
US 20040194-071A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0194071 A1

Tanaka (43) Pub. Date: Sep. 30, 2004

(54) COMPILING DEVICE, Related U.S. Application Data
COMPUTER-READABLE RECORDING
MEDIUM ON WHICH A COMPLING (62) Division of application No. 09/612,028, filed on Jul.
PROGRAM IS RECORDED AND A 7, 2000, now Pat. No. 6,738,966.

COMPLING METHOD (30) Foreign Application Priority Data

Jul. 9, 1999 (JP)... 11-195717 (76) Inventor: Akira Tanaka, Yawata-shi (JP)
Publication Classification

Correspondence Address: (51) Int. Cl. ... G06F 9/45
SNELL & WILMER LLP (52) U.S. Cl. .. 717/136; 717/151
1920 MAN STREET
SUTE 1200 (57) ABSTRACT
IRVINE, CA 92.614-7230 (US)

Formal parameters which are to use registers are replaced
with variables generated inside a compiler. Then, if a vari

(21) Appl. No.: 10/819,595 able allocated to a register has a live range (lifetime) that
includes an inline assembly Subroutine, the variable is
allocated a register that differs from the registers updated

(22) Filed: Apr. 7, 2004 during the inline assembly Subroutine.

START

al
LOOP

REPEAT FOR ALL
FORMAL PARAMETERS

a2 .
FORMAL

PARAMETER
p ASSIGNED TO
REGISTER

O

yes
a3

GENERATE TEMPORARY VARIABLE t,
AND INTERMEDIATE INSTRUCTIONit-p

INSERT INTERMEDIATE a4
INSTRUCTION AT START
OF FUNCTION

a5
REPLATE ALL SECTIONS WHERE
FORMAL PARAMETER IS USED WIT
TEMPORARY VARIABLEt

2.

LOOP 1

Patent Application Publication Sep. 30, 2004 Sheet 1 of 20 US 2004/0194071 A1

BACKGROUND ART

FIG 1A

intf(int p) {
int a,b,c,d;

FIG. 1B }

mov r2, r4
div r3,r4 (1)DIVISION
mov r2, rS
div r3r5 (2)REMAINDER CALCULATION
mov modr,r5

FIG. 1C

FIG 1D
divrm,rn DIVIDE REGISTER rn BY REGISTER rm,

STORE THE DIVISION RESULT INrn, AND THE
REMAINDER INSPECIAL REGISTER mdr.

Patent Application Publication Sep. 30, 2004 Sheet 2 of 20 US 2004/0194071 A1

BACKGROUND ART

intf(int p) {
int a,b,c,d,

FIG. 2A
aSmmova, r0;
aSm mov b,r1;
asm divr1,r0;
asm mov rO,c;
asm mov modrod;

FIG.2B mov r2, r0
mov r3,r1
div r1,rO
mov rOr4
mov midr,r5

US 2004/0194071 A1 Patent Application Publication Sep. 30, 2004 Sheet 3 of 20

Patent Application Publication Sep. 30, 2004 Sheet 4 of 20 US 2004/0194071 A1

EXPANDING
UNIT

12
SYNTAX
ANALYZING 16
UNIT 13

REGISTER PARAMETER 2EEIMIZIN G REPLACING UNIT

17

UNIT
8 1.

asm REGISTER
HOLDING UNIT

14 SERESF RESOURCE TING UNIT
ALLOCATING

CODE
GENERATING

OBJECT
PROGRAM

Patent Application Publication Sep. 30, 2004 Sheet 5 of 20 US 2004/0194071 A1

FIG 5

al
LOOP 1

REPEAT FOR ALL
FORMAL PARAMETERS

a2 .
FORMAL

PARAMETER
p ASSIGNED TO
REGISTER2

yes
a3

GENERATE TEMPORARY VARIABLE t,
AND INTERMEDIATE INSTRUCTION it=p

INSERT INTERMEDIATE a4
INSTRUCTION AT START
OF FUNCTION

O

REPLATE ALL SECTIONS WHERE
FORMAL PARAMETER IS USED WIT
TEMPORARY VARIABLEt

1. 2.

LOOP 1

Patent Application Publication Sep. 30, 2004 Sheet 6 of 20 US 2004/0194071 A1

FIG. 6

LOOP 1
REPEAT FOR ALL
INTERMEDIATE
INSTRUCTIONS i

b1

b2

1NTERMEDIATE
INSTRUCTION i IS aSm

INTERMEDIATE
NSTRUCTION

O

yes

if INTERMEDIATEINSTRUCTIONS
iDEFINES AREGISTER r, STORE
INTERMEDIATE INSTRUCTIONS i
AND REGISTER r IN asm REGISTER
HOLDING UNIT 18

LOOP 1

END

b3

b1

Patent Application Publication Sep. 30, 2004 Sheet 7 of 20 US 2004/0194071 A1

FIG 7

LOOP 1
REPEAT FOR ALL

c1

VARIABLES v

DETERMINE REGISTERS ALLOCATED C2
TO VARIABLES WITH OVERLAPPING
LIVE RANGES AS REGISTER SET R1

C3

DETERMINE REGISTERS DEFINED BY ALL asm
INTERMEDIATE INSTRUCTIONS i INCLUDED IN
LIVE RANGE OF WARIABLE v AS REGISTER SET R2

REGISTER r
INCLUDED IN NEITHER
REGISTER SET R NOR

R22

ALLOCATE MEMORY
TO VARIABLE v

No Yes

ALLOCATE REGISTER r
TO VARIABLE v

c1
LOOP 1

END

Patent Application Publication Sep. 30, 2004 Sheet 8 of 20 US 2004/0194071 A1

FIG. 8

#define dm(x,y,z,w)Y
aSn mov X, VrOY
asm mov y,r1;Y content of
asm div r1,r0;Y aCO
aSm mov ro,ZY definition
aS mov modr,w

intf(int p) {
int a,b,c,d,

Patent Application Publication Sep. 30, 2004 Sheet 9 of 20 US 2004/0194071 A1

FIG 9

) 4 - 8 8

intf(int p) {
int a,b,c,d,

aSmmova, r0;
asm mov b,r1;
aSm divr1,rO; (1)
asm mov rO.C.
asm mov modir,d;

a a a a

Patent Application Publication Sep. 30, 2004 Sheet 10 of 20 US 2004/0194071 A1

FIG 1 O

i1: t1 = p +b;
i2: a =t 1 + 10;

i3:asm mov ar0; Y
i4: asm mov b,r1;
i5: asm divr1,rO; (1)
i6:asm mov r0,C;
i7: asm mov modr,d,

8 8

8

INTERMEDIATE PROGRAM

Patent Application Publication Sep. 30, 2004 Sheet 11 of 20 US 2004/0194071 A1

FIG 11

50:Function f
i20: t2=p;

i1: t1 = t2 +b;
i2: a = t 1 + 10;

i3: aSmmova, r0; Y
i4: asm mov b,r1;
i5: aSm div r1,rO;
6: aSm mov rO.C.;
i7: asm mov modr,d;

(1)

a

INTERMEDIATE PROGRAM

Patent Application Publication Sep. 30, 2004 Sheet 12 of 20 US 2004/0194071 A1

FIG 12A

e s

i50: Function f
i20: t2 = p;

i1: t1 = t2+ b;
i2: a = t + 10;

a

i3: asIn mov ar0 ;
i4: asin mov b,r1 ;
i5: asm div r1,r0;
i5: asm mov rO,c ;
i7: asm mov ndir,d;

4 4 a s as a

. g

8 e. e. e.

9 V e o a

a as

an a 8 a

INTERMEDIATE PROGRAM

Patent Application Publication Sep. 30, 2004 Sheet 13 of 20 US 2004/0194071 A1

FIG. 12B

p (rO)

t2

t b

C

HT
e C

|| L: C

| O

C

LIVE RANGES

Patent Application Publication Sep. 30, 2004 Sheet 14 of 20 US 2004/0194071 A1

FIG 13

aSm INTERMEDIATE O
INSTRUCTIONS DEFINED REGISTER

EXAMPLE CONTENT OFasm REGISTER
HOLDING UNITS 18 AND 28

Patent Application Publication Sep. 30, 2004 Sheet 15 of 20 US 2004/0194071 A1

FIG. 14

al COMPILING MACRO
EXPANDING DEVICE
UNIT

22
SYNTAX
ANALYZING
UNIT 23 26
OPTIMIZING REGISTER PARAMETER
UNIT REPLACING UNIT

27
24 asm REGISTER

DETECTING UNIT RESOURCE
ALLOCATING
UNIT

asm REGISTER
HOLDING UNIT

25 29

CODE asm LIVE RANGE
GENERATING GENERATING UNIT
UNIT

f-O
OBJECT
PROGRAM

Patent Application Publication Sep. 30, 2004 Sheet 16 of 20 US 2004/0194071 A1

FIG. 15

LOOP 1
REPEAT FOR ALL aSm
INTERMEDIATE
INSTRUCTIONS i

d

d2 .

DEFINED
REGISTER IN INTERMEDIATE

INSTRUCTION i?

O

yes d3

GENERATE NEW TEMPORARY VARIABLES

ENERATE A LIVE RANGE FOR
EMPORARY VARIABLESSPANNING ONLY
asm INTERMEDIATE INSTRUCTIONS i

d5
ALLOCATE REGISTER r TO
GENERATED TEMPORARY VARIABLEs

1. d
LOOP 1

d4

Patent Application Publication Sep. 30, 2004 Sheet 17 of 20 US 2004/0194071 A1

FIG 16

LOOP 1
REPEAT FOR ALL

el

VARIABLES v

DETERMINE REGISTER SET R e2
CONTAINING REGISTERS ALLOCATED
TO VARIABLES WITH LIVE RANGES
OVERLAPPING WITH VARIABLE V

REGISTER r
NOT IN REGISTER GROUP R

EXISTS?

ALLOCATE MEMORY
TO VARIABLE V

No Yes

e4

ALLOCATE REGISTER r
TO VARIABLE V

el

LOOP 1

END

Patent Application Publication Sep. 30, 2004 Sheet 18 of 20 US 2004/0194071 A1

FIG 17A, FIG 17B

i20: t2=p;
p(rO)

i1: t1=t2+b; 2
i2: a =t 1 + 10;

i3: asm mova, r0;
i4: asm mov b,r1; s1(r0)
i5: asm divr1,r0; s2(r1
ió: asm mov rO,C; s3(r0,mdr
i7: asm movmdr.d; | w

g (h

i8: e= a + 20; e

INTERMEDIATE PROGRAM LIVE RANGES

Patent Application Publication Sep. 30, 2004 Sheet 19 of 20 US 2004/0194071 A1

FIG. 18

VARIABLE LIVE RANGE

Patent Application Publication Sep. 30, 2004 Sheet 20 of 20 US 2004/0194071 A1

FIG. 19

INTERFERENCE GRAPH CORRESPONDING
TO FIG 13

US 2004/O194071 A1

COMPILING DEVICE, COMPUTER-READABLE
RECORDING MEDIUM ON WHICH A

COMPLING PROGRAM IS RECORDED AND A
COMPLING METHOD

0001. This application is based on an application No.
11-195717 filed in Japan, the content of which is hereby
incorporated by reference.

BACKGROUND OF THE INVENTION

0002) 1. Field of the Invention
0003. The present invention relates to a compiling device
translating a Source program into an object program Such as
a machine language program or an assembler program, and
in particular, to improvements achieved when the Source
program includes a Section written in high-level program
ming language and a Section Written in assembly language.
0004 2. Description of the Background Art
0005 Recent developments in high-performance inte
grated microprocessors have led to Such microprocessors
being used in information processing devices performing
multimedia processing Such as communication, Video pro
cessing and audio processing.
0006 The design of programs used in multimedia pro
cessing has become increasing unwieldy, So that problems
regarding the development cost, maintenance and portability
of Such programs have multiplied in recent years. Conse
quently, there is a great demand for developmental environ
ments using high-level programming languages, of which C
and C++ have become particularly popular. However, a look
at the current State of affairs regarding developmental envi
ronments for multimedia processing reveals that multimedia
processing is often written using assembly language, which
is close to machine language. This seems to go against the
prevailing demand for developmental environments written
in high-level programming language. Sections of the pro
gram that are frequently executed and require a short execu
tion time are written in assembly language. Such Sections
form the bulk of the mass data processing functions occur
ring in multimedia processing.
0007. There are several reasons for writing sections of the
program in assembly language. First, the translation ability
of the compiler is limited. In addition, microprocessors have
Some machine language instructions which achieve a plu
rality of functions. Such instructions are increasingly found
as multimedia processing instructions, and cannot be effi
ciently written in high-level programming language, nor be
efficiently translated into machine language instructions by
the compiler.
0008 Suppose that the microprocessor targeted by the
compiler uses a load/store method (a method in which
addressing of operands is performed using only transfer
instructions as memory-to-memory calculation instruc
tions), and a division instruction div is as shown in FIG.1D.
In FIG. 1D, the division result is stored in a register rn, and
a result of remainder calculation in a register mdr. This
means that the division instructions used in a majority of
microprocessors can perform division and remainder calcu
lation Simultaneously using one instruction.
0009. In contrast, when the high-level programming lan
guage C is used, and the division and remainder results of

Sep. 30, 2004

variables a and b are to be set respectively as variables c and
d, this process can only be written as shown in FIG. 1A. As
a result, many compilers generate Separate div instructions
for each of '? calculation and '%' calculation, as shown in
FIG. 1B, (1) and (2). Conventionally, execution of a div
instruction requires a greater number of execution cycles
than other instructions, So that ideally only one div instruc
tion should be used to perform Simultaneous division and
remainder calculation, as shown in FIG. 1D. In FIGS. 1B
and 1D, registers r2, r3, ra and r5 are allocated to variables
a, b, c and d respectively, and mov rm, rn signifies that the
value in register rm is to be transferred to register rn.
0010 Consequently, in the case of most C compilers, a
programmer uses asm Statements as extended language
Specifications, So that program description written in C is
mixed with description written in assembly language. The
example program Sections shown in FIG. 1 may be written
as assembler Statements following the keyword asm, as
shown in FIG. 2. Here, parts of the asm statements written
using variables at a level equivalent to C may be written into
registers and memory allocated by the compiler. For
example, if registers r2, r3, ral and rS are allocated to
variables a, b, c and d respectively, as in FIG. 1, the output
of the compiler is as shown in FIG. 2B. FIG. 2B has two
more transfer instructions than the ideal situation of FIG. 1D
but, Since it has only one div instruction, requires leSS
execution time than FIG. 1B. In addition, if conventional
copy propagation is optimized (this technique is described in
reference 1, listed later in this specification) for FIG.2B, the
program Section shown there can be changed to one similar
to FIG. 1D.

0011 Furthermore, if it is desirable to insert instructions
capable of performing both division and remainder calcu
lation at a plurality of places in the program, a macro is
defined as in FIG. 3A, and if this macro is used as shown in
FIG. 3B efficiency is increased. Furthermore, the descriptor
is the same kind as that used to call a function, So the
program becomes easier to read. Note that FIG. 3B shows
a situation in which a microprocessor targeted by a C
language compiler replaces X, y, Z and W with a, b, c and d,
as in FIG. 2A. Replacement of variables by a C compiler in
this way is known as macro generation. Descriptors that are
macro-defined assembler Statement Sequences having a spe
cial function, Such as dm in FIG. 3A, are known as "inline
assembly routines.
0012 However, if inline assembly routines are used in a
conventional compiler, a programmer needs to carry out first
and Second check operations (described below). As a result,
programmerS are Somewhat reluctant to include inline
assembly routines when programming.
0013 The program includes a plurality of variables.
When a value of a certain variable X is valid for an entire
inline assembly routine, the first check operation involves
thoroughly checking the object program generated by the
compiler to determine whether the value of the variable X
has been destroyed. A register r is allocated to the variable
X by a proceSS performed by the compiler, So that if the inline
assembly routine defines the register r, the value of the
register r will differ before and after the inline assembly
routine.

0014 Suppose, as shown in FIG. 3C, that a value for a
variable a defined at definition point (1) is used at use point

US 2004/O194071 A1

(2) and variable a has a live range which extends over the
inline assembly routine dim. A register r1 is allocated to the
variable a, and if the value of register r1 is changed during
the inline assembly routine dim, a value of a which differs
from that defined at definition point (1) will be used at use
point (2) in FIG. 3C.
0.015. In the second check operation, the programmer
makes a careful check to determine whether values of
parameters have been destroyed, after determining how Such
values are defined by the inline assembly routine.
0016. In some parameters, values are transferred using
Specified registers r. The live ranges of Such parameters may
extend over the inline assembly routine. Here, if a register r
is defined by the inline assembly routine, the value of the
parameter will be different before and after the inline assem
bly routine. For example, if, as in FIG. 3D, a parameter p is
referenced after the use point of the inline assembly routine
dim, and the parameter p is passed to a register r0, it is clear
that the value of the register ro will be destroyed by the
inline assembly routine dim, and the value used when the
parameter p is referenced will be inaccurate.
0.017. These kinds of checks generally create a heavy
Workload for the programmer, and in an attempt to lighten
this burden, many programmerS write programs including
various restrictions. For example, programmerS only use
inline assembly routines for functions including variables
that can definitely be judged as being allocated to memory
or a specified register prior to compiling (global variables
and the like). In addition, registers used by parameters are
not defined in the inline assembly routine.
0.018 Programmers would ideally like to express what
were originally independent functions as an inline assembly
routine, and use Such routines to increase effectiveness, but
the above described restrictions hamper Such efforts. AS a
rule, a programmer must use the first and Second check
operations to determine how the inline assembly routine has
been defined. This means that it is difficult for the program
mer to use the inline assembly routine with no knowledge of
its detailed content, as is necessary when dealing with
So-called black boxes (that is programs/program Sections
whose operational code is confidential or otherwise
unknown). Accordingly, it is difficult to increase the reus
ability of inline assembly routines by changing them into
library routines.

SUMMARY OF THE INVENTION

0.019 A first object of the present invention is to provide
a compiling device that translates a program without requir
ing the programmer to make checks when an inline assem
bly routine is used.
0020. A second object of the present invention is to
provide a compiling device that translates a program So as to
enable inline assembly routines to be inserted as black
boxes.

0021 A third object of the present invention is to provide
a compiling device enabling inline assembly routines to be
changed to library routines, thereby increasing the reusabil
ity of the program.

0022. As described above, the present invention is a
compiling device that translates a program including State

Sep. 30, 2004

ments using variables into an object instruction Sequence.
ASSembler instructions defining values for resources are
arranged in a Section of the program. The compiling device
includes a variable detecting unit for detecting variables
whose live ranges overlap the Section from variables having
values defined in the Statements, and a resource allocating
unit for allocating to each variable detected by the variable
detecting unit, a resource different from the resources having
values defined in the assembler instructions.

0023 This means that the programmer is not obliged to
make checks when an inline assembly routine is used. Since
these conventional checks are no longer necessary, assem
bler Statements and inline assembly routines can be written
at arbitrary positions in the program. Using inline assembly
routines actively in this way improves the execution speed
and reusability of the program.
0024. In this invention, the program may be embodied by
a plurality of functions, the Statements are included in the
functions, and assembler instructions are included at least
one of the functions. Here, the compiling device further
includes a register parameter replacing unit that, when
formal parameters that should use registers exist, (1) gen
erates Substitution instructions for Substituting temporary
variables for the values of each formal parameter used in the
functions, and inserts each of the generated Substitution
instructions at the start of a corresponding function, and (2)
replaces all of the formal parameter values in the functions
with the temporary variables indicated by the substitution
instructions. Furthermore, the variable detecting unit detects
temporary variables whose live ranges overlap the Section;
and the resource allocating unit allocates a register different
from the registers whose values are defined in the assembler
instructions to each detected temporary variable.
0025 Here, a register that has been allocated to a param
eter is no longer incorrectly updated in the assembly State
ments, and the same applies to variables whose live ranges
span the assembler Statements. This means that inline assem
bly routines can be freely defined, and used as a black box
at an arbitrary position in the program. Using inline assem
bly routines actively in this way improves the execution
Speed and reusability of the program.
0026. The variable detecting unit may also include a
detecting unit for detecting assembler instructions from the
program, a temporary variable generating unit for generat
ing, when assembler instructions are detected, temporary
variables already allocated to resources defined in the
assembler instructions, a live range Setting unit Setting the
live range of each generated temporary variable to be equal
to the Section where the assembler instructions are arranged;
and a variable detecting unit detecting variables whose live
range overlaps the live range Set for the temporary variables.
Here, the resource allocating unit allocates a resource dif
ferent from the resources allocated to the temporary vari
ables to each of the detected variables.

0027 Allocated temporary variables are generated from
the assembler Statements, and resource allocation is per
formed using a method that integrates these generated
temporary variables. In addition the resource allocation
method disclosed in reference 2, which actively limits the
generation of transfer instructions, and the resource alloca
tion method disclosed in reference 3, which is an expansion
method of the widely known graph coloring technique, may
be applied.

US 2004/O194071 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0028. These and other objects, advantages and features of
the invention will become apparent from the following
description thereof taken in conjunction with the accompa
nying drawings which illustrate a Specific embodiment of
the invention. In the drawings:
0029 FIG. 1 shows an example program, a correspond
ing assembler program, a comparative assembler program,
and an illustration of a division instruction;
0030 FIG. 2 shows an example asm statement sequence,
and corresponding assembler program;
0.031 FIG. 3 shows examples of inline assembly routine
definitions and inline assembly routine uses,
0.032 FIG. 4 is a block diagram of a compiling device 1
in a first embodiment;
0033 FIG. 5 is a flowchart of processing performed by
a register parameter replacing unit 16;
0034 FIG. 6 is a flowchart showing the procedure per
formed by an asm register detecting unit 17;
0035 FIG. 7 is a flowchart showing the procedure per
formed by a resource allocating unit 14,
0.036 FIG. 8 shows an example of a program written in
a high-level programming language;

0037 FIG. 9 shows a program after execution performed
by a macro expanding unit 11,
0038 FIG. 10 shows an intermediate program after
execution performed by a Syntax analyzing unit 12;
0.039 FIG. 11 shows an intermediate program after
execution performed by the register parameter replacing unit
16;

0040 FIG. 12 shows an intermediate program and live
ranges corresponding to an example program;

0041 FIG. 13 shows an example of content held in asm
defining register holding units 18 and 28;
0.042 FIG. 14 is a block diagram of a compiling device
2 in a Second embodiment;
0043 FIG. 15 is a flowchart showing the procedure
performed by an asm live range generating unit 29,
0044 FIG. 16 is a flowchart showing the procedure
performed by a resource allocating unit 24,

004.5 FIG. 17 shows an intermediate program and live
ranges corresponding to a program after execution per
formed by an asm live range generating unit 29,
0.046 FIG. 18 shows a basic data structure for expressing
live ranges, and
0047 FIG. 19 shows an interference graph for variables
corresponding to the live ranges shown in FIG. 17.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0.048 Prior to the description of the embodiments, a
description of related references and terminology will be
made.

Sep. 30, 2004

0049 References
0050) 1. Compilers: Principles, Techniques and Tools.
By Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman.
Addison Wesley, 1986.

0051) 2. Japanese Patent Application No. 10-344524:
A Resource Allocation Apparatus and A Computer
Readable Recording Medium on which a Resource
Allocating Program as Recorded. Akira Tanaka.

0052 3. Modern Compiler Implementation in Java. By
Andrew W. Appel. Cambridge University Press, 1998.

0053 Terminology

0054 Definition, Referencing and Use of Variables

0055 Setting the value of a variable is described as
defining, and using the Set value as referencing. When
variables are defined and referenced in a program this is
described as using. Unless a particular distinction needs to
be made, the following explanation treats formal parameters
in the same way as variables.

0056 Temporary Variable
0057. A variable generated by the compiler to tempo
rarily Store a calculation result, thereby simplifying proceSS
ing, is known as a temporary variable. The following
explanation treats Such variables in the same way as vari
ables written in a Standard Source program, unless a par
ticular distinction needs to be made.

0058
0059. In order to simplify processing, the compiler con
verts Source program code into code known as intermediate
code, and one Step of the intermediate code is known as an
intermediate instruction. Intermediate instructions are for
example quadruples or triples, and are converted to generate
a final object program. Furthermore, when the Source pro
gram is converted to a Sequence of intermediate instructions,
these are known collectively as an intermediate program.
FIG. 10 shows one example of an intermediate program
corresponding to the program in C shown in FIG. 9. This
program is expressed in three address code, which is one of
the quadruples. Also in FIG. 10, references i1, i2 and the
like, formed from i and an attached number, represent
identifiers (names) of intermediate instructions. To be more
specific, the expression a-p+b+10 in FIG. 9 is divided into
two intermediate instructions i1 and i2 in FIG. 10, through
the use of a temporary variable t1. Furthermore, the asm
statements of FIG. 9, (1) are converted into intermediate
instructions (FIG. 10, (1) having the same format as FIG. 9,
(1). The intermediate instructions for the asm statements in
FIG. 10 (1) will be known as 'asm intermediate instruc
tions. Note that in the embodiments, intermediate instruc
tions having other formats may also be used in addition to
the format shown here. Furthermore, in order to simplify
processing performed by the compiler, the intermediate
program is also equipped with intermediate instructions
showing Specified program ranges, Such as intermediate
instructions indicating the Start and end of the intermediate
program and the start and end of functions. In FIG. 10, for
example, intermediate instructions i50 and i51 show the start
and end of a function.

Intermediate Instruction

US 2004/O194071 A1

0060 Basic Block
0061. When there are no jumps from or to an intermedi
ate instruction Sequence, and the Sequence is executed in a
fixed order, it is known as a “basic block. A detailed
description of basic blockS may be found in reference 1.
0062 Live Range
0.063 Live ranges are sections during which values stored
in each variable are valid, each live range actually repre
Senting the Section of a program from an intermediate
instruction defining a value for a variable until an interme
diate instruction which last references the defined value.
Consequently, a live range can be expressed by the Set of
intermediate instructions included in this Section. Here, the
intermediate instruction defining the value for the variable
corresponds to the Start point of the live range and the
intermediate instruction last referencing the defined value to
the end point of the live range. The areas occupied by the
intermediate instruction Sets are used to determine whether
live ranges overlap. Thus, when the end point of one live
range is identical to the Start point of another live range, the
two live ranges do not overlap. FIG. 12B shows examples
of live ranges. In the drawing, live ranges are represented by
Solid vertical lines. The Start point of each live range is
shown by a white dot and the end point by a black dot. FIG.
18 shows the actual Structure of data representing the live
ranges in FIG. 12B, with the live range of each variable
shown by an intermediate instruction set. In FIG. 18, the
symbol . . . shown in various live ranges, indicates the
presence of an intermediate instruction not shown in the
drawing. Live ranges may also be referred to as lifetimes
or extents. A more detailed definition and actual examples
of live ranges are given in references 1 and 2.
0.064 Allocation of Resources to Variables
0065. This refers to the allocation of registers and
memory to variables. Since it is impossible to hold more
than one value in a particular register or memory region
during the Same Section of a program, the Same register or
memory region cannot be allocated to variables with over
lapping live ranges, and it is essential to allocate different
registers or memory regions to Such variables. For example,
the live ranges of variables a and b in FIG. 12 overlap, so
these variables need to be allocated different registers or
memory regions. Registers and memory are hereafter
referred to collectively as resources.
0.066 First Embodiment
0067 FIG. 4 is a block diagram of a compiling device 1
in a first embodiment. The compiling device 1 is formed
from the main components of a conventional compiler, Such
as a macro expanding unit 11, a Syntax analyzing unit 12, an
optimizing unit 13, a resource allocating unit 14, and a code
generating unit 15, along with a register parameter replacing
unit 16, an asm register detecting unit 17, and an asm
register holding unit 18 which bear a particular relationship
to this embodiment.

0068 The following is an explanation of the operation
and function of each component, with reference to the
drawings.

0069. The macro expanding unit 11 is the first component
to be activated by the compiling device 1, and replaces
macro-defined macro identifiers with their actual content.

Sep. 30, 2004

This processing is basically the Same as that performed by
a conventional C compiler, So explanation here is limited to
describing an example processing result.

0070 FIG. 8 shows an example source program. Here, a
macro identifier dm (x,y,z,w) that macro-defines an inline
assembly routine that performs division and remainder cal
culation as described in the background art, and a function
f that uses this dm are shown. The part of the function f
relevant to the explanation given in this embodiment has
been extracted and written in the drawing. FIG. 9 shows an
intermediate program resulting from processing of the
Source program of FIG.8 performed by the macro expand
ing unit 11. As shown in FIG. 9 (1), the macro identifier dm
is replaced by the macro-defined inline assembly routine.

0071 FIG. 9, (1) is composed of five assembler instruc
tions: mov ar0, mov b,r1, div r1,rO, mov rO.c and mov
mdr.d. The keyword asm is attached to the front of each of
these instructions. This asm keyword Signifies that the
Statement shown between the keyword and a concluding
Semi-colon includes an assembler instruction. This kind of
Statement is known as an assembler Statement. Such State
ments indicate to the compiling device 1 that translation
processing equivalent to that used for the Sections of the
program written in a high-level programming language is
not necessary. As a result, the Syntax analyzing unit 12 and
the optimizing unit 13 in the compiling device 1 skip
processing of Statements that Start with the keyword asm.
0072 Following the completion of processing by the
macro expanding unit 11, the Syntax analyzing unit 12 is
activated, and performs lexical analysis, Syntax analysis and
Semantic factoring, thereby converting the Source program
to an intermediate program. AS one example, the Source
program of FIG. 9 is converted to the intermediate program
shown in FIG. 10. The operation of the syntax analyzing
unit 12 is not the focus of this embodiment and so a more
detailed description is omitted. At this point, assembler
Statements which have had a keyword asm attached and
been expanded inside the Source program by the macro
expanding unit 11 are inherited directly by the converted
intermediate program without being changed into different
code by the Syntax analyzing unit 12. This means that
assembler Statements having the attached keyword asm exist
in the intermediate program as intermediate instructions.
0073. Once the processing performed by the syntax ana
lyzing unit 12 has been completed, the optimizing unit 13
optimizes the intermediate program So as to minimize the
Size and processing time of the object program finally
generated by the compiling device 1. The operation of the
optimizing unit 13 is not the focus of this embodiment and
So a detailed description is omitted, with only those points
relevant to the embodiment being explained. In order to
perform optimization, the optimizing unit 13 performs basic
block analysis, control flow analysis and data flow analysis.
Basic block analysis is performed by dividing the interme
diate program into basic blocks. Then control flow analysis
is performed by analyzing the control flow between basic
blocks. After this, data flow analysis is performed by ana
lyzing where each variable is defined and referenced within
each basic block. The resource allocating unit 14 (explained
later in this specification) uses the results of this analysis to
calculate live ranges. Note that when register parameters are
included in the program to be translated, the optimizing unit

US 2004/O194071 A1

13 is activated following activation of the register parameter
replacing unit 16. Here, optimization performed by the
optimizing unit 13 enables assembler Statements having an
attached keyword asm to be inherited directly by the inter
mediate program without being replaced by a different code,
and without being deleted.
0.074 The register parameter replacing unit 16 is acti
Vated if register parameters are included in the program that
is to be translated. The register parameter replacing unit 16
inserts, at the Start of a function, an intermediate instruction
Storing, as a temporary variable, a value of a formal param
eter passed to the register. Further to this, the register
parameter replacing unit 16 replaces the Sections of the
intermediate program in which the formal parameter is used
with the temporary variables. FIG. 5 is a flowchart showing
the processing performed by the register parameter replacing
unit 16.

0075. At step a1, the register parameter replacing unit 16
repeats the processing of StepS a2 to as for all formal
parameters p, and when all the formal parameters p have
been processed, the processing performed by the register
parameter replacing unit 16 is completed.
0.076. At step a2, if a formal parameter p has been passed
to a register, the register parameter replacing unit 16 per
forms Steps as and a4.
0.077 At step a3, the register parameter replacing unit 16
generates a new temporary variable t and then an interme
diate instruction i:t=p showing that the formal parameter p
should be replaced by the temporary variable t.
0078. At step a 4, the register parameter replacing unit 16
inserts the generated intermediate instruction i at the Start of
the function.

0079 At step as, the register parameter replacing unit 16
replaces all the Sections of the intermediate program where
the formal parameter p is used with the temporary variable
t, and returns to Step a1.
0080. The following is an explanation of an actual
example of operations performed by the register parameter
replacing unit 16, with reference to the example shown in
FIG. 11. FIG. 11 shows the result of processing performed
by the register parameter replacing unit 16 on the interme
diate program in FIG. 10. The register parameter replacing
unit 16 fetches a formal parameter p passed to a register
(steps a1 and a2), generates an intermediate instruction i20
indicating that the formal parameter p should be replaced by
a temporary variable t2 (Step as), inserts the intermediate
instruction i20 at the start of the intermediate program (Step
a4), and replaces the parts of intermediate instructions i1 and
i9 that use the formal parameter p with the temporary
variable t2 (step as).
0081. Once the processing performed by the optimizing
unit 13 has been completed, the resource allocating unit 14
allocates different registers to each of a plurality of variables
having overlapping live ranges. Here, when assembler State
ments have been expanded in the program, the resource
allocating unit 14 activates the asm register detecting unit 17
before commencing its own processing.

0082) When assembler statements having an attached
asm keyword are included in any of the intermediate instruc
tions in the intermediate program, the asm register detecting

Sep. 30, 2004

unit 17 detects registers defined in the assembler Statements,
and Stores the detection result in the asm register holding
unit 18. FIG. 6 is a flowchart showing the processing
performed by the asm register detecting unit 17.

0083. At step b1, the asm register detecting unit 17
performs the processing of steps b2 and b3 for all of the
intermediate instructions i. Once processing has been per
formed for all of the intermediate instructions i, the pro
cessing performed by the asm detecting unit 17 is com
pleted.

0084. At step b2, when the intermediate instruction i is an
asm intermediate instruction, the asm register detecting unit
17 performs the processing of step b3. When the interme
diate instruction i is not an asm intermediate instruction,
processing returns to Step b1.

0085. When a register r is defined in the intermediate
instruction i, at Step b3, the asm register detecting unit 17
Stores the intermediate instruction i and the register r in the
asm register holding unit 18, and processing returns to Step
1.

0.086 FIG. 13 shows the content held by the asm register
holding unit 18 corresponding to the intermediate program
shown in FIG. 11. Registers defined in each asm interme
diate instruction are held. For example, in the asm interme
diate instruction i3 in FIG. 11, a value of the variable a is
transferred to a register r0, thereby defining the register ro,
So that the register defined by the asm intermediate instruc
tion i3 is set as ro (step b3).
0087. The resource allocating unit 14 uses control flow
information and data flow information analyzed by the
optimizing unit 13 to calculate live ranges for all variables,
including the temporary variables generated by the register
parameter replacing unit 16. The method used to calculate
live ranges is the same as that explained in detail in
references 1 and 2 and the like, and So explanation is here
confined to showing the calculation result of live ranges for
the intermediate program shown in FIG. 11. This calculation
result is shown in FIG. 12. A live range is expressed
conventionally as a Set of intermediate instructions, as in
reference 2, but here the extent of each live range is
represented by a Solid line to make it conceptually easier to
understand. Furthermore, the reference (ro) written next to
the live range for the formal parameter p signifies that
register r() is allocated to the formal parameter p. After
calculating live ranges, the resource allocating unit 14
allocates resources to variables, including the temporary
variables generated by the register parameter replacing unit
16. Specifically, when allocating resources to a variable, the
resource allocating unit 14 allocates registers that are not
allocated to variables with Overlapping live ranges and that
are not among registers defined by an asm intermediate
instruction that have been obtained from the asm register
holding unit 18. The latter condition applies only if asm
Statements are included in the live range of the variable.
FIG. 7 is a flowchart showing the processing performed by
the resource allocating unit 14.
0088 At step c1, the resource allocating unit 14 repeats
the processing of StepS c2 to c6 for all variables V that have
not yet been allocated a resource, and once all variables V
have been allocated a resource, the processing performed by
the resource allocating unit 14 is completed.

US 2004/O194071 A1

0089 At step c2, the resource allocating unit 14 deter
mines a register Set R1, containing registerS allocated to
variables whose live ranges overlap with the live range of a
variable v.

0090. At step c3, the resource allocating unit 14 detects
registers defined by all the asm intermediate instructions
included in the live range of the variable v from the asm
register holding unit 18, thereby determining a register Set
R2.

0.091 At step c4, the resource allocating unit 14 deter
mines whether a register r which is not included in either
register Set R1 or register Set R2 exists. If Such a register
exists, the processing of Step c5 is executed, if Such a register
does not exist, the processing of Step c6 is executed.
0092 At step c5, the resource allocating unit 14 allocates
the register r to the variable V, and processing returns to Step
c1.

0093. At step c6, the resource allocating unit 14 allocates
memory to the variable V, and processing returns to Step c1.
0094. The following is an explanation of the actual
operation of the resource allocating unit 14, with reference
to the example shown in FIG. 12. This explanation concen
trates on the allocation of resources to variables a and t2.
First, a register Set R1, consisting of registers allocated to the
variables t2, b, c and d whose live ranges overlap with the
variable a, is determined. However, resources have not yet
been allocated to these variables, So register Set R1 is an
empty set (step c2). Next, each of the asm intermediate
instructions i3 to i7 included in the live range for variable a
is referenced in the asm register holding unit 18 of FIG. 13,
and registers r0,r1 and mdr defined in these asm interme
diate instructions are fetched (step c2). A register that is not
included in either of the register sets R1 and R2, for example
register r2, is allocated to the variable a (step ca, c5).
0.095 The following is an explanation of the allocation of
a resource to the variable t2. First, a register Set R1 con
taining registers allocated to variables t1, a, b, c, d and e
whose live ranges overlap with that of the variable t2, is
determined. Here, Suppose that the variables t1, b, c, d and
e have not yet been allocated resources, and the variable a
is allocated to the register r2 as was previously described. In
this case, register r2 is fetched from the register Set R1 (Step
c2). Next, each of the asm intermediate instructions i3 to i7
included in the live range for variable t2 is referenced in the
asm register holding unit 18 of FIG. 13, and registers ro, r1
and mdr defined in these variables are fetched (step c2). A
register that is not included in either of register Sets R1 and
R2, for example register r3, is allocated to the variable t2
(step c4, c5).
0096) Next, the compiling device 1 activates the code
generating unit 15, and converts the intermediate instruc
tions into an object program formed from assembler State
ments and machine language instructions for a machine
targeted by the compiler. The code generating unit 15 uses
a conventional method and So detailed explanation is omit
ted here.

0097 AS explained above, in this embodiment, variables
which are live for the extent of the asm Statements, Such as
variables a and t2 in FIG. 12, are not allocated registers
defined in the asm statements in steps c3 to c5 performed by

Sep. 30, 2004

the resource allocating unit 14. As a result, the first check
operation mentioned in the Background Art Section is no
longer required. In addition, a temporary variable t2 is
generated by the register parameter replacing unit 16 in Steps
a2 to as, and registers defined in the asm Statements are not
allocated to the variable t2 in steps c3 to c5 performed by the
resource allocating unit 14. This means that the Second
check operation described in the Background Art Section is
not required. As a result, the programmer can freely define
inline assembly routines, and use Such routines as black
boxes at arbitrary points in the program. This greatly reduces
the burden of checks placed on the programmer when using
inline assembly routines, and also allows inline assembly
routines to be changed to library routines, improving the
reusability of the program.

0098. Note that in step a 4 of the flowchart showing the
processing performed by the register parameter replacing
unit 16, the generated intermediate instruction i is inserted at
the Start of the function, but it may also be inserted at a point
in the program prior to referencing of the formal parameter
p.

0099 Second Embodiment
0100 FIG. 14 is a block diagram showing a compiling
device 2 in a Second embodiment. The compiling device 2
is formed from the main components of a conventional
compiler, in other words a macro expanding unit 21, a
Syntax analyzing unit 22, an optimizing unit 23, a resource
allocating unit 24, and a code generating unit 25, along with
a register parameter replacing unit 26, an asm register
detecting unit 27, an asm register holding unit 28, and an
asm live range generating unit 29, that bear a particular
relationship to this embodiment.

0101 The compiling device 2 activates the macro
expanding unit 21, the Syntax analyzing unit 22, and the
optimizing unit 23 in the same way as the compiling device
1 in the first embodiment. Here, the macro expanding unit
21, the Syntax analyzing unit 22, the optimizing unit 23 and
the register parameter replacing unit 26 in FIG. 14 are the
Same as the macro expanding unit 11, the Syntax analyzing
unit 12, the optimizing unit 13 and the register parameter
replacing unit 16 of FIG. 4 explained in the first embodi
ment. Therefore, the following explanation focuses on the
resource allocating unit 24, the asm register detecting unit
27, and the asm live range generating unit 29. An interme
diate program generated for the example program shown in
FIG. 8 resembles the one in FIG. 11 up until the end of
processing performed by the optimizing unit 23.

0102) The asm register detecting unit 27 has the same
construction as the asm register detecting unit 17 of the first
embodiment, and is the first component to be activated by
the resource allocating unit 24. If the asm register detecting
unit 17 performs detection processing on the example pro
gram shown in FIG. 11, the content shown in FIG. 13 is set
in the asm register holding unit 28.
0103) Once the asm register detecting unit 27 has per
formed detection processing, the resource allocating unit 24
uses the control flow information and data flow information
analyzed by the optimizing unit 23 to calculate the live
ranges of all of the variables. The result of processing
performed on the example in FIG. 11 is the same as that
explained in the first embodiment with reference to FIG. 12.

US 2004/O194071 A1

0104. Once the resource allocating unit 24 has calculated
the live ranges, the asm live range generating unit 29 is
activated and this unit generates temporary variables that
have already been allocated to registers defined by asm
Statements, and live ranges corresponding to the variables.
FIG. 15 is a flowchart showing the processing performed by
the asm live range generating unit 29.
0105. At step d1, the asm live range generating unit 29
repeats steps d2 to d5 for all of the asm intermediate
instructions i. Once all the intermediate instructions i have
been processed, the processing performed by the asm live
range generating unit 29 is completed.

0106. At step d2, if a register r defining a asm interme
diate instruction i is found to exist in the asm register
holding unit 28, the asm live range generating unit 29
performs Steps d3 to d5, and if Such an intermediate instruc
tion is not found, processing returns to Step d1.
0107 At step d3, the asm live range generating unit 29
generates a new temporary variable S.
0108. At step d4, the asm live range generating unit 29
generates a live range which starts and ends with asm
intermediate instructions for the temporary variable S.
0109 At step d5, the asm live range generating unit 29
allocates a register to the generated variable S, and proceSS
ing then returns to Step d1.

0110 FIG. 17B shows the live ranges of each variable
following the performance of processing by the asm live
range generating unit 29. The drawing further includes
temporary variables S1, S2 and S3, to which registers have
been allocated, with corresponding live ranges. For
example, the asm intermediate instruction i3 includes a
temporary variable S1, which is allocated the register ro
defined in the asm intermediate instruction i3. A live range
which covers only the asm intermediate instruction i3 is
generated for the temporary variable S1.

0111 Next, the resource allocating unit 24 allocates
resources to variables. FIG. 16 is a flowchart showing the
processing performed by the resource allocating unit 24.

0112 At Step e1, the resource allocating unit 24 repeats
the processing of steps e2 to e5 for all variables V that have
not yet been allocated resources. Once all variables V have
been processed, the processing performed by the resource
allocation unit 24 is completed.

0113 At step e2, the resource allocating unit 24 deter
mines a register Set R, containing registers allocated to
variables having live ranges which overlap with that of
variable v.

0114. At step e3, the resource allocating unit 24 deter
mines whether a register r, which does not belong to the
register Set R found at Step e2, exists. If Such a register
exists, the resource allocating unit 24 executes Step e4, if
not, it executes Step e5.
0115. At step e4, the resource allocating unit 24 allocates
the register r to the variable V, and processing returns to Step
e1.

0116. At step e5, the resource allocating unit 24 allocates
memory to the variable V, and processing returns to Step e1.

Sep. 30, 2004

0117 The following is an explanation of an actual
example of processing performed by the resource allocating
unit 24, with reference to the example in FIG. 17. The
allocation of resources to variables a and t2 is explained.
Variables t2, b, c, d, S1, S2 and S3 have live ranges which
overlap with that of the variable a. Of these variables, S1, S2,
and S3 have been allocated registers ro, r1 and mdr respec
tively, So these variables are contained in the register Set R
(step e2). The variable a is allocated a different register, for
example register r2.

0118 Next, the allocation of a resource to the variable t2
is explained. Variables t1, a, b, c, d, e, S1, S2, and S3 have live
ranges which overlap with that of the variable t2. In this
case, the variables a, S1, S2 and S3 have been allocated the
registers r2, r1, r0 and mdr, So the variable t2 is allocated a
different register, for example register r3.
0119) Next, the compiling device 2 activates the code
generating unit 25, and converts intermediate instructions
into an object program including assembler Statements and
machine language instructions for a machine targeted by the
compiling device 2. The code generating unit 25 uses a
conventional method and So is not described in detail here.

0120 In the above embodiments, variables such as a and
t2 in FIG. 17, that are live for the entire span of the asm
Statements are not allocated a register that is defined by the
asm statements in steps e3 and e4. This effect is achieved by
using the temporary variables S1, S2 and S3 generated by the
asm live range generating unit 29, and removes the need for
performing the first check operation described in the Back
ground Art Section. Furthermore, the variable t2 is generated
in Steps a2 to as performed by the register parameter
replacing unit 16, and the variable t2 is not allocated to a
register defined in the asm Statements in Steps e3 and e4
performed by the resource allocating unit 24. This means
that the Second check operation described in the Background
Art Section is also not required. As a result, the programmer
can freely define inline assembly routine and use them as
black boxes in arbitrary positions. The checks performed by
the programmer when using inline assembly routines are
much reduced, and inline assembly routines can be changed
into a library routines, increasing the reusability of the
program.

0121 Note that the introduction of the temporary vari
ables S generated by the asm live range generating unit 29
and generation of live ranges for these variables enables a
conventional resource allocation method, Such as the one
described in references 1 and 2, to be applied by the resource
allocating unit 24. The method described in reference 2 may
be applied by using the intermediate program and live range
information shown in FIG. 17. In particular, reference 2
teaches that it is possible to limit the generation of transfer
instructions in the object program generated by the compiler
to a bare minimum. For example, when the end point of the
live range for one variable is identical to the Start point of the
live range for another variable, as is the case with variables
b and S2 in FIG. 17, these variables are if possible allocated
the same register. As a result, the variable b is allocated to
register r1, and asm intermediate instruction i4 becomes a
transfer within a Same register, and So is deleted.
0122) The extension method for graph coloring (a widely
known technique) disclosed in reference 3 can be applied by
constructing an interference graph like that in FIG. 19,

US 2004/O194071 A1

showing overlapping live ranges between variables using the
live range information of FIG. 17. In the graph in FIG. 19,
variables are expressed as nodes, and variables (nodes)
having overlapping live ranges are connected by edges.
Some of the nodes in the graph have already been colored,
that is have already been allocated a register. These are
nodes (variables) S1, S2 and s3. Specifically, the method
disclosed in reference 3 is a graph coloring method which
can use a graph like this one in which Some of the nodes
have already been colored.
0123. In the embodiments, the invention is described in
relation to a division instruction, but its application is not
limited to Such instructions, and it may also be applied to
advanced instructions for multimedia processing, Such as
product-Sum instructions, other arbitrary instructions using
calculations Such as the four arithmetic fundamentals, and
bit manipulation calculations, or any combination of a
plurality of the above-mentioned calculations.
0.124. Furthermore, the procedure explained in the
embodiments with reference to flowcharts (FIGS. 5 to 7, and
FIGS. 15 and 16) is represented using a machine language
program, but may equally be represented by recording Such
a program on a recording medium for distribution and Sales.
The recording medium may be an IC card, optical disk,
floppy disk or similar. The machine language program
recorded on Such a recording medium is Supplied for instal
lation in a general-purpose personal computer. The general
purpose personal computer executes the installed machine
language program in Sequence, realizing the functions of the
compiling device shown in the present embodiments.
0.125. Although the present invention has been fully
described by way of examples with reference to accompa
nying drawings, it is to be noted that various changes and
modifications will be apparent to those skilled in the art.
Therefore, unless Such changes and modifications depart
from the Scope of the present invention, they should be
construed as being included therein.

1-12. (Cancelled)
13. A compiling device that translates a program includ

ing an assembler Statement Section into an object instruction
Sequence, the compiling device comprising:

a variable detecting means for detecting a variable whose
live range overlaps the assembler Statement Section;
and

a resource allocating means for allocating a resource
different from a resource to be used in the assembler
Statement Section to the variable whose live range
overlaps the assembler Statement Section.

14. The compiling device of claim 13, wherein said
variable detecting means detects a variable whose live range
Spreads over an entire assembler Statement Section.

15. The compiling device of claim 13, wherein said
resource allocating means allocates a resource different from
the one which has been used in the assembler Statement
Section.

16. The compiling device of claim 13, wherein said
resource allocating means allocates a resource different from
the one to be allocated to a temporary variable in the
assembler Statement Section.

Sep. 30, 2004

17. The compiling device of claim 13, further comprising:
a code generating means for translating the program into

an optimized object code,

wherein the assembler Statement Section is not optimized
by Said code generating means.

18. A compiling device that translates a program includ
ing an assembler Statement Section into an object instruction
Sequence, the compiling device comprising:

a variable detecting unit which detects a variable whose
live range overlaps the assembler Statement Section;
and

a resource allocating unit for allocating a resource differ
ent from a resource to be used in the assembler State
ment Section to the variable whose live range overlaps
the assembler Statement Section.

19. A compiling device of claim 18, wherein said variable
detecting unit detects a variable whose live range spreads
over an entire assembler Statement Section.

20. The compiling device of claim 19, wherein said
resource allocating means allocates a resource different from
the one which has been used in the assembler Statement
Section.

21. The compiling device of claim 20, wherein said
resource allocating means allocates a resource different from
the one to be allocated to a temporary variable in the
assembler Statement Section.

22. The compiling device of claim 20, further comprising:
a code generating unit for translating the program into an

optimized object code,

wherein the assembler Statement Section is not optimized
by Said code generating unit.

23. A compiling method that translates a program includ
ing an assembler Statement Section into an object instruction
Sequence, the compiling method comprising the Steps of

a detecting Step for detecting a variable whose live range
Overlaps the assembler Statement Section; and

an allocating Step for allocating a resource different from
a resource to be used in the assembler Statement Section
to the variable whose live range overlaps the assembler
Statement Section.

24. The compiling method of claim 23, wherein said
detecting Step detects a variable whose live range spreads
over an entire assembler Statement Section.

25. The compiling method of claim 23, wherein said
allocating Step allocates a resource different from the one
which has been used in the assembler Statement Section.

26. The compiling method of claim 23, wherein said
allocating Step allocates a resource different from the one to
be allocated to a temporary variable in the assembler State
ment Section.

27. The compiling method of claim 23, further compris
Ing:

a generating Step for translating the program into an
optimized object code,

wherein the assembler Statement Section is not optimized
by Said generating Step.

