20057010632 A2 | IV 0 00 R A A

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

3 February 2005 (03.02.2005)

AT O OO O O

(10) International Publication Number

WO 2005/010632 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/EP2004/006547

(22) International Filing Date: 17 June 2004 (17.06.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
03013694.9
03015015.5

17 June 2003 (17.06.2003)
2 July 2003 (02.07.2003)

EP
EP
(71) Applicant (for all designated States except US): PACT
XPP TECHNOLOGIES AG [DE/DE]; Muthmannstrasse
1, 80939 Miinchen (DE).

(72)
(75)

Inventors; and

Inventors/Applicants (for US only): VORBACH, Mar-
tin [DE/DE]; Gotthardstrasse 117 a, 80689 Miinchen (DE).
WEINHARDT, Markus [DE/DE]; Westendstrasse 154,
80339 Miinchen (DE). BECKER, Jiirgen [DE/DE]; Ot-
tostrasse 10, 76744 Worth (DE).

(74) Agent: PIETRUK, Claus, Peter;
fein-Weg 5, D-76229 Karlsruhe (DE).

Heinrich-Lilien-

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: DATA PROCESSING DEVICE AND METHOD

(57) Abstract: A device comprising at least one unit with an instruction pipeline processing data in a sequential manner and an array
of configurable processing elements, wherein the array is coupled to the instruction pipeline. A method for coupling said unit and

said array.

WO 2005/010632 PCT/EP2004/006547

Titel: Data processing device and method

CONFIRMATION COPY

=

N

1

-3

WO 2005/010632
Executive Summary 6
Hardware 8
2.1 Design Parameter Changesoocuueuueerunsesnmssssssssessississesssssmssssssassssnstssssssssassssens 8
2.1.1 Pipelining, Concurrency and SynchroniCityc..ceceeeecrveereeccoricccvcncruennas 8
2.1.2 Core Frequency and the Memory Hierarchy.....ccccooeevvvrcncurcnnicesnicrccnncenen, 8
2.1.3 Software: Multitasking Operating SYStEMS ...ccoveeermrimrrsereniinseccsssmsnseecrecnes 9
2.2 Communication Between the RISC Core and the XPP Core.......coccvvevreicernnerenneee. 10
22,1 SHEAMING ..ccvrrererrrieecrireeesrrrrerasse et essesatasessesssuesessssesnsorsssesasosnasnsssassesanssssn 10
2.2.2 Shared Memory (Main MemOTY)....ccccsenemreeencernnssrerironsmerssesssnsssesssssseseons 10
2.2.3 Shared Memory (JRAM)......cccoceriirmrimnisnnnnrisnsisrsssseonismsnsasnseasssssssasseses 10
2.3 State of the XPP COTE ... st ssasssssssssssassssmsssssesssssssnns i1
2.3.1 Limiting Memory Traffic.....ccccocecnnevnrnninsnnciincriiirciiine et 12
2.4 ConteXt SWILChES.......imeiuiveiie ettt sttt nnes 12
24.1 SMT Virtual Processor SWItChcccovceceenrenrennenrmsisncsseenenessseresnnanens 13
2.4.2 Interrupt Service ROULIMEcoucreureerreriiernreercneeseneesssenintreescnesassasassnseessensene 13
243 Task SWIHCH. ccoerrieeeeecerre e 13
2.5 A Load Store ArchiteCture.......ocvueuenieieisiniesessrtessinsssssnssssessssssssssscsseasossnersssnnas 14
2.5.1 A Basic Implementationceeceveeeeiennecnennsnnicsnnenessnncsneeseeeseesaenns 15
2.5.2 Implementation IMPrOVEIMENLScoveveermirenierermmmniniriernncssensenssesnsssesnanae 19
2.5.3 Support for Data Distribution and Data Reorganization...........ccecesveveuncee. 20
2.6 Software / Hardware INterface........ccouriveiemeierininenctcet st 22
2.6.1 EXPIiCIt CACRE... .ottt ot ess e seas s assens 22
2.7 Another Implementation.....c.ccoeimerecremmmrensessiseisiessissess et esescessesans 24
2.7.1 Programming Model Changesccccceeeimrrvrrreeeecsenesrenerstorecassssecsesesessenns 26
2.7.2 Hiding Implementation Details.......ccueeeeeueneerrereeresrisessienccesenmensnsssscsesneneses 26
Program Optimizations 27
3.1 Code ANALYSIS....ecrerenirricrcrsrecnieernten ettt et s et 27
31,1 Dataflow ANAIYSIS...ueriieerrerrcriiieecninecsneastsnreeinrsisssseesasnsssasanesssacrsssscens 27
3.1.2 Data Dependence ANALYSIScccveeeeeerrveerenerneniessnseecsinesersesesassesonsosoncecsens 28
3.1.3 Interprocedural Alias AnalysiS.....ccoorvervreicetecninniericsienninesisscsssnesseneacenee 30
3.1.4 Interprocedural Value Range Analysiscccevecernvennienmevansnecsssnsinnscnnans 31
3.1.5 Alignment ANalySiscovuevurreinsserensntenssisensnesnssisssssssessssnesesessssseesassans 32
3.2 Code OptiMiZAtiOnSccevremerremsnnssmsassssssesenssssnnsssss st sssssrsssseasessasesssssisssssssnsse 33
3.2.1 General Transformationscceccseerseessmmssenmessassesssssisesmesssessessanserssessnsss 33
3.2.2 L0oOP TranSfOrMations..........oveveeeireeniveensenreresesissesssnsessessesssesssssssessssassenss 34
3.2.3 Data~Layout OptimiZations..........cceesrveccereeresrvoossorsrssmssessessssssasssessscansene 42
3.2.4 Example of Application of the Optimizationsccoceceeerererresceseecessncas 43

Compiler Specification for the PACT XPP

FNES
o

2

.:;

3

bS

INEOAUCHON c.ecvenieciri ettt sttt an
ComPIlEr SHUCIIIEcoorueeeririeriiiinnrcrernesrsrsecsamsisisssassessesssssesssreaasssanessssssarassons
4.2.]1 Code Preparation.......cccceeeiuivsieissirererssassssemssnsnisssssassnssmssssnssanaas SRR
422 PaTtitiONINE ..evevevereererersiseescsererssenssssssesessssssesssssssesssrsssssssssasassasns

4.2.3 RISC Code Generation and Scheduling

XPP Compiler for Loops.......cc...... .

4.3.1 Temporal Partitioningccccoeeenmiecrnmnmcsinesisiniinnssnisisnsnccsssnnssessssesenanes
4.3.2 Generation Of NML Code....c.cccouerreceerecsunersessesiinercsssunsenesiesscstasassenssssensases
4.3.3 MapDINE STEP.cccvirucrreerrreerrntesereneenstnrssseenst s ssstsssstnsssossasossressosessrrasenae
XPP Loop Optintizations DIIVELccveveeeceneerneresescensssssonemteasssssssssssssaesessasses
44.1 Organization of the SYSIEMccricrrenrinnisnnesiracsssssissnesaesesssssnssesssss
4,42 LOOP Preparation......ccocveereirieesreesansesseessenseseasssessssrescrsssscenssasnsasesessesensens

2

PCT/EP2004/006547

WO 2005/010632 PCT/EP2004/006547

4.4.4 Influence of the Architectural Parameters........ccceveeerverrereeereesesesnsseseernnas 53
4.4.5 Target Specific OptimiZationscccoevveerevrrceneeierereerereietesseeesesessrenseesiens 60
4.4.6 Memory OptMIZALIONScccivierceemecreiciirenietneesiee e eessneeserssonecnssnesens 63
4.4.7 Limiting the Execution Time of a Configuration..........ccecvveevreevcrrencrnrnens 64
Case Studies 65
5.1 INTOQUCHON e cer st isb b asess e sss s e ssssss st saan 65
3.2 CONVEMHONS . curiiernscisnrisinecten ittt st b e s s sme b ssss s e b ssae e nense 65
5.2.1 Configuration and IRAM NAMES......cceceecrererrrrresertrararersessessesesasssssassessensenne 65
5.2.2 ENWIANESS .coveuerireccereectrieeeiseineceseneteseresesserssressassessessraessvasssassessesasssnssssans 66
5.2.3 Predefined MOAUIESceevvrecereertrecrecmreeseesetnanee st sesesessassssssesesens 66
5.3 Performance Evaluation Procedurecovevemsienteuniccsicsscsenaccsvsmremrossensaeacs 67
5.3.1 Target Hardware PlatfOrmccoceeeeereceeninneninisennseeincessesssssessesssaesnens 67
5.3.2 Evaluation Procedure........ccoieeeiereerecrornncnreierinnenessseesassssssssessensessssessenes 69
5.4 3%3 Edge DEECIOT ..curuvruriieircrnintetctntes sttt tsn st s s sbesaesas 72
54,1 Original Code.......ovvuresirurnsierniniresiesssesssesisresseesesssssssessssssssssisssesssesesssns 72
5.4.2 Preliminary Transformationsccoeeeveerennrcrecvennreccnnrrenerenseerenseesseesene 72
5.4.3 Enhancing ParalleliSIccoceveerrncerrnnecreninnesiennsnssereressssosesessserenssssssansenns 74
5.4.4 FiINALCOAE..u.oouioerrretrercreecteieceesasstesestanccsnsssssssssssmsssssessssenssesessasesssssnsens 76
5.4.5 Performance EValuation.........cccveeecrrvenrerennvennrenrrsinsserssnssesssesecsessessnnes 78
5.4.6 Parameterized FUNCLIONccceeveeeereieceeeerccre v e rte e sese e saessnens 81
5.4.77 TransfOrMAtONScccvereeereriesceenrirsrereerresnessersesseessesenseeseeseessessessessesnssnsese 81
S48 FINAL COE..uuuioiriecririieerinreecsecertrteseseesasesasssssessssssssessnnssnsssssnensasssessesenes 82
5.4.9 Performance EValuation.......cccccceciereeceecneiirseeseesserenreeseesesssrasesesssssesssessenas 84
5.5 FIR FIEE ettt sttt sscssssesesesscsenrassenssssesessassssnssssnes 86
5.5.1 Original Code......cccoovreemmrrrrireerrereirienriserssssessssesaenssasseesassesesasssssssassesasanssan 86
5.5.2 Solution chosen by the cOMPIler......ccccueeenreeerrecererernerenierenerrseeerseeseesennns 87
5.5.3 A More Parallel SOIULIONc.ceveireetecieeecsreessiierereeesessecesseseassseesesscsnens 92
554 FINAL COUE...ccriiirreeeeiieereeinrie e ieetsseesesaresse e asss s sensasessssreneasnessssessaseane 98
5.5.5 Performance EValUation......ccoccveiicinsrecniecnnneennrenncensseseessssenasaesssessnns 99
5.5.6 Other VAriantcccoceeevereeeireeeseerieeeesrcsnnessesseseessessassesnsessesussessssssessessesses 101
5.6 Matrix MultipliCtionouorvieecciiriiciriiiini et sessssnesnees 102
5.6.1 Original Code......cuveuiimireistiereirenrcercsnnie st seresssasssae e nases 102
5.6.2 Preliminary TransfOrmationsccceeeerererensesessessesseasnssnesessesesessassessens 102
5.6.3 Loop Interchange for Cache Reuse.................. ettt st snas 103
5.6.4 Enhancing paralleliSm........coeiuerevivenerrerisencnnneniniineninesssenesescssensseoseseenes 106
5.6.5 FINAl COUE..ucriiiereccireecietrecestneietaetecnetesesensesesneassesssssesonsssesssevsnsesereen 107
5.6.6 Performance EValuation...........c.cciveuerrecrrrecnnrersseressnsssssssssonsarescsssssersnas 109
5.7 Viterbi ENCOUETovuererirerinet ettt st sse s s ssasssesssans 111
5.7.1 Original Cote.....cceerrrrrerreriererenieresecseeseneseessesessessssssnsssssenessesssensssasesenss 111
5.7.2 Interprocedural Optimizations and Scalar Transformationsccevnun. 112
5.7.3 Initialization and BUtterfly LoopD.....ceeceeveerresereeraesessssnsseraserssessssssseseanaes 113
5.7.4 Re-NOIMAlZAtiON: ...cccccverrrrecinsersnrernasesensssssrsseassessassesasssasssessesssanssasaanas 119
5.7.5 FiINAl COAC...cuvererirnierennecanneresiesseiessessesessesensersesseaessrsnssssnessssessesesessosans 124
5.7.6 Performance EValuation............cceveeeeereeerisesensercressesessenessssescaesernssesness 127
5.8 MPEG2 Codec - QUantizationc.cceuuiecrimnissensssiissenssssssssssssessssssssesnsanes 131
5.8.1 Original Code......ccocorverirrrerurieisireerarsresessrsssesessesesesesesssssssssrsssssssnssesesenes 131
5.8.2 Preliminary TransfOrmMAationscccveeeeeeeerrsrecnsunceensecesorscsssneseasmsessasnencaanes 132
5.8.3 Enhancing paralleliSm..........cceerieririeereerarererneresnsessnsessesesesssennes rerevenrenienn 134
5.8.4 FiINAL COR...cuorinrerenireicininenierestnresesessssensssessesesnesessnseseasrssassrssssssasasssensas 138
5.8.5 Performance EValUation........cccccevuverecrerurierrrervessosssesensessssescrssssasessasaes 140
5.9 MPEG2 codec —IDCT ...ttt sssesss s ssssss s ssssassenssies 143
5.9.1 Original Code (IACL.C) .vereerireerreeermrrererecesirrsssasesaeresenesssssssssssessassssssaseas 143
5.9.2 Enhancing XPP UliliZationcccceuvreeeceetrrireenrererenenssesessessssssessasssssssesesenes 147
5.9.3 NML Code GENEration ...cceoveeverrercrrrreeressensmessassssssssesssssesssesssssasssesnas 148
5.9.4 Architectural PArameLers.coccevirireeecrereressusrrencriessessessessseresssssssesnensenes 152
5.9.5 Example source code after transformations:ccceererecermrrrererceraenaena 153
5.9.6 Performance EValuation...........ccccucerreeetereeiesnerenuernsieressnnssssesssssssesaansssnnes 158

WO 2005/010632 PCT/EP2004/006547

5.10 WAVEIEL ...cooecvecen sttt st sssbnisss s e sb s ensssennees 160
5.10.1 Original Code.......ccerureunrermrerrieereesereneeeiree s esessesensserssssssesssesescnseeenses 160
5.10.2 Optimizing the Column Loop Nest.....cceeerueereeemrrreineeeriecreneeneseseseene 161
5.10.3 Optimizing the ROW LOOP NEStcveereeremeremerrrerereeresescescscssessssesessecsens 167
5.104 FINal €ode.....c.ccnereerrerieslernerereecsesessensesastenessseseasasssseessasssesssersssins 169
5.10.5 Performance EValugtion.........c.ccocvuieeeseeceereecnieeessseeeeecesseres s ssseesesnenees 173
5.1 CONCIUSION. ..ttt baes st tes 177
S.0L1 RAMBUS Width oottt recessescenssaereersscssesn s e 177
5.11.2 Use of the Cache Instead of Separate IRAMS....c.c.cceevveervineneercnreenne. 177
5113 Configuration SiZe........cccceceeeerrrrirsrerreernrerseneiesnsessssssneesssssessssnsnsesasesens 177
5.114 ALU/FREG/BREG Orthogonalitycceeerverererererensersrssessecsonnnes 177
5.11.5 Placement and Routing Improvementsc.cceoveveeeeeversenssersieneresernnnn 178
References 179

WO 2005/010632 PCT/EP2004/006547

1 Executive Summary

The study is concerned with three objectives:

1. Proposal of a hardware framework, which enables an efficient integration of the PACT XPP
core into a standard RISC processor architecture.

2. Proposal of a compiler for the coupled RISC+XPP hardware. This compiler decides
automatically which part of a source code is executed on the RISC processor and which part is
executed on the PACT XPP.

3. Presentation of a number of case studies demonstrating which results may be achieved by
using the proposed C Compiler in cooperation with the proposed hardware framework.

The proposed hardware framework accelerates the XPP core in two respects. First, data throughput is
increased by raising the XPP's internal operating frequency into the range of the RISC's frequency.
This, however, means that the XPP runs into the same pit like all high frequency processors -~ memory
accesses become very slow compared to processor internal computations. This is why the use of a
cache is proposed. It eases the memory access problem for a large range of algorithms, which are well
suited for an execution on the XPP. The cache as second throughput increasing feature requires a
controller. Hence a programmable cache controller is introduced, which manages the cache contents
and feeds the XPP core. It decouples the XPP core computations from the data transfer so that, for
instance, data preload to a specific cache sector takes place while the XPP is operating on data located
in a different cache sector.

Another problem emerging with a coupled RISC+XPP hardware is concerned with the RISC's
multitasking concept. It becomes necessary to interrupt computations on the XPP in order to perform a
task switch. Multitasking is supported by the proposed compiler, as well as by the proposed hardware.
First, each XPP configuration is considered as an uninterruptible entity. This means that the compiler,
which generates the configurations, takes care that the execution time of any configuration does not
exceed a predefined time slice. Second, the cache controller is concerned with the saving and restoring
of the XPP's state after an interrupt. The proposed cache concept minimizes the memory traffic for
interrupt handling and frequently even allows avoiding memory accesses at all.

Finally, the proposed cache concept is based on a simple IRAM cell structure allowing for an easy
scalability of the hardware - extending the XPP cache size, for instance, requires not much more than
the duplication of IRAM cells.

The study proposes a compiler for a RISC+XPP system. The objective of the compiler is that real-
world applications, which are written in the C language, can be compiled for a RISC+XPP system.
The compiler removes the necessity of developing NML code for the XPP by hand. It is possible,
instead, to implement algorithms in the C language or to directly use existing C applications without
much adaptation to the XPP system. The proposed compiler includes three major components to
perform the compilation process for the XPP:

1. partitioning of the C source code into RISC and XPP parts,
2. transformations to optimize the code for the XPP and

5

WO 2005/010632 PCT/EP2004/006547

3. generating NML code.
Finally the generated NML code is placed and routed for the XPP.

The partitioning component of the compiler decides which parts of an application code can be
executed on the XPP and which parts are executed on the RISC. Typical candidates for becoming XPP
code are loops with a large number of iterations whose loop bodies are dominated by arithmetic
operations. The remaining source code - including the data transfer code - is compiled for the RISC.

The proposed compiler transforms the XPP code such that it is optimized for NML code generation.
The transformations included in the compiler comprise a large number of loop transformations as well
as general code transformations. Together with data and code analysis the compiler restructures the
code so that it fits into the XPP array and that the final performance exceeds the pure RISC
performance. Finally the compiler generates NML code from the transformed program. The whole
compilation process is controlled by an optimization driver which selects the optimal order of
transformations based on the source code.

The case studies build a major aspect of the study. The selection of the examples is conducted by the
guiding principle that each example stands for a set of typical real-world applications. For each
example the study demonstrates the work of the proposed compiler. First the code is partitioned. The
code transformations, which are done by the compiler, are shown and explained. Some examples
require minor source code transformations which must be performed by hand. The study argues that
these transformations are either too expensive, or too specific to make sense to be included in the
proposed compiler. Dataflow graphs of the transformed codes are constructed for each example, which
are used by the compiler to generate the NML code. In addition the XPP resource usages are shown.

The case studies demonstrate that a compiler containing the proposed transformations can generate
efficient code from numerical applications for the XPP. This is possible because the compiler relies on
the features of the suggested hardware, like the cache controller.

WO 2005/010632 PCT/EP2004/006547

2 Hardware

2.1 Design Parameter Changes

Since the XPP core shall be integrated as a functional unit into a standard RISC core, some system
parameters have to be reconsidered:

2.1.1 Pipelining, Concurrency and Synchronicity

RISC instructions of totally different type (Ld/St, ALU, Mul/Div/MAC, FPALU, FPMul...) are
executed in separate specialized functional units to increase the fraction of silicon that is busy on
average. Such functional unit separation has led to superscalar RISC designs, that exploit higher levels
of parallelism. f

Each functional unit of a RISC core is highly pipelined to improve throughput. Pipelining overlaps the
execution of several instructions by splitting them into unrelated phases, which are executed in
different stages of the pipeline. Thus different stages of consecutive instructions can be executed in
parallel with each stage taking much less time to execute. This allows higher core frequencies.

Since the pipelines of all functional units are approximately subdivided into sub-operations of the
same size (execution time), these functional units / pipelines execute in a highly synchronous manner
with complex floating point pipelines being the exception.

Since the XPP core uses dataflow computation, it is pipelined by design. However, a single
configuration usually implements a loop of the application, so the configuration remains active for
many cycles, unlike the instructions in every other functional unit, which typically execute for one or
two cycles at most. Therefore it is still worthwhile to consider the separation of several phases (e.g.:
Ld / Ex / Store) of an XPP configuration (= XPP instruction) into several functional units to improve
concurrency via pipelining on this coarser scale. This also improves throughput and response time in
conjunction with multi tasking operations and implementations of simultaneous multithreading (SMT).

The multi cycle execution time also forbids a strongly synchronous execution scheme and rather leads
to an asynchronous scheme, like for e.g. floating point square root units. This in turn necessitates the
existence of explicit synchronization instructions.

2.1.2 Core Frequency and the Memory Hierarchy

As a functional unit, the XPP’s operating frequency will either be half of the core frequency or equal
to the core frequency of the RISC. Almost every RISC core currently on the market exceeds its
memory bus frequency with its core frequency by a larger factor. Therefore caches are employed,
forming what is commonly called the memory hierarchy: Each layer of cache is larger but slower than
its predecessors.

WO 2005/010632 PCT/EP2004/006547

This memory hierarchy does not help to speed up computations which shuffle large amounts of data,
with little or no data reuse. These computations are called “bounded by memory bandwidth”. However
other types of computations with more data locality (another name for data reuse) gain performance as
long as they fit into one of the upper layers of the memory hierarchy. This is the class of applications
that gain the highest speedups when a memory hierarchy is introduced.

Classical vectorization can be used to transform memory-bounded algorithms, with a data set too big
to fit into the upper layers of the memory hierarchy. Rewriting the code to reuse smaller data sets
sooner exposes memory reuse on a smaller scale. As the new data set size is chosen to fit into the
caches of the memory hierarchy, the algorithm is not memory bounded any more, yielding significant
speed-ups.

2.1.3 Software: Multitasking Operating Systems

As the XPP is introduced into a RISC core, the changed environment ~ higher frequency and the
memory hierarchy — not only necessitate reconsideration of hardware design parameters, but also a
reevaluation of the software environment.

Memory Hierarchy

The introduction of a memory hierarchy enhances the set of applications that can be implemented
efficiently. So far the XPP has mostly been used for algorithms that read their data sets in a linear
manner, applying some calculations in a pipelined fashion and writing the data back to memory. As
long as all of the computation fits into the XPP array, these algorithms are memory bounded. Typical
applications are filtering and audio signal processing in general.

But there is another set of algorithms, that have even higher computational complexity and higher
memory bandwidth requirements. Examples are picture and video processing, where a second and
third dimension of data coherence opens up. This coherence is e.g. exploited by picture and video
compression algorithms, that scan pictures in both dimensions to find similarities, even searching
consecutive pictures of a video stream for analogies. Naturally these algorithms have a much higher
algorithmic complexity as well as higher memory requirements. Yet they are data local, either by
design or they can be transformed to be, thus efficiently exploiting the memory hierarchy and the
higher clock frequencies of processors with memory hierarchies.

Multi Tasking

The introduction into a standard RISC core makes it necessary to understand and support the needs of
a multitasking operating system, as standard RISC processors are usually operated in multitasking
environments. With multitasking, the operating system switches the executed application on a regular
basis, thus simulating concurrent execution of several applications (tasks). To switch tasks, the
operating system has to save the state (i.e. the contents of all registers) of the running task and then
reload the state of another task. Hence it is necessary to determine what the state of the processor is,
and to keep it as small as possible to allow efficient context switches.

Modern microprocessors gain their performance from multiple specialized and deeply pipelined
functional units and high memory hierarchies, enabling high core frequencies. But high memory
hierarchies mean that there is a high penalty for cache misses due to the difference between core and
memory frequency. Many core cycles pass until the values are finally available from memory. Deep
pipelines incur pipeline stalls due to data dependences as well as branch penalties for mispredicted
conditional branches. Specialized functional units like floating point units idle for integer-only
programs. For these reasons, average functional unit utilization is much too low.

WO 2005/010632 PCT/EP2004/006547

The newest development with RISC processors, Simultaneous MultiThreading (SMT), adds hardware
support for a finer granularity (instruction / functional unit level) switching of tasks, exposing more
than one independent instruction stream to be executed. Thus, whenever one instruction stream stalls
or doesn’t utilize all functional units, the other one can jump in. This improves functional unit
utilization for today’s processors.

With SMT, the task (process) switching is done in hardware, so the processor state has to be
duplicated in hardware. So again it is most efficient to keep the state as small as possible. For the
combination of the PACT XPP and a standard RISC processor, SMT is very beneficial, since the XPP
configurations execute longer than the average RISC instruction. Thus another task can utilize the
other functional units, while a configuration is running. On the other side, not every task will utilize
the XPP, so while one such non-XPP task is running, another one will be able to use the XPP core.

2.2 Communication Between the RISC Core and the
XPP Core.

The following sections introduce several possible hardware implementations for accessing memory.

2.2.1 Streaming

Since streaming can only support (number_of_IO_ports * width_of _IO_port) bits per cycle, it is only
well suited for small XPP arrays with heavily pipelined configurations that feature few inputs and
outputs. As the pipelines take a long time to fill and empty while the running time of a configuration is
limited (as described under “context switches™), this type of communication does not scale well to
bigger XPP arrays and XPP frequencies near the RISC core frequency.

* Streaming from the RISC core

In this setup, the RISC supplies the XPP array with the streaming data. Since the RISC core
has to execute several instructions to compute addresses and load an item from memory, this
setup is only suited, if the XPP core is reading data with a frequency much lower than the
RISC core frequency.

® Streaming via DMA

In this mode the RISC core only initializes a DMA channel which then supplies the data items
to the streaming port of the XPP core.

2.2.2 Shared Memory (Main Memory)

In this configuration the XPP array configuration uses a number of PAEs to generate an address that is
used to access main memory through the IO ports. As the number of IO ports is very limited this
approach suffers from the same limitations as the previous one, although for larger XPP arrays the
impact of using PAEs for address generation is diminishing. However this approach is still useful for
loading values from very sparse vectors.

-2.2.3 Shared Memory (IRAM)

This data access mechanism uses the IRAM elements to store data for local computations. The IRAMs
can either be viewed as vector registers or as local copies of main memory.

9

WO 2005/010632 PCT/EP2004/006547

There are several ways to fill the IRAMs with data.

1.

The IRAMs are loaded in advance by a separate configuration using streaming.

This method can be implemented with.the current XPP architecture. The IRAMs act as vector
registers. As explicated above, this will limit the performance of the XPP array, especially as
the IRAMs will always be part of the externally visible state and hence must be saved and
restored on context switches.

The IRAMs can be loaded in advance by separate load-instructions.

This is similar to the first method. Load-instructions which load the data into the IRAMs are
implemented in hardware. The load-instructions can be viewed as hard coded load-
configuration. Therefore configuration reloads are reduced. Additionally, the special load
instructions may use a wider interface to the memory hierarchy.

Therefore a more efficient method than streaming can be used.

The IRAMs can be loaded by-a “burst preload from memory” instruction of the cache
controller. No configuration or load-instruction is needed on the XPP. The IRAM load is
implemented in the cache controller and triggered by the RISC processor. But the IRAMs still
act as vector registers and are therefore included in the externally visible state.

The best mode however is a combination of the previous solutions with the extension of a
cache:

A preload instruction maps a specific memory area defined by starting address and size to an
IRAM. This triggers a (delayed, low priority) burst load from the memory hierarchy (cache).
After all IRAMs are mapped, the next configuration can be activated. The activation incurs a
wait until all burst loads are completed. However, if the preload instructions are issued long
enough in advance and no interrupt or task switch destroys cache locality, the wait will not
consume any time.

To specify a memory block as output-only IRAM, a “preload clean” instruction is used, which
avoids loading data from memory. The "preload clean" instruction just defines the IRAM for
write-back.

A synchronization instruction is needed to make sure that the content of a specific memory
area, which is cached in IRAM, is written back to the memory hierarchy. This can be done
globally (full write-back), or selectively by specifying the memory area, which will be
accessed.

2.3 State of the XPP Core

As described in the previous section, the size of the state is crucial for the efficiency of context
switches. However, although the size of the state is fixed for the XPP core, it depends on the
declaration of the various state elements, whether they have to be saved or not.

The state of the XPP core can be classified as

1 Read only (instruction data)

configuration data, consisting of PAE configuration and routing configuration data

2 Read — Write

the contents of the data registers and latches of the PAESs, which are driven onto the busses
the contents of the IRAM elements

10

WO 2005/010632 PCT/EP2004/006547

2.3.1 Limiting Memory Traffic

There are several possibilities to limit the amount of memory traffic during context switches.

Do not save read-only data

This avoids storing configuration data, since configuration data is read only. The current configuration
is simply overwritten by the new one.

Save less data

If a configuration is defined to be uninterruptible (non pre-emptive), all of the local state on the busses
and in the PAEs can be declared as scratch. This means that every configuration gets its input data
from the IRAMs and writes its output data to the IRAMs. So after the configuration has finished all
information in the PAEs and on the buses is redundant or invalid and does not have to be saved.

Save modified data only

To reduce the amount of R/W data, which has to be saved, we need to keep track of the modification
state of the different entities. This incurs a silicon area penalty for the additional “dirty” bits.

Use caching to reduce the memory traffic

The configuration manager handles manual preloading of configurations. Preloading will help in
parallelizing the memory transfers with other computations during the task switch. This cache can also
reduce the memory traffic for frequent context switches, provided that a Least Recently Used (LRU)
replacement strategy is implemented in addition to the preload mechanism.

The IRAM:s can be defined to be local cache copies of main memory as proposed as fourth method in
section 2.2.3. Then each IRAM is associated with a starting address and modification state
information. The IRAM memory cells are replicated. An IRAM PAE contains an IRAM block with
multiple IRAM instances. Only the starting addresses of the IRAMs have to be saved and restored as
context. The starting addresses for the IRAMs of the current configuration select the IRAM instances
with identical addresses to be used.

If no address tag of an IRAM instance matches the address of the newly loaded context, the
corresponding memory area is loaded to an empty IRAM instance.

If no empty IRAM instance is available, a clean (unmodified) instance is declared empty (and hence
must be reloaded later on).

If no clean IRAM instance is available, a modified (dirty) instance is cleaned by writing its data back
to main memory. This adds a certain delay for the write-back.

This delay can be avoided, ifa separate state machine (cache controller) tries fo clean inactive IRAM
instances by using unused memory cycles to write-back the IRAM instances’ contents.

2.4 Context Switches

Usually a processor is viewed as executing a single stream of instructions. But today’s multi tasking
operating systems support hundreds of tasks being executed on a single processor. This is achieved by
switching contexts, where all, or at least the most relevant parts of the processor state, which belong to

11

WO 2005/010632 PCT/EP2004/006547

the current task — the task’s context — is exchanged with the state of another task, that will be executed
next.

There are three types of context switches: switching of virtual processors with simultaneous
multithreading (SMT, also known as HyperThreading), execution of an Interrupt Service Routine
(ISR).and a Task Switch.

2.4.1 SMT Virtual Processor Switch

This type of context switch is executed without software interaction, totally in hardware. Instructions
of several instruction streams are merged into a single instruction stream to increase instruction level
parallelism and improve functional unit utilization. Hence the processor state cannot be stored to and
reloaded from memory between instructions from different instruction streams: Imagine the worst case
of alternating instructions from two streams and the hundreds to thousand of cycles needed to write the
processor state to memory and read in-another state.

Hence hardware designers have to replicate the internal state for every virtual processor. Every
instruction is executed within the context (on the state) of the virtual processor, whose program
counter was used to fetch the instruction. By replicating the state, only the multiplexers, which have to
be inserted to select one of the different states, have to be switched.

Thus the size of the state also increases the silicon area needed to implement SMT, so the size of the
state is crucial for many design decisions.

2.4.2 Interrupt Service Routine

This type of context switch is handled partially by hardware and partially by software. All of the state
modified by the ISR has to be saved on entry and must be restored on exit.

The part of the state, which is destroyed by the jump to the ISR, is saved by hardware (e.g. the
program counter). It is the ISR’s responsibility to save and restore the state of all other resources, that
are actually used within the ISR.

The more state information to be saved, the slower the interrupt response time will be and the greater
the performance impact will be if external events trigger interrupts at a high rate.

The execution model of the instructions will also affect the tradeoff between short interrupt latencies
and maximum throughput: Throughput is maximized if the instructions in the pipeline are finished,
and the instructions of the ISR are chained. This adversely affects the interrupt latency. If, however,
the instructions are abandoned (pre-empted) in favor of a short interrupt latency, they must be fetched
again later, which affects throughput. The third possibility would be to save the internal state of the
instructions within the pipeline, but this requires too much hardware effort. Usually this is not done.

2.4.3 Task Switch

This type of context switch is executed totally in software. All of a task’s context (state) has to be
saved to memory, and the context of the new task has to be reloaded. Since tasks are usually allowed
to use all of the processor’s resources to achieve top performance, all of the processor state has to be
saved and restored. If the amount of state is excessive, the rate of context switches must be decreased
by less frequent rescheduling, or a severe throughput degradation will result, as most of the time will
be spent in saving and restoring task contexts. This in turn increases the response time for the tasks.

12

WO 2005/010632 PCT/EP2004/006547

2.5 A Load Store Architecture

We propose an XPP integration as an asynchronously pipelined functional unit for the RISC. We
further propose an explicitly preloaded cache for the IRAMs, on top of the memory hierarchy existing
within the RISC (as proposed as fourth method in section 2.2.3). Additionally a de-centralized
explicitly preloaded configuration cache within the PAE array is employed to support preloading of
configurations and fast switching between configurations.

Since the IRAM content is an explicitly preloaded memory area, a virtually unlimited number of such
IRAMs can be used. They are identified by their memory address and their size. The IRAM content is
explicitly preloaded by the application. Caching will increase performance by reusing data from the
memory hierarchy. The cached operation also eliminates the need for explicit store instructions; they
are handled implicitly by cache write-back operations but can also be forced for synchronization.

The pipeline stages of the XPP functional unit are Load, Execute and Write-back (Store). The store is
executed delayed as a cache write-back. The pipeline stages execute in an asynchronous fashion, thus
hiding the variable delays from the cache preloads and the PAE array.

The XPP functional unit is decoupled of the RISC by a FIFO, which is fed with the XPP instructions.
At the head of this FIFO, the XPP PAE consumes and executes the configurations and the preloaded
IRAMs. Synchronization of the XPP and the RISC is done explicitly by a synchronization instruction.

Instructions

In the following we define the instruction formats needed for the proposed architecture. We use a C
style prototype definition to specify data types. All instructions, except the XppSync instruction
execute asynchronously. The XppSync instruction can be used to force synchronization.

XppPreloadConfig (void *ConfigurationStartAddress)

The configuration is added to the preload FIFO to be loaded into the configuration cache within the
PAE array.

Note that speculative preloads are possible, since successive preload commands overwrite the
previous.

The parameter is a pointer register of the RISC pointer register file. The size is implicitly contained in
the configuration.

XppPreload (int IRAM, void *StartAddress, int Size)
XppPreloadClean (int IRAM, void *StartAddress, int Size)

This instruction specifies the contents of the IRAM for the next configuration execution. In fact, the
memory area is added to the preload FIFO to be loaded into the specified IRAM.

The first parameter is the IRAM number. This is an immediate (constant) value.

The second parameter is a pointer to the starting address. This parameter is provided in a pointer
register of the RISC pointer register file.

The third parameter is the size in units of 32 bit words. This is an integer value. It resides in a general-
purpose register of the RISC’s integer register file.

The first variant actually preloads the data from memory.

The second variant is for write-only accesses. It skips the loading operation. Thus no cache misses can
occur for this IRAM. Only the address and size are defined. They are obviously needed for the write-
back operation of the IRAM cache.

13

WO 2005/010632 PCT/EP2004/006547

Note that speculative preloads are possible, since successive preload commands to the same IRAM
overwrite each other (if no configuration is executed in between). Thus only the last preload command
is actually effective, when the configuration is executed.

XppExecute ()

This instruction executes the last preloaded configuration with the last preloaded IRAM contents.
Actually a configuration start command is issued to the FIFO. Then the FIFO is advanced; this means
that further preload commands will specify the next configuration or parameters for the next
configuration. Whenever a configuration finishes, the next one is consumed from the head of the
FIFO, if its start command has already been issued.

XppSync (void *StartAddress, int Size)
This instruction forces write-back operations for all IRAMs that overlap the given memory area.

The first parameter is a pointer to the starting address. This parameter is provided in a pointer register
of the RISC pointer register file.

The second parameter is the size. This is an integer value. It resides in a general-purpose register of the
RISC’s integer register file.

If overlapping IRAMs are still in use by a configuration or preloaded to be used, this operation will
block. Giving an address of NULL (zero) and a size of MAX_INT (bigger than the actual memory),
this instruction can also be used to wait until all issued configurations finish.

Giving a size of zero can be used as a simple wait for the end of the configuration.

XppSave (void *StartAddress)

This instruction saves the task context of the XPP to the given memory area.

The parameter is a pointer to the starting address. This parameter is provided in a pointer register of
the RISC pointer register file.

The size depends on the actual implementation of the XPP. However, only the task scheduler of the
operating system will use this instruction. So this is a usual limitation.

XppRestore (void *StartAddress)

This instruction restores the task context of the XPP from the given memory area.

The parameter is a pointer to the starting address. This parameter is provided in a pointer register of
the RISC pointer register file.

The size depends on the actual implementation of the XPP. However, only the task scheduler of the
operating system will use this instruction. So this is a usual limitation.

2.5.1 A Basic Implementation

14

WO 2005/010632 PCT/EP2004/006547

instructions

Figure 1: Memory interface

The XPP core shares the memory hierarchy with the RISC core using a special cache controller.

.

XPPPreloadConfig(__XppCfg_foo);

for (int i=0; i <1000; ++i) {
XPPPreload(2, &a[i*30],30);
XPPPreload(0, &b[i*200], 200);
XPPPreloadClean(5, &c[i*10], 10);
XPPExecute();

/*
Other RISC computations ...
In the meanwhile the burst preloads and
the previous configuration are running;
The new configuration is executed as soon
as the preloads and the previous
configuration are finished.
New burst preloads can be issued
according to the FIFO length.

*/

) Writeback

Note: in all places where constants are used,

the value should actually come from a register

Cache w/

Legend:
per thread state resource
‘volatile (nopestate) resource

volatile read only resource

Figure 2 IRAM & configuration cache controller data structures and usage example

The preload-FIFOs in the above figure contain the addresses and sizes for already issued IRAM
preloads, exposing them to the XPP cache controller. The FIFOs have to be duplicated for every
virtual processor in an SMT environment. Tag is the typical tag for a cache line containing starting
address, size and state (empty / clean / dirty / in-use). The additional in-use state signals usage by the
current configuration. The cache controller cannot manipulate these IRAM instances.

The execute configuration command advances all preload FIFOs, copying the old state to the newly
created entry. This way the following preloads replace the previously used IRAMs and configurations.

15

WO 2005/010632 PCT/EP2004/006547

If no preload is issued for an IRAM before the configuration is executed, the preload of the previous
configuration is retained. Therefore it is not necessary to repeat identical preloads for an IRAM in
consecutive configurations.

instructions

Data Cfg
Ld-FIFO

EEEEEIEEIEE

XPP units

Figure 3: Asynchronous pipeline of the XPP

Each configuration’s execute command has to be delayed (stalled) until all necessary preloads are
finished, either explicitly by the use of a synchronization command or implicitly by the cache
controller. Hence the cache controller (XPP Ld/St unit) has to handle the synchronization and execute
commands as well, actually starting the configuration as soon as all data is ready. After the termination
of the configuration, dirty IRAMs are written back to memory as soon as possible, if their content is
not reused in the same IRAM. Therefore the XPP PAE array and the XPP cache controller can be seen
as a single unit since they do not have different instruction streams: rather, the cache controller can be
seen as the configuration fetch (CF), operand fetch (OF) (IRAM preload) and write-back (WB) stage
of the XPP pipeline, also triggering the execute stage (EX) (PAE array).

Due to the long latencies, and their non-predictability (cache misses, variable length configurations),
the stages can be overlapped several configurations wide using the configuration and data preload
FIFO (=pipeline) for loose coupling. So if a configuration is executing and the data for the next has
already been preloaded, the data for the next but one configuration is preloaded. These preloads can be
speculative; the amount of speculation is the compiler’s trade-off. The reasonable length of the preload
FIFO can be several configurations; it is limited by diminishing returns, algorithm properties, the
compiler’s ability to schedule preloads early and by silicon usage due to the IRAM duplication factor,
which has to be at least as big as the FIFO length. Due to this loosely coupled operation, the
interlocking - to avoid data hazards between IRAMs - cannot be done optimally by software
(scheduling), but has to be enforced by hardware (hardware interlocking). Hence the XPP cache
controller and the XPP PAE array can be seen as separate but not totally independent functional units.

16

WO 2005/010632 PCT/EP2004/006547

Hardware
. configuration
all write backs blocked wait finished execute preload needed
by in-use IRAMs urgently

all preloads blocked by
dirty or in-use IRAMs

h

write back preload

no clean
IRAM instance

no empty
IRAM instance

discard LRU
clean IRAM |

Figure 4: State transition diagram for the XPP cache controller

The XPP cache controller has several tasks. These are depicted as states in the above diagram. State
transitions take place along the edges between states, whenever the condition for the edge is true. As
soon as the condition is not true any more, the reverse state transition takes place. The activities for the
states are as follows:

At the lowest priority, the XPP cache controller has to fulfill already issued preload commands, while
writing back dirty IRAMs as soon as possible.

As soon as a configuration finishes, the next configuration can be started. This is a more urgent task
than write-backs or future preloads. To be able to do that, all associated yet unsatisfied preloads have
to be finished first. Thus they are preloaded with the high priority inherited from the execute state.

A preload in turn can be blocked by an overlapping in-use or dirty IRAM instance in a different block
or by the lack of empty IRAM instances in the target IRAM block. The former can be resolved by
waiting for the configuration to finish and / or by a write-back. To resolve the latter, the least recently
used clean IRAM can be discarded, thus becoming empty. If no empty or clean IRAM instance exists,

a dirty one has to be written back to the memory hlerarchy It cannot occur that no empty, clean or .
dirty IRAM instances exist, since only ongsinstas a«be in-use and there should be more than one
instance in an IRAM block — otherwise nodibﬁtﬁ@@ff&ﬂ s achieved.

Figure 5: Addngiﬂiﬁﬂmﬁou s multithreading
| of virtual
Iprocessors
s 0-n

Tl*: instruction fetch / reorder /1 issue TF|
]]) - . It || e] E
Fi CF

X : | t
il prog Ld /’St | . 5 X
W unit ! € ¢ Nl
B cache ctrl #=% cache ctrl i '
B =i (e
}-l-I-SC functional units i ‘ XPP units —

Meémory inferface g | &

17

WO 2005/010632 PCT/EP2004/006547

In an SMT environment the load FIFOs have to be replicated for every virtual processor. The pipelines
of the functional units are fed from the shared fetch / reorder / issue stage. All functional units execute
in parallel. Different units can execute instructions of different virtual processors.

So we get the following design parameters with their smallest initial value:

IRAM length: 128 words
The longer the IRAM length, the longer the running time of the configuration and the less
influence the pipeline startup has.

FIFO length: 1
This parameter helps to hide cache misses during preloading: The longer the FIFO length, the
less disruptive is a series of cache misses for a single configuration.

IRAM duplication factor: (pipeline stages + caching factor)*virtual processors: 3
Pipeline stages is the number of pipeline stages LD/EX/WB plus one for every FIFO stage
above one: 3
Caching factor is the number of IRAM duplicates available for caching: 0
Virtual processors is the number of virtual processors with SMT: 1

The size of the state of a virtual processor is mainly dependent on the FIFO length. It is:
FIFO length * #IRAM ports * (32 bit (Address) + 32 bit (Size)) ‘

This has to be replicated for every virtual processor.

The total size of memory used for the IRAMs is:
#IRAM ports * IRAM duplication factor* IRAM length * 32 bit

A first implementation will probably keep close to the above-stated minimum parameters, using a
FIFO length of one, an IRAM duplication factor of four, an IRAM length of 128 and no simultaneous
multithreading.

2.5.2 Implementation Improvements

Write Pointer

To further decrease the penalty for unloaded IRAMs, a simple write pointer may be used per IRAM,
which keeps track of the last address already in the IRAM. Thus no stall is required, unless an access
beyond this write pointer is encountered. This is especially useful, if all IRAMs have to be reloaded
after a task switch: The delay to the configuration start can be much shorter, especially, if the preload
engine of the cache controller chooses the blocking IRAM next whenever several IRAMs need further
loading.

Longer FIFOs

The frequency at the bottom of the memory hierarchy (main memory) cannot be raised to the same
extent as the frequency of the CPU core. To increase the concurrency between the RISC core and the
PACT XPP core, the prefetch FIFOs in the above drawing can be extended. Thus the IRAM contents
for several configurations can be preloaded, like the configurations themselves. A simple convention
makes clear which IRAM preloads belong to which configuration: the configuration execute switches
to the next configuration context. This can be accomplished by advancing the FIFO write pointer with
every configuration execute, while leaving it unchanged after every preload. Unassigned IRAM FIFO
entries keep their contents from the previous configuration, so every succeeding configuration will use
the preceding configuration’s IRAMX if no different IRAMx was preloaded.

18

WO 2005/010632 PCT/EP2004/006547

If none of the memory areas to be copied to IRAMs is in any cache, extending the FIFOs does not
help, as the memory is the bottleneck. So the cache size should be adjusted together with the FIFO
length.

A drawback of extending the FIFO length is the increased likelihood that the IRAM content written by
an earlier configuration is reused by a later one in another IRAM. A cache coherence protocol can
clear the situation. Note however that the situation can be resolved more easily: If an overlap between
any new IRAM area and a currently dirty IRAM contents of another IRAM bank is detected, the new
IRAM is simply not loaded until the write-back of the changed IRAM has finished. Thus the execution
of the new configuration is delayed until the correct data is available.

For a short (single entry) FIFO, an overlap is extremely unlikely, since the compiler will usually leave
the output IRAM contents of the previous configuration in place for the next configuration to skip the
preload. The compiler does so using a coalescing algorithm for the IRAMs / vector registers. The
coalescing algorithm is the same as used for register coalescing in register allocation.

Read Only IRAMs

Whenever the memory, that is used by the executing configuration, is the source of a preload
command for another IRAM, an XPP pipeline stall occurs: The preload can only be started, when the
configuration has finished, and — if the content was modified — the memory content has been written to
the cache. To decrease the number of pipeline stalls, it is beneficial to add an additional read-only
IRAM state. If the IRAM is read only, the content cannot be changed, and the preload of the data to
the other IRAM can proceed without delay. This requires an extension to the preload instructions: The
XppPreload and the XppPreloadClean instruction formats can be combined to a single instruction
format, that has two additional bits, stating whether the IRAM will be read and/or written. To support
debugging, violations should be checked at the IRAM ports, raising an exception when needed

2.5.3 Support for Data Distribution and Data Reorganization

The IRAMs are block-oriented structures, which can be read in any order by the PAE array. However,
the address generation adds complexity, reducing the number of PAEs available for the actual
computation. So it is best, if the IRAMs are accessed in linear order. The memory hierarchy is block
oriented as well, further encouraging linear access patterns in the code to avoid cache misses.

As the IRAM read ports limit the bandwidth between each IRAM and the PAE array to one word read
per cycle, it can be beneficial to distribute the data over several IRAMs to remove this bottleneck. The
top of the memory hierarchy is the source of the data, so the amount of cache misses never increases
when the access pattern is changed, as long as the data locality is not destroyed.

Many algorithms access memory in linear order by definition to utilize block reading and simple
address calculations. In most other cases and in the cases where loop tiling is needed to increase the
data bandwidth between the IRAMs and the PAE array, the code can be transformed in a way that data
is accessed in optimal order. In many of the remaining cases, the compiler can modify the access
pattern by data layout rearrangements (e.g. array merging), so that finally the data is accessed in the
desired pattern. If none of these optimizations can be used because of dependences, or because the data
layout is fixed, there are still two possibilities to improve performance:

Data Duplication

Data is duplicated in several IRAMs. This circumvents the IRAM read port bottleneck, allowing
several data items to be read from the input every cycle.

19

WO 2005/010632 PCT/EP2004/006547

Several options are possible with a common drawback: data duplication can only be applied to input
data: output IRAMs obviously cannot have overlapping address ranges.

o} Using several IRAM preload commands specifying just different target [RAMs:

This way cache misses occur only for the first preload. All other preloads will take place without
cache misses — only the time to transfer the data from the top of the memory hierarchy to the
IRAMs is needed for every additional load. This is only beneficial, if the cache misses plus the
additional transfer times do not exceed the execution time for the configuration.

o Using an IRAM preload instruction to load multiple IRAMs concurrently:

As identical data is needed in several IRAMs, they can be loaded concurrently by writing the
same values to all of them. This amounts to finding a clean IRAM instance for every target
IRAM, connecting them all to the bus and writing the data to the bus.
The problem with this instruction is that it requires a bigger immediate field for the destination
(16 bits instead of 4 for the XPP 64). Accordingly this instruction format grows at a higher rate,
when the number of IRAMs is increased for bigger XPP arrays.

The interface of this instruction looks like:
XppPreloadMultiple (int IRAMS, void *StartAddress, int Size)

This instruction behaves as the XppPreload / XppPreloadClean instructions with the exception
of the first parameter:

The first parameter is IRAMS. This is an immediate (constant) value. The value is a bitmap — for
every bit in the bitmap, the IRAM with that number is a target for the load operation.

There is no “clean” version, since data duplication is applicable for read data only.

Data Reordering

Data reordering changes the access pattern to the data only. It does not change the amount of memory
that is read. Thus the number of cache misses stays the same.

o Adding additional functionality to the hardware:
o Adding a vector stride to the preload instruction.

A stride (displacement between two elements in memory)-is used in vector load
operations to load e.g.: a column of a matrix into a vector register.

This is a non-sequential but still linear access pattern. It can be implemented in
hardware by giving a stride to the preload instruction and adding the stride to the
IRAM identification state. One problem with this instruction is that the number of
possible cache misses per IRAM load rises: In the worst case it can be one cache miss
per loaded value, if the stride is equal to the cache line size and all data is not in the
cache.

But as already stated: the total number of misses stays the same — just the distribution
changes. Still this is an undesirable effect.

The other problem is the complexity of the implementation and a possibly limited
throughput, as the data paths between the layers of the memory hierarchy are
optimized for block transfers. Transferring non-contiguous words will not use wide
busses in an optimal fashion.

20

WO 2005/010632 PCT/EP2004/006547

The interface of the instruction looks like:

XppPreloadStride (int IRAM, void *StartAddress, int Size, int Stride)
XppPreloadCleanStride (int IRAM, void *StartAddress, int Size, int Stride)

This instruction behaves as the XppPreload / XppPreloadClean instructions with the
addition of another parameter:

The fourth parameter is the vector stride. This is an immediate (constant) value. It tells
the cache controller, to load only every n™ value to the specified IRAM.

o Reordering the data at run time, introducing temporary copies.
o On the RISC:

The RISC can copy data at a maximum rate of one word per cycle for simple address
computations and at a somewhat lower rate for more complex ones.

With a memory hierarchy, the sources will be read from memory (or cache, if they
were used recently) once and written to the temporary copy, which will then reside in
the cache, too. This increases the pressure in the memory hierarchy by the amount of
memory used for the temporaries. Since temporaries are allocated on the stack
memory, which is re-used frequently, the chances are good that the dirty memory area
is re-defined before it is written back to memory. Hence the write-back operation to
memory is of no concern.

o Via an XPP configuration:

The PAE array can read and write one value from every IRAM per cycle. Thus if half
of the IRAMs are used as inputs and half of the IRAMs are used as outputs, up to
eight (or more, depending on the number of IRAMs) values can be reordered per
cycle, using the PAE array for address generation. As the inputs and outputs reside in
IRAMs, it does not matter, if the reordering is done before or after the configuration
that uses the data — the IRAMs can be reused immediately.

IRAM Chaining

If the PAEs do not allow further unrolling, but there are still IRAMs left unused, it is possible to load
additional blocks of data into these IRAMs and chain two IRAMs by means of an address selector.
This does not increase throughput as much as unrolling would do, but it still helps to hide long
pipeline startup delays whenever unrolling is not possible.

2.6 Software [Hardware Interface

According to the design parameter changes and the corresponding changes to the hardware, the
hardware / software interface has changed. In the following the most prominent changes and their
handling will be discussed:

2.6.1 Explicit Cache

The proposed cache is not a usual cache, which would be — not considering performance issues —
invisible to the programmer / compiler, as its operation is transparent. The proposed cache is an
explicit cache. Its state has to be maintained by software.

21

WO 2005/010632 PCT/EP2004/006547

Cache Consistency and Pipelining of Preload / Configuration / Write-back

The software is responsible for cache consistency. It is possible to have several IRAMs caching the
same, or overlapping memory areas. As long as only one of the IRAM is written, this is perfectly ok:
Only this IRAM will be dirty and will be written back to memory. If however more than one of the
IRAM S is written, it is not defined, which data will be written to memory. This is a software bug (non
deterministic behavior).

As the execution of the configuration is overlapped with the preloads and write-backs of the IRAM, it
is possible to create preload / configuration sequences, that contain data hazards. As the cache
controller and the XPP array can be seen as separate functional units, which are effectively pipelined,
these data hazards are equivalent to pipeline hazards of a normal instruction pipeline. As with any
ordinary pipeline, there are two possibilities to resolve this:

» Hardware interlocking:

Interlocking is done by the cache controller: If the cache controller detects, that the tag of a
dirty or in-use item in IRAMXx overlaps a memory area used for another IRAM preload, it has
to stall that preload, effectively serializing the execution of the current configuration and the
preload.

e Software interlocking:

If the cache controller does not enforce interlocking, the code generator has to insert explicit
synchronize instructions to take care of potential interlocks. Inter- procedural and inter-
modular alias- and data- dependence analyses can determine if this is the case, while
scheduling algorithms help to alleviate the impact of the necessary synchronization
instructions.

In either case, as well as in the case of pipeline stalls due to cache misses, SMT can use the
computation power, that would be wasted otherwise.

Code Generation for the Explicit Cache

Apart from the explicit synchronization instructions issued with software interlocking, the following
instructions have to be issued by the compiler.

¢ Configuration preload instructions, preceding the IRAM preload instructions, that will be used
by that configuration. These should be scheduled as early as possible by the instruction
scheduler. '

* IRAM preload instructions, which should also be scheduled as early as possible by the
instruction scheduler.

e Configuration execute instructions, following the IRAM preload instructions for that
configuration. These instructions should be scheduled between the estimated minimum and the
estimated maximum of the cumulative latency of their preload instructions.

e IRAM synchronization instructions, which should be scheduled as late as possible by the
instruction scheduler. These instructions must be inserted before any potential access of the
RISC to the data areas that are duplicated and potentially modified in the IRAMs. Typically
these instructions will follow a long chain of computations on the XPP, so they will not
significantly decrease performance.

22

WO 2005/010632 PCT/EP2004/006547

Asynchronicity to Other Functional Units

An XppSync must be issued by the compiler, if an instruction of another functional unit (mainly the
Ld/St unit) can access a memory area, that is potentially dirty or in-use in an IRAM. This forces a
synchronization of the instruction streams and the cache contents, avoiding data hazards. A thorough
inter-procedural and inter-modular array alias analysis limits the frequency of these synchronization
instructions to an acceptable level.

2.7 Another Implementation

For the previous design, the IRAMs are existent in silicon, duplicated several times to keep the
pipeline busy. This amounts to a large silicon area, that is not fully busy all the time, especially, when
the PAE array is not used, but as well whenever the configuration does not use all of the IRAMs
present in the array. The duplication also makes it difficult to extend the lengths of the IRAMs, as the
total size of the already large IRAM area scales linearly.

For a more silicon efficient implementation, we should integrate the IRAM:s into the first level cache,
making this cache bigger. This means, that we have to extend the first level cache controller to feed all
IRAM ports of the PAE array. This way the XPP and the RISC will share the first level cache in a
more efficient manner. Whenever the XPP is executing, it will steal as much cache space as it needs
from the RISC. Whenever the RISC alone is running it will have plenty of additional cache space to
improve performance.

The PAE array has the ability to read one word and write one word to each IRAM port every cycle.
This can be limited to either a read or a write access per cycle, without limiting programmability: If
data has to be written to the same area in the same cycle, another IRAM port can be used. This
increases the number of used IRAM ports, but only under rare circumstances.

This leaves sixteen data accesses per PAE cycle in the worst case. Due to the worst case of all sixteen
memory areas for the sixteen IRAM ports mapping to the same associative bank, the minimum
associativity for the cache is 16-way set associativity. This avoids cache replacement for this rare, but
possible worst-case example.

Two factors help to support sixteen accesses per PAE array cycle:

e The clock frequency of the PAE array generally has to be lower than for the RISC by a factor
of two to four. The reasons lie in the configurable routing channels with switch matrices which
cannot support as high a frequency as solid point-to-point aluminium or copper traces.

This means that two to four IRAM port accesses can be handled serially by a single cache port,
as long as all reads are serviced before all writes, if there is a potential overlap. This can be
accomplished by assuming a potential overlap and enforcing a priority ordering of all accesses,
giving the read accesses higher priority.

e A factor of two, four or eight is possible by accessing the cache as two, four or eight banks of
lower associativity cache.

For a cycle divisor of four, four banks of four-way associativity will be optimal. During four
successive cycles, each bank of four-way associativity can serve four different accesses. Up to
four-way data duplication can be handled by using adjacent IRAM ports that are connected to
the same bus (bank). For further data duplication, the data has to be duplicated explicitly,
using an XppPreloadMultiple cache controller instruction. The maximum data duplication for
sixteen read accesses to the same memory area is supported by an actual data duplication

23

WO 2005/010632 PCT/EP2004/006547

factor of four: one copy in each bank. This does not affect the cache RAM efficiency as
adversely as an actual data duplication of 16 for the design proposed in section 2.5.

IR O
IR I
IR 2
IR3
R4
RS
IR6
IR7.

NN

Figure 6: Cache structure example

The cache controller is running at the same speed as the RISC. The XPP is running at a lower (e.g.
quarter) speed. This way the worst case of sixteen read requests from the PAE array need to be
serviced in four cycles of the cache controller, with an additional four read requests from the RISC. So
one bus at full speed can be used to service four IRAM read ports. Using four-way associativity, four
accesses per cycle can be serviced, even in the case that all four accesses go to addresses that map to
the same associative block.

The RISC still has a 16-way set associative view of the cache, accessing all four four-way set
associative banks in parallel. Due to data duplication it is possible, that several banks return a hit. This
has to be taken care of with a priority encoder, enabling only one bank onto the data bus.

The RISC is blocked from the banks that service IRAM port accesses. Wait states are inserted
accordingly. The impact of wait states is reduced, if the RISC shares the second cache access port of a
two-port cache with the RAM interface, using the cycles between the RAM transfers for its accesses.

Another problem is that one IRAM read could potentially address the same memory location as a write
from another IRAM; the value read depends on the order of the operations, so the order must be fixed:
all writes have to take place after all reads, but before the reads of the next cycle. This can be relaxed,
if the reads and writes actually do not overlap. However a simple priority scheme for the bus accesses
enforces the correct ordering of the accesses.

The problem of read-write consistency is more severe with data duplication, when only one copy of
the data is actually modified. Therefore modifications are forbidden with data duplication.

24

WO 2005/010632 PCT/EP2004/006547

2.7.1 Programming Model Changes

Data Interference

With this design without dedicated [RAMs, it is not possible any more to load input data to the IRAMs
and write the output data to a different IRAM, which is mapped to the same address, thus operating on -
the original, unaltered input data during the whole configuration.

As there are no dedicated IRAMs any more, writes directly modify the cache contents, which will be
read by succeeding reads. This changes the programming model significantly. Additional and more in-
depth compiler analyses are necessary accordingly.

2.7.2 Hiding Implementation Details

The actual number of bits in the destination field of the XppPreloadMultiple instruction is
implementation dependent. It depends on the number cache banks and their associativity, which are
determined by the clock frequency divisor of the XPP PAE array relative to the cache frequency.
However, the assembler can hide this by translating [IRAM ports to cache banks, thus reducing the
number of bits from the number of IRAM ports to the number of banks. For the user it is sufficient to
know, that each cache bank services an adjacent set of IRAM ports starting at a power of two. Thus it
is best to use data duplication for adjacent ports, starting with the highest power of two bigger than the
number of read ports to the duplicated area.

25

WO 2005/010632 PCT/EP2004/006547

3 Program Optimizations

3.1 Code Analysis

In this section we describe the analyses that can be performed on programs. These analyses are then
used by different optimizations. They describe the relationships between data and memory locations in
the program. More details can be found in several books [2,3,5].

3.1.1 Dataflow Analysis

Dataflow analysis examines the flow of scalar values through a program, to provide information about
how the program manipulates its data. This information can be represented by dataflow equations
operating on sets. A dataflow equation for -object i, that can be an instruction or a basic block, is
formulated as .

Ex[il1=Gen[i]Y (In[i] - Kill[i])

It means that data available at the end of the execution of object i, Ex/i], are either produced by i,
Gen(i] or were alive at the beginning of i, In/i], but were not deleted during the execution of i, Kill[i].

These equations can be used to solve several problems like:

= the problem of reaching definitions,

* the Def-Use and Use-Def chains, describing for a definition all uses that can be reached from it,
and for a use all definitions that can reach it, respectively.

= the available expressions at a point in the program,
= the live variables at a point in the program,
whose solutions are then used by several compilation phases, analysis, or optimizations.

As an example let us take the problem of computing the Def-Use chains of the variables of a program.
This information can be used for instance by the data dependence analysis for scalar variables or by
the register allocation. A Def-Use chain is associated to each definition of a variable and is the set of
all visible uses from this definition. The dataflow equations presented above are applied to the basic
blocks to detect the variables that are passed from one block to another along the control-flow graph.
In the figure below, two definitions for variable x are produced: S7 in B/ and S4 in B3. Hence the
variable that can be found at the exit of B is Ex(B1)={x(51)}, and at the exit of B is Ex(B4)={x(54)}.
Moreover we have Ex(B2)=Ex(BI) as no variable is defined in B2. Using these sets, we find that the
uses of x in S2 and 3 depend on the definition of x in B, that the use of x in S5 depend on the
definitions of x in Bl and B3. The Def-Use chains associated with the definitions are then

D(S1)={S2,53,55} and D(S4)={S5}.

26

WO 2005/010632 PCT/EP2004/006547

B2 B3

9. =y S3: ...=X

S4: x=...

B4

S5:..=x

Figure 7:Control-flow graph of a piece of prograimn

3.1.2 Data Dependence Analysis

A data dependence graph represents the dependences existing between operations writing or reading
the same data. This graph is used for optimizations like scheduling, or certain loop optimizations to
test their semantic validity. The nodes of the graph represent the instructions, and the edges represent
the data dependences. These dependences can be of three types: true (or flow) dependence when a
variable is written before being read, anti-dependence when a variable is read before being written,
and output dependence when a variable is written twice. Here is a more formal definition [3].

Definition

Let Sand S' be 2 statements, then S’ depends on S, notedS & " iff:

(1) S is executed before S'

(2) Ive VAR :ve DEF(S)I USE(S")vveUSE(S)I DEF(S")vve DEF(S)1 DEF(S")

(3) There is no statement T such that S is executed before T and T is executed before S, and
ve DEF(T)

Where VAR is the set of the variables of the program, DEF(S) is the set of the variables defined by
instruction S, and USE(S) is the set of variables used by instruction S.

Moreover if the statements are in a loop, a dependence can be loop-independent or loop-carried. This
notion introduces the definition of the distance of a dependence. When a dependence is loop-
independent it means that it occurs between two instances of different statements in the same iteration,
and then its distance is equal to zero. On the contrary when a dependence occurs between two
instances in two different iterations the dependence is loop-carried, and the distance is equal to the
difference between the iteration numbers of the two instances.

27

WO 2005/010632 PCT/EP2004/006547

The notion of direction of dependence generalizes the notion of distance, and is generally used when
the distance of a dependence is not constant, or cannot be computed with precision. The direction of a
dependence is given by <, if the dependence between S and S’ occurs when the instance of S is in an
iteration before the iteration of the instance of S’, = if the two instances are in the same iteration, and >
if the instance of S is an iteration after the iteration of the instance of S”.

In the case of a loop nest, we have then distance and direction vector, with one element for each level
of the loop nest. The figures below illustrate all these definitions. The data dependence graph is used
by a lot of optimizations, and is also useful to determine if their application is valid. For instance a
loop can be vectorized if its data dependence graph does not contain any cycle.

for (i=0; 4i<N; i=i+1) {
S: a(i] = b[i] + 1;
Sl: c¢[i] .= alil + 2;
} . . -

1

Figure 8: Example of a true dependence with distance 0 on array a

for (i=0; i<N; i=i+l) {
S: afi] = bli] + 1;
S1 bli] = c[i] + 2;
}

It

ii

Figure 9: Example of an anti-dependence with distance 0 on array b

for (i=0; i<N; i=i+1l) {
S: a[i] = b[i] + 1;
Sl: afi] cii] + 2;
}

Figure 10: Example of an output dependence with distance 0 on array
a

28

WO 2005/010632 PCT/EP2004/006547

for (j=0;3<=N;j++)
for (i=0;i<=N;i++)

L s1)
Si: cl[i1{j1 = 0O; .
for (k=0; k<=N; k++) : 8 (==
S2: cl[i][31 = cl[i)[j] + ali]llk]*b[k][]]:
}
8'¢=~9
Figure 11: Example of a dependence with direction vector(=,=)
between SI and S2 and a dependence with direction vector (=,=,<)
between S2 and S2.
for (i=0;i<=N;i++)
for (j=0;j<=N;j++) _
S: alil 3] = alil([j+2] + b[i]l; S
8%0,2)

Figure 12: Example of an anti~dependence with distance vector (0,2).

3.1.3 Interprocedural Alias Analysis

The aim of alias analysis is to determine if a memory location is accessible by several objects, like
variables or arrays, in a program. It has a strong impact on data dependence analysis and on the
application of code optimizations. Aliases can occur:

* with statically allocated data, like unions in C where all fields refer to the same memory area, or

* with dynamically allocated data, which are the usual targets of the analysis, or
= with pointers referencing static data, like in C.

In Figure 13, we have a typical case of aliasing where p aliases b.
int b[100], *p;

for(p=b;p < &b{100];p++)
*p:O;

Figure 13: Example for typical aliasing

Alias analysis can be more or less precise depending on whether or not it takes the control-flow into
account. When it does, it is called flow-sensitive, and when it does not, it is called flow-insensitive.
Flow-sensitive alias analysis is able to detect in which blocks along a path two objects are aliased. As
it is more precise, it is more complicated and more expensive to compute. Usually flow-insensitive
alias information is sufficient. This aspect is illustrated inFigure 14 where a flow-insensitive analysis
would find that p alias b, but where a flow-sensitive analysis would be able to find thatp alias b only
in block B2.
29

WO 2005/010632 PCT/EP2004/006547

Furthermore aliases are classified into must-aliases and may-aliases. For instance, if we consider flow-
insensitive may-alias information, thenx afias y, iff x and y may, possibly at different times, refer to
the same memory location. And if we consider flow-insensitive must-alias information,x alias y, iff x
and y must, throughout the execution of a procedure, refer to the same storage location. In the case of
Figure 14, if we consider flow-insensitive may-alias information, p alias b holds, whereas if we
consider flow-insensitive must-alias information, p alias b does not hold. The kind of information to
use depends on the problem to solve. For instance, if we want to remove redundant expressions or
statements, must-aliases have to be used, whereas if we want to build a data dependence graph may-
aliases are necessary.

Bl
int *p, b[100];

— A

B2 #p=p; B3
<uses of b and p >| *p = malloc();
*p = malloc(); <uses of b and p>
B4

<uses of b and p>

Figure 14: Example of control-flow sensitivity

Practically, as exact alias information is hard to compute, the analysis is rather used to be sure that two
objects are not aliased. Finally this analysis must be interprocedural to be able to detect aliases caused
by non-local variables and parameter passing. The latter case is depicted inFigure 15 where i and j are
aliased through the function call where £ is passed twice as parameter.

void foo({int *i,int* j)
{

*1 o= *J+1;
}

foo (&k, &k) ;

Figure 15: Example for aliasing by parameter passing

3.1.4 Interprocedural Value Range Analysis

This analysis can find the range of values taken by variables. It can help to apply optimizations like
dead code elimination, loop unrolling and others. For this purpose it can use information on the types
of variables and then consider operations applied on these variables during the execution of the
program. Thus it can determine for instance if tests in conditional instructions are likely to be met or
not, or determine the iteration range of loop nests.

30

WO 2005/010632 PCT/EP2004/006547

This analysis has to be interprocedural as for instance loop bounds can be passed as parameters of a
function, like in the following example. We know by analyzing the code that in the loop executed with
array a, N is at least equal to 11, and that in the loop executed with array b, N is at most equal to 10.

void foo(int *¢,int N)
{

int i;

for (i=0;i<N;i++)
c(il = g(i,2);

if (N > 10)
foo(a,N);
else
foo (b, N);

The programmer can support value range analysis by stating value constraints which cannot be
retrieved from the language semantics. This can be done by pragmas or by a compiler known assert
function.

3.1.5 Alignment Analysis

Alignment analysis deals with data layout for distributed memory architectures. As stated by Saman
Amarasinghe: “Although data memory is logically a linear array of cells, its realization in hardware
can be viewed as a multi-dimensional array. Given a dimension in this array, alignment analysis will
identify memory locations that always resolve to a single value in that dimension. For example, if the
dimension of interest is memory banks, alignment analysis will identify if a memory reference always
accesses the same bank”. This is the case in the right half of the figure below, that can be found in
[10], where all accesses, depicted in blue, occur to the same memory bank, whereas in the left half the
accesses are not aligned. He adds then that: “Alignment information is useful in a variety of compiler-
controlled memory optimizations leading to improvements in programmability, performance, and
energy consumption.”

16 20 24 28 16 24 28

32 36 40 44

32

48 48 56 60

Alignment analysis, for instance, is able to find a good. distribution scheme of the data and is
furthermore useful for automatic data distribution tools. An automatic alignment analysis tool can be
able to automatically generate alignment proposals for the arrays accessed in a procedure and thus

31

WO 2005/010632 PCT/EP2004/006547

simplifies the data distribution problem. This can be extended with an interprocedural analysis taking
into account dynamic realignment.

Alignment analysis can also be used to apply loop alignment that transforms the code directly rather
than the data layout in itself, as shown later. Another solution can be used for the PACT XPP, relying
on the fact that it can handle aligned code very efficiently. It consists in adding a conditional
instruction testing if the accesses in the loop body are aligned followed by the necessary number of
peeled iterations of the loop body, then the aligned loop body, and then some compensation code.
Only the aligned code is executed by the PACT XPP, the rest is executed by the host processor. If the
alignment analysis is more precise (inter-procedural or inter-modular) less conditional code has to be
inserted.

3.2 Code Optimizations

Most of the optimizations and transformations presented here can be found in detail in [4], and also in
[2,3,5].

3.2.1 General Transformations

We present in this section a few general optiimizations that can be applied to straightforward code, and
to loop bodies. These are not the only ones that appear in a compiler, but they are mentioned in the
sequel of this document.

Constant Propagation

This optimization propagates the values of constants into the expressions using them throughout the
program. This way a lot of computations can be done statically by the compiler, leaving less work to
be done during the execution. This part of the optimization is also known as constant folding.

N 256; for (i=0; i<= 256; i++)
c 3; af{i] = b{i] + 3;
for(i=0;i <= N;i++)

ali]l = b[i] + c;

Figure 16: Example of constant propagation

Copy Propagation

This optimization simpliﬁés the code by removing redundant copies of the same variable in the code.
These copies can be produced by the programmer or by other optimizations. This optimization reduces
the register pressure and the number of register-to-register move instructions.

t = i*4; t = i%4;
r = t; for(i=0;1i <= N;i++) .
for(i=0;1i <= N;i++) alt] = blt] + afil;

alr] = br] + a[il;

Figure 17: Example of copy propagation

32

WO 2005/010632 PCT/EP2004/006547

Dead Code Elimination

This optimization removes pieces of code that will never be executed. Code is never executed if it is in
the branch of a conditional statement whose condition is always evaluated to true or false, or if it is a
loop body, whose number of iterations is always equal to zero. The latter implies that this optimization
relies also on value range analysis.

Code updating variables, that are never used, are also useless and can be removed as well. If a variable
is never used, then the code for updating it and its declaration can also be eliminated.

for(i=0;1i <= N;i++) { for(i=0;i <= N;i++) {
if (i > N) for{j=0;3<10;j++)
for (3=0;3<10;j++) af{j+l] = alj] + bi{jl1;
afjl = b(j] + alil: }
else

for (j=0;3<10;3++)
alj+l] = aljl + bijl;

Figure 18: Example of dead code elimination

Forward Substitution

This optimization is a generalization of coby propagation. The use of a variable is replaced by its
defining expression. It can be used for simplifying the data dependence analysis and the application of
other transformations by making the use of loop variables visible.

c =N+ 1; for(i=0; i<= N; i++)
for(i=0;i <= N;i++) a[N+1] = b[N+1] + a(i];
afc] = blc] + a[il;

Figure 19: Example of forward substitution

Idiom Recognition

This transformation recognizes pieces of code and can replace them by calls to compiler known
functions, or less expensive code sequences, like code for absolute value computation.

for (i=0; i<N; i++){ for (i=0; i<N; i++){
c =afi] - b[il; c = ali]l - blil;
if (c<0) c = abs(c);
Cc = =-C; dli]l = c¢;
dfi] = c; }

Figure 20: Example of idiom recognition

3.2.2 Loop Transformations

Loop Normalization

This transformation ensures that the iteration space of alloop has a lower bound equal to 0 or 1
(depending on the input language), and an increment of 1. The array subscript expressions and the
bounds of the loops are modified accordingly. It can be used before loop fusion to find opportunities,

33

WO 2005/010632 PCT/EP2004/006547

and ease inter-loop dependence analysis, and it also enables the use of dependence tests requiring
normalized loops.

for (i=2; i<N; i=i+2) for(i=0; i<(N-2)/2; i++)
alil = bi[il; . al2*i+2] = b[2*i+2];

Figure 21: Example of loop normalization

Loop Reversal

This transformation changes the direction in which the iteration space of a loop is scanned. It is
frequently used in conjunction with loop normalization and other transformations, like loop
interchange, because it changes the dependence vectors.

for (i=N; i>=0; i--) for (i=0; i<=N; i++)
ali]l = b[i]; o ali]l = bfdil;

Figure 22: Example of loop reversal

Strength Reduction

This transformation replaces expressions in the loop body by equivalent but less expensive ones. It can
be used on induction variables, other than the loop variable, to be able to eliminate them.

for (i=0; i<N; i++) t = c;
alil = b[i] + c*i; for(i=0; i<N; i++)({
ali]l = b[i] + t;
t =t + ¢;

}

Figure 23: Example of strength reduction

induction Variable Elimination

This transformation can use strength reduction to remove induction variables from a loop, hence
reducing the number of computations and easing the analysis of the loop. This also removes
dependence cycles due to the update of the variable, enabling vectorization.

for({i=0; i<=N; i++) { for(i=0; i<=N; i++){
k =%k + 3; ali] = b[i] + a[k+(i+1)*3];
ali] = b[i] + alk]; }

k =k +(N+1)*3;

Figure 24: Example of induction variable elimination

Loop-Invariant Code Motion

This transformation moves computations outside a loop if their result is the same in all iterations. This
allows to reduce the number of computations in the loop body. This optimization can also be
conducted in the reverse direction in order to get perfectly nested loops, that are easier to handle by
other optimizations.
for(i=0; i<N; i++) if (N >= 0)
ali) = b[i] + x*y; c = x*y; .
for(i=0; i<N; 4++)

34

WO 2005/010632 PCT/EP2004/006547
alil = bli] + c;
Figure 25: Example of loop-invariant code motion

Loop Unswitching

This transformation moves a conditional instruction out of a loop body if its condition is loop-
invariant. The branches of the new condition contain the original loop with the appropriate statements
from the original condition. Loop unswitching allows parallelization of the loop by removing control-
flow code from the loop body.

for (i=0; i<N; i++) { if (x > 2)

a[i]l = b[i] + 3; for (1=0; i<N; i++){
if (x > 2) ali] = b[i] + 3;
b[i] = ¢ [i] + 25 b[i] = c[i] + 2;

else }

b[i] = cfi] - 2; else
} for (i=0; i<N; i++){
alil = bl(i] + 3;
bli] = c[i] - 2;

}

Figure 26: Example of loop unswitching

If-Conversion

This transformation is applied to loop bodies with conditional instructions. It changes control
dependences into data dependences and enables a subsequent vectorization. It can be used in
conjunction with loop unswitching to handle loop bodies with several basic blocks. The conditions,
where array expressions could appear, are replaced by boolean terms called guards. Processors with
predicated execution support can directly execute such code, and configurable hardware can use the
result of guards to direct dataflow through different branches by means of multiplexers and
demultiplexers.

for(i = 0;i < N; i++) { for(i = 0;i < N;i++) {
afi] = a[i] + b[il; afi] = afil + blil;
if (al[i] != 0) c2 = (a[i]l != 0);
if (al[i]l > clil]) if (c2) c4 = (al[i] > c[il]);
a[i] = a[i] - 2; if (c2 && c4) al[i]l = ali]l - 2;
else if (c2 && l!c4) a[i] = alil + 1;
afi] = afi} + 1; d[i] = al[i] * 2;
d[i] = al[i] * 2; }

Figure 27: Example of if-conversion

Strip-Mining

This transformation enables to adjust the granularity of an operation. It is commonly used to choose
the number of independent computations in the inner loop nest. When the iteration count is not known
at compile time, it can be used to generate a fixed iteration count inner loop satisfying the resource
constraints. Tt can be used in conjunction with other transformations like loop distribution or loop
interchange. It is also called loop sectioning. Cycle shrinking, also called stripping, is a specialization
of strip-mining.

35

WO 2005/010632 PCT/EP2004/006547

for (i=0; i<N; I++) up = (N/16)*16;
a[i]l = bli]l + c; for (i=0; i<up; i = 1 + 16)
for(j=i;j <= 16;j++)
alj]l = bl[j]l + c;
© for (j=1i+1;3<N;j++)
ali]l = b[i] + c;

Figure 28: Example of strip-mining

Loop Tiling

This transformation modifies the iteration space of a loop nest by introducing loop levels to divide the
iteration space in tiles. It is a multi-dimensional generalization of strip-mining. It is generally used to
improve memory reuse, but can also improve processor, register, translation-lookaside buffer (TLB),
or page locality. It is also called loop blocking.

The size of the tiles of the iteration space is chosen such that the data needed in each tile fits into the
cache memory, thus reducing the cache misses. In the case of coarse-grain computers, the size of the
tiles can also be chosen such that the number of parallel operations of the loop body matches the
number of processors of the computer.

for (i=0; i<N; i++) for (ii=0; ii<N; ii = ii+16)
for (§=0; F<N; J++) - for(jj=0; jj<N; jj = jj+le)
alil[j] = bl[jl1[i]; for (i=ii; i< min(ii+15,N); i++)

for (j=33; J< min(jj+15,N); J++)
alil[3d] = bl{jl(il;

Figure 29: Example of loop tiling

Loop Interchange

This transformation interchanges loop levels of a nest in order to change data dependences. It can:

= enable vectorization by interchanging an independent loop with a dependent loop, or

* improve vectorization by pushing the independent loop with the largest range further inside, or
» deduce the stride, or

» increase the number of loop-invariant expressions in the inner-loop, or

» improve parallel performance by moving an independent loop outside of a loop nest to increase the
granularity of each iteration and reduce the number of barrier synchronizations.

for (i=0; i<N; i++) for (3=0; j<N; J++)
for (§=0;J<N; Jj++) for (i=0; i<N; i++)
alil = a[i] + b([i]1(3]; alil = a[i] + b[i1[j]:

Figure 30: Example of loop interchange

Loop Coalescing / Collapsing

This transformation combines a loop nest into a single loop. It can improve the scheduling of the loop,
and also reduces the loop overhead. Collapsing is a simpler version of coalescing in which the number
" of dimensions of arrays is reduced as well. Collapsing reduces the overhead of nested loops and multi-
dimensional arrays. Collapsing can be applied to loop nests that iterate over memory with a constant

36

WO 2005/010632 PCT/EP2004/006547

stride, otherwise loop coalescing is a better approach. It can be used to make vectorizing profitable by
increasing the iteration range of the innermost loop.

for (i=0; i<N; i++) for (k=0; k<N*M; k++){
for (3=0;3<M; J++) . i= ((k-1)/m)*m + 1;
alillj]l = alillj] + c; 3= ((T-1)%m) + 1;
ali] (31 = alil(j] + c:

}

Figure 31: Example of loop coalescing

Loop Fusion

This transformation, also called loop jamming or loop merging, merges 2 successive loops. It reduces
loop overhead, increases instruction-level parallelism, improves register, cache, or page locality, and
improves the load balance of parallel loops. Alignment can be taken into account by introducing
conditional instructions to take care of dependences.

for(i=0; CI<N; i44) for (i=0; i<N; i++) {
afi] = b[i] + c; " alil = bli] + ¢;
dli] = e[i] + ¢;

for (i=0; i<N; i++) }
dii] = e[i] + c;

. Figure 32: Example of loop fusion

Loop Distribution

This transformation, also called loop fission, allows splitting a loop in several pieces in case the loop
body is too big, or because of dependences. The iteration space of the new loops is the same as the
iteration space of the original loop. Loop spreading is a more sophisticated distribution.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
ali]l = b[i] + c; ali] = bli] + c:
d[i] = e[i] + c;

} for (1i=0;1i<N; i++)

d[i] = e[i] +c;

Figure 33: Example of loop distribution

Loop Unrolling / Unroll-and-Jam

This transformation replicates the original loop body in order to get a larger one. A loop can be
unrolled partially or completely. It is used to get more opportunity for parallelization by making the
loop body bigger, it also improves register, or cache usage and reduces loop overhead. Unrolling the
outer loop followed by merging the induced inner loops is referred to as unroll-and-jam.

for(i=0; i<N; i++) for(i=0; i<N; i = i+2){
afi]l] = b[i] + ¢ ali] = b[i] + c;
afi+l] = b[i+1l] + c;
}
if ((N-1)%2) == 1)
a[N-1] = b[N-11 + c;

Figure 34: Example of loop unrolling

37

WO 2005/010632 PCT/EP2004/006547

Loop Alignment

This optimization transforms the code to achieve aligned array accesses in the loop body. The
application of loop alignment transforms loop-carried dependences into Iloop-independent
dependences, which allows extracting more parallelism from a loop. It uses a combination of other
transformations, like loop peeling or introduces conditional statements. Loop alignment can be used in
conjunction with loop fusion to align the array accesses in both loop nests. In the example below, all
accesses to array a become aligned.

for(i=2;i <= N;i++) { for(i=1; i<=N; i++) {
alil = bli]l + c[i]; if (i>1) a[i] = b[i] + cli];
dfi] = afi-1] * 2; if (i<N) d[i+l] = ali] * 2;
e[il = a[i-1] + d[i+1]; if (i<N) e[i+1] = ali] + d[i+2];
} }
Figure 35: Example of loop alignment
Loop Skewing

This transformation is used to enable parallelization of a loop nest. It is useful in combination with
loop interchange. It is performed by adding the outer loop index multiplied by a skew factor.f, to the
bounds of the inner loop variable, and then subtracting the same quantity from every use of the inner
loop variable inside the loop. :

for(i=1; i <= N; it+) for(i=l; i <= N; i++)
for(j=1;j <= N; j++) for(j=i+l;j <= 14N; J++)
afil = al[i+j] + c; alil = alj]l + c»

Figure 36: Example of loop skewing

Loop Peeling

This transformation removes a small number of starting or closing iterations of a loop to avoid
dependences in the loop body. These removed iterations are executed separately. It can be used for
matching the iteration control of adjacent loops to enable loop fusion.
for(i=0; i<=N; i++) a[0][N] = a[0][N] + a[N][N];
a[il[N] = a[0][N] + a[N]I[N]; for (i=1;i<=N-1; i++)
: ali]l[N] = a[0][N] + a[N][N];
a[N}1[N] = al0][N] + a[N][N];

Figure 37: Example of loop peeling

Loop Splitting

This transformation cuts the iteration space in pieces by creating other loop nests. It is also called
Index Set Splitting, and is generally used because of dependences that prevent parallelization. The
iteration space of the new loops is a subset of the original one. It can be seen as a generalization of
loop peeling.

for (i=0; i<=N; i++) for (i=0;i<(N+1)/2; i++)

a[i] = a[N-1i+1] + c; afil = a[N~-i+l1l] + c;
for (i= (N+1)/2;1 <= N;i++)

a[i] = a[N-I+1] + c;

Figure 38: Example of loop splitting

38

WO 2005/010632 PCT/EP2004/006547

Node Splitting

This transformation splits a statement in pieces. It is used to break dependence cycles in the
dependence graph due to the too high granularity of the nodes, thus enabling vectorization of the
statements.

for(i=0;i < N;i++) { for(i = 0,i < N;i++) {
b[i] = a[i] + c[i] * d[i] t1[i] = c[i] * d[i];
ali+l] = b[i] * (d[i] - c[il): £2[1] = d[i] - clil;

} b[i] = alil + t1l[i];

a[i+l] = b[i] * t2[i];
}

Figure 39: Example of node splitting

Scalar Expansion

This transformation replaces a scalar in a loop by an array to eliminate dependences in the loop body
and enables parallelization of the loop nest. If the scalar is used after the loop, compensation code
must be added.

for (i=0; i<N; i++){ for (i=0;i<N; i++){
c = b[i]; tmp[il = b[i];

al[il] = al(i]l + c; ’ af[il = ali] + tmp[il;
‘ }
c = tmp[N-1]1;

Figure 40: Example of scalar expansion

Array Contraction / Array Shrinking

This transformation is the reverse transformation of scalar expansion. It may be needed if scalar
expansion generates t00 many memory requirements.

for (1i=0; i<N;i++) for (1i=0; i<N;i++)
for (3=0; J<N;j++) { for (§=0; j<N;j++) {
t[11[J] = alil[3] * 3 t[j] = alillj] * 3;
b[i]1[3] = t(i)[3] + cl31; b[i1[j] = t[j] + clil:
} }

Figure 41: Example of array contraction

Scalar Replacement

This transformation replaces an invariant array reference in a loop by a scalar. This array element is
loaded in a scalar before the inner loop and stored again after the inner loop, if it is modified. It can be
used in conjunction with loop interchange.

for (i=0; i<N; i++) for (i=0;i<N; i++){
for (j=0; J<N;J++) tmp = alil;
a[i]l = a[i] + b[i]1[3]1; for (§=0; J<N;j++)
tmp = tmp + b[i]1[3];
afi] = tmp;

}

Figure 42: Example of scalar replacement

39

WO 2005/010632 PCT/EP2004/006547

Reduction Recognition

This transformation allows handling reductions in loops. A reduction is an operation that computes a
scalar value from arrays. It can be a dot product, the sum or minimum of a vector for instance. The
goal is then to perform as many operations in parallel as possible. One way is to accumulate a vector
register of partial results and then reduce it to a scalar with a sequential loop. Maximum parallelism is
achieved by reducing the vector register with a tree: pairs of elements are summed, then pairs of these
results are summed, etc.
for (1i=0; i<N;i++) for(i=0; i<N; i=i+64)
s =35 + ali]; tmp([0:63] = tmp[0:63] + a[i:i+63];
for(i=0; i<64;i++)
s =s + tmp[i];

Figure 43: Example of reduction recognition

Loop Pushing / Loop Embedding

This transformation replaces a call in a loop body by the loop in the called function. It is an inter-
procedural optimization. It allows the parallelization of the loop nest and eliminates the overhead
caused by the procedure call. Loop distribution can be used in conjunction with loop pushing.

for (i=0; i<N; i++) o f2(x)
fix,1); .
vold £2(int* a) {
void f£(int* a,int j) { for(i=0; i<N; i++)
aljl = aljl + c; al[i] = a[i] + c;

} }

Figure 44: Example of loop pushing

Procedure Inlining

This transformation replaces a call to a procedure by the code of the procedure itself. It is an inter-
procedural optimization. It allows a loop nest to be parallelized, removes overhead caused by the
procedure call, and can improve locality.

for (i=0; i<N; i++) for (i=0; i<N; i++)
fla,i); . ali] = a[i] + c;

void f(int* x, int j){
x[31 = x[3] + c;
}

Figure 45: Example of procedure inlining

Statement Reordering

This transformation schedules instructions of the loop body to modify the data dependence graph and
hence enables vectorization.

for(i=0;i < N;i++) { for (i=0; i<N; i++) {
a[i]l = b[i] * 2; cfil = a[i-1] - 4;
clil = al[i-1] - 4; af[i] = b[i] * 2;

} }

Figure 46: Example of statement reordering

40

WO 2005/010632 PCT/EP2004/006547

Software Pipelining

This transformation parallelizes a loop body by scheduling instructions of different instances of the
loop body. It is a powerful optimization to improve instruction-level parallelism. It can be used in
conjunction with loop unrolling. In the example below, the preload commands can be issued one after
another, each taking only one cycle. This time is just enough to request the memory areas. It is not
enough to actually load them. This takes many cycles, depending on the cache level that actually has
the data. Execution of a configuration behaves similarly. The configuration is issued in a single cycle,
waiting until all data are present. Then the configuration executes for many cycles. Software pipelining
overlaps the execution of a configuration with the preloads for the next configuration. This way, the
XPP array can be kept busy in parallel to the Load/Store unit.

Issue Cycle Command
XppPreloadConfig (CFG1);
for {(i=0; i<100; ++i) {
: XppPreload(2,a+10*1,10);
XppPreload(5,b+20*1,20) ;

// delay

S U W N
T

XppExecute () ;
}

Issue Cycle Command
Prologue XppPreloadConfig(CEG1);
XppPreload(2,a,10);
XppPreload(5,b,20);
// delay
for (i=1; i<100; ++i) {
Kernel 1: XppExecute () ;
2: XppPreload(2,a+10*1,10);
3: XppPreload(5,b+20%*41,20);
4: }
XppExecute();
Epilog // delay

Figure 47: Example of sofiware pipelining

Vector Statement Generation

This transformation replaces instructions by vector instructions that can perform an operation on
several data in parallel. This occurs at the end of the vectorization process, and is only of interest if the
target processor is a vector processor.

for (i=0; i<=N; i++) a[0:N] = b[0:N];
afil = blii;

Figure 48: Example of vector statement generation

3.2.3 Data-Layout Optimizations

In the following we describe optimizations that modify the data layout in memory in order to extract
more parallelism or prevent memory problems like cache misses.

41

WO 2005/010632 PCT/EP2004/006547

Scalar Privatization

This optimization is used in multi-processor systems to increase the amount of parallelism and avoid
unnecessary communications between the processing elements. If a scalar is only used like a
temporary variable in a loop body, then each processing element can receive a copy of it and achieve
its computations with this private copy.

for(i=0;1i <= N;i++) {
c = Dbli];
afi] = al[i] + c;

}

Figure 49: Example for scalar privatization

Array Privatization

This optimization is the same as scalar privatization except that it works on arrays rather than on
scalars.

Array Merging

This optimization transforms the data layout of arrays by merging the data of several arrays following
the way they are accessed in a loop nest. This way, memory cache misses can be avoided. The layout
of the arrays can be different for each loop nest. Below is the example of a cross-filter, where the
accesses to array a are interleaved with accesses to array b. The picture next to it represents the data
layout of both arrays where blocks of a (green) are merged with blocks of & (yellow). Unused memory
space is white. Thus cache misses are avoided as data blocks containing arraysa and & are loaded into
the cache when getting data from memory. Details may be found in [11].

for (j=1;j<=N~1;i++)
for (§=1;5<=N;j++)
b[i1([j] = 0.25%(a[i-11(j] + alil[j-1] +
ali+11[3] + alilli+11):

Figure 50: Example for array merging

3.2.4 Example of Application of the Optimizations

A lot of optimizations can be performed on loops before and also after generation of vector statements.
Finding a sequence of optimizations producing an optimal solution for all loop nests of a program is
still an area of research. Therefore we propose a way to use the optimizations that follows a reasonable
heuristic to produce vectorizable loop nests. To vectorize the code, we can use the Allen-Kennedy
algorithm that uses statement reordering and loop distribution before vector statements are generated.
It can be enhanced with loop interchange, scalar expansion, index set splitting, node splitting, loop
peeling. All these transformations are based on the data dependence graph. A statement can be
vectorized if it is not part of 2 dependence cycle, hence optimizations are performed to break cycles or,
if not completely possible, to create loop nests without dependence cycles. The example presented
below is intended as an illustration for the use of the optimizations presented before.

The whole process is divided in four majors steps. First the procedures are restructured by analyzing
the procedure calls inside the loop bodies and trying to remove them. Then some high-level dataflow
optimizations are applied to the loop bodies to modify their control-flow and simplify the code. The
third step prepares the loop nests for vectorization by building perfect loop nests and ensures that inner

42

WO 2005/010632 PCT/EP2004/006547

loop levels are vectorizable. Then target specific optimizations are applied which optimize the data
locality. Note that other optimizations and code transformations may be applied between these
different steps.

The first step comprises procedure inlining and loop pushing to remove the procedure calls of the loop
bodies. The second step consists of loop-invariant code motion, loop unswitching, strength reduction
and idiom recognition. The third step can be divided in several subsets of optimizations. We first apply
loop reversal, loop normalization and if-conversion to obtain normalized loop nests. This allows
building the data dependence graph. If dependences prevent the loop nest to be vectorized adequate
transformations are applied. If, for instance, dependences occur only on certain iterations, loop peeling
or loop splitting can remove these dependences. Node splitting, loop skewing, scalar expansion or
statement reordering can be applied in other cases. Loop interchange moves inwards the loop levels
without dependence cycles. The objective is to obtain perfectly nested loops with the loop levels
carrying dependence cycles as much outwards as possible. We subsequently apply loop fusion,
reduction recognition, scalar replacement/array contraction and loop distribution to further improve the
vectorization. Finally vector statement generation is performed (using the Allen-Kennedy algorithm,
for instance). The last step consists of optimizations like loop tiling, strip-mining, loop unrolling and
software pipelining which take the target processor into account.

The number of optimizations in the third step is large, but not all of them are applied to each loop nest.
Following the goal of the vectorization and the data dependence graph only some of them are applied.
Heuristics are used to guide the application of the optimizations, that can be applied several times if
needed. Let us illustrate this with an example.

void f(int** a, int** b, ‘int *c,int i, int j) {
alil[j] = alil[j-1] - b[i+1]1[]-1]);
}

void glint* a,int* c,int 1) {
afi] = cl[i] + 2;

}

for(i=0; i<N;id++) {
for(j=1; j<9:J=j++)
if (k>0)
fla,b,1i,3):
else
g(dlclj);
}
d[i] = d[i+1] + 2;
}

for (i=0; i<N;i++)
alil[i] = b[il + 3;

The first step finds that inlining the two procedure calls is possible, then loop unswitching is applied to
remove the conditional instruction of the loop body. The second step starts with applying loop
normalization and analyses the data dependence graph. A cycle can be broken by applying loop
interchange as it is only carried by the second level. The two levels are exchanged, so that the inner
level is vectorizable. Before that or also after, we apply loop distribution. Loop fusion is applied when
the loop level with induction variable i is pulled out of the conditional instruction by a traditional
redundant code elimination optimization. Finally vector code is generated for the resulting loops.

So in more details, after procedure inlining, we obtain:

43

WO 2005/010632 PCT/EP2004/006547

for (i=0; i<N;i++) {
for(j=1; j<9;j=j++)
if (k>0)
alil[j] = alill3-1] - b[i+1]1[j-1]1;
else)
dfil = cljl + 2;
}
d{i] = d[i+1] + 2;
}

for (i=0; i<N;i++)
afi][i]l = b[i] + 3;

After loop unswitching, we obtain:

if (k > 0)
for{i=0; i<N;i++) {
for(j=1; j<9;j=j++) o
alil(j] = alil[3-11 - b[i+1]1(j-1];
d{il = d[i+1l] + 2;
}
else
for(i=0; i<N;i++) {
for (j=1; j<9;j=j++)
dlil = cl[j] + 2;
dii] = d[i+1] + 2;
}

for(i=0; i<N;i++)
ali]l[i] = b[i] + 3;

After loop normalization, we obtain:

if (k > 0)
for(i=0; i<N;i++) {
for (§=0; j<8;j=j++)
alil[3+1] = al[il[j] - b[i+1][j1:
d[i] = d[i+1] + 2;
} .
else
for (i=0; i<N;i++) {
for(j=0; j<8;j=j++)
dljl = c[j+l] + 2;
dli] = d[i+1] + 2;
}

for (i=0; i<N;i++)
afil (il = b(i] + 3;

After loop distribution and loop fusion, we obtain:

if (k >0)
for (i=0; i<N;i++)
for(3=0; j<8;j=j++)
alil [§+1] = alil[J] — bli+1]1[]];
else
for (i=0; i<N;i++)
for (3=0; 3<8;j=j++)
d[j] = c[j+1] + 2;

for (i=0; i<N;i++) {
dfi] = d{i+1] + 2;
alil (1] = b[i] + 3;

44

WO 2005/010632 PCT/EP2004/006547

After loop interchange, we obtain:

if (k > 0)
for (j=0; j<8;j=j++)
for (1i=0; i<N;i++)
alil [j+1] = alil(j] - bli+1][3]1;
else
for (i=0; i<N;i++)
for (§=0; 3<8;j=j++)
d[j] = clj+l] + 2;

for (i=0; i<N;i++) {
d[i] = d[i+1] + 2;
a[il[1] = b[i] + 3;
}

After vector code generation, we obtain

if (k > 0)
for (j=0; j<8;j=j++)
a[0:N-1][j+1] = a[0:N-1]1{j] - b[O:N][3]:
else
for (i=0; i<N;i++)
d[0:8] = c[1:9] + 2;

d[0:N-1] = d[1:N] + 2;
a[0:N-1]1[0:N-1] = Db[O0:N] + 3;

45

WO 2005/010632 PCT/EP2004/006547

4 Compiler Specification for the
PACT XPP

4.1 Introductioh

A cached RISC-XPP architecture exploits its full potential on code that is characterized by high data
locality and high computational effort. A compiler for this architecture has to consider these design
constraints. The compiler’s primary objective is to concentrate computational expensive calculations
to innermost loops and to make up as much data locality as possible for them.

The compiler contains usual analysis and optimizations. As interprocedural analysis, like alias
analysis, are especially useful, a global optimization driver is necessary to ensure the propagation of
global information to all optimizations. The following sections concentrate on the way the PACT XPP
influences the compiler. '

4.2 Compiler Structure

Figure 51 shows the main steps the compiler must follow to produce code for a system containing a
RISC processor and a PACT XPP. The next sections focus on the XPP compiler itself, but first the
other steps are briefly described.

46

WO 2005/010632 PCT/EP2004/006547

|

Code Preparation

Partitioning

A 4

XPP Compiler

A 4

RISC Code Gen.

Y

RISC Code Sched.

|

Figure 51: Global View of the Compiling Process

4.2.1 Code Preparation

This step takes the whole program as input and can be considered as a usual compiler front-end. It will
prepare the code by applying code analysis and optimizations to enable the compiler to extract as
many loop nests as possible to be executed by the PACT XPP. Important optimizations are idiom
recognition, copy propagation, dead code elimination, and all usual analysis like dataflow and alias
analysis.

Handling of Pointer and Array Accesses

Pointer and array accesses are represented identically in the intermediate code representation which is
built during the parsing of the source program. Hence pointer accesses are considered like array
accesses in the data dependence analysis as well as in the optimizations used to transform the loop
bodies. Interprocedural alias analysis, for instance, leads in the code shown below to the decision that
the two pointers p and g never reference the same memory area, and that the loop body may be
successfully handled by the XPP rather than by the host processor.

47

WO 2005/010632 PCT/EP2004/006547

int foo(int *p, int *qg, int N)
{ for(i = 0;i < N;i++)

{P[i] = q[i] * q [i+1];
retzurn p[N-1];

}

main()
int a [100],b[100];
int N;

foo(a,b,N);

Figure 52: Example of pointer disambiguation

4.2.2 Partitioning

Partitioning decides which part of the program is executed by the host processor and which part is
executed by the XPP.

A loop nest is executed by the host in three cases:

= if the loop nest is not well-formed,
» if the number of operations to execute is not worth it to be executed on the PACT XPP, or
» jf it is impossible to get a mapping of the loop nest on the PACT XPP.

A loop nest is said to be well-formed if the loop bounds are computable and the step of all loops is
constant, the loop induction variables are known, and if there is only one entry and one exit to the loop
nest.

If the loop bounds are constant but unknown at compile time it is possible to speculatively generate
XPP code which assumes adequate iteration counts (loop tiling). But small loop iteration counts at run
time can drive generated XPP code towards inefficiency. One possible solution is the introduction of a
conditional instruction testing whether the loop bounds are large enough for profitable XPP code. Two
versions of the loop nest are produced. One for execution on the host processor, and the other for
execution on the XPP. This concept also eases the application of loop transformations needing
minimal iteration counts.

4.2.3 RISC Code Generation and Scheduling

After the XPP compiler has produced NML code for the loops chosen by the partitioning phase, the
main compiling process must handle the code that will be executed by the host processor where
instructions to manage the configurations have been inserted. This is the objective of the last two
steps:

= RISC Code Generation and

= RISC Code Scheduling.

The first one produces code for the host processor and the second one further optimizes further by
looking for a better scheduling using software pipelining for instance.

48

WO 2005/010632 PCT/EP2004/006547

4.3 XPP Compiler for Loops

Figure 53 describes the internal processing of the XPP Compiler. It is a complex cooperation between
program transformations, included in the XPP Loop Optimizations, a temporal partitioning phase,
NML code generation and the mapping of the configuration on the PACT XPP.

|
¥
XPP Loop Opt.

fail & no change || too big
no
no
S yes
exit ti fails? \
00 many fat’s NML Code Gen.

ok

Temporal Partitioning

Mapping

Figure 53:Detailed Architecture of the XPP Compiler

First target specific loop optimizations are applied to produce innermost loop bodies that can be
executed on the array of processors. If case of success, the NML code generation phase is called,
otherwise temporal partitioning is applied to obtain several configurations for one loop. After NML
code generation and the mapping phase, it is possible that a configuration will not fit into the PAE
array. In this case the loop optimizations are applied again with respect to the reasons of failure of the
NML code generation or of the mapping. If this new application of loop optimizations does not change
the code, temporal partitioning is applied. Furthermore we keep track of the number of attempts for the
NML Code Generation and the mapping. If too many attempts are made, and we still do not obtain a
solution, we break the process, and the loop nest will be executed by the host processor.

4.3.1 Temporal Partitioning

Temporal partitioning splits the code generated for the XPP in several configurations if the number of
operations, i.e. the size of the configuration exceeds the number of operations executable in a single
configuration. This transformation is called loop dissevering [6]. These configurations are integrated in
a loop of configurations whose number of execution corresponds to the iteration range of the original
loop.

49

WO 2005/010632 PCT/EP2004/006547

4.3.2 Generation of NML Code

This step takes as input an intermediate form of the code produced by the XPP Loop Optimizations
step, together with a dataflow graph built upon'it. NML code is then produced by using tree- or DAG-
pattern matching techniques [12,13]. After this step, specific NML optimizations are applied. For
instance, partial redundancy elimination and boolean simplification dedicated to optimizing the
generated event networks are invoked.

4.3.3 Mapping Step

This step takes care of mapping the NML modules on the XPP by placing the operations on the ALUs,
FREGs, and BREGs, and routing the data through the buses.

4.4 XPP Loop Optimizations Driver

The objective of the loop optimizations used for the XPP is to extract as much parallelism as possible
from the loop nests in order to execute them on the XPP by exploiting the ALU-PAE:s as effectively as
possible and to avoid memory bottlenecks by means of IRAM usage. The following sections explain
how they are organized and how to take into account the architecture for applying the optimizations.

4.4.1 Organization of the System

Figure 54 presents the organization of the loop optimizations. The transformations are divided in six
groups. Other standard optimizations and analyses are applied in-between. Each group is called several
times. Loops over several groups may also occur. The number of iterations for each driver loop is
constant or determined at compile time by the optimizations itself (e.g. repeat until a certain code
quality is reached). In the first iteration of the loop, it can be checked if loop nests are usable for the
XPP, it is mainly directed to check the loop bounds etc. For instance if the loop nest is well-formed
and the data dependence graph does not prevent optimization, but the loop bounds are unknown, then
in the first iteration loop tiling is applied to get an innermost loop that is easier to handle and can be
better optimized, and in the second iteration, loop normalization, if-conversion, loop interchange and
other optimizations are applied to effectively optimize the loop nest for the XPP.

Group I ensures that no procedure calls occur in the loop nest. Group II prepares the loop bodies by
removing loop-invariant instructions and conditional instruction to ease the analysis. Group III
generates loop nests suitable for the data dependence analysis. Group IV contains optimizations to
transform the loop nests to obtain data dependence graphs that are suitable for vectorization. Group V
contains optimizations ensuring that innermost loops can be executed on the XPP. Group VI contains
optimizations that further extract parallelism from the loop bodies. Group VII contains target specific
. optimizations.

In each group the application of the optimizations depends on the result of the analysis and the

characteristics of the loop nest. Hence, for instance, the application of a transformation out of Group
IV depends on the data dependence graph computed before.

50

WO 2005/010632

4.4.2 Loop Preparation

The optimizations of Groups I, IT and III of the XPP compiler generate loop bodies without procedure
calls, conditional instructions and induction variables other than loop control variables. Thus loop
nests, where the innermost loops are suitable for execution on the XPP, are obtained. The iteration
ranges are normalized to ease data dependence analysis and the application of other code

transformations.

Group [

procedure inlining

loop pushing
Group I

loop-invariant code motion
loop unswitching

strength reduction

induction variable elimination

Group II

loop reversal
loop normalization
if-conversion

Group IV

loop peeling

loop splitting

nede splitting

loop skewing

scalar expansion
statement reordering

Group V

loop interchange
loop distribution
loop collapsing
loop tiling
strip-mining
loop alignment

Group VI

loop fusion

reduction recognition
scalar replacement

loop unrolling/unroll&jam

Group VII

Data duplication

Shift register synthesis
Loop pipelining

Tree balancing

51

PCT/EP2004/006547

Figure 54:Detailed View of the XPP Loop Optimizations

WO 2005/010632 PCT/EP2004/006547

4.4.3 Transformation of the Data Dependence Graph

The optimizations of Group IV are performed to obtain innermost loops suitable for vectorization with
respect to the data dependence graph. Nevertheless a difference with usual vectorization is that a
dependence cycle, that would normally prevent any vectorization of the code, does not prevent the
optimization of a loop nest for the PACT XPP. If a cycle is due to an anti-dependence, then it could be
that it won’t prevent optimization of the code as stated in [7]. Furthermore dependence cycles will not
prevent vectorization for the PACT XPP when it consists only of a loop-carried true dependence on
the same expression. If cycles with distance & occur in the data dependence graph, then this is handled
by holding £ values in registers. This optimization is of the same class as cycle shrinking.

Nevertheless limitations due to the dependence graph exist. Loop nests cannot be handled if some
dependence distances are not constant, or unknown. If only a few dependences prevent the
optimization of the whole loop nest, this could be overcome, by using the traditional vectorization
algorithm that sorts topologically the strongly connected components of the data dependence graph
(statement reordering), and then applies loop distribution. This way, loop nests which can be handled
by the XPP are obtained.

4.4.4 Influence of the Architectural Parameters

Some hardware specific parameters influence the application of the loop transformations. The
compiler estimates the number of operations and memory accesses which are consumed within a loop
body. These parameters influencé loop unrolling, strip-mining, loop tiling and also loop interchange
(iteration range).

The table below lists the parameters that influence the application of the optimizations. For each of
them two values are given: a starting value computed from the loop, and a restriction value which is
the value the parameter should reach or should not exceed after the application of the optimizations.
Vector length depicts the number of elements (i.e. 32-bit data) of an array accessed in the loop body.
Reused data set size represents the amount of data that must fit in the cache. /O IRAMs, ALU, FREG,
BREG stand for the number of IRAMs, ALUs, FREGs, and BREGs respectively that constitute the
XPP. The dataflow graph width represents the number of operations that can be executed in parallel in
the same pipeline stage. The dataflow graph height represents the length of the pipeline. Configuration
cycles amounts to the length of the pipeline, and to the number of cycles dedicated to the control. The
application of each optimization may

= decrease a parameter’s value (-),

* increase a parameter’s value (+),

= pot influence a parameter (id), or

= adapt a parameter’s value to fit into the goal size (make fit).

Furthermore, some resources must be kept for control in the configuration; this means that the
optimizations should not make the needs exceed more than 70-80% of each resource.

52

WO 2005/010632 PCT/EP2004/006547

Parameter Goal Starting Value

Vector length IRAM size (128 words) Loop count

Reused data set size Approx. cache size Algorithm analysis/loop sizes

I/0 IRAMs XPP size (16) Algorithm inputs + outputs

ALU XPP size (< 64) ALU opcode estimate

BREG XPP size (< 80) BREG opcode estimate

FREG XPP size (< 80) FREG opcode estimate

Dataflow graph width High Algorithm dataflow graph

Dataflow graph height Small Algorithm dataflow graph

Configuration cycles <command line parameter Algorithm analysis

Here are some additional notations used in the following descriptions. Letn be the total number of
processing elements available, 7, the width of the dataflow graph, in, the maximum number of input
values in a cycle and out, the maximum number of output values possible in a cycle. On the XPP,n is
the number of ALUs, FREGs and BREGs available for a configuration, r is the number of ALUs,
FREGs and BREGs that can be started in parallel in the same pipeline stage and, in and out amount to
the number of available IRAMs. As IRAMs have 1 input port and 1 output port, the number of IRAMs
yields directly the number of input and output data.

The number of operations of a loop body is computed by adding all logic and arithmetic operations
occurring in the instructions. The number of input values is the number of operands of the instructions
regardless of address operations. The number of output values is the number of output operands of the
instructions regardless of address operations. To determine the number of parallel operations, input
and output values as well as the dataflow graph must be considered. The effects of each transformation
on the architectural parameters are now presented in detail.

Loop Interchange

Loop interchange is applied when the innermost loop has a very small iteration range. In that case,
loop interchange allows having an innermost loop with a more profitable iteration range. It is also
influenced by the layout of the data in memory. It is profitable to data locality to interchange two loops
to get a more practical way to access arrays in the cache and therefore prevent cache misses. It is of
course also influenced by data dependences as explained earlier.

53

WO 2005/010632 PCT/EP2004/006547

Parameter Effect
Vector length +
Reused data set size make fit
/O IRAMs id
ALU id
BREG id
FREG id
Dataflow graph width id
Dataflow graph height id
Configuration cycles -

Loop Distribution

Loop distribution is applied if a loop body is too big to fit on the XPP. Its main effect is to reduce the
processing elements needed by the configuration. Reducing the need for IRAMs is a side effect of this
optimization.

Parameter Effect
Vector length id
Reused data set size id
/O IRAMs make fit
ALU make fit
BREG make fit
FREG make fit
Dataflow graph width -
Dataflow graph height -
Configuration cycles -

Loop Collapsing

Loop collapsing is used to make the loop body use more memory resources. As several dimensions are
merged, the iteration range is increased and the memory needed is increased as well.

54

WO 2005/010632 PCT/EP2004/006547

Parameter Effect

Vector length +
Reused data set size +
/O IRAMs : +
ALU id
BREG id
FREG id
Dataflow graph width +
Dataflow graph height

Configuration cycles +

Loop Tiling

Loop tiling, as multi-dimensional strip-mining, is influenced by all parameters, it is especially useful
when the iteration space is by far too big to fit in the IRAM, or to guarantee maximum execution time
when the iteration space is unbounded (see Section 4.4.7). Loop tiling makes the loop body fit with the
resources of the XPP, namely the IRAM and cache line sizes. The size of the tiles for strip-mining and
loop tiling can be computed by

tile size = resources available for the loop body / resources necessary for the loop body

The resources available for the loop body are the whole resources of the XPP for the current
configuration. One tile size may be computed for the data and another one for the processing elements.
The final tile size is the minimum of these two computations. If, for instance, the amount of data
accessed is larger than the capacity of the cache, loop tiling can be applied which is shown be the
following example.

for(i=0;1 <= 1048576;1i++) for(i=0; i<= 1048576; I+= CACHE_SIZE)
<loop body> for (j=0; j< CACHE SIZE; j+=IRAM SIZE)
for(k=0; k<IRAM SIZE;k++)
<tiled loop body>

Figure 55: Example of loop tiling for the PACT XPP

55

WO 2005/010632 PCT/EP2004/006547

Parameter Effect
Vector length make fit
Reused data set size make fit
I/O IRAMs id
ALU id
BREG id
FREG id
Dataflow graph width +
Dataflow graph height +
Configuration cycles +

Strip-Mining

Strip-mining is used to match the amount of memory accesses of the innermost loop with the IRAM
capacity. Usually the necessary number of processing elements does not build the bottleneck, as the
XPP provides 64 ALU-PAEs which is sufficient to execute most single loop bodies. However, the
number of operations can be also taken into account the same way as the data.

Parameter Effect
Vector length make fit
Reused data set size id
I/O IRAMs -
ALU id
BREG id
FREG id
Dataflow graph width +
Dataflow graph height id
Configuration cycles id
Loop Fusion

Loop fusion is applied when a loop body does not use enough resources. In this case several loop
bodies are merged to obtain a configuration using a larger part of the available resources.

56

WO 2005/010632 PCT/EP2004/006547

Parameter Effect

Vector length id
Reused data set size id
I/O IRAMs +
ALU

BREG

FREG +
Dataflow graph width id
Dataflow graph height +
Configuration cycles +

Scalar Replacement

The amount of memory needed by the loop body should always fit into the IRAMs. Due to this
optimization, some input or output array data is replaced by scalars, that are either stored in FREGs or
kept on buses.

Parameter Effect

Vector length id
Reused data set size id
I/O IRAMs -
ALU id
BREG id/+
FREG id/+
Dataflow graph width ' id/-
Dataflow graph height N A id/-
Configuration cycles] id

Loop Unrolling / Loop Collapsing / Loop Fusion

Loop unrolling, loop collapsing and loop fusion are influenced by the number of operations within the
body of the loop nest and the number of data inputs and outputs of these operations, as they modify the
size of the loop body. The number of operations should always be smaller than n, and the number of
input and output data should always be smaller than in and out. Note that although the number of
configuration cycles increases, the throughput increases as well resulting in a better performance.

57

WO 2005/010632 PCT/EP2004/006547

Parameter Effect

Vector length ‘ id

Reused data set size id

I/0 IRAMs

ALU

BREG

FREG +

Dataflow graph width id

Dataflow graph height +

Configuration cycles +
Loop Distribution

Like the optimizations above, loop distribution is influenced by the number of operations of the body
of the loop nest and the number of data inputs and outputs of these operations. The number of
operations should always be smaller than #, and the number of input and output data should always be
smaller than in and out. The following table describes the effect for each of the loops resulting from
the loop distribution.

Parameter Effeet

Vector length id

Reused data set size id
I/0 IRAMs -
ALU -
BREG -
FREG -
Dataflow graph width ' id

Dataflow graph height -

Configuration cycles -

Unroll-and-Jam

Unroll-and-Jam consists of unrolling an outer loop and then merging the inner loops. It must compute
the unrolling degree » with respect to the number of input memory accesses m and output memory

accesses p in the inner loop. The following inequality must hold: #*m <in A u* p < out. Moreover
the number of operations of the new inner loop must also fit on the PACT XPP. The unrolling degree

u is computed using the following formula: u =min(up,z,up,,), Where #,,; and u,,, are
computed by the same formula: u =rresources available/Zresources needed-l.Once more

58

WO 2005/010632 PCT/EP2004/006547

although the number of configuration cycles increases, the throughput increases as well resulting in
better performance..

Parameter Effect
Vector length id
Reused data set size +
/O IRAMs +
ALU +
BREG +
FREG +
Dataflow graph \;vidth id
Dataflow graph height +
Configuration cycles +

4.4.5 Target Specific Optimizations

At this step other optimizations, specific to the XPP, may be applied. These optimizations deal mostly
with memory problems and dataflow considerations. This is the case for shift register synthesis, input
data duplication (similar to scalar or array privatization), and loop pipelining.

Shift Register Synthesis

This optimization deals with array accesses occurring during the execution of a loop body. When
several values of an array are alive for different iterations, it is convenient to store them in registers
rather than accessing memory each time they are needed. As the same value must be stored in different
registers depending on the number of iterations it is alive, a value shares several registers and flows
from a register to another at each iteration. It is similar to a vector register allocated to an array access
with the same value for each element. This optimization is performed directly on the dataflow graph
by inserting nodes representing registers when a value must be stored in a register. In the PACT XPP,
it amounts to store it in a data register. A detailed explanation can be found in {1].

Shift register synthesis is mainly suitable for small to medium amounts of iterations where values are
alive. Since the pipeline length increases with each iteration for which the value has to be buffered, the
following method is better suited for medium to large distances between accesses in one input array.

Nevertheless this method works very well for image processing algorithms which mostly alter a pixel
by analyzing itself and its surrounding neighbors. Some resources are needed to produce guards on
input or output values to ensure the semantics of the produced code, as all registers must be filled to
allow the code to produce correct values.

59

WO 2005/010632 PCT/EP2004/006547

Parameter Effect
Vector length +
Reused data set size id
/O IRAMs id
ALU +
BREG id/+
FREG +
Dataflow graph width -
Dataflow graph height +
Configuration cycles +
Input Data Duplication

This optimization is orthogonal to shift register synthesis. If different elements of the same array are
needed concurrently, instead of storing the values in registers, the same values are copied into different
IRAMs. The advantage against shift register synthesis is the shorter pipeline length, and therefore the
increased parallelism, and the unrestricted applicability. On the other hand, the cache-IRAM
bottleneck can affect the performance of this solution, depending on the amounts of data to be moved.
Nevertheless we assume that cache-IRAM transfers are negligible to transfers in the rest of the
memory hierarchy .

Parameter ‘ Effect
Vector length id
Reused data set size id
/O IRAMs ' +
ALU - - S id
BREG id
FREG id
Dataflow graph width +
Dataflow graph height -
Configuration cycles id

FIFO pipelining

This optimization is used to store an array in the memory of the PACT XPP, when the size of the array
is smaller than the total amount of memory of the PACT XPP, but larger than the size of an IRAM. It
can be used for input or output data. Several IRAMs in FIFO mode are linked to each other, and the
input/output port of the last one is used by the computing network. A condition to use this method is
that the access pattern of the elements of the array must allow using the FIFO mode. It avoids to apply
loop tiling/strip-mining to make an array fit on the PACT XPP.

60

WO 2005/010632 PCT/EP2004/006547

Parameter Effect

Vector length id
Reused data set size id
I/O IRAMs +
ALU id
BREG id
FREG id
Dataflow graph width id
Dataflow graph height ‘ -

Configuration cycles o +

Loop Pipelining

This optimization synchronizes operations by inserting delays in the dataflow graph. These delays are
registers. For the PACT XPP, it amounts to store values in data registers to delay the operation using
them. This is the same as pipeline balancing performed by xmap.

Parameter Effect
Vector length id
Reused data set size id
[/O IRAMs id
| ALU id
BREG +
FREG +
Dataflow graph width +
Dataflow graph height -fid
Configuration cycles -

Tree Balancing

This optimization consists in balancing the tree representing the loop body. It reduces the depth of the
pipeline, thus reducing the execution time of an iteration, and increases parallelism.

61

WO 2005/010632 PCT/EP2004/006547

Parameter Effect

Vector length id
Reused data set size id
/O IRAMs id
ALU id
BREG id
FREG id
Dataflow graph width id
Dataflow graph height -

Configuration cycles -

4.4.6 Memory Optimizations

Optimization of Memory Accesses

A particular concern for the PACT XPP are memory accesses. These need to be reduced in order to get
enough parallelism to exploit. The loop bodies are freed of unnecessary memory accesses when shift
register synthesis and scalar replacement are applied. Scalar replacement has the same effect as
redundant load/store elimination. Array accesses are taken out of the loop body and handled by the
host processor. It should be noted that redundant load/store elimination takes care not only of array
accesses but also of accesses to global variables and records. On the other hand, shift register synthesis
removes some accesses completely from the code.

Access Patterns and Loading of the Data into the IRAMs

A major issue is also how to load data in the IRAMs efficiently in terms of resources consumed and in
terms of execution time. Non linear access patterns consume a lot of resources to compute the
addresses, moreover their loading into the-TRAMs can then be delayed by cache misses and these
costly computations. Furthermore it is profitable for the execution time when the accesses are linear
between the IRAMSs and the ALU-PAEs.

As already stated in section 2.2.5, methods exist to prevent these problems. They can be applied at
different levels:

» on the data layout,

= the source code, or

= on the data transfer.

By modifying the data layout, the access patterns are simplified, thus saving resources and
computation time. This is achieved by array merging, for instance.

The source code itself can be modified to simplify the access patterns. This is the case for matrix
multiplication, presented in the case studies, where a matrix is transposed to obtain an access line-by-
line and not row-by-row, or in the example presented at the end of the section. On the other hand, loop
tiling allows filling the IRAMSs by modifying the iteration range of the innermost loop.

Furthermore the access patterns can be modified by reordering the data. This can happen in two ways,
as already described in section 2.2.5:

62

WO 2005/010632 PCT/EP2004/006547

» either by loading the data in the IRAMs in a specific order,
= or by reordering dynamically the data.

The first data reordering strategy supposes a constant stride between two accesses, if this is not the
case, then the second approach is chosen. More resources are needed, as the flow of data is reordered
by computations done the PACT XPP to feed the ALU-PAES, but the data are accessed linearly inside

the IRAMSs.

Finally if none of these methods is applicable, and the access patterns are too costly to be synthesized
on the XPP array, the index expressions are computed in advance and loaded into an IRAM that is
used as an index for accessing the array values stored in another IRAM. For instance, with the
following loop the values {0,0,0,1,1,1,...,7,7,8} are loaded in an IRAM, and will feed the address input
of the IRAM containing array b.
for{i=0;1i <= 24;i++)
ali] = b[i/3};

In this example, where only one expression causes problem, another solution is to apply loop tiling to
prune it. The resulting loop is shown below. The expression i/3 evaluates to 0, as it is always smaller
than 3. This is found by the value range analysis. The access pattern can then be synthesized on the
XPP array to access the array values in the IRAMs.

for(j=0;3 <= T;j++) for(j=0;3 <= 7;j++)
for(i=0;i < 3;i++) for(i=0; i < 3; i++) {
ali+3*j] = b[i/3+]]1; ali+3*j] = b[jl:

} }

4.4.7 Limiting the Execution Time of a Configuration

The execution time of a configuration must be controlled. This is ensured in the compiler by strip-
mining and loop tiling that also take care that the input data does not exceed the IRAMs capacity. This
way the iteration range of the loop that is executed on the XPP is limited, and therefore its execution
time. Moreover partitioning ensures that loops, whose execution count can be computed at run time,
are going to be executed on the XPP. This condition is trivial for for-loops, but for while-loops, where
the execution count cannot be determined statically, a transformation like the one sketched below is
applied. As a result, the inner for-loop can be handled by the XPP.

while (ok) { while (ok)
<loop body> for(i=0; 1<100 && ok; i++) {
} <loop body>

}

Figure 56: Transformation of while-loops

63

WO 2005/010632 PCT/EP2004/006547

5 Case Studies

5.1 Introduction

The following chapter contains six case studies from fields where a RESC-XPP combination fits best.
As typical DSP examples a finite impulse response (FIR) filter and a viterbi decoder are investigated.
Image processing algorithms are represented by an edge detector function, the inverse discrete cosine
transformation from an MPEG codec and a wavelet transformation. Furthermore a matrix
multiplication and the quantization functions of the MPEG codec are investigated.

All algorithms are transformed with various optimizations presented in the preceding chapters. The
result of the transformations is presented in C code, which is sometimes shortened for better
understanding. In a last step the code is split in C code, which runs on the RISC host, and C code
which runs on the XPP array. Furthermore the XPP configuration is presented as a dataflow graph
which should generally give a better understanding, since some features of the XPP array cannot be
presented in C adequately.

5.2 Conventions

5.2.1 Configuration and IRAM names

Configurations are named by a prefix _ XppCfg_ and a name. They are defined as C functions without
parameters and without a return value.

The communication with the rest of the system is done over the IRAMs exclusively. They are
identified by a number between 0 and 15. In the C representation of configurations they are differently
declared depending on how they are used:

= As a pointer of type (unsigned) char*, short*, or int*, respectively. When this representation is
used, the IRAM is used in FIFO mode. Although this notation is not totally correct, it describes the
access mode best. IRAMs in this mode are read and written sequentially starting with address 0.
No address generators are needed. The access is illustrated by using the post increment notation
*iram<N>++. When the declaration is of a smaller data type than integer, this silently implies
that converters to 32 bits are produced by the compiler.

= As arrays of type (unsigned) char[512], short[256], or int[128], respectively. The access notation
in C is then iram<N>[offset expression].In contrast to FIFO access dedicated address

generators must be synthesized. As mentioned above, the usage of data types smaller than integer
implies automatically generated data type converters.

All code parts outside a__XppCfg_-prefixed function are meant to run on the RISC host. The RISC
code contains, besides normal C statements, calls to the compiler known functions which are presented
in the hardware chapter.

64

WO 2005/010632 PCT/EP2004/006547

5.2.2 Endianess

We assume big endian data layout. This means that the string representation of the word "PACT XPP"
loaded to an IRAM causes the following IRAM content.

Address Content
0x00 0x50414354 ('P'<<24 |'A' <<16 | 'C' << §|'T")
0x01 0x20585050 (' '<<24 | 'X'<<16 | 'P' << 8| 'P")

Similarly, loading an array of 4 16-bit (short) values with the values 0x1234, 0x5678, 0x9abc and
0xdef0 respectively, causes the following content.

Address Content
0x00 0x12345678
0x01 0x9abcdefd -

There is no special reason for this choice, little endian order would be possible, too. Of course the
predefined modules in the next section must then be adapted to the changed data layout.

5.2.3 Predefined Modules

For better readability of the examples some predefined modules are used. In the following subsections
they are shortly described and their dataflow graphs are given.

Up counters

The counters are used on one hand to drive the IRAM reads and writes and, on the other hand, to
generate event sequences for the conversion modules presented next. The different implementations
are described in [12] in detail.

Conversion Modules

Predefined conversion modules are used throughout the case studies. The compiler handles them as
compiler known functions. The compiler either generates conversion modules which produce a
sequential stream of converted values, or it generates modules which simply split packets into parallel
streams which then can be processed concurrently. Figure 57 shows the implementations of the
converters which convert to one stream. They output one 8/16-bit value per cycle. The mput
connectors expect data packets with packed values of the shorter data type. Furthermore the selector
inputs need special event sequences for correct operations.

The second type of converters, which can only be used if dependences allow it, simply split a data

packet in 2 or 4 streams with boolean operations, and do a sign extension if necessary. Since the
implementations are straightforward, the dataflow graphs are omitted.

65

WO 2005/010632 PCT/EP2004/006547

— n
32 selector
B A SIEP
s ,
X

| WERGE_]

in8 [selector

o SonelBtolz by

S

Figure 57 Converter modules for conversion from and to shorter data types. The signed versions suffixed with
' sb' do correct sign extension. All modules 16 -bit converters must be connected to '101010.." event streams
while the '32t08"-converters must be fed with a '10001000...." sequence and the '8to32' must be fed with an a

'00010001..." sequence, respectively. All modules output one packet/cycle.

5.3 Performance Evaluation Procedure

5.3.1 Target Hardware Platform

The case studies are based on the basic design presented in chapter 2.5. The following parameters were
used for the evaluation design:

66

WO 2005/010632 PCT/EP2004/006547

Unit Frequency
RISC core 400 MHz

XPP Cache Controller 400 MHz 1 preload FIFO stage

XPP PAE Array 200 MHz 8 x 8 ALU PAE’s, 16 IRAM ports, 4 I/0 Ports
Storage Frequency Size
ICache 400 MHz 64 KB fully associative
cache line 32 Bytes
DCache 400MHz - 128KB fully associative
cache line 32 Bytes

write-back / write allocation

IRAMs 400 MHz 32 KB 16 ports x 4 shadows x 128 ints x 32 bits
Bus Frequex;cy Bus width Max
Throughput
ICache - PAE 400 MHz 32 bit 1600 MB/s
DCache - IRAMs 400 MHz 128 bit 6400 MB/s
SDRAM 100 MHz 32 bit 400 MB/s Read Burst: 7-1-1-1-1-1-1-1

Write Burst: 1-1-1-1-1-1-1-1

As a simplification, we do not consider alignment, assuming a cache miss every thirty-two bytes, when
reading succeeding memory cells. We may do this, because we potentially omit only a single cache
miss, that potentially occurs, if the array spans one more cache line due to misalignment.

Execution times, in 400 MHz cycles:

Resource t(data size [bits]) [400 MHz cycles]
ICache Hit: - ICache > ceil(data size / 32)
PAE Array
DCache Hit DCache ->IRAMor ceil(data size / 128)
IRAM -> DCache
Cache Read Miss RAM -> Cache roundUp(data size, 256)/ (8%32/ (7 + 7*1) * 4)

= ceil(data size * 56 / 256)

Cache Write-Back Cache -> RAM roundUp(data size, 256) / (8*32/ ((8*1) * 4)
= ceil(data size*32 /256)

67

WO 2005/010632 PCT/EP2004/006547

Cache Write Miss IRAM -> RAM: Cache Read Miss + Transfer(Write)
= ceil(data size * 56 / 256) + ceil(data size / 128)
Cache Read Miss +
Write Transfer
(IRAM -> Cache)

Execution PAE Array Configuration execution cycles * 2

Whenever there are no pipeline stalls, the different units and busses can work in parallel. Thus the total
execution time is defined by the following formula, where RAM transfer cycles summarizes the cycles
of the cache read misses and the cache write-back cycles:

max(Sum (Execution cycles),
Sum (RAM transfer cycles),
max (Sum(ICache transfer cycles),
Sum(DCache transfer cycles))) [cycles @ 400 MHz]

If there are pipeline stalls, the outer maximum is replaced by a sum, reflecting the fact, that the units
have to wait for each other to finish.

Only the amount of data that actually has to be transferred, is considered. Data that is already in a
cache or in the IRAMS, is not accounted for.

For the startup case, the caches are assumed to be empty. Only the read data is considered, as the
write-backs of the first iteration will take place in the next iteration. Due to the dependences, the above
formula changes to a sum over all configurations of the following —per configuration— term:

ICache read miss +

max (ICache transfer cycles, Data cache read miss; +
Sum;— ,(max (Data cache read miss;, DCache transfer;.;)) +
DCache transfer,) +

Execution cycles [cycles @ 400 MHz]

This double sum converges to the previous formula for any non-trivial number of IRAM preloads.
Also the RAM cycles dominate the transfer cycles by an order of magnitude. Therefore this more
complicated computation method is only used for the trivial cases.

For the average case only data, that are read for the first time, are accounted for. The average case is
defined as the iteration after an infinite number of iterations: all data that can be reused from the
previous iteration are in the cache. All data that are used for the first time must be fetched from RAM
and all data that are defined, but are not redefined by the next iteration have to be wriiten back to the
cache and the RAM. v

The use of the XppPreloadClean instruction is a special case: no write allocation takes place, except at
the start and the end of the array, if it is not aligned to a cache line boundary. These burst transfers are
neglected. Also no read transfer from the cache to the IRAM takes place.

5.3.2 Evaluation Procedure

As mentioned above, all examples are transformed with various transformations and intermediate
results are presented in C code on a regular basis. Wherever possible it is tried to present valid C code.
Nevertheless in some examples it is necessary to use features which are not expressible in the source
language. These then appear in comments within the source code.

68

WO 2005/010632 PCT/EP2004/006547

After the partition step, configurations are hand written in NML to simulate the compiler code
generation step. Placement and routing is done automatically by the mapping tool XMAP. For
convenience the NML feature to define modules is used. In some cases, the objects in the critical path
are placed relatively to each other, as this has proven to improve the execution performance
drastically.

Each example lists the estimated data transfer performance in a table as the one below. The estimation
assumes a cache controller which works with the RISC frequency which is twice the frequency of the
XPP array, and four times the frequency of the 32-bit main memory bus. The Cache-IRAM transfers
are executed with full cache controller speed over an 128-bit bus. All values are scaled to the cache
controller frequency. The table below shows a typical data transfer estimation.

. 4714 cache-cycles .
- penalty forcache.
- .. readmiss.; .

array |
scalarZ

I 56 I

Every 32 bytes
.one cache miss

e

... 16 bytes/cycle- .|

2 I 3 T04] 16

F14 cycles penalty for cache witte miss
- (write allocation) + size*4/4 transfer ..
L cycle8y Y

A cache read miss causes a 14 cycles penalty for the burst transfer on the main memory bus which
calculates to 4*14=56 cache cycles to load a 32 byte cache line from main memory. If a write miss
occurs, the cache controller write allocation must first load the affected cache line before it can be
altered and written back. By using XppPreloadClean, write misses can be avoided. Then only the
cache-RAM transfer with a 32-bit word every 4 cache cycles must be accounted for. For this reason,
some examples show a smaller number of write-back cache misses than expected.

The XPP execute cycles are calculated by taking the double cycle difference (scaling to cache
frequency) between the end of the configuration execution and the start of the configuration execution.
The NML sources are implemented so that configuration loading and configuration execution do not
overlap. This is done by means of a start object which is configured last and creates an event to start
execution. The cycle measurements for the XPP only include the code which is executed in the
configurations, i.e. in the loops of the evaluated function. The remaining control code, i.e. if
statements, is not included. It is possible to neglect this remaining code on the RISC processor , since
this code is executed in parallel to the XPP and is significantly shorter.

On the reference system, this code is executed in sequence to the code of the configurations, so it
cannot be neglected. Moreover, splitting the code for the reference system into many small units
prevents many optimizations for that system, making the measurements unrealistic. Thus the complete
loop is timed on the reference system for those cases studies that suffer most from these effects.

The performance data of the reference system were measured by using a production compiler for a 32
bit fixed point DSP with a maximum instruction issue of four, an average instruction issue of
approximately two and a one cycle memory access to on-chip high speed RAM. This allows to simply
add the data cache miss cycles to the measured execution time to obtain realistic execution times for a

69

WO 2005/010632 PCT/EP2004/006547

memory hierarchy and off-chip RAM. Since the DSP cannot handle 8-bit data types reasonably, the
sources were adapted to work with short, int and long types only to get representative results.

The results are summarized in another table. An example is shown below. All values are converted to
the highest frequency (cache / RISC cycles). For each configuration the data access cycles and the
instruction access cycles are listed for RAM and cache accesses. Then the execution cycles are given
for both the XPP and the reference system. Finally the speedup is presented as reference execution
cycles / XPP execution cycles. Using the formulas of section 5.3.1, execution cycles and speedup are
given for all three different possibilities, where the data can be located initially: in-IRAM (column
core— for the XPP only, for the RISC, the in-cache column is used instead), in-cache or in-RAM.

In the example performance evaluation table below the first three rows list the performance data of
each configuration separately, and the last row lists the performance data of all configurations of the
function. The data transfer cycles for the separate configurations, Data Access, represent all preloads
and write-backs which would be necessary for executing the configuration alone. The data transfer
cycles for executing all configurations is less than the sum of the cycles for the separate
configurations, because data can remain in the IRAMs or in the cache between two configurations and
do not need to be loaded again.

Usually the configurations are executed in a loop. Therefore the first table describes the first iteration
of the example loop. All configurations are not in the cache, as are the required input data. No outputs

configurations | RA

configuration 9688
configuration2 | 536 3024
configuration3 | 427 1736

all cigs 1218 37| 14392

In the second table, the average case is described: All configurations are cached in the XPP array, as
are the input data arrays that can be reused from the previous iteration. Therefore the table is missing
all instruction transfer cycles.

configurations | RAM DCache| RAM iCa
“configurationT | 1352 52
configuration2 | 536 17
configuration3 | 760 32
all cigs 1440 53

This is repeated for all loops in the example. For some examples, no outer loop exists. In this case, the
sub-optimal linear case is described as well as the case that the given function is called within a typical
loop.

70

WO 2005/010632 PCT/EP2004/006547

5.4 3x3 Edge Detector

5.4.1 Original Code

#define VERLEN 16
#define HORLEN 16
main() {
int v, h, inp;
int pl[VERLEN] [HORLEN];
int p2[VERLEN] [HORLEN];
int htmp, vtmp, sum;

for (v=0; v<VERLEN; v++) // loop nest 1
for (h=0; h<HORLEN; h++) {
scanf ("%d", &pl[v][h]); // read input pixels to pl
p2[v][h] = 0; // initialize p2
}

for(v=0; v<=VERLEN-3; v++) { // loop nest 2
for (h=0; h<=HORLEN-3;, h++) {
htmp = (pl[v+2][h] - pllv][h]) +
(pliv+2] [h+2] - pllv][h+2]) +
2 * (pl[v+2] [h+1] - pllv][h+1]);
if (htmp < 0)
htmp = - htmp;

vimp = (pl(v][h+2] - pl[v][h]) +
(pl{v+2] [h+2] - pllv+2] [h]) +
2 * (pllv+l] [h+2] - pl[v+l][h]);
if (vtmp < 0)
vimp = - vtmp;

sum = htmp + vtmp;
if (sum > 255)
sum = 255;
p2[v+1l] (h+1] = sum;
}

}
for (v=0; v<VERLEN; v++) // loop nest 3

for (h=0; h<HORLEN; h++)
printf ("%d\n", p2[v][h]); // print output pixels from p2
}

5.4.2 Preliminary Transformations

Due to the calls to the library functions scanf and printf in loop nest one and loop nest three,
respectively, only loop nest two is handled in the further sections.

Interprocedural Optimizations

The first step normally invokes interprocedural transformations like function inlining and loop
pushing. Since no procedure calls are within the loop body, these transformations are not applied to
this example.

71

WO 2005/010632 PCT/EP2004/006547

Basic Transformations

The following transformations are done:

» Idiom recognition finds the abs() and min() patterns and reduces them to compiler known
functions.

» Tree balancing reduces the tree depth by swapping the operands of the additions.
» The array accesses are mapped to IRAM accesses.

» Since this example uses different values of one IRAM within an iteration, either shift register
synthesis or data duplication must be used. To show the difference between these two
transformations, both are outlined here.

The resulting code after this step is shown below. First with shift register synthesis:

for (v=0; v<=VERLEN-3; v++) {
int iram0([128]; // pliv]
int iraml([128]; // pl[v+l]
int iram2(128]; // pl[v+2]
int iram3[128]1; // p2[v+1l]1[1]

for (h=0; h<=HORLEN-1; h++) {
// £ill shift registers

if (i>1) { tmp00 = tmpOl; tmplO = tmpll; tmp20 = tmp2l; }
if (i>0) { tmp0l = tmp02; . ; tmp2l = tmp22; }
tmp02 = iramO([h]; tmpl2 = iraml[h]; tmp22 = iram2[h];

if (h>2) |
htmp = 2 * (tmp21 - tmpOl) +
(tmp20 - tmpO00) +
(tmp22 -~ tmp02);

htmp = abs(htmp);
vimp = 2 * (tmpl2 - tmplO0) +
(tmp02 - tmpO00) +
(tmp22 - tmp20);
vtmp = abs(vtmp);
sum = min (255, htmp + vtmp);
iram3[h-1] = sum;
}
}
}
And with data duplication:

for (v=0; v<=VERLEN-3; v++) {
int iram0{128], iraml([128], iram2([128]; // pl[v]
int iram3[128], iram4 {1281; // pll[v+l]
int iram5[128], iram6[128], iram7[128]; // pl[v+2]
int iram8[128}1; // p2[v+11[1]

for (h=0; h<=HORLEN-3; h++) {
tmp00 = iramO[h]; tmpl0 = iram3[h]; tmp20 = iram5[h];
tmp01l iraml[h+1]1; tmp21 iram6 [h+1];
tmp02 = iram2[h+2]; tmpl2 = iram4 [h+2]; tmp22 iram7[h+2];
htmp = 2 * (tmp2l - tmpOl) +
(tmp20 - tmpO0) +
(tmp22 - tmp02);
abs (htmp) ;
2 * (tmpl2 - tmplO0) +
{(tmp02 -~ tmp00) +
(tmp22 - tmp20);

It
Il

[

htmp
vtmp

72

WO 2005/010632 PCT/EP2004/006547

vtmp = abs (vtmp);
sum = min (255, htmp + vtmp):;
iram3[h~1] = sum;

}
}

The following table shows the estimated utilization and performance values.

Parameter Value (shift register synthesis) Value (data duplication)
Vector length 16 16
Reused data set size 32 32
I/0 IRAMs 3[I+10=4 8§I1+10=9
ALU 8 (calc) + 3*2 (compare for shift 8 (calc)
register synthesis) = 14
BREG 10 (BREG_SUB/BREG_ADD) 10 (BREG_SUB/BREG_ADD)
FREG 3*2 = 6 (shift register synthesis) few
Dataflow graph width 12 12
Dataflow graph height 3 (shift registers) + 8 § (calculiation)
(calculation)
Configuration cycles 11+16=27 8+16=24

The inner loop calculation dataflow graph is Shown in Figure 58. The inputs are either connected over
the shift register network shown in Figure 59, or directly to an own IRAM.

5.4.3 Enhancing Parallelism

The table above shows a utilization of about one fourth of the ALUs. Until now we neglected that the
SUB and ADD operations can be done by BREGs as well. Therefore we try to maximize utilization.

Unroll-and-Jam

Unroll-and-jam is the transformation of choice, because of its nature to bring iterations together. As
the reused data size increases, the IRAM usage does not increase proportionally to the unrolling factor.

The parameters which determine the unrolling factor are the overall loop count of 14, the IRAM
utilization of 4 and 9, respectively and the PAE counts. The first parameter allows an unrolling degree
for unroll-and-jam equal to 2 and 7, while the IRAMs restrict it to 7 and 2 respectively. The PAE
usage would allow an unrolling degree equal to 4 (ALU ADD/SUB replaced by BREG ADD/SUB).
Therefore the minimum of all factors must be taken, which is 2. The estimated values are shown in the

next table

Parameter Value (shift register synthesis) Value (data duplication)
Vector length 2*16 2*16
Reused data set size 48 48
/O IRAMs 41+20=6 121+20=14
ALU 2*%8 +4*¥2 =24 2%8=16
BREG 20 20
FREG 4*%2=8 few
Dgtaﬂow graph width 12 12

73

WO 2005/010632 PCT/EP2004/006547

Dataflow graph height 3 (shift registers) + 8 8 (calculation) -
(calculation)
Configuration cycles 11+16=27 (two 8+16=24 (two
outputs/configuration) outputs/configuration)

Figure 58 The main calculation network of the edge3x3 configuration. The MULT-SORT combination does the
abs() calculation while the SORT does the min() calculation.

74

WO 2005/010632 PCT/EP2004/006547

5.4.4 Final Code

Shift Register Synthesis

The RISC code for shift register synthesis after unroll-and-jam reads then:

XppPreloadConfig(XppCfg edge3x3);

for (v=0; v<=VERLEN-3; v+=2) {
XppPreload (0, &pllv], 16);
XppPreload(l, &pl([v+1l], 16);
XppPreload (2, &pl[v+2], 16);
XppPreload (3, &pllv+3], 16);
XppPreloadClean (4, @pl[v+1]([1], 14]);
XppPreloadClean(5, @pl([v+2][1], 141);
XppExecute();

}

The configuration reads as follows:

void _ XppCfg_edge3x3 {
// IRAMs
int iram0[128]1; // pl(v]
int iraml([128]; // pllv+l]
int iram2[128]; // pllv+2]
int iram3[128]; // pll[v+3]
int iramd4([1281; // p2[v+1]I[1]
int iram5(128]1; // p2[v+2][1]

for (h=0; h<=HORLEN-1; h++) {
// £ill shift registers A

if (i>1) { tmp00 = tmpOl; tmpl0 = tmpll; tmp20 = tmp2l;
tmp30 = tmp31l; }

if (i>0) { tmp0l = tmp02; tmpll = tmpl2; tmp2l = tmp22;
tmp3l = tmp32; }

tmp02 iramO[h]; tmpl2 = iraml[h]; tmp22 = iram2[h];
tmp32 = iram3[h];
if (h>2) {
htmp0 = 2 * (tmp21 - tmp0l) +
(tmp20 - tmp00) +
(tmp22 - tmp02);

[

htmp0 = abs (htmp0) ;

vtmpO = 2 * (tmpl2 - tmplO) +
(tmp02 - tmp00) +
(tmp22 - tmp20);

vtmp0 = abs(vtmp0);

sum0 = min (255, htmpO + vtmp0);

iram4 [h-1] = sum0O;

htmpl = 2 * (tmp31l - tmpll) +
(tmp30 - tmplO) +
(tmp32 - tmpl2);

abs (htmpl) ;

2 * (tmp22 - tmp20) +
(tmpl2 - tmpl0) +
(tmp32 - tmp30);

htmpl
vtmpl

vtmpl = abs(vtmpl);
suml = min (255, htmpl + vtmpl);
iram5[h-1] = suml;

75

WO 2005/010632 PCT/EP2004/006547

fram

iram[x] iram[x-+1Jiram{x+2]

Figure 59 Input preparation with shift register synthesis. For each IRAM access one of these modules is
generated.

Data Duplication

Data duplication needs more preloads.

XppPreloadConfig(XppCfg edge3x3);

for (v=0; v<=VERLEN-3; v+=2) {
XppPreload (0, &pl(v], 16):
XppPreload(l, &pl(v], 16);
XppPreload (2, &pllv], 16);
XppPreload{3, &pl[v+l], 16);
XppPreload (4, &pl[v+l], 16);
XppPreload (5, &pl(v+l]l, 16);
XppPreload (6, &pl[v+2], 16);
XppPreload(7, &pllv+2], 16);
XppPreload (8, &pl[v+2], 16);
XppPreload (9, &pl[v+3]l, 16);
XppPreload (10, &pl[v+3], 16);
XppPreload (11, &pl[v+3], 16);
XppPreloadClean{12, @pl[v+l] {1}, 141):
XppPreloadClean (13, @pllv+2][1l], 141);
XppExecute() ;

}

On the other hand the configuration is less complex.

void _ XppCfg_edge3x3 {
// IRAMs
int iram0[128], iraml[128], iram2[128]; // pllvl]
int iram3[128], iram4[128] iram5[128]; // pllv+l]
int iram6{128], iram7{128], iram8[128]; // pl[v+2]
int iram9[1283, iram10[128], iram11([128]; // pl[v+3]
int iraml12([128]1; // p2[v+1][1]

76

WO 2005/010632 PCT/EP2004/006547

int iraml13[128]; // p2[v+2][1]

for (h=0; h<=HORLEN-3; h++) {
tmp00 = iramO[h]; tmplO = iram3[h];

tmp20 = iram6{h]; tmp30 = iram9%[h];
tmp0l = iraml[h+1]; tmpll = iramé4[h+1];
tmp2l = iram7[h+1]; tmp3l = iramlO[h+1];
tmp02 = iram2[h+2]; tmpl2 = iram5[h+2];

tmp22 = iram8[h+2]; tmp32 iramll [h+2];
htmp0 = 2 * (tmp2l - tmp0l) +
(tmp20 - tmp00) +
(tmp22 - tmp02);
htmp0 = abs (htmpO) ;
vtmpO 2 * (tmpl2 - tmpl0) +
(tmp02 - tmp00) +
(tmp22 - tmp20);

vtmp0 = abs (vtmp0) ;
sum0 = min (255, htmp0 + vtmpO):;
iraml2[h] = sum0;

htmpl 2 * (tmp3l - tmpll) +
(tmp30 - tmpl0) +
(tmp32 - tmpl2);

htmpl abs (htmpl) ;

vtmpl = 2 * (tmp22 - tmp20) +

(tmpl2 - tmpl0) +
(tmp32 - tmp30);

vtmpl = abs (vtmpl);
suml = min (255, htmpl + vtmpl):;
iraml3[h] = suml;
}
}

5.4.5 Performance Evaluation

The next two tables list the estimated performance of data transfers. The values consider the data
reuse, which means that after the startup, which preloads 4 picture rows, each iteration only advances
two picture rows. Therefore two rows are reused and stay in the cache.

77

WO 2005/010632 PCT/EP2004/006547

pliv]

pliv+l] 64
pliv+2] 64
pliv+3] 64

NS OS NS S F

p'f[v‘]o (rehse pfv+2]) 64] 4
plfv+1] (reuse p[v+3]) 64 0 4
pllv+2} 64 2 112 4
plv+3] 64 2 112 4
:,§ e vy

DIV o T R 176 7
p2[v+2]

For data duplication the following transfer statistics are estimated. The table accounts for the tripled
data transfers between cache and IRAMs.

pi[v] (3 times) 64 2 112 iz
pIv+I] 3 times) 4) 112 Z
PIvF2] (3 times) [2 112 V)

3 12 z

pl{v+3] (3 times) 64

pliv] (reuse p[v+2], 3 times) 7] 0 12
plfv+l] (reuse p{v+3], 3 times) 64 0 12
pliv+2] (3 times) 64 2 112 12

[v+3] (3 times) 64 2 112 12

pl
Sum

IR\ ' T 56 2 73 4
p2[v+2] 56 2 64
%

Both configurations, representing the A-loop, are hand coded in NML and mapped and simulated with
the XDS tools.

The simulation yields - scaled to the cache frequency - 124 and 144 cycles, respectively. This is
remarkable in so far, that we expected the variant with data duplication would produce better results. It
seems that the duplicated IRAMSs cause a worse routing.

The performance comparison of the two configurations with the reference system yields the results in
the following table. The first two rows of a section list the startup state and the steady state of thev-
loop. Since the v-loop has a trip count of 7, the columns sum calculate to startup state + 7*steady
state. All values assume worst-case performance, i.e. that configuration preload cannot be hidden and
that no data is in the cache.

78

WO 2005/010632 PCT/EP2004/006547

confignrations

The results show the dominance of the configuration preload. Although the core performance of the
case using data duplication is worse than the case using shift register synthesis, this is neglectable for
the values including the memory hierarchy. The next table assumes that configuration preload can be
issued early enough, so it can be hidden and must not be taken into account.

The results again show the impact of the configuration preload for configurations that calculate small
or medium amounts of data. When it can be hidden, performance is almost doubled in this example.

The comparison to the reference system shows less improvement compared to other examples. The
reason is the short vector length. Nevertheless pictures of size 16x16 are not very common, thus we
expect better improvements in the next section, which embeds the algorithm in a parameterized
function.

The final utilization is shown in the next table. As the estimations did not account for counters and
other controlling networks, the values for BREGs and FREGs differ significantly.

Parameter Value (shift register synthesis) Value (data duplication)
Vector length 2*16 2*16
Reused data set size 48 43
I/O IRAM:s [sum -pet] 6-38% 14 - 88%
ALU[sum-pct] 33-52% 19- 30%
BREG [def/route/sum-pct] 34/14/58 - 73% 36/20/56 - 70%
FREG [def/route/sum-pct] 25/27/52 - 65% 9/38/47 - 59%

79

WO 2005/010632 PCT/EP2004/006547

5.4.6 Parameterized Function

Source code

The benchmark source code is not very likely to be written in that form in real world applications.
Normally it would be encapsulated in a function with parameters for input and output arrays along
with the sizes of the picture to work on.

Therefore the source code would look similar to:

void edge3x3(int *pl, int *p2, int HORLEN, int VERLEN)
{
for (v=0; v<=VERLEN-3; v++) {
for (h=0; h<=HORLEN-3; h++) {

htmp = (**(pl + (v+2) * HORLEN + h) - **(pl + v * HORLEN + h)) +
(**(pl + (v+2) * HORLEN + h+2) - **(pl + v * HORLEN + h+2))+
2 * (**(pl + (v+2) * HORLEN + h+1l) - **(pl + v * HORLEN + h+l));
if (htmp < 0)
htmp = - htmp;
vimp = (**(pl + v * HORLEN + h+2) - **(pl + v * HORLEN + h)) +
(**(pl + (v+2) * HORLEN + h+2) - **(pl + (v+2) * HORLEN + h))+
2 % (**(pl + (V+l) * HORLEN + h+2) - **(pl + (v+1l) * HORLEN + h)):

if (vtmp < 0)
vimp = - vtmp;

sum = htmp + vtmp;
if (sum > 255)
sum = 255;
** (p2 + (v+1) * HORLEN + h+l) = sum;

5.4.7 Transformations

In addition to the transformations presented in section 5.4.2, this requires some additional features
from the compiler.

» Loop tiling assures that the IRAM size is not exceeded, and that the cache content is reused. In this
example the algorithm must assure that the tiles overlap. Figure 60 shows, that although the tile
size must be 128, the loops that advance the tile must have step sizes of 125, otherwise the grey
border edges would not be handled. The final tile size is computed by the RISC and passed to the
array.

* As the unroll-and-jam algorithm needs iteration counts which are a multiple of 2, a guarded peeled
off first iteration is inserted, which calculates the values either on the RISC or in an own
configuration.

80

WO 2005/010632 PCT/EP2004/006547

PR

E
:- ?;
b]
4 !
v
4
ORR P A E R N &
3

Tile 18

T O s AT e %

Figure 60 A sample picture with the size 640 x 480 pixels. Without precautions loop tiling
would miss the pixels on the borders between the tiles.

The loop nest reads then as follows. We show only the variant with shift register synthesis, with the
loop body omitted for better reading. As stated above, the tile size is 128 (IRAM size), but the tile
advancing loops increase by 125, overlapping the tiles correctly. The loop body equals the one in5.4.4
(Shift Register Synthesis).

for (v=0: v <= VERLEN-3; v+= 125)
for(h=0; h <= HORLEN-~3; h+= 125)
for (vv=v; vv< min{v+ 127, VERLEN-2); v+=2)
for (hh=h; hh< min{(h+ 127, HORLEN-2); hh++) {

.............

5.4.8 Final Code

In addition to the simple variant, the final tile size of the innermost loop has to be passed to the array.
Therefore the RISC code reads as follows, where the body of the guarded first iteration for odd tile
sizes is omitted for simplicity.

XppPreloadConfig(_ XppCfg_edge3x3};
for (v=0: v <= VERLEN-3; v+= 125)
for(h=0; h <= HORLEN-3; h+= 125) {
v_tilesize = min(128, VERLEN - v);
if (v_tilesize & 1 != 0) {
// calculate line on RISC
v++; tilesize &= 1;
}
for (vv=v; ve< v + v_tilesize; v+=2) {
tilesize = min(128, HORLEN-h);
XppPreload(0, &pl(vv][h], tilesize);

81

WO 2005/010632 PCT/EP2004/006547

}

XppPreload(l, &pl[vv+l][h], tilesize);
XppPreload(2, &pl{vv+2][h], tilesize);
XppPreload (3, &pl([vv+3][h], tilesize);
XppPreloadClean (4, @pl[vv+l] (h+1], tilesize - 2]);
XppPreloadClean (5, @pl[vv+2] [h+1], tilesize - 2]);
XppPreload(6, &tilesize, 1);

XppExecute () ;

The configuration reads then.

void _ XppCfg edge3x3 {
// IRAMs

int
int
int
int
int
int
int
for (h=0; h<=iram6[0]; h++) {

}

}

//
if

if

iram0[128]; // pllvv]
iraml[128]; // pl[vv+l]
iram2([128]; // pllvv+2]
iram3[128]; // pl[vv+3]
iramé4 [128]; // p2[vv+l] [h+1]
iram5[128]; // p2[vv+2] [h+1]
iram6{128]; // tilesize

£i1l shift registers

(1>1) { tmp00 = tmp0l; tmpl0 = tmpll; tmp20 = tmp2l;
tmp30 = tmp3l; }

(1>0) { tmp0l = tmp02; tmpll = tmpl2; tmp2l = tmp22;
tmp3l = tmp32; }

tmp02 = iramO[h]; tmpl2 = iraml[h]; tmp22 = iram2[h];
tmp32 = iram3[h]; '

if

}

(h>2) {
htmp0 = 2 * (tmp2l - tmp0l) +
(tmp20 - tmp00) +
(tmp22 - tmp02);
abs (htmp0) ;
= 2 * (tmpl2 - tmplO) +
(tmp02 - tmp00) +
(tmp22 - tmp20);
vtmp0 = abs (vtmpO) ;
sum0 = min (255, htmp0 + vtmpO);
iram4 [h-1] = sumO;

htmp0
vtmp0

htmpl = 2 * (tmp31 - tmpll) +
(tmp30 - tmpl0) +
(tmp32 - tmpl2);

htmpl = abs (htmpl);

vimpl = 2 * (tmp22 - tmp20) +

(tmpl2 - tmplO) +
(tmp32 - tmp30);

vtmpl = abs(vtmpl);
suml = min(255, htmpl + vtmpl);
iram5[{h-1] = suml;

The estimated utilization and worst-case performance (full tile) is shown below.

82

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length 2*128
Reused data set size ' 384
/O IRAMs 51+20=7
ALU 2%¥8 +4%2=24
BREG 20
FREG 4*2=8
Dataflow graph width 12
Dataflow graph height 3 (shift registers) + 8 (calculation)
Configuration cycles 11+128 =139

5.4.9 Performance Evaluation

We assume a 750 x 500 pixels picture similar to that shown in Figure 60. We choose the size to
simplify measurements since the dimensions are both multiples of 125. The estimated data transfer
performance is shown in the table below.

When computation of a new tile is begun (startup case), the first four rows must be loaded from RAM
to the cache. During execution of the inner loop (steady state case, abbreviated steady) only two
rows/iteration must be loaded. Since the output IRAMs are preloaded clean, no write allocation takes
place.

T S Y) R

k)
PITWAT] 312 16 32
G 312 1% 32

VW3]

P

PIIVV] (reuse plvv+2]) T 312 0 32
PITVW+I] (reuse plvvr3]) 312 0 32
PIWF2] 312 1] I 596 32
PIVWH3] 312 16 306)

The simulation yields a cache cycle count of 496 per two rows of a tile. To compare the values with
the reference system we calculate 24 (tiles) * (startup + 63 * steady) for each value. Since the
configuration takes place only once, it is mentioned in an own row of the following table, and involved
without a factor in the summation.

83

WO 2005/010632

PCT/EP2004/006547

configurations

edge3x3 config

edge3x3 startup 3548 128
edge3x3 steady 2816 1924
sum 4342944

Finally the overall utilization is shown in the following table. As mentioned above, the big differences

for FREGs and BREGs stem from the missing estimations for counter and controlling PAEs.

Parameter Value
Vector length 2%*128
Reused data set size 384
I/0 IRAMs [sum -pct] 7 - 44%
ALU[sum-pct] 27-43%

BREG [def/route/sum-pct]

41/21/62 - 78%

FREG [def/route/sum-pct]

25/34/59 - 74%

84

WO 2005/010632 PCT/EP2004/006547

5.5 FIR Filter

9.9.1 Original Code

Source code:

$#define N 256
#define M 8

int x([N], yI[NI;
const int c[M] = { 2, 4, 4, 2, 0, 7, -5, 2 };

main() {
int i, 3j:
/* code for loading x */
for (i = 0; 1 < N-M+1; i++) {
y[il = 0; // S
for (j = 0; 7 < M; Jj++)
yIi]l += c[j] * x[i+M-j-11; // S'
}

/* code for storing y */

}
The constants N and M are replaced by their values by the pre-processor. The data dependence graph
is the following:

o' (=)
0" (=,<)

for (i = 0; 1 < 249; i++) {

S: y[i] = 0;
for (j = 0; j < 8; j++)
Sf: y[il += c[3] * x[i+7-31;

}
We have the following table:

85

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length input: 8, output:1
Reused data set size -
/O IRAMs 3
ALU 2
BREG 0
FREG 0
Dataflow graph width 1
Dataflow graph height 2
Configuration cycles 2+8=10

Increasing the amount of parallelism available in a loop implies to increase the amount of memory
needed to achieve the computations of the optimized loop body. In this case, the maximal parallelism
is obtained when all multiplications of the inner loop are done in parallel, and the inner loop is
completely unrolled. This way, 8 elements of array x are needed at each cycle. This is only possible by
using data duplication, which means that all 16 IRAMs (2 IRAMS for each copy of array x) are
needed to store array x, and consequently array y has to be output directly on the output port. Running
a configuration - that uses only 8 IRAMs for input - twice would be another way to process the 256
values of array X.

The latter is possible in this case as array y is a global variable, but it won’t be possible if it would be
parameter of a function, as it is usually the case. Moreover, as the same data must be loaded in the
different IRAMs from the cache for array x, we have a lot of transfers to achieve before the
configuration can begin the computations. The performance of this algorithm is bounded by memory
access times and thus there is no need to maximize parallelism. For this reason, the solution chosen by
the compiler is to extract less parallelism to release the pressure on the memory hierarchy. It is
presented in the next section. Nevertheless the more parallel solution is also presented to have a point
of comparison.

5.5.2 Solution chosen by the compiler

To find some parallelism in the inner loop, the straightforward solution is to unroll the inner loop. No
other optimization is applied before as either they do not have an effect on the loop or they increase
the need for IRAMSs. After loop unrolling, we obtain the following code:

for (1L = 0; 1 < 249; i++) {
ylil 0;

y[i] += c[0] * x[i+7];
ylil += c[1l] * x[i+6];
yI[i]l += c[2] * x[i+5];
yli] += c[3] * x[i+4];
yli]l += c[4] * x[i+3];
y[il += c[5] * =x[i+2];
y{i] += c{6] * x[i+1];
y{i] += c{7] * x[i];

Then the parameter table looks like this:
86

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length input: 256, output: 249
Reused data set size -
I/O IRAMs 5
ALU 16
BREG 0
FREG 0
Dataflow graph width 2
Dataflow graph height 9
Configuration cycles 9+249=258

Dataflow analysis reveals that y/0]=f(x[0],....x[7]), y[1]=f(x[1],...x[8]),...¥[i]=fx[i],, ...x[i+7]).
Successive values of y depend on almost the same successive values of x. To prevent unnecessary
accesses to the IRAMs, the values of x needed for the computation of the next values of y are kept in
registers. In our case this shift register synthesis needs 7 registers. This will be achieved on the PACT
XPP, by keeping them into FREGs. Then we obtain the dataflow graph depicted below. An IRAM is
used for the input values and an IRAM for the output values. The first 9 cycles are used to fill the
pipeline and then the throughput is of one output value/cycle. Furthermore, each array will be stored
in two IRAMs, which be linked to each other. The memories will be accessed in FIFO mode. This is
depicted as “FIFO pipelining”, and avoid to apply loop tiling to make the amount of memory needed
to the IRAMSs, when the size of the array is smaller than the total amount of memory available on the
PACT XPP. The code becomes the following after shift register synthesis:

c0 = c[0]:
cl = c[l];
c2 = ¢c[2];
c3 = c[3];
cd = cf4]:
ch = ¢[5];
c6 = c[6];
c? = cl[7];
r0 = x[0]:
rl = x[1]);
r2 = x[2];
r3 = x{3];
rd = x[4];
r5 = x[5];
r6 = x[6];
r1 = x[7]1;

for (i = 0; 1 < 249; i++) {
y[i] = c7*r0 + c6*rl + c5*r2 + c4*r3 + c3*rd + c2*r5 + cl*ré + cO*r7;

r0 = rl;
rl = r2;
r2 = r3;
r3 = r4;
rd = r5;
r5 = xr6;
r6 = r7;
r7 = x[i+7];

}

And after FIFO pipelining, the code is transformed like below, wherex/ and x2 represents the parts of
x, which are loaded in different IRAMs, the same for y! and y2 with respect to array y.

87

WO 2005/010632 PCT/EP2004/006547

int *piram0_1,*piraml_1;

&x1[0];
&yl[0];

piram0 1
piraml 1

for (1 = 0;1 < 249;i++)
{

r0 = rl;

rl = r2;

r2 = r3;

r3 = r4;

rd4d = rb5;

r5 = r6;

ré6 = r7;

r7 = x1++;

if (i < 128)
piramQ_1++ = x2++;

else

if (i == 128)
x1l = &x1[0];

yl++ = c7*r0 + c6*rl + c5*r2 + cd*r3 + c3*rd +
c2*r5 + ¢l*r6 + c0*r7;

if (i < 128)
y2++ = piraml 1++;
else
if (i == 128)
yl = &yl[0];
}

The dataflow graph representing the loop body is shown below.

The final parameter table is shown below.

88

WO 2005/010632 PCT/EP2004/006547

Parameter Value

Vector length input: 256, output: 249
Reused data set size -

1/0 IRAMs 4

ALU 15

BREG 0

FREG 7

Dataflow graph width 3

Dataflow graph height 9
Configuration cycles 94249=258

Variant with Larger Loop Bounds

Let us take larger loop bounds and set the values of N and M to 2048 and 64.

for (1 = 0; i < 1985; i++) {
y[i]l = 0; ’
for (3 = 0; J < 64; j++)
y[i] += c[]] * x[1+63-31:
}

The loop nest needs 17 IRAMs for the three arrays, which makes it impossible to execute on the
PACT XPP. Following the loop optimizations driver given before, we apply loop tiling to reduce the
number of [IRAMs needed by the arrays, and the number of resources needed by the inner loop. We
use a size of 512 for x and y, and 16 for c. Theoretically, we could have taken bigger sizes, and occupy
more IRAMs, but subsequent optimizations will need more IRAMs. This can already be stated, as the
amount of parallelism in the innermost loop is low, and to increase it more resources will be needed,
therefore we must take smaller sizes. We obtain the following loop nest , where only 9 IRAMs are
needed for the loop nest at the second level.
for (ii = 0;ii < 4;ii++)
for (1 = 0; i < min(512,1985-1i*512); i++) {

y[i+512*ii] = 0;

for (33 = 0; Ji < 47 jj++)

for (3 = 0;3 < 16;J++)
y[i+512%ii] += c[16%j3+3] * x[1+512*%ii+63-16*33-31;
}

A subsequent application of loop unrolling on the inner loop yields:
for (ii = 0;ii < 4;ii++)
for (i = 0; i < min(512,1985-1i*512); i++) {

y[i+512*ii] = 0;

for (33 = 0; 33 < 4; JJ++) |

y[i+512%ii] += c[16%jj] * x[1+512*ii+63-16*]]];

y[i+512*%1ii] += c[l6*jj+1] * x[i+512*1i+62-16%3]];
y[i+512%ii] += c[16¥*jj+2] * x[i+512*ii+61-16%j]j];
y[i+512*ii] += c[16*§3+3] * x[i+512*ii+60-16%]]];
y[i+512%1i] += c[16*jj+4] * x[i+512*ii+59-16*3]];
y[i+512%1ii] += c[16*jj+5] * x[1+512*ii+58-16%j]];
y[i+512*%ii] += c[16*jj+6] * x[i+512*ii+57-16%]]];
y[i+512*ii] += c[16%§3+7] * x[i+512*1i+56-16*3]1;

89

WO 2005/010632

}

Finally we obtain the same dataflow graph as above, except that the coefficients must be read from
another IRAM rather than being directly handled like constants by the multiplications. After shift

v[i+512%ii]
v[i+512%ii]
y[i+512%ii]
v[i+512%ii]
y[i+512%i1i]
v[i+512%ii]
y[i+512%ii]
y[i+512%1ii]

PCT/EP2004/006547

= c[16*jj+8] * x[i+512*1i+55-16*]j]1;

c[16*§§+9] * x[i+512*1ii+54-16*j]];

c[16*35+10]
c[16*3+11]
c[16%59+12]
c[16%59+13]
c[16%35+14]

= c[16*%jj+15]

register synthesis the code is the following:

(i1 =

for (i =
rQ =
rl =
r2 =
r3 =
rd4 =
r5 =
ro =
r7 =
r8 =
r9 =
rl0
rll
rl2
rl3
rl4d
rl5
for

for

0;1ii < 4;1ii++)
i < min(512,1985-1i*512);

0;

x[1+512*1i+48];
x[i+512*1i+49];
x[1+512*11+50];
x[i+512*1i+51];
x[i+512*1i+52];
x[1i+512*1i+53];
x[i+512*1i+54];
x[1+512*1i+55];
x[1+512*1i+56];
x[1+512*1i+57]1;
= x[i+512*ii+58];

]

|t

x[1+512*11i+59];
x[1+512*1i+60];
x[i+512*ii+61];
x[i+512*1i+62];

= x[1+512*1ii+63];

(33 =

0; 33 < 4; Ji++H) |
c[8*j31*rl5 + c[8*jj+1]1*rld + c[B8*jj+2]*rl3 +

*
*
*
*
*
%

% [i+512%1i+53-16*35];
R [i+512%1i+52-16%35];
% [i+512%1i+51-16%35];
x[1+512%1i+50-16%33];
x[i+512%11+49-16*351;
x[i+512%1i+48-16%33];

i++) |

c[8*j3+3]1*rl2 + c[8*jj+4]1*rll + c[8*3jj+5]*rl0 +
c[8*%Jj+6]*xr9 + c[8*j3+7]*r8 + c[8*jj+8]*x7 +
c[8*%§3+91*r6 + c[8*§3+10]1*r5 + c[8*jj+11]*rd +
c[8*jj+12]1*r3 + c[8*jj+13]*r2 + c[8*jj+14]*rl +
c[8*]j+151*x0;

ylil =

r0 = rl;
rl = r2;
r2 = r3;
r3 = r4;
rd = r5;
r5 = r6;
r6 = r7;
r7 = r8;
r8 = r9;
r9 = rl0;
rl0 = rll;
rll = rl2;
rl2 = rl3;
rl3 = rl4;
rld = rl1h;
rls5 =

x[1+512*1i+63-8%5];

90

WO 2005/010632

The parameter table is then as follows.

PCT/EP2004/006547

Parameter Value

Vector length input: 8, output: 1
Reused data set size -

I/0 IRAMs 3

ALU 31

BREG 0

FREG 15
Dataflow graph width 3
Dataflow graph height 17
Configuration cycles 4+17=21

5.5.3 A More Parallel Solution

The solution we presented does not expose maximal parallelism in the loop. This can be done by
explicitly parallelizing the loop before we generate the dataflow graph. Of course, as explained before,
exposing more parallelism means more pressure on the memory hierarchy.

In the data dependence graph presented at the beginning, the only loop-carried dependence is the
dependence on S’ and it is only caused by the reference to y/i]. Hence we apply node splitting to get a
more suitable data dependence graph, and a statement that can be parallelized. We obtain then:

for (i = 0; 1 < 249; i++) {
ylil = 0;
for (j = 0; j < 8; j++)
{
tmp = c[j] * x[i+7-3];
y[i]l += tmp;
}
}

Then scalar expansion is performed on tmp to remove the anti loop-carried dependence caused by it,
and we have the following code:

for (1 = 0; i < 249; i++) {
y[i] = 0;
for (j = 0; j < 8; j++)
{
tmp[j] = clj] * x[i+7-3];
y[il += tmp[jl;
}

91

WO 2005/010632 PCT/EP2004/006547

The parameter table is the following:

Parameter Value
Vector length input: 8, output: 1
Reused data set size -
1/0 IRAMs 3
ALU 2
BREG 0
FREG 1
Dataflow graph width 2
Dataflow graph height 2
Configuration cycles o 2+8=10

Then we apply loop distribution to get a vectorizable and a not vectorizable loop.

for (i = 0; 1 < 249; i++) {
y[il = 0;
for (j = 0; J < 8; j++)
tmp[j] = clj] * x[i+7-3]1;
for (j = 0; j < 8; j++)
y[i] += tmp[]];
}

The parameter table given below corresponds to the two inner loops in order to be compared with the
preceding table.

Parameter Value

Vector length input: 8, output: 1
Reused data set size -

I/0 IRAMSs S

ALU 2

BREG 0

FREG 1
Dataflow graph width 1
Dataflow graph height 3
Configuration cycles 1*#8+1*8=16

Then we must take into account the architecture. The first loop is fully parallel; this means that we
would need 2*8=16 input values at a time. This is all right, as it corresponds to the number of IRAMS
of the PACT XPP. Hence we do not need to strip-mine the first inner loop. The case of the second
loop is trivial, it does not need to be strip-mined either. The second loop is a reduction, it computes the
sum of a vector. This is easily found by the reduction recognition optimization and we obtain the
following code.

92

WO 2005/010632 PCT/EP2004/006547

for (i = 0; i < 249; i++) {
y{il = 0;
for (j = 0; J < 8; J++)
tmp[j] = c[j] * x[i+7-31;

/* load the partial sums from memory using a shorter vector length */
for (j = 0; j < 4; Jj++)
aux[j] = tmp[2*j] + tmp[2*j+1];

/* accumulate the short vector */
for (3 = 0;3 < 1; J++)
aux[2*§] = aux([2*3] + aux([2*]+1];

/* sequence of scalar instructions to add up the partial sums */

y[i] = aux([0] + aux[2];
}

Like above we give only one table for all innermost loops and the last instruction computing y/i].

Parameter Value

Vector length input: 256, outpui: 249
Reused data set size -

1/0 IRAMs 9

ALU 4

BREG 0

FREG 0

Dataflow graph width 1

Dataflow graph height 4
Configuration cycles 1*8+1%4+1%1=13

Finally loop unrolling is applied on the inner loops, the number of operations is always less than the
number of processing elements of the PACT XPP.

for (i = 0; i < 249; i++)

{

tmp[0] = c[0] * x[i+7];
tmp[l] = <{1] * x[i+6];
tmp[2] = c[2] * x[i+5]};
tmp[3] = 3] * x{i+4];
tmp[4] = cl[4] * x[i+31;
tmp (5] = c[5] * x[i+2];
tmp[6] = c[6] * x[i+l];
tmp[7] = c[7] * x[i];
aux[0] = tmp(0] + tmp(l];
aux[l] = tmp[2] + tmp([3];
aux(2] = tmp(4] + tmp(51;
aux{3] = tmp(6] + tmp[7];
aux[0] = aux[0] + aux[l];
aux[2] = aux[2] + aux([3];

y[i] = aux[0] + aux[2];

93

WO 2005/010632 PCT/EP2004/006547

We obtain then the following dataflow graph representing the inner loop.

xi+7]| | xi+6]| | xi+S]| [xi+al| x| | x(21| |0+ X{i]

yli]

It could be mapped on the PACT XPP with each layer executed in parallel, thus needing 4
cycles/iteration- and 15 ALU-PAEs, 8 of which needed in parallel. As the graph is already
synchronized, the throughput reaches one iteration/cycle, after 4 cycles to fill the pipeline. The
coefficients are taken as constant inputs by the ALUs performing the multiplications.

The drawback of this solution is that it uses 16 IRAMs, and that the input data must be stored in a
special order. But due to data locality of the program, we can assume that the data already reside in the
cache. And as the transfer of data from the cache to the IRAMs can be achieved efficiently, the
configuration is executed on the PACT XPP without waiting for the data to be ready in the IRAMs.
The parameter table is then the following:

Parameter Value
Vector length input: 256, output: 249
Reused data set size -
/0O IRAMs 16
ALU 15
BREG 0
FREG 0
Dataflow graph width 8
Dataflow graph height 4
Configuration cycles 4+249=253

Variant with Larger Bounds

To make the things a bit more interesting, we set the values of N and A to- 2048 and 64.

for (1 = 0; i < 1985; i++) {
y[il = 0;
for (j = 0; Jj < 64; j++)
y[il += c[j] * x{i+63~j1;

94

WO 2005/010632 PCT/EP2004/006547

The data dependence graph is the same as above. We apply then node splitting to get a more
convenient data dependence graph.

(1 = 0; i < 1985; i++) {
y[il = 0;
fo i o= 0; j < 64; j++)

After scalar expansion:

for (i = 0; i < 1985; di++) {
y[i] = 0;
for (j = 0; j < 64; J++)
(‘ .
tmp[§] = c[j] * x[i+63-]];
y[il += tmp[J];
}
}

After loop distribution:

for (i = 0; i < 1985; i++) {
y[il = O;
for (3 = 0; 3 < 64; j++)
tmp[j] = clj] * x[i+63-]];
for (j = 0; j < 64; j++)
y{il += tmp[]j];
}
}

We go through the compiling process, and we arrive to the set of optimizations that depends upon
architectural parameters. We want to split the iteration space, as too many operations would have to be
performed in parallel, if we keep it as such. Hence we perform strip-mining on the 2 loops. We can

only access 16 data at a time, so, because of the first loop, the factor will be 64*2/16 = 8 for the 2
loops (as we always have in mind that we want to execute both at the same time on the PACT XPP).

for (i = 0; i < 1985; i++) {
yli]l = 0;
for (jj = 0; 33 < 8; ji++)
for (j=0;3j < 8; Jj++)
tmp[8*Fj+]] = c[8*JJ+]j] * x[i+63-8*jj-]];
for (jj =0; 3j <8 ; jj++)
for (j=0;j < 8; j++)
y[i] += tmp[8*jj+]1;
}

And then loop fusion on the jj loops is performed.

for (i = 0; 1 < 1985; i++) {
y[i] = 0;
for (33 = 0; j3 < 8; jij++) {
for (j=0;3 < 8;j++)
tmp [8*§3+j] = c[8*jj+J] * x[i+63-8*3j-]1;
for (j=0;3 < 8;j++)
y{i] += tmp[8*jj+j];

95

WO 2005/010632 PCT/EP2004/006547

Now we apply reduction recognition on the second innermost loop.

for (1 = 0; i < 1985; i++) {
tmp = 0;
for (33
{
for (j = 0; J < 8; j++)
tmp[8*jj+31 = c[8*J3+3]1 * x[i+63-8*3]-]];

=0; jj < 8; jj++)

/* load the partial sums from memory using a shorter vector length */
for (j = 0; j < 4; j++)
aux[j] = tmpl[8*jj+2*j] + tmp[8*jj+2*j+11;

/* accumulate the short vector */
for (7 = 0;3 < 1; j++)
aux[2*§] = aux[2*j] + aux[2*j+1];

/* sequence of scalar instructions to add up the partial sums */
y[i]l = aux[0] + aux[2];

}
And then loop unrolling.

for (i = 0; i < 1985; i++)
for (jj = 0; 3 < 8; jj++)
{
tmp[8*3j] = c[8%}]] * x[1+63-8*33];

tmp[8*jj+1] = c[B8*jj+1] * x[i+62-8%35];
tmp[8*%§3+2] = c[8*jj+2] * x[i+61-8*]7];
tmp[8*J9+3] = c[8*3j+31 * x[i+59-8*3]1;
tmp [8*Jj+4] = c[8*jj+4] * x[i+58-8*jjl;
tmp [8*j3+5] = c[8*]jj+5] * x[i+57-8*331;
tmp[8*jj+6] = c[8*jj+6] * x[i+56-8*jjl;
tmp[8*)3j+7] = c[8*3j+7] * x[i+55-8*3]]1;
aux[0] = tmp[8*jj] + tmp[8*jj+l];
aux[1l] = tmp[8*jj+2] + tmp[8*jj+3];
aux[2] = tmp[8*jj+4] + tmp[8*jj+5];
aux[3] = tmp[8*jj+6] + tmp[8*Jj+71;
aux[0] = aux[0] + aux[l];

aux[2] = aux[2] + aux[3];

y[i] = aux[0] + aux[2];
}
We implement the innermost loop on the PACT XPP directly with a counter. The IRAMs are used in
FIFO mode, and filled according to the addresses of the arrays in the loop. IRAMO, IRAM2, IRAM4,
IRAMS6 and IRAMS contain array c. IRAM1, IRAM3, IRAMS5 and IRAMY7 contain array x. Array ¢
contains 64 elements, that is each IRAM contains 8 elements. Array x contains 1024 elements, that is
128 elements for each IRAM. Array y is directly written to memory, as it is a global array and its
address is constant. This constant is used to initialize the address counter of the configuration. The
final parameter table is the following:

96

WO 2005/010632

Nevertheless it should be noted that this version should be less efficient than the previous one. As the
same data must be loaded in the different IRAMSs from the cache, we have a lot of transfers to achieve
before the configuration can begin the computations. This overhead must be taken into account by the
compiler when choosing the code generation strategy. As already stated, this means that the first
solution is the solution that will be chosen by the compiler.

PCT/EP2004/006547

Parameter Value
Vector length input: 8, output: 1
Reused data set size -
/O IRAMSs 16
ALU 15
BREG 0
FREG 0
Dataflow graph width 8
Dataflow graph height 4
Configuration cycles 4+8=12

5.5.4 Final Code

int x[256], y[256];
const int c[8] = { 2, 4, 4, 2, O,

main()

{

XppPreloadConfig(XppCfg fir);
XppPreload (0, x,128);
XppPreload(l, x +128,128);
XppExecute () ;

XppSync(y,249);

void __ XppCfg_fir() ({

// Input IRAMs .
int iram0 1[128], iram0_2[128];
// Output IRAMs

int iraml_1({128],iraml_2[128];

int *piram0 1,*piraml_1;

piram0 1 = &iramO_1[0];
piraml 1 giraml_ 1{0]:;

for (i = 0;1i < 249;i++)
{

r0 = rl;
rl = r2;
r2 = r3;
r3 = r4;
rd = r5;
r5 = r6;
r6 = rl;

7,

97

WO 2005/010632 PCT/EP2004/006547

r7 = iram0_1++;

if (i < 128)
piram0_l++ = iram0 2++;
else

if (i == 128)

iram0 1 = &iram0 _1{0];

iraml_1++ = c7*rQ + c6b*rl + c5*r2 + c4*r3 + c3*ré4 +
c2*r5 + cl*r6 + cO0*r7;

if (1 < 128)
iraml 2++ = piraml_1++;
else
if (i == 128)
iraml_1 = &iraml 1[0];

}

5.5.5 Performance Evaluation

The table below contains data about loading input data from memory, and writing output data to
memory for the FIR example. The cache is supposed to be empty before execution. The write-back of
array y causes no cache miss, because it is only an output data.

X ST 16 596)
XT38 312 I3 596)

In the performance evaluation, the XPP performance is compared to a reference system. The
performance data of the reference system was calculated by using a production compiler for a dual
issue 32 bit fixed point DSP. As the RAM to Cache transfer penalty is the same for the XPP and

reference system, it can be neglected for the comparison. It is assumed that the DSP can perform a
load and memory store in one cycle.

The base for the comparison is the hand-written NML source code fir_simple.nm! which implements
the configuration _ XppCfg fir. The final performance evaluation table below lists the performance
data for the configuration. The transfer cycles for the configuration contain preloads and write-backs
necessary for executing the configuration in the steady state case, but not in the startup case where
only the preloads are accounted for.

The XPP execute cycles are calculated by taking the double cycle difference between the end of the
configuration execution and the start of the configuration execution. The NML sources were

P Aess | Corfig
oo |
stafupcase | 1792 o4

Data Access: " [Canfiguratior -

configurations "RAM "DCache] RAM ™~ [Cache}
steady state | 2010 127]

WO 2005/010632 PCT/EP2004/006547

implemented so that configuration loading and configuration execution do not overlap.

The final utilization of the resources is shown in the following table. The information is taken from the
"info' files generated from the NML source code by the XMAP tool. The difference concerning the
number of ALUs between this table and the final parameter table presented before resides in the fact
that additions can be executed either by ALUs or BREGs. In the former parameter table, the additions
were meant to be executed by ALUs, whereas in the NML code, these are mainly performed by

BREGs.

Parameter Value
Vector length read:256, write:249
Reused data set size ' -
I/0 IRAMs [sum -pct] 4-25%
ALU[sum-pct} 10 - 16%
BREG [def/route/sum-pct] 15/2/17 - 21%
FREG [def/route/sum-pct] 16/3/19 - 24%

Usually the function computing FIR is called in a loop. Below is sketched how different iterations can
overlap. First the configuration itself is loaded, Ld Config, then the data needed for the first iteration,
Ld Iteration 1. The configuration is then executed, Ex Iteration I, and the write-back phase, WB
Iteration I, takes place. The steady state is contained in the orange box. It is the kernel of the loop, and
contains phases of four different iterations. After the kernel has been executed (#-3) times, 1 being the
number of iterations of the loop, the remaining phases are executed.

99

WO 2005/010632 PCT/EP2004/006547

cdes RAM1 Cache lcachel XPP Deachel IRAVS Execute
0

Ld lteration 1
Wheration | EXeaiont |
Ld lteration 2
WBlteration2 | EXlteration2.. |

Ld Iteration 3
y 2| EXietion3. .

WB iteration 4

5.5.6 Other Variant

Source Code

for (1 = 0; i < N-M+1l; i++) {

TIn this case, it is trivial that the data dependence graph is cyclic due to dependences onzmp. Therefore
scalar expansion is applied on the loop, and we obtain in fact the same code as the first version of the
FIR filter as shown below.

for (1 = 0; i < N=M+1; i++) |

tmp[i] = O;
for (j = 0; j < M; j++)

tmp(i] += c[j] * x[i+M-j-11;
x{i] = tmp(i];

}

100

WO 2005/010632 PCT/EP2004/006547

5.6 Matrix Multiplication

5.6.1 Original Code

Source code:

#define L 10
$define M 15
#define N 20

int A[L] [M];
int B[M][N];
int R[L][N];

main() {
int i, j, k, tmp, aux;

/* input A (L*M values) */
for (1i=0; i<L; i++)
for (§=0; J<M; Jj++)
scanf ("%d", &A[i1[J1):

/* input B (M*N values) */
for (1i=0; i<M; i++)
for (§=0; j<N; J++)
scanf ("%d", &B[i][j1):

/* multiply */
for (i=0; i<L;i++)
for(j=0; j<N; j++) {
aux = 0; ‘
for (k=0; k<M; k++)
aux += A[i][k] * B[kI[]l;
R{i][J]1 = aux;
}

/* write data stream */
for (i=0; i<L; i++)
for (j=0; J<N; j++)
printf("sd\n", R[i][j1);
}

5.6.2 Preliminary Transformations

Since no function call is candidate for inlining, no interprocedural code movement is done.

Of the four loop nests the third one is the only candidate for running partly on the XPP. All others
have function calls in the loop body and are therefore discarded as candidate very early during the

compilation process.

101

WO 2005/010632 PCT/EP2004/006547

Figure 61 Data dependence graph for matrix m
g1 for(i=0; i<L;i++)

for (3=0; J<N; j++) {

aux = 0;
s2 for (k=0; k<M; k++)
sS3 aux += A[i][k] * B[k1[j]:

R{i1[J] = aux;
}

The data dependence graph shows no dependence that prevents pipeline vectorization. The loop-
carried true dependence from S2 to itself can be handled by a feedback of aux as described in [1].

To get a perfect loop nest we move S .and S3 inside the k-loop. Therefore appropriate guards are
generated to protect the assignments. The code after this transformation looks like

for(i=0; i<L;i++)
for (4=0; J<N; j++)
for(k=0; k<M; k++) {
if (k == 0) aux = 0;
aux += A[i] [k] * B[k][]j];
if (k == M-1) R[i][]] = aux;
} .
Our goal is to interchange the loop nests to improve the array accesses to utilize the cache best.
Unfortunately the guarded statements involving aux cause backward loop-carried anti-dependences
carried by the j-loop. Scalar expansion will break these dependences, allowing loop interchange.
for (i=0; i<L;i++)
for{j=0; J<N; j++)
for (k=0; k<M; k++) {

if (k == 0) aux([j] = 0;
aux[j] += A[i][k] * B{kI[j]l;:
if (k == M-1) R[i]1[j] = aux[jl;

}

5.6.3 Loop Interchange for Cache Reuse

Figure 62 shows the iteration spaces for the array accesses in the main loop. Since arrays in C are
placed in row major order the cache lines are placed in the array rows. At first sight there seems to be
no need for optimization because the algorithm requires at least one array access to stride over a
column. Nevertheless this assumption misses the fact that the access rate is of interest, too. Closer
examination shows that array R is accessed in every j iteration, while array B is accessed at each
iteration of the k-loop, which is very likely to produce a cache miss. This leaves a possibility for loop
interchange to improve cache access as proposed by Kennedy and Allen in [7].

102

WO 2005/010632 PCT/EP2004/006547

cache line

M
YyYv
" N

> RN SN 1 .
: L BRENIETANIT B 1 :
> < >
» . Ll

L

Figure 62 The visualized array access sequences.

Finding the best loop nest is relatively simple. The algorithm simply interchanges each loop of the nest
into the innermost position and annotates it with the so-called innermost memory cost term. This cost
term is a constant for known loop bounds, or a function of the loop bound for unknown loop bounds.
The term is calculated in three steps.

= First the cost of each reference' in the innermost loop body is calculated. It is equal to:

= |, if the reference does not depend on the loop induction variable of the (current) innermost
loop

= the loop count, if the reference depends on the loop induction variable and strides over a non
contiguous area with respect to the cache layout

N-s

= ——, if the reference depends on the loop induction variable and strides over a contiguous
dimension. In this case N is the loop count, s is the step size and b is the cache line size,
respectively.
» Second each reference cost is weighted with a factor for each other loop, which is
= 1, if the reference does not depend on the loop index
» the loop count, if the reference depends on the loop index.
= Third the overall loop nest cost is calculated by summing the costs of all reference costs.
After invoking this algorithm for each loop level, the loop levels are ordered with respect to their cost.

The one with the lowest cost becomes the innermost loop level, the one with the highest cost becomes
the outermost loop level in the loop nest.

! Reference means access to an array in this case. Since the transformation wants to optimize cache access, it
must address references to the same array within small distances as one. This prohibits over-estimation of the
actual costs.

103

WO 2005/010632 PCT/EP2004/006547
Innermost loop | R[{][j] Ali][k] BIkI[1 Memory access cost
k 1.L-N —Ag—-l, M-N L-N+—ILZ--L+M-N
i 1.L-N 1.L-M 1-M-N L-N+L-M+M-N
j -]bXL L-M %’-M]—Z-(L+M)+L-M

The table shows the costs calculated for the loop nest. Since the jterm is the smallest (b is 32 bytes or
8 integer words), the j loop is chosen to become the innermost loop level. Then the next outer loop

will be the £-loop, and the outermost loop will be the i-loop. Thus the resulting code after loop
interchange is:

for (i=0; i<L;i++)

for (k=0; k<M; k++)
for (j=0; j<N; F++) {
if (k == 0) aux[j] = 0;

aux([j] += A[i]l (k] * B[k)[3];
aux[jl:

1f (k == M-1)R[i][]] =

cache line B

frob
B

Figure 63 The visualized array access sequences after optimization. Here the
improvement is evident, since array B is now read following the cache lines.

Figure 63 shows the improved iteration spaces. It is to say that this optimization does not optimize
primarily for the XPP, but mainly optimizes the cache-hit rate, thus improving the overall
performance.

104

WO 2005/010632 PCT/EP2004/006547

5.6.4 Enhancing parallelism

After improving the cache access behavior, the possibility for reduction recognition has been
destroyed. This is a typical example for transformations where one excludes the other. Fully unrolling
the inner loop is not applicable due to the number of available IRAMs. Therefore we try to unroll-and-
jam the two innermost loops.

Unroll-and-Jam

We unroll the outer loop partially with the unrolling degree . This factor is computed by the
minimum of two calculations.

* Uy, = IRAMs available! IRAMS needed
* Uy, = PAEs available | PAEs needed

In this example the accesses to 4 and B depend on £ (the loop which will be unrolled). Therefore they
must be considered in the calculation. The accesses to aux and R do not depend on k. Thus they can be
subtracted from the available IRAMSs, but do not need to be added to the denominator. Therefore we

calculate u,,, =14/2=17.

On the other hand the loop body involves two ALU operations (1 add, 1 mult), which yields
Up, =64/2=322

The constraint generated by the IRAMs therefore dominates by far as

u=min(7,32)=7.

To keep the complexity of the configuration simple, we choose an unrolling degree

l -
U g =lOOP COunt/ [Ml =5,
U

The code after this transformation then reads:

for(i=0; i<L;i++) {
for{k=0; k<M; k+= 5) {
for (3=0; j<N; j++) {

if (k == 0) aux[j] = 0;
aux[j] += A[i]([k] * B[kI[]1:
aux[j] += A[1][k+1] * Blk+1][]l;
aux[j] += A[i][k+2] * B[k+2]1[j];
aux[j]1 += A[i][k+3] * B[k+31[j];
aux[j] += A[i] [k+4] * B[k+41[jl;
if (k == 10) R[i][]j] = aux[j];

2 This is a very inaccurate estimation, since it neither estimates the resources spent by the conirolling network,
which decreases the unroll factor, nor takes it into account that e.g the BREG-PAEs also have an adder, which
increases the unrolling degree. Although it has no influence on this example the unrolling degree calculation of
course has to account for this in a production compiler.

105

WO 2005/010632 PCT/EP2004/006547

5.6.5 Final Code

After allocation of the arrays and scalars to IRAMs the code running on the RISC looks like follows.
The array aux storing the intermediate results is normally preloaded, although its value is not used in
the first iteration of the 4-loop. Nevertheless it must be preloaded by the other iterations, therefore we
must issue an XppPreload, not an XppPreloadClean.

XppPreloadConfig(XppCfg matmult);

for (i=0; i<L;i++) {
XppPreload (12, &aux, N);
XppPreload (0, &A[i][0], M
XppPreload(l, &A[i]1[0], M
XppPreload(2, &A[i]([0], M
XppPreload (3, &A[i][0]1, M)
XppPreload (4, &A[i]([0], M):
XppPreloadClean(11l, &R[i][0], N);
for (k=0; k<M; k+= 5) { o

H

)
)
)

L A

XppPreload(5, &k, 1);
XppPreload(6, &B[k][0], N);:
XppPreload(7, &B[k+1][0], N);
XppPreload(8, &B[k+2][0], N);
XppPreload(9, &B[k+3]([0], N);
XppPreload (10, &B[k+4][0], N);
XppExecute() ;

}
}

The configuration is shown below.

void _ XppCfg matmult ()
{
// IRAMs
// A[i] (k] '
int iram0[128], iraml[128], iram2([128], iram3([128], iram4[128];
/7 k
int iram5[1287;
// Blk1[J] .. Blk+4]1[]]
int iram6([128], iram7[128], iram8{128], iram9[128], iraml0[128];
// R[11[31, aux[j] A
int iramll1[128], iraml2[128],
for (§=0; J<N; J++) {

tmpl = iram0[iram5([C]] * iram6([j];
tmp2 = iraml[iram5([01+1] * iram7[j];
tmp3 = iram2[iram5[0]+2] * iram8[]j];
tmp4 = iram3[iram5[0]+3] * iram9([]j];
tmp5 = iramd [iram5[0]+4] * iramlO[jl;
if (iram5([0] == 0)
tmp6 = tmpl + tmp2 +tmp3 +tmp4 +tmp5;

else

tmp6 += iraml2[j] + tmpl + tmp2 +tmp3 +tmpd +tmpb;
iraml2[j] = tmp6;
if (iram5[0] == 10)
iramll[j}] = tmpé6;
}
}

The estimated statistics are shown in the table below. Unfortunately the IRAM usage prevents a better
utilization. Figure 64 shows the dataflow graph of the configuration.

106

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length 20
Reused data set size -
/0 IRAMSs 111+410+11/0=13
ALU 10
BREG few
FREG few
Dataflow graph width 14
Dataflow graph height 6
Configuration cycles 6+20=26

iram6j] -

iramOfiram5[0]] im4[imsJO]+1]

Figure 64 Dataflow graph of matrix multiplication after unroll-and-jam. Counters and address calculations
, are omitted.

107

WO 2005/010632 PCT/EP2004/006547

5.6.6 Performance Evaluation

The next table lists the estimated performance of data transfers.

112

[B

ATTTIO] 60
ATHIO]
ATII0]
ATII0]
ATHIO]
S

‘ahk; stays in cache

Blk|10]
Blk+1[0]
Bjk+2]]0]
BIk+2][0]
B[k+HT][0]
aux, stays in cache
.‘SV 5 e——

,,,,,,,

al, stays n cache
R, written back m 1 loop

10

80 96 5

For the comparison with the reference system, we assume that first the configuration, the first five
A[i][0] values and aux are preloaded, row startup i-loop. In the nine subsequent iterations of the i-
loop, only five 4/i]/0] are preloaded, row steady i-loop. All loads of 4/i][0] cause one cache miss and
four hits.

Furthermore we assume that all values of B are loaded into the cache during execution of the first
iteration of the i-loop. They stay there during the other iterations. Thus cache read misses due to
accesses to B are only taken into account three times, row j-loop i==0. All subsequent 27 * 5 accesses
to B cause only cache-IRAM transfers, row j-loop i!=0. We assume that qux stays in its IRAM or is
only written back in the cache during the whole execution. While the first assumption assumes that no
task switch occurs during calculation of the whole matrix - a fact that we cannot guarantee - the
second one is can safely be assumed. Due to the dominance of the execution cycles neither has an
impact on the total performance.

The last but one row, row WB R, shows the write-backs of the result matrix R, which occur ten times
and are also added to the other terms.

The hand coded configuration cycles are measured to 55 XPP cycles, or 110 cache cycles.

Dt Acbess ™| Configuiation] ~ XPP E¥geuts ™ | Ref. System'| ~ Spéedip
configurations "RAM DCache] RAM {Cache| “Corel Cache” RAM| Cac AM! Coré Cache RAM |
startup 1-loop 280° 25 1232 687 .-
steady i-loop 112 25

j-loop i==0 840 30

jHoop =0 35

WBR 96 5

sutmn 4768

The final utilization 1s shown in the next table.

108

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length 20
Reused data set size -
/O IRAMs [sum -pct] 13- 82%
ALU[sum-pct] 13-20%
BREG [def/route/sum-pct] 10/27/37 - 46%
FREG [def/route/sum-pct] 17/9/28 - 35%

109

WO 2005/010632 PCT/EP2004/006547

5.7 Viterbi Encoder

5.7.1 Original Code

Source Code:

/* C-language butterfly */
#define BFLY (i) {\
unsigned char metric,m0,ml,decision;\
metric = ((Branchtab29 1[i] ~ syml) +
(Branchtab29 2[i] ~ sym2) + 1)/2;\
m0 = vp->old metrics([i] + metric;\
ml = vp->old metrics[i+128] + (15 - metric):\

decision = (m0-ml) >= 0;\
vp->new_metrics[2*i] = decision ? ml : m0;\
vp->dp->w[i/16] |= decision << ((2*1)&31);\
m0 -= (metrict+metric-15);\

ml += (metric+metric-15);\

decision = (m0-ml) >= 0;\

vp->new metrics[2*i+1l] = decision ? ml : m0;\
vp->dp->w([i/16] |= decision << ((2*i+1)&31);\

}

int update viterbi29(void *p,unsigned char syml,unsigned char sym2) {
int 1i;
struct v29 *vp = p;
unsigned char *tmp;
int normalize = 0;

for (i=0;i<8;i++)
vp->dp->w[i] = 0;

for (i=0;1<128;1i++)
BELY (i) ;

/* Renormalize metrics */

if (vp~>new metrics[0] > 150){
int i;
unsigned char minmetric = 255;

for (i=0;i<64;1i++)

if (vp->new metrics[i] < minmetric)

minmetric = vp->new metrics[i];
for (i=0;i<64;i++)

vp->new _metrics[i] -= minmetric;
normalize = minmetric;

}

vp->dp++;

tmp = vp->old metrics;

vp->old metrics = vp->new metrics;
vp->new _metrics tmp;

return normalize;

110

WO 2005/010632 PCT/EP2004/006547

5.7.2 Interprocedural Optimizations and Scalar Transformations

Since no function call is candidate for inlining, no interprocedural code movement is done.

After expression simplification, strength reduction, SSA renaming, copy coalescing and idiom
recognition, the code looks like below, where statements were reordered for convenience.
Note that idiom recognition will find the combination of min() and use of the comparison result for
decision and _decision. However the resulting computation cannot be expressed in C, so we describe it
as a comment:

int update viterbi29(void *p,unsigned char syml,unsigned char sym2) {
int i;
struct v29 *vp = p;
unsigned char *tmp;
int normalize = 0;

char *_ vpdpw = vp->dp->W;
for (i=0;1i<8;i++)
* vpdpw_++ = 0;

char * bt29 1= Branchtab29 1;

char * bt29 2= Branchtab29 2;

char *_vpom0= vp->old metrics;

char *_vpoml28= vp->old metrics+128;
char * vpnm= vp->new_metrics;

char *_vpdpw= vp->dp->W;

for (i=0;i<128;i++) {
unsigned char metric, tmp, m0,ml, m0, ml, decision, decision;

metric = ((* bt29 1++ ~ syml) +
(*_ bt29 2++ ~ sym2) + 1)/2;
_tmp= (metric+metric-15); ’
m0 = *_vpom++ + metric;
ml * vpoml28++ + (15 - metric);
.m0 =m0 - _tmp;
ml = ml + _tmp;
// decision = m0 >= ml;

It

// _decision = _m0 >=. _ml;
* ypnm++ = min(m0,ml); // = decision ? ml : mO
* ypnmt++ = min(_m0, ml); // = decision ? ml : mO

_Vpdpw[i >> 4] |= (m0 >= ml) /* decision*/ << ((2*i) & 31)
| ((m0 >= ml) /*_decision*/ << ((2*i+1)&31);
}

/* Renormalize metrics */

if (vp->new metrics[0] > 150){
int i;
unsigned char minmetric = 255;

char * vpnm= vp->new_metrics;
for (i=0;1<64;i++)
minmetric = min (minmetric, *vpnm++);

char *_vpnm= vp->new metrics;
for (i=0;i<64;1i++)

*ypnm++ —-= minmetric;
normalize = minmetric;

111

WO 2005/010632 PCT/EP2004/006547

vp->dp++;

tmp = vp->old metrics;

vp->o0ld metrics = vp->new metrics;
vp->new_metrics tmp;

return normalize;

5.7.3 Initialization and Butterfly Loop

The first and second loop, in which the BFLY() macro has been expanded, are of interest for being
executed on the XPP array, and need further examination. Below is the configuration source code of
the first two loops:

/** _ XppCfg viterbi29()
* Performs viterbi butterfly-loop
* XPPIN: iram0,2 contains Branchtab29 1 and Branchtab29 2, respectively
* iram4,5 contains old metrics and old metrics+128, respectively
* iraml,3 contains scalars syml and sym2, respectively
* XPPOUT: iram6 contains the new metrics array
* iram7 contains the decision array
*/
void _ XppCfg viterbi29()
{
// IRAMs in FIFO mode
/7
char *iram0; // Branchtab29 1, read access with 32-to-8-bit converter
char *iram2; // Branchtab29 2, read access with 32-to-8-bit converter
char *iram4; // vp->old metrics, read access with 32-to-8-bit converter
char *iramb5; // vp->old metrics+128, read access with 32-to-8-bit
converter
short *iram6; // vp->new metrics, write access with 16-to-32-bit
converter

// IRAMs in RAM mode

//

int iraml[128]; // syml, read access

int iram3[128]; // sym2, read access

int iram7[128]; // vp->dp->w, write access

int i;
unsigned char syml, sym2;

syml = iraml[O];
sym2 = iram3[0Q];

for (i=0;1i<8;i++)
iram7[i] = 0O;

for (i=0;1<128;1i++) {
unsigned char metric, tmp, m0,ml, m0, ml;

metric = ((*iramO++ ~ syml) +
(*iram2++ ~ sym2) + 1)/2;

_ftmp= (metric << 1) -15;

m0 = *iramd4++ + metric;

ml = *iram5++ + (15 - metric);

~m0 =m0 - _tmp;

ml =ml + _tmp;

112

WO 2005/010632 PCT/EP2004/006547

// assuming big endian; little endian has the shift on the latter min()

*iram6++ = (min(m0,ml) << 8) | min{(m0, ml);
iram7[i >> 4] |= (m0 >= ml) << ((2*i) & 31)
| ((m0 >= ml) << ((2*1+1)&31);

The dataflow graph is as follows (the 32-to-8-bit converters are not shown). The solid lines represent
flow of data, while the dashed lines represent flow of events:

113

WO 2005/010632 PCT/EP2004/006547

Btab29_1 sym1 Btab29_2 sym2
iram0 iram1 iram2 iram3
AddC
c=1
oldmetrics >
iramé4 oldmetrics+128
fram5

cnt
_m0 _m1 o

newmetrics
iramé

The recurrence on the IRAM7 access needs at least 2 cycles, i.e. 2 cycles are needed for each input
value. Therefore a total of 256 cycles are needed for a vector length of 128.

114

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length read: 32(=128 chars), write:64(=256
chars)
Reused data set size ‘ -
I/O IRAMs 61420
ALU 26
BREG few
FREG few
Dataflow graph width 4
Dataflow graph height 12+4 (32-to-8-bit converters)
Configuration cycles 16+256

A problem is then obvious: IRAMY7 is fully busy reading and rewriting the same address 16 times.
Loop tiling with a tile size of 16 gives redundant load/store elimination a chance to read the value
once, and accumulate the bits in a temporary variable, writing the value to the IRAM at the end of this
inner loop. Loop fusion with the initialization loop allows then propagation of the zero values set in
the first loop to the reads of vp->dp->w(i] (IRAM7), eliminating the first loop altogether.
Loop tiling with a tile size of 16 also eliminates the & 31 expressions for the shift values: Since the
new inner loop only runs from 0 to 16, value range analysis can compute that the & 3/ expression is
not limiting the value range anymore.

All remaining input IRAMs are character (8-bit) based. Therefore 32-to-8-bit are converters are
needed to split the 32-bit stream into an 8-bit stream. Unrolling is limited to unrolling twice due to
ALU availability as well as due to the fact, that IRAMG is already 16-bit based: unrolling once
requires a shift by 16 and an or to write 32 bits every cycle; unrolling further cannot increase pipeline
throughput anymore. Hence the body is only unrolled once, eliminating one layer of merges. This
yields two separate pipelines, each handling two 8-bit slices of the 32-bit value from the IRAM,
serialized by merges.

The resulting configuration source code is listed below, where unrolling has been omitted for the sake
of simplicity:

/** _ XppCfg viterbi29()

* Performs viterbi butterfly loop

* XPPIN: iram0,2 contains Branchtab29_1 and Branchtab29 2, respectively
* iram4,5 contains old metrics and old metrics+128, respectively
* iraml, 3 contains scalars syml and sym2, respectively

* XPPOUT: iramé6 contains the new metrics array

* iram7 contains the decision array

*/

void __ XppCfg_viterbi29d()
{

// IRAMs in FIFO mode

//

char *iramQ; // Branchtab29 1, read access with 32-to-8-bit converter

char *iram2; // Branchtab29 2, read access with 32-to-8-bit converter

char *iramd4; // vp->old metrics, read access with 32-to-8-bit
converter

char *iram5; // vp->old metrics+128, read access with 32-to-8-bit
converter

short *iramé; // vp->new_metrics, write access with 16-to-32-bit
converter

115

WO 2005/010632 PCT/EP2004/006547

unsigned long *iram7; // vp->dp->w, write access

// IRAMs in RAM mode
!/
int iraml[128]; // syml, read access
int iram3[128]; // sym2, read access

int i, i2;
int rlse;
unsigned char syml, sym2;

iraml[0];
iram3[0];

syml
sym2

for(i=0;1i<8;i++) {
rlse= 0;
for (12=0;12<32;i2+=2) { // unrolled once
unsigned char metric, tmp, mO,ml, mO, ml;

metric = ((*iramO++ ~ syml) +
(*iram2++ ~ sym2) + 1)/2;
_tmp= (metric << 1) -15;
m0 = *iramé++ + metric;
ml = *iram5++ + (15 - metric):
m0 =m0 ~ _tmp;
ml =ml + _tmp;
*iram6+¥+ = (min(m0,ml) << 8) | min(m0, ml);
rlse = rlse | ({ m0 > ml) << i2
| ((m0 >= ml) << (i2+41);
}

*iram7++ = rlse;

116

WO 2005/010632 PCT/EP2004/006547

The modified dataflow graph, where unrolling and splitting have been omitted for simplicity:

Btab29_1 sym1 Btab29_2 sym2
iram0 iram1 iram2 iram3
A A
AddC
c=1
oldmetrics >
iram4 1 oldmetrics+128

iram5

cnt
i2=2%
N
1
Y
ent
_i=[0..7]
A
<<
newmetrics
iram6 I Swap 0
v
vp->dp->w
iram7

117

WO 2005/010632 PCT/EP2004/006547

Again, the recurrence with the rlse scalar needs two cycles. With an unrolling factor of two, 128 cycles
are needed for a vector length of 128.

Parameter Value
Vector length 32 (read) / 64 (write)
Reused data set size -
I/O IRAMs 61+20
ALU 2%26+2 (join) = 62
BREG few
FREG few
Dataflow graph width 4
Dataflow graph height 12 + 4 (32-t0-8-bit converters) =16
Configuration cycles 4 16+128

5.7.4 Re-Normalization:

Normalization consists of a loop scanning the input for the minimum and a second loop that subtracts
the minimum from all elements. There is a data dependence between all iterations of the first loop and
all iterations of the second loop. Therefore the two loops cannot be merged or pipelined. They will be
handled individually.

Minimum Search

The third loop is a minimum search in an array of bytes. The first version of the configuration source
code is listed below:

/** XppCfg calcmin ()
* Performs a minimum search over a character array
* XPPIN: iram6 contains the character input array
* XPPOUT: iram0 contains the minimum value
*/
void _ XppCfg calcmin()
{
// IRAMs in FIFO mode
!/
unsigned char *iram6; // vp->new metrics, read access with 32-to-8-bit
converter

// IRAMs in RAM mode
//

int iram0[128]; // minmetric, write access
int i;
unsigned char minmetric = 255;
for(i=0;i<64;i++) {

minmetric = min (minmetric, *iram6++);

}

iram0[{0] = minmetric;

118

WO 2005/010632 PCT/EP2004/006547

As there is a recurrence with minmetric which needs two cycles, a total of 128 cycles are needed for a
vector length of 64.

Parameter Value
Vector length 16 (= 64 chars)
Reused data set size -
I/O IRAMs 1+1
ALU 2
BREG 2
FREG 3
Dataflow graph width 1
Dataflow graph height 1+ 4 (32-to-8-bit converter)
Configuration cycles o 5+128

Reduction recognition eliminates the dependence on minmetric enabling loop unrolling with an
unrolling factor of 4 to utilize the IRAM width of 32 bits. A split network has to be added to separate
the 8-bit streams using 3 SHIFT and 3 AND operations. Tree balancing redistributes the min()
operations to minimize the tree height.

/** _ XppCfg calcmin()
* Performs a minimum search over a character array
* XPPIN: iram6 contains the character input array
* YXPPOUT: iram0 contains the minimum value
*/
void __prCfg_calcmin()
{
// IRAMs in FIFO mode
//

int *iram6; // vp->new metrics, read access

// IRAMs in RAM mode
//

int iram0[128]; // minmetric, write access

int i;
unsigned char minmetric = 255;

for(i=0;i<16;i++) {
unsigned long val;

val = *iram6++;
ninmetric = min(minmetric , min(min(val & Oxff, (val >> 8) & Oxff),
nin((val >> 16) & Oxff, val >> 24)));:
}

iram0[0] = (long)minmetric;

119

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length 16
Reused data set size) -
/O IRAMs 1I+10
ALU 8
BREG | 5
FREG 3
Dataflow graph width 4
Dataflow graph height 5
Configuration cycles 5432

The recurrence of two cycles makes it profitable to double the loop body. Reduction recognition again
eliminates the loop-carried dependence on minmetric, enabling loop tiling and then unroll-and-jam to
increase parallelism. Constant propagation and tree rebalancing reduce the dependence height of the
final merging expression. The final configuration source code is listed below:

/** _ XppCfg_calcmin()
* Performs a minimum search over a character array
* XPPIN: iramé contains the character input array
* XPPOUT: iram0 contains the minimum value
*/
void _ XppCfg calcmin()
{
// IRAMs in FIFO mode
//

int *iram6; // vp->new _metrics, read access
// IRAMs in RAM mode
//

int iram0([128]; // minmétric, write access

int i;
unsigned char minmetric0 = 255, minmetricl = 255;

for (i=0;i<8;i++) {
unsigned long val;

val = *iram6++;

minmetric0 = min(minmetricO0 , min(min(val & Oxff, (val >> 8) & Oxff),
min((val >> 16) & Oxff, val >> 24)));
val = *iram6++;
minmetricl = min(minmetricO0 , min(min(val & 0xff, (val >> 8) & Oxff),
min{ (val >> 16) & Oxff, val >> 24)));
}
iram0{0] = (long)min(minmetric0, minmetricl):

120

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length 16
Reused data set size . -
/O IRAMs 1I+10
ALU 16
BREG 10
FREG 0
Dataflow graph width 2%4 =8
Dataflow graph height 5
Configuration cycles 5+16

Re-Normalization

The fourth loop subtracts the minimum of the third loop from each element in the array. The read-
modify-write operation has to be broken up into two IRAMs. Otherwise the IRAM ports will limit
throughput.

/** _ XppCfg subtract()
* Subtracts a scalar from a character array
* XPPIN: 4iram6 contains the character input array

* iram0 contains the scalar which is subtracted
* XPPOUT: iraml contains the result array
*/

void _ XppCfg subtract ()

{
// IRAMs in FIFO mode

//

unsigned char *iram6; // vp->new metrics, read access with 32-to-8-bit
converter

unsigned char *iraml; // vp->new metrics, write access with 8-to-32-bit
converter

// IRABMs in RAM mode
//

int iram0([{128]; // minmetric, read access

int i;
unsigned char minmetric = iramO[0];
for (i=0;1i<16;i++) {

iraml++ = *iram6++ - minmetric;

}
}

121

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length 16 (= 64 chars)
Reused data set size . -
[/O IRAMs 2I+10
ALU 1 + 2 (converters)
BREG 2 (converters)
FREG 2 (converters)
Dataflow graph width 1
Dataflow graph height 1 + 8 (converters)
Configuration cycles 9+64

There is no loop-carried dependence. Since the size of the data is 8 bits, the inner loop can be unrolled
four times without exceeding the IRAM bandwidth requirements. Networks splitting the 32-bit stream
into 4 8-bit streams, and re-joining the individual results to a common 32-bit result stream, are
inserted. The final configuration source code is listed below:

/** _ XppCfg subtract()
* Subtracts a scalar from a character array
* XPPIN: diram6 contains the character input array

* iram0 contains the scalar which is subtracted
* XPPOUT: iraml contains the result array
*/

veid _ XppCfg subtract ()
{
// IRAMs in FIFO mode
/7

int *iramé; // vp->new metrics, read access
int *iraml; // vp->new metrics, write access

// IRAMs in RAM mode
//

int iram0[128]; // minmetric, read access

int i;
unsigned char minmetric = iram0([0];
for(i=0;i<16;i++) {

unsigned long val;
unsigned char r0, rl, r2, r3;

val = *iram6++;

r0 = (val & Oxff) - minmetric;

rl = ((val >> 8) & 0xff) - minmetric;

r2 = ((val >> 16) & Oxff) - minmetric;

r3 = {(val >> 24) - minmetric;

*iraml++ = (r3 << 24) | (r2 << 16) | (rl << 8) | x0;

122

WO 2005/010632

PCT/EP2004/006547

Parameter Value
Vector length 16
Reused data set size -
I/O IRAMs 21+10
ALU 11
BREG 6
FREG 0
Dataflow graph width 4
Dataflow graph height 5
Configuration cycles 5+16=21

5.7.5 Final Code

The code executed on the RISC is listed below. It starts the configurations:

int update viterbi29(void *p,unsigned char syml,unsigned char sym2)

{
struct v29 *vp = p;
unsigned char *tmp;
int normalize = 0;

long _syml = syml;
long _sym2 sym2;

I

XppPreloadConfig(XppCfg viterbi29);
XppPreload (0, Branchtab29 1, 32);
XppPreload(2, Branchtab29 2, 32);
XppPreload(4, vp->old metrics, 32);
XppPreload (5, vp->old metrics + 128, 32);
XppPreload(l, & syml, 1);

XppPreload(3, & sym2, 1);
XppPreloadClean (6, vp->new _metrics, 64);
XppPreloadClean (7, vp->dp->w, 8);
XppExecute () ;

/* Renormalize metrics */
if (vp->new metrics[0] > 150){
long minmetric;

XppPreloadConfig(__ XppCfg calcmin);
XppPreloadClean (0, &minmetric, 1);
XppExecute () ;

XppPreloadConfig(__ XppCfg subtract);
XppPreloadClean(5, vp->new metrics, 16);
XppExecute() ;

XppSync (¢minmetric, 1);

normalize = minmetric;

}
XppSync (vp->new_metrics, 64);

vp->dpt++;
123

WO 2005/010632 PCT/EP2004/006547

tmp = vp—>old metrics;
vp->o0ld metrics = vp->new metrics;
vp->new metrics = tmp;

return normalize;

The three configurations are shown in the following;:

/** _ XppCfg viterbi29d()

* Performs viterbi butterfly loop

* XPPIN: iram0,2 contains Branchtab29 1 and Branchtab29_ 2, respectively
* iram4,5 contains old metrics and old metrics+128, respectively
* iraml, 3 contains scalars syml and sym2, respectively

* XPPOUT: iram6 contains the new metrics array

* iram7 contains the decision array

*/ -

void _ XppCfg_viterbi29()

{

// IRAMs in FIFO mode

!/

char
char
char

*iram0; // Branchtab29 1, read access with 32-to-8-bit converter
*iram2; // Branchtab29 2, read access with 32-to-8-bit converter
*iramd; // vp->old metrics, read access with 32-to-8-bit converter

char *iram5; // vp->old metrics+128, read access with 32-to-8-bit
converter ’

short *iram6; // vp->new metrics, write access with 16-to—-32-bit
converter

unsigned long *iram?7; // vp->dp->w, write access

// IRAMs in RAM mode

//

int iraml[128]1; // syml, read access
int iram3[128]; // sym2, read access

int i, 12;
int rlse;

unsigned char syml, symZ;

syml = iraml{0];
sym2 iram3[0];

for (i=0;1i<8;i++) {
rlse= 0;
for (i2=0;12<32;1i2+=2) { // unrolled once
unsigned char metric, tmp, mO,ml, m0, ml;

metric = ((*iram0++ »~ syml) +
(*iram2++ ~ sym2) + 1)/2;

_tmp= (metric << 1) -15;

m0 = *iramé++ + metric;

ml = *iramb5++ + (15 - metric);

_m0 =m0 - _tmp;

_ml =ml + _tmp;

*iram6++ = (min(m0,ml) << 8) | min(m0, ml);

rlse = rlse | (m0 > ml) << i2

[(m0 > ml) << (i2+1);
}

*iram7++ = rlse;

124

WO 2005/010632 PCT/EP2004/006547

}

/** XppCfg calcmin()
* Performs a minimum search over a character array
* XPPIN: iram6 contains the character input array
* XPPOUT: iram(0 contains the minimum value
*/
void _ XppCfg calcmin ()
{
// IRBMs in FIFO mode
//

int *iramé6; // vp->new metrics, read access
// IRAMs in RAM mode
//

int iram0[128]; // minmetric, write access

int i; :
unsigned char minmetricO = 255, minmetricl = 255;

for (i=0;i<16;i++) {
unsigned long val;

val = *iram6++;

minmetricO0 = min (minmetricO0 , min(min(val & Oxff, (val >> 8) & Oxff),
“ min((val >> 16) & Oxff, val >> 24)));
val = *iram6++; :
minmetricl = min (minmetricO0 , min(min(val & O0xff, (val >> 8) & Oxff),
min((val >> 16) & Oxff, wval >> 24)));
}
iramQ[Q] = (long)min(minmetrico, minmetricl);

}

/** XppCfg subtract()
* Subtracts a scalar from a character array
*° XPPIN: iramé6 contains the character input array

* iram0 contains the scalar which is subtracted
* XPPOUT: iraml contains the result array
*/

void XppCfg_ subtract()

{
// IRAMs in FIFO mode

/7

int *iram6; // vp->new metrics, read access
int *iraml; // vp->new metrics, write access

// IRAMs in RAM mode
//

int iram0({128]; // minmetric, read access
int i;

unsigned char minmetric = iram0[0];

for (i=0;i<16;i++) {

unsigned long val;
unsigned char r0, rl, x2, r3;

val = *iram6++;

r0 = (val & Oxff) - minmetric;
rl = ((val >> 8) & 0xff) - minmetric;
r2 = ((val >> 16) & O0xff) - minmetric;

125

WO 2005/010632 PCT/EP2004/006547

r3 = (val >> 24) ~ minmetric;

*iraml++ = (r3 << 24) | (r2 << 16) | (rl << 8) | r0;
}
}

5.7.6 Performance Evaluation

The data transfer performance is listed for each data object in the following table. It is assumed that
there is no data in the cache before executing the update viterbi29 function. In addition it is assumed
that the if condition in the source code is true, i.e. new metrics[0] > 150.

Branchtab29 1~

3
Branchtab29 2 3
vp->0ld_metrics 128 224 8
vp->old_metrics + 128 128 224 3
vp->new_metrics 256 448 o6
sym | 1 56 I
sym2 I 56 |
minmetric 1 T
vp>dp>w 38)
vp->new_metrics 256 256 16
minmetric 1 13 88 1

The write-back of the elements of mew_metrics causes no cache miss, because the cache line was
already loaded by the preload operation of old_metrics. Therefore the write-back does not include
cycles for write allocation.

The base for the comparison are the hand-written NML source codes vit.nml, min.nml and sub.nml
which implement the configurations_ XppCfg viterbi29, XppCfg calemin and _ XppCfg subtract,
respectively. For the _ XppCfg viterbi29 configuration two versions are evaluated: with unrolling
(vit.nml) and without unrolling (vit_nounroll.nml).

The performance evaluation was done for each configuration separately, and for all configurations of
the wupdate_viterbi29 function. It is assumed that the separate configurations are the only
configurations in the test case’. Therefore the separate configurations need different preloads and
write-backs. The following table lists the required data transfers based on the table above. Column
Data RAM gives the number of cycles needed for the data transfer between RAM and cache. Column
DCache gives the number of cycles needed for the data transfer between cache and IRAM.

configurations | preloads write-backs Data RAM | DCache
viterbi29 Branchtab29 1 vp->new_metrics | 1352 52
Branchtab29 2 vp->dp->w

vp->old_metrics

vp->old_metrics+128

* For testing the separate configurations no RISC source code is given. It must contain the XppPreload and
XppPreloadClean functions for the required preloads and write-backs.

126

WO 2005/010632 PCT/EP2004/006547
syml
sym2
calcmin vp->new_metrics minmetric 536 17
subtract vp->new_metrics vp->new_metrics | 760 33
minmetric
all configurations | Branchtab29 1 vp->dp->w 1440 53
Branchtab29 2 minmetric

vp->old_metrics
vp->old_metrics+128
syml

sym2

"| vp->new_metrics

In the following tables the performance is compared to the reference system.

The first table is the worst case, representing the current example. Since no outer loop is given, the
configurations cannot be assumed to be in cache. Moreover, an XppSync instruction has to be inserted
at the end of the function to force write-backs to the cache, ensuring data consistence for the caller.
This setup prevents pipelining of the Ld / Ex / WB phases of the computation, therefore the number of
cycles of the RAM and Cache accesses for the XPP has to be added to the computation cycles instead
of taking the maximum (columns XPP Execute-Cache and XPP Execute-RAM).

configurations

viterbi29 (unroliing)
viterbi2g (no unralling)
calcmin

subtract

all cfgs (unrolling)
all cfgs (no unrolling)

Usually the update_viterbi29 function is called in a loop. Therefore — in the following table — it is
assumed that all three configurations are cached in the XPP array for all but the first iteration.
Additionally the XppSync instruction can be placed after the outer loop, enabling pipelining of the
memory transfers and the execution.

Dt ccess ™| CongursiioT |
configurations "RAM DCache| "RAM ICache} > f’i
viterbi29 (unrolling) 1352 52)
viterbi29 (no unrolling) 1352 52

calemin 536 17

subtract 760 33

all cfgs (unrolling) 1440 53

ali cfgs (no unrolling) 1440 53

127

WO 2005/010632 PCT/EP2004/006547

For viterbi a significant performance improvement up to a factor of 8.2 can be achieved using the XPP
compared to the reference system.

The final utilization is shown in the following tables. The information is taken from the "info' files
generated from the NML source code by the XMAP tool.

Utilization of the viterbi29 configuration with unrolling (vit.nml):

Utilization

Utilization

Parameter Value
Vector length read:32, write:64
Reused data set size -
1/0 IRAMs [sum -pct] 8-50%
ALUfsum-pet] - 47 -T73%
BREG [def/route/sum-pct] 27/37/64 - 80% .

FREG [def/route/sum-pct]

24/27/51 - 64%

of the viterbi29 configuration without unrolling (vit_rounroll.nml):
Parameter Value
Vector length read:32, write:64
Reused data set size -
I/O IRAMs [sum -pct] 8-50%
ALU[sum-pct] 25-3%%

BREG [def/route/sum-pct]

18/23/41 - 51%

FREG [def/route/sum-pct]

18/11/29 - 36%

of the calcmin configuration (min.nml):
Parameter Value

Vector length 16
Reused data set size -
1/O IRAMs [sum -pet] 2-13%
ALU[sum-pct] 19 - 30%
BREG [def/route/sum-pct] 14/16/30 - 38%
FREG [def/route/sum-pct] 7/6/13 - 16%

Utilization of the subtract configuration (sub.nml):

128

WO 2005/010632 PCT/EP2004/006547

Parameter Value

Vector length 16

Reused data set size -

/O IRAMs [sum -pct] 3-19%
ALU[sum-pct] 11-17%
BREG [def/route/sum-pct] 6/10/16 - 20%
FREG [def/route/sum-pct] 2/9/11 - 14%

129

WO 2005/010632 PCT/EP2004/006547

5.8 MPEG2 Codec - Quantization

The quantization file contains routines for quantization and inverse quantization of 8x8 macro blocks.
These functions differ for intra and non-intra blocks, and furthermore the encoder distinguishes
between MPEG1 and MPEG2 inverse quantization.

Since all functions have the same layout, i.e. some checks, one main loop running over the macro
block quantizing with a quantization matrix, we concentrate on iquant_intra, the inverse quantization
of intra-blocks, since it contains all elements found in the other procedures. The non_intra
quantization loop bodies are more complicated, but add no compiler complexity. In the source code
the MPEG1 part is already inlined, which is straightforward since the function is statically defined and
contains no function calls itself. Therefore the compiler inlines it, and dead function elimination
removes the whole definition.

5.8.1 Original Code

void iquant_intra(src,dst,dc_prec,quant_mat,quant)
short *src, *dst;

int dc_prec;

unsigned char *quant mat;

int mquant;

{

int i, wval, sum;

if (mpegl) {
dst[0] = src[0] << (3-dc_prec);
for (i=1l; 1<64; i++)
{

val = (int)(src[i]*quant_mat[i]*mquant)/16;

/* mismatch control */
if ((vale&l)==0 && val!=0)
val+= (val>0) 2?2 -1 : 1;

/* saturation */
dstii] = (val>2047) ? 2047 : ((val<-2048) ? -2048 : val) ;
}
else
{
sum = dst([0] = src[0] << (3-dc_prec);
for (i=1l; i<64; i++)
{
val = (int)(src[i]*quant_mat[i]*mquant)/16;
sumt+= dst[i] = (val>2047) ? 2047 : ((val<-2048) ? -2048 : val);
}

/* mismatch control */
if ((sumé&l)==0)
dst[63]"= 1;

In the following subsections we concentrate on the MPEG2 part.

130

WO 2005/010632 PCT/EP2004/006547

5.8.2 Preliminary Transformations

Interprocedural Optimizations

Analyzing the loop bodies shows that they easily fit on the XPP array and do not use the maximum of
resources by far. The function is called three times from module putseq.c. With inter-module function
inlining the code for the function call disappears and is replaced with the function. Therefore it reads:

for (k=0; k<mb_height*mb_width; k++) {
if (mbinfo[k].mb type & MB_INTRA)
for (j=0; Jj<block count; j++)
if (mpegl) {
/* omitted */
} else {
sum = dst[0] = src[0] << (3-dc_prec);
for (i=1; i<64; i++).
{
val = (int)(src[i]*quant_mat[i]*mquant)/lG;
sum+= dst[i] = (val>2047) ? 2047 : ((val<-2048) ? -2048 : wval);
}

/* mismatch contxol */
if ((sumé&l)==0)
dst[63]"= 1;
}
else
/* non intra block part omitted */

}
Basic Transformations

The following transformations are done:

= A peephole optimization reduces the division by 16 to a right shift by 4. This is essential since we
do not consider loop bodies containing division for the XPP.

= Jdiom recognition reduces the statement after the comment /* saturation */ to
dst[i] = min(max(val, -2048), 2047).

= Since the global variable mpegl does not change within the loop, loop unswitching moves the
control statement outside the j-loop and produces two loop nests.

» Partial redundancy elimination inserts temporaries which store intermediate results.
= Reads from arrays are stored in temporaries and moved as early as possible.

= Writes to arrays are moved as late as possible.

Below is the code after these three transformations. The MPEG1 part again is omitted, but looks
similar.

for (k=0; k<mb_height*mb width; k++) {
if (mbinfo([k].mb type & MB_INTRA)
if (mpegl)
/* omitted */
else
for (j=0; j<block count; j++} {
block data = blocks[k*block_count+j][OJ;
tmpl = block_data << (3-dc_prec);
sum = tmpl
blocks[k*block count+j][0] = tmpl;
for (i=1; i<64; i++) {
block data = blocks [k*block count+j][i];

131

WO 2005/010632

mat_data = intra g [i];

val = (int) (block _data * mat_data *mquant)}>>4;

tmp2 = min (2047, max(-2048,val));
sum += tmp2;
blocks[k*block_count+j][i] = tmp2;
}
/* mismatch control */
block data = blocks[k*block_count+j][63];
if ((sum&l)==0) {
block data *= 1;
}
blocks[k*block_count+j][63] = block data;
}

The i-loop is candidate to run on the XPP array, therefore we try to increase the size of the loop body
as much as possible. Before we increase parallelism the next subsection shows an optimization which

transforms the loop nest into a perfect loop nest.

Inverse Loop-Invariant Code Motion

The loop-invariant statements surrounding the loop body are candidates for inverse loop invariant code
motion. By moving them into the loop body and guarding them properly the loop nest gets perfect, and
the utilization of the innermost loop increases. Since this optimization is reversible it can be undone

whenever needed.

This time we only show the two innermost loop nests.

for (j=0; j<block count; j++) {
for (i=0; i<64; i++) {
block data = blocks [k*block count+]][i];
mat data = intra_ g [i];
sol_0 = block data << (3-dc_prec);

sol 1 63 = (int) { block data * mat_data *mquant)>>4;

sat_1 63 = min(2047, max (-2048,s0l_1 63));
guardl = (i==0);
guard2 = (i==63);

if (guardl)
sol = sol _0;
else

sol = sat_1l 63;

if (guardl)
sum = sol;
else
sum += sol;

guard3 = ({sum & 1) == 0);
if (guard2 && guard3l)
sol "= 1

blocks[k*block_count+j][i] = sol;
}
}

The following table shows the estimated utilization and performance by a configuration synthesized

PCT/EP2004/006547

from the inner loop. The values show that there are many resources left for further optimizations.

132

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length 32 (64 16-bit values)
Reused data set size . -
I/0 IRAMs 4
ALU 9
BREG 9
FREG few
Dataflow graph width 4
Dataflow graph height 7+2 (converters)
Configuration cycles 9+64

5.8.3 Enhancing parallelism

To increase parallelism we have two possibilities, which can be combined:

= Since the smallest data type used in the inner loop limits the throughput of the synthesized
pipeline, we must try to improve this throughput This is shown in the next subsection.

= The j-loop nest is candidate for unroll-and-Jam when interprocedural value range analysis finds out
that block_count can only have the values 6,8 or 12.

Loop Distribution, Partial Unrolling, Reduction Recognition, Loop Fusion

The conversion of the 8-bit values due to the unsigned character array containing the quantization
matrix limits the throughput of the pipeline. In the best case only every fourth cycle a value can be
read or written from the IRAM. Therefore we must try to increase the throughput by splitting the 32-
bit value into 8-bit values, and process them concurrently in different pipelines. Unfortunately the
loop-carried true dependence due to the accesses to sum prevents a simple partial unrolling which
would achieve this. Loop distribution overcomes this problem.

Loop Distribution

Since there is no dependence from a read of sum to a write of block_data in the code, it is possible to
distribute the innermost loop into two loops. The first loop also absorbs the guarded loop-invariant
code which represents the first iteration.

for (j=0; j<block count; j++) {
for (i=0; i<64; i++) {
block data = blocks [k*block count+j][i];
mat_data = intra_gq [i];
sol 0 = block data << (3-dc_prec);

sol 1 63 = (int) (block data * mat_data *mquant) >>4;
sat_1 63 = min (2047, max(-20438, sol 1 .63));
guardl = (i==0);
if (guardl)
sol = sol 0;
else

sol = sat_1 63;
blocks[k*block count+j][i] = sol;
}
for (i=0; i<64; i++) |{

133

WO 2005/010632 PCT/EP2004/006547

block data = blocks[k*block count+j][i];
guardl = (i==0);
if (guardl)
sum = block data;
else
sum += block data;

}

/* mismatch control */
block data = blocks[k*block count+j][63];
if ((sum&l)==0) {

block data *= 1;

}
blocks[k*block_count+j][63] = block data;

}

Now the first generated loop can be partlally unrolled, while the second one is a classical example for
sum reduction. .

Loop 1 - Partial Unrolling

The first loop utilizes about 10 ALUs (including 32-to-8bit-conversion). Therefore the unrolling factor
would be limited to 6. The next smaller divisor of the loop count is 4. Assuming this factor would be
taken, another restriction gets valid. The factor causes that four block_data values are read and written
in one iteration. Although this could be synthesized by means of shift register synthesis or data
duplication for the reads, the writes would cause either an undefined result at write-back, if written to
two distinct IRAMs, or the merge of the values would half the throughput. Therefore the unrolling
factor chosen is 2, reaching the maximum throughput with minimum utilization.

Dead code elimination removes the guarded statement for the parts representing the odd iteration
values.

for (i=0; i<64; i+=2) { // unrolled once

// iteration i==0,2,4....

block data_0 blocks [k*block count+j][i];
mat_data_0 intra g [i];

sol 0 0 = block data_0 << (3-dc_prec);

sol 1 63 0 = (int) (block_data_0 * mat_data 0 *mquant)>>4;
sat_1 63 0 = min(2047, max (—2048, sol_l_63_0))
guardl 0 = (i==0);

)

if (guardl 0

sol 0 = sol 0 _0;
else

sol 0 = sat_1 63_0;
blocks[k*block count+j][i] = sol_0;

// iteration i==1,3,5

block data_ 1 = blocks[k*block_count+j][i+l];
mat_data_1 = intra_gq [i+1];

sol 0 = block data_1 << (3-dc_prec);

sol 1 63 1 (int) (block data_1 * mat_data 1 *mquant)>>4;
sat_1 63_1 = min(2047, max(-2048,s0l_1 63_1));
blocks[k*block_count+j][i+1] = sat 1 63 _1;

Loop2 - Sum Reduction
As upon the block data write limits the reduction possibilities, therefore the code transforms to

134

WO 2005/010632 PCT/EP2004/006547

for (i=0; i<64; i+=2) {
block data 0 blocks[k*block_count+j][i];
block data 1 = blocks[k*block count+j] [i+1];
guardl = (i==0);

if (guardl)
sum = block data 0 + block data_1;
else

sum += block data 0 + block data_1;
}

Loop Fusion

The new loops can then be merged again, because still no dependence exists between them.
Furthermore the loop-invariant code following the loops is moved inside the loop body, producing a
perfect loop nest.

for (j=0; j<block count; j++) {
for (i=0; i<64; i+=2) { // unrolled once
block data 0 = blocks [k*block count+j] [i];
block data 1 blocks [k*block count+j] [i+1];
mat data O intra g [1]:
mat_data 1 intra_q [i+1];

1l

i

i

sol 0 0 = block data 0 << (3-dc_prec);

sol_1 63 0 = (int)(block data 0 * mat_data_0 *mquant)>>4;
sat_1 63 _0 = min(2047, max(—2048,sol_1_63_0));
guard0 = (i==0);
if (guard0)
sol 0 = sol 0 _0;
else
sol 0 = sat_1 63_0;

sol 0 = block data 1 << (3-dc_prec);
// i== 1,3,5

sol_1 63 1 = (int)(block data 1 * mat_data_l *mquant)>>4;
sol 1 = min(2047, max(-2048,s0l1_1_63_1));
guard2 (i == 62);
guard3 ((sum & 1) == 0);
if (guard2 && guard3)
sat 1 63 3 =1
blocks[k*block count+j] [1i] = sol 0;
blocks[k*block_count+j][i+1] = sat_1 63 1;

|

As can be seen in the next table, these transformations have almost doubled the utilization and
performance.

135

WO 2005/010632 PCT/EP2004/006547

Parameter Value
Vector length 32 (64 16-bit values)
Reused data set size -
I/O IRAMs 4
ALU 18
BREG 11
FREG 4
Dataflow graph width 8
Dataflow graph height 9+4 (converters)
Configuration cycles 13+32

Unroll-and-jam

As said above, the j-loop nest is candidate for unroll-and-jam when interprocedural value range
analysis finds out that block_count can only have the values 6,8 or 12. Therefore it has a value range
[6,12] with the additional property to be dividable by 2. Thus unroll-and-jam with an unrolling factor
equal to 2 is applicable. It should be noted that the resource constraints would give a bigger value.
Since no loop-carried dependence at the level of the j-loop exists, this transformation is safe. Please
note that redundant load/store elimination removes the loop-invariant duplicated loads from the array
intra_g and the scalars dc_prec and mquant.

for (j=0; j<block count; j+=2) { // unrolled and jammed once
for (i=0; i<64; i+=2) { // unrolled once
// common code

mat_data 0 = intra g [i];
mat data_1 = intra q [i+1];
guardl = (i==0);

guard2 = (i == 62); .

/13 = 0,2,...

block0 _data 0 = blocks[k*block count+j][il;
block0 data_ 1 = blocks[k*block count+j][i+1l];

[/ i==0,2,4.....
sol 0 _0 = block0 data 0 << (3-dc_prec);

sol0 1 63 0 = (int) (blockO_data_0 * mat_data_ 0 *mquant)>>4;
sat0_1 63 0 = min(2047, max(~-2048,s010_1_63_0));
if (guardl)
sol0 0 = s0l0_0_0;
else

5010 0 = sat0_1_63 0;
// i==1,3,5

s0l0_1_63_1 = (int) (block0_data_l * mat_data_l *mquant)>>4;

sol0 1 = min(2047, max(-2048,s0l0 1 63_1));

if (guardl)

sum0 = s0l0_0 + sol0_1;
else

sum0 += s0l0_0 + so0l0_1;
guard3 = ((sum0 & 1) == 0);

1f (guard2 && guard3)
sol0_1 ~= 1;

blocks[k*block count+j][i] = so0l0_0;
136

WO 2005/010632

blocks[k*block count+j][i+l] = sol0_1;

/13 = 1,3,
blockl data 0
blockl data_ 1

o

PCT/EP2004/006547

blocks[k*block count+j+1][i]:
blocks[k*block;count+j+l][i+1];

// i== 0,2,4.....
soll 0 0 = blockl data 0 << (3-dc_prec)
soll 1 63 0 = (int) (block data 0 * mat_data_ | 0 *mquant)>>4;
satl_1_63_0 = min(2047, max(2048 soll 1 63 0))
if (guardl)
soll 0 = soll_0_0;
else
soll 0 = satl_1 63 _0;

// i== 1,3,5

soll 1 63 1 = (int){(blockl_data_1 * mat_data 1 *mquant)>>4;
soll 1 = min (2047, max(- 2048 soll 1 63 1))

if (guardl)

suml = soll 0 + soll 1;
else

suml += soll 0 + soll_1;

guard4d = ((suml & 1) == 0);
if (guard2 && guard4)
soll 1 "= 1

blocks[k*block_count+j][i] = sol 0;
blocks[k*block count+j][i+1] = soll_1;

}

The results of the version where unroll-and-jam is applied are shown in the following table.

Parameter Value
Vector length 2 *32 (2 * 64 16-bit values)
Reused data set size -
/O IRAMs 5
ALU 36
BREG 22
FREG 8
Dataflow graph width 2*8
Dataflow graph height 9+4 (converters)
Configuration cycles 13+32

5.8.4 Final Code

The RISC code contains only the outer loops control code and the preload and execute calls. Since the
data besides the block data does not vary within the j-loop, and the XPP FIFO initially sets the IRAM
values to the previous preload, redundant load/store elimination moves the preloads in front of thej-
loop. The same is done with the configuration preload. The RISC code looks then like:

for (k=0; k<mb_height*mb_width; k++) {
if (mbinfolk].mb_type & MB_INTRA)
if (mpegl)
/* omitted */

137

WO 2005/010632 PCT/EP2004/006547

else {
XppPreloadConfig(_ XppCfg iquant intra mpeg2);

XppPreload(2, &intra g, 16);
XppPreload (3, &mbinfolk].mquant, 1);
XppPreload(4, &dc prec, 1);

for (j=0; j<block count; j+=2) ({
XppPreload (0, &blocks([k*block count + jl, 32);
XppPreload(l, &blocks[k*block count + j+1], 32);
XppExecute() ;
}
XppSync (&blocks [k*block count], 64 * block count);
}

The configuration code reads:

void __ XppCfg_iquant_intra_mpeg2()
(-
// IRAMs
// blocks[k*block count+j] and blocks[k*block count+j+l], respectively
// Read access with splitter to two 16 bit packets.
// iram0,1[i] and iram0,1[i+l] are available concurrently.
short iram0({256], iraml[256];

// intra_qgq)

// Read access with splitter to 4 8-bit streams remerge to 2 streams.
// iram2[i] and iram2[i+l] are available concurrently.

unsigned char iram2[512];

int iram3[128], iram4[128]; // scalars mquant and dc_prec

// temporaries

int i;

int s0l0_0_0, sol0_0_1, sol0_0, solO_1;
int soll_0 0, soll 0_1, soll 0, soll 1;
int s0l0_1 63 0, sol0_ 1 63 1, sat0_1 63 0;
int soll_1 63 0, soll_1 63 1, satl 1 63 0;
int sum0, suml;

event guardl, guard2, guard3, guard4;

for (i=0; i<64; i+=2) { // unrolled once
// common code
guardl = (i==0);
guard2 = (i == 62);

// G = 0,2,...
// i== 0,2,4.....
s0l0_0 0 = iram0[i] << (3-iram3[0]);

s010_1 63 0 = (int) (iramO[i] * iram2[i] * iramé [0])>>4;
sat0_1 63 0 = min(2047, max(-2048,s5010_1 63 0)):
if (guardl)
s01l0_0 = sol0_0_0;
else

sol0_0 = sat0 1 63 0;

// i== 1,3,5
s010_1 63 1 = (int) (iramO[i+l] * iram2[i+1] * iram4 [0])>>4;
s0l0_1 = min(2047, max(~2048,s010 1 63 _1));
if (guardl)
sum0 = s0l0_0 + sol0_1;

138

WO 2005/010632 PCT/EP2004/006547

else
sum0 += 5010 0 + s0l0_1;
guard3 = ((sum0 & 1) == 0Q);

if (guard2 && guard3)
s0l0_1 = 1;
iraml[i] = soll 0;
iraml[i+1] = soll 1;
// part for odd j values omitted

Figure 65 shows the dataflow graph of one branch of the configuration. The different sections are
colored for convenience.

5.8.5 Performance Evaluation

The next table lists the estimated performance of data transfers. The values assume that each read
causes a cache miss, i.e. that the cache does not contain any data before the first preload occurs. The
startup preloads section contains the preloads before the j-loop and the preloads of the block data in
the first iteration. On the other hand the steady state preloads and write-backs describe the preloads
and write-backs in the body of the j-loop.

T

T g 7] 2

7
mbinio|k|.mquant 4 i 56 1
dc_prec 4 I S I

BIOCESIE*block_count +3FIT

blocks[k*block_count +J+1] 128

The write-back of the block data causes no cache miss, because the cache line was already loaded by
the preload operation. Therefore the write-back does not include cycles for write allocation.

To compare the performance with the reference system we define some assumptions. The cycle count
of one iteration of the A4-loop is measured. As said upon the value of block _count has a maximum
value of 12. This means that XppExecute is called 6 times in one iteration, since the configuration
works on two blocks concurrently. Thus the total cycles calculate to the sum of the startup preloads
and 6 times the maximum of the steady state preloads and the execution cycles.

The execution cycles were measured by mapping and simulating the hand written
_ XppCfg_iquant intra_mpeg2 configuration, where a special start object ensures that configuration
buildup and execution do not overlap. Experiments showed that it is valuable to place distinct counters
everywhere where the iteration count is needed. The short connections that can be routed have a great
impact on the execution speed. This optimization can be done easily by a compiler. Another relatively
simple optimization was done by manually placing the most important parts of the dataflow graph.

139

WO 2005/010632 PCT/EP2004/006547

Although this is not as simple as the optimization before, the performance impact of almost 100 cycles
seems to make it to a required feature for a compiler.

The simulation yields 110 cycles for the configuration execution, which must be doubled to scale it to
the data transfer cache cycles. A multiplication by 6 yields the final execution cycles for one iteration
of the &loop.

The results are summarized in the following table.

configurations
startup
steady state
sum

This table describes the worst case. All data must be loaded from RAM. When we assume that the
configuration is loaded from cache, which is an accurate assumption because it mainly alters with the
configuration for non intra coded blocks, the statistics look much better. Since the quantization matrix
and the scaling constants also stay in the cache, their preloads do not burden the cache-RAM bus as
well.

configurations
startup
steady state
sum

The final utilization is shown in the following table. The big differences with the estimated values for
the BREGs and FREGs result from the distributed counters.

Parameter Value
Vector length 2 *32 (2*64 16-bit values)
Reused data set size -
I/O IRAMS [sum -pct] - 5-31%
ALU[sum-pct] 39-61%
BREG [def/route/sum-pct] 39/14/53 - 66%
FREG [def/route/sum-~pct] 20/16/36 - 45%

140

WO 2005/010632 PCT/EP2004/006547

convert 32 to 8
D even iterations
D odd iterations
EI accumulate

mismatch control

Figure 65 Dataflow graph of the MPEG?2 inverse quantization for intra coded blocks. The yellow and green
blocks were produced by partial unrolling. The difference is that the green block must no account for the
special iteration value 0. The blue block does the accumulation which alters the value at iteration 64 if
necessary.

141

WO 2005/010632 PCT/EP2004/006547

5.9 MPEG2 codec - IDCT

The idct-algorithm (inverse discrete cosine transformation) is used for the MPEG2 video
decompression algorithm. It operates on 8x8 blocks of video images in their frequency representation
and transforms them back into their original signal form. The MPEG2 decoder contains a transform-
function that calls idct for all blocks of a frequency-transformed picture to restore the original image.

The idet function consists of two for-loops. The first loop calls idctrow - the second idctcol. Function
inlining is able to eliminate the function calls within the entire loop nest so that the numeric code is not
interrupted by function calls anymore. Another way to get rid of function calls in the loop nest is loop
embedding that pushes loops from the caller into the callee.

5.9.1 Original Code (idct.c)

/* two dimensional inverse discrete cosine transform */
void idct (block)

short *block;

{

int i;

for (i=0; i<8; i++)
idctrow(block+8*i);

for (i=0; i<8; i++)
idctcol (block+i);
}

The first loop changes the values of the block row by row. Afterwards the changed block is further
transformed column by column. All rows have to be finished before any column processing can be
started.

X idctrow 8 x idctcol result

Data dependence analysis detects true data dependences between row processing and column
processing. Therefore processing of the columns has to be delayed until all rows are done. The
innermost loop bodies of idctrow and idctcol are nearly identical. They process numeric calculations
on eight input values, column values in the case of idctcol and row values in the case of idctcol. Eight
output values are calculated and written back (as column/row). idctcol additionally applies clipping
before the values are written back. This is why we concentrate on idctcol:

/* column (vertical) IDCT
*

* 7 pi 1

* dst[8*k] = sum c[l] * src[8*1l] * cos(-- * (k+-) *1)
* 1=0 8 2

-

* where: c[0] = 1/1024

* c[l..7] = (1/1024)*sqgrt(2)

*/

142

WO 2005/010632 PCT/EP2004/006547

static void idctcol (blk)
short *blk;

{

int x0, x1, x2, x3, x4, x5, x6, x7, x8;

/*
if

shortcut */

(! ((x1 = (blk[8*4]<<8)) | (x2 = blk[8*6]1) |
(x3 = blk[8*2]) | (x4 = blk[8*1]) | (x5 = blk[8*7]) |
(x6 = blk[8*5]) | (x7 = blk[8*3])))

b1k [8*0]=blk[8*1]=blk[8*2]=blk[8*3]=blk[8*4]=b1lk[8*5]=
blk[8*6]=blk[8*7]=iclp[(b1k[8*0]+32)>>6];

return;
}
x0 = (blk[8*0]1<<8) + 8192;
/* first stage */
x8 = W7*(x4+x5) + 4;
x4 = (x8+(W1-W7)*x4)>>3;
x5 = (8- (W1l4+W7)*x5)>>3;
x8 = W3*(x6+x7) + 4;
%6 = (x8-(W3-W5)*x6)>>3;
x7 = (%8~ (W3+W5)*x7)>>3;
/* second stage */
x8 = x0 + x1;
x0 -= x1;
xl = We* (x3+x2) + 4;
x2 = (x1-(W2+W6)*x2)>>3;
x3 = (x1+ (W2-W6) *x3)>>3;
xl = x4 + x6;
x4 -= x6;
X6 = x5 + x7;
x5 -= x7;
/* third stage */
x7 = x8 + x3;
x8 ~= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181*(x4+x5)+128)>>8;
x4 = (181* (x4-x5)+128)>>8;
/* fourth stage */
blk[8*0] = diclp[(x7+x1)>>14];
blk[8*1] = iclp[(x3+x2)>>14];
blk[8*2] = iclpl(x0+x4)>>14];
blk[8*3] = iclpl[(x8+x6)>>14];
blk[8*4] = iclpl[(x8-x6)>>14];
blk[8*5] = iclp[(x0-x4)>>14];
blk[8*6] = iclpl (x3-x2)>>14];

blk[8*7] = iclp[(x7-x1)>>14];

143

WO 2005/010632 PCT/EP2004/006547

W1 ~ W7 are macros for numeric constants that are substituted by the preprocessor. Array iclp is used
for clipping the results to 8-bit values. It is fully defined by the init_idct function before idct is called
the first time:

void init_idct ()
{

int i;

iclp = iclip+512;
for (i= -~512; i<512; i++)
iclp[i] = (i<-256) ? =256 : ((i>255) ? 255 : i);

A special kind of idiom recognition, function recognition, is able to replace the
calculation of each array element by a compiler known function that can be ‘ i
realized efficiently on the XPP. If the compiler features whole program memory A8
aliasing analysis, it is able to replace all uses of the iclp array with the call of the §(
compiler known function. Alternatively a developer can replace the iclp array |
S
X

accesses manually by the compiler known saturation function calls. The B
illustration shows a possible implementation for saturate(valn) as NML v ORJ
schematic using two ALUs. In this case it is necessary to replace array accesses i........... T
like iclp[i] by saturate(i,256). ‘ saturate(val,n)

The /* shortcut */ code in idctcol speeds column processing up if x/ to x7 are equal to zero.
This breaks the well-formed structure of the loop nest. The if-condition is not loop-invariant and loop
unswitching cannot be applied. But nonetheless, the code after shortcut handling is well suited for the
XPP. It is possible to synthesize if-conditions for the XPP, speculative processing of both blocks plus
selection based on condition, but this would just waste PAEs without any performance benefit.
Therefore the /* shortcut */ code in idctrow and idctcol has to be removed manually. The code
snippet below shows the inlined version of the idctrow-loop with additional cache instructions for XPP
control:

void idct (block)
short *block;
{

int i;
XppPreloadConfig(XppCEfg idctrow); // Loop Invariant
for {(i=0; i<8; i++) {
short *blk:;
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
blk = block+8*i;
XppPreload (0, blk, 8/2); // 8 shorts = 4 ints
XppPreloadClean{l, blk, 8/2); // IREM1 is erased and assigned to blk
XppExecute() ;

}
for (i=0; i<8; i++) {

}
}

As the configuration of the XPP does not change during the loop execution invariant code motion has
moved out XppPreloadConfig(_XppCfg_idctrow) from the loop.

144

WO 2005/010632 PCT/EP2004/006547

— W/ﬂéﬁ

o)

145,

WO 2005/010632 PCT/EP2004/006547

5.9.2 Enhancing XPP utilization

As mentioned at the beginning idct is called for all data blocks of a video image (loop in transform.c).
This circumstance allows us to further improve the XPP utilization.

When we look at the dataflow graph of idctcol in detail we see that it forms a very deep pipeline.
__ XppCfg_idctrow runs only eight times on the XPP which means that only 64 (8 times 8 elements of
a column) elements are processed through this pipeline. Furthermore all data must have left the
pipeline before the XPP configuration can change to the _ XppCfg_idctcol configuration to go on with
column processing. This means that something is still suboptimal in the example.

Pipeline Depth

DATA iDLE

The pipeline is just too deep for processing only eight times eight rows. Filling ==

and flushing a deep pipeline is expensive if only little data is processed with it. Pipeline Depth -
First the units at the end of the pipeline are idle and then the units at the begin [, - DATA
are unused.

Loop Interchange and Loop Tiling

It is profitable to use loop interchange for moving the dependences between row and column
processing to an outer level of the loop nest. The loop that calls the idcr-function in transform.c on
several blocks of the image has no dependence preventing loop interchange. Therefore this loop can be
moved inside the loops of column and row processing.

146

WO 2005/010632 PCT/EP2004/006547

// transform.c

for (n=0; n<block count; ﬁ++) {
~ idct (blocks[k*block count+n]); // block count is 6 or 8 or 12
}

// idct.c

/* two dimensional inverse discrete cosine transform */
void idct (block)

short *block:

{

int i;

abueyoisiul dooj

for (i=0; 1i<8; i++)
——p idctrow (block+8*1i);

for (i=0; i<8; i++)

L idctcol (block+i);
}

Now processing of rows and columns can be applied on more data by applying loop tiling, and the
fixed costs for filling and flushing the pipeline contribute less to the total costs.

Constraints (Cache Sensitive Loop Tiling)

The cache hierarchy has to be taken into account when we define the number of blocks that will be
processed by __ XppCfg idctrow. Remember, that the same blocks in the subsequent
__XppCfg_idctcol configuration are needed! We have to take care that all blocks that are processed
during _ XppCfg_idctrow fit into the cache. Loop tiling has to be applied with respect to the cache
size so that the processed data fit into the cache for all three configurations.

5.9.3 NML Code Generation
Dataflow Graph

As idctcol is more complex due to clipping at the end of the calculations, we decided to takeidctcol as
representative loop body for a presentation of the dataflow graph.

Figure 1 shows the dataflow graph for _ XppCfg idctcol. A heuristic has to be applied to the graph to
estimate the resource needs on the XPP. In our example the heuristic produces the following results:

147

WO 2005/010632

PCT/EP2004/006547

ADD,SUB MUL << X, >> X [Saturate(x,n)
Ops needed 39 11 18 8
ALUs FREGs BREGs
Res. avail. 64 80 80
es. left 19 80 45
Res. used 45 0 35

148

PCT/EP2004/006547

WO 2005/010632

9608

/

P4 o
H vn

*
W3-§

O CR SRl

EHpkint
(& x 2

) rT:

X1

Xao

(D—

CRUNCATSH

URCaCRE

Figure 1 Dataflow Graph of idct column processing

149

WO 2005/010632 PCT/EP2004/006547

Address generation, data duplication and data layout transformation:

To fully synthesize the loop body we have to face the problem of address generation for accessing the
data of four 8x8 blocks.

For idctrow and idctcol we have to access one row/column per cycle to get a fully utilized pipeline. As
the rows/columns are packed, i.e. one row/column is packed into four words, we use 4-times data
duplication, as described in the hardware section), to enable 4-times parallel access which is needed to
fetch a full row/column (eight short values) per cycle.

We use one counter per IRAM to realize address generation. The four counters are started with
different offsets as they correspond to different elements of the fetched row/column (elements of the
row/column are packed columns/rows). Therefore we implemented a counter macro that has a
configurable start, stop and increment value, and fits into the same PAE as the IRAM. Detailed
descriptions of the used macros are given in the appendix.

The fetched row/column has to be unpacked with split macros. A split macro splits packets of two
shorts in an input stream into two separate streams. Now eight input values are processed to the
dataflow graph and eight result values (shorts) are created.

Address generation for writing back the results is not needed, as we connect the eight result streams to
FIFO mode IRAMSs which are mapped to one continuous address range. Before the results are written
into the FIFO, packing is applied to provide packed input data for the next configuration.

Unfortunately this combination of reading data duplicated IRAMS in RAM-mode, and writing the
results into FIFOs cause changes in the data layout of the input array. We have to ensure that after all
data processing the original data layout is recovered. For this reason we need an extra configuration
which restores the original data layout of the input array. This is done in __ XppCfg idctreorder that
also performs the saturation of idctcol to make the configuration for idctcol a bit smaller.

Figure 2 illustrates the data layout changes during the whole process. After applying the last
configuration the data layout is the same as before.

__XppCfg_idctrow __XppCfg_idctcol __XppCfg_idctcol
:I;Rﬁmg Blacks 0-3 of :Eﬁmg Columns 8- 7 of :xmg Rows Q-7 of
rows 0 - 7 of __.._» blocks 0 - 3 of ,__> columns 0 -7 of
IRAM4 | columns 0 - 7 (packed) IRAM4 | rows 0 - 7 (packed) IRAM4 | blocks 0 - 3 (packed)
JRAMB IRAMG IRAM6
TransposeI TransposeI TransposeI
IRAMS Column 0 IRAMS Row 0 of IRAMBS Lower half of Block 0
of Block 0 - 3 of columns 0 - 7 of of rows 0 -7 of
rows 0 - 7 {(packed)} blocks 0 - 3 {packed) columns 0 - 7 {packed)
»>— »>—
IRAM1S Column 7 IRAM1S Row 7 of IRAM15 Upper half of Block 3
of Block 0 - 3 of columns 0 - 7 of of rows 0 -7 of
rows 0 - 7 (packed) blocks 0 - 3 (packed) columns 0 - 7 {packed)

Figure 2 Data layout transformations in idct configurations

150

WO 2005/010632 PCT/EP2004/006547

5.9.4 Architectural parameters

The following section shows the architectural parameters used by the compiler driver. This values are
based on heuristics and may not exactly meet the final results. These are just start values for the
optimizations process.

_ XppCfg_idctrow

Parameter Value
Vector length 4 words
Reused data set size 4 x 8 x 4 words
/0 IRAMs 4 (data duplication)+8(output)
ALU 31(dfg)+8(pack)
BREG 32(dfg)+8(pack)+8(unpack)+4(addr.sel.)
FREG 0(dfg)+8(pack)+4(unpack)+4(addr.sel.)
Dataflow graph width 8
Dataflow graph height 10
Configuration cycles ' 128/4+10x2

__XppCfg_idctcol

Parameter Value
Vector length 4 words
Reused data set size 4 x 8 x 4 words
[/O IRAMs 4 (data duplication)+8(output)
ALU 37(dfg)+8(pack)
BREG 35(dfg)+8(pack)+8(unpack)+4(addr.sel.)
FREG 0(dfg)+8(pack)+4(unpack)+4(addr.sel.)
Dataflow graph width 8
Dataflow graph height 10
Configuration cycles 128/4+10x2

151

WO 2005/010632 PCT/EP2004/006547

_ XppCfg_idctreorder

Parameter Value
Vector length 4 words
Reused data set size 4 x 8x 4 words
1/0 IRAMs 4 (data duplication)+8(output)
ALU 16(dfg)+8(pack)
BREG 8(dfg)+8(pack)+8(unpack)+4(addr.sel.)
FREG 0(dfg)+8(pack)+4(unpack)+4(addr.sel.)
Dataflow graph width 8
Dataflow graph height 2
Configuration cycles : 128/4+2x2

Total estimated optimal configuration cycles (considering no routing delays and pipeline stalls) for
processing 4 blocks:

2x(128/4+10x2)+128/4 +2x2 =140 cycles

5.9.5 Example source code after transformations:

The following sources result from applying the optimizations discussed above. As the IRAM size is
finally fixed to 128 words we can only process 4 blocks at once. The original source code has to be
adapted to make this block size possible.

transform

Finally the idct-function gets completely inlined in the itransform function of tramsform.c. If
block_count is equal to 4, and we assume that 32*4 words do not exceed the cache size, then we can
transform the example into:

/* inverse transform prediction error and add prediction */
void itransform{pred,cur,mbi,blocks)

unsigned char *pred[],*cur[]:

struct mbinfo *mbi;

short blocks[][64];

{

int i, j, i1, ji, k, n, cc, offs, 1lx;
short *block, *nextblock;
k= 0;
for (j=0; j<height2; j+=16)
for (i=0; i<width; i+=16)
{
if (block_count == 4) { // xpp execution only if blockcount is 4
XppPreloadConfig(__ XppCfg_idctrow);
// hide cache miss with preloading next 4 blocks (if not last iteration)
nextblock = blocks| (k+l) * 4];
if(i+16 >= width) XppPreload(l, nextblock, 128);

152

WO 2005/010632

}

// do processing of actual 4 blocks
block = blocksl[k * 4];

// Input Data

// IRAMs 0,2,4,6 = 0x55 = 0b1010101

PCT/EP2004/006547

¥ppPreloadMultiple (0x55, block, 128); // this one causes a read miss

// Output Data .

XppPreloadClean(8, &block([0*16], 16);
XppPreloadClean(9, &block[1*16], 16);
XppPreloadClean{(10, &block[2*16], 16);
XppPreloadClean(l1, &block[3*16], 16);
XppPreloadClean (12, &block[4*16]}, 16);
XppPreloadClean (13, &block[5%16], 16);
XppPreloadClean(14, &block({6*16], 16);
XppPreloadClean{15, &block[7*16], 16);

XppExecute();
XppPreloadConfig{__XppCfg_idctcol);

// Input Data

// IRAMs 0,2,4,6 = 0x55 = 001010101
XppPreloadMultiple (0x55, bloeck, 128);
// Output Data

XppPreloadClean{ 8, &block[0*16], 16);
XppPreloadClean(9, sblock(1*16], 16);
XppPreloadClean (10, &block[2*16], 16);
XppPreloadClean(ll, &block[3*16], 16);
XppPreloadClean (12, sblock{4*16], 16);
XppPreloadClean (13, &block[5*16], 16);
XppPreloadClean (14, &block[6*16], 16);
XppPreloadClean (15, &block[7*16], 16);

XppExecute () ;
XppPreloadConfig(_ XppCfg_idctreorder);

// Input Data

// IRAMs 0,2,4,6 = 0x55 = 0b1010101
XppPreloadMultiple (0x55, block, 128);
// Output Data

XppPreloadClean(8, sblock[0*16], 16);
XppPreloadClean(9, &block{l*16], 16);
XppPreloadClean (10, &block[2*16], 16)7
XppPreloadClean (11, &block[3*16], 16);
XppPreloadClean (12, &block[4%16], 16):
XppPreloadClean(13; &block[5*16], 16);
XppPreloadClean(14, &block[6*16], 16);
XppPreloadClean (15, &block[7*16], 16);

XppExecute () ;

for (n=0; n<block count; n++) {

cec = (n<4) ? 0 : (n&l)+l; /* color component index */
if {cc==0) {

/* luminance */

if {(pict_struct==FRAME_PICTURE) && mbi[k].dct_type) {

/* field DCT */

offs = i + ((n&l)<<3) + width*(j+((n&2)>>1));

1x = width<<1;
}
else {

/* frame DCT */

offs = i + ((n&l)<<3) + width2* (j+((n&2)<<2));

1x = width2;

if (pict_struct==BOTTOM FIELD) offs += width;

else {

/* chrominance */
/* scale coordinates */

il = (chroma_format==CHROMA444) ? i : i>>1;
j1 = (chroma_format!=CHROMA420) ? j o §>>1;
if ((pict_struct==FRAME PICTURE) && mbi[k].dct_type

&& (chroma_format!=CHROMA420)) {
/* field DCT */
153

WO

}

2005/010632 PCT/EP2004/006547

offs = il + (n&8) + chrom~width*(jl+((n&2)>>l));
1x = chrom width<<1;

}

else {
/* frame DCT */
offs = il + (n&8) + chrom width2* (j1+((n&2)<<2}));
1x = chrom width2;

}

if (pict_struct==BOTTOM_FIELD) offs += chrom width;

}

// fallback to RISC execution if block_count != 4

if (block_count != 4) idct (blocks [k*block count+n]);

else XppSync(blocks[k*block_count+n], 64/2); // ensure WB done for block

add_pred(pred[cc]+offs,cur[cc]+offs,1x,blocks[k*block_count+n]);

k++;

}
}

_Xpp

#define
#define
#define
#define
#define
#define

Cfg_idctrow

Wl 2841 /* 2048*sqrt(2)*cos(l*pi/16) */
W2 2676 /* 2048*sqrt{2)*cos (2*pi/1l6) */
W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */
W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */
W6 1108 /* 2048*sqrt(2)*cos(6*pi/l16) */
W7 565 /* 2048*sqrt(2)*cos(7*pi/16) */

/** _ XppCfg_idctrow() ¢

* Does idct row calculation for 4 blocks

* XPPIN: 4iram0,2,4,6 contains 4 blocks (data duplication)
* XPPOUT: iram8-15 contains transposed calc. results

*/

void _ XppCfg_idctrow() {

// Input IRAMs in RAM Mode

int iram0({128], iram2([128], iram4[128], iram6[128];

// Output IRAMs in FIFO Mode

int *iram8, *iram9, *iramlQ, *iramll, *iraml2, *iraml3, *iraml4, *lraml5;

int r0, rl, »2, r3, r4, r5, r6, r7, r8;

int ¢

01, xr23, r45, r67;

// Counter offsets for parallel access

int i

int k

0=0, il=1, i2=2, i3=3;

;

for (k=0; k<32; k++) {

//
/!
/1l
//

r0l
r23
r45
r67

//

s
_s
S

_ S5

rl
r0

/*

pPata layout of input array is:

rowOblk0, ..., row7blk0, rowOblkl, ..., ..., row7blk3

{with 4 packed columns((0,1},(2,3],[4,5]1,[6,71))

0 3, ..., 28 31, 32 35, ..., ..., 124 127
iram0([i0+=4}; // row element 0 and 1

iram2([il+=4]1; // row element 2 and 3
iramd [i2+=4]; // row element 4 and 5
iram6[i3+=4]; // row element 6 and 7

Packed row elements have to be separated with __splitlé

plitl6(r01, r4, x0);:
plitl6(z23, x7, x3);
plitl6(r45, r6, rl);
plitl6(x67, x5, r2);

ri<<1l;
(£0<<11l) + 128; /* for proper rounding in the fourth stage */

]

first stage */
154

WO 2005/010632

r8
r4
r5
r8
r6
r7

[N LN T

o

W7* (r4+xr5);
r8 + (W1l-W7)*r4;

rg8 -

(W14+W7) *r5;

W3* (x6+x7);

r8 -
rg8 -

(W3-W5S) *r6;
(W34+W5) *r7;

/* second stage */

r8 = r0 + ril

(W24W6) *r2;

(181* (r4+r5)+128)>>8;

r0 -= rl;

rl = We* (r3+x2);
r2 = rl -

r3 = rl + (W2-W6)*r3;
rl = rd4d + r6;

rd -= r6;

r6 = r5 + x7;

r5 -= r7;

/* third stage */
r7 = r8 + r3;

r8 -= x3;

r3 = r0 + r2;

r0 -= r2;

r2 =

r4 =

(181* (r4-r5)+128)>>8;

/* fourth stage */

// __writel6 does vertical packing on row element streams (columns)
// to have horizontal packing on columns for the next configuration

__writel6(iram8, k, (x7+xl)>>8);
__writel6(iram9, k, (r3+r2)>>8);
__writel6(iramlQ, k, (x0+rd)>>8);
__yritelG(iramll, k, (r8+r6)>>8);

writel6(iraml2, k, (r8-r6)>>8);

__writel6{iraml3, k, (xr0-x4)>>8);
__writel6(iramld, Xk, (r3-r2)>>8);
__writel6(iraml5, k, (r7-xl)>>8);

_ XppCfg_idctcol

#define
#define
#define
#define
#define
#define

Wl
w2
W3
W5
Wé
w7

2841
2676
2408
1609
1108
565

/*
/*
/*
/*
/*
/*

2048*sqrt (2) *cos (1*pi/16)
2048*sqrt (2) *cos (2*pi/16)
2048*sqrt (2) *cos (3*pi/16)
2048*sqrt (2) *cos (5*pi/16)
2048*sqrt (2) *cos (6*pi/16)
2048*sqrt(2) *cos (7*pi/16)

/** _ XppCfg_idctcol()

* poes idct column calculation for 4 blocks
iram0,2,4,6 contains 4 blocks (data duplication)
* ¥XPPOUT: iramB8-15 contains transposed calc. results

* XPPI

*/

N:

void _ XppCfg_idctcol() {

// Input IRAMs in RAM Mode

int iram0[128], iram2[128], iram4{128], iram6[128];

// Output IRAMs in FIFO Mode

int *iram8,

int cO,
int c01, c23, c45, c67;

cl,

c2,

c3, c4, c5, c6, c7, c8;

// Counter offsets for parallel access
int i0=0, il=1, 1i2=2, i3=3;

int k;

*/
*/
*/
*/
*/
*/

*iram9, *iraml0, *iramll, *iraml2,

155

PCT/EP2004/006547

*iraml5;

WO 2005/010632

for (k=0; k<32; k++) {

/7
//
//
/7

c0l
c23
c45
c67

Data layout of input array is:

PCT/EP2004/006547

colOblk0, ..., colOblk3, collblk0, ..., ..., col7blk3

(with 4 packed rows([0,1],[2,3],(4,5],[6,71))
0 3, ..., 12 15, 16 19, 4.y .., 124

iram0[i0+=4]1; // column element 0 and 1
iram2[il1+=4]; // column element 2 and 3
iram4 (i2+=4]; // column element 4 and 5
iram6[i3+=4]}; // column element 6 and 7

L |

127

// Packed column elements have to be separated with __splitlé

.5
_.s
5
)

cl
c0

/*
c8
c4
c5
c8
c6
c7

/-A-
c8
c0
cl
c2
c3
cl
cé
cé6
c5

/*
c?
c8
c3
c0
c2
céd

/*

Ll
//

__writel6(iram8, k
__writelé(iram9, Kk
__writel6(iramlO, k
__writel6(iramll, k,
__writel6(iraml2, k, (c8-c6)>>14);
__writel6(iraml3, k,
__writel6(iramld, k
__writel6(iraml5, k

}

plitl6(c0l, c4, c0);
plitlée(c23, c7, c3);:
plitl6(c45, c6, cl);
plitl6(c67, c5, c2);

= cl<<8;
= (c0<<8) + 8192;

first stage */

= W7* (cd+c5) + 4;

= (Cc8+(W1l-W7)*c4)>>3;
(Cc8— (W1+W7) *c5) >>3;
W3* (c6+cT) + 4;
{(c8- (W3-W5) *c6) >>3;
(c8- (W3+W5) *¢7) >>3;

wononow

second stage */

= c0 + cl;

-= cl;

W6* (c3+c2) + 4;
(cl—-(W2+W6) *c2) >>3;
{(cl+ (W2-W6)*c3)>>3;
cd + c6;

-= C6;

c5 + c7;

-= c;

U (I

)

third stage */

= c8 + c3;

-= c3;

c0 + c2;

-= c2;

= (181* (c4+c5)+128)>>8;
= (181l*(cd4-c5)+128)>>8;

i\

fourth stage */

__writelé does vertical packing on column element
to have horizontal packing on blocks for the next

, (c7+cl)>>14);
, (c3+c2)>>14);
(cO0+c4d)>>14);
(cB8+c6)>>14);

-

(cO-c4)>>14);
(c3-c2)>>14);
, lcT-cl)>>14);

~

__XppCfg_idctreorder

fidefine min(A,B) (((A)>=(B))?(A):(B))
(((B)>

#define max(A,B)

=(B))?(B):(Rn))

/** _ XppCfg_idctreorder()
* Saturates and restores original data layout
* XPPIN: iram0,2,4,6 contains 4 blocks (data duplication)

156

streams (blocks)
configuration

WO 2005/010632

PCT/EP2004/006547

* XPPOUT: iram8~15 contains transposed calc. results

*/

void __ XppCfg_idctreorder() {

// Input IRAMs in RAM Mode

int iram0([128]), iram2{128], iram4[128], iram6[128];

// Output IRAMs in FIFO Mode

int *iram8, *iram9, *iramlO, *iramll, *iraml2, *iraml3, *iraml4, *iraml5;

int b0l, bOh, bll, bilh,

b21, b2h, b3l, b3h;

int b01l, bOlh, b231, b23h;

// Counter offsets for parallel access
int i0=0, il=0+64, i2=1, i3=1+64;

int k;

for (k=0; k<32; k++) {

// Data layout of input array is:
// row0Ocol0O, ..., rowOcol7, rowlcolO, ..., ..., rowicol7
// (with 2 packed blocks(0,1,2,3))-

// 0 1, ..., 14
b01ll = iram0[i0+=2];
b0lh = lram2[il+=2];
231 = iramd[i2+=2];
b23h = iram6[i3+=2];

15, le 17, ooy .., 124 127

// fetch lower half of block 0 and 1
// fetch upper half of block 0 and 1
// fetch lower half of block 2 and 3
// fetch upper half of block 2 and 3

// Packed blocks have to be separated with _ splitlé

__splitl6(b011, bill,
__splitl6{b0lh, blh,
__splitlé(b231, b3l,
__splitl6(b23h, b3h,

b0l1) ;
bOh) ; |
b2l);
b2h);

// __writelé does vertical packing on block streams to have
// horizontal packing on rows as in the original data layout

_ writel6(iram8, k,
__writel6(iramd9, k,
__writel6(iramiO, k,
__writel6(iramll, k,
__writel6(iraml2, k,
__writel6(iraml3, k,
__writel6(iraml4, k,
__writel6(iraml5, k,

min (max (b01,-256),255));
min (max (b0h, -256),255));
min(max(bll,-256),255));
min (max{blh,-256),255));
min{max(b21,-256),255));
min (max (b2h,-256),255));
min (max (b31,~256),255)):
min (max (b3h,-256),255));

5.9.6 Performance Evaluation

To guarantee fair conditions for this example, we have to compare the total amounts of cycles the
idct-algorithm executes on a fixed amount of data, once on the reference system, and once on the
XPP-RISC combination. As determining cycle times of single configurations for execution on the
RISC processor causes unrealistic bad results for execution on the reference system, we decided to

compare on a total to total basis.

Data transfer times

The cycle times for data transfer are listed in the table below. It is assumed that there is no data in the

cache before executing the idct algorithm.

157

WO 2005/010632 PCT/EP2004/006547

Input data of idctrow 128 4 —16 52
input data of idctcol 128 4 0 32
Input data of idctreorder 128 4 0 32

Output dafa of idcirow
Output data of idctcol 0
Output data of idctreorder

Only the first preload causes a cache misses as all other configurations operate on the same data, and
there is no need to load data from RAM. The same applies for the write-backs. As output data created
by idctrow and idctcol are only ‘temporary, and immediately consumed by the subsequent
configurations, they are never written back to RAM. Only the final output created by idctreorder has
to be written back to RAM.

Final performance resuits for the first iteration

configurations "RAM| DCache| F
idctrow 890 32
idctcol 0 32
idctreorder U 32
all configuratons 896 96

Final performance resulits for the subsequent iterations

Data Access. | Configuration:
configurations "RAM| DCache| "RAN| ICache| Core C
idcirow 896 32 -
idctcal U 32
idctreorder Y 32 A
|alrconfiguraions 896 96 0 U1

158

WO 2005/010632 PCT/EP2004/006547

5.10Wavelet

5.10.1 Original Code

#define BLOCK_SIZE 16
#define COL 64
#define ROW 1

void forward wavelet()
{
int i,nt, *dmid;
int *sp, *dp, d tmp0, d_tmpl, d_tmpi, s_tmp0, s_tmpl;
int mid, ii;
int *x;
int s[256],d[256];

for (nt=COL; nt >= BLOCK SIZE; nt>>=1) {
for (i=0; i < nt*COL; i+=COL) { /* column loop nest */

x = &int datalil;

mid = (nt >> 1) - 1;

s[0] = x[0];

d[0] = x[ROW];

s[1] = x[2];

s[mid] = x[2*mid];

dlmid] = x[2*mid+ROW]};

d[0] = (d[0] <<1) - s[0] - s{1];

s[0] = s[0] + (d[0] >> 2);

d tmp0 = d[0];
s_tmp0 = s[1};

for(ii=1; ii < mid; ii++){
s_tmpl = x[2*1142];
d tmpl =((x[2*1i+ROW]) << 1) - s _tmpO - s_tmpl;
d[ii] = d _tmpl;
s[ii] = s_tmp0 + ((d_tmp0 + d_tmpl)>>3);
d_tmp0 = d_tmpl;
s_tmp0 = s_tmpl;
}
d[mid] (d[mid] - s[mid]) << 1;
s[mid] = s[mid] + ((d[mid-1] + d[mid]) >> 3);

for (1i=0; ii <= mid; ii++) |

x[11i] = s[ii};
x[ii+mid+1] = d[ii]:;
}
}

for (i=0; i < nt; i++) { /* row loop nest */

x = &int_datalil;
mid = (nt >> 1) - 1;

s[0] = x[0];
159

WO 2005/010632 PCT/EP2004/006547

d[0] = x[COL];
s[1] = x[COL<<1];

] = x[(COL<<1)*mid];
d[mid] = x[(COL<<1)*mid+COL];

d[0] = (d[0] << 1) - s[0] - s[11;
s[(0] = s[0] + (d[0] >> 2);

d tmp0 = d[0];

s_tmp0 = s{1];

for(ii=1; ii < mid; ii++) {
s_tmpl = x[2*COL* (ii+1)];

d_tmpl =(x{2*COL*ii+COL] << 1) =~ s_tmpO - s_tmpl;
d[ii] = d_tmpl;
s[ii] = s_tmp0 + ((d_tmp0 + d tmpl) >> 3);
d_tmp0 = d_tmpl;
s_tmp0 = s_tmpl;

} .

dimid] = (d[mid] << 1) - (s[mid] << 1);

s[mid] = s[mid] + ((d[mid-1] + d[mid]) >> 3);

for(ii=0; ii <= mid; ii++) {
x[11*COL] = s[iil;
x[{(ii+mid+1)*COL] = d[ii];

The source code exhibits a loop nest depth of three. Level 1 is an outermost loop with induction
variable nt. Level 2 consists of two inner loops with induction variable 7, and level 3 is built by the
four innermost loops with induction variable ii. The compiler notices by means of value range
analysis, that n# will take on three values only (64, 32, and 16). As all inner loop nest iteration counts
depend on the knowledge of the value of nt, the compiler will completely unroll the outermost loop,
leaving us with six level 2 loop nests. As the unrolled source code is relatively voluminous we restrict
the further presentation of code optimization to the case where s takes the value 64. The two loops of
level 2 of the original source code are highly symmetric, so we start the presentation with the first, or
column-loop nest, and handle differences to the second, or row loop nest, later.

510.2 Optimizing the Column Loop Nest

After pre-processing, application of copy propagation followed by dead code elimination overs_tmpl,
d_tmpl, and constant propagation for nt (64) and mid (31) we obtain the following loop nest. For
readability reasons we rename the unwieldy variable names s_tmp0 by s0,d_tmp0 by d0, and ii by the
more common index j.

for (i=0; i < 64*64; i+=64) ({
X = &int data[i];

s[0] = x[0];

dio] = x[1}];

s[1l] = x[2];

s[31] = x[62]};

d[31] = x[63];

.d[0] = (d[0] << 1) - s[0] - s[1];
s[0] = s[0] + (d[0] >> 2);

160

WO 2005/010632 PCT/EP2004/006547

d0 = d{o0];
s0 = s[1]:
for (3=1; j < 31; j++) |
dlj) =((x[2*j+1]) << 1) - S0 - x[2*%3+2];
s[j] = s0 + ((d0 + drij) >> 3);
d0 = d[31;
s0 = s[jl:
}
d[31] = (d[31] - s[31]) << 1;
s[31] = s[31] + ((d[30] + 4d[31]) >> 3):
for (3=0; j <= 31; j++) {
x[3] = s[jl;
x[3+32] = d[j1;
}
}
x1
5 x2 || so
- merge
1
- do
d1 merge

/|

+

GO
)
+—
s1

Figure 3 Dataflow graph of the innermost loop nest

From the dataflow graph of the first innermost loop nest (induction variablej) the compiler computes
an optimization table. In this stage of optimization it just counts computations and neglects the
secondary effort necessary for IRAM address generation and signal merging. If there are different
possibilities to perform an operation on the XPP in this initial stage, the compiler schedules ALU with
highest priority. Inputs from or outputs to arrays with address differences of less than 128 words
(IRAM size) are always counted as coming from the same IRAM. Hence the first innermost loop

161

WO 2005/010632 PCT/EP2004/006547

needs three input IRAMs (s0, d0, x/2*%/+1] and x/2*j+2]) and two output IRAMs (s, d). The second
innermost loop needs two input IRAMs (s, d) and one output IRAM (x/j] and x/j+32]).

Parameter Value
Vector length 30
Reused data set size -
/0 IRAMSs 3[+20
ALU 5
BREG T (shift right by three)
FREG 0
Dataflow graph width oo 2
Dataflow graph height 6
Configuration cycles 5*30+2

The compiler recognizes from this table that the XPP core is by far not used to capacity by the first
innermost loop. Data dependence analysis shows that the output values of the first innermost loop are
the same as the input values for the second innermost loop. Finally the second innermost loop has
nearly the same iteration count as the first one. So the compiler tries to merge the second innermost
loop with the first one. However, data dependence analysis shows that the fusion of the two loops is
not legal without further measures, as this introduces loop-carried anti-dependences within thex array.
During iteration j=/ of the second innermost loop for instance, x/33] of the original x array is
overwritten, while during iterationj=16 of the first innermost loop the original value ofx/33] must be
available. The cache memory layout of the XPP, however, allows a neat and cheap solution to this
problem. One cache memory area can be mapped to two different IRAMs, one for reading, and one for
writing. As the IRAM filling from the cache is triggered by XppPreload commands, the read-only
IRAM is filled once before the configuration is executed. It does not interfere with the values written
to the write-only IRAM. Hence the dependence vanishes without any explicit array copying. For
correctness of the transformed source code we iniroduce a temporary output array ¢ and a (cost free)
array copy loop after the merged innermost loops. As mentioned above the iteration counts of the two
innermost loops are not equal. Hence peeling of the first as well as of the last iteration of the second
loop is necessary. Data dependence analysis shows that the peeled code as well as thed/31] and s/31]
assignments before the second loop can be moved after the second loop. Now the two loops are
merged leaving us with the following code:

for (i=0; i < 64*64; 1+=64) {
int t[641]; // Temporary array built by output IRAM

x = &int_datalil;

s[0] = x[0];

d[0l = x[1]:

s[l] = x[2];

s[31] = x[62];

df31] .= x[63];

d[0] = (d[0] << 1) - s[0] - s[l];
s[0] = s[0] + (d[0] >> 2);

do = d[0];

s0 = s[l1};

162

WO 2005/010632 PCT/EP2004/006547

for (j=1; j < 31; j++) |
d[j] =(x[2*j+1] << 1) - s0 — x[2*]+2];
s{j] = s0 + ((d0 + d[3j]) >> 3);
d0 = d[j]- ’
s0 = s[3];
tli]
t[§+32]

s3]l
dljlz

}

// The following array copy code is implicitely
// done by the cache controller.
for (j=1; j < 31; j++) {

x[3] = t[jl:
x[J+32] = t[j+32];
}
d[31] = (d[31] --s[31]) <<'1;
s[31] = s[31] + {((d[30] + d[31]) >> 3);
x[0] = s[0];
x[32] = d[0];
x[31] = s[31];
x[63] = d[31];

}

Next the compiler tries to reduce IRAM usage. Data dependence analysis shows that the values of
array s which are manipulated within the innermost loop are not used outside of the loop.d[30] is the
only value which depends on values of array d calculated within the innermost loop. Thus the
compiler replaces df30] by #[62] outside of the loop. Now it is legal that array contraction replaces
arrays s and d within the loop by scalars s/ and dI. A further IRAM reduction is done by using a
common IRAM for the input scalars s0 and df) (array sd) . The tradeoff for this IRAM saving is a
minor extra effort for the distribution of the two values to their dedicated PAE locations on the XPP.

We arrive at :

for (i=0; i < 64*64; it+=64) {
int t[64]; // Temporary array built by output IRAM

x = &int_data[i];

s[0] = x[0];

dfo] = x[1];

s[1l] = x[2];

s[31] = x[62];

d{311 = x[63];

d[0] = (d[0] << 1) - s{0] - s[1];
s[0] = s[0] + (d[0] >> 2);

d0 = d[0];

s0 = s{l1];

// The following loop is executed on the XPP.
for (j=1; j < 31; j++) {

dl =((x[2*j+1]) << 1) - s0 - x[2*]j+2];
s1 = s0 + ((d0 + d1) >> 3);

do = dl;

s0 = sl;

x[3] = s1;

x[§+32] = dl;

163

WO 2005/010632 PCT/EP2004/006547

// The following array copy code is implicitely
// done by the cache controller.
for (j=1; J < 31; J++) {

2[j] = t[jl:
x[+32] = t[j+32];
}
d[31] = (d[31] - s[31]) << 1;
s[31] = s[31] + ((t[62] + d[31]) >> 3):
x[0] = s[0];
x[32] = d[0];
x[31] = s[31];
x[63] = d[31];

}

with an optimization table

Parameter Value
Vector length 30
Reused data set size -
1/0 IRAMs 2[+10
ALU ' 5
BREG 1
FREG 0
Dataflow graph width 2
Dataflow graph height 6
Configuration cycles 5*%30+2

The innermost loop does not exploit the XPP to capacity. So the compiler tries to unroll the innermost
loop. For the computation of the unrolling degree it is necessary to have a more detailed estimate of
the necessary computational units, i.e. the compiler estimates the address computation network for the
IRAMs. Array x must provide two successive array elements within each loop iteration. This is done
by an address counter starting with address 3 and closing with address 62 (1 FREG, 1 BREG). The
IRAM data is then distributed to two different data paths by a demultiplexer (1 FREG) which toggles
with every incoming data packet between the two output lines (1 FREG, 1 BREG). The same
demultiplexer plus toggle network is necessary for the array sd. A merger (1 FREG, 1 BREG) is used
to fetch the first data packet from s0 and all others from sJ. A second one merges d0 and d1. Finally
two counters (2 FREG, 2 BREG) compute the storage addresses, the first starting with address 1, and
the second with address 33. The resulting data as well as the addresses are crossed by mergers which
toggle between the two incoming packet streams (4 FREG, 2 BREG). This results in the following
optimization table.

164

WO 2005/010632

PCT/EP2004/006547

Parameter Value
Vector length 30
Reused data set size -
I/0 IRAMs 2I+10
ALU S
BREG 10
FREG 13
Dataflow graph width 2
Dataflow graph height 6
Configuration cycles S*30+2

The compiler computes from the maximum number of FREGs (80) and from the minimal number of

FREGsS per innermost loop (13) an unrolling degree equal to 6 (= 80/13). On the other hand, the IRAM
use per innermost loop is 3 compared to 16 available IRAMs. From this, the compiler computes an
unrolling degree equal to 5 (= 16/3). The second innermost loop (induction variable i) is executed 64
times. In order to avoid additional RISC code, the iteration count should be a multiple of the unrolling
degree. This finally results in an unrolling degree of 4 and in the configuration source code listed

X

"X oW oKX

wavelet transformation

array of iteration i

array

array

array
array
array
array
array

iram4[128],
iram5[1281,

of

of

of
of
of
of
of

iteration

iteration

iteration
iteration
iteration
iteration
iteration

iram6[128];
iram7[1281;

below:
/** _ XppCfg wavelet64 ()
* Performs four innermost loops of the
* in parallel.
* XPPIN: iram0 s0_0, d0_0
T iraml 64 integers of the
* iram2 s0_64, d0_64
* iram3 64 integers of the
* iram4 s0_ 128, d0_128
* iramb 64 integers of the
* iram6 s0_192, do_192
* iram?7 64 integers of the
* XPPOUT: iram9 64 integers of the
* iramll 64 integers of the
* iraml3 64 integers of the
* iraml5 64 integers of the
*/
void : XppCfg wavelet64 ()
{
int iram0[128], diram2(128],
int iraml[128], iram3{128],
int iram9[128], iramli[128], iraml3{128], iraml5[128];
int tmp dO 0 = iram0{0];
int tmp_s0_0 = iramO(1];
int tmp_dO0_64 = iram2[0];
int tmp_s0 64 = iram2[1];
int tmp_d0_128 = iram4([0};
int tmp s0_128 = iram4[1];
int tmp dO 192 = iram6[0];
int tmp s0 192 = iram6(1l];

165

i+64
1+128

i+192
i
i+64
1+128
i+192

WO 2005/010632 PCT/EP2004/006547

for(j=1; 3<31; j++) {
int tmp_dl 0, tmp dl_ 64, tmp dl_128, tmp dl_192;
int tmp_sl 0, tmp sl_64, tmp_sl_128, tmp sl _192;

tmp_dl 0= ((iraml[2*j+1]) << 1) - tmp_sO0_0 - iraml[2*j+2];
tmp sl 0 = ((tmp_d0_0 + tmp_dl_0) >> 3) + tmp_sO_0;
iram9(j] = tmp s0 0 = tmp_ sl _0;

iram9[j+32] = tmp_dO_O = tmp_dl_0;

tmp dl_64 = ((iram3[2*j+1]) << 1) - tmp_s0_64 - iram3[2*j+2];
tmp_sl 64 = ((tmp _dO_64 + tmp_dl_64) >> 3) + tmp_s0_64;
iramll[j] = tmp s0 64 = tmp sl 64;

iraml11([j+32] = tmp _dO0_64 = tmp_dl_64;

tmp dl_128 = ((iram5[2*j+1]) << 1)} - tmp_s0_128 - iram5[2*3+2];
tmp sl 128 = ((tmp_d0_128 + tmp_dl_128) >> 3) + tmp_s0_128;
iraml3[3] = tmp s0 128 = tmp_sl_128;

iraml3[j+32] = tmp dO 128 = tmp_dl 128,

tmp_dl_192 = ((iram7{2*j+1]) << 1) - tmp_ s0 192 - iram7([2*3+2];
tmp_. sl 192 = ((tmp_dO_192 + tmp_dl_192) >> 3) + tmp sO 192;
iraml5[§] = tmp s0 192 = tmp sl 192,

iraml5([j+32] = tmp_d0_192 = tmp_dl_192

}

Two similar configurations handle the cases where nt = 32 and ¢ = 16. They are not shown here as
they differ only in the number of loop iterations (15, and 7, respectively).

At this point some remarks about the further translation of the configuration code to NML code are
useful. The necessary operational elements and connections are defined by the dataflow graph of
Figure 3. But this definition is incomplete. It does neither include which element to place in which cell
of the XPP array (placing), nor does it allow an ad hoc decision which operation to execute in which
computational unit. It is, for instance, possible to perform a subtraction in an ALU or in a BREG.
These decisions are very delicate, as they highly influence the performance of the generated XPP code.
In the current example the following strategy is applied. The first thing to notice is the cycle in the
dataflow graph. It defines a critical path as it decides how many XPP cycles are at least necessary to
provide a new output value. Counting along the dataflow cycle we find five operational elements from
one s/ value to the next: merge, subiract, addl, shift right by 3, and add2. The worst case assumption
is that every operational element takes one XPP cycle. This explains the 5*30 +2 configuration cycles
in the optimization tables. The XPP provides BREG elements which can be used to operate without a
delay. The starting point is the shift vight by 3. This operation can be done in a BREG only. We define
the NOREG property here (0 XPP cycles). Both neighboring additions are chosen as ALU operations
(2 XPP cycles). The subtraction is done in a BREG with NOREG property (0 XPP cycles), and the
merge is only possible as FREG (1 XPP cycle). Hence we obtain a minimum of three XPP cycles per
s1 value. But this result holds only if all operational elements of the cycle can be placed within one
line of the XPP array, and within a bus section free of switch objects of the horizontal XPP buses.
Hence the compiler must definitely choose the placement of this critical code section. Otherwise a
severe deterioration of the performance is inevitable.

5.10.3 Optimizing the Row Loop Nest

The optimization of the row loop nest starts along the same lines as the column loop nest. After pre-
processing, application of copy propagation followed by dead code elimination overs_tmpl, d_impl,
and constant propagation for nf (64) and mid (31) the compiler peels off the first and last iteration of
the second innermost loop, and moves the assignments between the two innermost loops after the
second one.

166

WO 2005/010632 PCT/EP2004/006547

for (i=0; i < 64; i++) {
X = &int_datalil];

s[0] = x[0];
d[0] = x[64];

s[l] = x[64*2];

s[31] = x[64%62];

d[31l] = x[64*63];

d[0] = (d[0] << 1) - s[0] - s[1l];
s[0] = s[0] + (A[0] >> 2);

d0 = d[0];

s0 = s[1];

for (j=1; 3 < 31; j++) { .
dlj]l =((x[64*(2*9+1)]) << 1) - sO - x[64* (2*3+2)];
s[3] = s0 + ((d0 + dl1) >> 3);
do daijl: ’
s0 = s[j];

(i

for (j3=1; j < 31; J++) {
x[64*75] s[j]:
x[64*(§+32)] = d[j];

o

}

d{31] = (d[31] << 1) - (s[31] << 1);
's[31] = s[31] + ((x[64*62] + d[31]) >> 3);
x[0] = s[0];

x[32] = d[0]1;

x[64*%31] = s[31];
x(64%63] = d[311;
}

Data dependence analysis computes an iteration distance of 64 for array x within the first innermost
loop. As an IRAM can store at most 128 integers we run out of memory after the first iteration of the
innermost loop. Hence the compiler reorders the data to a new array y before the first innermost loop.
A similar problem arises with the second innermost loop, where the compiler also introduces arrayy.
The new array y suffers from the same array anti-dependences like array x in the previous section. The
loop fusion preventing anti-dependence is overcome by the introduction of a temporary array ¢ which
guarantees correctness of the transformed source code.

for (i=0; 4i < 64; i++) {
int y[64], t[64];

¥ = &int data(i];

s[0] = x[0];

d[0] = x[64];
s[1] = x[64*2];
s[31] = x[64*%62];
d[31] = x[64*63];

167

WO 2005/010632 PCT/EP2004/006547

d[0] = (d[0] << 1) - s[0] - s[1];
s[0] = s[0] + (d[0] >> 2);

do = d[o0];

s0 = s{1};

// Column to row transfer.

for (j=1; j < 31; 3j++) {
y[2*3+1] x[64* (2*j+1)
y[2%§+2] = x[64% (2%j+2)

’

i

7

}

// The following loop is executed on the XPP.
for (j=1; J < 31; j++) {
dfj] =({y[2%j+1]) << 1) - s0 - y[2*j+2];
s{j] = s0 + ((d0 + d1) >> 3);
de = d[31; CT
s0 = s[jl;
t{j]
t[j+32]

s(i1;
afils

}

// The following array copy code is implicitely
// done by the cache controller.
for (j=1; Jj < 31; j++) { ’

y[il £33 ¢

y[3+32] t[3+321;

}

// Row to column transfer.
for (j=1; j < 31; j++) {
x[64%7] = y[Jj1;

x[64* (j+32)] y[3+321;
}
d[31] = (d[31] << 1) - (s[31] << 1);
s[31] = s[31] + ((x[64%62] + d[31]) >> 3);
x[0] = s[0];
x[321 = d[0];
x[64%31] = s[31];
x[64*63] = d[31];

}

After loop fusion the second innermost loop looks exactly like the loop handled in the previous section
and can thus use the same XPP configuration. The two surrounding reordering loops actually perform
a transposition of a column vector to a row vector and are most efficiently executed on the RISC.

510.4 Final Code

The outermost loop is completely unrolled which produces six inner loop nests (induction variablei).
Each of these inner loops is unrolled four times with the wavelet XPP configuration in the center. The
unrolling of the inner loops requires a bundle of new local variables whose names are suffixed by the
original iteration numbers. Array variables with constant array indices are replaced by scalar variables
for readability reasons. s/0], for instance, becomes s0_0, s0_64, s0_128, s0_192.

One further loop transformation is necessary to facilitate the work of the cache controller. When the
wavelet configuration finishes, a computation result in array x of each iteration i is used in the
succeeding RISC code. Hence an XppSync operation is necessary after each XppExecute which forces
a write-back of the IRAM contents to the first level cache. The RISC must wait until the write-back

168

WO 2005/010632 PCT/EP2004/006547

finishes. However, if the compiler splits the loop after XppExecute, it is possible to prepare the RISC
data for the next configuration during the write-back operation of the cache controller (pipelining
effect). The cost for the loop distribution is the expansion of some scalar variables, i.e. all scalars
which are computed before and used after XppExecute must be expanded to array variables. Hence
variable s0_0, for instance, becomes s0_0f16].

Loop distribution is applicable for both, the column as well as the row loop nest. However, in the case
of the row loop nest this requires an array for each vector element of y, i.e. y actually becomes a
matrix. In order to reduce the memory demand the compiler does no complete loop distribution, it
rather executes the two loops shifted by a memory requirement factor. This loop optimization is called
shifted loop merging (or shifted loop fusion) [7]. The memory requirement factor is chosen to a value
of four, as the architecture provides three IRAM shadows.

As the final code is voluminous because of successive loop unrolling we present the optimized RISC
code for nt=64 only.

void forward_wavelet()

{

int 4, j, ks

int s0_0[4], s31_0f[4], sl _0;

int s0_64([4], s31_64[4], sl_64;

int s0_128[4], s31_128[4}, sl_128;

int s0_192[4], s31_192[4], sl1_192;

int dO_0[4], d31_0[4];

int 40_64[4], d31_864[4]1;

int d0_128[4], d31_128(4]1;

int d0_192{4], d31_192{4];

int sd_0(2}, sd_64[2], sd 128[2], sd 192[2];

int y 0[64]([4], y 64064]1([4], y_128[64][4], y_192[64][4];

for (i=0; i < 16*256; i+=256) { /* nt=64, column loop */
if (1 < 16*256) { /* XppPreload and XppExecute */

XppPreloadConfig(_ XppCfg wavelet64);

k = (1 / 256) % 4;

x = gint_datal[il;

s0_0([k] = x[0];

d0_0f[k] = x[1];

s1 0 = x{2];

s31_0[k] = x[62];

d31l_0[k] = x[63];

sd_0[0] = d0_0[k] = (d0_O[k] << 1) - s0_O(k] - sl_0;
sd_0[1] = s0_0[k] = (dO_O[k] >> 2) + s0_0[k];
XppPreload (0, sd_0, 2);

XppPreload (L, x, 64) ;

XppPreloadClean(9, x, 64);

x = gint_datal[i+64];

s0_64[k] = x[0];

d0_64[k] = x[1];

sl_64 = x[2];

s31_64[k] = x[62];

d3l_64[k] = x[631;

sd_64[0] = d0_64[k] = (d0_64[k] << 1) - s0_64[k] - sl_64;
sd_64[1] = s0_64(k] = (d0_64(k] >> 2) + s0_64[k];
XppPreload (2, sd 64, 2);

XppPreload (3, %, 04);
XppPreloadClean(ll, x, 64);

X = &int_datal[i+128];

s0_128[k] = x[01;

d0_128[k] = x[1]:

sl_128 = x[2];

s31_128[k] = x[62];

d31_128[k] = x[63];

sd_128[0] = d0_128[{k}] = (d0_128[k] << 1) - s0_128[k] - sl_128;
sd_128({1] = s0_128[k] = (d0_128(k] >> 2) + s0_128(k];
XppPreload (4, sd_128, 2);

XppPreload (5, =, 64);

XppPreloadClean(13, x, 64);

169

WO 2005/010632 PCT/EP2004/006547

x = &int_data(i+192]);

s0_192[k] = x[0];

d0_192[k] = x[1];

si_182 = x(2}]7

s31_192([k] = x[62];

d31_192[k] = x[631;

sd_192[0) = d0_192[k] = (d0_192(k] << 1) - s0_192{k] - sl1_192;
sd_192[1] = s0_192[k] = (d0_192({k] >> 2) + s0_192[k];
XppPreload (6, sd_192, 2);

XppPreload (7, =, 64);

XppPreloadClean(15, =, 64);

XppExecute() 7

} /* i < 16*256 */

if (i >= 4*256} { /* delayed XppSync */
k = (1 - 4*256) % 4;

x = &int_data[i-4*256];
XppSync(x, 64);

d31_0(k] = (d31_0[k] - s31_0f[k]) << 1;

531 _0[k] = s31_0[k] + ((x[62] + d31_0[kl) >> 3);
x[0] = s0_0[k]/

x[32] = d0_0{k];

%[31] = s31_0[k];

x[63] = d31_0([k};

x = &int datali-4*256+64];
XppsSync(x, 64); :

d31_64[k] = (d31_64[k] - s31_641k]) << 1;

s31_64(k] = s31_64[k] + ((x[62] + d31 64[k]) >> 3);
x[0] = s0_64(kl;

x[32] = d0_64[k];

x[31] = s31_64[k];

x[63] = d31_64(kl;

x = &int_data[i-4*%256+128];
XppSync (x, 64);

d31_128[k] = (d31_128[k] - s31_182[k]) << 1;
s31_128(k] = s31_128{k] + ((x[62] + d31_128[k]) >> 3);
x[0] = 50_128[k];

%[32] = d0_128[k];

x[31] = §31_128(k];

x[63] = d31_128[k];

x = &int_data[i-4*%256+192];
XppSync (x, 64);

d31_192(k] = (d31_192[k] - s31_192[k]) << 1;
$31_192(k] = s31_192[k] + ((x[62] + d31_192[k]) >> 3);
2[0] = 50_192[k];

x[32] = d0_192([k];

x[31] = §31_192(k];

x[63] = d31_192[k];

} /* 1 >= 4*256 */
}

for (i=0; i < 64+16; i+=4) { /* nt=64, row loop */
if (i < 64) { /* ¥ppPreload and XppExecute */
XppPreloadConfig(_ XppCEfg_wavelet64);

k=(i1/4) % 4;
x = &int_datafi];

s0_0[k] = x[0];
do_o0lx] = x[64]1;
s1_0 = x(128];
s31_0[k] = x[3968];
d31_0[k] = x[4032];

sd 0[0] = d0_0[k%4) = (d0_O[k] << 1) - s0_O[k] - s1_0;
sd_0{1] = s0_0[k] = (d0_0Tk] >> 2) + s0_O[k];
for (Jj=1; J < 31; j++) {

y_0[2*3+1] [k] x[64+128*5];

y_0[2*3+2] [k] x[128+128*%5];

170

WO 2005/010632

}

XppPreload (0,
XppPreload (1,
XppPreloadClean (9,

x = &int data[i+1]:
s0_64(k] = x[0];
do_64(k] = x[64];
sl_64 = x[128];
s31_64[k] = x[3968];
d31_64[k] = x[4032];
sd_64[0] = d0_64[k]
sd_64[1]1 = s0_64[k]

PCT/EP2004/006547

sd_0, 2);
y_Oikl, 64);
y_O0[kl, 64);

(d0_64[k] << 1) - s0_64[k] - sl_64;
(40 64[k] >> 2) + s0_64[k];

for (j=1; j < 31; J++) {

y_64[2*3+1] [k]
y_64[2*3+2] [k]
}

x[64+128%3];
x[128+128%3];

XppPreload (2, sd_o4, 2);

XppPreload (3, y_64[k], 64);
XppPreloadClean(l1l, y_64[k], 64);

x = &int_data[i+2];

s0_128[k] = x[0];

do_128{k] = x{64];

sl_128 = x[128]¢

s31_128[k] = x[3968];

d31_128[k] = x[4032];

sd_128[0] = d0_128[k] = (d0_128[k] << 1) - s0_128([k] - sl_128;
sd_128[1] = s0_128[k] = (d0_128[k] >> 2) + s0_128{k]:

for (4=1; j < 31; j++) {

y_128[2%j+1] [k]
y_128{2*3j+2] [k]
}
XppPreload (4,
XppPreload {5,
XppPreloadClean(13,

" sd 128,

x[64+128%3];
x{128+128%7j];

nn

2);
64);
64);

y_128[k]1,
y_128[k],

x = &int_datal[i+3];

s0_192[k] = x[0]7

do_192[k] = x[641;

sl_192 = x[128];

s31_192{k] = x([3968];

d31_192[k] = x[4032];

sd_192[0] = d0_192[k] = (d0_192[k] << 1) - s0_192[k] - s1_192;
sd_192[1] = s0_192(k] = (d0_192[k] >> 2) + s0_192[k];

for (j=1; j <-31; j++)

y_192[2*j+1] [kl
y_192[2*3+2] [K]
}

XppPreload (6,
XppPreload (7,
XppPreloadClean(15,

XppExecute () ;
} /* i < 64 */

{
= x[64+128%31;
= x[128+128*]];
sd_192,
y_192,
y_192,

2);
64);
64);

if (i >= 16) { /* delayed XppSync */

= %

k (i - 16) 4;

X
XppSync(y_O[kl, 64);

&int_datali-16];

for (3=1; j < 31; j++) {

y_O0[331(kl:
y_0[3+3211[k};

<< 1) = (s31_0[k] << 1);
+ ((x[3968] + d31_0(k]) >> 3);

%[64*]] =
x[2048+64*j1 =
}
d31_0f[k] = (d31_0([k]
831_0[k] = s31_0[k]
x[0] = s0_0[k);
x[2048] = d0_0[kl]:
%x[1984] = s31_0[k];
x[4032] = d31_0f[k];
x = &int datali-16+1]1;

XppSync(y_64[k], 64)

for (3=1; j < 31; j++)

x[64*%7]
%[2048+64*71]

i

{

y_64[3] [k];
y_64[j+32][kl;

171

WO 2005/010632 PCT/EP2004/006547

}

d31_64(k] = (d31_64[k] << 1) - (s31_64[k] << 1);
s31_64(k] = s31_64[k] + ((x[3968] + d31_s64[k]) >> 3);
x[0] = s0_64[k];

x[2048] = d0_641[k];

x[1984] = s31_64[k];

x[4032] = d31_64[k]:

x = &int_data[i-16+2];
XppsSync(y_128[k], 64);
for (j=1; j < 31; j++) {
x[64%]] y_128[31Lk];
x[2048+64*5] y_128[j+32] [k];

]

}

d31_128(k) = (d31_128[k] << 1) - (s31_128[k] << 1);
$31_128[k] = s31_128[k] + ((x[3968] + d31_128[k]) >> 3);
x[0] = s0_128[k]; .

x[2048] = do_128[k];

%x[1984] = s31_128([k};

x[4032] = d31_128[k];

x = &int_datali-16+3];
XppSync(y_192(k], 64);
for (j=1; j < 31; j++) {
x[64%3] y_192(31[k];
x[20484+64*%5] y_192[3+32]1[k];

}

d31_192[k] = (d31_192([k] << 1) - (s31_192[k] << 1);
s31_192{k] = s31_192[k] + ((x[3968] + d31_192[k}) >> 3);
x[0] = s0_192([k];

x[2048]} = d0_192[k]:

x[1984] = s31_192[k]};

x[4032] = d31_192[ki;

Yo/ L o>= 16 */

/* nt=32, column loop */
/* nt=32, row loop */
/* nt=16, column loop */

/* nt=16, row loop */

5.10.5 Performance Evaluation

The performance evaluation of this example is based on the assumption that the code optimizations
done for the XPP are also useful for the reference processor. Hence we compare the code executed
within each configuration only. But this argumentation is not entirely correct for the current example,
as the compiler applied a column to row transposition (and vice versa) for the row loop nest because of
the restricted IRAM size. This optimization is not meaningful for the reference processor. This is why
we correct the reference system performance values by subtracting the cycles necessary for the
transposition.

The data transfer performance for the configuration _ XppCfg_wavelet64 as part of the column loop
nest is listed: in the following table. It is assumed that there is no data in the cache (startup case).

172

WO 2005/010632

mt_data -+ 192

sd 0 T
Int_data 256 8 4438 16
sd_64 8 [36| I
int_data + 64 256 8 448 16
sd_I28 8 I 36 1
int_data + 128 256 8 443 16
sd_0 8 I 56 I
256 3 448 16

ini_data 736 ~0 736 16
it_data + 64 256 0 256 16
It_data F 128 256 0 256 16

256 0 16

PCT/EP2004/006547

int_data + 192

The write-back of array int_data causes no cache miss, because the relevant array sector is already in
the cache (loaded by the corresponding preload operations). Therefore the write-back does not include
cycles for write allocation. In row Sum the total number of cycles for the first execution of the whole
_ XppCfg wavelet64 configuration is given.

This configuration is invoked 16 times on different sectors of array int_data. Hence the cache miss
situation for array int data is identical in each iteration. No cache miss, however, is produced by
accesses to the arrays sd as these are already in the cache. After the 16 iterations the whole array
int_data is loaded into the first level cache. The following table summarizes the data transfer cycles
for the remaining 15 iterations (steady state case).

o

The configurations ___XppCfg wavelet32 and __XppCfg wavelet16 as part of the column loop access
the same arrays but with smaller data sizes. Hence there is no cache miss at all. The following tables
summarize the data transfer cycles for the _ XppCfg wavelet32 and _ XppCfz waveletl6
configurations as part of the column loop nest (startup case = steady state case).

173

WO 2005/010632 PCT/EP2004/006547

The data transfer performance for configuration XppCfg_wavelet64 as part of the row loop nest is
listed in the following table (startup case).

sd 0] 0 0 I
y_OIK] 256 3 473 16
sd_64 8 0 0 T
y_GAIK] 256 g 723 16
sd_128 8 0 0 T
y_128[K] - 256 3 743 6
sd_0 8 0 0 I
y_192[K] 256 g 743

e Wiiteback

y O[] 256] 0 756 16
y_641K] 256 0 256 16
y_128[K] 256 0 256 16
y_1971K] 256 0 256 16

Here the situation is a bit more complicated. The table is valid for the first four iterations ask loops
from zero to three which produce cache misses for the y arrays. After 4 iterations all y arrays are in the
cache and no further cache miss .occurs. Hence the next table shows the cycles for iterations 5 to 16
(steady state case).

G

The configurations _ XppCfg_wavelet32 and _ XppCfg waveletl6 as part of the row loop nest have
the same data transfer performance as if they were used as part of the column loop nest. Again, this is
due to the fact, that no cache miss occurs.

The base for the comparison are the hand-written NML source codes wavelet64.nml, wavelet32.nml
and waveletl6.nml which implement the configurations _ XppCfg wavelet64, _ XppCfg wavelet32
and _ XppCfg waveletl6, respectively. Note that these configurations are completely placed by hand
in order to obtain a clearly arranged cell structure for debugging reasons. It is, however, possible to
automatically place most modules without a significant decrease in performance. The only exception
is the ZOOP module the contents of which must be definitely placed by the compiler (see section
5.10.2).

The following two performance tables present the overall results. The first table shows the startup case
where neither data nor configurations are preloaded in the cache. As configuration loading is
extremely expensive it dominates all figures and guarantees a poor performance. The second table
presents the steady state case after a (theoretically) infinite number of iterations. Now a data preload
followed by a write-back are done during the execution of a configuration. However, we constantly
work at new sections of array int_data. This is why we have a steady load from RAM to the cache and
a write from the cache to RAM. This memory bottleneck degrades the overall performance to a factor
of 1,6. On the assumption that array int data is handled several times by the jorward wavelet
function, the whole data remains in the cache and the performance increases to the considerable factor
of 3,9. The example demonstrates that only loop bodies with a considerable amount of computations
promise a considerable performance gain. Pure data shuffling applications suffer with the XPP from
the same memory limitations as the RISC host processor.

174

WO 2005/010632

PCT/EP2004/006547

configurations RAM [Cache

wavelete4 (columnnesf) | 2016 &g 7728 1100}

wavelett4 (row nest) 1792 68 0

wavelet32 (column nest) 0 36| 7728

wavelet32 (row nest) 0 36 0 :

wavelet16 (column nest) 0 200 7728 1100}

wavelet16 (row nest) 0 20 0 68

all conngurations Jolo 248 23126 ool # 4
e Accass T Configaratio

configurations RAM| ICache}

wavelett4 (column nest) {2816 68 :

wawvelelt4 (row nest) 1024 68

wawelet3Z (columnnest)| 912 36

wavelet32 (row nest) 512 36

waelet16 (columnnest) | 256 20

wawelet16 (row nest) 256 20

all configurations 93/6 248

The utilization of the _ XppCfg_wavelet configurations shows that the XPP capacity is mostly used
for memory (wavelet64.nml, wavelet32.nml, wavelet16.nml).The information is taken from the '.info'
files generated from the NML source code by the XMAP tool.

Parameter Value
Vector length 30 (14, 6) 32-bit values
Reused data set size -
1/0 IRAMs [sum -pet] 12-75%
ALU[sum-pct] 12 - 19%

BREG [def/route/sum-pct]

37/5/42 - 66%

FREG [def/route/sum-pct]

40/2/42 - 66%

175

WO 2005/010632 PCT/EP2004/006547

5.11Conclusion

The theoretical results did not scale well to real world results. The biggest single performance loss was
experienced during placement and routing. This on one hand demonstrates the potential of the
architecture, but on the other hand also shows current limitations of the architecture as well as of the
tools.

The following proposals may help to narrow the gap between theoretical and practical performance:

511.1 RAM Bus Width

A bus width of more than 32 bits is more apted for such a highly parallel architecture.

511.2 Use of the Cache Instead of Separate IRAMs

As the utilization of the shadow IRAMs is less than the utilization of the cache, the second design
without dedicated IRAM memory is more silicon efficient, also eliminating the cache-IRAM transfer
cycles.

511.3 Configuration Size

The configuration bus is narrow compared to the average configuration size. The same is true for the
instruction cache. The replicated structure of the array allows for a highly parallel reconfiguration bus
from the instruction cache. A 128 bit bus can be split into eight 16 bit configuration busses to each line
of the array.

5114 ALU/FREG / BREG Orthogonality

The NOREG feature is limited to BREGs. Only one BREG in a sequence can be in unregistered mode.
This way it is possible to save cycles in a backend post optimization, if the BREGs can be set to
unregistered mode. The number of saved cycles depends on the type and order of operations. This
feature is unorthogonal and makes it hard for the compiler to estimate the actual number of cycles
needed.

The current specialization of the forward and backward units together with the delays on the busses
interacts in a bad way with placement and routing: The type and sequence of the operations determines
the direction of the computational flow:

If FREGs and BREGs can be used alternatingly, the computation propagates values along the line of
the PAE array. All BREGs can be set to unregistered mode, saving half of the cycles.

If FREGs and ALUs are used in line the computational flow either follows the column downward or
the line in the array. For the latter mode, NOREG BREGs must be used.

If only BREGs are needed sequentially, the computational flow follows the column in upward

direction. As at least every second BREG in line must be in registered mode, half of the cycles can be
saved.

176

WO 2005/010632 PCT/EP2004/006547

If a PAE consists of a forward ALU, a forward REG, a backward ALU and a backward REG, this
orthogonality would have positive effects on the freedom of placement and routing.

5.11.5 Placement and Routing Improvements

If placement and routing of the critical path is done first, followed by the placement and routing of the
less critical components, less registers will be inserted into the critical path by the router. In general,
several different heuristics should be used in placement and routing.

Feedback from the placement and routing tool to the compiler can help avoid the added registers in the
critical path.

NML currently does not cover specification of the bus switch elements. There is no way to control the
register property of the switches. Control of this feature enables efficient control of bus delays with
feedback directed compilation.

177

WO 2005/010632 PCT/EP2004/006547

6 References

[1] Markus Weinhardt and Wayne Luk. Memory Access Optimization for Reconfigurable Systems.
IEE Proceedings Computers and Digital Techniques, 48(3), May 2001.

[2] Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 1996.

[3] Hans Zima and Barbara Chapman. Supercompilers for parallel and vector computers. Addison-

Wesley, 1991.

[4] David F. Bacon, Susan L. Grahamand Oliver J. Sharp. Compiler Transformations for High-
Performance Computing. 4ACM Computing Surveys, 26(4):325-420,1994.

[5] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[6] Jodo M.P. Cardoso and Markus Weinhardt. XPP-VC: A C Compiler with Temporal Partitioning
for the PACT-XPP Architecture. In Proceedings of the 12th International Conference on Field-
Programmable Logic and Applzcatzons FPL2002, volume 2438 of LNCS, pages 864-874,
Montpellier, France, 2002.

[7] Markus Weinhardt and Wayne Luk. Plpelme Vectorization. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 20(2):234-248, February 2001.

[8] V. Baumgarte, F. May, A. Niickel, M. Vorbach and M. Weinhardt. PACT XPP - A Self-
Reconfigurable Data Processing Architecture. In Proceedings of the Ist International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA'2001), Las Vegas, Nevada,
2001.

'[9] Katherine Compton and Scott Hauck. Reconfigurable Computmc A Survey of Systems and
Software. ACM Computing Surveys, 34(2):171-210,2002.

[10] Sam Larsen, Emmett Witchel and Saman Amarasinghe. Increasing and Detecting Memory
Address Congruence. In Proceedings of the 2002 IEEE International Conference on Parallel
Architectures and Compilation Techniques (PACT'02), pages 18-29, Charlottesville, Virginia,
September, 2002.

[11] Daniela Genius and Sylvain Lelait. A Case for Array Merging in Memory Hierarchies. In

Proceedings of the 9th International Workshop on Compilers for Parallel Computers, CPC'01,
Edinburgh, Scotland, June 27th-29th 2001.

[12] Christopher W. Fraser, David R. Hanson and Todd A. Proebsting: Engineering a Simple, Efficient
Code-Generator. ACM Letters on Programming Languages and Systems, 1(3):213-226,1992.

[13] Erik Eckstein, Oliver Konig and Bernhard Scholz. Code Instruction Selection based on SSA-
Graphs. In Proceedings of the 7th International Workshop on Software and Compilers for
Embedded Systems, SCOPES’03, Vienna, Austria, September, 2003, to appear.

aufﬁf"g) @ﬁ@ M@ — Tl 7%0070% |

178

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Reconfigurable Data-Flow Processor

1 Introduction

This document describes a- method for compiling a subset of a high-level programming language (HLL)
like C or FORTRAN, extended by port access functions, to a reconfigurable data-flow processor (RDFP)
as described in Section 3. The program is transformed to a configuration of the RDFP.

This method can be used as part of an extended compiler for a hybrid architecture consisting of standard
host processor and a reconfigurable data-flow coprocessor. The extended compiler handles a full HLL
like standard ANSI C. It maps suitable program parts like inner Joops to the coprocessor and the rest
of the program to the host processor. It is also possible to map separate program parts to separaie
configurations. However, these extensions are not subject of this document.

2 Compilation Flow

This section briefly describes the phases of the compilation method.

2.1 Frontend

" 'The compiler uses a standard frontend which translates the input program (e. . a C program) into an in-
ternal format consisting of an abstract syntax tree (AST) and symbol tables. The frontend also performs
well-known compiler optimizations as constant propagation, dead code elimination, common subexpres-
sion elimination etc. For details, refer to any compiler construction textbook like [1]. The SUIF compiler
[2] is an example of a compiler providing such a frontend.

2.2 Control/Datafiow Graph Generation
Next, the program is mapped to a control/dataflow graph (CDFG) consisting of connected RDFP fumc-
tions. This phase is the main subject of this document and presented in Section 4.

2.3 Configuration Code Generation

Finally, the last phase directly translates the CDFG to configuration code used to program the RDFP. For
PACT XPP™ Cores, the configuration code is generated as an NML (Native Mapping Language) file.

3 Configurable Objects and Functionality of a RDFP

This section describes the configurable objects and funcitionality of a RDFP. A possible implementation
of the RDFP architecture is a PACT XPP™ Core. Here we only describe the minimum requirements for
a RDFP for this compilation method to work. The only data types considered are multi-bit words called
data and single-bit control signals called events. Data and events are always processed as packets, cf.
Section 3.2. Event packets are called 1-events or 0-events, depending on their bit-value.

179

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Reconfigurable Data-Flow Processor

3.1 Configurable Objects and Functions

An RDFP consists of an array of configurable objects and a communication network. Each object can
be configured to perform certain functions (listed below). It performs the same function repeatedly until
the configuration is changed. The array needs not be completely uniform, i. e. not all objects need to be
able to perform all functions. E. g., a RAM function can be implemented by a specialized RAM object
which cannot perform any other functions. It is also possible to combine several objects to a “macro” to
realize certain functions. Several RAM objects can, e. g. , be combined to realize a RAM function with
larger storage.

A B LB UB INC RDV&;R IN A A %
S S T N T 2 N { b %
opcode |y CNT (=v |RAM[size] SEL-*> * SEL—>
NEXT > W = EWR
Y Y Y]

X X OouUT X X
ALU CNT RAM MDATA MUX
A A A A

0 1
SEL SEL* E* G ™U U U
v oy Y
X X Y X X
MERGE DEMUX GATE INPORT . OUTPORT

B+ =0p~vu g+ =1f-u g~{_oPv B~ _ib-u

0-FILTER 1-FILTER 0-CONSTANT 1-CONSTANT

. e

INVERTER ESEQ
ECOMB

Figure 1: Functions of an RDFP

The following functions for processing data and event packets can be configured into an RDFP. See Fig. 1
for a graphical representation.

e ALU[opcode]: ALUs perform common arithmetical and logical operations on data. ALU func-
tions (“opcodes™) must be available for all operations used in the HLL.! ALU functions have two
data inputs A and B, and one data output X. Comparators have an event output U instead of the
data output. They produce a 1-event if the comparison is true, and a 0-event otherwise.

!1Otherwise programs containing operations which do not have ALU opcodes in the RDFP must be excluded from the
supported HLL subset or substituted by “macros” of existing functions.

180

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Reconfigurable Data-Flow Processor

e CNT: A counter function which has data inputs LB, UB and INC (lower bound, upper bound
and increment) and data output X (counter 'value). A packet at event input START starts the
counter, and event input NEXT causes the generation of the next output value (and output events)
or causes the counter to terminate if UB is reached. If NEXT is not connected, the counter counts
continuously. The output events U, V, and W have the following functionality: For a counter
counting N times, N-1 0-events and one 1-event are generated at output U. At output V, N 0-events
are generated, and at output W, N O-events and one 1-event are created. The 1-event at W is only
created after the counter has terminated, i. e. a NEXT event packet was received after the last data

packet was output.

e RAM{[size]: The RAM function stores a fixed number of data words (“size”). It has a data input
RD and a data output QUT for reading .at address RD. Event output ERD signals completion of
the read access. For a writé access, data inputs WR and IN (address and value) and data output
QUT is used. Event output EWR signals completion of the write access. ERD and EWR always
generate O-events. Note that external RAM can be handled as RAM functions exactly like internal
RAM. ‘

o GATE: A GATE synchronizes a data packet at input A back and an event packet at input E. When
both inputs have arrived, they are both consumed. The data packet is copied to output X, and the
event packet to output U.

e MUX: A MUX function has 2 data inputs A and B, an event input SEL, and a data output X. If
SEL receives a O-event, input A is copied to output X and input B discarded. For a 1-event, B is
copied and A discarded.

e MERGE: A MERGE function has 2 data inputs A and B, an event input SEL, and a data output X.
If SEL receives a 0-event, input A is copied to output X, but input B is nor discarded. The packet
is left at the input B instead. For a 1-event, B is copied and A left at the input.

e DEMUX: A DEMUX function has one data input A, an event input SEL, and two data outputs X
and Y, If SEL receives a O-event, input A is copied to output X, and no packet is created at output
Y. For a 1-event, A is copied to Y, and no packet is created at output X.

e MDATA: A MDATA function multiplicates data packets. It has a data input A, an event input
SEL, and a data output X. If SEL receives a 1-event, a data packet at A is consumed and copied
to output X. For all subsequent 0-event at SEL, a copy of the input data packet is produced at the
output without consuming new packets at A. Only if another 1-event arrives at SEL, the next data

packet at A is consumed and copied.?

o INPORT[name]: Receives data packets from outside the RDFP through input port “name” and
copies them to data output X. If a packet was received, a 0-event is produced at event output U,
too. (Note that this function can only be configured at special objects connected to external busses.)

e OUTPORT[name]: Sends data packets received at data input A to the outside of the RDFP through
output port “pame”, If a packet was sent, a 0-event is produced at event output U, too. (Note that
this function can only be configured at special objects connected to external busses.)

Additionally, the following funétions manipulate only event packets:

2Note that this can be implemented by a MERGE with special properties on XPP™ ,

181

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Reconfigurable Data-Flow Processor

e O-FILTER, 1-FILTER: A FILTER has an input E and an output U. A O-FILTER copies a O-event
from E to U, but 1-EVENTSs at E are discarded. A 1-FILTER copies 1-events and discards 0-events.

¢ INVERTER: Copies all events from input E to output U but inverts its value.

e 0-CONSTANT, 1-CONSTANT: 0-CONSTANT copies all events from input E to output U, but
- changes them all to value 0. 1-CONSTANT changes all to value 1.

o ECOMB: Combines two or more inputs E1, E2, E3..., producing a packet at output U. The output
is a 1-event if and only if one or more of the input packets are 1-events (logical or). A packet must
be available at all inputs before an ouput packet is produced.

e ESEQ[seql: An ESEQ generates a sequence “seq” of events, e.g. “0001”, at its output U. If it
has an input START, one entire sequence is generated for each event packet arriving at U. The
sequence is only repeated if the next event arrives at U. However, if START is not connected,
ESEQ constantly repeats the sequence.

Note that ALU, MUX, DEMUX, GATE and ECOMB functions behave like their equivalents in classical
datafiow machines [3, 4].

3.2 Packet-based Communication Network

The communication network of an RDFP can connect an outputs of one object (i. e. its respective func-
tion) to the input(s) of one or several other objects. This is usually achieved by busses and switches. By
placing the functions propesly on the objects, many functions can be connected arbitrarily up to a limit
imposed by the device size. As mentioned above, all values are communicated as packets. A separate
communication network exists for data and event packets. The packets synchronize the functions as ina
datafiow machine with acknowledge [3]. L e., the function only executes when all input packets are avail-
able (apart from the non-strict exceptions as described above). The function also stalls if the last output
packet has not been consumed. Therefore a data-flow graph mapped to an RDFP self-synchronizes its '
execution without the need for external control, Only if two or more function outputs (data or event) are
connected to the same function input (“N to 1-connection™), the self-synchronization is disabled.* The
user has to ensure that only one packet arrives at a time in a correct CDFG. Otherwise a packet might
get lost, and the value resulting from combining two or more packets is-undefined. However, a function
output can be connected to many function inputs (“1 to N connection”) without problems.

There are some special cases:
» A function input can be preloaded with a distinct value during configuration. This packet is con-

sumed like a normal packet coming from another object.

» A function input can be defined as constant. In this case, the packet at the input is reproduced
repeatedly for each function execution.

3Note that this function is i’mplemented by the EAND operator on the XPP™ ,
4Note that on XPP™ Cores, a “N to 1 connection” for events is realized by the EOR function, and for data by just assigning
several ontputs to an input.

182

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Reconfigurable Data-Flow Processor

An RDFP requires register delays in the dataflow. Qtherwise very long combinational delays and asyn-
chronous feedback is possible. We assume that delays are inserted at the inputs of some functions (like
for most ALUs) and in some routing segments of the communication network. Note that registers change
the timing, but not the functionality of a correct CDFG. '

4 Configuration Generation

4.1 Language Definition

The following HLL features are not supported by the method described here:

e pointer operations
e library calls, operating system calls (including standard /O functions)

e recursive function calls (Note that non-recursive function calls can be eliminated by function in-
lining and therefore are not considered here.)

e All scalar data types are converted to type integer. Integer values are equivalent to data packets in
the RDFP. Arrays (possibly multi-dimensional) are the only composite data types considered.

The following additional features are supported:

INPORTS and OUTPORTS can be accessed by the HLL functions getstream(name, value) and put-
Stream(name, value) respectively.

4.2 Mapping of High-Level Langnage Constructs

This method converts a HLL program to a CDFG consisting of the RDFP functions defined in Section 3.1.
Before the processing starts, all HLL program arrays are mapped to RDFP RAM functions. An array x
is mapped to RAM RAM(x). If several arrays are mapped to the same RAM, an offset is assigned, too.
The RAMs are added to an initially empty CDFG. There must be enough RAMs of sufficient size for all
program arrays.

The CDFG is generated by a traversal of the AST of the HLL program. It processes the program state-
ment by statement and descends into the loops and conditional statements as appropriate. The following
two pieces of information are updated at every program point° during the traversal:

¢ START points to an event output of a RDFP function. This output delivers a 0-event whenever
the program execution reaches this program point. At the beginning, a 0-CONSTANT preloaded
with an event input is added to the CDFG. (It delivers a 0-event immediately after configuration.)
START initially points to its output. This event is used to start the overall program execution. The
START ey, signal generated after a program part has finished executing is used as new START
signal for the following program parts, or it signals termination of the entire program. The START

*In a program, program poinis are between two statements or before the beginning or after the end of a program component
like a loop or a conditional statement.

183

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Langunage Programs to a Recoﬁﬁgurab]e Data-Flow Processor

events guarantee that the execution order of the original program is maintained wherever the data
dependencies alone are not sufficient. This scheduling scheme is similar to a one-hot controller

for digital hardware.

e VARLIST is a list of {variable, function-output} pairs. The pairs map integer variables or array
elements to a CDFG function’s output. The first pair for a variable in VARLIST contains the
output of the function which produces the value of this variable valid at the current program point.
New pairs are always added to the front of VARLIST. The expression VARDEF(var) refers to the
function-output of the first pair with variable var in VARLIST.®

The following subsec'_{ions systematically list all HLL program components and describe how they are
processed, thereby altering the CDFG, START and VARLIST.

4.2.1 Integer Expressions and Assignments

Straight-line code without array accesses can be directly mapped to a data-flow graph. One ALU is
allocated for each operator in the program. Because of the self-synchronization of the ALUs, no explicit
control or scheduling is needed. Therefore processing these assignments does not access or alter START.
The data dependences (as they would be exposed. in the DAG representation of the program [1]) are
analyzed through the processing of VARLIST. These assignments synchronize themselves through the
data-flow. The data-driven execution automatically exploits the available instruction level parallelism.

All assignments evaluate the right-hand side (RHS) or source expression. This evaluation results in a
pointer to a CDFG object’s output (or pseudo-object as defined below). For integer assignments, the
left-hand side (LHS) variable or destination is combined with the RHS result object to form a new pair
{LHS, result(RHS)} which is added to the front of VARLIST.

The simplest statement is a constant assigned to an integer:’
a = 5;

It doesn’t change the CDFG, but adds {a, 5} to the front of VARLIST. The constant 5 is a “pseudo-
object” which only holds the value, but does not refer to a CDFG object. Now VARDEEF(a) equals 5 at
subseqgent program points before a is redefined.

Integer assignments can also combine variables already defined and constants:
b=a* 2 + 3; ‘

In the AST, the RHS is already converied to an expression tree. This tree is transformed to 2 combination
of old and new CDFG objects (which are added to the CDFG) as follows: Each operator (internal node)
of the tree is substituted by an ALU with the opcode corresponding to the operator in the tree. If a leaf
node is a constant, the ALU’s input is directly connected to that constant. If a leaf note is an integer
variable var, it is looked up in VARLIST, i. e. VARDEF(var) is retrieved. Then VARDEF(var) (an output
of an already existing object in CDFG or a constant) is connected to the ALU’s input. The output of the
ALU corresponding to the root operator in the expression tree is defined as the result of the RHS. Finally,
a new pair {LHS, result(RHS)} is added to VARLIST. If the two assignments above are processed, the

SThis method of using a VARLIST is adapted from the Transmogrifier C compiler [S].
Note that we use C syntax for the following examples.

184

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Reconfigurable Data-Flow Processor

CDFG with two ALUs in Fig. 2 is created.® Outputs occurring in VARLIST are labeled by Roman
numbers. After these two assignments, VARLIST = [{b, I}, {a, 5}]. (The front of the list is on the left
side.) Note that all inputs connected to a constant (whether direct from the expression tree or retrieved
from VARLIST) must be defined as constant. Inputs defined as constants have a small ¢ next to the input

arrow in Fig. 2.

4.2.2 Conditional Integer Assignments

For conditional if-then-else statements containing only integer assignments, objects for condition eval-
uation are created first. The object event output indictating the condition result is kept for choosing
the correct branch result later. Next, both branches are processed in parallel, using separate copies
VARLIST1 and VARLIST2 of VARLIST. (VARLIST itself is not changed.) Finally, for all variables
added to VARLIST1 or VARLIST2, a new entry for VARLIST is created (combination phase). The valid
definitions from VARLIST1 and VARLIST?2 are combined with a MUX function, and the correct input
is selected by the condition result. For variables only defined in one of the two branches, the multiplexer
uses the result retrieved from the original VARLIST for the other branch If the original VARLIST does
not have an entry for this variable, a special “undefined” constant value is used. However, in a function-
ally correct program this value will never be used. As an opt1m1zauon only variables live [1] after the
if-then-else structure need to be added to VARLIST in the combmauon phase.?

Consider the following example:

i=17;
a=3;

if (i < 10) ¢
a = 5;

c =17;

} _
else {
c=a-1;
d = 0;

}

Fig. 3 shows the resulting CDFG. Before the if-then-else-construct, VARLIST = [{a, 3}, {i, 7}]. After
processing the branches, for the then branch, VARLIST1 = [{c, 7}, {a, 5}, {a, 3}, {i, 7}], and for the
else branch, VARLIST2 = [{d, 0}, {c, I}, {a, 3}, {i, 7}]. After combination, VARLIST = [{d, I}, {c,

m}, {a, 1V}, {a, 3}, {i, 7}).

Note that case- or switch-statements can be processed, too, since they can — without loss of generality —
be converted to nested if-then-else statements.

Processing conditional statements this way does not reqﬁire éxp]icit control and does not change START.
Both branches are executed in parallel and synchronized by the data-flow. It is possible to pipeline the
dataflow for optimal throughput.

8Note that the i input and output names can be deduced from their position, cf. Fig. 1. Also note that the compiler front-

end would normally have substituted the sécond assignment by b = 13 (constant propagation). For the simplicity of this
explanauon, no frontend optimizations are considered in this and the following examples.

®Definition: A variable is live at a program point if its value is read at a statement reachable from here withont intermediate

redefinition.

185

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Recohﬁgumb]c Data-Flow Processor

4.2.3 General Conditional Statements

Conditional statements containing either array accesses (cf. Section 4.2.7 below) or inner loops cannot
be processed as described in Section 4.2.2. Data packets must only be sent to the active branch. This is
achieved by the implementation shown in Fig. 8, similar to the method presented in [4].

A dataflow analysis is performed to compute used sets use and defined sets def [1] of both branches. !
For the current VARLIST entries of all variables in IN = wuse(thenbody) U def(thenbody) U
use(elsebody) U def (elsebody) U use(header), DEMUX functions controlled by the IF condition are
inserted. Note that arrows with doiible lines in Fig. 8 denote connections for all variables in IN, and the
shaded DEMUX function stands for several DEMUX functions, one for each variable in IN. The DE-
MUX functions forward data packets only to the selected branch. New lists VARLIST1 and VARLIST2
are compiled with the respective outputs of these DEMUX functions. The then-branch is processed with
VARLIST]I, and the else branch with VARLIST2. Finally, the output values are combined. OUT con-
tains the new values for the same variables as in IN. Since only one branch is ever activated there will not
be a conflict due to two packets arriving simultanuously. The combinations will be added to VARLIST
after the conditional statement. If the IF execution shall be pipelined, MERGE opcodes for the output
must be inserted, too. They are controlled by the condition like the DEMUX functions.

The following extension with respect to [4] is added (dotted lines in Fir. 8) in order to control the execu-
tion as mentioned above with START events: The START input is ECOMB-combined with the condition
output and connected to the SEL input of the DEMUX functions. The START inputs of thenbody and
elsebody are generated from the ECOMB output sent through a 1-FILTER and a 0-CONSTANT!! or
through a O-FILTER, respectively. The overall START ., output is generated by a simple “2 to 1
connection” of thenbody’s and elsebody’s ST ART 5., outputs. With this extension, arbitrarily nested
conditional statements or loops can be handled within thenbody and elsebody.

424 WHILE Loops

WHILE loops are processed similarly to the scheme presented in [4], cf. Fig. 9. As in Section 4.2.3, dou-
ble line connections and shaded MERGE and DEMUX functions represent duplication for all variables
in IN. Here IN = use(whilebody) U def (whilebody) U use(header). The WHILE loop executes as
follws; In the first loop iteration, the MERGE functions select all input values from VARLIST at loop
entry (SEL=0). The MERGE outputs are connected to the header and the DEMUX functions. If the
while condition is true (SEL=1), the input values are forwarded to the whilebody, otherwise to OUT.
The output values of the while body are fed back to whilebody’s input via the MERGE and DEMUX
operators as long as the condition is true. Finally, after the last iteration, they are forwarded to OUT. The
outputs are added to the new VARLIST.!?

Two extensions with respect to [4] are added (dotted lines in Fir. 9):

104 variable is used in a statement (and hence in a program region containing this statement) if its value is read. A variable
is defined in a statement (or region) if a new value is assigned to it.

UThe 0-CONSTANT is required since START events must always be 0-events.

2Note that the MERGE function for variables not live at the loop’s beginning and the whllebody s beginning can be removed
since its output is not used, For these variables, only the DEMUX function to output the final value is required. Also note that
the MERGE functions can be replaced by simple “2 to 1 connections” if the configuration process guarantees that packets from
IN1 always arrive at the DEMUX’s input before feedback values arrive.

186

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Recoriﬁgurable Data-Flow Processor

¢ In [4], the SEL.input of the MERGE functions is preloaded with 0. Hence the loop execution
begins immediately and can be executed only once. Instead, we connect the START input to the
MERGE’s SEL input (“2 to 1 connection” with the header output). This allows to control the time
of the start of the loop execution and to restart it.

o The whilebody’s START input is connected to the header output, sent through a 1-FILTER/O-
CONSTANT combination as above (generates a O-event for each loop iteration). By ECOMB-
combining whilebody’s START e, output with the header output for the MERGE functions’
SEL inputs, the next loop iteration is only started after the previous one has finished. The while

} loop’s ST ARTy,¢ output is generated by filtering the header output for a 0-event.

With these extensions, arbltranly nested conditional statements or loops can be handled within while-
body.

-

4.2.5 FOR Loops

| FOR loops are particularly regular WHILE loops. Therefore we could handle them as explained above.
.However, our RDFP features the special counter function CNT and the data packet multiplication func-
tion MDATA which can be used for a more efficiént implementation of FOR loops. This new FOR loop
scheme is shown in Fig. 10.

A FOR loop is controlled by a counter CNT. The lower bound (LB), upper bound (UB), and increment
(INC) expressions are evaluated like any other expressions (see Sections 4.2.1 and 4.2.7) and connected
to the respective inputs. ‘

As opposed to WHILE loops, a MERGE/DEMUX combination is only required for variables in IN1 =

def(forbody), i. e. those defined in forbody.'* IN1 does not contain variables which are only used
in forbody, LB, UB, or INC, and does also not contain the loop index variable. Variables in IN1 are

- processed as in WHILE loops, but the MERGE and DEMUX functions’ SEL input is connected to

CNT’s W output. (The W output does the inverse of a WHILE loop’s header output; it outputs a 1-
event after the counter has terminated. Therefore the inputs of the MERGE functions and the outputs
of the DEMUX functions are swapped here, and the MERGE functions’ SEL inputs are preloaded with
1-events.)

CNT’s X output provides the current value of the loop index variable. If the final mdex value is required
(live) after the FOR loop, it is selected with a DEMUX function controlled by CNT’s U event output
(which produces one event for every loop iteration).

Variables in IN2 = use(forbody) \ def(forbody), i. e. those defined outside the Joop and only vsed
(but not redefined) inside the loop are handled differently. Unless it is a constant value, the variable’s
input value (from VARLIST) must be reproduced in each loop iteration since it is consumed in each
iteration. Otherwise the loop would stall from the second iteration onwards. The packets are reproduced
by MDATA functions, with the SEL inputs connected to CNT’s U output. The SEL inputs must be
preloaded with a 1-event to select the first input. The 1-event provided by the last iteration selects a new
value for the next execution of the entire loop.

- BNote that the MERGE functions can be replaced by simple “2 to 1 connections” as for WHILE loops if the configuration
process guarantees that packets from IN1 always arrive at the DEMUX's input before feedback values arrive.

187

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Reconfigurable Data-Flow Processor

L The following control events (dotted lines in Fig. 10) are similar to the WHILE loop extensions, but
simpler. CNT’s START input is connected to the loop’s overall START signal. START ., is generated
from CNT’s W output, sent through a 1-FILTER and 0-CONSTANT. CNT’s V output produces one 0-
event for each loop iteration and is therefore used as forbody’s START. Finally, CNT’s NEXT i input is

connected to forbody’s ST ART ey, Output.

For pipelined loops (as defined below in Section 4.2.6), loop iterations are allowed to overlap. Therefore
CNT’s NEXT input needs not be connected. Now the counter produces index variable values and control
events as fast as they can be consumed. However, in this case CNT’s W output in not sufficient as overall
ST ARTYy, output since the counter terminates before the last iteration’s forbody finishes. Instead,

ST ART ey is generated from CNT's U output ECOMB-combined with forbody’s ST ARTy,.,, output,

sent through a 1-FILTER/0-CONSTANT combmanon The ECOMB produces an event after termination
of each loop iteration, but only the last event is a 1-event because only the last output of CNT’s U output
is a 1-event. Hence this event indicates that the last iteration has finished. Cf. Section 4.3 for a FOR loop
example compilation with and without pipelining.

As for WHILE loops, these methods allow to process arbitrarily nested loops and conditional statements.
The following advantages over WHILE loop implementations are achieved:

e One index variable value is generated by the CNT function each clock cycle. Thls is faster and
smaller than the WHILE loop implementation which allocates a MERGE/DEMUX/ADD loop and

a comparator for the counter functionality.

e Variables in IN2 (only used in forbody) are reproduced in the speciai MDATA functions and need
not go through a MERGE/DEMUX loop. This is again faster and smaller than the WHILE loop

implementation.

4.2.6 Vectorization and Pipelining

The method described so far generates CDFGs performing the HLL program’s functionality on an RDFP.
However, the program execution is unduly sequentialized by the START signals. In some cases, inner-
most loops can be vectorized. This means that loop iterations can overlap, leading to a pipelined dataflow
through the operators of the loop body. The Pipeline Vectorization technique [6] can be easily applied to
the compilation method presented here. As mentioned above, for FOR loops the CNT’s NEXT input is
removed so that CNT counts continuously, thereby overlapping the Joop iterations.

All loops without array accesses can be pipelined since the dataflow antomatically synchronizes loop-
carried dependences, i.e. dependences between a statement in one iteration and another statement in a
subsequent iteration. Loops with array accesses can be pipelined if the array (i:e. RAM) accesses do
not cause loop-carried dependences or can be transformed to such a form. In this case no RAM address
is written in one and read in a subsequent iteration. Therefore the read and write accesses to the same
RAM may overlap. This degree of freedom is exploited in the RAM access technique described below.
Especially for dual-ported RAM it leads to considerable performance improvements.

4.2.7 Array Accesses

In contrast to scalar variables, array accesses have to be controlled explicitly in order to maintain the
program’s correct execution order. As opposed to normal dataflow machine models [3], a RDFP does

188

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Reconfigurable Data-Flow Processor

- not have a single address space. Instead, the arrays are allocated to several RAMs. This leads to a
different approach to handling RAM accesses and dbpens up new opportunities for optimization.

| To reduce the complexity of the compilation process, array accesses are processed in two phases. Phase
1 uses “pseudo-functions” for RAM read and write accesses. A RAM read function has a RD data input
(read address) and an OUT data output (read value), and a RAM write function has WR and IN data
inputs (write address and write value). Both functions are labeled with the array the access refers to, and
both have a START event input and a U event output. The events control the access order. In Phase 2 all
accesses to the same RAM are combined and substituted by a single RAM function as shown in Fig. 1.
This involves manipulating the data and event inputs and outputs such that the correct execution order is
| maintained and the outputs are forwarded to the correct part of the CDFG.

\Phase 1 Since arrays are allocated to several RAMs, only accesses to the same RAM have to be syn-
chronized. Accesses to different RAMSs can occur concurrently or even out of order. In case of data
dependencies, the accesses self-synchronize automatically. Within pipelined loops, not even read and
. write accesses to the same RAM have to be synchronized. This is achieved by maintaining separate
START signals for every RAM or even separate START signals for RAM read and RAM write accesses
in pipelined loops. At the end of a basic block [11*4, all START ey, outputs must be combined by a
ECOMB to provide a START signal for the nexthasic block which guarantees that all array accesses in
the previous basic block are completed. For pipelined loops, this condition can even be relaxed. Only
after the loop exit all accesses have to be completed. The individual loop iterations need not be synchro-

nized.

First the RAM addresses are computed. The compiler frontend’s standard transformation for array ac-
cesses can be used, and a CDFG function’s output is generated which provides the address. If applicable,
the offset with respect to the RDFP RAM (as determined in the initial mapping phase) must be added.
This output is connected to the pseudo RAM read’s RD input (for a read access) or to the pseudo RAM
write’s WR input (for a write access). Additionally, the OUT output (read) or IN input (write) is con-
nected. The START input is connected to the variable’s START signal, and the U output is used as
ST ART,.,, for the next access.

To avoid redundant read accesses, RAM reads are also registered in VARLIST. Instead of an integer
variable, an array element is used as first element of the pair. However, a change in a variable occurring
in an array index invalidates the information in VARLIST. It must then be removed from it.

l The following example with two read accesses compiles to the intermediate CDFG shown in Fig. 12. The
START signals refer only to variable a. STOP1 s the event connection which synchronizes the accesses.
Inputs START (old), i and j should be substituted by the actual outputs resulting from the program before
the array reads.

x = a[il;
y = aljl;
zZ =X +y;

XI Fig. 13 shows the translation of the following write access:
,——*

alil = x;

YA basic blockis a program part with a single entry and a single exit point, i. e. a piece of straight-line code.

189

L 3

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Reconfigurable Data-Flow Processor

Phase2 We now merge the pseudo-functions of al] accesses to the same RAM and substitute them by
a single RAM function. For all data inputs (RD for read access and WR and IN for write access), GATEs
are inserted between the input and the RAM function. Their E inputs are connected to the respective
START inputs of the original pseudo-functions. If a RAM is read and written at only one program point,
the U output of the'read and write access is moved to the ERD or EWR output, respectively. For example,
the single access a[i] = x; from Fig. 13 is transformed to the final CDFG shown in Fig, 5.

However, if several read or several write accesses (i. e. pseudo-functions from different program points)
to the same RAM occur, the ERD or EWR events are not specific anymore. But a ST ART .., event of
the original pseudo function should only be generated for the respective program point, i. e. for the cur-
rent access. This is achieved by connecting the START signals of all other accesses (pseudo-functions)
of the same type (read or write) with the inverred START signal of the current access. The result-
ing signal produces an event for every access, but only for the current access a 1-event. This event is
ECOMB-combined with the RAM’s ERD or EWR output. The ECOMB’s output will only occur after
the access is completed. Because ECOMB OR-combines its event packets, only the current access pro-
duces a 1-event. Next, this event is filtered with a 1-FILTER and changed by a 0-CONSTANT, resulting
in a ST ART ey, Signal which produces a 0-event only after the current access is completed as required.

For several accesses, several sources are connected to the RD, WR and IN inputs of a RAM. This disables '
the self-synchronization. However, since only ong access occurs at a time, the GATEs only allow one
data packet to arrive at the inputs.

For read accesses, the packets at the OUT output face the same problem as the ERD event packets:
They occur for every read access, but must only be used (and forwarded to subsequent operators) for
the current access. This can be achieved by connecting the OUT output via a DEMUX function. The Y
output of the DEMUX is used, and the X output is left unconnected. Then it acts as a selective gate which
only forwards packets if its SEL input receives a 1-event, and discards its data input if SEL receives a
0-event. The signal created by the ECOMB described above for the ST ART .., signal creates a 1-event
for the current access, and a 0-event otherwise. Using it as the SEL input achieves exactly the desired

functionality.

Fig. 4 shows the resulting CDFG for the first example above (two read accesses), afier applying the
transformations of Phase 2 to Fig. 12. STOP1 is now generated as follws: START(old) is inverted,
“2 to 1 connected” to STOP1 (because it is the START input of the second read pseudo-function),
ECOMB-combined with RAM’s ERD output and sent through the 1-FILTER/0-CONSTANT combina-
tion. START(new)is generated similarly, but here START(old) is directly used and STOP1 inverted. The .
GATE:s for input IN (i and j) are connected to START(old) and STOP1, respectively, and the DEMUX
functions for outputs x and y are connected to the ECOMB outputs related to STOP1 and START(new).

Multiple write accesses use the same control events, but instead of one GATE per access for the RD
inputs, one GATE for WR and one gate for IN (with the same E input) are used. The EWR output is
processed like the ERD output for read accesses.

This transformation ensures that all RAM accesses are executed correctly, but it is not very fast since read
or write accesses to the same RAM are not pipelined. The next access only starts after the previous one
is completed, even if the RAM being used has several pipeline stages. This inefficiency can be removed
as follws:

First continuous sequences of either read accesses or write accesses (not mixed) within a basic block are
detected by checking for psendo-functions whose U output is directly connected to the START input of
another pseudo-function of the same RAM and the same type (read or write). For these sequences, it is

190

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Recohﬁgurable Data-Flow Processor

possible to stream data into the RAM rather than waiting for the previous access to complete. For this

purpose, a combination of MERGE functions seletts the RD or WR and IN inputs in the order given

by the sequence. The MERGESs must be controlled by iterative ESEQs guaranteeing that the inputs are

only forwarded in the desired order. Then only the first access in the sequence needs to be controlled by

a GATE or GATEs. Similarly, the OUT outputs of a read access can be distributed more efficiently for
- p a sequence. A combination of DEMUX functions with the same ESEQ control can be used. It is most
ﬁ, efficient to arrange the MERGE and DEMUX functions as balanced binary trees. |

The ST ARTY,,, signal is generated as follows: For a sequence of length n, the START signal of the
entire sequence is replicated n times by an ESEQ[00..1] function with the START input connected to
the sequence’s START. Its output is directly “N to 1 connected” with the other accesses’ START signal
(for single accesses) or ESEQ outputs sent through 0-CONSTANT (for access sequences), ECOMB-
connected to EWR or ERD, respectively, ‘and sent through a 1-FILTER/O-CONSTANT combination,
similar to the basic method described above. Since only the last ESEQ output is a 1-event, only the
last RAM access generates a ST ART .y as required. Alternatively, for read accesses, the generation
.of the last output can be sent through a GATE (without the E input connected), thereby producing a

ST ART ¢y, event,
Fig. 14 shows the optimized version of the first example (Figures 12 and 4) using the ESEQ-method for

generating ST ART e, and Fig. 6 shows the ﬁngl CDFG of the following, larger example with three
array reads. Here the latter method for producing the ST ART ¢, event is used.

x = ali)l;
y = aljl;
z = alk];

If several read sequences or read sequences and single read accesses occur for the same RAM, 1-events
for detecting the current accesses must be generated for sequences of read accesses. They are needed
to separate the OUT-values relating to separate sequences. The ESEQ output just defined, sent through.
a 1-CONSTANT, achieves this. It is again “N to 1 connected” to the other accesses’ START signals
(for single accesses) or ESEQ outputs sent throngh 0-CONSTANT (for access sequences). The resulting
event is used to control a first-stage DEMUX which is inserted to select the relevant OUT output data
packets of the sequence as described above for the basic method. Refer to the second example (Figures
' 15 and 16) in Section 4.3 for a complete example.

4.2.8 Input and Output Ports

Input and output ports are processed similar to vector accesses. A read from an input port is like an
array read without an address. The input data packet is sent to DEMUX functions which send it to the
correct subsequent operators. The STOP signal is generated in the same way as described above for
RAM accesses by combining the INPORT"s U output with the current and other START signals.

Output ports control the data packets by GATEs like array write accesses. The STOP signal is also
created as for RAM accesses.

191

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Reconfi gurable Data-Flow Processor

4.3 More Examples

Fig. 7 shows the generated CDFG for the following for loop.

a=>b+ c} .

for (i=0; i<=10; i++) '{
a=a+ i;
x[i] = k;

}

In this example, IN1 = {a} and IN2 = {k} (cf. Fig. 10). The MERGE function for variable a is
replaced by a 2:1 data connection as mentioned in the footnote of Section 4.2.5. Note that only one
data packet arrives for variables b, ¢ and k, and one final packet is produced for a (out). forbody does
not use a START event since both operations (the adder and the RAM write) are dataflow-controlled
by the counter anyway. But the RAM’s EWR output is the forbody’s ST ART ey and connected to
CNT’s NEXT input. Note that the pipelining optimization, cf. Section 4.2.6, was not applied here. If it

" is applied (which is possible for this loop), CNT’s NEXT input is not connected, cf. Fig. 11. Here, the
loop iterations overlap. ST ART ey is generated from CNT’s U output and forbody’s ST ART yer (i. €.
RAM’s EWR output), as defined at the end of Section 4.2.5.

The following program contains a vectorizable (pipelined) loop with one write access to array (RAM) x
and a sequence of two read accesses to array (RAM) y. After the loop, another single read access to y
occurs.

z = 0;
for (i=0; i<=10; i++) {
x[i] = 1i;

z =z + y[i] + y[2*i]);

}
a = ylkl;

Fig. 15 shows the intermediate CDFG generated before the array access Phase 2 transformation is ap-
plied. The pipelined loop is controlled as follows: Within the loop, separate START signals for write
accesses to x and read accesses to y are used. The reentry to the forbody is also controlled by two in-
dependent signals (“cyclel” and “cycle2”). For the read accesses, “cycle2” guarantees that the read y
accesses occur in the correct order. But the beginning of an iteration for read y and write x accesses is
not synchronized. Only at loop exit all accesses must be finished, which is guaranteed by signal “loop
finished”. The single read access is completely independent of the loop.

Fig. 16 shows the final CDFG after Phase 2. Note that “cyclel” is removed since a single write access
needs no additional control, and “cycle2” is removed since the inserted MERGE and DEMUX functions
antomatically guarantee the correct execution order. The read y accesses are not independent anymore
since they all refer to the same RAM, and the functions have been merged. ESEQs have been allocated
to control the MERGE and DEMUX functions of the read sequence, and for the first-stage DEMUX
functions which separate the read OUT values for the read sequence and for the final single read access.
{The ECOMBs, 1-FILTERs, 0-CONSTANTS and 1-CONSTANTS are allocated as described in Section

4.2.7, Phase 2, to generate cbrreqt control events for the GATEs and DEMUX functions.

192

WO 2005/010632 PCT/EP2004/006547

A Method for Compiling High-Level Language Programs to a Recdnﬁgurable Data-Flow Processor

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers — Principles, Techniques, and Tools. Addison-
Wesley, 1986.

[2] The Stanford SUIR Compiler Group. Homepage http:// suif.stanford.edu.
[3] A. H. Veen. Dataflow architecture. ACM C’ompur'ing Surveys, 18(4), December 1986.

[4] S.J. Allan and A. E. Oldehoeft. A flow analysis procedure for the translation of high-level languages
to a data flow language. IEEE Transactions on Computers, C-29(9):826-831, September 1980.

[5] D. Galloway. The transmogrifier C haljdware description language and compiler for FPGAs. In Proc.
FPGAs for Custom Computing Machines, pages 136-144. IEEE Computer Society Press, 1995.

[6] M. Weinhardt and W. Luk. Pipeline vectorization. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 20(2), February 2001, '

193

WO 2005/010632

/f'@z.. 2 5%
]

PCT/EP2004/006547
1
_ [
=3 0 UNDET
(4 C G
pus T
te) (4)

|_of— (sTorq)

194

WO 2005/010632 PCT/EP2004/006547

Feg.5: START !
7 (old.) L x
:

2 P ART
RAM | %Iw)

195

WO 2005/010632 PCT/EP2004/006547

b7 START
(old)

.

3%\ (MDATA)

196

WO 2005/010632

PCT/EP2004/006547

-7:7. g:

START

N
A

3—cme.ta’[.[Coudi fldﬂﬂ/

Ny A | e

| ' Yeader

o . . vl ey fi o

>~®fwe“‘f—.f@ﬁ—‘”‘:€’;

' (COV\-CL ‘\’\OW\: ’ P
: : — . B | RS
S A N e
: SR ARSI S
SN | T |
i . .x ejsa* :,\-J‘!
x:ng "_'-_- r. 3 l_!_-__—-!‘-—"f‘—ra—._...
P) '@i':bdwi.y;aif (
T L . - LT

e
”51A&f,.zm

L]
T

1] f 1 H I
T

.:‘.;.'.'._,.m..j_;_.;,_'__;\ N v

k/h//c wa /emlﬂfcu“a : o

o 2
. h_._.‘ oy rc.oa,cl {

— -] - TSR, |
p— e - -I e e R .\/_..._,_ S

S —— L

s:rm’(’

- W& O
!

.%h . r_“:..
::i“t, . T*EE@ e —

] swe,
- —L"*""\rw————‘ “ﬂ—...

T ey SR e

197

WO 2005/010632 PCT/EP2004/006547

@'._ﬂk
f&r loa/c: ﬁmlo /d.ffﬁ '_
| -~> START,,
==>0UT
START newy

@
(out)

198

WO 2005/010632 PCT/EP2004/006547

%“

59.:{,3;'5(7_‘-&@\7”_',:; B £ W P T Y T N
N a) - : : —

T T sTmt,\ t STk -
H : i \ ' 3 s v i 3 P '
— I — : GUT A — - ouT f.-‘eew;
: ' LN 1 . [4 i ' 3 ' ! |
R 1 | H H . i ' .
! .) LX) ;7 i CU) i 1
: .| vy [d ‘ x
. } O I O S :
; 7 T Fori
! ¢ ! i | | I
¥ : i ' :J,g ; i 1 i

,»;7.“4"3'-”"*57:4&]—-;‘; ~:;m' S A

.

et e+ e ._i_..._. —_ e i
; t‘ml Tl T -
. b ‘ . 1]
o o e e g . pros s+ s s e o S 6 !
; T T
i [:
T : L g T
———— o ————— - o ! L}) ' l
- ' o U
}
H

Tz “'S-TN{T*::::: ST

199

WO 2005/010632 PCT/EP2004/006547

1

, J v

= :,;im” N R A R N

z'ai;tiiu‘_ SRS SN S N

— g 1.5

_____ 5/:44/& '

,p,.:lu/.o'

At

2}
—~--—é‘r<.ra3r£nn-

T """wfu’sb.w’)_

._(23 e il 0

Pre.{oa.rl. T
\ \'Hq/ 0-

——]
!

ms:nov p_r.?z&- :‘?.l“’““’m”l‘ -

___ ﬁ____rl» - ST“\RTW.

———t ou)

200

WO 2005/01063

F%7‘783

TR T g

w B e ' Fasen o - !

e —

2

g.40 A

PCT/EP2004/006547

6y "

FaR /aa'a

Cw;'ﬁ’lz{.)ﬂ__ 3611105..‘:

ﬂ?s% -S‘fdg.’ﬂ 4
DEMUY N Z
| (selects smldcm:c) S

Sé&o’hdh';{“{’t ‘
PEMIY

\

out [teedseck

PEMUK

L

——é?ggii%i
T\t

201

WO 2005/010632

Syt w W:T-M‘

Qaceor
e ooy

PCT/EP2004/006547

"L&I&M{ fe aam/;ﬂ“ awd o @/%a‘“)/&ta ya_ ﬂézm/ﬂrm

.&m"@ (i Geovmd ot oéw'mf'ﬁlm JU

Datapath and Compiler Integration of Coarse-grain
Reconfigurable XPP-Arrays into Pipelined RISC Processors

Abstract — Nowadays, the datapaths of modern
microprocessors reach their limits by using static
instruction sets. A way out of this limitations is a

dynamic reconfigurable processor datapath
extension achieved by integrating traditional static
datapaths with the coarse-grain dynamic
reconfigurable XPP-architecture (eXtreme
Processing Platform). Therefore, a loosely
asynchronous coupling mechanism of the

corresponding datapath units has been developed
and integrated onto a CMOS 0.13 pum standard cell
technology from UMC. Here the SPARC
compatible LEON processor is used, whereas its
static pipelined instruction datapath has been
extended to be configured and personalized for
specific applications. This allows a various and
efficient use, e.g. in streaming application domains
like MPEG-4, digital filters, mobile communication
modulation, etc. The chosen coupling technique
allows asynchronous concurrency of the additionally
configured compound instructions, which are
integrated into the programming and compilation
environment of the LEON processor.

Introduction

The limitations of conventional processors are
becoming more and more evident. The growing
importance of stream-based applications makes
coarse-grain dynamically reconfigurable
architectures an attractive alternative [3], [4], [6],
[7]. They combine the performance of ASICs, which
are very risky and expensive (development and
mask costs), with the flexibility of traditional
processors [5].

In spite of the possibilities we have today in VLSI
development, the basic concepts of microprocessor
architectures are the same as 20 years ago. The main
processing unit of modern conventional
microprocessors, the datapath, in its actual structure
follows the same style guidelines as its
predecessors. Although the development of
pipelined architectures or superscalar concepts in
combination with data and instruction caches
increases the performance of a modemn

st s

microprocessor and allows higher frequency rates,
the main concept of a static datapath remains.
Therefore, each operation is a composition of basic
instructions that the used processor owns. The
benefit of the processor concept lays in the ability of
executing strong control dominant application. Data
or stream oriented applications are not well suited
for this environment. The sequential instruction
execution isn’t the right target for that kind of
applications and needs high bandwidth because of
permanent retransmitting of instruction/data from
and to memory. This handicap is often eased by
using of caches in various stages. A sequential
interconnection of filters, which do the according
data manipulating without writing back the
intermediate results would get the right optimisation
and reduction of bandwidth. Practically, this kind of
chain of filters should be constructed in a logical
way and configured during runtime. Existing
approach to extend instruction sets use static
modules, not modifiable during runtime.

Customized microprocessors or ASICs are
optimized for one special application environment.
nearly impossible to use the same
microprocessor core for another application without
loosing the performance gain of this architecture.

A new approach of a flexible and high performance
datapath concept is needed, which allows to
reconfigure the functionality and make this core
mainly application independent without losing the
performance needed for stream-based applications.
This contribution - introduces 2 new concept of
loosely coupled implementation of the dynamic
reconfigurable XPP architecture from PACT Corp.
into a static datapath of the SPARC compatible
LEON processor. Thus, this approach is different
from those, where the XPP operates as a completely
separate (master) component within one
Configurable System-on-Chip (CsoC), together with
a processor core, global/local memory topologies
and efficient multi-layer Amba-bus interfaces [11].
Here, from the programmers point of view the
extended and adapted datapath seems like a dynamic
configurable instruction set. It can be customized for

- a specific application and accelerate the execution

202

enormously. Therefore, the programmer has to

7

WO 2005/010632

create a number of configurations, which can be
uploaded to the XPP-Array at run time, e.g. this

configuration can be used like a filter to calculate *

stream-oriented data. It is also possible, to configure
more than one function in the same time and use
them simultaneously. This concept promises an
enormously performance boost and the needed
flexibility and power reduction to perform a series
of applications very effective.

1. LEON RISC Microprocessor

For implementation of this concept we chose the 32-
bit SPARC V8 compatible microprocessor [1] [2],
LEON. This microprocessor is a synthesisable, free
available VHDL model which has a load/store
architecture and has a five stages pipeline
implementation with seperated instruction and data
caches.

Debug } £y
pport Uni?"' intager Unit =
I-Cache | D-Cache]
AHB interface % pel] —p
AMBAAHB _F,:;.;a{*__ .
o Debu AHE-
* San ™™ Controfler
ink Timers | IrgCl]
UARTS /O port
Memory — AHE/APE
Controlter Bridge
AMBA ARB

8/16/32-bit memory bus

Figure 1: LEON Architecture Overview

As shown in Figure 1 the LEON is provided with a
full implementation of AMBA 2.0 AHB and APB
on-chip bus, a hardware multiplier and devider,
programmable 8/16/32-bit memory controller for
external PROM, static RAM and SDRAM and
several on-~chip peripherals such as timers, UARTS,
interrupt controller and a 16-bit 1/O port. A simple
power down mode is implemented as well.

LEON is developed by the European Space Agency
(ESA) for future space missions. The performance
of LEON is close to an ARM9 series but don’t have
a memory management unit (MMU)
implementation, which limits the use to single
memory space applications. In Figure 2 the
datapath of the LEON integer unit is shown.

203

PCT/EP2004/006547

-cache

Figure 2: LEON Pipelined Datapath Structure

2. eXtreme Processing Platform - XPP

The XPP architecture [6], [7], [8] is based on a
hierarchical array of coarse-grain, adaptive
computing elements called Processing Array
Elements (PAEs) and a packet-oriented
communication network. The strength of the XPP

“technology originates from the combination of array

processing with unique, powerful run-time
reconfiguration mecharnisms. Since configuration
control is distributed over a Configuration Manager
(CM) embedded in the array, PAEs can be
configured rapidly in parallel while neighboring
PAE:s are processing data. Entire applications can be
configured and run independently on different parts
of the array. Reconfiguration is triggered externally
or even by special event signals originating within
the array, enabling self-reconfiguring designs. By
utilizing protocols implemented in hardware, data
and event packets are used to process, generate,
decompose and merge streams of data.

The XPP has some similarities with other coarse-
grain reconfigurable architectures like the
KressArray [3] or Raw Machines [4]. which are
specifically designed for stream-based applications.
XPP's main distinguishing features are its automatic
packet-handling mechanisms and its sophisticated
hierarchical configuration protocols for runtime- and
self-reconfiguration.

WO 2005/010632

2.1 Array Structure

A CM consists of a state machine and internal RAM
for configuration caching. The PAC itself (see top
right-hand side of Figure 3) contains a configuration
bus which connects the CM with PAEs and other
configurable objects. Horizontal busses carry data
and events. They can be segmented by configurable
switch-objects, and connected to PAEs and special
1/0 objects at the periphery of the device.

A PAE is a collection of PAE objects. The typical
PAE shown in Figure 3 (boitom) contains a BREG
object (back registers) and an FREG object (forward
registers) which are used for vertical routing, as well
as an ALU object which performs the actual
computations. The ALU performs common fixed-
point arithmetical and logical operations as well as
several special threeinput opcodes like multiply-add,
sort, and counters. Events generated by ALU objects
depend on ALU results or exceptions, very similar
to the state flags of a classical microprocessor. A
counter, e.g., generates a special event only after it
has terminated. The next section explains how these
events are used. Another PAE object implemented
in the XPP is a memory object which can be used in
FIFO mode or as RAM for lookup tables,
intermediate results etc. However, any PAE object
functionality can be included in the XPP
architecture.

2.2 Packet Handling and Synchronization

PAE objects as defined above communicates via a
packet-oriented network. Two types of packets are
sent through the array: data packets and event
packets. Data packets have a uniform bit width
specific to the device type. In normal operation
mode, PAE objects are selfsynchronizing. An
operation is performed as soon as all necessary data
input packets are available. The results are
forwarded as soon as they are available, provided
the previous results have been consumed. Thus it is
possible to map a signal-flow graph directly to ALU
objects. Event packets are one bit wide. They
transmit state information which controls ALU
execution and packet generation.

2.3 Configuration

Every PAE stores locally its current configuration
state, i.e. if it is part of a configuration or not (states
»configured” or ,free”). Once a PAE is configured,
it changes its state to ,,configured“. This prevents
the CM from reconfiguring a PAE which is still
used by another application. The CM caches the

204

s

PCT/EP2004/006547

configuration data in its internal RAM until the
required PAEs become available.

o

liknesi ey i

1511 .
‘, v ‘;':
S_FREG AW Y BREG
Figure 3: Structure of an XPP device

While loading a configuration, all PAEs start to
compute their part of the application as soon as they
are in state ,configured”. Partially configured
applications are able to process data without loss of
packets. This concurrency of configuration and
computation hides configuration latency.

2.4 XPP Application Mapping

The Native Mapping Language (NML), a PACT
proprietary structural language with reconfiguraton
primitives, was developed by PACT to map
applications - to the XPP array. It gives the

sprogrammer direct access to all hardware features.

In NML, configurations consist of modules which
are specified as in a structural hardware description
language, similar to, for instance, structural VHDL,
PAE objects are explicitly allocated, optionally
placed, and their connections specified. Hierarchical
modules allow component reuse, especially for
repetitive layouts. Additionally, NML includes
statements to support configuration handling. A
complete NML application program consists of one
or more modules, a sequence of initially configured
modules, differential changes, and statements which
map event signals to configuration and prefetch
requests. Thus configuration handling is an explicit
part of the application program.

A complete XPP Development Suite (XDS) is
available from PACT. For more details on XPP-
based architectures and development tools see [6].

WO 2005/010632

3. LEON Instruction Datapath Extension

The system is designed to offer a maximum of -

performance. LEON and XPP should be able to
communicate with each other in a snnple and high
performance manner. While the XPP is a dataflow
orientated device, the LEON is a general purpose
processor, suitable for handling control flow [1], [2].
Therefore, LEON is used for system control. To do
this, the XPP is integrated into the datapath of the
LEON integer unit, which is able to control the
XPP.

**G‘_J'DDE]
P ks

Figure 4: Extended Datapath Overview

Due to unpredictable operation time of the XPP
algorithm, integration of XPP into LEON datapath
is done in a loosely-coupled way (Figure 4). Thus
the XPP array can operate independent from the
LEON, which is able to control and reconfigure the
XPP during runtime. Since the configuration of XPP
is handled by LEON, the CM of the XPP is
unnecessary and can be left out of the XPP array.
The configuration codes are stored in the LEON
RAM. LEON transfers the needed configuration
from its system RAM into the XPP and creates the
needed algorithm on the array.

To enable a maximum of independence of XPP
from LEON, all ports of the XPP — input ports as
well as output ports — are buffered using dual clock
FIFOs. Dual-clocked FIFOs are implemented into
the IO-Ports between LEON and XPP. To transmit
data to the extended XPP-based datapath the data
are passed through an [O-Port as shown in Figure 5.
In addition to the FIFO the 10-Ports contain logic to

205

—

PCT/EP2004/006547

generate handshake signals and an interrupt request
signal. The IO-Port for receiving data from XPP is
similar to Figure 5 except that the reversed direction
of the data signals. This enables that XPP can work
completely independent from LEON as long as there
are input data available in the input port FIFOs and
free space for result data in the output port FIFOs.
There are a number of additionally features
implemented in the LEON pipeline to control the
data transfer between LEON and XPP.

XPP clock

data out

xpp ack

xpp rdy

Figure 5: LEON-to-XPP dual-clock FIFO

When LEON tries to write to an IO-Port containing
a full FIFO or read from an IO-Port containing an
empty FIFO a trap is generated. This trap can be
handled through a trap handler. There is a further
mechanism - pipeline-holding - implemented, to
allow LEON holding the pipeline and wait for free

JFIFO space during XPP write access respectively
wait for a valid FIFO value during XPP read access.

When using pipeline-holding the software developer
has to avoid reading from an IO-Port with empty
FIFO while the XPP, respectively the XPP input IO-
Ports, contains no data to produce outputs. In this
case a deadlock will occur and the complete system
has to be reseted.

~ XPP can generate interrupts for the LEON when

trying to read a value from an empty FIFO port or to
write a value to a full FIFO port. The occurrence of
interrupts indicates, that the XPP array cannot
process the next step because it has either no input
values or it cannot output the result value. The
interrupts generated by the XPP are maskable.

The interface provides information about the FIFOs.
LEON can read the number of valid values the FIFO
contains.

WO 2005/010632

The interface to the XPP appears to the LEON as a
set of special registers. (Figure 6). These XPP

registers can be categorized in communication®

registers and status registers.

PCT/EP2004/006547

contains a clock frequency ratio between LEON and
XPP. By writing this register LEON software can
set the XPP clock relative to LEON clock. This
allows to adapt the XPP clock frequency to the

l-cache
dat‘a address
. Fetch L
: XPPGLR, -iRE,
1 I e -H:.’x'(:!. ~?!3;Af-3(atus
.Decode mm. tbr. wim, psr
! T— XPE yata PP penl
B s -
: X S (R - (TP SR PTTTR SPTIN SRRNRRRRROR.
: T
ExeCUte S ——" g
] mulidiv
o/ [ma]| XPP
U—Cax po
:L?a—umpl idress
. Dosamstt P mpe | B Bt&sm: 1 B ovvip)} -
D-cache
iMemcury P
: . Suecdlzin
XA [= PP it
: Write 30
i ™ tbr, wim, pst
- REPOLE RO,
51 152 -Hold Trap, «Status

For data exchange the XPP communication registers
are used. Since XPP provides three different types
of communication ports, there are also three types of
communication registes, whereas every type is
splitted into an input part and an output part:

The data for the process are accessed through XPP
data registers. The number of data input and data
output ports as well as the data bitwidth depends on
the implemented XPP array.

XPP can generate and consume events. Events are
one bit signals. The number of input events and
output events depends on the implemented XPP
array again.

Configuration of the XPP is done through the XPP
configuration register. LEON reads the required
configuration value from a file — stored in his
system RAM - and writes it to the XPP
configuration register.

There are a number of XPP status register
implemented to control the behavior and get status
information of the interface. Switching between the
usage of trap handling and pipeline holding can be
done in the hold register. A XPP clock register

" Figure 6: Extended LEON Instruction Pipeline

206

;. required XPP performance and consequently to
“influence the power consumption of the system.
Writing zero to the XPP clock register turns off the
XPP. At last there is a status register for every FIFO
containing the number of valid values actually
available in the FIFO.
This status registers provides a maximum of
felxibility in communication between LEON and
XPP and enables different communication modes:
If there is only one application running on the
system at the time, software may be developed
in pipeline-hold mode. Here LEON initiates
data read or write from respectively to XPP. If
there is no value to read respectively no value
to write, LEON pipeline will be stopped until
read or write is possible. This can be used to
reduce power consumption of the LEON part.
In interrupt mode, XPP can influence the LEON
program flow. Thus, the I0-Ports generates an
interrupt depending on the actual number of
values available in the FIFO. The
communication between LEON and XPP as
done in interrupt service routines.

WO 2005/010632

Polling mode is the classical way to access the
XPP. Initiated by a timer-event LEON reads all

XPP ports containing data and writes all XPP -

ports containing free FIFO space. Between
these phases LEON can compute other
calculations. ‘
It is anytime possible to switch between this
strategies within one application.
The XPP is delivered containing a configuration
manager to handle configuration and reconfiguration
of the array. In this concept the configuration
manager is dispensable because the configuration as
well as any reconfiguration is controlled by the
LEON through the XPP configuration register. All
XPP configurations used for an application are
stored in the LEON's system RAM.

4. Tool and Compiler Integration

The LEON’s SPARC 8 instruction set [1] was
extended by a new subset of instructions to make the
new XPP registers accessable through software.
These instructions are based in the SPARC
instruction format but they are not conform to the
SPARC V8 standard. Corresponding to the SPARC
conventions of a load/store Architecture the
instruction subset can be splitted in two general
types. Load/store
instructions can exchange

PCT/EP2004/006547

the assembler of the binutils has been extended by a
number of instructions according to the
implemented instruction subset. The new
instructions have the same mnemonic as the regular
SPARC V8 load, store, read and write instructions.
Only the new XPP registers have to be used as
source respectively target operand. Since the
modifications of LECCS are straightforward
extensions, the cross compiler system is backward
compatible to the original version. The availability
of the source code of LECCS has allowed to extend
the tools by the new XPP operations in the described
way.

The development of the XPP algorithms have to be
done with separate tools, provided by PACT Corp.

5. Application Results

As a first analysis application a inverse DCT applied
to 8x8 pixel block was implemented. For all
simulations we used 250 MHz clock frequency for
LEON processor and 50 MHZ clock frequency for
XPP. The usage of XPP accelerates the computation
of the IDCT about

memory and the XPP , ~t inTRQ Mode | inPollMode | in Hold Mode:.
communication registers. [Configuration I 71.308 ps 84.364 ns 77.976 ns
The number of cycles per |of XPP i.| 17.827cycles | 21.091cycles | 19.494 cycles
instruction are similar to the bD IDCT (8x8) 14.672 ns 3272 ns 3.872ns 3.568 ns
standard load/store 3.668 cycles{ 818 cycles 968 cycles 892 cycles
instructions of the LEON.
Read/write instructions are Table 1 Performance on IDCT (8x8)
used for communications
between LEON registers. Since the LEON register-
set is extended by the XPP registers the read/write
instructions are extended also to access XPP .
registers. Status registers can only be accessed with r -
read/write instructions. Execution of arithmetic e
instructions on XPP registers is not possible. Values 8 //
have to be written to standard LEON registers T o LEON SloraQione —o . s
before they can be target of a}1thmet1c operations. -§~ o e L‘}fgﬁg; e
The complete system can still operate any SPARC E ol EON wih XPP in pol Mwe\%,:{f':\
V8 compatiple code. Doing this, the XPP is £ NN
completely unused. z yd

. . . 0 ,// / sE
The LEON is provided \3v1th the LECCS cross 2a /-’ e
compiler system [9] standing under the terms of 7 st

LGPL. This system consists of modified versions of
the binutils 2.11 and gee 2.95.2. To make the new
instruction subset available to software developers,

207

Yo w0 @0 a0 B eie M0 a W iaob

IDCT(8x8)-Blncks

Figure 7 Computation Time of IDCT (8x8)

WO 2005/010632

factor four, depending on the communication mode.
However XPP has to be configured before
computing the [DCT on it. Table 1 also shows the
configuration time for this algorithm. As shown in

PCT/EP2004/006547

performance boost of this concept against the
standalone LEON will be increased.

6. Conclusion

iN Header Huffman De- " Output our
t—>| Decoding [Decoding [™| quantisation 4 > >
A
Prediction DC Coefficients y
Decoder Motion Reference
o Compensation [¢f Memory
Motion Vectors j
Figure 8 MPEG-4 Decoder Blockdiagram
Today, the instruction datapaths of modern
M S microprocessors reach their limits by using static
, Ve instruction sets, driven by the traditional von
1254 P - ..
s Neumann or Harvard architectural principles. A way
T s LEON SIONOONG e e out of these limitations is a dynamic reconfigurable
T R Wi w6 n o Mode % ‘ processor datapath extension achieved by
’g pob EONwilnXPP i Polltlode - 0w integrating traditional static datapaths with the
EL o .“; . coarse-grain dynamic reconfigurable XPP-
£ 4 hitecture ~ (eXtr Processing Platf
HC // architecture (eXtreme Processing atform).
s % Therefore, a loosely asynchronous coupling
28 e T mechanism of the given instruction datapath has
s a been developed and integrated onto a CMOS 0.13
R R L S pm standard, cell technology from UMC. Here, the
1DCT(8xB)-Blocks

Figure 7, the benefit brought by XPP rises with the
number of IDCT blocks computed by it before
reconfiguration, so the number of reconfigurations
during complex algorithms should be minimised.

A first complex application implemented on the
system is MPEG-4 decoding. The optimization of
the algorithm partitioning on LEON and XPP is still
under construction. In Figure 8 the blockdiagram of
the MPEG-4 decoding algorithm is shown. Frames
with 320 x 240 pixel was decoded. LEON by using
SPARC V8 standard instructions decodes one frame
in 23,46 seconds. In a first implementation of
MPEG-4 using the XPP, only the IDCT is computed
by XPP, the rest of the MPEG-4 decoding is still
done with LEON. Now, with the help of XPP, one
frame is decoded in 17,98 s. This is a performance
boost of more then twenty percent. Since the XPP
performance gain by accelerating the iDCT
algorithm only is very low in the moment, we work
on XPP implementations of Huffmann-decoding,
dequantisation and prediction-decoding. So the

208

_u

.SPARC compatible LEON RISC processor is used,

‘whereas its static pipelined instruction datapath has
been extended to be configured and personalized for
specific applications. This compiler-compatible
instruction set extension allows a various and
efficient use, e.g. in streaming application domains
like MPEG-4, digital filters, mobile communication
modulation, etc. The introduced coupling technique
by .flexible dual-clock FIFO interfaces allows
asynchronous concurrency and adapting the
frequency of the configured XPP datapath
dependent on actual performance requirements, e.g.
for avoiding unneeded cycles and reducing power
consumption.

As represented above, the introduced concept
combines the flexibility of a general purpose
microprocesser with the performance and power
consumption of coarse-grain reconfigurable
datapath structures, nearly comparable to ASIC
performance. Here, two programming and
computing paradigms (control-driven von Neumann
and transport-triggered XPP) are unified within one
hybrid architecture with the option of two clock

WO 2005/010632

domains. The ability to reconfigure the transport-
triggered XPP makes the system independent from

standards or specific applications. This concept

opens potenial to develop multi-standard
communication devices like software radios by
using one extended processor architecture with
adapted programming and compilation tools. Thus,
new standards can be easily implemented through
software updates. The system is scalable during
design time through the scalable array-structure of
the used XPP extension. This extends the range of
suitable applications from products with less
multimadia functions to complex high performance
systems.

7. References

[1] The SPARC Architecture Manual,
Version 8, SPARC international INC,
http://www.sparc.com

[2] Jiri Gaisler: The LEON Processor User's
Manual, http://www.gaisler.com

[31 R. Hartenstein, R. Kress, and H. Reinig. A
new FPGA architecture for word-oriented
datapaths. In Proc. FPL’94, Prague, Czech
Republic, September 1994. Springer LNCS
849

[4] E. Waingold, M. Taylor, D. Srikrishna, V.
Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
and P. Finch. Baring it all to software: Raw
machines. JEEE Computer, pages 86-93,
September 1997

209

[5]

(6]
{71
(8]

9]

PCT/EP2004/006547

J. Becker (Invited Tutorial): Configurable
Systems-on-Chip (CSoC); in: Proc. of 9
Proc. of XV Brazilian Symposium on
Integrated Circuit Design (SBCCI 2002),

Porto Alegre,
Brazil, September 5-9, 2002

PACT Corporation:
http://www.pactcorp.com

The XPP Communication System, PACT
Corporation, Technical Report 15, 2000

V. Baumgarte, F. Mayr, A. Niickel, M.
Vorbach, M. Weinhardt: PACT XPP - A
Self-Reconfigurable Data Processing
Architecture; The 1st Int'l. Conference of
Engineering of Reconfigurable Systems
and Algorithms (ERSA'01), Las Vegas,
NV, June 2001

LEON/ERC32 Cross Compilation System
(LECCS),
hitp://www.gaisler.com/leccs.html

[10]M. Vorbach, J. Becker: Reconfigurable

Processor Architectures for Mobile Phones;
Reconfigurable ~Architectures Workshop
(RAW 2003), Nice, France, April, 2003

[11]J. Becker, M. Vorbach: Architecture,

Memory and Interface Technology
Integration of an Industrial/Academic
Configurable System-on-Chip (CSoC);
IEEE Computer Society Annual Workshop
on VLSI (WVLSI 2003), Tampa, Florida,
USA, February, 2003

WO 2005/010632 PCT/EP2004/006547
IM Cimmavtlm (Aﬂ“‘; fe Cau/:(ﬂ? "(;/M MWI'?M/ u/n%ﬂ’/ R‘%Idbﬁy &
/Wy‘ld %) w(/a ’
In coupling the XPP or any other data processing array having a number of
preferably coarse grain cells to a conventional (that is sequential and/or von
Neumann-) processor /microcontroller design, a number of op code instructions may
be added to the instructions set of the conventional processor. A non-limiting
example is given below and it will be obvious to the average skilled person that it is
not intended to limit the invention but disclose certain aspects thereof in more detail,
the aspects being of more or less importance. For example, it may be the case that
other bit lengths than indicated for instructions are used. It is also to be understood
that the mnemonics might be changed and that in certain cases additional
instructions and/or operations might be useful whereas in other cases or for other
cases a subset of the instructions indicated below might be useful as well. For
example, it is easily possible to combine one or more XPPor any other reconfigurable
device or set or group of identical or different devices, in particular runtime
reconfigurable and/or coarse grain devices, FPGA and or data streaming processors
with any d.esign other than.the LEON processor and/or a processor using SPARC
instructions. Also, the use of the instruction set is not limited to certain compiling
algortithms although the compiling techniques disclosed in other parts of the present
invention are very useful. It is to be noted that one preferred way of using the XPP or
other reconfigurable device or set or group of identical or different devices, in
particular runtime reconfigurable and/or coarse grain devices, FPGA and or data
streaming processors coupled to a design such as the LEON processor and/or other
conventional processor is the use of macro libraries so that predefined configurations
can be instantiated and /or called as subroutines. These libraries may be
automatically compiled and/or the configurations corresponding thereto may be set
up by hand. This being noted, with respect to additional op-code instructions

the following is noted:

All additional instructions refer to format 3 of the SPARC instruction set, the op index
being 3. The SPARC specification uses this format for the declaration of memory
accesses. As in the original instruction set a plurality of op-codes had not been
implemented, there was an opportunity to use the free fields for dedicated purposes.
Also, it was possible to ensure completeness of instructions; for example, no memory

access instruction is located inbetween arithmetic instructions.

210

WO 2005/010632 PCT/EP2004/006547

Overview over the SPARC instruction format 3

op |rd op3 rs1 i=0 Asi | rs2

op |(rd op3 rsi i=1 simm13

op |rd op3 rs1 Opf —lT'SZ

31 29 24 18 13 12 4 0

Here, the abbreviations have the following meaning:

rd: This field is five bit long. It contains the address of the source or target

register, arithmetic and for Load-/Store-operations.

op3: This field is six bit long. Together with the op field it builds the instructions.
rs1: This field is five bit long. It contains the first operand of an ALU-operation.

opf. This field is nine bit long and contains the instructions of a floating point

operation.

i This is a one-bit-field selecting the second operand for arithmetic or Load-/

Store-operations respectively. In case i=71, the operand is the content of

simm13, otherwise the operand is the content of rs2.

asi: This field is eight bit long and indicates the address space which is

accessed by Load-/Store-operations.

sim13: This field is thirteen bit long and contains the second operand of an

arithmetic and/or Load-/Store-operation, the operand having a sign (+, -).

rs2: This field is five bit long and corresponds to the operand of an arithmetic

and/or Load-/Store-operation respectively. It does not have a sign (+, -).

Overview over additional instructions

Opcode Meaning privileged
stxppd Write word from memory to an XPP data register no
ldxppd Load word from memory to an XPP data register no
stxppe Write word from XPP event register into memory no
Idxppe Load word from memory into XPP event register no
idem Load word from memory into CM register yes

211

WO 2005/010632 PCT/EP2004/006547
stcm Write word from cm register into memory yes
cptoxppd Copy a word from a LEON register into an XPP data register no
cptoleond Copy a word from an XPP register into a LEON data register no
cptoxppe Copy a word from a LEON register into an XPP event register no
cptoleone Copy a word from an XPP register into a LEON event register no
cptocm Copy a word from a LEON register into a CM register yes
cptoleoncm | Copy a word from a CM register into an LEON register yes
cptoleonsdi | Copy a word from the status register of an XPP data input no

register into a LEON register
cptoleonsdo |Copy a word from the status register of an XPP data output no
register into a LEON register
cptoleonsei | Copy a word from the status register of an XPP event input no
register into a LEON register
cptoleonseo | Copy a word from the status regiser of an XPP event output no
register into a LEON register
wrclkr Write into a clock register to determine clock ratio LEON-XPP yes
wroffsetr Wrrite into memory offset register for memory mapped mode yes
rdclkr Read clock register for clock ration LEON-XPP yes
rdoffsetr Read memory offset register for memory mapped mode yes
rdtrapr Read register with information about XPP trap yes

Data transfer between LEON and XPP

Opcode op3 Operation

cptoxppd |101110 {Copy a word from a LEON register into an XPP data register
cptoleond | 101111 | Copy a word from an XPP register into a LEON data register
cptoxppe |[110010 |Copy a word from a LEON register into an XPP event register
cptoleone [110011 | Copy a word from an XPP register into a LEON event register
Format (3):

11 |rd op3 Rs1 rxpp(opf) rs2

31 29 24 18 13 12 4 0

Assembler Syntax:

212

WO 2005/010632

PCT/EP2004/006547

cptoxppd regrd, eQgmpp
cptoleond r€0mnpp, M€0rd
cptoxppe redrd, r'eQrmpp
cptoleone T€0mxpp; €0rd
Description

CPTOXPPD loads a word from r{rd] to the data register r[rxpp] of XPP archtecture.
CPTOLEOND loads a word from a data register r[rxpp] of XPP architecture to r{rd].
CPTOXPPE loads a word from r{rd] to event register r{rxpp] of XPP architecture.
CPTOLEONE loads a word from event register rirxpp] of XPP architecture to r{rd].

Traps:

Xpp_readaccess_error
Xpp_writeaccess_error
Xpp_regnotexist_error

Data transfer between LEON and CM

Opcode op3 Operation

cptocm 110110 |Load word from memory into CM register'

cptoleoncm 110111 |Load word from CM register into LEON register

Format (3):

11 ,rd TopS Rs1 rcm(opf) rs2
31 29 24 18 13 12 4
Assembler Syntax:

cptocm régr, '€grem

cptoleoncm | regrem, r€grd

Description:

CPTOCM loads a word of r{rd] into a register r{rcm] of CM.
CPTOLEONCM loads a word from register rjrcm] of CM to r{rd].

Traps:
: 213

WO 2005/010632 PCT/EP2004/006547

privileged_instruction
cm_writeaccess_error
cm_regnotexist_error

Data transfer between XPP and memory

Opcode op3 Operation

stxppd | 100010 | Store word from an XPP data register into memory

ldxppd (100011 |Load word from memory into an XPP data register

stxppe {100110 | Store word from an XPP event register into memory

ldxppe 100111 |Load word from memory into an XPP event register

Format (3):

op |rxpp(rd) op3 Rs1 i=0 asi rs2

op |rxpp(rd) op3 Rs1 i=1 simm13

31 29 24. 18 13 12 4 0
Assembler Syntax:

stxppd régmpp, [adresse]

ldxppd [adresse], regmpp

stxppe regmpp, [adresse]

ldxppe [adresse], regnpp

Description:

STXPPD / STXPPE writes a word from register rxpp into memory.
LDXPPD / LDXPPE loads a word from memory into register rxpp.

The effective address is calculated as ,r[rs7]+r[rs2]" in case that i = 0, otherwise
J[I[rs1] +simm13",

Traps:
Xpp_readaccess_error
Xpp_writeaccess_error
Xpp_regnotexist_error
mem_address_not_aligned

Data transfer between CM and memory

214

WO 2005/010632

PCT/EP2004/006547

Opcode op3

Operation

Idem 101010

Load word from memory into a CM register

stcm 101011

Write word from CM register into memory

Format (3):

op (rcm(rd) Op3 rs1 i=0 asi rs2

op |rem(rd) Op3 rs1 i=1 simm13

31 29 24 18 13 12 4 0

Assembler Syntax:

ldem regrem, [adresse]
stcm [adresse], regrem
Description:

STCM writes a word from register rem into memory.
LDCM loads a word from memory into register rem.

The effective address is calculated as ,r[rs7]+r[rs2]" in case that i = 0, otherwise as
s 1] +simm13°~. -

Traps:

privileged_instruction

cm_readaccess_error
cm_writeaccess_error

cm_regnotexist_error
mem_address_not_aligned
Data transfer from status registers to LEON

Opcode Op3 Operation

cptoleonsdi {101100 | Copy a word from the status register of an XPP data input
register into a LEON register

cptoleonsdo 101101 | Copy a word from the status register of an XPP data output
register into a LEON register

cpioleonsei | 110000 |Copy a word from the status register of an XPP event input
register into a LEON register

cptoleonseo | 110001 | Copy a word from the status register of an XPP event output
register into a LEON register

Format (3):

11 ird op3 rs1 rst(opf) rs2

31 29 24 18 13 12 4 0

215

WO 2005/010632

Assembler Syntax:

PCT/EP2004/006547

cptoleonsdi

redrst, redrd

cptoleonsdo

redrst, '€Jrd

cptoleonsei

redrst, r€Yrd

cptoleonseo

redrst, M'€Jrd

Description:

CPTOLEONSDI loads a word from the status register r[rsf] of a data input register
into the register r[rd] of the LEON processor.

CPTOLEONSDO loads a word from the status register rrsf] of a data output register
into the register rrd] of the LEON processor.
CPTOLEONSEI loads a word from the status register r{rsf] of an event input register
into the register r[rd] of the LEON processor.

CPTOLEONSEO loads a word from the status register r[rsf] of an event output
register into the register r{rd] of the LEON processor.

Traps:

st _readaccess_error
st_regnotexist_error

Data transfer between XPP configuration register and LEON

Opcode op3 Operation

wrclkr 111000 | Write clock ratio LEON-XPP into clock register

wroffsetr | 111001 Write into memory offset register for memory mapped mode
rdclkr 111010 Read clock register for clock ratio LEON-XPP

rdoffsetr | 111011 Read memory offset register for memory mapped mode
rdtrapr 111110 Read registers with informationen about XPP trap

Format (3):

11 |rd op3 unused Unused unused

31 29 24 18 13 12 4 0

Assembler Syntax:

216

WO 2005/010632 PCT/EP2004/006547

wrclkr Iea, %clkr
wroffsetr ld, Yomemoffsetr
rdclkr %clkr, reg
rdoffsetr %memoffsetr ry
rdtrapr %trapr, rq
Description:

WRCLKR loads a word from the register r[rd] into the clock register. In case the
register contains the value 0, the XPP unit is deactivated, whereas any other value
indicates the clock ratio of the XPP unit to the LEON processor clock.

WROFFSETR loads a word from the register r{rd] into the memory offset register.
RDCLKR loads the content from the clock register into the register r[rd].
RDOFFSETR loads the content from the memory offset register into the register r[rd].
RDTRAPR loads the content of the trap information register into the register r[rd].

217

WO 2005/010632 PCT/EP2004/006547

d! ,oﬁﬂ”hﬁf “ C, lof o J%Uc&éﬂb{'adezL
{/\%\#& o g ﬁmwﬁmw{m ﬂfdﬂc /oowJ

The following flgure shows another example of a preferred cou-~
pling between a conventional (von-Neumann-like and /or sequen-—
tial)processor and an array of processing elements reconfigu-
rable at runtime and/or on the fly, the figure referring to an
XPP by way of example only, although, as in all parts of the
present invention, aspects of the disclosure might in some
cases be better understood by referring to publications that

show and explain the functioning of an XPP in more detail.

Here, a plurality of details is described in other parts of
the present application as will be obvious between the simila-
rity offigures, yet some particular aspects showing preferred
implementations and /or embodiments and or aspects can be

found in more detail in the following figure.

Now, as for the figure, the attention is drawn to the follo-

wing facts:

A coupling may use either one of two different paths, both
paths can be implemented as an alternative, although in the
preferred embodiment, these paths are implemented simultane~-

cusly.

The first path transfers data between the ALU (or other part,
particularly in the data path) of the conventional proceesor
and the XPP is dps-like and is thus intended for low-volume
data transfer. As shown, i1t is possible to transfer data from
the xpp array, preferably via FIFOs and, preferably a MUX al-
lowing selction of either an XPP event data or an XPP result
data in response to a setting of the MUX preferably by either
the processor or the XPP to one or a number of operand inputs
of the ALU or other units in the data path for ALU operand in-
put such as MUXes or the like. Tt. is to be noted that a number
of different data can be transferred in that way, such as sta-

tus information, flags and the like as well as arithmetic da-

218

WO 2005/010632 PCT/EP2004/006547

ta. This transfer can be either from the ALU or a unit down-
stream therefrom in the datapath of the conventional proces-
sor. Also, data other than operand data, such as event and/or
information regarding internal statas can be transferred from

the XPP to the conventional processor it is coupled.

The second data path is to and /or from the cache and it is to
be noted that a coupling may be effected to both the D~ and
/or the I-Cache. The coupling to the I-Cache is advantageous
so as to allow for a very. fast reconfiguration of the proes-
sing array due to the possibility to handle only a minute
amount of data within the sequential processor while allowing
for large configuration data by. Here, not the entire configu-
ration must be transferred through the ALU or other conventio-
nal unit. Reconfiguration can rely on either the conventional
processor sending configurations or, more preferably, configu-
ration load instructions (e.g. the adress of a configuration
or macro needed) to the array and/or a configuration unit such
as a configuration manager coupled thereto, e;g. a FILMO and
/or can rely on the array itself requesting reconfiguration
for example after the instantiation of a first configuration
as part of a larger macro that has been called as a subroutine
or the like by the conventional processor. With respect to the
data coupling to the D-cache or other (large) memory units
such as memory banks, it is possible to allow for data strea-
ming, e.g. using load/store configurations within the array as
have been described elsewhere. It is possible to implement va-
rious methods of data streaming units such as DMA, cachecon-
trollers dedicated to operate together with the array and the
like. It is to be noted that within the data path for this
coupling, no register needs be present so that block move com-

mands are easily implementable.

One of the advantages of the preferred coupling according to
the invention as described in one aspect thereof is that it is

219

WO 2005/010632 PCT/EP2004/006547

effected via the instruction pipeline of the conventional
processor design. The conventional processor and the array can
be decoupled does not rely on registers, need not handle every
single operand separately and also allows for a decoupling of
processor and array by the use of FIFOs, the later aspect
being advantageous in that both devices may be operated asyn-
chronously,that is, it is not absolutely necessary in all and
every case for one unit to wait until the other has finished a
certain task. In contrast, it is sufficient to synchronize the
two units by methods such as interrupt routines, and or pol-

ling.

Also, the coupling shown is preferrable over those known in
the art since it allows for coupling into both tha data and

the control flow.

With respect to other parts of the present application, it is
noted that whereas this part refers to FIFOs used in the data
path to efféct the data coupling, other parts, esp. Those dea-
ling in more detail with certain compiler techniques refer to
the use of I-RAMS (internal RAMS) to effect the decoupling. It
will be obvious that a FIFO used sin the XPP-Data input path,
XPP data event input path and /or XPP config path might be re-
placed by an I-RAM or that both I-RAMS and FIFOs might be used

simultaneously.

Where reference is being made to event data, it is to be noted
that in simple cases these will be singel bit data, but that
it is possible to use event vectors as well, that is, event

data having more than one bit.

220

PCT/EP2004/006547

WO 2005/010632

-
[yuet->a
24

L

ﬁ surpadig UoNINISU NOA'] co@:&ﬁm,..ww o...m.mmm.

SERHG URIL DI
O H X

E@«s&t MJ\F é..u\m r& xaax \@\

Rl
.,
R e

e
gt

ddX

h

12503 aww%

f

r UIEIEN R

usoﬂmu%e%mi.mu

ayoeo-g

IR g

xi

wf%u\@

Y

o
q\,&o N

Ny <& dex

w Q @G NG tqﬁ\w

B 3K \~

smeyg- dei- pop- 1

ikt~ "WiddX

370

Yy

o} xt

Tjong toenc)
ﬁ w@w w.\ Wy ddx

“~ES0RPE HAUBKYRRS

Lte | ST
| o | h
LA @ | sam g..o.c - T Y
Rowepy
adw Qi swwd
anoexg
............ oo q - ¢ ot & 4 H swa g
M=
Jad M 0w - W_UOUQDM
sip ¢ wmsw'n § -
“ ,* i yojeq.
. - i ma_ .] > ssappe 2P
N aLoeo-|

......

221

WO 2005/010632 PCT/EP2004/006547

Claims

1.

A method of coupling
at least one (conventional) unit processing data in a se-
guential manner, e.g. a CPU, von-Neumann-Processor and/or
microcontroller,

the (conventional) unit for data processing compri-

sing an instruction pipeline,

and
an array for processing data comprising a plurality of da-
ta processing cells, e.g. a preferrably coarse grain and
/or preferrably runtime reconfigurable data processor,
FPGA, DFP, DSP, XPP or chaemeleon-technology-like data
processing fabric, '

wherein the array is coupled to the instruction pipeline.

A method in particular according to claim 1, wherein the
input and /or output between the at least one (conventio-
nal) unit processing data in a sequential manner, e.g. a
CPU, von-Neumann-Processor, microcontroller, and

an array for processing data comprising a plurality of da-
ta processing cells, e.g. a runtime and/or reconfigurable
data processor, DFP, DSP, XPP or chaemeleon-technology-
like data processing fabric,

wherein data is transferred via at least one data path
being provided therebetween comprising at least one FIFO
so as to allow for a less tight coupling and /or data
processing within the at least two units that is not

strictly synchroneous.

A method according to any of the previous claims wherein
data is transferred via at least one data path that allows
for transfer of data between units not being transferred

through a register.

222

WO 2005/010632 PCT/EP2004/006547

6.

A method according to any of the previous claims wherein a
path for the transferral of status information and/or
event information such as flags, overflow, carry and the
like is provided between the (conventional) unit for data

processing and the at least one array for processing data.

A device for processing data comprising at least one (con-

ventional) unit processing data in a segquential manner,

e.g. a CPU, Von—Neumann-Processor and/or microcontroller,
the (conventional) unit for data processing compri-

sing an instruction pipeline,

and

an array for processing data comprising a plurality of da-

ta processing cells, e.g. a runtime and/or reconfigurable

data processor, DFP, DSP, XPP or chaemeleon-technology-

like data processing fabric,

wherein the array is coupled to the instruction pipeline.

The device according to the previous claim wherein

at least one data path is provided between the array and the
conventional processor comprising at least one FIFO so as to
allow for a less tight coupling and /or data processing
within the at least two units that is not strictly synchro-
neous

and /or wherein

at least one data path is provided that allows for transfer

of data not being transferred through a register.

A method of at least one (conventional) unit processing da-
ta in a sequential manner, e.g. a CPU, von-Neumann-
processor, microcontroller, being preferrably adapted for
data processing to any of the previous methods and or accor-

ding to a previously claimed devices

223

WO 2005/010632 PCT/EP2004/006547

10.

11.

the (conventional) unit for data processing preferrably.
comprising an instruction pipeline and
an array for processing data comprising a plurality of data
processing cells, e.g. a runtime and/or reconfigurable data
processor, DFP, DSP, XPP or chaemeleon-technology-like data
processing fabric, wherein a path allowing for block data
transfer is provided from the data cache and /or other data

source and the array.

. A method of data processing using an aray of data processing

elements wherein input data to be processed are duplicated

prior to processing.

. A method according to the previous claim wherein the input

data to be processed are duplicated

by connecting a plurality of operand or other inputs to an
input source such as the output of a data processign unit
upstream in the data stream or

by using a unit storing and /or latching and /or holding
said input data, the unit being within the data path and /or

fanning out the data to a number of different inputs.

A method of data processing using an array of data proces-
sing elements reconfigurable at runtime, said data proces-
sing being effected by a plurality of configurations,
wherein the amount of time allowed for running one configu-

ration is limited.

A method of preparing an array for processing data recon-
figurable at run time wherein a number of instructions is
combined to form a number of configurations to be run one
after the other and /or in parallel on said array and
wherein an execution time of a single configquration is re-
stricted, in particular when repeated operations are to be
performed such as loops and/or iterations.

224

	Abstract
	Bibliographic
	Description
	Claims

