search Engine Reference Load (SE_LOAD) module 2015 is responsible for
“priming” reference string registers once an In_Find or In_Find_Continue
instruction is issued. It takes a reference string array from the reference string memory

30 2003 and interprets it and loads the reference string registers with the information.

73-

WO 01/01272 PCT/US00/18330

71

In the processing state, the SE-LOAD module 2015 first loads the first word from
the starting location of the reference memory 2003. The starting location is assumed to be
set up at the proper location prior to issuing of the instruction. Once the number of strings
and the size of the strings are loaded, the loading process continues loading all of the i
5 reference strings. An increment reference signal 2025 increments the reference memory
from where the reference string is being loaded. During the loading of the strings, a
LOAD_KEY_DONE signal 2017 is unasserted. A LOAD_KEY signal 2019 is pulsed ’ !
when the last word of the last reference string is being loaded indicating to the ‘
search_engine_module 2030 to start searching from the next clock cycle. The
10 LOAD_KEY_DONE signal 2017 is asserted during the next clock cycle and the jump

vector 2021 is loaded at the same time from the Reference Memory 2003.

The Search Engine Increment/Control module (SE_INC) 2023 is responsible for
incrementing the flow key address generator 1911 in order to supply new words from the
UFKB to the Search Engine. It monitors the found signals out of the Search Engine

15 modules and reports resuits. SE_INC 2023 is also responsible for calculating true ending
address and determines the last byte to be checked in the last word based on the Range

provided in the In_Find instruction.

The SE-4SEARCH 2030 module includes four search engines to search for four
strings simultaneously. The engine outputs a found signal 2031 and a position signal 2033

20 for each of the four reference strings to indicate if and where the string was found.

The assertion of SPALU_Done signal 2035 by SE-INC 2023 indicates the search
is completed. If the SPALU_Maich signal 2037 is asserted at the same time then it is a
successful search. The successful search also results in the SPALU_Data bus 2039
carrying the jump vector along with the search engine number that found the reference

25 string.

One aspect of the invention is the speediness of searching. The longest time for
the SPALU_Done 2035 to be asserted from the time the instruction is issued for searching
anywhere in a number N of words in the UFKB is N clock cycles plus an additional
number of clock cycles for pre-loading and pointer adjustment in case of successful

30 search. In our embodiment, this additional overhead is 11 clock cycles. Therefore, each

extra word takes only one clock cvcle.

-74-

20

25

30

WO 0101272 PCT/US00/18330

72

FIG. 21 shows the SE_4SEARCH module 2030 that includes four single search
modules. Alternate embodiments may include more single search modules to enable
searching for more than four reference strings simultaneously. Each of the four search

engine modules is identical, so only one such module 2103 will be described.

Each of the single search modules 2103 performs a single reference string search.
Using multiple copies of this module multiple distinct reference strings can be searched in
a common source buffer (the UFKB). The module includes a core comparator matrix
block 2105 (the search engine core) and a state machine SE_SM 2107. The search engine
core 2105 is capable of comparing a reference string up to Np units (16 bytes in our
embodiment) with a target string of three eight-byte words (loaded in three successive
cycles, one word at a time). During each clock cycle, the single search modules 2103
searches for the reference string anywhere in the target starting from any of the eight
bytes of the first word. Each of the reference string bytes is appended with a check bit,
which indicates whether to check this byte, or not. If the check bit is asserted, then the
corresponding byte checking is disabled. As 64-bit words (8 bytes) are loaded into three
registers in a pipelined fashion, the comparison takes place two clock cycles after they are

fetched.

The source (UFKB) address pointer needs to be adjusted if the search is
successful. If the search is successful, a match signal 2111 becomes active and the
position of the first byte of the reference string is placed out on a position bus 2113. The
SE_SM state machine 2107 performs several tasks every clock cycle. It has three states:
reset, idle, and process. While in the idle state, the state machine 2107 waits for a signal
from the SE_LOAD module 2015 to switch to the Process State. During the first clock
cycle in the Process State, if a match occurs then the position is checked against the byte
offset 2115. If the byte offset is greater then the position, then it is ignored, i.e. found is
not asserted. Similarly, if it is the last word to be checked, then the end offset byte is
checked with the position and the found is ignored if the position is greater then last byte
to be checked in the range 2117. Otherwise, the found signal is asserted when the match is
found by the search engine core 2105 and the position is latched and forwarded to the
SE_INC module 2023.

Referring now to FIG. 22A, the search engine core 2105 is the core comparator

matrix of the search engine module. It searches for an Ng-unit reference string in a target

-75-

WO 01/01272 PCT/US00/18330

73
string. It includes a reference axis and a target axis. The reference axis includes a register
that holds the reference string, in general a string of Ny units. The unit is a byte and Ng is

16 in the preferred embodiment, and other units and the matrix may easily be modified to
search for other reference string sizes. The target data is organized as words. The target

5 axisis arranged as a series of one word registers each holding a word of target data. A
word is clocked into the register in one clock cycle. Thus, the first word of the target data

is clocked into the target axis in three cycles.

The search engine core 2105 includes at least one Ng-unit comparator each having
Np pairs of inputs and an output indicating a match of each pair of the Ng-pairs of inputs. i

10 One such comparator 2203 is shown in FIG. 22B. The pairs of inputs are shown as (2207-)
1,2209-1), (2207-2, 2202-2), ..., (2207-Ng, 2207-Ng). The output is 2211. FIG. 22A i

shown a number (say Ng;,ry) comparators labeled 2203-1, 2203-2, ..., 2203- Ngiyp.
Considering any one of the comparators, the search engine core also includes a matrix of
connections including N connections indicating values of the reference string along the
15 reference axis, and N connections indicating values of the target data along the target
axis, the target data connections starting from a first starting location of the target data
and ending at an ending location. The comparators are connected such that when the
reference and target axes are oriented perpendicular to each other, any comparator is
oriented along the diagonal of the matrix such that Ny connections of the target data are
20 compared to the reference string. Each comparator starts at a different location in the
target axis. In our implementation, each word is 8 bytes long, the number of comparators
Ngyarg is the same as the word size, and the comparators start at contiguous locations on
the target axis. Thus, in one clock cycle the search engine core 2105 can find the
reference string starting from any location in the first word. Notice that if a target string
25 happens to cross a word boundary, the search engine core will still automatically find the

word.

The outputs of the comparators are input into an Ny, input priority encoder that
indicates if a string is found which of the N, comparators found the string. This

provides for the location.

30 During operation after the data is loaded, in the first clock cycle, the state machine

-76-

WO 01/01272 PCT/US00/18330

74

2107 will ignore any strings that might be found in the first few comparators, that number
of comparators indicated by the offset. During each subsequent clock cycle, the search

engine core 2105 will find the reference string if it starts anywhere in the first N,

positions. Thus, in a number of clock cycles, the search engine core 2105 will find the

5 reference string anywhere in the target data.

FIG. 23A shows an implementation of the input core in more detail. This
implementation is for finding the reference string in any of a set of starting positions. The

implementation includes a reference register 2203 for receiving the Ng units of one of the

reference strings, a set of target data registers 2205 coupled in series to receive the target

10 data, a plurality of comparator sets, one comparator set cotresponding to each of the
starting positions, the comparator set of a particular starting position coupled to each
unit—each byte in this implementation—of the reference register and to Ny units—bytes
in this case—of the target data registers starting from the particular starting position and
comparing the first reference register contents to Ny units of the target data registers

15 starting from the particular staring position. Each comparator set indicates if there is a
match of first reference string in the target data starting from its corresponding different
starting position. The set of possible starting positions might include N, different
positions. These positions may or may not be contiguous, and if contiguous, the one or
more target data registers are coupled in series to receive at least Np+Ng,,,—1 units of the

20 target data. Thus there are N, comparator sets, one comparator set for each of the N,

starting positions.

Each comparator set includes Ny consecutive comparators. One such comparator

2313 is shown in FIG. 23B. and includes a reference input, a target input, an enable input,
and an output indicating a match, such that the output of a comparator 2313 is asserted

25 when the reference and target inputs match and the enable input is asserted. For a
particular set of comparators for a particular starting position, the reference inputs of
consecutive comparators are coupled to consecutive units of the reference register, the
target data inputs of consecutive comparators are coupled to consecutive units of the
target data registers starting at the particular starting location, the first comparator of the

30 setisenabled, and the enable input of each comparator is coupled to the output of the

previous comparator, such that the output of the final comparator is asserted when the N

77-

WO 01401272 PCT/US00/18330

75

units of the reference string and the Ny units of the target data agree.

In this way, the state processor is able to locate strings at unknown locations in

areas of the packets (stored in the UFKB) at an extremely high rate.

The Cache Subsystem

5 Referring again to FIG. 11, the cache subsystemn 1115 is connected to the lookup
update engine (LUE) 1107, the state processor the state processor (SP) 1108 and the flow
insertion/deletion engine (FIDE) 1110. The cache 1115 keeps a set of flow-entries of the
flow-entry database stored in memory 1123, so is coupled to memory 1123 via the unified
memory controller 1119. According to one aspect of the invention, these entries in the

10 cache are those likely-to-be-accessed next.

It is desirable to maximize the hit rate in a cache system. Typical prior-art cache
systems are used to expedite memory accesses to and from microprocessor systems.
Various mechanisms are available in such prior art systems to predict the lookup such that
the hit rate can be maximized. Prior art caches, for example, can use a lookahead

15 mechanism to predict both instruction cache lookups and data cache lookups. Such
lookahead mechanisms are not available for the packet monitoring application of cache
subsystem 1115. When a new packet enters the monitor 300, the next cache access, for
example from the LUE 1107, may be for a totally different flow than the last cache
lookup, and there is no way ahead of time of knowing what flow the next packet will

20 belong to.

One aspect of the present invention is a cache system that replaces a least recently
used (LRU) flow-entry when a cache replacement is needed. Replacing least recently used
flow-entries is preferred because it is likely that a packet following a recent packet will
belong to the same flow. Thus, the signature of a new packet will likely match a recently

25 used flow record. Conversely, it is not highly likely that 4 packet associated with the least

recently used flow-entry will soon arrive.

Furthermore, after one of the engines that operate on flow-entries, for example the
LUE 1107, completes an operation on a flow-entry, it is likely that the same or another
engine will soon use the same flow-entry. Thus it is desirable to make sure that recently

30 used entries remain in the cache.

-78-

WO 01/01272 PCT/US00/18330

76

A feature of the cache system of the present invention is that most recently used
(MRU) flow-entries are kept in cache whenever possible. Since typically packets of the
same flow arrive in bursts, and since MRU flow-entries are likely to be required by
another engine in the analysis subsystem, maximizing likelihcod of MRU flow-entries
5 remaining in cache increases the likelihood of finding flow records in the cache, thus

increasing the cache hit rate.

Yet another aspect of the present cache invention is that it includes an associative
memory using a set of content addressable memory cells (CAMs). The CAM contains an
address that in our implementation is the hash value associated with the corresponding

10 flow-entry in a cache memory (e.g., a data RAM) comprising memory cells. In one
embodiment, each memory cell is a pagc. Each CAM also includes a pointer to a cache
memory page. Thus, the CAM contents include the address and the pointer to cache
memory. As is conventional, each CAM cell includes a matching circuit having an input.
The hash is presented to the CAM’s matching circuit input, and if the hash matches the

15 hash in the CAM, the a match output is asserted indicating there is a hit. The CAM
pointer points to the page number (i.¢., the address) in the cache memory of the flow-

entry.

Each CAM also includes a cache address input, a cache pointer input, and a cache

contents output for inputting and outputting the address part and pointer part of the CAM.

20 The particular embodiment cache memory stores flow-entries in pages of one
bucket, i.c., that can store a single flow-entry. Thus, the pointer is the page number in the
cache memory. In one version, each hash value corresponds to 2 bin of N flow-entrics
(e.g., 4 buckets in the preferred embodiment of this version). In another implementation, ;
each hash value points 1o a single flow record, i.e., the bin and bucket sizes correspond.

25 For simplicity, this second implementation is assumed when describing the cache 1115.

Furthermore, as is conventional, the match output signal is provided to a
corresponding location in the cache memory so that a read or write operation may take

place with the location in the cache memory pointed to be the CAM.

One aspect of the present invention achieves a combination of associatively and
30 true LRU replacement policy. For this, the CAMs of cache system 1115 are organized in

) S e

Lo 3y ~a bl F ol SYANA N
witai we cail a CAM siack {also CAM amray) i

ardarine with a ton CAM and a
g, withaton CAM

-79-

20

25

n

WO 01/01272 PCT/US00/18330

717

bottom CAM. The address and pointer output of each CAM starting from the top CAM is

connected to the address and pointer input of the next cache up to the bottom.

In our implementation, a hash is used to address the cache. The hash is input to the
CAM array, and any CAM that has an address that matches the input hash asserts its
match output indicating a hit. When there is a cache hit, the contents of the CAM that
produced the hit (including the address and pointer to cache memory) are put in the top
CAM of the stack. The CAM contents (cache address, and cache memory pointer) of the
CAMs above the CAM that produced are shifted down to fill the gap.

If there is a miss, any new flow record is put in the cache memory element pointed
to by the bottom CAM. All CAM contents above the bottom are shifted down one, and
then the new hash value and the pointer to cache memory of the new flow-entry are put in
the top-most CAM of the CAM stack.

In this manner, the CAMs are ordered according to recentness of use, with the
least recently used cache contents pointed to by the bottora CAM and the most recently

used cache contents pointed to by the top CAM.

Furthermore, unlike a conventional CAM-based cache, there is no fixed
relationship between the address in the CAM and what element of cache memory it points
to. CAM’s relationship to a page of cache memory changes over time. For example, at
one instant, the fifth CAM in the stack can include a pointer to one particular page of
cache memory, and some time later, that same fifth CAM can point to a different cache

memory page.

In one embodiment, the CAM array includes 32 CAMs and the cache memory
includes 32 memory cells (e.g., memory pages), one page pointed to by each CAM
contents. Suppose the CAMs are numbered CAMg, CAM,, ..., CAMy,, respectively,
with CAM_ the top CAM in the array and CAM3, the bottom CAM.

The CAM array is controlled by a CAM controlier implemented as a state
machine, and the cache memory is controlled by a cache memory controller which also is
implemented as a state machine. The need for such controllers and how to implement
them as state machines or otherwise would be clear to one skilled in the art from this

degcrintion of operation In arder not to confuse these controllers with other controllers,

-80-

WO 01/01272 PCT/US00/18330

78

for example, with the unified memory controller, the two controllers will be called the

CAM state machine and the memory state machine, respectively.

Consider as an cxample, that the statc of the cache is that it is full. Suppose
furthermore that the contents of the CAM stack (the address and the pointer to the cache
5 memory) and of the cache memory at each page number address of cache memory are as

shown in the following table.

CAM Hash Cache Point Cache Addr. | Contents

CAM, hashy pageg pageg entryg
CAM, hash; page| page; entry|
CAM, hash, page; page, entry,
CAM; hashy page; pages entrys
CAM, hashy pageq pageq entry,
CAM; hashg pages pages entrys
CAM, hashg pageg pageg entryg
CAM; hash; page; page; entryy
CAM,g | hashyg pageyy pagegg entrysg
CAM3o | hashsyg pagesp pagesy entrysg
CAM;, | hashg, pages) pages| entry3

This says that CAM, contains and will match with the hash value hashy, and a lookup
with hash will produce a match and the address page, in cache memory. Furthermore,
page, in cache memory contains the flow-entry, entryy, that in this notation is the flow-
10 entry matching hash value hash. This table also indicates that hashy was more recently
used than hash,, hashs more recently than hash,, and so forth, with hashs the least

recently used hash value. Suppose further that the LUE 1107 obtains an entry from
unified flow key buffer 1103 with a hash value hashs,. The LUE looks up the cache

subsystemn via the CAM array. CAM3, gets a hit and returns the page number of the hit,
I5 ie., pages;. The cache subsystem now indicates to the LUE 1007 that the supplied hash
value produced a hit and provides a pointer to pages of the cache memory which
contains the flow-entry corresponding to hashs), i.e., flows;. The LUE now retrieve the
flow-entry flows, from the cache memory at address pages,. In the preferred

cmpodimen, the ivvkup uf e Gaviie tahes vuly Gite CIOCK YIS,

-81-

WO 01/01272 PCT/US00/18330

79

The value hashs, is the most recently used hash value. Therefore, in accordance
with an aspect of the inventive cache system, the most recently used entry is put on top of
the CAM stack. Thus hashs, is put into CAM, (pointing to pages;). Furthermore, hashsq
is now the LRU hash value, so is moved to CAM3,. The next least recently used hash
value, hashyg is now moved to CAM3, and so forth. Thus, all CAM contents are shifted
one down after the MSU entry is put in the top CAM. In the preferred embodiment the
shifting down on CAM entries takes one clock cycle. Thus, the lookup and the
rearranging of the CAM array to maintain the ordering according to usage recentness. The
following table shows the new contents of the CAM array and the (unchanged) contents

of the cache memory.

CAM Hash Cache Point Cache Addr. | Contents

CAM,y hashs, pages; pageg entry;
CAM; hashgy pageg page; entry

CAM, hash, page; page; entry,
CAM; hash; page; pages entry;
CAM, hash; page; pageq entryy
CAM; hash, pages pages entrys
CAMgq4 hashs pages pageg entryg
CAM; hashg pageg page; entry;
CAMyq hashyg pageyg page;g entryzg
CAM3, hash,g Pageyg pagesp entryzp
CAM3;, | hashy pageso pages entrys

To continue with the example, suppose that some time later, the LUE 1007 looks
up hash value hashg. This produces a hit in CAMg pointing to pages of the cache
memory. Thus, in one clock cycle, the cache subsystem 1115 provides LUE 1007 with an
indication of a hit and the pointer to the flow-entry in the cache memory. The most recent
entry is hashs, so hashs and cache memory address pageg are entered into CAM). The
contents of the remaining CAM:s are all shifted down one up to and including the entry
that contained hashs. That is, CAM5, CAM;, ..., CAM3, remain unchanged. The CAM
array contents and unchanged cache memory contents are now as shown in the following

table.

-82-

W0 01/01272 PCT/US00/18330
80

CAM Hash | Cache Point Cache Addr. | Contents

CAM, hashg pages pageg entryg
CAM, hashy, pages; page) entry;
CAM, hashy pageg page; entry,
CAM; hash; page, pages; entry;
CAM, hash, page; pagey entry,
CAMg hash; pages pages entrys
CAMg¢ hashy pagey pageg entryg
CAM, hashg pageg page; entry,
CAM,9 | hashy page;s pagegy entryzg
CAMy, | hashy pagesg pagesp entrysg
CAMjy, hashsg pagesg pages) entrys

Thus in the case of cache hits, the CAM array always keeps used hash values in

the order of recentness of use, with the most recently used hash value in the top CAM.

The operation of the cache subsystem when there is a cache hit will be described
by continuing the example. Suppose there is a lookup (e.g., from LUE 1107) for hash
5 value hashy3. The CAM array produces a miss that causes in a lookup using the hash in
the external memory. The specific operation of our specific implementation is that the
CAM state machine sends a GET message to the memory state machine that results in a
memory lookup using the hash via the unified memory controller (UMC) 1119. However,
other means of achieving a memory lookup when there is a miss in the CAM array would

10 be clear to those in the art.

The lookup in the flow-entry database 324 (i.c., external memory) results in a hit
or a miss. Suppose that the database 324 of flow-entries does not have an entry matching
hash value hashys. The memory state machine indicates the miss to the CAM state
machine which then indicates the miss to the LUE 1007. Suppose, on the other hand that

15 there is a flow-entry—entry,3— in database 324 matching hash value hashys. In this case,

the flow-entry is brought in to be loaded into the cache.

In accordance with another aspect of the invention, the bottom CAM entry

CAM3, always points to the LRU address in the cache memory. Thus, implementing a

true LRU repiacement poiicy inciudes frusning out the LRU cache mermory entry and

-83-

WO 01/01272 PCT/US00/18330

81

inserting a new entry into that LRU cache memory location pointed to by the bottom
CAM. The CAM entry also is modified to reflect the new hash value of the entry in the

pointed to cache memory element. Thus, hash value hashys is put in CAM3, and flow-
entry entry is placed in the cache page pointed to by CAM 31. The CAM array and now

5 changed cache memory contents are now

CAM Hash | Cache Point Cache Addr. | Contents

CAMy hashs pages pageg entryy
CAM; hashs, pages; page, entry;
CAM, hashg pageg page, entry,
CAM; hash; page; pages entrys
CAM, hash, page; pageq entry,
CAM; hashj page; pages entrys
CAMg hashy pagey pageg entryg
CAM;, hashg pageg pages entry;
CAMyo hashyg pagesg pagesg entry,g
CAM3; | hashyy pageyy pagesg entrys3
CAMj, | hashy pageso pages entrys)

Note that the inserted entry is now the MRU flow-entry. So, the contents of

CAM3; are now moved to CAMg and the entrics previously in the top 30 CAMs moved

down so that once again, the botiom CAM points to the LRU cache memory page.

-84-

WO 01/01272 PCT/US00/18330
82
| CAM Hash | Cache Point Cache Addr. | Contents
CAM, hashys pagesg pageg entryg
CAM, hashg pages page; entry;
CAM, hashs, pages, page; entry,
CAM; hashg pageg pages entry;
CAM, hash, page; page, entry,
CAM; hash, page; pages entrys
CAMq hash; page; pageg entryg
CAM; hashy pagey page; entry;
hashg pageg
CAMy pPageng entryyo
CAM;p | hashyg pageay pagesg entry3
CAMj; | hashy pagegg pages, entryy;

Note that the inserted entry is now the MRU flow-entry. So, the contents of
CAMy3, are now moved to CAM and the entries previously in the top 30 CAMs moved

In addition to looking up entries of database 324 via the cache subsystem 1115 for
retrieval of an existing flow-entry, the LUE, SP, or FIDE engines also may update the
5 flow-enlries via the cache. As such, there may be entries in the cache that are updated
flow-entries. Until such updated entries have been written into the flow-entry database
324 in external memory, the flow-entries are called “dirty.” As is common in cache
systems, a mechanism is provided to indicate dirty entries in the cache. A dirty entry
cannot, for example, be flushed out until the corresponding entry in the database 324 has

10 been updated.

Suppose in the last example, that the entry in the cache was modified by the
operation, That is, hashyy is in MRU CAM,, CAM correctly points to pagesg, but the
information in pagesq of the cache, entry,3, does not correspond to entry,s in database
324. That is, the contents of cache page pagesq is dirty. There is now a need to update the

15 database 324. This is called backing up or cleaning the dirty cntry.

As is common in cache systems, there is an indication provided that a cache
memory entry is dirty using a dirty flag. In the preferred embodiment, there is a dirty flag

for each word in cache memory.

-85-

W0 01/01272 PCT/US00/18330

83

Another aspect of the inventive cache system is cleaning cache memory contents
according to the entry most likely to be first flushed out of the cache memory. In our LRU
cache embodiment, the cleaning of the cache memory entries proceeds in the inverse
order of recentness of use. Thus, LRU pages are cleaned first consistent with the least

s likelihood that these are the entries likely to be flushed first.

In our embodiment, the memory state machine, whenever it is idle, is programmed
to scan the CAM array in reverse order of recentness. i.e., starting from the bottom of the
CAM array, and look for dirty flags. Whenever a dirty flag is found, the cache memory

contents are backed up to the database 324 in external memory.

10 Note that once a page of cache memory is cleaned, it is kept in the cache in case it
is still needed. The page is only flushed when more cache memory pages are needed. The
corresponding CAM also is not changed until a new cache memory page is needed. In this
way, efficient lookups of all cache memory contents, including clean entries are still
possible. Furthermore, whenever a cache memory entry is flushed, a check is first made to

15 ensure the entry is clean. If the entry is dirty, it is backed up prior to flushing the entry.

The cache subsystem 1115 can service two read transfers at one time. If there are
more than two read requests active at one time the Cache services them in a particular

order as follows:

(1) LRU dirty write back. The cache writes back the least recently used cache
20 memory entry if it is dirty so that there will always be a space for the fetching

of cache misses.
(2) Lookup and update engine 1107.
(3) State processor 1108.
(4) Flow insertion and deletion engine 1110.
25 (5) Analyzer host interface and control 1118.

(6) Dirty write back from LRU -1 to MRU; when there is nothing else pending,

the cache engine writes dirty entries back to external memory.

FIG. 26 shows the cache memory component 2600 of the cache subsystem 1115.

Cache memory supsystem 2600 inciudes a vank 2003 of Guai puticd ncuwiics 10f e

-86-

WO 01/01272 PCT/US00/18330

84

pages of cache memory. In our preferred embodiment there are 32 pages. Each page of
memory is dual ported. That is, it includes two sets of input ports each having address and
data inputs, and two sets of output ports, one set of input and output ports are coupled to
the unified memory controller (UMC) 1119 for writing to and rcading from the cache

5 memory from and into the external memory used for the flow-entry database 324. Which
of the output lines 2609 is coupled to UMC 1119 is selected by a multiplexor 2611 using
a cache puge select signal 2613 from CAM memory subsystem part of cache system1115.
Updating cache memory from the database 324 uses a cache data signal 2617 from the
UMC and a cache address signal 2615.

10 Looking up and updating data from and to the cache memory from the
lookup/update engine (LUE) 1107, state processor (SP) 1108 or flow insertion/deletion
engine (FIDE) 1110 uses the other input and output ports of the cache memory pages
2603. A bank of input selection multiplexors 2605 and a set of output sclector
multiplexors 2607 respectively select the input and output engine using a set of selection

15 signals 2619.

FIG. 27 shows the cache CAM state machine 2701 coupled to the CAM array
2705 and to the memory state machine 2703, together with some of the signals that pass
between these elements. The signal names are self-cxplanatory, and how to implement
these controllers as state machines or otherwise would be clear from the description

20 herein above.

While the above description of operation of the CAM array is sufficient for one

skilled in the art to design such a CAM array, and many such designs are possible, FIG.
28 shows one such design. Referring to that figure, the CAM array 2705 comprises one
CAM, ¢.g., CAM[7] (2807), per page of CAM memory. The lookup port or update port

25 depend which of the LUE, SP or FIDE are accessing the cache subsystem. The input data
for a lookup is typically the hash, and shown us REF-DATA 2803. Loading, updating or
evicting the cache is achieved using the signal 2805 that both selects the CAM input data
using a select multiplexor 2809, such data being the hit page or the LRU page (the bottom
CAM in according to an aspect of the invention). Any loading is done via a 5 to 32

30 decoder 2811. The results of the CAM lookup for all the CAMs in the array is provided to
a 32-5 low to high 32 to 5 encoder 2813 that outputs the hit 2815, and which CAM
number 2817 produced the hit. The CAM hit page 2819 is an output of a MUX 2821 that

-87-

20

25

30

WO 01/01272 PCT/US00/18330

85

has the CAM data of each CAM as input and an output sclected by the signal 2817 of the
CAM that produced the hit. Maintenance of dirty entries is carried out similarly from the
update port that coupled to the CAM state machine 2701. A MUX 2823 has all CAMs’
data input and a scan input 2827. The MUX 2823 produces the dirty data 2825.

The Pattern Parse and Extraction Database Format

The different protocols that can exist in different layers may be thought of as
nodes of one or more trees of linked nodes. The packet type is the root of a tree (called
base level). Each protocol is either a parent node of some other protocol at the next later
or a terminal node. A parent node links a protocol to other protocols (child protocols) that

can be at higher layer levels. Thus a protocol may have zero or more children.

As an example of the tree structure, consider an Ethernet packet. One of the
children nodes may be the IP protocol, and onc of the children of the IP protocol may be
the TCP protocol. Another child of the IP may be the UDP protocol.

A packet includes at least onc header for each protocol uscd. The child protocol of
a particular protocol used in a packet is indicated by the contents at a location within the
header of the particular protocol. The contents of the packet that specify the child are in

the form of a child recognition pattern.

A network analyzer preferably can analyze many different protocols. At a base
level, there are a number of packet types used in digital telecommunications, including
Ethernet, HDLC, ISDN, Lap B, ATM, X.25. Frame Relay, Digital Data Service, FDDI
(Fiber Distributed Data Interface), and T1, among others. Many of these packet types use
different packet and/or frame formats. For example, data is transmitted in ATM and
frame-relay systems in the form of fixed length packets (called “cells”) that are 53 octets
(i.e., bytes) long; several such cells may be needed to make up the information that might

be included in a single packet of some other type.

Note that the term packet herein is intended to encompass packets, datagrams,
frames and cells. In general, a packet format or frame format refers to how data is
encapsulated with various fields and headers for wransmission across a network. For
example, a data packet typically includes an address destination field, a length field, an
error correcting code (ECC) field or cyclic redundancy check (CRC) field, as well as

headers and footers to identify the beginning and end of the packet. The terms “packet

-88-

WO 01/01272 PCT/US00/18330

86

format,” “frame format” and “cell format” are generally synonymous.

The packet monitor 300 can analyze different protocols, and thus can perform
different protocol specific operations on a packet wherein the protocol headers of any
protocol are located at different locations depending on the parent protocol or protocols

s used in the packet. Thus, the packet monitor adapts to different protocols according to the
contents of the packet. The locations and the information extracted from any pucket are
adaptively determined for the particular type of packet. For example, there is no fixed
definition of whal to look for or where to look in order to form the flow signature. In
some prior art systems, such as that described in United States Patent 5,101,402 to Chiu,

10 eral., there are fixed locations specificd for particular types of packets. With the
proliferation of protocols, the specifying of all the possible places to look to determine the
session becomes more and more difficult. Likewise, adding a new protocol or application
is difficult. In the present invention, the number of levels is variable for any protocol and
is whatever number is sufficient to uniquely identify as high up the level system as we

15 wish to go, all the way to the application level (in the OSI model).

Even the same protocol may have different variants. Fthernet packets for example,
have several known variants, each having a basic format that remains substantially the
same. An Ethernet packet (the root node) may be an Ethertype packet—also called an
Ethernet Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE

20 Ethernet (IEEE 803.x) packet. A monitor should be able to handle all types of Ethernet
protocols. With the Ethertype protocol, the contents that indicate the child protocol is in
one location, while with an IEEE type, the child protocol is specified in a different

location. The child pratocol is indicated by a child recognition pattern.

FIG. 16 shows the header 1600 (base level 1) of a completc Ethernet frame (i.e.,
25 packet) of information and includes information on the destination media access control
address (Dst MAC 1602) and the source media access control address (Src MAC 1604).
Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files
for extraction the signature. Such information is also to be specified in the parsing
structures and extraction operations database 308. This includes all of the header
30 information at this level in the form of 6 bytes of Dst MAC information 1606 and 6 bytes
of Src MAC information 1610. Also specified are the source and destination address

components, respectively, of the hash. These are shown as 2 byte Dst Hash 1608 from the

-89-

WO 01/01272 PCT/US00/18330

87

Dst MAC address and the 2 byte Src Hash 1612 from the Src MAC address. Finally,
information is included (1614) on where to the header starts for information related to the
next layer level. In this case the next layer level (level 2) information starts at packet

offset 12.

5 FIG. 17A now shows the header information for the next level (level-2) for an

Ethertype packet 1700.

For an Ethertype packet 1700, the relevant information from the packet that
indicates the next layer level is a two-byte type field 1702 containing the child recognition
pattern for the next level. The remaining information 1704 is shown hatched because it

10 not relevant for this level. The list 1712 shows the possible children for an Ethertype

packet as indicated by what child recognition pattern is found offset 12.

Also shown is some of the extracted part used for the parser record and to locate
the next header information. The signature part of the parser record includes extracted

part 1702. Also included is the 1-byte Hash component 1710 from this information.

t5 An offset field 1710 provides the offset to go to the next level information, i.c., to
locate the start of the next layer level header. For the Ethertype packet, the start of the

next layer header 14 bytes from the start of the frame.

Other packet types are arranged differently. For example, in an ATM system, each

ATM packet comprises a five-octet “header” segment followed by a forty-eight octet

20 “payload” segment. The header segment of an ATM cell contains information relating to
the routing of the data contained in the payload segment. The header segment also
contains traffic control information. Eight or twelve bits of the header segment contain the
Virtual Path Identifier (VPI), and sixteen bits of the header segment contain the Virtual
Channel Identifier (VCI). Each ATM exchange translates the abstract routing information

25 represented by the VPI and VCI bits into the addresses of physical or logical network
links and routes each ATM cell appropriately.

FIG. 17B shows the structure of the header of one of the possible next levels, that
of the IP protocol. The possible children of the IP protocol are shown in table 1752. The
header starts at a different location (L3) depending on the parent protocol. Also included

30 in FIG. 17B are some of the ficlds to be extracted for the signature, and an indication of

where the next level’s header would start in the packet.

-90-

WO 01/01272 PCT/US00/18330

88

Note that the information shown in FIGS. 16, 17A, and 17B would be specified 10
the monitor in the form of PDL files and compiled into the database 308 of pattern

structures and extraction operations.

The parsing subsystem 301 performs operations on the packet header data based
5 on information stored in the database 308. Because data related to protocols can be
considered as organized in the form of a tree, it is required in the parsing subsystem to
search through data that is originally organized in the form of a tree. Since real time

operation is preferable, it is required to carry out such searches rapidly.

Data structures are known for efficiently storing information organized as trees.
10 Such storage-efficient means typically require arithmetic computations to determine
pointers to the data nodes. Searching using such storage-cfficient data structures may
therefore be too time consuming for the present application. It is therefore desirable to

store the protocol data in some form that enables rapid searches.

In accordance with another aspect of the invention, the database 308 is stored in a

15 memory and includes a data structure used to store the protocol specific operations that
are to be performed on a packet. In particular, a compressed representation is used to store
information in the pattern parse and extraction database 308 used by the pattern
recognition process 304 and the extraction process 306 in the parser subsystem 301. The
data structure is organized for rapidly locating the child protocol related information by

20 using a set of one or more indices to index the contents of the data structure. A data
structure entry includes an indication of validity. Locating and identifying the child
protocol includes indexing the data structure until a valid entry is found. Using the data
structure to store the protocol information used by the pattern recognition engine (PRE)

1006 enables the parser subsystem 301 to perform rapid scarches.

25 In one embodimeat, the data structure is in the form of a three-dimensional
structure. Note that this three dimensional structure in turn is typically stored in memory
as a set of two-dimensional structures whereby one of the three dimensions of the 3-D
structure is used as an index to a particular 2-D array. This forms a first index to the data

structure.

30 FIG. 18A shows such a 3-D representation 1800 (which may be considered as an

indexed set of 2-D representations). The three dimensions of this data sirucwre wc.

-91-

WO 01/01272 PCT/US00/18330

20

25

an

89

1. Type identifier {1:M]. This is the identifier that identifies a type of
protocol at a particular level. For example, 01 indicates an Ethernet frame. 64
indicates IP, 16 indicates an [EEE type Ethernet packet, etc. Depending on
how many protocols the packet parser can handle, M may be a large number;
M may grow over time as the capability of analyzing more protocols is added
to monitor 300. When the 3-D structure is considered a set of 2-D structures,

the type TD is an index to a particular 2-D structure.
2. Size [1:64]. The size of the field of interest within the packet.

3. Location {1:512). This is the offset location within the packet, expressed as

a number of octets (bytes).

At any one of these locations there may or may not be valid data. Typically, there
will not be valid data in most locations. The size of the 3-D array is M by 64 by 512,
which can be large; M for example may be 10,000. This is a sparse 3-D matrix with most

entries empty (i.e., invalid).

Each array entry includes a “node code™ that indicates the nature of the contents.
This node code has one of four values: (1) a “protocol” node code indicating to the pattern
recognition process 304 that a known protocol has been recognized as the next (i.e., child)
protocol; (2) a “rerminal” node code indicating that there are no children for the protocol
presently being searched, i.e., the node is a final node in the protocol tree; (3) a “null”

(also called “flush”) node code indicating that there is no valid entry.

In the preferred embodiment, the possible children and other information are
loaded into the data structure by an initialization that includes compilation process 310
based on the PDL files 336 and the layering selections 338. The following information is

included for any entry in the data structure that represents a protocol.

(a) A list of children (as type IDs) to search next. For example, for an Ethernet
type 2, the children are Ethertype (IP, IPX, etc, as shown in 1712 of FIG.
17). These children are compiled into the type codes. The code for IP is 64,
that for IPX is 83, ezc.

(b

For each of the IDs in the list, a list of the child recognition patterns that

need to ha comnared, For evampla 64:0200. - in the list indicatec that tha
evample, Q410300 g 1 the Iist indhc

-92-

e

WO 01/01272 PCT/US00/18330

90

value to look for is 0800 (hex) for the child to be type ID 64 (which is the [P
protocol). 83:8137 ¢4 in the list indicates that the value to look for is 8137

(hex) for the child to be type ID 83 (which is the IPX protocol), efc.

(c) The extraction operations to perform to build the identifying signature for
5 the flow. The format used is (offset, length, flow_signature_value_identifier),
the flow_signature_value_identifier indicating where the extracted entry goes
in the signature, including what operations (AND, ORs, efc.) may need to be
carried oul. If there is also a hash key component, for instance, then
information on that is included. For example, for an Ethertype packet, the 2-
10 byte type (1706 in FIG 17) is used in the signature. Furthermore, a 1-byte
hash (1708 in FIG. 17A) of the type is included. . Note furthermore, the child

protocol starts at offset 14.

An additional itcm may be the “fold.” Folding is used to reduce the storage
requirements for the 3-D structure. Since each 2-D array for each protocol ID may be
1S sparsely populated, multiple arrays may be combined into a single 2-D array as long as
the individual entries do not conflict with each other. A fold number is then used to
associate each element. For a given lookup, the fold number of the lookup must match the

fold number entry. Folding is described in more detail below.

In the case of the Ethernet, the next protocol field may indicate a length, which
20 tells the parser that this is a IEEE type packet, and that the next protocol is elsewhere.
Normally, the next protocol field contains a value which identifies the next, i.c., child

protocol.

The entry point for the parser subsystem is called the virtual base layer and
contains the possible first children, i.e., the packet types. An example set of protocols
25 written in a high level protocol description language (PDL) is included herein. The set
includes PDL files, and the file describing all the possible entry points (i.e., the virtual
base) is called virtual.pdl. There is only one child, 01, indicating the Ethernet, in this file.
Thus, the particular example can only handle Ethemnet packets. In practice, there can be

multiple entry points.

30 In one embodiment, the packet acquisition device provides a header for every

-93-

WO 01/01272 PCT/US00/18330

91

packet acquired and input into menitor 300 indicating the type of packet. This header is
used to detcrmine the virtual base layer entry point to the parser subsystem. Thus, even at

the base layer, the parser subsystem can identify the type of packet.

Initially, the search starts at the child of the virtual base, as obtained in the header
5 supplied by the acquisition device. In the case of the example, this has ID value 01, which

is the 2-D array in the overall 3-D structure for Ethernet packets.

Thus hardware implementing pattern analysis process 304 (e.g., pattern
recognition engine (PRE) 1006 of FIG. 10) scarches to determine the children (if any) for
the 2-D array that has protoco! ID 01. In the preferred embodiment that uses the 3-D data

10 structure, the hardware PRE 1006 searches up o four lengths (i.e., sizes) simultaneously.
Thus, the process 304 searches in groups of four lengths. Starting at protocol 1D 01, the

first two sets of 3-D locations searched are

(1,1, 1) (1,1,2)
(1,2, 1) (1,2,2)
15 1,31 (1,3,2)
(1,4,1) (1,4,2)

Al each stage of a search, the analysis process 304 examines the packet and the 3-
D data structure to see if there is a match (by locking at the node code). If no valid data is
found, e.g., using the node code, the size is incremented (to maximum of 4) and the offset

20 isthen incremented as well.

Continuing with the example, suppose the pattern analysis process 304 finds
something at 1,2, 12. By this, we mean that the process 304 has found that for protocol
ID value 01 (Ethernet) at packet offset 12, there is information in the packet having a
length of 2 bytes (octets) that may relate to the next (child) protocol. The information, for
25 example, may be about a child for this protocol expressed as a child recognition pattern.
The list of possible child recognition patterns that may be in that part of the packet is

obtained from the data structure.

The Ethernet packet structure comes in two flavors, the Ethertype packet and
newer IEEE types, and the packet location that indicates the child is different for both.
30 The location that for the Ethertype packet indicates the child is a “length” for the [EEE

type, so a determination is made for the Ethemet packet whether the “next protocol”

-94-

‘ WO 01/01272 PCT/US00/18330

| 92

| location contains a value or a length (this is called a “LENGTH" operation). A successful
LENGTH operation is indicated by contents less than or equal to 05DCg, then this is an

IEEE type Ethernet frame. In such a casc, the child recognition pattern is looked for

elsewhere. Otherwise, the location contains a value that indicates the child.

5 Note that while this capability of the entry being a value (e.g., for a child protocol
ID) or a length (indicating further analysis to determine the child protocol) is only used
for Ethernet packets, in the future, other packets may end up being modified.
Accordingly, this capability in the form of a macro in the PDL files still enables such

future packets to be decoded.

10 Continuing with the example, suppose that the LENGTH operation fails. In that
case, we have an Ethertype packet, and the next protocol field (containing the child
recognition pattern) is 2 bytes long starting at offset 12 as shown as packet field 1702 in
FIG. 17A. This will be one of the children of the Ethertype shown in table 1712 in
FIG. 17A. The PRE uses the information in the data structure to check what the [D code

15 is for the found 2-byte child recognition pattern. For example, if the child recognition
pattem is 0800 (Hex), then the protocol is IP. If the child recoguition pattern is OBAD
(Hex) the protocol is VIP (VINES).

Note that an alternate embodiment may Keep a separate table that includes all the

child recognition patterns and their corresponding protocol ID's

20 To follow the example, suppose the child recognition pattern at 1,2,12 is 0800,
indicating [P. The ID code for the IP protocol is 64,4). To continue with the Ethertype
cxample, once the parser matches onc of the possible children for the protocl--in the
example, the protocol type is IP with an ID of 64--then the parser continues the search for
the next level. The ID is 64, the length is unknown, and offset is known to be equal or

25 larger than 14 bytes (12 offset for type, plus 2, the length of type), so the search of the 3-
D structure commences from location (64, 1) at packet offset 14. A populated node is
found at (64, 2) at packet offset 14. Heading details are shown as 1750 in FIG. 17B. The

possible children are shown in table 1752.

Alternatively, suppose that at (1, 2, 12) there was a length 121 1. This indicates

30 that this is an IEEE type Ethernet frame, which stores its type elsewhere. The PRE now

-95-

WO 01/01272 PCT/US00/18330

93

continues its search at the same level, but for a new ID, that of an IEEE type Ethernet
frame. An IEEE Ethernet packet has protocol ID 16, so the PRE continues its search of

the three-dimensional space with ID 16 starting at packet offset 14.

In our example, suppose there is a “protocol” node code found at (16, 2) at packet

5 offset 14, and the next protocol is specified by child recognition pattern 0800;¢. This

indicates that the child is the IP protocol, which has type ID 64. Thus the search

continues, starting at (64, 1) at packet offset 16.

Compression.

As noted above, the 3-D data structure is very large, and sparsely populated. For
10 example, if 32 bytes are stored at each location, then the length is M by 64 by 512 by 32
bytes, which is M megabytes. If M = 10,000, then this is about 10 gigabytes. It is not
practical to include 10 Gbyte of memory in the parser subsystem for storing the database
308. Thus 2 compressed form of storing the data is used in the preferred embodiment. The
compression is preferably carried out by an optimizer component of the compilation

15 process 310.

Recall that the data structure is sparse. Different embodiments may use different
compression schemes that take advantage of the sparseness of the data structure. One

embodiment uses a modification of multi-dimensional run length encoding.

Another embodiment uses a smaller number two-dimensional structures to store
20 the information that otherwise would be in one large three-dimensional structure. The

second scheme is used in the preferred embodiment.

FIG. 18A illustrated how the 3-D array 1800 can be considered a set of 2-D
arrays, one 2-D array for each protocol (i.e., each value of the protocol ID). The 2-D
structures are shown as 1802-1, 1802-2, ..., 1802-M for up to M protocol ID’s. One table
25 entry is shown as 1804. Note that the gaps in table are used to illustrate that each 2-D

structure table is typically large.

Consider the set of trees that represent the possible protocols. Each node
represents a protocol, and a protocol may have a child or be a terminal protocol. The base
(root) of the tree has all packet types as children. The other nodes form the nodes in the

30 iice at vanous lovels from love! 1t the final terminal nodec of the tree. Thus. one

-96-

WO 01/01272 PCT/US00/18330

94

element in the base node may reference node ID 1, another element in the base node may
reference node ID 2 and so on. As the tree is traversed from the root, there may be points
in the tree where the same node is referenced next. This would occur, for example, when
an application protoco] like Telnet can run on several transport connections like TCP or
5 UDP. Rather than repeating the Telnet node, only one node is represented in the pattcrns
database 308 which can have several parents. This eliminates considerable space X

explosion.

Each 2-D structure in FIG. 18A represents a protocol. To enable saving space by

using only one array per protoco! which may have several parents, in one embodiment,

10 the pattern analysis subprocess keeps a “current header” pointer. Each location (offset)
index for each protocol 2-D array in the 3-D structure is a relative location starting with

the start of header for the particular protocol.

Each of the two-dimensional arrays is sparse. The next step of the optimization, is
checking all the 2-D arrays against all the other 2-D arrays to find out which ones can
15 share memory. Many of these 2-D arrays are often sparsely populated in that they cach
have only a small number of valid entries. So, a process of “folding” is next used to
combine two or more 2-D arrays together into one physical 2-D array without losing the
identity of any of the original 2-D arrays (i.e., al! the 2-D arrays continue to exist
logically). Folding can occur between any 2-D arrays irrespective of their location in the

20 tree as long as certain conditions are met.

Assume two 2-D arrays are being considered for folding. Call the first 2-D arrays

A and the second 2-D array B. Since both 2-D arrays are partially populated, 2-D array B

can be combined with 2-D arrays A if and only if none of the individual elements of these

two 2-D arrays that have the same 2-D location conflict. If the result is foldable, then the
25 valid entries of 2-D array B are combined with the valid entries of 2-D array A yielding

one physical 2-D array. However, it is necessary to be able to distinguish the original 2-D

array A entries from those of 2-D array B. For example, if a parent protocol of the

protocol represented by 2-D array B wants to reference the protocol ID of 2-D array B, it

must now r_eference 2-D array A instead. However, only the entries that were in the .
30 original 2-D array B are valid entries for that lookup. To accomplish this, each element in :

any given 2-D array is tagged with a fold number. When the original tree is created, all 1

elements in all the 2-1 arrays are imtialized with a foid vaiue of zotv. Subsegucitly, if 2-

-97-

WO 01/01272 PCT/US00/18330

95

D array B is folded into 2-D array A, all valid elements of 2-D array B are copied to the
corresponding locations in 2-D array A and are given different fold numbers than any of
the elements in 2-D array A. For example, if both 2-D array A and 2-D array B were
original 2-D arrays in the tree (i.¢., not previously folded) then, after folding, all the 2-D
5 array A entries would still have fold 0 and the 2-D array B entries would now all have a
fold value of 1. After 2-D array B is folded into 2-D array A, the parents of 2-D array B
need to be notified of the change in the 2-D array physical location of their children and

the associated change in the expected fold value.

\

i This folding process can also occur between two 2-D arrays that have already been

i 10 folded, as long as none of the individual clements of the two 2-D arrays conflict for the
same 2-D array location, As before, cach of the valid elements in 2-D array B must have
fold numbers assigned to them that are unique from those of 2-D array A. This is
accomplished by adding a fixed value to all the 2-D array B fold numbers as they are
merged into 2-D array A. This fixed value is one larger than the largest fold value in the

15 original 2-D array A. It is important to note that the fold number for any given 2-D array

is relative to that 2-D array only and does not span across the entire tree of 2-D arrays.

This process of folding can now be attempted between all combinations of two 2-
D arrays until there are no more candidates that qualify for folding. By doing this, the

total number of 2-D arrays can be significantly reduced.

20 Whenever a fold occurs, the 3-D structure (i.e., all 2-D arrays) must be searched
for the parents of the 2-D array being folded into another array. The matching pattern
which previously was mapped to a protocol ID identifying a single 2-D array must now

be replaced with the 2-D array [D and the next fold number (i.e., expected fold).

Thus, in the compressed data structure, each entry valid entry includes the fold

25 number for that entry, and additionally, the expected fold for the child.

An alternate embodiment of the data structurc uscd in database 308 is illustrated in
FIG. 18B. Thus, like the 3-D structure described above, it permits rapid searches to be
performed by the pattern recognition process 304 by indexing locations in a memory
rather than performing address link computations. The structure, like that of FIG. 184, is
30 suitable for implementation in hardware, for example, for implementation to work with

the patiern recognition engiuc (FRG) 1006 SITIG. 12

-98-

WO 01401272 PCT/US00/18330

96

A table 1850, called the protocol table (PT) has an entry for cach protocol known
by the monitor 300, and includes some of the characteristics of each protocol, including a
description of where the field that specilies next protocol (the child recognition pattern)
can be found in the header, the length of the next protocol field, flags to indicate the
5 header length and type, and one or more slicer commands, the slicer can build the key

components and hash components for the packet at this protocol at this layer level.

For any protoco), there atso are one or more lookup tables (LUTS). Thus database
308 for this embodiment also includes a set of LUTs 1870. Each LUT has 256 entries
indexcd by one byte of the child recognition pattern that is extracted from the next
10 protocol field in the packet. Such a protocol specification may be several bytes long, and

so several of LUTs 1870 may need to be looked up for any protocol.

Each LUT’s entry includes a 2-bit “node code” that indicates the nature of the
contents, including its validity. This node code has one of four values: (1) a “protocol™
node code indicating to the pattern recognilion engine 1006 that a known protocol has

15 been recognized; (2) an “intermediate” node code, indicating that a multi-byte protocol

code has been partially recognized, thus permitting chaining a series of LUTs together

before; (3) a “terminal” node code indicating that there are no chifdren for the protocol
presently being searched, i.e., the node is a final node in the protocol tree; (4) a “null”

(also called “flush” and “invalid”) node code indicating that there is no valid entry.

20 In addition to the node code, cach LUT entry may include the next LUT number,
the next protocol number (for looking up the protocol table 1850), the fold of the LUT
entry, and the next fold to expect. Like in the embodiment implementing a compressed
form of the 3-D representation, folding is used 1o reduce the storage requirements for the
set of LUTSs. Since the LUTs 1870 may be sparsely populated, multiple LUTs may be

25 combined into a single LUT as long as the individual entries do not conflict with each

other. A fold number is then used to associate each element with its original LUT.

For a given lookup, the fold number of the lookup must match the fold number in
the lookup table. The expected fold is obtained from the previous table lookup (the “next
fold to expect” ficld). The present implementation uses 5-bits to describe the fold and thus

30 allows up to 32 tables to be folded into one table.

When using the data structure of FIG. 18D, witcu a paChii amives at the parser, the

-99-

WO 01/01272 PCT/US00/18330

97

virtual base has been pre-pended or is known. The virtual base entry tells the packet
recognition engine where to find the first child recognition pattern in the packet. The
pattem recognition engine then extracts the child recognition pattern bytes from the
packet and uses them as an address into the virtual base table (the first LUT). If the entry
5 looked up in the specified next LUT by this method matches the expected next fold value
specified in the virtual base entry, the lookup is deemed valid. The node code is then |
examined. [f it is an intermediate node then the next table field obtained from the LUT
lookup is used as the most significant bits of the address. The next expected fold is also
extracted from the entry, The pattern recognition engine 1006 then uses the next byte

10 from the child recognition pattern as the for the next LUT lookup.

Thus, the operation of the PRE continues unti] a tcﬁninal code is found. The next
(initially base layer) protocol is looked up in the protocol table 1850 to provide the PRE
1006 with information on what field in the packet (in input buffer memory 1008 of parser
subsystem 1000) to usc for obtaining the child recognition pattern of the next protocol,
15 including the size of the field. The child recognition pattern bytes are fetched from the
input buffer memory 1008. The number of bytes making up the child recognition pattern

is also now known.

The first byte of the protocol code bytes is used as the lookup in the next LUT. If a
LUT lookup results in a node code indicating a protocol node or a terminal node, the Next
20 LUT and next expected fold is set, and the “next protocol” from LUT lookup is used as an
index into the protocol table 1850. This provides the instructions to the slicer 1007, and
where in the packet to obtain the field for the next protocol. Thus, the PRE 1006
continues until it is done processing all the fields (i.e., the protocols), as indicated by the

terminal node code reached.

25 Note that when a child recognition pattern is checked against a table there is
always an expected fold. If the expected fold matches the fold information in the table, it

is used to decide what to do next. If the fold does not match, the optimizer is finished.

Note also that an alternate embodiment may use different size LUTSs, and then

index a LUT by a different amount of the child recognition pattern.

30 The present implementation of this embodiment allows for child recognition

potrerne of un 1o four hutes Child rerngnition patters of more than 4 bytes are regarded

-100-

WO 01/01272 PCT/US00/18330

98

as special cases.

In the preferred embodiment, the database is generated by the compiler process

310. The compiler process first builds a single protocol table of all the links between
protocols. Links consist of the connection between parent and child protocols. Each

s protocol can have zero or more children. If a protocol has children, a link is created that
consists of the parent protocol, the child protocol, the child recognition pattern, and the
child recognition pattern size. The compiler first extracts child recognition patterns that
are greater than two bytes long. Since there are only a few of these, they are handled
separately. Next sub links are created for each link that has a child recognition pattern size

10 of two.
All the links are then formed into the LUTs of 256 entries.

Optimization is then carried out. The first step in the optimization is checking all
the tables against all the other tables to find out which ones can share a table. This process
proceeds the same way as described above for two-dimensional arrays, but now for the

15 sparse lookup tables.

Part of the initialization process (e.g., compiler process 310) loads a slicer
instruction database with data items including of instruction, source address, destination
address, and length. The PRE 1006 when it sends a slicer instruction sends this instruction
as an offset into the slicer instruction database. The instruction or Op code tells the slicer

20 what to extract from the incoming packet and where to put it in the flow signature.
Writing into certain fields of the flow signature automatically generates a hash. The
instruction can also tell the slicer how to determine the connection status of certain

protocols.

Note that alternate embodiments may generate the pattern, parse and extraction

25 database other than by compiling PDL files.

The compilation process

The compilation process 310 is now described in more detail. This process 310
includes creating the parsing patterns and extractions database 308 that provides the
parsing subsystem 301 with the information needed to parse packets and extract

30 identifying information, and the state processing instructions database 326 that provides

-101-

WO 01/01272 PCT/US00/18330

99

the state processes that need to be performed in the state processing operation 328.

Input to the compiler includes a set of files that describe each of the protocols that
can occur, These files are in a convenient protocol description Janguage (PDL) which is a
high level language. PDL is used for specifying new protocols and new levels, including
5 new applications. The PDL is independent of the different types of packets and protocols
that may be used in the computer network. A set of PDL files is used to describe what
information is relevant to packets and packets that need to be decoded. The PDL is further
used to specify state analysis operations. Thus, the parser subsystem and the analyzer
subsystems can adapt and be adapted to a variety of different kinds of headers, layers, and
10 components and need to be extracted or evaluated, for example, in order to build up a

unique signature.

There is one file for each packet type and each protocol. Thus there is a PDL file
for Ethernet packets and there is a PDL file for frame relay packets. The PDL files are
compiled to form one or more databases that enable monitor 300 to perform different

15 protocol specific operations on a packet wherein the protocol headers of any protocol are
located at different locations depending on the parent protocol or protocols used in the
packet. Thus, the packet monitor adapts to different protocols according to the contents of
the packet. In particular, the parser subsystem 301 is able to extract different types of data
for different types of packets. For example, the monitor can know how to interpret a

20 Ethernet packet, including decoding the header information, and also how to interpret an

frame relay packet, including decoding the header information.

The set of PDL files, for example, may include a generic Ethernet packet file.
There also is included a PDL file for each variation Ethernet file, for example, an [EEE

Ethernet file.

25 The PDL file for a protocol provides the information needed by compilation
process 310 to generate the database 308. That database in tum tells the parser subsystem
how to parsc and/or extract information, including one or more of what protocol-specific
components of the packet to extract for the flow signature, how to use the components to
build the flow signature, where in the packet to look for these components, where to look

30 for any child protocols, and what child recognition patterns to look for. For some

pratoenls, the extracted components may include source and destination addresses, and

-102-

WO 01701272 PCT/US00/18330

100

the PDL file may include the order to use these addresses to build the key. For example,
Ethernet frames have end-point addresses that are useful in building a better flow
signature. Thus the PDL file for an Ethernet packet includes information on how the
parsing subsystem is to extract the source and destination addresses, including where the
5 Jjocations and sizes of those addresses are. In a frame-relay base layer, for example, there
are no specific end point addresses that help to identify the flow better, so for those type
of packets, the PDL file does not include information that will cause the parser subsystem

to extract the end-point addresses.

Some protocols also include information on connections. TCP is an example of

10 such a protocol. Such protoco! use connection identifiers that exist in every packet. The
PDL file for such a protocol includes information about what those connection identifiers
are, where they are, and what their length is. In the example of TCP, for example running
over IP, these are port numbers. The PDL file also includes information about whether or
not there are states that apply to connections and disconnections and what the possible

15 children are states. So, at each of these levels, the packet monitor 300 learns more about
the packet. The packet menitor 300 can identify that a particular packet is part of a
particular flow using the connection identifier. Once the flow is identified, the system can
determine the current state and what states to apply that deal with connections or

disconnections that exist in the next layer up to these particular packets.

20 For the particular PDL used in the preferred embodiment, a PDL file may include
none or more FIELD statement each defining a specific string of bits or bytes {i.c., a field)
in the packet. A PDL file may further include none or more GROUP statements each used
to tie together several defined fields. A set of such tied together fields is called a group. A
PDL filc may further include none or more PROTOCOL statements each defining the

25 order of the fields and groups within the header of the protocol. A PDL file may further
include none or more FLOW statements each defining a flow by describing where the
address, protocol type, and port numbers are in a packet. The FLOW statement includes a
description of how children flows of this protocol are determined using state operations.
States associated may have state operations that may be used for managing and

30 maintaining new states leamed as more packets of a flow are analyzed.

FIG. 24 shows a set of PDL files for a laycring structure for an Ethernet packet

that runs TCP on top of IP. Common.pd} (2403} is a hle COMAINIRG tic Lonunvii Protocs:

-103-

WO 01/01272 PCT/US00/18330

101

definitions, i.¢., some field definitions for commonly used fields in various network
protocols. Flows.pdl (2405) is a file containing general flow definitions. Virtual.pdl
(2407) is a PDL file containing the definition for the VirtualBasc laycr used. Ethernet.pdl
(2411) is the PDL file containing the definition for the Ethernet packet. The decision on

5 Ethertype vs. I[EEE type Ethernet file is described herein. If this is Ethertype, the selection
is made from the file Ethertype.pdl (2413). In an alternate embodiment, the Ethertype
selection definition may be in the same Ethenet file 2411. In a typical impiementation,
PDL files for other Ethemnet types would be included. IP.pdl (2415) is a PDL file
containing the packet definitions for the Internet Protocol. TCP.pdl (2417) is the PDL file

10 containing the packet definitions for the Transmission Control Protocol, which in this
case is a transport service for the IP protocol. In addition to extracting the protocol
information the TCP protocol definition file assists in the process of identification of
connections for the processing of states. In a typical set of files, there also would be a file
UDP.pdl for the User Datagram Protocol (UDP) definitions. RPC.pdl (2419) is 2 PDL file

15 file containing the packet definitions for Remote Procedure Calls.

NFS.pdl (2421) is a PDL file containing the packet definitions for the Network
File System. Other PDL files would typically be included for all the protocols that might

be encountered by monitor 300.

Input to the compilation process 310 is the set of PDL files (e.g., the files of FIG
20 24) for all protocols of interest. Input to process 310 may also include layering
information shown in FIG. 3 as datagram layer selections 338. The layer selections
information describes the layering of the protocols—what protocol(s) may be on top of
any particular protocols. For example, IP may run over Ethernet, and also over many
other types of packets. TCP may run on top of IP. UDP also may run on top of IP. When
25 no layering information is explicitly included, it is inherent; the PDL files include the

children protocols, and this provides the layering information.

The compiling process 310 is illustrated in FIG. 25. The compiler loads the PDL
source files into a scratch pad memory (step 2503) and reviews the files for the correct
syntax (parse step 2505). Once completed, the compiler creates an intermediate file

30 containing all the parse elements (step 2507). The intermediate file in a format called
“Compiled Protocol Language” (CPL). CPL instructions have a fixed layer format, and

include all of the patterns, extractions, and states required for each layer and for the entire

-104-

WO 01/01272 PCT/US00/18330

102

tree for a layer. The CPL file includes the number of protocols and the protocol
definitions. A protocol definition for each protocol can include one or more of the
protocol name, the protocol ID, a header section, a group identification section, sections
for any particular layers, announcement sections, a payload section, a children section,

5 and a states section. The CPL file is then run by the optimizer to create the final databases
that will be used by monitor 300. It would be clear to those in the art that alternate
implementations of the compilation process 310 may include a different form of
intermediate output, or no intermediate output at all, directly generating the final

database(s).

10 After the parse elements have been created, the compiler builds the flow signature
elements (step 2509). This creates the extraction operations in CPL that are required at
each level for each PDL module for the building of the flow signature (and hash key) and
for links between layers (2009).

With the flow signature operations complete, the PDL compiler creates (step
15 2511) the operations required to extract the payload elements from each PDL module.
These payload elements are used by states in other PDL modules at higher layers in the

processing.

The last pass is to create the state operations required by each PDL module. The
state operations are complied from the PDL files and created in CPL form for later use
20 (2013).

The CPL file is now run through an optimizer that generates the final databases

used by monitor 300.

-105-

WO 01/01272 PCTAUS00/18330

103

PROTOCOL DEFINITION LANGUAGE (PDL) REFERENCE GUIDE

(VERSION A0.02)

Included herein is this reference guide (the “guide”) for the page description language

(PDL) which, in one aspect of the invention, permits the automatic generation of the :
5 databases used by the parser and analyzer sub-systems, and also allows for including new

and modified protocols and applications to the capability of the monitor.

COPYRIGHT NOTICE

A portion of this of this document included with the patent contains material which is
subject to copyright protection. The copyright owner (Apptitude, Inc., of San Jose,

10 California, formerly Technically Elite, Inc.) has no objection to the facsimile reproduction
by anyone of the patent document or the patent disclosure or this document, as it appears
in the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

Copyright © 1997-1999 by Apptitude, Inc. (formerly Technically Elite, Inc.). All Rights

15 Reserved.

1. INTRODUCTION

The inventive Protocol Definition Language (PDL) is a special purpose language used 10

describe network protocols and all the fields within the protocol headers.

Within this guide, protocol descriptions (PDL files) are referred to as PDL or rules when

20 there in no risk of confusion with other types of descriptions.

PDL uses both form and organization similar to the data structure definition part of the C
programming language and the PERL scripting language. Since PDL was derived from a
language used to decode network packet contact, the authors have mixed the language
format with the requirements of packet decoding. This results in an expressive language
25 that is very familiar and comfortable for describing packet content and the details required

representing a (low.

1.1 Summary
The PDL is a non-procedural Forth Generation language (4GL). This means is describes

what needs to be done without describing #ow to do it. ‘I'he details of row are nidden iu

-106-

WO 01/01272 PCT/US00/18330

104
the compiler and the Compiled Protocol Layout (CPL) optimization utility.

In addition, it is used to describe network flows by defining which fields are the address

fields, which are the protocol type fields, etc.

Once a PDL file is written, it is compiled using the Netscope compiler (nsc), which
5 produces the MeterFlow database (MeterFlow.db) and the Netscope database
(Netscope.db). The MeterFlow database contains the flow definitions and the Netscope

darabase contains the protocol header definitions.

These databases are used by programs like: mfkeys, which produces flow keys (also

called flow signatures); mfepl, which produces flow definitions in CPL format; mfpkts
10 which produces sample packets of all known protocols; and netscope, which decodes

Sniffer™ and tcpdump files.

1.2 Guide Conventions

The following conventions will be used throughout this guide:

Small courier typeface indicates C code examples or function names. Functions are
15 written with parentheses after them [function ()], variables are writtcn just as their

names [variables], and structure names are written prefixed with “struct”

[struct packet].

Italics indicate a filename (for instance, mworks/base/h/base.h). Filenames will usually

be written relative to the root directory of the distribution.

20 Constants are expressed in decimal, unlcss written “0x. . .”, the C language notation for

hexadecimal numbers.

Note that any contents on any line in a PDL file following two hyphen (--) arc ignored

by the compiler. That is, they are comments.
2. PROGRAM STRUCTURE

25 A MeterFlow PDL decodes and flow set is a non-empty sequence of statements.
There are four basic types of statements or definitions available in MeterFiow PDL:

FIELD,
GROUP,

-107-

WO 01/01272 PCT/US00/18330
105

PROTOCOL and

FLOW.

2.1 FIELD Definitions

The FIELD definition is used to define a specific string of bits or bytes in the packet. The
5 FIELD definition has the following format:

Name FIELD
SYNTAX Type [{ Enums } 1]
DISPLAY-HINT "FormatString”
LENGTH "Expression"

10 FLAGS FieldFlags
ENCAP FieldName [, FieldName2]
LOOKUP LookupType [Filename]
ENCODING EncodingType
DEFAULT “value”

15 DESCRIPTION "Daescription®

Where only the FIELD and SYNTAX lincs are required. All the other lines are attribute
lines, which define special characteristics about the FTELD. Attribute lines are optional

and may appear in any order. Each of the atiribute lines are described in detail below:

2.1.1 SYNTAX Type [{ Enums }]

20 This attribute defines the type and. if the type is an INT, BYTESTRING, BITSTRING, or
SNMPSEQUENCE type, the enumerated values for the FIELD. The currently defined

types are:

INT(rumBits) Integer that is numBits bits long.

UNSIGNED INT(numBits) Unsigned integer that is numBits bits long.
BYTESTRING(numBytes) String that is numBytes bytes long.
BYTESTRING(RI..R2) String that ranges in size from R{ to R2 bytes.
BITSTRING(numBits) String that is numBits bits long.
LSTRING(lenByres) String with lenBytes header.

NSTRING Null terminated string.

DNSSTRING DNS encoded string.

SUBSTITUTE SHEET (RULE 26}

-108-

WO 01/01272 PCT/US00/18330
106
SNMPOID SNMP Object Identifier.
SNMPSEQUENCE SNMP Sequence.
SNMPTIMETICKS SNMP TimeTicks.
COMBO field] field2 Combination pseudo field.

2.1.2 DISPLAY-HINT "FormatString"

This attribute is for specifying how the value of the FIELD is displayed. The currently

supported formats are:

Numx Print as a num byte hexidecimal number.
Numd Print as a num byte decimal number.
Numo Print as a sum byte octal number.

Numb Print as a num byte binary number.
Numa Print num bytes in ASCHI format.

Text Print as ASCII text.

HexDump Print in hexdump format.

2.1.3 LENGTH "Expression"

This attribute defines an expression for determining the FIELD's length. Expressions are
arithmetic and can refer to the value of other FIELD’s in the packet by adding a § to the
referenced field's name. For example. “(StcpHeaderLen *4) — 20" s a valid expression if

10 tcpHeaderLen is another field defined for the current packet.

2.14 FLAGS FieldFlags

The attribute defines some special flags for a FIELD. The currently supported FieldFlags

are:

| SAMELAYER Display field on the same layer as the previous field.
[l

SUBSTITUTE SHEET (RULE 26)

-109-

WO 1/01272 PCT/US00/18330
107
NOLABEL Don't display the field name with the value.
NOSHOW Decode the field but don't display it.
SWAPPED The integer value is swapped.

2.1.5 ENCAP FieldName [, FieldName2 |

This attribute defines how one packet is encapsulated inside another. Which packet is

determined by the value of the FieldName field. If no packet is found using FieldName

then FieldName? is tried.

2.1.6 LOOKUP LookupType [Filename]

This attribute defines how to lookup the name for a particular FIELD value. The currently

supported LookupTypes are:

SERVICE Use getservbyport().

HOSTNAME Use gethostbyaddr().
MACADDRESS Use SMETERFLOW/conf/mac2ip.cf.
FILE file Use file to lookup value.

2.1.7 ENCODING EncodingType

This attribute defines how a FIELD is encoded. Currently, the only supported
EncodingType is BER (for Basic Encoding Rules defined by ASN.1).

2.1.8 DEFAULT “value”

This attribute defines the default value to be uscd for this field when generating sample

packets of this protocol.

2.1.9 DESCRIPTION "Description”

This attribute defines the description of the FIELD. It is used for informational purposes

only.

SUBSTITUTE SHEET (RULE 26)

-110-

WO 01/01272 PCT/US00/18330

108
2.2 GROUP Definitions

The GROUP definition is used to tie several related FIELDs together. The GROUP
definition has the following format:

Name GROUP
5 LENGTH "Expression®
OPTIONAL "Condition®
SUMMARIZE "Condition" : "FormatString" [
"Condition" : "PormatString"...]
DESCRIPTION “Description”
10 ::= { Name=FieldOrGroup [.,
Name=FieldOrGroup...] }
Where only the GROUP and ::= lines are required. All the other lines are attribute lines,
which define special characteristics for the GROUP. Attribute lines are optional and may

appear in any order. Each artribute line is described in detail below:

15 2.21 LENGTH "Expression”

This attribute defines an expression for determining the GROUP's length. Expressions are
arithmetic and can refer to the value of other FIELD's in the packet by adding a § to the
referenced field’s name. For example, “(StcpHeaderLen *4) ~ 20" is a valid expression if

tcpHeaderLen is another field defined for the current packet.

20 222 OPTIONAL "Condition"
This attribute defines a condition for determining whether a GROUP is present or not.
Valid conditions are defined in the Conditions section below.

2.2.3 SUMMARIZE "Condition" : "FormatString" [""Condition" :
"FormatString"...]

25 This attribute defines how a GROUP will be displayed in Detail mode. A different format
(FormatString) can be specified for each condition (Condition). Valid conditions are
defined in the Conditions section below. Any FIELD's value can be referenced within the
FormatString by proceeding the FIELD's name with a 3. In addition to FIELD names

there are several other special $ keywords:

SLAYER Displays the current protocol layer.
$GROUP Displays the entire GROUP as a table.
SLABEL Displays the GROUP label.

SUBSTITUTE SHEET (RULE 26)

-111-

WO 01/01272 PCT/US00/18330
109

Sfield Displays the field value (use enumerated name if available).

$:field Displays the field value (in raw format).

2.2.4 DESCRIPTION ‘'Description”

This attribute defines the description of the GROUP. It is used for informational purposes

only.

5 225 ::={Name=FieldOrGroup { , Name=FieldOrGroup...] }

This defines the order of the fields and subgroups within the GROUP.

2.3 PROTOCOL Definitions

The PROTOCOL definition is used to define the order of the FIELDs and GROUPs
within the protocol header. The PROTOCOL definition has the following format:
10 Name PROTOCOL
SUMMARIZE "Condition" : “"FormatString" [
nCondition" : "FormatString"...]
DESCRIPTION "Dascription®
REFERENCE "Reference®
15 ::= { Name=FieldOrGroup [,
Name=FieldOrGroup...] }
Where only the PROTOCOL and ::= lines are required. All the other lines are attribute
lines, which define special characteristics for the PROTOCOL. Attribute lines are
optional and may appear in any order. Each atiribute line is described in detail below:

20 23.1 SUMMARIZE "Condition" : "FormatString" ["'Condition" :
"FormatString"...]

This attribute defines how a PROTOCOL will be displayed in Summary mode. A
different format (FormatString) can be specified for each condition (Condition). Valid
conditions are defined in the Conditions section below. Any FIELD's value can be

25 referenced within the FormatString by proceeding the FIELD's name with 2 $. In addition

10 FIELD names there are several other special $ keywords:

SLAYER Displays the current protocol layer.

SYARRIND I Displays the entire SNMP VarBind list.

SUBSTITUTE SHEET (RULE 26)

-112-

WO 01/01272 PCT/US00/18330
110

$field Displays the field value {use enumerated name if available).

$:field Displays the field value (in raw format).

Stfield Counts all occurrences of field.

$*field Lists all occurrences of field.

2.3.2 DESCRIPTION "Description™

This attribute defines the description of the PROTOCOL. It is used for informational

purposes only.

5 2.3.3 REFERENCE "Reference"

This attribute defines the reference material used to determine the protocol format. It is

used for informational purposes only.

2.34 ::={ Name=FieldOrGroup [, Name=FieldOrGroup...] }

This defines the order of the FIELDs and GROUPs within the PROTOCOL.

1w 2.4 FLOW Definitions

The FLOW definition is used to define a network flow by describing where the address,
protocol type, and port numbers are in a packet. The FLOW definition has the following
format:

Name FLOW

15 HEADER { Option {, Option..] }
DLC-LAYER { Option [, Option..] }
NET-LAYER { Option [, Option..] }
CONNECTION { Option [, Option..] }
PAYLOAD { Option [, Option..])

20 CHILDREN { Option (, Option.] }
STATE-BASED
STATES “Definitions”

Where only the FLOW line is required. All the other lines are auribute lines. which define
special characteristics for the FLOW. Auribute lines are optional and may appear in any
25 order. However, at least onc auribute line must be preseat. Each attribute line is described

in detail below:

SUBSTITUTE SHEET (RULE 26)

-113-

WO 01/01272 PCT/US00/18330

111
2.4.1 HEADER { Option [, Option...] }

This attribute is used to describe the length of the protocol header. The currently

supported Options are:

LENGTH=number Header is a fixed length of size number.
LENGTH=field Header is variable length determined by value of field.
IN-WORDS The units of the header length are in 32-bit words rather than
bytes. !

5 2.4.2 DLC-LAYER { Option [, Option...] }

If the protocol is a data link layer protocol, this attribute describes it. The currently

supported Options are:

DESTINATION=field Indicates which field is the DLC destination address.

SOURCE=field Indicates which field is the DLC source address. ;

|
PROTOCOL Indicates this is a data link layer protocol. 1
TUNNELING Indicates this is a tunneling protocol.

2.4.3 NET-LAYER { Option [, Option...] }

10 If the protocol is a network layer protocol, then this attribute describes it. The currently

supported Options are:

DESTINATION=field Indicates which field is the network destination address.
SOURCE-=field Indicates which field is the network source address.
TUNNELING Indicates this is a tunneling protocol.
FRAGMENTATION=type Indicates this protocol supports fragmentation. There are
currently two fragmentation types: [PV4 and IPV6.

SUBSTITUTE SHEET (RULE 26)

-114-

WO 01/01272 PCT/US00/18330

2.4.4 CONNECTION { Option [, Option...] }

If the protocol is a connection-oriented protocol. then this attribute describes how

connections are established and torn down. The currently supported Options are:

IDENTIFIER=field Indicates the connection identifier field.

CONNECT-START="flag" Indicates when a connection is being initiated.

CONNECT-COMPLETE="flag" Indicates when a connection has been established.

DISCONNECT-START="flag" Indicates when a connection is being tom down.

DISCONNECT-COMPLETE="flag” Indicates when a connection has been torn down.

INHERITED Indicates this is a connection-oriented protocol
but the parent protocol is where the connection is
established.

2.45 PAYLOAD { Option {, Option...] }

This attribute describes how much of the payload from a packet of this type should be

stored for later use during analysis. The currently supported Options are:

INCLUDE-HEADER Indicates that the protocol header should be inciuded.

LENGTH=number Indicates how many bytes of the paytoad should be stored.

DATA=field Indicates which field contains the payload.

10 2.4.6 CHILDREN { Option [, Option...] }

This attribute describes how children protocols are determined. The currently supported

Options are:

DESTINATION=field Indicates which field is the destination port.

SOURCE=field Indicates which field is the source port.

LLCCHECK=flow Indicates that if the DESTINATION field is less than 0x05DC

then use flow instead of the current flow definition.

SUBSTITUTE SHEET (RULE 26)

-115-

WO 01/01272 PCT/US00/18330

113

24.7 STATE-BASED
This attribute indicates that the flow is a state-based flow.
2.4.8 STATES “Definitions”
5 This attribute describes how children flows of this protocol are determined using states.
See the State Definitions section below for how these states are defined.
2.5 CONDITIONS

Conditions are used with the OPTIONAL and SUMMARIZE attributes and may consist

of the following:

Valuel == Value2 Valuel equals Value2. Works with string values.

Value! '= Value2 Valuel does not equal Value2. Works with string values.

Valuel <= Value2 Valuel is less than or equal to Value2.

Valuel >= Value2 Valuel is greater than or equal to Value2.
Valuel < Value2 Valuel is less than Value2.

Valuel > Vaiue2 Value! is greater than Value2.

Field m/regex/ Field matches the regular expression regex.

10 Where Valuel and Value2 can be either FIELD references (field names preceded by a $)
or constant values. Note that compound conditional statements (using AND and OR) are

not currently supported.

2.6 STATE DEFINITIONS

Many applications running over data networks utilize complex methods of classifying
15 taffic through the use of multiple states. State definitions are used for managing and

maintaining learned states from traffic derived from the network.

The basic format of a state definition is:

StateName: Operand Parameters [Operand Parameters.]

Tha varicus states of 2 partinular flou are deceribed ncing the following operands:

SUBSTITUTE SHEET (RULE 26) |

-116-

w0 01/01272 PCT/US00/18330

114
2.6.1 CHECKCONNECT, operand
Checks for connection. Once connected executes operand.
2.6.2 GOTO state

Goes to state, using the current packet,

5 2.63 NEXT state

I Goes to state, using the next packet.

2.6.4 DEFAULT operand

i Executes aperand when all other operands fail.
2.6.5 CHILD protacol

10 Jump to child protocol and perform state-based processing (if any) in the child.
2.6.6 WAIT numPackets, operandl, operand2

Waits the specified number of packets. Executes operand! when the specified number of
packets have been received. Executes operand2 when a packet is received but it is less

than the number of specified packets.
15 2.6.7 MATCH 'siring’ weight offset LF-offset range LF-range, operand
Scarches for a string in the packet, executes operand if found.
2.6.8 CONSTANT number offset range, operand
I Checks for a constant in a packet, executes operand if found.
2.6.9 EXTRACTIP offset destination, operand
20 Extracts an IP address from the packet and then executes operand.
2.6.10 EXTRACTPORT offset destination, operand

Extracts a port number from the packet and then executes operand.

2.6.11 CREATEREDIRECTEDFLOW, operand

Creates a redirected flow and then executes operand.

-117-

WO 01/01272 : PCT/US00/18330
115

3. EXAMPLE PDL RULES

The following section contains several cxamples of PDL Rule files.

3.1 Ethernet

The following is an example of the PDL for Ethernet:
5 MacAddress FIELD

SYNTAX BYTESTRING (6}
DISPLAY-HINT *lx:*
LOOKUP MACADDRESS
DESCRIPTION

10 "MAC layer physical address”

etherType FIELD

SYNTAX INT(16)
DISPLAY-HINT °*1x:*

15 LOORUP FILE “EtherType.cf”
DESCRIPTION

"Ethernet type field*

etherData FIELD
20 SYNTAX BYTESTRING (46..1500)
ENCAP etherType
DISPLAY-HINT *HexDump®
DESCRIPTION
*Ethernet data"
25
ethernet PROTOCOL
DESCRIPTION
"Protocol format for an Ethernet frame*
REFERENCE *RFC 834"
30 ::= { MacDest=macAddress, MacSrc=macAddress, EtherType=etherType,
Data=etherData }
ethernet FLOW
HEADER { LENGTH=14 }
35 DLC-LAYER {
SOURCE=Macsrc,
DESTINATION=MacDest,
TUNNELING,
PROTOCOL
40

}
CHILDREN { DESTINATION=EtherType, LLC-CHECK=1llc

-118-

WO 01/01272 PCT/US00/18330

L16

3.2 IP Version 4

Here is an example of the PDL for the [P protocol:

iphddress FIELD
SYNTAX BYTESTRING(4)
5 DISPLAY-HINT *1d.°*
LOOKUP HOSTNAME
DESCRIPTION
*IP address"
10 ipVersion FIELD
SYNTAX INT(4)
DEFAULT "4
' ipHeaderLength FIELD
15 SYNTAX INT(4)
ipTypeOfService FIELD
SYNTAX BITSTRING(8) { minCost(l).
maxReliability(2), maxThruput(3), minDelay(4) }
20
ipLength FIELD
SYNTAX UNSIGNED INT(16)
} ipFlags FIELD
i 25 SYNTAX BITSTRING(3) { moreFrags(0}, dontFrag(l) :
IpFragmentOffset FIELD

SYNTAX INT(13)

30 ipProtocol FIELD
SYNTAX INT(8)
LOOKUP FILE "IpProtocol.cf*

ipData FIELD
35 SYNTAX BYTESTRING (0..1500)
ENCAP ipProtocol
DISPLAY-HINT *HexDump*

ip PROTOCOL

40 SUMMARIZE

$FragmentOffset != 0°:
“IPFragment ID=$ldentification Offset=$FragmentOffset*
Default
*IP Protocol=$Protocol”
45 DESCRLPTION
“Protocol format for the Internet Protocol®
REFERENCE *RFC 791"
{ Version=ipVersion, HeaderLength=ipHeaderLength,
TypeCfService=ipTypeOfService, Length=iplength,

50 Identification=UIntl6, IpFlags=ipFlags,
FragmentOffset=ipFragmentOffset, TimeToLive=Int8,
Protocol=ipProtocol, Checksum=ByteStr2,
IpSrc=ipaAddress, IpDest=ipAddress, Options=ipOptions,
Fragment=ipFragment, Data=ipData }

55
ip FLOW
HEADER { LENGTH=HeaderLength, IN-VWORDS }
NET-LAYER {
SOURCE=IpSrc,
60 DESTINATION=IpDest,

FRAGMENTATION=IPV4,

-119-

WO 01/01272 PCT/US00/18330

117
CHILDREN { DESTINATION=Protocol }

ipFragData FIELD
SYNTAX BYTESTRING(1..1500)
5 LENGTH *ipLength - ipHeaderLength * 4°*
DISPLAY-HINT “HexDurp"

ipFragment GROUP
OPTIONAL "SFragmentOffset != 0*
10 ::= { bata=ipFragData)}

ipOptionCode FIELD
SYNTAX INT{8) { ipRR(0x07), ipTimescamp(0xddj,
ipLSRR{0x83), ipSSRR(0xB9} }
15 DESCRIPTION
“IP option code*

ipOpticnLength FIELD
SYNTAX UNSIGNED INT(8)
20 DESCRIPTION
“Length of IP option*

ipOptionbData FIELD
SYNTAX BYTESTRING (0. .1500}
25 ENCAP ipOpt ionCode
DISPLAY-HINT “HexDump®

ipOpticns GROUP
LENGTH “ (ipHeaderLength * 4) - 20°
{ Code=ipOptionCode, Length=ipOptionLength, Peinter=UInt8,
Data=ipOptionData }

30

-120-

W0 01/01272 PCT/US00/18330

118

33 TCP

Herc is an example of the PDL for the TCP protocol:

tcpPort FIELD
SYNTAX UNSIGNED INT{(16)
5 LOOKUP FILE “"TcpPort.cf®

tcpHeaderLen FIELD
SYNTAX INT(4)

10 tcpFlags FIELD
SYNTAX BITSTRING(12) { fin(0), syni{l), rst(2), psh{3},
ack(4), urg(5)

tcpData FIELD
15 SYNTAX BYTESTRING (0..1564)
LENGTH * {$ipLength- ($ipHeaderLength*4))-{StcpHeaderLen*4) "
ENCAP tcpPort
DISPLAY-HINT “HexDump*®

20 tep PROTOCOL

SUMMARIZZ
*Default"
*TCP ACK=$Ack WIN=$WindowSize"

DESCRIPTION

25 “Protocol format for the Transmission Control Protocol*
REFERENCE "RFC 793°

::= { SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32,

Ack=UInt32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags,
windowsize=UIntl6, Checksum=ByteStr2,

30 UrgentPointer=UIntl6, Options=tcpOptions, Data=tcpData }

tcp FLOW
EEADER (LENGTH=EeaderLength, IN-WORDS }
CONNECTION (

35 IDENTIFIER=Seguencelum,
CONNECT-START="TcpFlags:1*,
CONNECT-COMPLETE="TcpFlags:4",
DISCONNECT-START=*TcpFlags: 0",
DISCONNECT-COMPLETE="TcpFlags:4"

40)
PAYLOAD { INCLUDE-HEADER)
CHILDREN (DESTINATION=DestPort, SOURCE=SrcPort }

tcpOptionKind FIELD
45 SYNTAX UNSIGNED INT(8) { tcpOptEnd(0), tcpNopl(li,
tepMSS(2), tcpWscale(3), tcpTimestamp(4))
DESCRIPTION

*Type of TCP option®

50 tcpOptionbData FIELD

SYNTAX BYTESTRING(0..1500)
ENCAP tcpOptionKind
FLAGS SAMELAYER
DISPLAY-HINT “HexDump*
55
tcpOptions GROUP
LENGTH * {StcpHeaderLen * 4) - 20°
::= (Option=tcpOptionXind, OptionLength=UIntB,
OptionData=tcpOptionData }
60

tcoMSS PROTOCOL
::= { MaxSegmentSize=UIntlé }

-121-

20

30

35

40

45

50

55

WO 01401272 PCT/US00/18330
119
3.4 HTTP (with State)
Here is an example of the PDL for the HTTP protocol:
httpData FIELD
SYNTAX BYTESTRING(1..1500)
LENGTH *(SipLength - (SipHeaderLength * 4)) - {(S$tcpHeaderLen * 4)*
DISPLAY~HINT *Text"
FLAGS NOLABEL
http PROTOCOL
SUMMARIZE
“$httpData m/"GET | “HTTP|“HEAD|~POST/ "
HTTP $htrpData
*Shrrppata m/”[Dd)ate|~[Ss]erver|~[Ll)ast-{Mm]odified/"
“HTTP S$httpData*
“ShttpData m/"[Cclontent-/"
HTTP $httpbData”
“$httpData m/~<HTML>/"
“HTTP [HTML document])*
$httpData m/"GIF/ :
*HTTP [GIF image)"
Default
“HTTP [Datal"
DESCRIPTION
"Protocol format for HTTP.®
::= { Data=httpData }
http FLOW
HEADER { LENGTH=0)}
CONNECTION (INHERITED }
PAYLOAD { INCLUDE-HEADER, DATA=Data, LENGTH=256 }
STATES
“S0: CHECKCONNECT, GOTO Sl |
DEFAULT NEXT SO
Sl: WAIT 2, GOTO S2, NEXT Sl ‘
DEFAULT NEXT SO i
S§2: MATCH
‘An\r\n’ 00 0 0 255 0, NEXT S3
‘\n\n’ 900 0 0 255 0, NEXT S3
'POST /tds?’ 50 0 0 127 1, CHILD sybaseWebsgl
'.hts HTTP/1.0' 50 4 0 127 1, CHILD sybaseJdbe
*jdbc:sybase:Tds' 50 4 0 127 1, CHILD sybaseTds
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast
‘t: BW-C-° 100 4 1 255 0, CHILD backweb
DEFAULT NEXT S3
§3: MATCH
‘An\r\n' 5000 0 0, NEXT S3
‘\n\n* 50 00 0 0, NEXT S3
‘Content-Type: ' 800 0 0 255 0, CHILD mime
‘PCN-The Poin' S00 4 1 255 0, CHILD pointcast
't: BW-C-° 100 4 1 255 0, CHILD backweb
DEFAULT NEXT SO*
sybaseWebsgl FLOW
STATE~BASED
sybaseJddbe FLOW
STATE-~BASED
sybaseTds FrLow

STATE-BASED

-122-

20

25

30

35

40

50

55

60

65

WO 01/61272

120
pointcast FLOW
STATE-BASED
backweb FLOW
STATE-BASED
mime FLOW
STATE-BASED
STATES
"50: MATCH
‘application' 900 0 O 1 0, CHILD mimeApplication
‘audio’ 900 0 0 1 0, CHILD mimeAudio
'image' 50 0 0 1 0, CHILD mimelmage
‘text’ 50 ¢ 0 1 0, CHILD mimeText
‘video' 50 0 0 1 0, CHILD mimevVideo
*x-world’ 500 4 1 255 0, CHILD mimeXworld
DEFAULT GOTC S0°
mimeApplication FLOW
STATE-BASED
mimeAudio FLOW
STATE-BASED
STATES
=50: MATCH
‘basic* 100 0 0 1 0, CEILD
‘midi’ 160 0 0 1 0, CHILD
‘mpeg* 100 0 0 1 0, CHILD
‘vné.rn-realaudio’ 160 0 0 1 0, CHILD
‘wav’ 100 0 0 1 0, CHILD
*x-aiff’ 100 0 0 1 O, CHILD
x-midi 100 0 0 1 0, CHILD
'x-mpeg" 100 0 0 1 0, CHILD
' x-mpgurl’ 100 0 0 1 0, CHILD
‘x-pn-realaudio’ 100 0 0 1 0, CHILD
‘x~wav' 160 0 0 1 0, CHILD

DEFAULT GOTO SO*

mimeImage FLOW
STATE-BASED
mimeText FLOW
STATE-BASED
mimevideo FLOW
STATE-BASED
mimeXworld FLOW
STATE-BASED

pdBasicAudio FLOW
STATE-BASED

peMidi FLOW

STATE-BASED

pdMpeg2audio FLOW
STATE-BASED

pdMpeg3Audio FLOW
STATE-BASED

pdRealAudio FLOW
STATE-BASED
pdWav FLOW

PCT/US00/18330

pdBasicAudio
pdMidi
pdMpeg2Audio
pdRealAudioc
pdwav

pdAiff
pdMidi
pdMpeg2Audio
pdMpeg3Audio
pdRealAudio
pdwav

-123-

WO 01/01272 PCT/US00/18330

121
STATE-BASED

pdrifl FLOW
STATE-BASED

-124-

WO 01/01272 PCT/US00/18330

122

Re-Using Information from Flows for Maintaining Metrics

The flow-entry of each flow stores a set of statistical measures for the flow,
including the total number of packets in the flow, the time of arrival, and the differential

time from the last arrival.

5 Referring again to FIG. 3, the state processing process 328 performs operations
defined for the state of the flow, for example for the particular protocol so far identified
for the flow. One aspect of the invention is that from time to time, a set of one or more
metrics related ¢ the flow may be determined using onc or more of the statistical measures
stored in the flow-entry. Such metric determining may be carried out, for example, by the

10 state processor running instructions in the state processor instruction and pattern database
326. Such metrics may then be sent by the analyzer subsystem to a host computer
connected to the monitor. Alternatively, such metric determining may be carried out by a
processor connected to the flow-entry database 324. In our preferred hardware
implementation shown in FIG. 10, an analyzer host interface and control 1118 may be

15 configured to configured to access flow-entry records via cache system 1115 to output to
a processor via the host bus interface. The processor may then do the reporting of the base

metrics.

Fig. 15 describes how the monitor system can be set up with a host computer
1504. The monitor 300 sends metrics from time (o time to the host computer 1504, and

20 the host computer 1504 carries out part of the analysis.

This following section describes how the monitor of the invention can be used to

monitor the Quality of Service (QOS) by providing QOS Metrics.

Quality of Service Traffic Statistics (Metrics)

This next section defines the common structure that may be applied for the
25 Quality of Service (QOS) Metrics according to one aspect of the invention. It also defines
the “original” (or “‘base”) set of mctrics that may be determined in an embodiment of the
invention to support QOS. The base metrics are determined as part of state processing or
by a processor connected to monitor 300, and the QOS metrics are determined from the
base metrics by the host computer 1504. The main reason for the breakdown is that the

2% complete QOS metrics may be computatinnally camnley invalving sanare roots and other
¥ nex. A

-125-

WO 01/01272 PCT/US00/18330

123

functions requiring more computational resources than may be available in rcal time. The
base functions are chosen to be simple to calculate in real time and from which complete
QOS metrics may be determined. Other breakdowns of functions clearly are possible

within the scope of the invention.

5 Such metric determining may be carried out, for example, by the state processor
running instructions in the state processor instruction and pattern database 326. Such base
metrics may then be sent by the analyzer subsystem via a microprocessor or logic circuit
connected to the monitor. Alternatively. such metric determining may be carried out by a
microprocessor (or some other logic) connected to the flow-entry database 324. In our

10 preferred hardware implementation shown in FIGS. 10 and 11, such a microprocessor is
connected cache system 1115 via an analyzer host interface and control 1118 and host bus
interface. These components may be configured to access flow-entry records via cache

system 1115 to enable the microprocessor to determine and report the base metrics,

The QOS Metrics may broken into the following Metrics Groups. The names are
15 descriptive. The list is not exhaustive, and other metrics may be used. The QOS metrics

below include client-to-server (CS) and scrver-to-client (SC) metrics.
Traffic Metrics such as CSTraffic and SCTraffic.
Jitter Metrics such as CSTraffic and CS Traffic.

Exchange Response Metrics such as CSExchangeResponseTimeStartToStart,
20 CSExchangeResponscTimcEndToStart, CSExchangeResponseTimeStartToEnd,
SCExchangeResponseTimeStartToStart, SCExchangeResponse TimeEndToStart, and

SCExchangeResponseTimeStartToEnd.

Transaction Response Metrics such as CSTransactionResponseTimeStartToStart,
CSApplicationResponseTimeEndToStart, CSApplicationResponseTimeStart ToEnd,
25 SCTransactionResponseTimeStartToStart, SCApplicationResponseTimeEndToStart, and

SCApplicationResponseTimeStartToEnd.

Connection Metrics such as ConnectionEstablishment and

ConnectionGraceful Termination, and ConnectionTimeoutTermination.

Connection Sequence Metrics such as CSConnectionRetransmissions,

30 SCConnectionRetransmissions, and CSConnectionOutOfOrders,

-126-

WO 01/01272 PCT/US00/18330

124

SCConnectionOutOfOrders.

Connection Window Metrics, CSConnectionWindow, SCConnectionWindow,
CSConnectionFrozenWindows, SCConnectionFrozenWindows,

CSConnectionClosedWindows, and SCConnectionClosedWindows

s QOS Base Metrics

The simplest means of representing a group of data is by frequency distributions
in sub-ranges. In the preferred embodiment, there are some rules in creating the sub-
ranges. First the range needs to be known. Second a sub-range size needs to be
determined. Fixed sub-range sizes are preferred, alternate embodiments may use variable

10 sub-range sizes.

Determining complete frequency distributions may be computationally expensive.
Thus, the preferred embodiment uses metrics determined by summation functions on the

individual data elements in a population.

The metrics reporting process provides data that can be used to calculate useful
15 statistical measurements. In one embodiment, the metrics reporting process is part of the
state processing that is carried out from time to time according to the state, and in another
embodiment, the metrics reporting process carried out from time to time by a
microprocessor having access to flow records. Preferably, the metrics reporting process
provides base metrics and the final QOS metrics calculations are carried out by the host
20 computer 1504. In addition to keeping the real time state processing simple, the
partitioning of the tasks in this way provides metrics that are scalable. For example, the

base metrics from two intervals may be combined to metrics for larger intervals.

Consider, for example is the arithmetic mean defined as the sum of the data

divided by the number of data elements.
_ Yx
25 X ==
N

Two base metrics provided by the metrics reporting process are the sum of the x,
and the number of clements N. The host computer 1504 performs the division to obtain
the average. Furthermore, two sets base metrics for two intervals may be combined by

.. Tl o 0 [I e e Nl Sy ey v
adding e sum of iic A”s and by adding the namber of cloments 1o gt 2 combined enm

-127-

20

25

WO 01/01272 PCT/US00/18330
125
and number of elements. The average formula then works just the same.

The base metrics have been chosen to maximize the amount of data available
while minimizing the amount of memory needed to store the metric and minimizing the
processing requirement needed to generate the metric. The base metrics are provided in a

metric data structure that contains five unsigned integer values,

¢ N count of the number of data points for the metric.

¢ TX sumofall the data point values for the metric.

o I (XZ) sum of all the data point values squared for the metric.
o Xiux maxtmum data point value for the metric.
o Xiin minimum data point value for the metric.

A metric is used to describe events over a time interval. The base metrics arc
determined from statistical measures maintained in flow-entries. It is not necessary to
cache all the events and then count them at the end of the interval. The base metrics have

also been designed to be easily scaleable in terms of combining adjacent intervals.

The following rules are applied when combining base metrics for contiguous time

intervals.
e N N
¢« IX Z(Z (X))

o T(XH IE(XY)
* Xmox MAX(Xma)
¢ Xnmin MIN(Xmin)

In addition to the above five values, a “trend” indicator is included in the preferred
embodiment data structure. This is provided by an enumerated type. The reason for this is
that the preferred method of generating trend information is by subtract an initial first
value for the interval from the final value for the interval. Only the sign of the resulting

number may have value, for example, to determine an indication of trend.

Typical operations that may be performed on the base metrics include:

-128-

WO 01/01272 PCT/US00/18330

126

e Number N |

e Frequency ———.
9 4 Timelnterval

¢ Maximum X, .
e Minimum X~

5 e Range R=X_, - X

min

— X
e Arithmetic Mean X =—N—.

¢ Root Mean Square RMS =

N

3 (x-x}) (ZXZ)—Z)?(EXFN(}?‘).

N N

Six-xy =V[(ZTX’))-2X(ZX)+N(¥7)_
N

N

e Variance 0 =

e Standard Deviation ¢ =

10 o Trend information, which may be the trend between polled intervals and the trend
within an interval. Trending between polled intervals is a management application
function. Typically the management station would trend on the average of the reported
interval. The trend within an interval is presented as an enumerated type and can
easily be generated by subtracting the first value in the interval from the last and

15 assigning trend based on the sign value.

Alternate Embodiments
One or more of the following different data elements may be included in various

implementation of the metric.

¢ Sum of the deltas (i.c., differential values). The trend enumeration can be

20 based on this easy calculation.

o Sum of the absolute values of the delta values. This would provide a

ithin nn interval

S TR
megsuteicnt uf ihé GvETal mov

-129-

WO 01/01272 PCT/US00/18330

127

* Sum of positive delta values and sum of the negative delta values. Expanding !
each of these with an associated count and maximum would give nice

information.

o The statistical measurement of skew can be obtained by adding Z(X°) to the

w

existing metric.

e The statistical measurement of kurtosis can be obtained by adding (X% and

£(X*) to the existing metric.
o Data to calculate a slope of a least-squares line through the data..
Various metrics are now described in more detail.

10 Traffic Metrics !
CSTraffic
Defirition
This metric contains information about the volume of traffic measured for a given
application and either a specific Clicnt-Server Pair or a specific Server and all of its

15 clients.

This information duplicates, somewhat, that which may be found in the standard,
RMON II, AL/NL Matrix Tables. It has been included here for convenience to
applications and the associated benefit of improved performance by avoiding the need o ‘

access different functional RMON areas when performing QOS Analysis. |

20 Metric Specification ‘

Merric Applicability Units Description ‘
N Applicable Packets Count of the # of Packets from the Client(s) to |
the Server i

z Applicable Octets Sum total of the # of Octels in these packets ‘
from the Client(s) to the Server. i

Maximum Not Applicable ‘
Minimum Not Applicable ‘
\

-130-

WO 01/01272 PCT/US00/18330

128
SCTraffic
Definition
This metric contains information about the volume of traffic measured for a given

application and either a specific Client-Server Pair or a specific Server and all of its

clients.

W

This information duplicates, somewhat, that which may be found in the standard,
RMON 11, AL/NL Matrix Tables. It has been included here for convenience o
applications and the associated benefit of improved performance by avoiding the need to

access different functional RMON areas when performing QOS Analysis.

10 Merric Specificarion

Metric Applicability Units Description
N Applicable Packets Count of the # of Packets from the Server to
the Client(s)
z Applicable Octets Sum total of the # of Octcts in these packets
from the Server to the Client(s).
Maximum Not Applicable
Minimum Not Applicable
Jitter Metrics
CSJitter
Definition
15 This metric contains information about the Jitter (e.g. Inter-packet Gap) measured

for data packets for a given application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, CSJitter measures the Jitter for Data

Messages from the Client to the Server.

A Data Message starts with the 1 Transport Protocol Data Packet/Unit (TPDU)
20 from the Client to the Server and is demarcated (or terminated) by 1¥ subsequent Data
Packet in the other direction. Client to Server Inter-packet Gaps are measurcd between
Data packets within the Message. Note that in our implementaions, ACKnowledgements

are not considered within the measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

25 order data packets. The interval between the last packet in a Data Message from the Client

-131-

w0 01/01272

interpreted as an Inter-Packet Gap.

129

PCT/US00/18330

to the Server and the 1* packet of the Next Message in the same direction is not

Messages from the Client to the Server.

Metric Specification
Metric Applicability Units Description
N Applicable Inter- Count of the # of Intcr-Packet Gaps measured
Packet for Data from the Client(s) to the Server
Gaps
I Applicable uSeconds | Sum total of the Deha Times in these [nter-
Packet Gaps
Maximum Applicable uSeconds | The maximum Delta Time of Inter-Packet
Gaps measured
Minimum Applicable uSeconds | The minimum Delta Time of Inter-Packet
Gaps measured.
5
SCJitter
Definition

This metric contains information about the Jitter (e.g. Inter-packet Gap) measured
for data packets for a given application and either a specific Client-Server Pair or a

10 specific Server and all of its clients. Specifically, SCJitter measures the Jitter for Data

A Data Message starts with the 1* Transport Protocol Data Packet/Unit (TPDU)
from the Server to the Client and is demarcated (or terminated) by 1¥ subsequent Data
Packet in the other direction. Server to Client Inter-packet Gaps are measured between

15 Data packets within the Message. Note that in our implementaions, ACKnowledgements

are not considered within the measurement of this metric.

-132-

20

WO 01/01272 PCT/US00/18330
130
Metric Specification
Metric Applicability Units Description
N Applicable Inter- Count of the # of Inter-Packet Gaps measured
Packet for Data from the Server to the Client(s).
Gaps
I Applicable uScconds | Sum total of the Delta Times in thesc Inter-
Packet Gaps.
Maximum Applicable uScconds | The maximum Delta Time of Inter-Packet
Gaps measured
Minimum Applicable uSeconds | The minimum Delta Time of Inter-Packet
Gaps measured.

Exchange Response Metrics

CSExchangeResponseTimeStartToStart

Definition

This metric contains information about the Transport-level response time
measured for data packets for a given application and either a specific Client-Server Pair
or a specific Server and all of its clients. Specifically, :
CSExchangeResponseTimeStartToStart measures the response time between start of Data
Messages from the Client to the Server and the start of their subsequent response Data

Messages from the Server to the Client.

A Client->Server Data Message starts with the 1* Transport Protocol Data
Packet/Unit (TPDU) from the Client to the Server and is demarcated (or terminated) by 1%
subscquent Data Packet in the other direction. The total time between the start of the
Client->Server Data Message and the start of the Server->Client Data Message is
measured with this metric. Note that ACKnowledgements are not considered within the

measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

-133-

WO 01/01272 PCT/US00/18330

131

Merric Specification

Metric Applicability Units Description
N Applicable Clicnt-> Count of the # Clicnt->Server Messages
Server measured for Data Exchanges from the
Messages | Client(s) to the Server
z Applicable uSeconds | Sum total of the Start-to-Stact Delta Times in
these Exchange Response Times
Maximum Applicable uSeconds | The maximum Stagt-to-Start Delta Time of

these Exchange Response Times

Minimum Applicable uSeconds | The minimum Start-to-Start Delta Time of
these Exchange Response Times

CSExchangeResponseTimeEndToStart

S Definition

This metric contains information about the Transport-level response time
measured for data packets for a given application and either a specific Client-Server Pair
or a specific Server and all of its clients. Specifically,
CSExchangeResponseTimeEndToStart measures the response time between end of Data

10 Messages from the Client to the Server and the start of their subsequent response Data

Messages from the Server to the Client.

A Client->Server Data Message starts with the 1™ Transport Protocol Data
Packet/Unit (TPDU) from the Client to the Server and is demarcated (or terminated) by 1%
subsequent Data Packet in the other direction. The total time between the end of the
15 Client->Server Data Message and the start of the Server->Client Data Message is
measured with this metric. Note that ACKnowledgements are not considered within the

measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

-134-

WO 01/81272 PCT/US00/18330
132
Merric Specification
Metric Applicability Units Description
N Applicable Client-> Count of the # Client->Scrver Messages
i Server measured for Data Exchanges from the

Messages | Client(s) to the Server

b3 Applicable uSeconds | Sum total of the End-to-Start Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds | The maximum End-to-Start Delta Time of
these Exchange Responsc Times

Minimum Applicable - uScconds | The minimum End-to-Start Delta Time of
these Exchange Response Times

CSExchangeResponseTimeStartToEnd
S Definition
This metric contains information about the Transport-level response time
measured for data packets for a given application and either a specific Client-Server Pair
or a specific Server and all of its clients. Specifically,
CSExchangeResponseTimeEndToStart measures the response time between Start of Data
10 Messages from the Client to the Server and the End of their subsequent response Data

Messages from the Server to the Client.

A Client->Server Data Message starts with the 1* Transport Protocol Data
Packet/Unit (TPDU) from the Client to the Server and is demarcated (or terminated) by 1
subsequent Data Packet in the other direction. The end of the Response Message in the
15 other direction (e.g. from the Server to the Client) is demarcated by the last data of the
Message prior to the 1* data packet of the next Client to Server Message. The total time
between the start of the Client->Server Data Message and the end of the Server->Client
Data Message is measured with this metric. Note that ACKnowledgements are not

considered within the measurement of this metric.

20 Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

-135-

WO 01/01272 PCT/US00/18330

133

Metric Specification

Metric Applicability | Units Description

N Applicable Client-> Count of the # Client->Server and Server->
Server Client Exchange message pairs measured for
M Data Exch from the Client(s) to the

4
Exchanges Server

I Applicable uSeconds Sum total of the Start-to-End Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of
these Exchange Response Times

Minimum Applicable uSeconds The minimum Start-1-End Delta Time of
these Exchange Response Times

SCExchangeResponseTimeStartToStart
S Definition
This metric contains information about the Transport-level response time
measured for data packets for a given application and either a specific Client-Server Pair
or a specific Server and all of its clients. Specifically,
SCExchangeResponseTimeStartToStart measures the response time between start of Data
10 Messages from the Server to the Clicnt and the start of their subsequent response Data

Messages from the Client to the Server.

A Server->Client Data Message starts with the 1% Transport Protocol Data
Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by 1%
subsequent Data Packet in the other direction. The total time between the start of the
15 Server->Client Data Message and the start of the Client->Sever Data Message is
measured with this metric. Note that ACKnowledgements are not considered within the

measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

-136-

WO 01/01272 PCT/US00/18330

Metric Specification

Metric Applicability Units Description
N Applicable Server-> | Count of the # Server->Client Messages
Client measured for Data Exchanges from the

Messages { Client(s) to the Server

x Applicable uSeconds | Sum total of the Start-to-Start Dclta Times in
these Exchange Response Times

Maximum Applicable uSeconds | The maximum Start-to-Start Delta Time of
these Exchange Response Times

Minimum Applicable uScconds | The minimum Start-lo-Start Delta Time of
these Exchange Response Times

SCExchangeResponseTimeEndToStart
5 Definition
This metric contains information about the Transport-level response time
measured for data packets for a given application and either a specific Client-Server Pair
or a specific Server and all of its clients. Specifically,
SCExchangeResponseTimeEndToStart measures the response time between end of Data
10 Messages from the Server to the Client and the start of their subscquent response Data

Messages from the Client to the Server.

A Server->Client Data Message starts with the 1* Transport Protocol Data
Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by ™
subsequent Data Packet in the other direction. The total time between the end of the
15 Server->Client Data Message and the start of the Client->Server Data Message is
measured with this metric. Note that ACKnowledgements are not considered within the

measurement of this metric.

Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

-137-

WO 01/01272 PCT/US00/18330 |
135
Merric Specification
Metric Applicability Units Description
N Applicable Server-> Count of the # Server->Client Messages
Client measured for Data Exchanges from the

Messages | Client(s) to the Server

b Applicable uSeconds | Sum wotal of the End-to-Siart Delta Times in
these Exchange Response Times

Maximum Applicable uSeconds | The maximum End-to-Start Delta Time of
thesc Exchange Response Times

Minimum Applicable uSeconds | The minimum End-to-Start Dehta Time of
these Exchange Response Times

SCExchangeResponseTimeStartToEnd
5 Definition
This metric contains information about the Transport-level response time
measured for data packets for a given application and either a specific Client-Server Pair
or a specific Server and all of its clients. Specifically,
SCExchangeResponseTimeEndToStart measures the response time between Start of Data
10 Messages from the Server to the Client and the End of their subsequent response Data

Messages from the Client to the Server.

A Server->Client Data Message starts with the 1% Transport Protocol Data
Packet/Unit (TPDU) from the Server to the Client and is demarcated (or terminated) by 1
subsequent Data Packet in the other direction. The end of the Response Message in the
15 other direction (e.g. from the Server to the Client) is demarcated by the last data of the

Message prior to the 1% data packet of the mext Server to Client Message. The total time

between the start of the Server->Client Data Message and the end of the Client->Server
Data Message is measured with this metric. Note that ACKnowledgements are not

considered within the measurement of this metric.

20 Also, there is no consideration in the measurement for retransmissions or out-of-

order data packets.

-138-

20

WO 01/01272 PCT/US00/18330

136

Meric Specification

Metric Applicability Units Description
N Applicable Client- Count of the # Server->Client and Client->
Server Server Exchange message pairs measured for
Message Dala Exchanges from the Server to the
Exchanges Client(s)
z Applicable uSeconds Sum total of the Start-to-End Delia Times in
these Exchange Response Times
Maximum Applicable uSeconds The maximum Stan:to-End Delta Time of
these Exchange Response Times
Minimum Applicable uSeconds The minimum Start-to-End Delta Time of

these Exchange Response Times

Transaction Response Metrics
CSTransactionResponseTimeStartToStart
Definition

This metric contains information about the Application-level response time
measured for application transactions for a given application and cither a specific Client-
Server Pair or a specific Server and all of its clients. Specifically,
CSTransactionResponseTimeStartToStart measures the response time between start of an
application transaction from the Client to the Server and the start of their subsequent

transaction response from the Server to the Client.

A Client->Server transaction starts with the 1* Transport Protocol Data
Packet/Unit (TPDU) of a transaction request from the Client to the Server and is
demarcated (or terminated) by 1* subsequent data packet of the response to the
transaction request. The total time between the start of the Client->Server transaction
request and the start of the actual transaction response from the Server->Client is

measured with this metric.

This metric is considered a “best-cffort” measurement. Systems implementing this
metric should make a “best-effort” to demarcate the start and end of requests and
responses with the specific application’s definition of a logical transaction. The lowest
level of support for this metric would make this metric the equivalent of

CSExchangeResponseTimeStartToStart.

Metric Specification

-139-

WO 01/01272 PCT/US00/18330
137
Metric Applicability | Units Description
N Applicable Client->Svr | Count of the # Clicnt->Scrver Transaction
Transaction { Requests measured for Application requests
Requests from the Client(s) to the Server
z Applicable uSeconds Sum total of the Start-to-Start Delta Times in

these Application Response Times

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of
these Application Response Times

Minimum Applicable uSeconds The minimum Start-to-Start Delia Time of
these Application Response Times

CSApplicationResponseTimeEndToStart
Definition

J This metric contains information about the Application-level response time
measured for application transactions for a given application and either a specific Client-
Server Pair or a specific Server and all of its clients. Specifically,
CSApplicationResponseTimeEndToStart measures the response time between end of an
application transaction from the Client to the Server and the start of their subsequent

10 transaction response from the Server to the Client.

A Client->Server transaction starts with the 1¥ Transport Protocol Data
Packet/Unit (TPDU) of a transaction request from the Client to the Server and is
demarcated (or terminated) by 1% subsequent data packet of the response to the
transaction request The total time between the end of the Client->Server transaction
15 request and the start of the actual transaction response from the Server->Client is

measured with this metric

This metric is considered a “best-effort” measurement. Systems implementing this
metric should make a “best-effort” to demarcate the start and end of requests and
responses with the specific application’s definition of a logical transaction. The lowest

20 level of support for this metric would make this metric the equivalent of

CSExchangeResponseTimeEndToStart.

-140-

20

25

WO 01/01272 PCT/US00/18330

138

Metric Specification

Metric Applicability | Units Description

N Applicable Client->Svr | Count of the # Client->Server Transaction
Transaction | Requests measured for Application requests
Requests from the Client(s) to the Server

b Applicable uSeconds Sum total of the End-to-Start Delta Times in

these Application Response Times

Maximum Applicable uScconds The maximum End-to-Start Delta Time of
these Application Response Times

Minimum Applicable uSeconds The minimum End-to-Start Delta Time of
these Application Response Times

CSApplicationResponseTimeStartToEnd
Definition

This metric contains information about the Application-level response time
measured for application transactions for a given application and either a specific Client-
Server Pair or a specific Server and all of its clients. Specifically,
CSTransactionResponseTimeStartToEnd measures the response time between Start of an
application transaction from the Client to the Server and the End of their subsequent

transaction response from the Server to the Client.

A Client->Server transaction starts with the 1* Transport Protocol Data
Packet/Unit (TPDU) a transaction request from the Client to the Server and is demarcated
(or terminated) by 1 subsequent data packet of the response to the transaction request.
The end of the Transaction Response in the other direction (e.g. from the Server to the
Client) is demarcated by the last data of the transaction response prior to the 1 data of the

next Client to Server Transaction Request. The total time between the start of the Client-

>Server transaction request and the end of the Server->Client transaction response is

measured with this metric.

This metric is considered a “best-effort” measurement. Systems implementing this
metric should make a “best-effort” to demarcate the start and end of requests and
responses with the specific application’s definition of a logical transaction. The lowest
level of support for this metric would make this metric the equivalent of
CSExchangeResponseTimeStartToEnd.

Metrric Specification

-141-

WO 01/01272 PCT/US00/18330
139
Metric Applicability | Units Description
N Applicable Client-> Count of the # Client<->Server
Server request/response pairs measured for

Transactions | transactions from the Client(s) to the Server

T Applicable uSeconds Sum total of the Start-to-End Delia Times in
these Application Response Times

Maximum Applicable uSeconds The maximum Start-to-End Delta Time of
these Application Response Times

Minimum Applicable uSccond The mini Start-10-End Delta Time of
these Application Response Times

SCTransactionResponseTimeStartToStart
Definition

5 This metric contains information about the Application-level response time
measured for application transactions for a given application and either a specific Client-
Server Pair or a specific Server and all of its clients. Specificaily,
SCTransactionResponseTimeStartToStart measures the response time between start of an
application transaction from the Server to the Client and the start of their subsequent

10 transaction response from the Client to the Server.

A Server->Client transaction starts with the 1* Transport Protocol Data
Packet/Unit (TPDU) of a transaction request from the Server to the Client and is
demarcated (or terminated) by 17 subsequent data packet of the response to the
transaction request. The total time between the start of the Server->Client transaction
15 request and the start of the actual transaction response from the Client->Server is

measured with this metric.

This metric is considered a “best-effort” measurement. Systems implementing this

metric should make a “best-effort” to demarcate the start and end of requests and
responses with the specific application's definition of a logical transaction. The lowest
20 level of support for this metric would make this metric the equivalent of

SCExchangeResponseTimeStartToStart.

-142-

WO 01/01272 PCT/US00/18330
140
Merric Specification

Metric Applicability | Units Description

N Applicable Svr->Client | Count of the # Server->Client Transaction
Transaction | Reguests measured for Application requests
Requests from the Server to the Clical(s)

z Applicable uSeconds Sum total of the Start-to-Start Delta Times in

these Application Response Times

Maximum Applicable uSeconds The maximum Start-to-Start Delta Time of
these Application Response Times

Minimum Applicable uSeconds The minimum Start-t0-Start Delta Time of
these Application Response Times

SCApplicationResponseTimeEndToStart
5 Definition
This metric contains information about the Application-level response time
measured for application transactions for a given application and ecither a specific Client-
Server Pair or a specific Server and all of its clicnts. Specifically,
SCApplicationResponseTimeEndToStart measures the response time between end of an
10 application transaction from the Server to the Client and the start of their subsequent

transaction response from the Client to the Server.

A Server->Client transaction starts with the 1* Transport Protocol Data
Packet/Unit (TPDU) of a transaction request from the Server to the Client and is
demarcated (or terminated) by 1¥ subsequent data packet of the response to the
15 transaction request The total time between the end of the Server->Client transaction
request and the start of the actual transaction response from the Client->Server is

measured with this metric

This metric is considered a “best-effort” measurement. Systems implementing this
metric should make a “best-effort” to demarcate the start and end of requests and
20 responses with the specific application’s definition of a logical transaction. The lowest
level of support for this metric would make this metric the equivalent of

SCExchangeResponseTimeEndToStart.

-143-

WO 01/01272 PCT/US00/18330
141
Metric Specification

Metric Applicability | Units Description

N Applicable Svr->Client | Count of the # Server->Client Transaction
Transaction | Requests measured for Application requests
Requests from the Server to the Clicnt(s)

b Applicable uSeconds Sum total of the End-to-Start Delta Times in

these Application Response Times

Maximum Applicable uSeconds The maximum End-to-Start Delta Time of
these Application Response Times

Minimum Applicable uScconds The minimum End-to-Start Delta Time of
these Application Response Times

SCApplicationResponseTimeStartToEnd

w

Definition

This metric contains information about the Application-level response time
measured for application transactions for a given application and either a specific Client-
Server Pair or a specific Server and all of its clients. Specifically,
SCTransactionResponseTimeStartToEnd measures the response time between Start of an
10 application transaction from the Server to the Client and the End of their subsequent

transaction response from the Client to the Server.

A Server->Client transaction starts with the 1¥ Transport Protocol Data
Packet/Unit (TPDU) a transaction request from the Server to the Client and is demarcated
(or terminated) by 1* subsequent data packet of the response to the transaction request.

15 The end of the Transaction Response in the other direction (e.g. from the Client to the
Server) is demarcated by the last data of the transaction response prior o the 1* data of
the next Server to Client Transaction Request. The total time between the start of the
Server->Client transaction request and the end of the Client->Server transaction responsc

is measured with this metric.

20 This metric is considered a “best-effort” measurement. Systems implementing this
metric should make a “best-effort” to demarcate the start and end of requests and
responses with the specific application’s definition of a logical transaction. The lowest
level of support for this metric would make this metric the equivalent of

SCExchangeResponseTimeStartToEnd.

5 Meric Specificuiion

-144-

WO 01/01272 PCT/US00/18330
142
Metric Applicability | Units Descriptian
N Applicable Server-> Count of the # Server<->Client
Client request/response pairs measured for
Transactions | transactions from the Server to the Client(s)
z Applicable uSeconds Sum total of the Start-to-End Delia Times in
these Application Response Times
Maximum Applicable uSeconds The maximum Start-to-End Deliz Time of

these Application Responsc Times

Minimum Applicable uSeconds The minimum Start-10-End Deita Time of
these Application Response Times

Connection Metrics
ConnectionEstablishment
5 Definition
This metric contains information about the transport-level connection
establishment for a given application and either a specific Client-Server Pair or a specific
Server and all of its clients. Specifically, ConnectionsEstablishment measures number of
connections established the Client(s) to the Server. The information contain, in essence,

10 includes:
« # Transport Conncctions Successfully established
¢ Sct-up Times of the established connections
» Max. # of Simultaneous established connections.
¢ # Failed Connection establishment attempts (due Lo either timeout or rejection)

15 Note that the “# of CURRENT Established Transport Connections” may be
derived from this metric along with the ConnectionGracefulTermination and

ConnectionTimeoutTermination metrics, as follows:

current connections == “# successfully established”
- “# terminated gracefully”

20 - “# terminated by time-out”

The set-up time of a connection is defined to be the delta time between the first
transport-level, Connection Establishment Request (i.e., SYN, CR-TPDU, etc.) and the

first Data Packet exchanged on the connection.

-145-

WO 01/01272 PCT/US00/18330

143

Mertric Specification

Metric Applicability Units Description

N Applicable Connections | Count of the # Connections Established
from the Chieni(s) to the Server

b3 Applicable uSeconds Sum total of the Connection Set-up Times
in these Established conncctions

Maximum Applicable Connections | Count of the MAXIMUM simultaneous #
Connections Established from the Client(s}
to the Server

Minimum Not Applicable | Connections | Count of the Failed simultancous #
Connections Established from the Client(s)
to the Server

ConnectionGracefulTermination
5 Definition
This metric contains information about the transport-leve] connections terminated
gracefully for a given application and either a specific Client-Server Pair or a specific
Server and all of its clients. Specifically, ConnectionsGracefulTermination measures
gracefully terminated connections both in volume and summary connection duration. The

10 information contain, in essence, includes:
e #Gracefully terminated Transport Connections

e Durations (lifetimes) of gracefully terminated connections.

Metric Specification

Metric Applicability | Units Description

N Applicable Connections | Count of the # Connections Gracefully
Terminated between Client(s) to the Server

T Applicable mSeconds Sum total of the Connection Durations
(Lifetimes) of these terminated connections

Maximum Not Applicable

Minimum Not Applicable

15 ConnectionTimeoutTermination
Definition
This metric contains information about the transport-level connections terminated
non-gracefully (e.g. Timed-Out) for a given application and either a specific Client-Server

M B O A AN Af fen Aline ~anifinalle
Fau ui a 3pedind GLrver and & 0 10 caignts. Syww;ﬂ—u}!,,

-146-

20

WO 01/01272 PCT/US00/18330

144

ConnectionsTimeoutTermination measures previously established and timed-out
connections both in volume and summary connection duration. The information contain,

in cssence, includes:
o # Timed-out Transport Connections
s Durations (lifetimes) of timed-out terminated connections.

The duration factor of this metric is considered a “best-effort” measurement.
Independent network monitoring devices cannot really know when network entitics
actually detect connection timeout conditions and hence may need to extrapolate or

estimate when connection timeouts actually occur.

Metric Specification

Metric Applicability | Units Description

N Applicable Connections | Count of the # Connections Timed-out
between Clieni(s) to the Server

z Applicable mSeconds Sum total of the Connection Durations
(Lifetimes) of these terminated connections

Maximum Not Applicable

Minimum Not Applicable

Connection Sequence Metrics
CSConnectionRetransmissions
Definition

This metric contains information about the transport-level connection health for a

given application and either a specific Client-Server Pair or a specific Server and all of its
clients. Specifically, CSConnectionRetransmissions measures number of actual events
within established connection lifetimes in which Transport, data-bearing PDUs (packets)

from the Client->Server were retransmitted.

Note that retransmission events as seen by the Network Monitoring device

indicate the “duplicate” presence of a TPDU as observed on the network.

-147-

20

WO 01/01272 PCT/US00/18330
145
Metric Specification
Metric Applicability Units Description
N Applicable Events Count of the # Data TPDU retransmissions
from the Clicnt(s) to the Server

5 Not Applicable

Maximum Not Applicable

Minimum Not Applicable

SCConnectionRetransmissions
Definition

This metric contains information about the transport-level connection health for a
given application and either a specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SCConnectionRetransmissions measures number of actual events
within established connection lifetimes in which Transport, data-bearing PDUs (packets)

from the Server->Client were retransmitted.

Note that retransmission events as seen by the Network Monitoring device

indicate the “duplicate” presence of a TPDU as observed on the network.

Metric Specification

Metric Applicability | Units Description

N Applicable Events Count of the # Data TPDU retransmissions
from the Server to the Client(s)

z Not Applicable

Maximum Not Applicable

Minimum Not Applicable

CSConnectionOutOfOrders
Definition

This metric contains information about the transport-level connection health for a

given application and either a specific Client-Server Pair or a specific Server and all of its
clients. Specifically, CSConnectionOutQfOrders measures number of actual events within

established connection lifetimes in which Transport, data-bearing PDUs (packets) from

-148-

WO 01/01272 PCT/US00/18330
146
the Client->Server were detected as being out of sequential order.

Note that retransmissions (or duplicates) are considered to be different than out-of- \

order events and are tracked separately in the CSConnectionRetransmissions metric.

Metric Specification i
5
Metric Applicability Units Description ‘
N Applicable Events Count of the # Qut-of-Order TPDU events ‘
from the Client(s) 1o the Server

z Not Applicable ‘
Maximum Not Applicable
Minimum Not Applicable

SCConnectionOutOfOrders
Definition
This metric contains information about the transport-level connection health for a
10 given application and either a specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SCConnectionOutOfOrders measures number of actual events within
established connection lifetimes in which Transport, data-bearing PDUs (packets) from

the Server->Client were detected as being out of sequential order.

Note that retransmissions (or duplicates) are considered to be different than out-of-

15 order events and are tracked separately in the SCConnectionRetransmissions metric.

Metric Specification
Metric Applicability | Units Description
N Applicable Events Count of the # Out-of-Order TPDU events
from the Server to the Client(s)
b3 Not Applicable
Maximum Not Applicable
Minimum Not Applicable

-149-

WO 01/01272 PCT/US00/18330 ‘

147
Connection Window Metrics
CSConnectionWindow
Definition
This metric contains information about the transport-level connection windows for
5 agiven application and either a specific Client-Server Pair or a specific Server and all of
its clients. Speciﬁéally, CSConnectionWindow measures number of Transport-level

Acknowledges within established connection lifetimes and their relative sizes from the

Client->Server.

Note that the number of DATA TPDUs (packets) may be estimated by
10 differencing the Acknowledge count of this metric and the overall traffic from the Client
to the Server (see CSTraffic above). A slight error in this calculation may occur due to

Connection Establishment and Termination TPDUS, but it should not be significant.

Metric Specification

Metric Applicability Units Description
N Applicable Evenis Count of the # ACK TPDU retransmissions
from the Chent(s) to the Server
z Not Applicable | Incremenis Sum total of the Window Sizes of the
Acknowledges
Maximum Not Applicable | Increments The maximum Window Size of these
Acknowledges
Minimum Not Applicable | Increments The minimem Window Size of these
Acknowledges
15
SCConnectionWindow
Definition

This metric contains information about the transport-level connection windows for
a given application and either a specific Client-Server Pair or a specific Server and all of
20 its clients. Specifically, SSConnectionWindow measures number of Transport-level
Acknowledges within established connection lifetimes and their relative sizes from the

Server->Client.

Note that the number of DATA TPDUs (packels) may be estimated by

differencing the Acknowledge count of this metric and the overall traffic from the Client

-150-

WO 01/01272 PCT/US00/18330

148

to the Server (see SCTraffic above).. A slight error in this calculation may occur due to

Connection Establishment and Termination TPDUS, but it should not be significant.

Merric Specification

Metric Applicability | Units Description

N Applicable Events Count of the # ACK TPDU retransmissions
from the Server to the Client(s)

X Applicable Increments Sum total of the Window Sizes of the
Acknowledges

Maximum Applicable Increments The maximum Window Size of these
Acknowledges

Minimum Applicable Increments The minimum Window Size of these
Acknowledges

CSConnectionFrozenWindows
Defnition
This metric contains information about the transport-level connection windows for
a given application and either a specific Client-Server Pair or a specific Server and all of
10 its clients. Specifically, CSConnectionWindow measures number of Transport-level
Acknowledges from Client->Server within established connection lifetimes which validly

acknowledge data, but either
» failed to increase the upper window edge,

o reduced the upper window edge

15 Merric Specification

Metric Applicability Units Description

N Applicahle Events Count of the # ACK TPDU with
frozen/reduced windows from the Client(s)
10 the Server

z Not Applicable

Maximum Not Applicable

Minimum Not Applicable

-151-

—

WO 01/01272 PCT/US00/18330

149
SCConnectionFrozenWindows
Definition
This metric contains information about the transport-level connection windows for
a given application and either a specific Client-Server Pair or a specific Server and all of
5 its clients. Specifically, SCConnectionWindow measures number of Transport-level

Acknowledges from Server->Client within established connection lifetimes which validly

acknowledge data, but either
« failed to increase the upper window edge,

¢ reduced the upper window edge

10 Metric Specification

Metric Applicability | Units Description

N Applicable Events Count of the # ACK TPDU with
frozen/reduced windows from the Client(s)
10 the Server

b Not Applicable

Maximum Not Applicable

Minimum Not Applicable

CSConnectionClosedWindows
Definition

15 This metric contains information about the transport-level connection windows for
a given application and either a specific Client-Server Pair or a specific Server and all of
its clients. Specifically, CSConnectionWindow measures number of Transport-level
Acknowledges from Client->Server within established connection lifetimes which fully

closed the acknowledge/sequence window.

-1562-

WO 01/01272 : PCT/US00/18330

150

Metric Specification

Metric Applicability | Units Description

N Applicable Events Count of the # ACK TPDU with Closed
windows from the Client(s) to the Server

z Not Applicable

Maximum Not Applicable

Minimum Not Applicable

SCConnectionClosedWindows
S Definition
This metric contains information about the transport-level connection windows for
a given application and either a specific Client-Server Pair or a specific Server and all of
its clients. Specifically, SCConnectionWindow measures number of Transport-level
Acknowledges from Server->Client within established connection lifetimes which fully

10 closed the acknowledge/sequence window.

Metric Specification
Metric Applicability | Units Description
N Applicable Events Count of the # ACK TPDU with Closed
windows from the Client(s) to the Server
z Not Applicable
Maximum Not Applicable
Minimum Not Applicable

-163-

WO 01/01272 PCT/US00/18330

151

Embodiments of the present invention automatically generate flow signatures with
the necessary recognition patterns and state transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also generating state transitions to
search for. Applications and protocols, at any level, are recognized through state analysis

of sequences of packets.

Note that one in the art will understand that computer networks are used to
connect many differcnt types of devices, including network appliances such as telephones,
“Internet” radios, pagers, and so forth. The term computer as used herein encompasses all
such devices and a computer network as used herein includes networks of such

compulters.

Although the present invention has been described in terms of the presently
preferred embodiments, it is to be understood that the disclosure is not to be interpreted as
limiting, Various alterations and modifications will no doubt become apparent to those or
ordinary skill in the art after having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and modifications as fall within

the true spirit and scope of the present invention.

-154-

WO 01/01272 PCT/US00/18330

152

CLAIMS

‘What is claimed is:

1. A packet monitor for examining packets passing through a connection point on a
computer network in real-time, the packets provided to the packet monitor via a
5 packet acquisition device connected to the connection point, the packet monitor

comprising:

(a) apacket-buffer memory configured to accept a packet from the packet

acquisition device;

(b) a parsing/extraction operations memory configured to store a database of
10 parsing/extraction operations that includes information describing how to
determine at least one of the protocols used in a packet from data in the

packet;

() a parser subsystem coupled to the packet buffer and to the
pattern/extraction operations memory, the parser subsystem configured to
15 examine the packet accepted by the buffer, extract selected portions of the
accepted packet, and form a function of the selected portions sufficient to

identify that the accepted packet is part of a conversational flow-sequence;

(d) amemory storing a flow-entry database including a plurality of flow-

entries for conversational flows encountered by the monitor;

20 (e) a lookup engine connected to the parser subsystem and to the flow-entry
database, and configured to determine using at least some of the selected
portions of the accepted packet if there is an entry in the flow-entry database

for the conversational flow sequence of the accepted packet;

-155-

WO 01/01272 PCT/US00/18330

153
(f) a state patterns/operations memory configured to store a set of predefined
state transition patterns and state operations such that traversing a particuar
transition pattern as a result of a particular conversational flow-sequence of
packets indicates that the particular conversational flow-sequence is
5 associated with the operation of a particular application program, visiting
each state in a traversal including carrying out none or more predefined state

operations;

{g) aprotocol/state identification mechanism coupled to the state
patterns/operations memory and to the lookup engine, the protocol/state
10 identification engine configured to determine the protocol and state of the

conversational flow of the packet; and

(h) a state processor coupled to the flow-entry database, the protocol/state
identification engine, and to the state patterns/operations memory, the state
processor, configured to carry out any state operations specified in the state

15 patterns/operations memory for the protocol and state of the flow of the

packet,

the carrying out of the state operations furthering the process of identifying which
application program is associated with the conversational flow-sequence of the
packet, the state processor progressing through a series of states and state operations
20 until there are no more state operations to perform for the accepted packet, in which
case the state processor updates the flow-entry, or until a final state is reached that
indicates that no more analysis of the flow is required, in which case the result of the

analysis is announced.

2. A packet monitor according to claim 1, wherein the flow-entry includes the state
25 of the flow, such that the protocol/state identification mechanism determines the
state of the packet from the flow-entry in the case that the lookup engine finds a

flow-entry for the flow of the accepted packet.

3. A packet monitor according to claim 1, wherein the parser subsystem includes a
mechanism for building a hash from the selected portions, and wherein the hash is
30 used by the lookup engine to search the flow-entry database, the hasi desigicd i

spread the flow-entries across the flow-entry database.

-156-

WO 01/01272 PCT/US00/18330

154 ;

4. A packet monitor according to claim 1, further comprising:

a compiler processor coupled to the parsing/extraction operations memory, the

compiler processor configured to run a compilation process that includes:

receiving commands in a high-level protocol description language that
5 describe the protocols that may be uscd in packets encountered by the

monitor, and

translating the protocol description language commands into a plurality of
parsing/extraction operations that are initialized into the parsing/extraction

operations memory.

n S A packet monitor according to claim 4, wherein the protocol description language
commands also describe a correspondence between a set of one or more application
programs and the state transition patterns/operations that occur as a result of
particular conversational flow-sequences associated with an application program,
wherein the compiler processor is also coupled to the state patterns/operations

15 memory, and wherein the compilation process further includes translating the
protocol description language commands into a plurality of state patterns and state

operations that are initialized into the state patterns/operations memory.

6. A packet monitor according to claim 1, further comprising:

a cache memory coupled to and between the lookup engine and the flow-entry
20 database providing for fast access of a set of likely-to-be-accessed flow-entries from

the flow-entry database.

7. A packet monitor according to claim 6, wherein the cache functions as a fully

associative, least-recently-used cache memory.

8. A packet monitor according to claim 7, wherein the cache functions as a fully
25 associative, Jeast-recently-used cache memory and includes content addressable

memories configured as a stack.

9. A packet monitor according to claim 1, wherein one or more statistical measures

about a flow are stored in each flow-entry, the packet monitor further comprising: .

-157-

WO 01/01272 PCT/US00/18330

155
a calculator for updating the statistical measures in a flow-entry of the accepted

packet.

10. A packet monitor according to claim 9, wherein, when the application program of
a flow is determined, one or more network usage metrics related to said application
5 and determined from the statistical measures are presented to a user for network

performance monitoring.

11. A method of examining packets passing through a connection point on a
computer network, each packets conforming to one or more protocols, the method

comprising:
10 (a) receiving a packet from a packet acquisition device;

() performing one or more parsing/extraction operations on the packet to
create a parser record comprising a function of sclected portions of the

packet;

(¢) looking up a flow-entry database comprising none or more flow-entries
15 for previously encountered conversational flows, the looking up using at
least some of the selected packet portions and determining if the packet is of
an existing flow;
(d) if the packet is of an existing flow, classifying the packet as belonging to

the found existing flow; and

20 (e) if the packet is of a new flow, storing a new flow-entry for the new flow
in the flow-entry database, including identifying information for future

packets to be identified with the new flow-entry,

whercin the parsing/cxtraction operations depend on oge or more of the protocols to

which the packet conforms.

25 12. A method according to claim 11, wherein each packet passing through the

connection point is examined in real time.

13. A method according to claim 11, wherein classifying the packet as belonging to

the found existing flow includes updating wie fiuw-ciiiry of the oxisting flow,

-158-

20

20.

21.

22.

WO 01/01272 PCT/US00/18330

156
A method according to claim 13, wherein updating includes storing one or more

statistical measures stored in the flow-entry of the existing flow.

A method according to claim 14, wherein the one or more statistical measures
include measures selected from the set consisting of the total packet count for the

flow, the time, and a differential time from the last entered time to the present time.

A method according to claim 11, wherein the function of the selected portions of
the packet forms a signature that includes the selected packet portions and that can
identify futurc packers, wherein the lookup operation uses the signature and wherein
the identifying information stored in the new or updated flow-entry is a signature for

identifying future packets.

A method according to claim 11, wherein at least one of the protocols of the
packet uses source and destination addresses, and wherein the selected portions of

the packet include the source and destination addresses.

A method according to claim 17, wherein the function of the selected portions for

packets of the samne flow is consistent independent of the direction of the packets.

A method according to claim 18, wherein the source and destination addresses
are placed in an order determined by the order of numerical values of the addresses

in the function of selccted portions.

A method according to claim 19, wherein the numerically lower address is placed

before the numerically higher address in the function of selected portions.

A method according to claim 11, wherein the looking up of the flow-entry

database uses a hash of the selected packet portions.

A method according to claim 11, wherein the parsing/extraction operations are
according to a database of parsing/extraction operations that includes information
describing how to determine a set of one or more protocol dependent extraction

operations from data in the packet that indicate a protocol used in the packet.

-159-

WO 01/01272 PCT/US00/18330

157
23, A method according to claim 11, wherein step (d) includes if the packet is of an
existing flow, obtaining the last encountered state of the flow and performing any -
state operations specified for the state of the flow starting from the last encountered
state of the flow; and wherein step (e) includes if the packet is of a new flow,

5 performing any state operations required for the initial state of the new flow.

24. A method according to claim 23, wherein the state processing of each received

packet of a flow furthers the identifying of the application program of the flow.

25. A method according to claim 23, wherein the state operations include updating
the flow-entry, including storing identifying information for future packets to be

10 identified with the flow-entry.

26. A method according to claim 25, wherein the state processing of each received

packet of a flow furthers the identifying of the application program of the flow.

27. A method according to claim 23, wherein the state operations include searching

the parser record for the existence of one or more reference strings.

s 28. A method according to claim 23, wherein the state operations are carried out by a
programmable state processor according to a database of protocol dependent state

operations.

29. A packet monitor for examining packets passing through a connection point on a
computer network, each packets conforming to one or more protocols, the monitor

20 comprising:

(a) apacket acquisition device coupled to the connection point and

configured to receive packets passing through the connection point;

(b) an input buffer memory coupled to and configured to accept a packet
from the packet acquisition device;
25 {c) a parser subsystem coupled to the input buffer memory and including a

slicer, the parsing subsystem configured to extract selected portions of the
accepted packet and to output a parser record containing the selected

portions;

-160-

WO 01/01272 PCT/US00/18330

158
(d) amemory for storing a database comprising none or more flow-entries for
previously encountered conversational flows, each flow-entry identified by

identifying information stored in the flow-entry;

(e) alookup engine coupled to the output of the parser subsystem and to the

5 flow-entry memory and configured to lookup whether the particular packet
whose parser record is output by the parser subsystem has a matching flow-

entry, the looking up using at least some of the selected packet portions and

determining if the packet is of an existing flow; and

3] a flow insertion engine coupled to the flow-entry memory and to the
10 lookup engine and configured to create a flow-entry in the flow-entry
database, the flow-entry including identifying information for future packets

to be identified with the new flow-entry,

the lookup engine configured such that if the packet is of an existing flow, the

monitor classifies the packet as belonging to the found existing flow; and if the
15 packet is of a new flow, the flow insertion engine storcs a new flow-cntry for the

new flow in the flow-entry database, including identifying information for future

packets to be identified with the new flow-cntry,

whercin the operation of the parser subsystem depends on one or more of the

protocols to which the packet conforms.

30 30. A monitor according to claim 29, wherein each packet passing through the
connection point is accepted by the packet buffer memory and examined by the

monitor in real time.

31. A monitor according to claim 29, wherein the lookup engine updates the flow-

entry of an existing flow in the case that the lookup is successful.

25 32, A monitor according to claim 29, further including a mechanism for building a
hash from the selected portions, wherein the hash is included in the input for a
particular packet to the lookup engine, and wherein the hash is used by the lookup

engine to search the flow-entry database.

-161-

WO 017101272 PCTAUS00/18330

159
33, A monitor according to claim 29, further including a memory containing a
database of parsing/extraction operations, the parsing/extraction database memory
coupled to the parser subsystem, wherein the parsing/extraction opcrations arc
according to one or more parsing/extraction operations looked up from the

5 parsing/extraction database.

34. A monitor according to claim 33, wherein the database of parsing/extraction
operations includes information describing how to determine a set of one or more
protocol dependent extraction operations from data in the packet that indicate a

protocol used in the packet.

w35, A monitor according to claim 29, further including a flow-key-buffer (UFKB)
coupled to the output of the parser subsystem and to the lookup engine and to the
flow insertion cngine, wherein the output of the parser monitor is coupled to the
lookup engine via the UFKB, and wherein the flow insertion engine is coupled to

the lookup engine via the UFKB.

15 36. A methed according to claim 29, further including a state processor coupled to
the lookup engine and to the flow-entry-database memory, and configured to
perform any state operations specified for the state of the flow starting from the last
encountered state of the flow in the case that the packet is from an existing flow,
and to perform any state operations required for the initial state of the new flow in

20 the case that the packet is from an existing flow.

37. A method according to claim 29, wherein the set of possible state operations that
the state processor is configured to perform includes searching for one or more

patterns in the packet portions.

38. A monitor according to claim 36, wherein the state processor is programmable,
25 the monitor further including a state patterns/operations memory coupled to the state
processor, the state operations memory configured to store a database of protocol

dependent state patterns/operations.

-162-

WO 01/01272 PCT/USD0/18330

160
39. A monitor according to claim 35, further including a state processor coupled to
the UFKB and to the flow-entry-database memory, and configured to perform any
state operations specified for the state of the flow starting from the last encountered
state of the flow in the case that the packet is from an existing flow, and to perform
s any state operations required for the initial state of the new flow in the case that the

packet is from an existing flow.

40. A monitor according to claim 36, wherein the state operations include updating
the flow-entry, including identifying information for future packets to be identified

with the flow-entry.
16 41. A packet monitor according to claim 29, further comprising:

a compiler processor coupled to the parsing/extraction operations
memory, the compiler processor configured to run a compilation process that

includes:

receiving commands in a high-level protocol description language
15 that describe the protocols that may be used in packets encountered

by the monitor and any children protocols thereof, and

translating the protocol description language commands into a
plurality of parsing/extraction operations that are initialized into the ‘

parsing/extraction operations memory. |
20 42. A packet monitor according to claim 38, further comprising:

a compiler processor coupled to the parsing/extraction operations
memory, the compiler processor configured to run a compilation process that

includes:

receiving commands in a high-level protocol description language

25 that describe a correspondence between a set of one or more
application programs and the state transition patterns/operations that

occur as a result of particular conversational flow-sequences

associated with an application programs, and

-163-

WO 01/01272 PCT/US00/18330

161
wranslating the protocol description language commands into a
plurality of state patterns and state operations that are initialized into

the state patterns/operations memory.

43, A packet monitor according to claim 29, further comprising:

w

a cache subsystem coupled to and between the lookup engine and the flow-entry
database memory providing for fast access of a set of likely-to-be-accessed flow-

entries from the flow-entry database.

44. A packet monitor according to claim 43, wherein the cache subsystem is an
associative cache subsystem including one or more content addressable memory

10 cells (CAMs).

45. A packet monitor according to claim 44, wherein the cache subsystem is also a
least-recently-used cache memory such that a cache miss updates the least recently

used cache entry.

46. A packet monitor according to claim 29, wherein each flow-entry stores one or

15 more statistical measures about the flow, the monitor further comprising

a calculator for updating at least one of the statistical measures in the flow-entry

of the accepted packet.

47. A packet monitor according to claim 46, wherein the one or more statistical
measures include measures selected from the set consisting of the total packet count
20 for the flow, the time, and a differential time from the last entered time to the

present time.

48. A packet monitor according to claim 46, further including a statistical processor
configured to determine onc or more network usage metrics related to the flow from

one or more of the statistical measures in a flow-entry.
25 49. A monitor according to claim 29, wherein:

flow-entry-database is organized into a plurality of bins that each contain N-
number of flow-entries, and wherein said bins are accessed via a hash data value
created by a parser subsysicus based ca the celected packet portions. wherein N is

one or more.,

-164-

WQ 01/01272 PCT/US00/18330

162
50. A monitor according to claim 49, wherein the hash data value is used to spread a
plurality of flow-entries across the flow-entry-database and allows fast lookup ofa

flow-entry and shallower buckets.

51. A monitor according to claim 36, wherein the state processor analyzes both new
5 and existing flows in order to classify them by application and proceeds from state-

to-state based on a set of predefined rules.

52. A monitor according to claim 29, wherein the lookup engine begins processing as

soon as a parser record arrives from the parser subsystem.

53. A monitor according to claim 36, wherein the lookup engine provides for flow
10 state entry checking to see if a flow key should be sent to the state processor, and

that outputs a protocol identifier for the flow.

54. A method of examining packets passing through a connection point on a

computer network, the method comprising:
(a) receiving a packet from a packet acquisition device;

15 b) performing one or more parsing/extraction operations on the packet
according to a database of parsing/extraction operations to create a parser
record comprising a function of selected portions of the packet, the database
of parsing/extraction operations including information on how to determine
a set of one or more protocol dependent extraction operations from data in

20 the packet that indicate a protocol is used in the packet;

(c) looking up a flow-entry database comprising none or more flow-entrics
for previously encountered conversational flows, the looking up using at
least some of the selected packet portions, and determining if the packet is of

an existing flow;

25 (d) if the packet is of an existing flow, obtaining the last encountered state of
the flow and performing any state operations specified for the state of the

flow starting from the last encountered state of the flow; and

-165-

- - 162a -

(e) ifthe packet is of a new flow, performing any analysis required for the
initial state of the new flow and storing a new flow-entry for the new flow
in the flow-entry database, including identifying information for future

packets to be identified with the new flow-entry.

5 55. A method according to claim 54, wherein one of the state operations specified
for at least one of the states includes updating the flow-entry, including identifying

information for future packets to be identified with the flow-entry.

56. A method according to claim 54, wherein one of the state operations specified
for at least one of the states includes searching the contents of the packet for at

10 least one reference string.

57. A method according to claim 55, wherein one of the state operations specified
for at least one of the states includes creating a new flow-entry for future packets
to be identified with the flow, the new flow-entry including identifying

information for future packets to be identified with the flow-entry. i

-166-

163

58. A method according to claim 54, further comprising forming a signature from the
selected packet portions, wherein the lookup operation uses the signature and wherein
the identifying information stored in the new or updated flow-entry is a signature for

identifying future packets.

5 59. A method according to claim 54, wherein the state operations are according to a

database of protocol dependent state operations.

60. A packet monitor for examining packets passing through a connection point on a
computer network, each packets conforming to one or more protocols, the monitor
comprising:

10 (a) a packet acquisition device coupled to the connection point and configured

to receive packets passing through the connection point;

(b) amemory for storing a database comprising none or more flow-entries for
previously encountered conversational flows to which a received packet may

belong; and

15 (c) an analyzer subsystem coupled to the packet acquisition device configured
to lookup whether a received packet belongs to a flow-entry in the flow-entry
database, to update the flow-entry of the existing flow including storing one or
more statistical measures kept in the flow-entry in the case that the packet is of
an existing flow, and to store a new flow-entry for the new flow in the flow-

20 entry database, including storing one or more statistical measures kept in the

flow-entry if the packet is of a new flow.
61. A packet monitor according to claim 60, further comprising: Jeeee,

a parser subsystem coupled to the packet acquisition device and to the
1 analyzer subsystem configured to extract identifying information from a

25 received packet,

tified by identifiing informatinn stared in the flow-

-t
(4]
1]
©
)
&
33
4
3
<
4
3
<
14

entry, and wherein the cache lookup uses a function of the extracted identifying

3 information.

-167-

20

25

62.

63.

64.

65.

66.

164 i
A packet monitor according to claim 60, wherein the one or more statistical
measures include measures selected from the set consisting of the total packet count
for the flow, the time, and a differential time from the last entered time to the present

time.

A packet monitor according to claim 60, further including a statistical processor

configured to determine one or more metrics related to a flow from one or more of the

statistical measures in the flow-entry of the flow.

A packet monitor according to claim 63, wherein the statistical processor determine

and reports the one or more metrics from time to time.

A packet monitor for examining packets passing through a connection point on a
computer network, each packets conforming to one or more protocols, the monitor
comprising:

(a) a packet acquisition device coupled to the connection point and configured

to receive packets passing through the connection point;

(b) amemory for storing a database comprising none or more flow-entries for
previously encountered conversational flows to which a received packet may

belong;

(c) acache subsystem coupled to the flow-entry database memory providing for

fast access of flow-entries from the flow-entry database; and

(d) alookup engine coupled to the packet acquisition device and to the cache

subsystem and configured to lookup whether a received packet belongs to a
flow-entry in the flow-entry database, the looking up being in the cache

subsystem.

A packet monitor according to claim 65, further comprising:

a parser subsystem coupled to the packet acquisition device and to the
loolnup engine such that the acanicition device is connled to the lookup engine
via the parser subsystem, the parser subsystem configured to extract identifying

information from a received packet,

-168-

165
wherein each flow-entry is identified by identifying information stored in the flow-
entry, and wherein the cache lookup uses a function of the extracted identifying

information.

67. A packet monitor according to claim 66, wherein the cache subsystem is an
s associative cache subsystem including one or more content addressable memory cells
(CAMEs).
68. A packet monitor according to claim 66, wherein the cache subsystem includes:
)] a set of cache memory elements coupled to the flow-entry database memory,

each cache memory element including an input port to input an flow-entry and

10 configured to store a flow-entry of the flow-entry database;

(ii) aset of content addressable memory cells (CAMs) connected according to
an order of connections from a top CAM to a bottom CAM, each CAM
containing an address and a pointer to one of the cache memory elements, and
including:

15 a matching circuit having an input such that the CAM asserts a
match output when the input is the same as the address in the CAM

cell, an asserted match output indicating a hit,
a CAM input configured to accept an address and a pointer, and

a CAM address output and a CAM pointer output;

20 (iii) a CAM controller coupled to the CAM set; and

(iv) amemory controller coupled to the CAM controller, to the cache memory

set, and to the flow-entry memory,

wherein the matching circuit inputs of the CAM cells are coupled to the lookup engine

such that that an input to the matching circuit inputs produces a match output in any

25 CAM cell that contains an address equal to the input, and

wherein the CAM controller is configured such that which cache memory element a

particular CAM points to changes over time.

-169-

20

25

69.

70.

71.

166
A packet monitor according to claim 68, wherein the CAM controller is configured

such that the bottom CAM points to the least recently used cache memory element.

A packet monitor according to claim 69, wherein the address and pointer output of
each CAM starting from the top CAM is coupled to the address and pointer input of
the next CAM, the final next CAM being the bottom CAM, and wherein the CAM
controller is configured such than when there is a caché hit, the address and pointer
contents of the CAM that produced the hit are put in the top CAM of the stack, the
address and pointer contents of the CAMs above the CAM that produced the asserted
match output are shifted down, such that the CAMs are ordered according to
recentness of use, with the least recently used cache memory element pointed to by the
bottom CAM and the most recently used cache memory element pointed to by the top

CAM.

A packet monitor for examining all packets passing through a connection point on a

computer network, the monitor comprising:

(a) apacket acquisition device coupled to the connection point and configured

to receive packets passing through the connection point; and

(b) amemory for storing a database comprising none or more flow-entries for

previously encountered conversational flows to which a received packet may

belong;

(¢) alookup engine coupled to the packet acquisition device configured to
lookup whether a received packet belongs to a flow in the flow-entry database,
and to determine the state of the flow for the received packet in the case that

the packet belongs to a flow-entry;

(d astate determining mechanism coupled to the lookup engine to determine
the state of a flow in the case that the received packet does not belong to a flow

in the flow-entry database; and

-170-

20

25

72.

73.

74.

75.

76.

167
(e) astate processor coupled to the lookup engine and to the state determining
mechanism configured to perform any state operations specified for the state of
the flow starting from the last encountered state of the flow in the case that the
packet is from an existing flow, and to perform any state operations required for
the initial state of the new flow in the case that the packet is from an existing

flow.

A monitor according to claim 71, wherein the set of possible state operations that
the state processor is configured to perform includes searching for one or more

patterns in the packet portions.

A monitor according to claim 72, wherein the monitor processes all packets passing

through the connection point in real time.

A monitor according to claim 72, wherein the state processor is programmable, the
monitor further including a state patterns/operations memory coupled to the state
processor, the state operations memory configured to store a database state

patterns/operations.

A monitor according to claim 71, further including a buffer coupled to the packet
acquisition device, to the state processor, and to the lookup engine, the buffer

configured to accepting at least selected portions of the received packet.

A monitor according to claim 75, wherein the state processor includes a searching
apparatus configured to search for a reference string of NR units in the buffer contents,

the searching apparatus comprising:

(D) a first reference register configured to receive the NR units of a first

reference string;

(i) one or more target data registers coupled in series and coupled to the buffer,

the target data registers configured to receive contents from the buffer; and

(i) a first plurality of comparator sets, one comparator set corresponding to
each of a set of starting positions in the target data registers, the comparator set
of a particular starting position coupled to each unit of the first reference

register and to NR units of the target data registers starting from the particular

-171-

168
starting position and comparing the first reference register contents to
corresponding contents of NR contiguous units of the target data registers

starting from the particular starting position,

such that each comparator set indicates if there is a match of the first reference string in

5 the target data starting from its corresponding different starting position,

whereby the first plurality of comparator sets indicates in parallel if the first reference

string is contained in the target data registers starting at any of the starting positions.

DATED this 28th Day of May 2004
10 BALDWIN SHELSTON WATERS
Attorneys for: APPTITUDE ACQUISITION CORPORATION

-172-

—

w0 01/01272 PCT/US00/18330
1/28 ;
100
CLIENT 4 | /108
ANALYZER
107
116

SERVER 2

CLIENT 3| ~ o

121

DATA COMMUNICATIONS
NETWORK

102
125
118
SERVER 2 105
™ CLIENT 2 [CLIENT 1
12 104

FIG. 1

-173-

PCT/US00/18330

WO 01/01272

2 43AH3S NOILYOIddY

2/28

mONU

Aida) wnyep : _ ma Is | o
802
52 v €12 22 112 0.2
isenbais wnyep d Ad|to|ts
592 v92° £92° 292° 192> 092°
hs g8 e : zd | o | ts |eaam
552 ¥52 €62 252> 152’ 052°
12
Gis jB e d | o | ts AT
AY A}) \ \VNV N
vz _ove
Sve vve eve eve g /@&
A {ds gs| | dfts |t
6202620162062 622 822°L22 922 S22 32 902
40 |gs (VO |gs| ! Fn_ in | lg

>

>

£227222°122°022° 612°812°L12 812’ 512 ¥i2°

£ LN3INO

B

-174-

PCT/US00/18330

WO 01/01272

3/28

i €0 * 1
[H3IZAWNY .
[BNOILYHIdO |
bNSSI00Hd
; 31V1S 1
1 i |
| % |
| ON 82 |
| 9ee |
_ ! Y3ZINILLO
_ 3svaviva ! N any
|78 o NOILONYLSNI ! g3NdN0D
! HOSS3O0Hd T
31ViS
| NOLIVZIT¥NIS (4% . |
i [navoldissvio |
i e
| —— v m—] = — = - — —
| ¥ | |
i i Isvaviva
QHo03 NOILYOILLNIaI | NOILOYHLX3 206)
; NMON? - le-on ALV ® | ! N W
! Lt 1000LOHd | | BSHVd ‘NY3Llvd
l Nm\m./ 8LE—" y | |
L - L - —_—— — _
1 _ |
| —- !
4 _ soov || 218
_ veeaq | V! 2 ‘
| sadooad| | | : (4vd)
SMOT4 40 | £ay003y NMONX 1] AN MO FIZO:LXHOmz_ NOILYWHOSNI
FSvaviva | WOH4 poivsuaANOote OIVIMOM e N v
dnxoot | | [3noiNn ating fravimi 37IND0D3Y
! P! ANV IZAIYNY
\ : 1€ {— 90e Z poe
|||||||||||| 1 —
ree - {0E u3syvd

13N0vd M

20g

-175-

WO 01/01272

PCT/US00/18330

4/28
401
w
—’/
— 402
HIGH LEVEL |/
PACKET
DECODING
DESCRIPTIONS
&____—/
404 405
) |
GENERATE GENERATE
PACKET
PACKET COMPILE STATE
PARSE AND >
ESCRIPTIONS NSTRUCTIONS]
EXTRACT D
OPERATIONS OPERATIONS

Q 403

407
406 “RATTERN, PARSE STATE
AND PROCESSOR
EXTRACTION INSTRUCTION
DATABASE /— 408 409 DATABASE
BASE PR
LOAD LOAD STATE
| PARSING NSTRUCTION
»| SUBSYSTEM DATABASE
MEMORY MEMORY

:410

FIG. 4

400

-176-

WO 01/01272

503 LOAD PACKET
b COMPONENT

4

FETCH NODE AND

y

PROCESS FROM
PATTERNS L 505

PCT/US00/18330

512

UILD
PACKET
KEY

506

APPLY NODE AND
™ PROCESS TO
507 COMPONENT

510
\ NEXT
PATTERN

NODE

EXTRACT
509 S

ELEMENTS

FIG. 5

500

-177-

WO 01/01272 PCTAUS00/18330

6/28

601

PACKET 602
COMPONENT AND
PATTERII NODE

LOAD PACKET
o COMPONENT

603

[y

610—>

LOAD KEY
BUFFER

604

FETCH EXTRACTION
ND PROCESS FROM/L
PATTERNS 605

NEXT
PACKET LS 609
COMPONENT,
[}

607 2_ APPLY EXTRACTION
COMPONENT
P \

600

608

MORE TO
EXTRACT?

YES

FIG. 6

-178-

WO 01/01272 PCT/US00/18330

7/28

701

702

EY BUFFER AND,
PATTERN NODE

LOAD PATTERN |
703 __~| NODE ELEMENT

708 \

/
204 P OUTPUT TO
MOESDETS-;EH N> ANALYZER

YES @

A 4
HASH KEY BUFFER
ELEMENT FROM 5 705
PATTERN NODE

708
A
_g\ PACK KEY & HASH
706
\700
4
NEXT PACKET
E COMPONENT
707

FIG. 7

-179-

WO 01/01272

800
N\

8/28
801

UFKB ENTRY FOR 8
/ PACKET /U 02

|

COMPUTE CONVERSATION
RECORD BIN FROM HASH

!

805

NEXT BUCKET

Q 809

811 —_| AS 'FOUND'

812 x UPDATE STATISTICS FOR

REQUEST RECORD BIN/

BUCKET FROM CACHE |/ 804

ORE BUCKET:
IN THE BIN?

YES

AND BUCKET RECORD KEY
TO PACKET

YES
MARK RECORD BIN AND

CACHE AND TIMESTAMP

SET UFKB FOR PACKET

]

NO

803

PCT/US00/18330

5 806

SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN s 807

BUCKET 'IN PROCESS'IN [/~ 810

RECORD IN CACHE

ﬂ(l) FIG. 8

-180-

WO 01/01272

elo]

PORTMAPPEH

EXTRACT PROGRAM

GET 'PROGRAM',
‘VERSION', 'PORT' AND
‘PROTOCOL (TCP OR

]

CREATE SERVER STATE

SAVE 'PROGRAM',
'VERSION', 'PORT AND
'PROTOCOL (TCP OR
UDP)' WITH NETWORK
ADDRESS IN SERVER
STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

903 j

904 —\

PORTMAPPER

/‘ 905

PCT/US00/18330

9/28
902

EXTRACT PORT

GET 'PROGRAM,
'VERSION' AND
'PROTOCOL (TCP OR
UbP)'

908
SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND
‘PROTOCOL (TCP OR
UDP) WITH
DESTINATION
NETWORK ADDRESS.
BOTH MAKE A KEY.

N

907

906 —\

LOOKUP REQUEST EXTRACT
PROGRAM
/ FIND ‘PROGRAM'
900 AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF 'PROTOCOL (TCP
SOURCE NETWORK OR UDPY".
ADDRESS.

H

N

-

e

Q

LI 4

-181-

PCT/US00/18330

WO 01/01272
1000 ~—y 10/28
PATTERN 100?‘k EXTRACTION
RECOGNITION OPERATIONS
DATABASE DATABASE
MEMORY 1001 MEMORY

1003\

1005\

1031
\1 004

INF}OUT

~ >

~

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS

CONTRL IN

il

1031~

PATTERN

RECOGNITN
ENGINE
(PRE)

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOA

MEMORY

CONTROL

INPUT BUFFER
INTERFACE

101

INTERFACE
CONTROL

-182-

WO 01/01272 PCT/US00/18330

1100 —y

§1101 81103

i
) ANALYZEA | HOST
INTERFACEY 1S,
INTER-
~ AND K| FACE
conTroL] | (HIB)
(ACIC)
/ \ E—
1109
UNIFIED
FLOW
PARSER|y KEY
INTER- N+BUFFER
FACE | |(UFKB)
L\ L\
STATE
™ PrROCESSRE ']
(SP) (1119 11232
UNIFIED | |MEMORY
Ly MEMORY - INTER-
CONTROLA~ FACE
{UMC)
. _—

-183-

—

WO 01/01272 PCT/US00/18330

12/28

1201

UFKB ENTRY FOR
PACKET WITH e 1202
STATUS 'NEW'

1200 v
T ACCESS
CONVERSATION | /1203
RECORD BIN
REQUEST RECORD BIN/
BUCKET FROM CACHE |/~ 2%
REQUEST NEXT
_f| BUCKET FROM
1206 CACHE

N |INSERT KEY AND HASH |/~ 1207
5 IN BUCKET, MARK 'USED
1208 WITH TIMESTAMP

ES v
CENMPSRE KCEl:erFiEN(')I' BéNf1209
1210\ DBU RECOR
SET UFKB FOR
A ACK%}; AS KEY TO PACKET
‘DROP'
MARK RECORD BIN AND

BUCKET IN PROCESS' |/~ 12"
AND 'NEW' IN CACHE

v

1212 [gpT INITIAL STATISTICS
FOR RECORD IN CACHE

é/ms

FIG. 12

-184-

WO 01/01272 PCT/US00/18330
13/28
Q\/ 1901
1300 —y UFKB ENTRY FOR
PACKET WITH STATUS
‘NEW' OR 'FOUND' 1302
v
SET STATE PROCESSOR
INSTRUCTION POINTER TO | —1303
VALUE FOUND IN UFKB ENTRY
FETCH INSTRUCTION FROM
»| STATE PROCESSOR 1304
INSTRUCTION MEMORY
PERFORM OPERATION BASED 305
\ ON THE STATE INSTRUCTION ||
SETSTATE
PROCESSOR
INSTRUCTION NO 1307
POINTER TO STATES FOR THIS
VALUE FOUND IN PACKET?
CURRENT STATE
1308
1310
SAVE STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLO
CURRENT FLOW
RECORD
+
SET AND SAVE FLOW REMOVAL|
STATE PROCESSOR | /1311
INSTRUCTICN IN CURRENT
FLOW RECORD

> éJmS

FIG. 13

-185-

PCT/US00/18330

14/28

WQ 01/01272

W3LSASHNS
HIZATVNY

o) _.IOZ |

NOILVZITYNId
NLYOIJISSYI0 S3IA

4

/

NOI

SISATYNY
3J1v1S

1YH3Id(

ayoo3d
NMONM
JMOTSu
I1vddn
e
cevl
S3A
SMOTd 40 oN
3Svavivd ¢@yo03d
+MOTd. M3IN
(44}

/w—vv

lewvr 00Vt
HOL0313S
3NIHOYIN

VLS LT T T T T T T wasasans

1 ' 8oyt d3sdvd

__ ! w]

_ _

i . SNOILYH3JO |

| NOILOVH1X3

I aNv |

Ly SIHNLONYLS |

L NH311vd |

! |

| _ _

| _ _

rozzzz=z=) [

I _

(vev1 8a)| || doﬂk.u_:%ﬁ\u NI zoxmm_‘mwmz_ i
S ot [T A MO e SNIAAILNG Al [*] 37IN90DTY Ezn@

dNY00T | 11 10vH1X3 ANV IZATYNY] |

S—vivL ! //\er— —gopi [T <0orl
_

-186-

PCT/US00/18330

WO 01/01272

15/28

Sl "OId

|

A4

S13X%0vd

A

ad
2 auvo
D
tores /
8051 0161 -
il o0e
HOLINOW
AHOW3IW | HOSS3004dd
1SOH U 1soH [
J 301A3Q
9051 yoss L— OILISINDD
—XEOWEN 1350vd
SMOT4 >
410 g0e) 20s1L
3svaviva 1 3ZATYNY HISHvVd
vze J

-187-

WO 01/01272 PCT/US00/18330
16/28
1602 0 - 3Bytes
— 1600
Dst MAC
offset 0 - 11 - Dst MAC | Src MAC ~j1604
‘ Src MAC b
>/\ 1606
1608 Dst MAC (6)
[Dst Hash (2] 1610
1612 Src MAC (6)
1614 |Src Hash (2

N0t - 12
FIG. 16

-188-

WO 01/01272

offset
12t0 13

1702

17/28

1704

\
T e 1///////////74/

.

1708

1710
30 set

1706

\ Type (2) }/
Hash {1} Y 1700

=14

FIG. 17A

1712

PCT/US00/18330

IDP OXOGOO'

CHAOSNET 0x0804
ARP = 0x0806
VIP = 0x0BAD*
VLOOP = Ox0BAE
VECHO = O0x0BAF
NETBIOS-3COM = 0x3C00 -
0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x8007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x80D5*
ATALKARP 0x80 F3
0x8137*
SNMP = 0xB14CH#
IPv6 = 0x86DD*
LOOPBACK = 0x9000

Apple = 0x080007

* L3 Decoding
L5 Decoding

L/

L3to
L3+
(HL/ 4
. 1]

VerL IS4/

TR/

/11/18Rgqes/ /1]

[FHAY/ Frag/Dirseh

///7TE/]] Protocol

EAGRH R

Src Address

Dst Address

[11/] R R RAema] /1 11111]

~

A

Dst

Address]

Dst Hash (2)[

Src

Address J

Pl)

Src Hash (2)

FIG. 17B

[4 Offpet = L3 + ikiii4)

¥— 1750

1752

ICMP =1
IGMP =2
GGP =3
TCP =6~
EGP =8
IGRP =9
PUP =12
CHAOS =16
UDP =17"
IDP =22#
1SO-TP4 =29
DDP =37#
1SO-IP =80
VIP = 83#
EIGRP =88
OSPF =89

* L4 Decoding
L3 Re-Decoding

S

-189-

PCT/US00/18330

WO 01/01272

18/28

PROTOCOL

H1ON31 Q131

FIG. 18A

1870
'

LT
[TTTI7T71
e

— >
@33 40

300D 31Ad

LUT UM,

A—1850

JOUOPOM&

FIG. 18B

-190-

PCT/US00/18330

WO 01/01272

19/28

22\
wo:\

G061

(80ds)
%00ig |0qU0D dS

o]
61 _O _n_ (38-NTvds)
auibuz yosess
oc6L . (Nves)
161 Ny 108S320.1d 3je1s SL6L
\ SilL 7 oL
. 206} - |M
axnpy o
o led NV dS
5% 126L 1 X2
g [|8 28 o
5 3 °a &
[oo}
SYMIdS)
gmuoumw%cmmmmw I0]EIBUSD
SSaipy _geimey
\u3 MOI4 dS 1161 M MOId dS

(Ddds) [~ NIvdswol4 D

isunon
wesbold ds

A

60L1

(Qlds)
g(uondnijsu)
10858201 BJE1S

€061 \

101087 dwinp
adn woid ejeqg

-191-

PCT/US00/18330

WO 01/01272

20/28

€061

. _ Odds | —
0¢ ©Old _ - L) f f z
[GNNOH ‘HOLI3A™dWNF] = viva Nvds HOLYWNIVdS ANOANTYAS 5]
| o0z 6£02 ———] 1802 ~—~——] 5802 ~— | 2
= L WI0— €202 ~ OVX4~ 03wl
& ONIT3S 1502 o
Z -\ = (@]
N™13S3H» DY) OMI
w <
© Yy y IIIF 35 o= o) "
Rl O -1z0z ZZ=zZ daad B2 =1 v
M = eeoe ElEEE 2|23 |5 Zl o a
NRININ C\l 0B OB 333 mlm o = < I (7]
wpool W 2102 oloiolo] 9o [Z| g W ﬁ
wjwjll) o [m)
¥MIXIY S Z Z| o LL6L
- £10Z) —
%_ 5202 INOQ A3M D(@/.._ . Z <
g \ A3 avO1 - 3
-l 7 » 13s440 =
. EG avol (rd1S~43d) ¥1NO - SonvE =
E | . (ed1s™43d) €1N0O” 0g0e - TR T T %
= ,ms_m ONI (dlS 33d) 210 _ = S
= ___ 4l QvO173S [(1H1S 434) 1IN0 HOWV3SY 3S £ 2
w AWy ds PAHO—> Z| o L0z —{a
w EMHO——— o8 N @
o W10+ A ——» Z T
3 IMHD w S = 6161
3| -N{L3s3Tu~ 5 > 2 2l 5
—— 10— =g
1002 02— H00e—— 13531 z w w
[500e LSNI"3S | 24
ownﬁ_,&m zo0g —~—4 = oBom
S002 (LSNIGOdS) LNOGXNINGS T
/i _
0€6l g6l 8 XN v1va Ny dS

-192-

WO 01/01272 PCT/US00/18330
21/28
/‘2030
posimioNns [
SEARCH_ENGINE 4 FOUND4 >
] POSITION3 | &
©| RESET N SEARCH_ENGINE 3 Founos | '
1 o LK 2
> 0 POSITION2
I SEARCH_ENGINE 2 Founoe |
—_ é
g i SEARCH_ENGINE 1277
s i _| /2108
> | S -
o v ™ SE_SM
Ia DATA_UFKB L
f— SE_MATRIX POSITION1 >
KEY_4 FOUNDH1
~ > 2 >
]% INC_FKAG4 ns L
—
Q |KEY_3 L
O | INC_FKAG3
KEY_2 2111 4]
E INC_FKAG2 | | _
KEY_1
INC_FKAGT .
TOSE234 /
0SE234[| 2105
T LOAD_KEY_DONE, LOAD,
— CHK, ALU_OJONE
w12 SE234 T 2115
At FIG. 21
z BYTE_|OFFSET)
TRUE]RANGE (=
E‘.;
4 I

-193-

PCT/USG0/18330

WO 01/01272

dce Dlid _________L

:NN]AV_J___;_.;A__ |
EZ.N >z Hy-6022 €02z b= mONN

z-1028 4vee
[43000N3 ALHOIHd | ‘B
o TR vee Ol -
vels, oo /A/////A \//j//
NSNSNNAA
N
/V/ AR 3
N v/V// //‘.N/C/ fo)
NN N
® OO /{r -£022 3
Z ‘_m«wZ-a b \ !w”\//(////% d
N SEERNNNNNNAN]
NN ./c//////
NS 3
ﬂm/w/ DRNARYN Y
AWMRRRRRNN
\ /ﬁ R
012 // \ /////., N
NI V1V _ A

13onvi "L JHOM139HVL | |+ QHOM 139HVL [adomizodvi |

-194-

WO 0101272 PCT/US00/18330
. 2328 a8
@ o)
(vl
NK 5 - z— " N
T Nty T4 O .
- S 0 E
0] E ol=z3s = —
< > 8 LT3 L
s w4 S B2 af
e oo & c 5
= a = T
ss © -
- W o
we g
c
T 2
= O 5
s
1] o
[+¢]
Py gl &
- :
(o]]
ES Z
- w
w >
O [
i T
S o
T
o
v
0
5
w
ol
i ™M
c (QV]
- 0]
o
[T
(@)
\\‘3
|-
w
(0]
T
g
—

-195-

W0 01/01272

24/28

Q\f 2401

COMMON.PDL

2403
NS

!

FLOWS.PDL

|

VIRTUAL.PDL

!

2411—\/

ETHERNET.PDL

'

ETHERTYPE

'

iP.PDL

!

TCP.PDL

'

RPC.PDL

.

242 1—\/

NFS.PDOL

2423/6 FIG. 24

PCT/US00/18330

-196-

WO 01/01272

25/28

Q\f 2501

READ IN PDL SOURCE
MODULES

\/— 2503

!

PARSE MODULES FOR
SYNTAX

e 2505

;

FIRST PASS, CREATE
ALL PARSE ELEMENTS

2507

|

2509

PND PASS, BUILD FLOW
SIGNATURE ELEMENTS

!

THIRD PASS, CREATE
PAYLOAD ELEMENTS

2511
|/

'

FORTH PASS, BUILD

STATES FOR EACH LINK./~ 213

v

READ IN LAYERING
SOURCE MODULES

\/—2515

.

FOR EACH PDL

WALK LAYERING LINKS\/— 2517

.

2519w

OUTPUT CPL
INTERMEDIATE FILE

zszwé FIG. 25

-197-

PCT/US00/18330

WO 01/01272

26/28

9¢ 9lId

Eom/

T
— viva»|C
—13S30i4> | .
—13SdS-*> S3XNW 103738 LNdLNO — <k<ovm
€l9e N —TEsan> | onlE
m
13S39Vdv0
/ Bmwk
Z
PR—— st R
- E <
vIVa-OWN-VD S / soz
v 1nNo v1ho
b/ —J8a1ho o ... g 1no 4100
1174 6002 v VYO viva Y¥Q Uidg W@
> 1NOo- 1E€-39DVd .—.DO«O.m-.U(n_
S380HLS LHM m:o«d& (2€) S39Vd Wyd 1HOd TvNa
— NI-18-39vd NI-0-39Vvd
Gi92 £09¢ 3 Y . . WY 3 Y
$534AQV-YO—>» a H viva ?oo<
—7 VLVA-VO-O-OWN—> - I
\ vlva "aav PAVIARLS
92 —13s3q14% DS
]
—35dS—* S3XNA 19313S LNdNI oLy ol_mu|
—73s3an1> [+ Hoav—E
ﬁw \. [e- ¥1YQ— m
0092 6192 k
5092

-198-

WO 01/01272 PCT/US00/18330

27/28

/2701 2705 \

— L
[
& LUEMEMREQ—> | SEL_LUE_FIDE-»
g DY—
& l+—SETLUEREA CAMLHIT
= r——-SETLUESEL— y %
— «—CAM_HITPAGE— £
— CACHE_CAM_SM &3
AM_LRUPAGE —

’g | FIDEMEMREQ—»] -CAML z
& le-SETFIDEREADY] _10AD_cAM—{ ©
w

TFIDESEL—
g [«—SE | REFRESH_CAM-»

GET BACKUP GOT / 2703

b

+—SEL_CACHE—
CACHE MEM ——CA-MEM-RE

:‘1 SIGNALS | CA- -WRIT
CACHE_MEM_SM CAMEM-W %
L~ UMC-O-CA-NEXTA =)

e—UMC-O-CA-REA

CACHE PORT J

FIG. 27

-199-

WO 01/01272 PCT/US00/18330
28/28
o CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA —
2809
LOAD, REFRESH, EVICT X—‘——*f REF.DATA 28037
2305l 2811 l
/ CAM_INPUTDATA 2813
Y '
| -LoADO+] CAM[Q] F-MATCHO » /
DATAY -
L—LOAD1 -+ CAM[1] FMATCH1 »
DATAZ] L
| -LoAD2»] CAM[2) FMATCH2
L LOAD3+»| CAM[3] . |-MATCH3+
k= —LOAD4-+| CAM4] [-MATCHA® 1 1 & 2815
g JL .
o [
w 570 32 |-LOADS» CAM[S] ~}mATCHS % Low o)
— a
8 == R CRIE
g DECOD | 0ADB-»{ (:“E [-MATCHE | HIGH £ - g
@]
L L0AD7] CAM[7] 1 maTCH7 + ENCOP =
: 2807
- LOAD30s{ CAM[30] | MATCH30 +
-LOAD31» CAM[31] _ |MATCH31)
. DATA3
CAM_LRUPAGE
CAM—NlUMBER - CAM{NUMBER
| 1 | 1
2827 DATAOl « + - DATA31 DATAQ| | * + * DATA3!
Y Y Y L]
2823 % NMUX32
2821 &
T 2817 —

D

Y

FIG.

CAM_HITPAGE

\j
\2819

28

-200-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

