发明名称

一种增强的控制信道传输的方法、装置及系统

摘要

本发明公开了一种增强的控制信道传输的方法、装置及系统。网络侧发送物理广播信道 (PBCH) 传输的主信息块，并按照确定的增强的物理下行控制信道 (E-PDCCH) 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输。同时，在搜索空间内传输的 E-PDCCH 相同的时频资源范围内发送共享用户专属参考信号 (UE-SRS) 以支持 E-PDCCH 的解调。终端在接收到 PBCH 传输的主信息块后，按照确定的 E-PDCCH 所使用的传输方案在搜索空间内采用共享 UE-SRS 进行盲检测，因此，带宽受限机器类型通信 (MTC) 终端可以不依赖原有物理下行控制信道的 E-PDCCH 技术，就可以实现在增强的下行控制信道接收下行控制信息。
1. 一种增强的控制信道传输的方法，其特征在于，该方法包括以下步骤：
终端在接收到物理广播信道 PBCH 传输的主信息块后，按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案在搜索空间内采用共享用户专属参考信号 UERS 进行盲检测。

2. 根据权利要求 1 所述的方法，其特征在于，在所述搜索空间内存在共享 UERS 的物理资源块 PRB 内部不存储基于用户专属 UERS 进行解调的 E-PDCCH。

3. 根据权利要求 1 所述的方法，其特征在于，所述搜索空间内包括用于公共控制信息传输的下行控制信息 DCI 或用于用户专属数据传输的 DCI。

4. 根据权利要求 1～3 中任意一项所述的方法，其特征在于，所述搜索空间为公共搜索空间。

5. 根据权利要求 3 所述的方法，其特征在于，所述用于公共控制信息传输的 DCI 包括：系统信息无线网络临时标识符 SI-RNTI、寻呼无线网络临时标识符 P-RNTI、随机接入无线网络临时标识符 RA-RNTI、发送功率控制物理上行共享信道无线网络临时标识符 TPC-PUSCH-RNTI 或发送功率控制物理上行控制信道无线网络临时标识符 TPC-PUCCH-RNTI 加扰的 DCI。

6. 根据权利要求 3 所述的方法，其特征在于，所述用于用户专属数据传输的 DCI 包括使用小区无线网络临时标识符 C-RNTI、半持续调度无线网络临时标识符 SPS-C-RNTI 或临时 C-RNTI 加扰的 DCI。

7. 根据权利要求 1 所述的方法，其特征在于，所述 E-PDCCH 所使用的传输方案根据如下方式确定：
所述 E-PDCCH 采用预设的传输方案。

8. 根据权利要求 7 所述的方法，其特征在于，所述 E-PDCCH 所使用的传输方案为基于单个 UERS 端口的开环传输方案，数据和 UERS 采用相同的预编码处理。

9. 根据权利要求 7 所述的方法，其特征在于，所述 E-PDCCH 所使用的传输方案为基于 2 或 4 个 UERS 端口的发送分集传输方案，数据进行发送分集方案相应的预编码处理，UERS 端口不进行预编码处理。

10. 根据权利要求 9 所述的方法，其特征在于，所述 E-PDCCH 所使用的传输方案为基于 2 个 UERS 端口的发送分集传输方案时，所述发送分集方案包括：空时分组编码 SFBC，或空时分组编码 STBC。

11. 根据权利要求 9 所述的方法，其特征在于，所述 E-PDCCH 所使用的传输方案为基于 4 个 UERS 端口的发送分集传输方案时，所述发送分集方案包括：空时分组编码 SFBC 联合频域切换发送分集 FSTD。

12. 根据权利要求 8～11 中任意一项所述的方法，其特征在于，E-PDCCH 采用预设的 UERS 端口进行传输。

13. 根据权利要求 1 所述的方法，其特征在于，E-PDCCH 所使用的 UERS 的加扰序列根据如下方式获得：
UERS 的加扰序列的初始化序列仅与参数 N1/2 有关，其中 N1/2 为小区标识符或虚拟小区标识符。

14. 根据权利要求 1 所述的方法，其特征在于，E-PDCCH 传输的 PRB 内所包含的所有
UERS 端口数为相应 E-PDCCH 传输所使用的 UERS 端口数。

15. 一种增强的控制信道传输的方法，其特征在于，该方法包括以下步骤：
 网络侧周期发送物理广播信道 PBCH 传输的主信息块，并按照确定的增强的物理下行
 控制信道 E-PDCCH 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输，同时，在搜索空间
 内传输的 E-PDCCH 相同的时频资源范围内发送共享 UERS 以支持 E-PDCCH 的解调。

16. 根据权利要求 15 所述的方法，其特征在于，在所述搜索空间内存在共享 UERS 的
 PRB 内部不存在基于用户专属 UERS 进行解调的 E-PDCCH。

17. 根据权利要求 15 所述的方法，其特征在于，所述搜索空间内包括用于公共控制信
 息传输的 DCI 或用于用户专用数据传输的 DCI。

18. 根据权利要求 15 ～ 17 中任意一项所述的方法，其特征在于，所述搜索空间为公共
 搜索空间。

19. 根据权利要求 15 所述的方法，其特征在于，所述用于公共控制信息传输的 DCI 包
 括：SI-RNTI、P-RNTI、RA-RNTI、TPC-PUSCH-RNTI 或 TPC-PUCCH-RNTI 加扰的 DCI。

20. 根据权利要求 17 所述的方法，其特征在于，所述用于用户专用数据传输的 DCI 包
 括使用 C-RNTI、SPS-C-RNTI 或临时 C-RNTI 加扰的 DCI。

21. 根据权利要求 15 所述的方法，其特征在于，所述 E-PDCCH 所使用的传输方案根据如下方式确定：
 所述 E-PDCCH 采用预设的传输方案。

22. 根据权利要求 21 所述的方法，其特征在于，所述 E-PDCCH 所使用的传输方案为基于
 单个 UERS 端口的开环传输方案，数据和 UERS 采用相同的预编码处理。

23. 根据权利要求 21 所述的方法，其特征在于，所述 E-PDCCH 所使用的传输方案为基于
 2 或 4 个 UERS 端口的发送分集传输方案，数据进行发送分集方案相应的预编码处理，UERS
 端口不进行预编码处理。

24. 根据权利要求 23 所述的方法，其特征在于，所述 E-PDCCH 所使用的传输方案为基于
 2 个 UERS 端口的发送分集传输方案时，所述发送分集方案包括：空频分组编码 SFBC，或空时
 分组编码 STBC。

25. 根据权利要求 23 所述的方法，其特征在于，所述 E-PDCCH 所使用的传输方案为基于
 4 个 UERS 端口的发送分集传输方案时，所述发送分集方案包括：空频分组编码 SFBC，或联合
 频域切发送分集 FSTD。

26. 根据权利要求 22 ～ 25 中任意一项所述的方法，其特征在于，E-PDCCH 采用预设的
 UERS 端口进行传输。

27. 根据权利要求 15 所述的方法，其特征在于，E-PDCCH 所使用的 UERS 的加扰序列根
 据如下方式获得：
 UERS 的加扰序列的初始化序列仅与参数 N 参数有关，其中 N 参数为小区标识符或虚拟小区标
 识符。

28. 根据权利要求 15 所述的方法，其特征在于，E-PDCCH 传输的 PRB 内所包含的所有
 UERS 端口数为相应 E-PDCCH 传输所使用的 UERS 端口数。

29. 一种增强的控制信道传输装置，其特征在于，包括：
 接收单元，用于接收物理广播信道 PBCH 传输的主信息块；
检测单元，用于按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案在搜索空间内采用共享用户专属参考信号 UERS 进行检测。

30. 根据权利要求 29 所述的装置，其特征在于，在所述搜索空间内存在共享 UERS 的 PRB 内部不存在基于用户专属 UERS 进行解调的 E-PDCCH。

31. 根据权利要求 29 所述的装置，其特征在于，所述搜索空间内包括用于公共控制信息传输的 DCI 或用于用户专属数据传输的 DCI。

32. 根据权利要求 29～31 中任意一项所述的装置，其特征在于，所述搜索空间为公共搜索空间。

33. 根据权利要求 31 所述的装置，其特征在于，所述用于公共控制信息传输的 DCI 包括：S1-RNTI、P-RNTI、RA-RNTI、TPC-PUSCH-RNTI 或 TPC-PUCCH-RNTI 加扰的 DCI。34. 根据权利要求 31 所述的装置，其特征在于，所述用于用户专属数据传输的 DCI 包括使用 C-RNTI、SPS-C-RNTI 或临时 C-RNTI 加扰的 DCI。

35. 根据权利要求 29 所述的装置，其特征在于，所述 E-PDCCH 所使用的传输方案根据如下方式确定：

所述 E-PDCCH 采用预设的传输方案。

36. 根据权利要求 35 所述的装置，其特征在于，所述 E-PDCCH 所使用的传输方案为基于单个 UERS 端口的开环传输方案，数据和 UERS 采用相同的预编码处理。

37. 根据权利要求 35 所述的装置，其特征在于，所述 E-PDCCH 所使用的传输方案为基于 2 或 4 个 UERS 端口的分集传输方案，数据进行发送分集方案相应的预编码处理，UERS 端口不进行预编码处理。

38. 根据权利要求 37 所述的装置，其特征在于，所述 E-PDCCH 所使用的传输方案为基于 2 个 UERS 端口的分集传输方案时，所述发送分集方案包括：空频分组编码 SFBC，或空时分组编码 STBC。

39. 根据权利要求 37 所述的装置，其特征在于，所述 E-PDCCH 所使用的传输方案为基于 4 个 UERS 端口的发送分集传输方案时，所述发送分集方案包括：空频分组编码 SFBC 联合频域切换发送分集 STBC。

40. 根据权利要求 36～39 中任意一项所述的装置，其特征在于，E-PDCCH 采用预设的 UERS 端口进行传输。

41. 根据权利要求 29 所述的装置，其特征在于，所述检测单元，用于根据如下方式获得 E-PDCCH 所使用的 UERS 的加扰序列：

UERS 的加扰序列的初始化序列仅与参数 N_{econd} 有关，其中 N_{econd} 为小区标识符或虚拟小区标识符。

42. 根据权利要求 29 所述的装置，其特征在于，E-PDCCH 传输的 PRB 内所包含的所有 UERS 端口数为相应 E-PDCCH 传输所使用的 UERS 端口数。

43. 一种增强的控制信道传输的装置，其特征在于，该装置包括：

发送单元，用于周期发送物理广播信道 PBCH 传输的主要信息块；

E-PDCCH 传输控制单元，用于按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输，同时，在搜索空间内传输的 E-PDCCH 相同的时频资源范围内发送 UERS 以支持 E-PDCCH 的解调。
44. 根据权利要求 43 所述的装置，其特征在于，在所述搜索空间内存在共享 UERS 的 PRB 内部不存在基于用户专属 UERS 进行解调的 E-PDCCH。
45. 根据权利要求 43 所述的装置，其特征在于，所述搜索空间内包括用于公共控制信息传输的 DCI 或用于用户专属数据传输的 DCI。
46. 根据权利要求 43 ～ 45 中任意一项所述的装置，其特征在于，所述搜索空间为公共搜索空间。
47. 根据权利要求 45 所述的装置，其特征在于，所述用于公共控制信息传输的 DCI 包括：SI-RNTI、P-RNTI、RA-RNTI、TPC-PUSCH-RNTI 或 TPC-PUCCH-RNTI 加扰的 DCI。
48. 根据权利要求 45 所述的装置，其特征在于，所述用于用户专属数据传输的 DCI 包括使用 C-RNTI、SPS-C-RNTI 或临时 C-RNTI 加扰的 DCI。
49. 根据权利要求 43 所述的装置，其特征在于，所述 E-PDCCH 所使用的传输方案根据如下方式确定：
 所述 E-PDCCH 采用预设的传输方案。
50. 根据权利要求 49 所述的装置，其特征在于，所述 E-PDCCH 所使用的传输方案为基于单个 UERS 端口的开环传输方案，数据与 UERS 采用相同的预编码处理。
51. 根据权利要求 49 所述的装置，其特征在于，所述 E-PDCCH 所使用的传输方案为基于 2 或 4 个 UERS 端口的发送分集传输方案，数据进行发送分集方案相应的预编码处理，UERS 端口不进行预编码处理。
52. 根据权利要求 51 所述的装置，其特征在于，所述 E-PDCCH 所使用的传输方案为基于 2 个 UERS 端口的发送分集传输方案时，所述发送分集方案包括：空频分组编码 SFBC，或空时分组编码 STBC。
53. 根据权利要求 51 所述的装置，其特征在于，所述 E-PDCCH 所使用的传输方案为基于 4 个 UERS 端口的发送分集传输方案时，所述发送分集方案包括：空频分组编码 SFBC，或联合频域切换发送分集 FSTD。
54. 根据权利要求 50 ～ 53 中任意一项所述的装置，其特征在于，E-PDCCH 采用预设的 UERS 端口进行传输。
55. 根据权利要求 43 所述的装置，其特征在于，E-PDCCH 传输控制单元根据如下方式获得 E-PDCCH 所使用的 UERS 的加扰序列：
 UERS 的加扰序列的初始化序列仅与参数 Nse 有关，其中 Nse 为小区 ID 或虚拟小区 ID。
56. 根据权利要求 43 所述的装置，其特征在于，E-PDCCH 传输的 PRB 内所包含的所有 UERS 端口数为相应 E-PDCCH 传输所使用的 UERS 端口数。
57. 一种增强的控制信道传输的系统，其特征在于，该系统包括：
 终端，用于在接收到物理广播信道 PBCH 传输的主信息块后，按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案在搜索空间内采用共享用户专属参考信号 UERS 进行盲检测；
 基站，用于周期发送物理广播信道 PBCH 传输的主信息块，并按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输，同时，在搜索空间内传输的 E-PDCCH 相同的频段资源范围内发送 UERS 以支持 E-PDCCH 的解调。
一种增强的控制信道传输的方法、装置及系统

技术领域
[0001] 本发明涉及通信技术领域，特别是指一种增强的控制信道传输的方法、装置及系统。

背景技术
[0002] 长期演进（Long Term Evolution, LTE）系统或其演进（LTE-Advanced, LTE-A）系统中，终端接收主同步信号（Primary Synchronous Signal，PSS）和辅同步信号（Secondary Synchronous Signal，SSS）后即可完成小区搜索，获得下行同步和小区标识符（ID）。在系统带宽的中心1.4MHz频段上接收物理广播信道（Physical Broadcast Channel，PBCH）上所传输的主信息块（Master Information Block，MIB）信息，从而读取系统带宽、系统标识和物理混合ARQ指示信道（Physical Hybrid ARQ Indicator Channel，PHICH）配置。基于系统带宽和小区ID即可确定物理控制格式指示信道（Physical Control Format Indicator Channel，PCFICH）的频域资源位置，从而接收控制格式指示（Control Format Indicator，CFI）确定PDCCH所占用的OFDM符号数，从而确定PDCCH所使用的时频资源。通过信道检测完成每个物理下行控制信道（Physical Downlink Control Channel, PDCCH）的具体时频资源位置，从而实现PDCCH接收，完成系统信息（SI, System Information）等高层信令调度信息读取和相应信息接收。

[0003] 传输PDCCH的控制区域是由逻辑划分的控制信道单元（Control Channel Element, CCE）构成的，其中CCE到资源单元（Resource Element, RE）的映射采用了完全交织的方式。下行控制信息（Downlink Control Information, DCI）的传输也是基于CCE为单位的，针对一个用户设备（User Equipment, UE）的一个DCI可以在N个连续的CCE中进行发送，在LTE系统中N的可能取值为1, 2, 4, 8，称为CCE聚合等级（Aggregation Level）。UE在控制区域内进行PDCCH接检测，搜索是否存在针对其发送的PDCCH，接检测（或简称为盲检）后使用该UE的无线网络临时标识符（Radio Network Temporary Identity, RNTI）对不同的DCI格式以及CCE聚合等级进行解码尝试，如果解码正确，则接收到针对该UE的DCI。LTE UE在非连续接收（Discontinuous Reception, DRX）状态中的每一个下行子帧都需要对控制区域进行盲检测，搜索PDCCH。

[0004] 为了达到扩充容量、频域干扰协调、获得多天线增益等目标，LTE版本11（Release 11, R11）将在物理下行共享信道（Physical Downlink Shared Channel, PDSCH）区域进行DCI传输，即，增强的PDCCH（Enhanced PDCCH, E-PDCCH）。一种解决方案是：保留原有PDCCH域的同时在下行子帧中的PDSCH域内发送增强的PDCCH。原有PDCCH域仍然采用现有的发送和接收技术，使用原有的PDCCH资源，这部分PDCCH域称为legacy PDCCH域。增强的PDCCH域可以使用更先进的发送和接收技术，如发送时采用预编码，接收时基于用户专属参考信号（UE-specific Reference Signal, UERS）进行检测，占用legacy PDCCH域以外的时频资源发送，使用原有的PDSCH的功率资源，与PDSCH通过频分的方式实现复用，这部分PDCCH域称为E-PDCCH域，具体参见图1所示。这种E-PDCCH与PDSCH通过频分（Frequency
Divided Multiplexing, FDM) 方式实现复用的方案称为 FDM E-PDCCH。

[0005] 目前，LTE-ARAN1 会议已经通过采用 UERS 端口 7 ～ 10 作为 E-PDCCH 的解调参考信号。然而，E-PDCCH 采用什么传输方案，如何使用这些 UERS 端口，终端如何知道用具体哪一个端口进行 E-PDCCH 解调，以及终端是否知道同一物理资源块（Physical Resource Block，
PRB）内其他端口所对应的 E-PDCCH 使用了哪些 UERS 端口等尚无定论。

[0006] 具体的，已有的 E-PDCCH 传输方案按其所使用的资源在频域上是否连续可以分为集中式（localized）和分散式（distributed），按是否使用信道状态信息（Channel State Information，CSI）分为闭环和开环，而开环方案中包括基于预编码的开环传输和基于发送分集的开环传输。各类传输方案所使用的 UERS 端口可以是 UERS 端口 7 ～ 10 中的一个或几个，同一 PRB 内根据所传输 DCI 和所使用方案的不同所包含的 UERS 端口数可以是一个或多个，最多不超过 4 个，在相应 UERS 加扰序列的初始化序列可能是与扰码标识符（Scrambling Identity，SCID）或用户专属的高层配置参数有关，以获得小区分裂或多用户传输增益。

[0007] 目前，E-PDCCH 既支持 localized 也支持 distributed，可能会同时支持闭环和开环的方案。具体使用哪种传输方案、传输方案所使用的 UERS 端口、UERS 加扰序列的初始化序列以及同一 PRB 内根据所传输 DCI 和所使用方案的不同所包含的 UERS 端口数可以是一个或多个等参数中的一个或多个需要通过高层信令进行通知。在同时存在 legacy PDCCH 和 E-PDCCH 的情况下，如果终端同时具备接收 PDCCH 和 E-PDCCH 的能力，则可以通过 PDCCH 完成系统信息和 E-PDCCH 配置相关的高层信令信息的调度和传输方案相关参数，从而保证 E-PDCCH 的传输和接收。将此类 E-PDCCH 称为 legacy PDCCH 的 E-PDCCH。

[0008] 一方面，随着机器类型通信（Machine Type Communication，MTC）业务的快速发展，传统传感器网络面临越来越多的局限性和挑战，急需将传感器网络和移动通信网络相结合，发挥移动通信覆盖广、可靠性高、传输延迟小等特点。为了满足 MTC 业务的需求，LTE/LTE-A 系统将考虑对系统和传输技术进行优化，以适应 MTC 终端支持更多的频段、更小的带宽宽度、更简单的多天线处理能力、更灵活的吞吐量能力和缓存能力、更简单的移动性，只支持包交换（Packet Switching，PS）域等特点。

[0009] 带宽受限的终端无法接收全带宽发送的 PDCCH，无法接收由 legacy PDCCH 上传输的 DCI，因此无法接收由 legacy PDCCH 调度的系统信息和高层信令信息，也就无法通过 legacy PDCCH 获得 E-PDCCH 配置相关的高层信令信息的调度和传输方案相关参数。显然，依赖 legacy PDCCH 的 E-PDCCH 技术无法实现对带宽受限 MTC 终端的支持。

[0010] 另一方面，为了提高频谱利用率和保证热点区域覆盖，考虑到非后向兼容载波在频谱效率提高、异构网络下的干扰抑制、能量节省等方面的优势，关于非后向兼容载波的新应用场景及详细设计方案将在 LTE-A R11 阶段得到进一步研究。扩展载波即一种非后向兼容的载波，在扩展载波上不存在 legacy PDCCH。同样的道理，依赖 legacy PDCCH 的 E-PDCCH 技术也无法支持此类载波独立于其他载波进行工作。

发明内容

[0011] 本发明提供一种增强的控制信道传输的方法、装置及系统，该方案可以解决由于带宽受限的 MTC 终端无法接收全带宽发送的 PDCCH 上传输的下行控制信息进而无法实现下行控制信道传输的技术问题。
[0012] 本发明实施例提供的一种增强的控制信道传输的方法，包括以下步骤：

[0013] 终端在接收到 PBCH 传输的主信息块后，按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案在搜索空间内采用共享用户专属参考信号 UERS 进行盲检测。

[0014] 本发明实施例提供的一种增强的控制信道传输的方法，包括以下步骤：

[0015] 网络侧周期发送物理广播信道 PBCH 传输的主信息块，并按照确定的 E-PDCCH 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输，同时，在搜索空间内传输的 E-PDCCH 相同的时频资源范围内发送共享 UERS 以支持 E-PDCCH 的解调。

[0016] 本发明实施例提供的一种增强的控制信道传输装置，包括：

[0017] 接收单元，用于接收到 PBCH 传输的主信息块；

[0018] 检测单元，用于接收到 PBCH 传输的主信息块后，按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案在搜索空间内采用共享用户专属参考信号 UERS 进行盲检测。

[0019] 本发明实施例提供的一种增强的控制信道传输装置，包括：

[0020] 发送单元，用于周期发送物理广播信道 PBCH 传输的主信息块；

[0021] E-PDCCH 传输控制单元，用于按照确定的 E-PDCCH 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输，同时，在搜索空间内传输的 E-PDCCH 相同的时频资源范围内发送共享 UERS 以支持 E-PDCCH 的解调。

[0022] 本发明实施例提供的一种增强的控制信道传输的系统，包括：

[0023] 终端，用于在接收到 PBCH 传输的主信息块后，按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案，在搜索空间内采用共享用户专属参考信号 UERS 进行盲检测。

[0024] 基站，用于周期发送物理广播信道 PBCH 传输的主信息块，并按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输，同时，在搜索空间内传输的 E-PDCCH 相同的时频资源范围内发送共享 UERS 以支持 E-PDCCH 的解调。

[0025] 本发明方案中，网络侧周期发送 PBCH 传输的主信息块，并按照确定的 E-PDCCH 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输，同时，在搜索空间内传输的 E-PDCCH 相同的时频资源范围内发送共享 UERS 以支持 E-PDCCH 的解调。终端在接收到 PBCH 传输的主信息块后，按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案在搜索空间内采用共享用户专属参考信号 UERS 进行盲检测，因此，带宽受限 MTC 终端可以不依赖 legacyPDCCH 的 E-PDCCH 技术，就可以实现在增强的下行控制信道进行接收 DCI。

附图说明

[0026] 图 1 为一种 E-PDCCH 结构示意图；
[0027] 图 2 为本发明实施例中一种增强的控制信道传输的系统的结构示意图；
[0028] 图 3 为本发明实施例中在网络侧实现的增强的控制信道传输的方法流程示意图；
[0029] 图 4 为本发明实施例中在终端侧实现的增强的控制信道传输的方法流程示意图；
[0030] 图 5 为本发明实施例中在网络侧实现的增强的控制信道传输的装置的结构示意图；
[0031] 图 6 为本发明实施例中在终端侧实现的增强的控制信道传输的装置的结构示意图。
具体实施方式
[0032] 参见图2所示，为了使得带宽受限MTC终端可以不依赖于Legacy PDCCH的E-PDCCH技术，就可以实现对增强的下行控制信道进行接收DCI。本发明实施例提供了一种增强的下行控制信道传输系统，该系统包括：网络侧21和终端22，其中，

[0033] 网络侧21周期发送PBCH传输的主信息块，并按照确定的E-PDCCH所使用的传输方案，在搜索空间内进行E-PDCCH的传输，同时，在搜索空间内传输的E-PDCCH相同的时频资源范围内发送共享UERS以支持E-PDCCH的解调。具体实现过程中，实现上述功能的网络侧可以是基站。

[0034] 终端22在接收到PBCH传输的主信息块后，按照确定的增强的物理下行控制信道E-PDCCH所使用的传输方案在搜索空间内采用共享用户专属参考信号UERS进行盲检测。

[0035] 在本实施例中，在所述搜索空间内存在共享UERS的PRB内部不允许存在基于用户专属UERS进行解调的E-PDCCH。所述搜索空间内可以包括用于公共控制信息传输的DCI或用于用户专属数据传输的DCI。这里，所述搜索空间可以为公共搜索空间，也可以是非公共搜索空间。

[0036] 所述用于公共控制信息传输的DCI包括：系统信息无线网络临时标识符(System Information-Radio Network Temporary Identifier, SI-RNTI)、寻呼RNTI(Paging-RNTI, P-RNTI)、随机接入RNTI(Random Access-RNTI, RA-RNTI)、发送功率控制物理上行共享信道RNTI(Transmit Power Control-Physical Uplink Shared Channel-RNTI, TPC-PUSCH-RNTI)或发送功率控制物理上行控制信道RNTI(Transmit Power Control-Physical Uplink Control Channel-RNTI, TPC-PUCCH-RNTI)的DCI。

[0037] 所述用于用户专属数据传输的DCI包括使用小区RNTI(Cell-RNTI,C-RNTI)、半持续调度C-RNTI(Semi-Persistent Scheduling C-RNTI, SPS-C-RNTI)或临时C-RNTI加扰的DCI。

[0038] 而且，为了更方便的确定E-PDCCH时频资源以及各种传输参数，所述E-PDCCH可以采用预设的传输方案。

[0039] 具体地，E-PDCCH所使用的传输方案为基于单个UERS端口的开环传输方案，数据和UERS采用相同的预编码处理。如，假设发送端只使用Nt根发送天线，将一个PRB范围内每个资源单元上层抽为1的E-PDCCH数据信号乘以一个Nt×1维的预编码矩阵，在E-PDCCH数据信号所使用的PRB范围内的一些UERS端口上的参考信号也进行与E-PDCCH数据信号完全相同的预编码处理，从而产生每根发送天线上的待发送信号。由于E-PDCCH数据信号和UERS采用了相同的处理，在接收端可以基于该UERS端口对E-PDCCH数据信号传输的等效信道进行估计，从而保证E-PDCCH的接收。

[0040] 具体地，E-PDCCH所使用的传输方案为基于2个UERS端口的发送分集传输方案，数据进行发送分集方案相应的预编码处理，UERS端口不进行预编码处理。进一步地，所述发送分集方案可以是空频分组编码(Space-Frequency Block Coding, SFBC)或空时分组编码(Space-Time Block Coding, STBC)等。如对于SFBC，可以采用LTE/LTE-A标准中2天线端口的发送分集的层映射完成对E-PDCCH数据信号的层映射，然后按照LTE/LTE-A标准中2天线端口发送分集的预编码方法完成对E-PDCCH数据信号的预编码处理，而在E-PDCCH数
据信号所使用的 PRB 范围内的 2 个 UERS 端口上的参考信号不进行任何预编码处理分别放置在不同的天线端口相应的资源单元上，从而得到 2 个天线端口上的数据信号。由于 UERS 未进行预编码处理，在接收端可以基于该 UERS 端口对 E-PDCCH 数据信号传输的空间信号进行估计，从而保证 E-PDCCH 的接收。

具体地，E-PDCCH 所使用的传输方案为基于 4 个 UERS 端口的发送分集传输方案，数据进行发送分集方案相应的预编码处理，UERS 端口不进行预编码处理。进一步地，所述发送分集方案可以是空间分组编码 (Space-Frequency Block Coding, SFBC) 联合频域切换发送分集 (Frequency Switched Transmit Divisity, FSTD)。如，采用 LTE/LTE-A 标准中 4 天线端口的发送分集的透射方法完成对 E-PDCCH 数据信号的透射，然后按照 LTE/LTE-A 标准中 4 天线端口发送分集的预编码方法完成对 E-PDCCH 数据信号的预编码处理，而在 E-PDCCH 数据信号所使用的 PRB 范围内的 4 个 UERS 端口上的参考信号不进行任何预编码处理分别放置在不同的天线端口相应的资源单元上，从而得到 4 个天线端口上的数据信号。由于 UERS 未进行预编码处理，在接收端可以基于该 UERS 端口对 E-PDCCH 数据信号传输的空间信号进行估计，从而保证 E-PDCCH 的接收。

具体地，E-PDCCH 所使用的传输方案也可以为基于共享 UERS 的空分复用传输方案，如采用 LTE/LTE-A 标准中大时延的开环空分复用方案。

E-PDCCH 所使用的 UERS 端口可以采用预设的 UERS 端口。比如，E-PDCCH 使用基于单个 UERS 端口的开环传输方案，所述单个 UERS 端口为 UERS 端口 7。E-PDCCH 使用基于 2 个 UERS 端口的发送分集传输方案，所述 2 个 UERS 端口为 UERS 端口 7 和端口 8。E-PDCCH 使用基于 2 个 UERS 端口的发送分集传输方案，所述 2 个 UERS 端口为 UERS 端口 7 和端口 9。E-PDCCH 使用基于 4 个 UERS 端口的发送分集传输方案，所述 4 个 UERS 端口为 UERS 端口 7、端口 8、端口 9 和端口 10。

E-PDCCH 传输的 PRB 内所包含的所有 UERS 端口数为相应 E-PDCCH 传输所使用的 UERS 端口数。

E-PDCCH 所使用的 UERS 的加扰序列根据如下方式获得：

UERS 的加扰序列的初始化序列仅与参数 N_{cell} 有关，其中 N_{cell} 为小区 ID 或虚拟小区 ID。

如，UERS 的加扰序采用 LTE/LTE-A 系统中 UERS 所使用的伪随机序列，不同之处在于该伪随机序列的初始化序列为 $c_{\text{cell}} = (n_{\text{cell}}/2 + 1) \cdot (2N_{\text{cell}} + 1) \cdot 2^{16}$，其中 n_{cell} 表示帧的时隙编号。具体由初始化序列 c_{cell} 得到相应伪随机序列的方法可以采用 LTE/LTE-A 标准中的方法。

在 LTE/LTE-A 标准中，网络侧可以通过向终端发送携带小区 ID 信息的同步信号 (包括 PSS 和 SSS) 的方法通知终端小区 ID，终端侧在接收同步信号的过程中即可获知小区 ID。

在具体实施中，网络侧和终端侧也可以采用与 LTE/LTE-A 系统中类似的方法传递虚拟小区 ID 信息，所述虚拟小区 ID 用于相同小区范围内不同的传输点。

见图 3 所示，本发明实施例在网络侧实现的增强的控制信号传输的方法包括以下步骤：

步骤 301：网络侧发送 PBCH 传输的主信息块；
步骤 302：按照确定的 E-PDCCH 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输，同时，在搜索空间内传输的 E-PDCCH 相同的时频资源范围内发送共享 UERS 以支持 E-PDCCH 的解调。

具体的 E-PDCCH 所使用的传输方案，以及搜索空间的各种实施例方式如上述系统中所述，这里不再赘述。

参见图 4 所示，本发明实施例在终端侧实现的增强的控制信道传输的方法包括以下步骤：

步骤 401：终端接收到 PBCH 传输的主信息块；

步骤 402：按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案在搜索空间内采用共享用户专属参考信号 UERS 进行连续检测。

具体的 E-PDCCH 所使用的传输方案，以及搜索空间的各种实施例方式如上述系统中所述，这里不再赘述。但是，无论采用上述何种实施例，网络侧和终端侧 E-PDCCH 所使用的传输方案是一致的，从而确保传输能正常进行。

参见图 5 所示，本发明实施例提供的在网络侧实现的增强的控制信道传输的装置，该装置包括：发送单元 51 和 E-PDCCH 传输控制单元 52。

发送单元 51，用于向 UERS 所对应的 PBCH 传输的主信息块；

E-PDCCH 传输控制单元 52，用于按照确定的增强的物理下行控制信道 E-PDCCH 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输，同时，在搜索空间内传输的 E-PDCCH 相同的时频资源范围内发送共享 UERS 以支持 E-PDCCH 的解调。

在搜索空间内存在共享 UERS 的 PRB 内部不存在基站专属 UERS 进行解调的 E-PDCCH。

所述搜索空间内包括用于公共控制信息传输的 DCI，或用于用户专属数据传输的 DCI。

所述搜索空间为公共搜索空间。

所述用于公共控制信息传输的 DCI 包括：S1-RNTI、P-RNTI、RA-RNTI、TPC-PUSCH-RNTI 或 TPC-PUCCH-RNTI 加扰的 DCI。

所述用于用户专属数据传输的 DCI 包括使用 C-RNTI、SPS-C-RNTI 或临时 C-RNTI 加扰的 DCI。

所述 E-PDCCH 采用预设的传输方案。

所述 E-PDCCH 所使用的传输方案为基于单个 UERS 端口的开环传输方案，数据和 UERS 采用相同的预编码处理。如，假设发送端使用 Nt 根发送天线，将一个 PRB 范围内每 8 资源单元上取数为 1 的 E-PDCCH 数据信号左乘一个 Nt×1 维的预编码矩阵，在 E-PDCCH 数据信号所使用的 PRB 范围内的一个 UERS 端口上的参考信号也进行与 E-PDCCH 数据信号完全相同的预编码处理，从而产生每根发送天线的待发送信号。由于 E-PDCCH 数据信号和 UERS 采用了相同的处理，在接收端可以基于该 UERS 端口对 E-PDDCH 数据信号传输的等效信道进行估计，从而保证 E-PDCCH 的接收。

所述 E-PDCCH 所使用的传输方案为基于 2 或 4 个 UERS 端口的发送分集传输方案，数据进行发送分集方案相应的预编码处理，UERS 端口不进行预编码处理。

所述 E-PDCCH 所使用的传输方案为基于 2 个 UERS 端口的发送分集传输方案时，所
述发送分集方案包括：空频分组编码 SFBC，或空时分组编码 STBC。如对于 SFBC，可以采用
LTE/LTE-A 标准中 2 天线端口的发送分集的层映射方法完成对 E-PDCCH 数据信号的层映射，
然后按照 LTE/LTE-A 标准中 2 天线端口发送分集的预编码方法完成对 E-PDCCH 数据信号的
预编码处理，而在 E-PDCCH 数据信号所使用的 PRB 范围内的 2 个 UERS 端口上的参考信号不
进行任何预编码处理分别放置在不同的天线端口相应的资源单元上，从而得到 2 个天线端
口上的数据信号。由于 UERS 未进行预编码处理，在接收端可以基于该 UERS 端口对 E-PDDCH
数据信号传输的空间信道进行估计，从而保证 E-PDCCH 的接收。

[0070] 所述 E-PDCCH 所使用的传输方案为基于 4 个 UERS 端口的发送分集传输方案时，所述
发送分集方案包括：空频分组编码 SFBC 联合频域切换发送分集 FSTD 的方案。如，采用
LTE/LTE-A 标准中 4 天线端口的发送分集的层映射方法完成对 E-PDCCH 数据信号的层映射，
然后按照 LTE/LTE-A 标准中 4 天线端口发送分集的预编码方法完成对 E-PDCCH 数据信号的
预编码处理，而在 E-PDCCH 数据信号所使用的 PRB 范围内的 4 个 UERS 端口上的参考信号不
进行任何预编码处理分别放置在不同的天线端口相应的资源单元上，从而得到 4 个天线端
口上的数据信号。由于 UERS 未进行预编码处理，在接收端可以基于该 UERS 端口对 E-PDDCH
数据信号传输的空间信道进行估计，从而保证 E-PDCCH 的接收。

[0071] 具体地，E-PDCCH 所使用的传输方案也可以为基于共享 UERS 的空分复用传输方
案，如采用 LTE/LTE-A 标准中大时延的开环空分复用方案。

[0072] E-PDCCH 采用预设的 UERS 端口进行传输。

[0073] E-PDCCH 传输控制单元根据如下方式获得 E-PDCCH 所使用的 UERS 的加扰序列：

[0074] UERS 的加扰序列的初始化序列仅与参数 N 有关，其中 N 为分区 ID 或虚拟分区 ID。

[0075] 如 ;UERS 的加扰序采用 LTE/LTE-A 系统中 UERS 所使用的伪随机序列，不同之处在
于该伪随机序列的初始化序列为 e_{n} = (n_{x}/2) \cdot (2^{N_{	ext{ref}} + 1}) - 2^{n_{y}} \cdot n_{z}，其中 n_{y} 表示一帧的时隙编
号。具体由初始化序列 e_{n} 计算得到相应的伪随机序列的方法可以采用 LTE/LTE-A 标准中的方
法。

[0076] E-PDCCH 传输控制单元，可以通过发送含有小区 ID 或虚拟小区 ID 的同步信号 (包
括 PSS 和 SSS) 的方法通知终端小区 ID，终端侧在接收同步信号的过程中即可获知小区 ID。
在具体实施中，网络侧和终端侧也可以采用与 LTE/LTE-A 系统中类似的方法传递虚拟小区
ID 信息，所述虚拟小区 ID 用于相同小区范围内不同的传输点。

[0077] E-PDCCH 传输的 PRB 内所包含的所有 UERS 端口数为相应 E-PDCCH 传输所使用的
UERS 端口数。

[0078] 参见图 6 所示，本发明实施例提供的终端侧实现的增强的控制信道传输装置，包
括：接收单元 61 和检测单元 62。其中，

[0079] 接收单元 61，用于接收到物理广播信道 PBCH 传输的主信息块；

[0080] 检测单元 62，用于接收到物理广播信道 PBCH 传输的主信息块后，按照确定的增强
的物理下行控制信道 E-PDCCH 所使用的传输方案在搜索空间内采用共享用户专属参考信
号 UERS 进行解调。

[0081] 在所述搜索空间内存在共享 UERS 的 PRB 内不存在基于用户专属 UERS 进行解调
的 E-PDCCH。
所述搜索空间内包括用于公共控制信息传输的 DCI 或用于用户数据传输的 DCI。所述搜索空间可以为公共搜索空间。

所述用于公共控制信息传输的 DCI 包括：S1-RNTI、P-RNTI、RA-RNTI、TPC-PUSCH-RNTI 或 TPC-PUCCH-RNTI 加扰的 DCI。

所述用于用户数据传输的 DCI 包括使用 C-RNTI、SRS-C-RNTI 或临时 C-RNTI 加扰的 DCI。

所述 E-PDCCH 采用预设的传输方案。

所述 E-PDCCH 所使用的传输方案为基于单个 UERS 端口的开环传输方案，数据和 UERS 采用相同的预编码处理。

所述 E-PDCCH 所使用的传输方案为基于 2 或 4 个 UERS 端口的发送分集传输方案，数据进行发送分集方案相应的预编码处理，UERS 端口不进行预编码处理。如，假设发送端使用 Nt 根发送天线，将一个 PRB 范围内每个资源单元单元上层数为 1 的 E-PDCCH 数据信号乘以一个 Nt × 1 维的预编码矩阵，在 E-PDCCH 数据信号所使用的 PRB 范围的一个 UERS 端口上的参考信号也进行与 E-PDCCH 数据信号完全相同的预编码处理，从而产生每根发送天线上的发送信号。由于 E-PDCCH 数据信号和 UERS 采用了相同的处理，在接收端可以基于该 UERS 端口对 E-PDCCH 数据信号传输的等效信道进行估计，从而保证 E-PDCCH 的接收。

所述 E-PDCCH 所使用的传输方案为基于 2 个 UERS 端口的发送分集传输方案时，所述发送分集方案包括：空频分组编码 SFBC，或空时分组编码 STBC。如对于 SFBC，可以采用 LTE/LTE-A 标准中 2 天线端口的发送分集的层映射方法完成对 E-PDCCH 数据信号的层映射，然后按照 LTE/LTE-A 标准中 2 天线端口发送分集的预编码方法完成对 E-PDCCH 数据信号的预编码处理，而在 E-PDCCH 数据信号所使用的 PRB 范围的 2 个 UERS 端口上的参考信号不进行任何预编码处理分别放置在不同的天线端口相应的资源单元上，从而得到 2 个天线端口的数据信号。由于 UERS 未进行预编码处理，在接收端可以基于该 UERS 端口对 E-PDCCH 数据信号传输的空间信道进行估计，从而保证 E-PDCCH 的接收。

所述 E-PDCCH 所使用的传输方案为基于 4 个 UERS 端口的发送分集传输方案时，所述发送分集方案包括：空频分组编码 SFBC 联合频域切换发送分集 FSTD。如，采用 LTE/LTE-A 标准中 4 天线端口的发送分集的层映射方法完成对 E-PDCCH 数据信号的层映射，然后按照 LTE/LTE-A 标准中 4 天线端口发送分集的预编码方法完成对 E-PDCCH 数据信号的预编码处理，而在 E-PDCCH 数据信号所使用的 PRB 范围的 4 个 UERS 端口上的参考信号不进行任何预编码处理分别放置在不同的天线端口相应的资源单元上，从而得到 4 个天线端口上的数据信号。由于 UERS 未进行预编码处理，在接收端可以基于该 UERS 端口对 E-PDCCH 数据信号传输的空间信道进行估计，从而保证 E-PDCCH 的接收。

具体地，E-PDCCH 所使用的传输方案也可以为基于共享 UERS 的空分复用传输方案，如采用 LTE/LTE-A 标准中大时延的开环空分复用方案。

E-PDCCH 采用预设的 UERS 端口进行传输。

所述检测单元，用于根据如下方式获得 E-PDCCH 所使用的 UERS 的加扰序列：

UERS 的加扰序列的初始化序列仅与参数 Nm 相关，其中 Nm 为小区 ID 或虚拟小区 ID。

如：UERS 的加扰序采用 LTE/LTE-A 系统中 UERS 所使用的伪随机序列，不同之处在
于该伪随机序列的初始化序列为 $c_{\text{init}} = (i_{\text{init}}^{(1)} + 1) \cdot (2^{N_{\text{init}}^{(1)} + 1} - 1) \cdot \ldots \cdot (i_{\text{init}}^{(m)} + 1) \cdot (2^{N_{\text{init}}^{(m)}} - 1)$，其中 i_{init} 表示一帧内的时隙编号。具体由初始化序列 c_{init} 得到相应伪随机序列的方法可以采用 LTE/LTE-A 标准中的方法。

[0095] 所述检测单元，用于在同步信号的接收过程中获得所述小区 ID 或虚拟小区 ID。

[0096] E-PDCCH 传输的 PRB 内所包含的所有 UERS 端口数为相应 E-PDCCH 传输所使用的 UERS 端口数。

[0097] 本发明方案中提出的一种增强的控制信道传输的方法、装置及系统，在本发明方案中，按照确定的增强的物理下行控制信道 (E-PDCCH) 所使用的传输方案，在搜索空间内进行 E-PDCCH 的传输时，同时在搜索空间内传输的 E-PDCCH 相同的时频资源范围内发送共享用户专属参考信号 (UERS) 以支持 E-PDCCH 的解调。终端在接收到 PBCH 传输的主信息块后，按照确定的 E-PDCCH 所使用的传输方案在搜索空间内采用共享 UERS 进行盲检测，使得终端在接收增强的控制信道时无需事先接收 legacy PDCCH 即可确定增强的控制信道所使用的传输方案，即，保证终端在接收到 PBCH 传输的 MIB 后即可确定增强的下行控制信道所使用的传输方案以及传输方案相关参数，从而通过盲检测技术实现不依赖 legacy PDCCH 的 DCI 的传输和接收。并且在存在共享 UERS 的 E-PDCCH 传输的 PRB 内不允许传输基于用户专属 UERS 进行解调的 E-PDCCH。

[0098] 显然，本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样，倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内，则本发明也意图包含这些改动和变型在内。
网络侧发送PBCH传输的主信息块

按照确定的E-PDCCH所使用的传输方案，在搜索空间内进行E-PDCCH的传输，同时，在搜索空间内传输的E-PDCCH相同的时频资源范围内发送共享UE的参考信号，UE通过此信号进行解调。

图3

终端接收到PBCH传输的主信息块；

按照确定的增强的物理下行控制信道E-PDCCH所使用的传输方案在搜索空间内采用共享用户的参考信号UERS进行解调。

图4

发送单元 51
E-PDCCH传输控制单元 52

图5
图 6