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PHOTONIC-ELECTRONIC DEEP NEURAL NETWORKS

RELATED APPLICATIONS

[0001] This application claims priority to and the benefit of United States patent
application no. 63/054,692, “Photonic-Electronic Deep Networks™ (filed July 21, 2020), the

entirety of which is incorporated herein by reference for any and all purposes.

GOVERNMENT RIGHTS

[0002] This invention was made with government support under N0O0014-19-1-2248

awarded by the Office of Naval Research. The government has certain rights in the invention.

TECHNICAL FIELD

[0003] The present disclosure relates generally to the field of photonic devices and
neural networks and artificial intelligence, in particular to systems and methods for fully or

partially processing data in the optical domain in neural networks.

BACKGROUND

[0004] Neural networks are often utilized for data classification including image,
video, and 3D objects. In conventional photonic neural network implementations, there are
significant computational challenges when analyzing large data sets, which may include
optical, image, and other data. For example, raw optical data is often analyzed using an image
sensor serving as a pixel array, through methods such as photo-detection and digitization.
Larger data sets, such as those with a large number of input pixels, computational load
quickly becomes great and processing times are lengthened, as the data is passed through a
plurality of neural network layers. In addition, optical power drops significantly from layer to
layer in these processes, which together with other implementation difficulties, makes
realization of non-linear functions challenging. Hence, only a limited number of neuron
layers can be implemented before the computational, power costs, and non-linear
functionality become overly burdensome. Thus, there is a need for improved neural networks,

and in particular, for neural networks able to process different types of data.
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SUMMARY

[0005] The present disclosure provides systems and methods for photonic-electronic
neural network computation. Embodiments provide the direct processing of raw optical data
and/or conversion of various types of input data to the optical domain, and application into
neural networks. Through the direct use of data in the optical domain, disclosed systems and
methods are able to significantly reduce processing time and computational load, compared
to traditional neural network implementations. In various examples, both processing time and
power consumption are orders of magnitude lower than conventional methods.

[0006] In an embodiment, arrays of input data are processed in an optical domain
and applied through a plurality of photonic-electronic neuron layers, such as in a neural
network. The data may be passed through one or more convolution cells, training layers, and
classification layers to generate output information. Various types of input data, e.g., audio,
video, speech, analog, digital, etc., may be directly processed in the optical domain and
applied to any numbers of layers and neurons in various neural network configurations.
Systems and methods may also be integrated with one or more photonic-electronic systems,
including but not limited to 3D imagers, optical phased arrays, photonic assisted microwave

imagers, high data-rate photonic links, and photonic neural networks.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The patent or application file contains at least one drawing executed in color.
Copies of this patent or patent application publication with color drawing(s) will be provided
by the Office upon request and payment of the necessary fee.

[0008] The appended drawings are illustrative only and are not necessarily drawn to
scale. In the drawings:

[0009] FIGs. 1A-1B provide (FIG. 1A) a general architecture of a convolutional
deep learning network and (FIG. 1B) a schematic of a conventional neuron.

[0010] FIG. 2 provides sample images of 6x5 pixel handwritten numbers.

[0011] FIGs. 3A-3C provide (FIG. 3A) an exemplary structure of the disclosed class
of photonic deep learning networks, (FIG. 3B) an example structure of the disclosed
convolution cell, and (FIG. 3C) an example schematic of the disclosed photonic-electronic

neuron for forward propagation.
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[0012] FIGs. 4A — 4E provide (FIG. 4A) an example block diagram of the disclosed
photonic-electronic non-linear activation function, (FIG. 4B) an example structure of the
previously designed and fabricated p-n ring modulator integrated on IME process, (FIG. 4C)
example measured performance of the fabricated p-n ring modulator, an example opto-
electronic non-linear activation function, (FIG. 4D) an example non-linear activation
function, and (FIG. 4E) an example structure for complex signal analysis where both
amplitude and phase of the electric field of light is processed.

[0013] FIG. 5 provides a layout of an example designed and taped-out mmWave-
photonic deep learning network for direct image classification.

[0014] FIG. 6 provides a comparison between classification accuracy for Cadence
simulation of the system in FIG. 3A and the equivalent Matlab simulation.

[0015] FIG. 7 provides an experimental setup to perform training and classification
using the system realized by the GFOWG chip.

[0016] FIG. 8 provides an example structure of a disclosed photonic-electronic
neuron supporting both forward and backward optical wave propagation enabling
instantaneous training and classification.

[0017] FIG. 9 provides the output and hidden layers for the network shown in FIG.

3 A but implemented using photonic-electronic neurons shown in FIG. 8.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0018] The present disclosure may be understood more readily by reference to the
following detailed description of desired embodiments and the examples included therein.

[0019] Unless otherwise defined, all technical and scientific terms used herein have
the same meaning as commonly understood by one of ordinary skill in the art. In case of
conflict, the present document, including definitions, will control. Preferred methods and
materials are described below, although methods and materials similar or equivalent to those
described herein can be used in practice or testing. All publications, patent applications,
patents and other references mentioned herein are incorporated by reference in their entirety.
The materials, methods, and examples disclosed herein are illustrative only and not intended
to be limiting.

[0020] The singular forms “a,” “an,” and “the” include plural referents unless the

context clearly dictates otherwise.
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[0021] As used in the specification and in the claims, the term "comprising" may
include the embodiments "consisting of" and "consisting essentially of.” The terms
“comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as
used herein, are intended to be open-ended transitional phrases, terms, or words that require
the presence of the named ingredients/steps and permit the presence of other
ingredients/steps. However, such description should be construed as also describing
compositions or processes as "consisting of" and "consisting essentially of" the enumerated
ingredients/steps, which allows the presence of only the named ingredients/steps, along with
any impurities that might result therefrom, and excludes other ingredients/steps.

[0022] As used herein, the terms “about™ and “at or about” mean that the amount or
value in question can be the value designated some other value approximately or about the
same. It is generally understood, as used herein, that it is the nominal value indicated £10%
variation unless otherwise indicated or inferred. The term is intended to convey that similar
values promote equivalent results or effects recited in the claims. That is, it is understood that
amounts, sizes, formulations, parameters, and other quantities and characteristics are not and
need not be exact, but can be approximate and/or larger or smaller, as desired, reflecting
tolerances, conversion factors, rounding off, measurement error and the like, and other factors
known to those of skill in the art. In general, an amount, size, formulation, parameter or other
quantity or characteristic is “about” or “approximate” whether or not expressly stated to be
such. It is understood that where “about™ is used before a quantitative value, the parameter
also includes the specific quantitative value itself, unless specifically stated otherwise.

[0023] Unless indicated to the contrary, the numerical values should be understood
to include numerical values which are the same when reduced to the same number of
significant figures and numerical values which differ from the stated value by less than the
experimental error of conventional measurement technique of the type described in the
present application to determine the value.

[0024] All ranges disclosed herein are inclusive of the recited endpoint and
independently of the endpoints, 2 grams and 10 grams, and all the intermediate values). The
endpoints of the ranges and any values disclosed herein are not limited to the precise range or
value; they are sufficiently imprecise to include values approximating these ranges and/or

values.
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[0025] As used herein, approximating language may be applied to modify any
quantitative representation that may vary without resulting in a change in the basic function
to which it is related. Accordingly, a value modified by a term or terms, such as “about” and
“substantially,” may not be limited to the precise value specified, in some cases. In at least
some instances, the approximating language may correspond to the precision of an instrument
for measuring the value. The modifier “about™ should also be considered as disclosing the
range defined by the absolute values of the two endpoints. For example, the expression “from
about 2 to about 4™ also discloses the range “from 2 to 4.” The term “about™ may refer to plus
or minus 10% of the indicated number. For example, “about 10%” may indicate a range of
9% to 11%, and “about 1” may mean from 0.9-1.1. Other meanings of “about” may be
apparent from the context, such as rounding off, so, for example “about 1” may also mean
from 0.5 to 1.4. Further, the term “comprising” should be understood as having its open-
ended meaning of “including,” but the term also includes the closed meaning of the term
“consisting.” For example, a composition that comprises components A and B may be a
composition that includes A, B, and other components, but may also be a composition made
of A and B only. Any documents cited herein are incorporated by reference in their entireties
for any and all purposes.

[0026] Building on work on large scale integrated electronic-photonic systems
including 3D imagers, optical phased arrays, photonic assisted microwave imagers, high data-
rate photonic links, and photonic neural networks, the inventors have been designing and
implementing multi-layer integrated photonic- mmWave deep neural networks for image,
video, and 3D object classification. In the disclosed system, images are taken using an array
of pixels and directly processed in the optical domain for both or either learning and
classification phases with part of the processing (including the non-linear function) is
performed in electrical (analog, digital, RF, mm-wave, ...) blocks. The invention also include
processing of other types of input data including but not limited to audio, video, speech,
and/or the analog or digital representation of any type of data.

[0027] Compared to the state-of-the-art GPU based systems, the disclosed
architecture, which can be implemented at any number of layers and neurons in many
different configurations, directly processes the raw optical data or any type of data after up-

conversion to optical domain (without photo-detection/digitization) with orders-of magnitude
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faster processing time, orders- of-magnitude lower power consumption, and scalability to
complex practical deep networks.

[0028] Unlike recent implementations of photonic neural networks, where optical
power drops significantly layer by layer (hence a limited number of neuron layers can be
implemented), the disclosed monolithic electronic- photonic system (1) contains several
neuron layers and can be utilized in practical applications, (2) utilizes strong and
programmable yet ultra-fast mmWave non-linear function, and (3) is highly scalable to many
layers as the same optical power is available to each layer.

[0029] The inventors have already designed and successfully measured many blocks
of this system such as photonic- mmWave neuron, non-linear function, 3D imager front-end,
and have taped-out the first version of the multi-layer deep network to be demonstrated in the
course of the competition. Chip simulations show 280ps classification time (per frame) and
2ns training time (per iteration).

[0030] The inventors disclose a design and implementation of an integrated
photonic deep neural networks for image, video, and 3D object classification. While the
disclosed integrated photonic architecture directly processes the raw optical (image) data
collected at the input pixels, which significantly reduces the system complexity and power
consumption by eliminating the photo-detection and digitization of the input image data, it can
also be used for other types of data after up-conversion to optical domain. FIG. 1A shows one
embodiment of the general architecture of a convolutional deep learning network, where the
input image is formed on a pixel array (image sensor) photo-detected and digitized. The
sensor array digital outputs are organized into a matrix to compute the image correlation with
a sliding window represented by a weight matrix (e.g. performing edge detection, averaging
or other operations), where the weighted sum of the pixels within the window are calculated
and used as the corresponding element of the correlation output matrix.

[0031] The elements of the correlation output matrix are arranged and fed to the
neurons in the first layer (i.e. input layer) of the neural network. Besides the input layer, the
typical deep network architecture is composed of an output layer and intermediate “hidden™
layers. For networks with large number of input pixels, multiple convolution layers can be
used to further lower the computation load. FIG. 1B shows the schematic of a typical neuron
in the input layer where input signals are multiplied by the corresponding weights, summed,

and passed through a non-linear function, the activation function, to generate the neuron
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output. The weights within each neuron are calculated during the supervised training process
and are used during the classification process to assign the input image to one of the defined
classes. In the disclosed clock-less photonic deep learning network architecture, once the image is
formed on the input pixel array, instead of photo-detection and digitization (which is conventionally
done in an image sensor) the processing is done directly in the optical domain. As the first step of this
disclosed, the inventors have taped-out a 3- layer photonic neural network at 1550 nm for
classification of 6x5-pixel handwritten numbers. The second step includes the implementation of a
reconfigurable and scalable large photonic- electronic deep networks with photonic training
and classification for 28x28-pixel images or larger images. In the third step, the inventors
turn the input pixel array to an optical phased array that is used with a frequency chirped laser
to perform 3D object detection (see [5]) and classification.

[0032] Sample images of hand-written numbers (for step 1) are shown in FIG. 2.
FIG. 3A shows one embodiment of the structure of a photonic deep learning network, while
here a 6x5 array of photonic grating couplers is shown, different number, configurations,
type, size, and material can be used to implement the receiving elements , serving as input
pixels, to couple the light into nanophotonic waveguides.

[0033] To realize the convolution layer using overlapping sliding windows, a
photonic waveguide network is designed to route the optical signals from twelve 3x3
overlapping windows of pixels to an array of convolution cells (CC). Different size and type
of windows can be used. Each 3x3 waveguide array forms the inputs of a convolution cell.
Within each CC, the inner product of input optical signals and the pre- programmed 3x3
convolution matrix is photonically calculated. The outputs of the 12 convolution cells are
arranged and routed to four photonic-electronic neurons (i.e. 3 inputs per neuron) forming the
input layer of the deep learning network. Within each photonic-electronic neuron, the input
optical waves are combined after their amplitudes are adjusted according to the weight
associated with each input. The non-linear activation function is realized in electro-optical or
electrical domain and the signal is up-converted back to the optical domain to form the
neuron output. Additional devices and systems within each neuron are implemented enabling
the electronic-photonic neuron to be used in both forward propagation (in the classification
phase) and the backward propagation (in the training phase). The second layer, the hidden
layer, composed of three 4-input photonic-electronic neurons and is followed by the output

layer with two photonic-electronic neurons. This photonic deep neural network will be used
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to perform 2-class classification of images. For example, the system can be trained with
images of two digits (e.g. “0” and “2”) and used to classify the images of these two digits.
The details of each component of the architecture in FIG. 3A are discussed next.

[0034] Convolution cell

[0035] FIG. 3B shows one embodiment of the schematic of the disclosed CC, where

an array of current controlled p-doped-intrinsic-n-doped (PIN) variable optical attenuators [8]
are used to adjust the amplitude of the optical signals. The measured insertion loss of each
PIN attenuator can be adjusted from 1 dB to 32 dB. The output of each PIN attenuator is
photo-detected using a SiGe photodiode other types of photodetectors/photodiodes can also
be used. The photocurrent of the 12 photodiodes are combined (by hard-wiring their outputs),
effectively realizing the inner product of the input optical signals and the correlation weight
matrix set by the current of the PIN attenuators. This combined photocurrent isthen converted
to a voltage and amplified using a trans-impedance amplifier (TTA). The amplified photo-
current is used to drive the PIN variable attenuator. In this case, the output of the CC will be
in the optical domain. Note that each CC has a separate biasing light (BL) input to improve the
signal-to-noise ratio for the neurons of the first layer. The performance of the individual
photonic devices are discussed later.

[0036] Electronic-photonic neuron

[0037] FIG. 3C shows one embodiment of the conceptual schematic of the disclosed
electronic-photonic neuron. An array of current controlled PIN variable optical attenuators
are used to adjust the amplitude of the optical signals according to the applied weight vector.
Other types of attenuators or light modulators or switches can also be used. The output of PIN
attenuators are photo-detected using a SiGe photodiode. The non-linear activation function is
realized in the mm-wave domain and the signal is up-converted back to the optical domain to
form the neuron output. Each photonic neuron has a separate biasing light (BL) input to
ensure all neuron outputs have the same signal range enabling the scalability to many number
of series layers. Ideally, the non-linear activation function should be implemented in the
optical domain to minimize the computation time. However, since semiconductor optical
amplifiers cannot be implemented in a silicon-based process, realization of the non- linear
activation function in the optical domain is not practical due to typically small available on-
chip optical power resulting in a weak non-linear effect. FIG. 4A shows the schematic of one

embodiment of the electro-optic circuit used to realize the activation function. The
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photocurrents are combined (by hard- wiring their outputs) and routed to the input of a trans-
impedance amplifier (TTA). An adjustable voltage representing the neuron bias is added to
the TIA output. A ring modulator driver further amplifies the TIA output and drives the p-n
modulator (FIG. 4B). In another embodiment, p-n modulator may be replaced with other types
of modulators and devices such as disk modulator, p-i-n modulators, interferometer-based
modulators or other types of resonance and non-resonance electro-optic devices. The input light
to this p-n ring modulator, the biasing light (BL), is coupled into each neuron in the system
separately and has the same power for all electronic- photonic neurons. This BL signal is
generated by equally dividing a laser output (emitting at 1550 nm) coupled into the chip
though a separate grating coupler. Note that the separate per neuron biasing light is essential
for the operation of the multi-layer networks as it ensures the output of all neurons to have the same
range of values regardless of the location of a neuron within the deep neural network. Consider the case
that the current combiner output is i;»,. In this case, the ring modulator driver output current is written
as imod = imKTK a4, where Kt and Kaq are the gain of the TIA and the modulator driver gain,
respectively. From the measured response of the p-n ring modulator (in FIG. 4C), applying 9
mA of current tunes the ring providing more than 20dB amplitude change. For the case that
the notch in the p-n modulator response is aligned with the input wavelength, the output
power to the ring modulator is written as Pout = 0.003Ps, where Psis the BL power (as the
input power to the ring modulator). For the case that imod = 9 mA is applied to the ring
modulator, the ring modulator output power is increased to Pour = 0.65Ps which is the largest
possible modulator output power (as the laser wavelength is well outside of the notch) and for
larger modulator currents, Pout does not change. The resulting non-linear activation function
is shown in FIG. 4D. In another embodiment of neurons in the disclosed system, some forms of
optical non-linearity can be implemented if optical gain material is available (hybrid-integrated
with silicon or other implementation platforms).
In another embodiment of the neuron in this disclosure, neurons can be used to perform
complex signal analysis where both amplitude and phase of electric field of light is
processed. An example is shown in FIG. 4E.

[0038] When the input current to the TIA, ii» is small enough (less than a certain
threshold), the output power is set to Pour = 0.003Ps. As iin increases, the modulator output
power increases almost linearly as Pout = P(1 4+ 0.07Ki), where iinis in mA and K = K7Ka.

For large enough iin, the electronic-photonic neuron output saturates at Pour = 0.65Ps. Note
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that the shape of the activation function can be adjusted by changing the TIA gain, the BL
power (Ps), and the DC current at the modulator driver output. The DC part of the modulator
driver current can be used to adjust the relative location of the notch with respect to the
wavelength. For Pour < 0.65Ps, corresponding to the non-saturated response, the activation
function can be approximated by the rectified linear unit (ReLU), which is a known
activation function for neural networks [12]. For the case that Pout includes the saturation
region in FIG. 4D, the activation function is similar to a biased sigmoid function which is
also a well-known activation function commonly used in neural networks [12]. As shown in
FIG. 4A, two control signals to set “Bias” and “K” (corresponding to the TIA gain), and input
current, iin, and the read-out signal, PD2, are used during the photonic neural network
training phase (discussed later).

[0039] The inventors have also deigned a TTA and ring modulator driver as one
block in GlobalFoundries GFOWG CMOS SOI process with simulated bandwidth of 27 GHz
and current gain of 10 A/A. This disclosure include other types of TIAs and amplifies used
between the photodiodes and modulating device within a neuron.

[0040] Classification time

[0041] For the deep neural network in FIG. 3A, the computation time in each
photonic-electronic neuron is limited by the bandwidth of the electronic circuitry within the
activation function. Therefore, it 1s desired to increase the bandwidth of the electronic blocks
as well as the photodiode and ring modulators as much as possible. The inventors have
designed and fabricated SiGe photodiodes at 1550 nm in the GFOWG process with measured
responsivity and bandwidth of 0.8 A/W and 32 GHz, respectively. Also, the p-n ring
modulator implemented on the GFOWG process have a measured bandwidth of 30 GHz.
Furthermore, the simulations show that the GFOWG process offers an fu.x of about 200 GHz
enabling reliable TTA and modulator driver designs with bandwidths exceeding 30 GHz. Using
these photonic components and mm-wave design techniques, an overall bandwidth of larger
than 15 GHz is achievable corresponding to a per-neuron computation time of less than 67
ps. Since the computation for all neurons of a layer is done in parallel, and including the
bandwidth of the input convolution cells, the total classification time for a 3 layer deep
photonic neural network with mm-wave enabled activation functions, regardless of the
number of neurons per layer, can be estimated to be under 280 ps (i.e. under 67 ps per layer

and about 67 ps for the convolution layer).

-10 -
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[0042] Implementation platform, prior works, and system integration

[0043] Over the past few years, the inventors have designed, implemented, and
measured many photonic devices and components on GlobalFoundries GFOWG CMOS SOI
process as well as other photonic and photonic- enabled CMOS processes and created Verilog
A models for many photonic devices based on their measured or simulated performances. On
this process, electronic and photonic devices and blocks can be co-simulated using Cadence
tools. The same approach has been used to design and successfully demonstrate a few
monolithically co-integrated electronic-photonic systems on GlobalFoundries GF7SW CMOS
SOI process as well as hybrid-integrated electronic-photonic systems. The inventors will use
GFIOWG process to implement the photonic deep learning networks. To validate the entire
design of the photonic deep learning network to be implemented in the first step (in FIG. 3A),
the inventors have designed and taped-out the entire system in GFOWG process. FIG. 5
shows the layout of the designed and taped-out photonic deep learning network, where all
photonic and electronic/mm-wave components were co-integrated. Different blocks and sub-
systems are identified. One of the challenging tasks here is the design of the photonic
waveguide routing network to implement convolution. In the final design, the path-to-path
loss is under 1.5dB. The performance of the system can be fully simulated using Cadence
tools. The performance of photonic devices and some of the features of the GlobalFoundries
GFOWG CMOS-SOI process are summarized in Table 1, attached hereto. In other
embodiments of this disclosure, other electronic-photonic or photonic fabrication
technologies (or in-house fabrication) can be used for system implementation. Examples
include but not limited to GlobalFoundries 45CLO process, iHP EPIC process, Tower
semiconductor SiPho process, AMF photonic process and more.

[0044] Classification phase: forward propagation

[0045] In this section, an example of the classification of the 6x5-pixel handwritten
numbers is used to explain the principle of operation of the forward propagation process for
the system taped-out and to be demonstrated. As the target image is formed on the input 6x5
grating coupler array, optical waves are coupled into the input waveguides, passed though the
routing network to generate 108 optical signals (corresponding to 12 overlapping 3x3 sub-
images) and arrive at 12 convolution cells used to compute the convolution. The outputs of
the convolution cells are arranged into 4 rows of 3 optical signals and routed to the input of 4

neurons of the input layer. If the output of the 6x5 grating coupler array is rearranged into a

-11 -
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column vector, Px (of size 30x1), twelye different 9x30 matrices of Cito Co representing the
distribution network (including the corresponding optical losses) can be defined to find the
intensity of light at the convolution cells. In this case, the input to the i convolution cell is
written as Qi = Ci x Px, where Qi is a 9x1 vector. Within each convolution cell, the inner
product of the input vector and the 1x9 convolution weight vector, Wconv, is calculated as the
cell output as Ji = Weonv X Qi = Weonw x Ci X Px. Note that the convolution weight vector is
the same for all 12 convolution cells and does not change during the training and
classification phases. The 12 outputs of the convolution cells are arranged into four 3x1
arrays, each used as the input to one of the four electronic-photonic neurons of the input layer
ashi=[J1J2J3]T, I2=[J4]sJ6]". 3= [J7]8 ]o]", and I+ = [J10 J11 J12]T, where I1, I2, I3,
and 14 represent 3x1 input vectors for the four neurons in the input layer. The output of each
neuron is generated by passing the weighted sum of its inputs though the non-linear
activation function. Thus, the output of /" neuron in the first layer is written as Oin, = f(Win,i
x Ii), where Wini, and f(.) represent the 3-element weight vector for the i neuron in the
input layer (i = 1, 2, 3, 4) and the activation function, respectively. Similarly, the output of
the " neuron in the hidden layer (2™ layer) is written as On, = f(Whi X [Oin1 Oinz2 Oin,3
Oina]T), where Wh, represent the 4-element weight vector in the i neuron in the hidden
layer (i = 1, 2, 3) and 7 denotes transpose operation. In the matrix format, assuming that O
=[0in1 Oz Oin30ina]",and O, = [On1 Onz On3 |, then OF = f(W,0,,), where Whris a 3
X 4 matrix whose rows are W, vectors for i = 1, 2, 3. Finally, the outputs of the output layer
(3" layer) are calculated as Qo, = f(Wo,i X [On1 On2 On3 ]T), where Wi represent the 3-
element weight vector in the i/ neuron (i = 1, 2) in the output layer. In the matrix format,
assuming that Qo = [Q0, 002 |7, then 0o = f(Wo X Onr), where Wo is a 2 X 3 matrix whose
rows are Wo,i vectors for i = 1, 2. The outputs of the 3™ layer, Oo,and 002 are used to
determine the class of the input image. While the distribution network matrices (C1to C9)
depend only on the layout of the distribution network, and the convolution weight vector is
pre-defined and is unchanged during the training and classification, the weight vectors for all
other layers (i.e. Win,i, Wh,i, and Wo, ) are calculated during the training phase and updated
electronically by setting the currents of the optical attenuators. Note that in this work, similar
to the typical CNN, the weights of the convolution cells in the convolution layers are set to
the same values, however, in another embodiment, the weights could be different for different

convolution cells.
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[0046] Training phase: backward propagation

[0047] The array of 6X5 grating couplers can be similar to the one the inventors
used for coherent imaging [5] but with a larger fill-factor. In this case, if an amplified laser
emitting 50 mW at 1550 nm is used for illumination using a narrow-beam collimator from
0.5m distance, once a focused image is formed, each pixel of the on-chip grating coupler
array receives about 0.5 pW. To examine the performance of the photonic neural network in
FIG. 3A using Cadence tools, a file containing 2500 gray-scale 6x5 images of handwritten
numbers (1800 from training and 700 for validation) are first scaled to emulate a received
power of 0.5 W per grating coupler and then are imported to Cadence to serve as the input
signals to the disclosed photonic neural network and are entered the network as optical waves
right after the input grating couplers.

[0048] The labels corresponding to the images are also loaded into the Cadence
simulator and are used for supervised training. The entire system is realized in Cadence using
the Verilog-A models of the photonic components next to the electronic devices instantiated
from the GFOWG process PDK and simulated using Cadence SpectreRF tool. Images in the
training set are fed to the system one-by-one. Digital computation and weight setting is
performed using VerilogA blocks emulating an off-chip microcontroller. First, random initial
weights (within the valid expected range) are set for all neurons. Then, the images within the
training set (1800 images) are input to the system one-by-one. For each image, after forward
propagation is completed, the outputs of the network, 0o, and 0,2, are calculated and read by
the microcontroller (emulated using VerilogA blocks in Cadence simulation).

[0049] Output error signals, eo1 and eoz2, are calculated by subtracting the network
outputs from the target values Target and Target? ( that are hard-coded in the VerilogA
code), that is, eo = [eo,1 €02]” = [Target] — Oo Target2- Oo2]'. At this point, the error signals
will be propagated backward and used to update the weight vectors for photonic-electronic
neurons within different layers. First, the output error signals are used to find the equivalent
error signals referred to the hidden layer based on the corresponding weights [9]. The current
weight vectors are stored in the microcontroller (emulated by VerilogA blocks in Cadence).
Therefore, the equivalent error signals back propagated to the hidden layer are calculated as

T T
WO,l WO,Z

1s the normalized
SWoq SWp

— T — T T
en = Wour X €y, Where ep = [ep1ep26p3]" and Wy =

output layer weight function with }; W, ; representing the sum of all 3 elements of W, ;. Using
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the gradient decent method with a quadratic cost function [9], and assuming a ReLU
activation function (see FIG. 4D, the weight vector for the output layer can be updated
as[9W, - W, + L,.ae, X Op,where Lr is the learning rate and a = 0.07Kiin s the slope of
the ReL U function defined in FIG. 4D. This disclosure covers other non-linear functions such
as sigmoid and its derivative, exponential, and more. Note that the microcontroller reads the
output of the hidden layer, vector Op, trough PD2 as shown in FIG. 4A. Similarly, the error at
the output of the hidden layer can be back-propagated and the updated weights for the first
and second layers can be calculated. Once all the weight vectors are updated within the neural
network, the next image is loaded into the network and the training continues. In Cadence
simulation, the VerilogA block emulating the microcontroller is programed to run a training-
validation task for a two-class classification of hand-written ones and zeros. In this case, the
photonic neural network is trained in multiple phases using batches of 100 images (out of
1800 images in the training set). After each training phase (corresponding to 100 iterations),
the training is paused and the network uses the last updated set of weights to classify 700
images of the validation set (that are not included in the 1800 training set). At the end of
validation, the classification accuracy, which is defined as the ratio of the correctly classified
images to the total number of images (in the validation set), is recorded and next training phase
starts. After 18 training phases (corresponding to 1800 images), 18 validations are performed.
FIG. 6 shows the resulting classification accuracy for Cadence simulation of the system in
FIG. 3A and the same architecture implemented in Matlab where a good agreement between
Matlab and Cadence simulations is observed. This test confirms that the electronic-photonic
deep neural network taped-out on GlobalFoundries GFOWG CMOS-SOI process can robustly
perform image recognition using the provided two class data set. Once the chips are delivered
(late June 2020), the training and classification test will be performed using the experimental
setup shown in FIG. 7, where a motorized X-Y stage moves the handwritten images in front
of the chip during training and classification phases. A lens is used to form the images on the
input grating couple array.

[0050] Photonic-electronic instantaneous training

[0051] Inthe previous section, an all-electronic training including the error back
propagation and neuron weight update process was explained and used to verify the photonic-
electronic forward propagation using Cadence tools. For deep networks with many layers and

large number of neurons per layer, all- electronic training may slow down the training
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process significantly. In this section, the inventors disclose anovel photonic-electronic
architecture capable of backward propagation calculation. FIG. 8 shows the same neuron in
FIG. 3C with added photonic backward error propagation capability. While the training using
backward propagation can be done entirely in electrical domain, the training time can be
significantly reduced if photonic backward propagation calculation is employed.

[0052] Consider the case that this neuron is placed in layer M. The error from layer
M+ 1 can enter this neuron in the form of an optical signal. Half of this optical signal is guided
to a PIN optical attenuator. This attenuator is set to high attenuation during the forward
propagation phase and low attenuation during the back propagation phase to avoid
generating errors during the forward propagation phase (classification). The PIN attenuator
output at point Z is split into 12 branches with equal powers using a 1x12 MMI coupler
splitter (see Table 1). Each output of the MMI is then coupled to one of the neuron input
waveguide using a 50/50 directional coupler. Assuming the optical error signal back
propagating from the (M+ )" layer to the neuron in the A" layer to have the power of Po,
for an N input neuron, the back propagating optical signal in each output of the MMI (after

splitting) will have a power of :—;. Since the PIN attentuators setting the signal weights are bi-
directional, the error signals back propagated to the input of the neuron can be written as
g—; W, where Wirepresent the weight in the i input and the factor 1/8 represent the effect of

two Y-junctions before point Z and the 50/50 coupler after the MMI. Similarly, these error
signals continue to back propagate layer by layer to get to the first layer. Note that the power
splitting performed by the MMI can be viewed as the error normalization as the power in
each input path is divided by the total number of the neuron inputs.

[0053] After error back propagation, the weights need to be updated. To explain the
weight adjustment process, consider the output and hidden layers for the network shown in
FIG. 3A (but implemented with modified neurons shown in FIG. 8). This is shown in detail
in FIG. 9. Starting from the right side of this figure, to calculate eo,1, the optical signal
representing the 7arget: is 180° phase shifted using a thermal phase modulator and combined
with the output of the first neuron in the output layer, 00,1, using a Y-junction. Similarly, eo2

12

is calculated. Defining the cost function as E;prq; = Z€1 t %eg_z, the goal is to use the

gradient descent method to find the amount that each weight should be adjusted to minimize

E'totar . In another embodiment, other optimization methods could be used for weight calculations.

-15 -



WO 2022/020437 PCT/US2021/042526

In this case, each weight W should be adjusted by Aw = %. For example, for the first

O .
neuron of the output aw layer, Aw,;, = #‘”‘” . Defining the MMI output as z,; =
0,1,1

0.5(Wp,110k,1 + W 120n2 + Wo1,30h3), the 011 output of this neuron is written as 0, =

f (Rzo_l), where f(.) represents the ReLU activation function. For this case, the change in

. . JE JE do dz, .
Wo,1,1 is written as Aw, ,, = aw“’ial’ = a;‘”l“’ X az"'i X awofl = ae, 105, where a is the
o1, o, o, o1,

slope of the ReLU function (corresponding to its derivative). Then, this weight can be
adjusted as w, 11 = Wy 11 — LAw, 4 1. Interestingly, L,Aw, 1 ; can also be calculated opto-
electronically. As shown in FIG. 9, the output of the first neuron in the hidden layer, on1,
connected to the first input of the first neuron of the output layer, is split into two branches.
The bottom branch is used for classification (in forward propagation phase), and the top
branch, which is used for training (in the backward propagation phase), is photo-detected,
amplified, and used to drive the ring modulator R;. The input to this ring modulator is a part
of the error signal eo,1, guided to the ring modulator after passing through a MMI splitter. A Y-
junction is placed before this MMI to provide half of the error signal (eo,1) power for back
propagation of the error signal and the other half for updating the weights within the output

layer. The output power of ring modulator R; can be written as Pr, = RafGy (%)eo_l (%) On 1,
where R, § and Gu are the PDiresponsivity, the gain of the trans-impedance amplifier, and the

gain of the ring modulator R;, respectively. The output of the ring modulator R; is photo-

detected and amplified resulting in a mm-wave voltage that can be written as Vg, =

%Rzaﬁ GGye,10p1, where G is the gain of the amplifier after the photo-diode. Defining

L, = %RZﬁGGM, this voltage can be written as Vy = L,.ae,10p1 = —LAw, ;.
Therefore, the learning rate, L, can be adjusted by changing the gain of the amplifiers. This
mm-wave voltage is connected to an on-chip analog weight and bias adjustment unit. This
unit changes the value of wo,1,1, which is stored in a capacitor, to (W, 11 — LyAw,; ;).
Similarly, all weight vectors in the output layer are updated. As shown in FIG. 9, the optical
error signals also propagate back to the hidden and input layers and the same method can be
used to update the weight vectors in the corresponding layer. Note that an optical delay line is

used to delay the error signals in the output layer to ensure that the back propagation phase

does not occur during the forward propagation phase.
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[0054] Comparison with the state of the art

[0055] The forward propagation time is mainly limited by the bandwidths of the
photodiode, p-n ring modulator, and the mm-wave blocks within the activation functions. To
provide a fair comparison between the performance of a deep network implemented on a
state-of-the-art GPU platform and a similar photonic-electronic deep network, the inventors
have used an NVIDIA Titan V (5120) GPU [10] to implement a typical 7 layer deep network
to classify 256x256-pixel images. Using this GPU, the training (3000 iterations) and
classification (99%) takes 20 min. and 3.8 ms, respectively. The power consumption of this
GPU is about 65W. For the same performance, the training and classification using disclosed
photonic deep network are estimated to take 2.8 ms and 0.5 ns, respectively. Compared to
GPU platform, the power consumption is reduced from 65W to 1.2W.

[0056] Photonic-electronic deep networks for 3D image classification

[0057] In the second step, the array of the grating coupler can be replaced with an
alternative device, e.g., an optical phased array (OPA). In this case, both amplitude and phase
of the target object would be available to the deep network enabling interesting applications
such as 3D image classification and phase contrast image classification. Also, the OPA
enables instantaneous free- space image correlation calculation and/or can be used for tracking
and classification of fast-moving objects within a large field-of-view. The following references are
provided for background and are incorporated herein by their entireties for any and all
purposes.

Exemplary Embodiments

[0058] The following embodiments are illustrative only and do not necessarily limit
the scope of the present disclosure of the appended claims.

[0059] Embodiment 1. A method for artificial neural network computation,
comprising: receiving an array of input data; processing the input data in an optical and
electro-optical domain; applying the processed input data through a plurality of electronic-
photonic neuron layers in a neural network; and generating an output comprising
classification information from the neural network.

[0060] Embodiment 2. The method of Embodiment 1, wherein the input data
comprises at least one of optical data audio data, image data, video data, speech data, analog

data, and digital data.
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[0061] Embodiment 3. The method of any one of Embodiments 1-2, further
comprising upconverting the input data to be directly processed in the optical domain.

[0062] Embodiment 4. The method of Embodiment 3, wherein the upconverting
occurs without digitization or photo-detection.

[0063] Embodiment 5. The method of any one of Embodiments 1-4, wherein the
input data is optical data extracted from at least one of a data center connection, a fiber optic
communication, and a 3D image.

[0064] Embodiment 6. The method of any one of Embodiments 1-5, wherein, at the
input layer, the processed input data is weighted and passed through an activation function.

[0065] Embodiment 7. The method of any one of Embodiments 1-6, wherein the
activation function is electro-optical or optical.

[0066] Embodiment 8. The method of any one of Embodiments 1-7, wherein the
input data is complex with amplitude and phase.

[0067] Embodiment 9. The method of any one of Embodiments 1-8, wherein a pixel
array provides the input data, and the input data is converted to an optical phased array.

[0068] Embodiment 10. The method of any one of Embodiments 1-9, wherein
processing the input data comprises routing the input data through one or more convolution
cells.

[0069] Embodiment 11. The method of Embodiment 10, wherein a photonic
waveguide routes optical data to the one or more convolution cells

[0070] Embodiment 12. The method of claim any one of Embodiments 1-11,
wherein the plurality of electronic-photonic neuron layers includes at least one training layer
and a classification layer.

[0071] Embodiment 13. An artificial neural network system, comprising: at least
one processor; and at least one memory comprising instructions that, when executed on the
processor, cause the computing system to receive an array of input data; process the input
data in an optical domain; apply the processed input data through a plurality of electronic-
photonic neuron layers in a neural network; and generate an output comprising classification
information from the neural network.

[0072] Embodiment 14. The system of Embodiment 13, wherein the input data
comprises at least one of optical data audio data, image data, video data, speech data, analog

data, and digital data.
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[0073] Embodiment 15. The system of any one of Embodiments 13-14, further
comprising upconverting the input data to be directly processed in the optical domain, and the
upconverting occurs without digitization or photo-detection.

[0074] Embodiment 16. The system of any one of claims 13-15, further comprising
a plurality of optical attenuators to adjust the processed input data.

[0075] Embodiment 17. The system of any one of Embodiments 13-16, further
comprising a bias adjustment unit.

[0076] Embodiment 18. The system of any one of Embodiments 13-17, wherein the
electronic-photonic neuron layers each comprise a biasing light.

[0077] Embodiment 19. The system of any one of Embodiments 13-18, further
comprising at least one of a 3D imager, an optical phased array, and a photonic assisted
microwave imager.

[0078] Embodiment 20. The system of any one of Embodiments 13-19, wherein
generating an output has a classification time of less than 280 ps.

[0079] Embodiment 21. The system of any one of Embodiments 13-20, wherein, at
the input layer, the processed input data is weighted and passed through an activation
function.

[0080] Embodiment 22. The system of any one of Embodiments 13-21, wherein
processing the input data comprises routing the input data through one or more convolution
cells, and the plurality of electronic-photonic neuron layers includes a training layer and a
classification layer.
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What is Claimed:

10.

11

A method for artificial neural network computation, comprising:

receiving an array of input data;

processing the input data in an optical and electro-optical domain;

applying the processed input data through a plurality of electronic-photonic neuron
layers in a neural network; and

generating an output comprising classification information from the neural network.

The method of claim 1, wherein the input data comprises at least one of optical data

audio data, image data, video data, speech data, analog data, and digital data.

The method of claim 1, further comprising upconverting the input data to be directly

processed in the optical domain.

The method of claim 3, wherein the upconverting occurs without digitization or

photo-detection.

The method of claim 1, wherein the input data is optical data extracted from at least

one of a data center connection, a fiber optic communication, and a 3D image.

The method of claim 1, wherein, at the input layer, the processed input data is

weighted and passed through an activation function.
The method of claim 1, wherein, the activation function is electro-optical or optical.
The method of claim 1, wherein, the input data is complex with amplitude and phase.

The method of claim 1, wherein a pixel array provides the input data, and the input

data is converted to an optical phased array.

The method of claim 1, wherein processing the input data comprises routing the input

data through one or more convolution cells.

The method of claim 8, wherein a photonic waveguide routes optical data to the one

or more convolution cells
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12.

13.

14.

15.

16.

17.

18.

19.

20.

2].

The method of claim 1, wherein the plurality of electronic-photonic neuron layers

includes at least one training layer and a classification layer.

An artificial neural network system, comprising:

at least one processor; and at least one memory comprising instructions that, when
executed on the processor, cause the computing system to:

receive an array of input data;

process the input data in an optical domain;

apply the processed input data through a plurality of electronic-photonic neuron layers
in a neural network; and

generate an output comprising classification information from the neural network.

The system of claim 11, wherein the input data comprises at least one of optical data

audio data, image data, video data, speech data, analog data, and digital data.

The system of claim 11, further comprising upconverting the input data to be directly
processed in the optical domain, and the upconverting occurs without digitization or

photo-detection.

The system of claim 11, further comprising a plurality of optical attenuators to adjust

the processed input data.
The system of claim 11, further comprising a bias adjustment unit.

The system of claim 11, wherein the electronic-photonic neuron layers each comprise

a biasing light.

The system of claim 11, further comprising at least one of a 3D imager, an optical

phased array, and a photonic assisted microwave imager.

The system of claim 11, wherein generating an output has a classification time of less

than 280 ps.

The system of claim 11, wherein, at the input layer, the processed input data is

weighted and passed through an activation function.
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22. The system of claim 11, wherein processing the input data comprises routing the input
data through one or more convolution cells, and the plurality of electronic-photonic

neuron layers includes a training layer and a classification layer.
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document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

08 October 2021

Date of mailing of the international search report

NOV 12 2021

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: [SA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, VA 22313-1450 '

Facsimile No. 571-273-8300

Authorized officer

Harry Kim

Telephone No. PCT Helpdesk: 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2019)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - wo-search-report

