
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0055587 A1

Kellar

US 20090055587A1

(43) Pub. Date: Feb. 26, 2009

(54)

(76)

(21)

(22)

(63)

(60)

(51)

(52)

ADAPTIVE CACHING OF INPUT / OUTPUT
DATA

Inventor: John E. Kellar, Georgetown, TX
(US)

Correspondence Address:
MEYERTONS, HOOD, KIVLIN, KOWERT &
GOETZEL, P.C.
P.O. BOX 398
AUSTIN, TX 78767-0398 (US)

Appl. No.: 12/206,051

Filed: Sep. 8, 2008

Related U.S. Application Data

Continuation of application No. 1 1/152,363, filed on
Jun. 14, 2005, now Pat. No. 7,430,638.

Provisional application No. 60/579.344, filed on Jun.
14, 2004.

Publication Classification

Int. C.
G06F 2/08 (2006.01)
G06F 12/00 (2006.01)
G6F 2/2 (2006.01)
U.S. C. 711/118; 718/102; 711/135: 711/137

ressess

1041 legacy SocketsApplication

S -X NDS

NDS

N Network fodriver
ZCache Embodiment

(57) ABSTRACT

To improve caching techniques, so as to realize greater hit
rates within available memory, of the present invention uti
lizes a entropy signature from the compressed data blocks to
Supply a bias to pre-fetching operations. The method of the
present invention for caching data involves detecting a data
I/O request, relative to a data object, and then selecting appro
priate I/O to cache, wherein said selecting can occur with or
without user input, or with or without application or operating
system preknowledge. Such selecting may occur dynami
cally or manually. The method further involves estimating an
entropy of a first data block to be cached in response to the
data I/O request; selecting a compressor using a value of the
entropy of the data block from the estimating step, wherein
each compressor corresponds to one of a plurality of ranges of
entropy values relative to an entropy watermark; and storing
the data block in a cache in compressed form from the
selected compressor, or in uncompressed form if the value of
the entropy of the data block from the estimating step falls in
a first range of entropy values relative to the entropy water
mark. The method can also include the step of prefetching a
data block using gap prediction with an applied entropy bias,
wherein the data block is the same as the first data block to be
cached or is a separate second data block. The method can
also involve the following additional steps: adaptively adjust
ing the plurality of ranges of entropy values; scheduling a
flush of the data block from the cache; and Suppressing oper
ating system flushes in conjunction with the foregoing sched
uling step.

ZCache File System FilterDriver 118
File Tracking DB

asses

122

18 FSDriver

19 Disk 20 CDROM2 Hist:
14NOSWAN:5NSIAP Rose SCSI Miniport Library interface

:23 SCSPDriver
. NDSWAN RNDSLPortiob 24 SCSI Miniport Library interface

25s sapaciour
a SCS Montpeyreface)

SC Fataeaeontortly Hardware Abstraction Layer?

Ethernet Ports) SCSI Controllerinterfaces
Storage iODriver

ZCache Embodiment

A High-Level Logical View of an Adaptive Cache Architecture

Patent Application Publication Feb. 26, 2009 Sheet 1 of 25 US 2009/0055587 A1

Virtual Memory Manager -- .
620

l l r -

File System |
640 |

:
Disk DriverS

660

COntroller
210

- - - - -

COntroller
"RA ID ty

CD 310
Database

DiSk Partition
116

FIG. 1A
PRIOR ART

Patent Application Publication Feb. 26, 2009 Sheet 2 of 25 US 2009/0055587 A1

100

104 legacysockesappealon" stage Accessaos T.
E"few"Nili CRSST

User Mode.
Kennel Mode

m
l/O Manager Library 2

19 DISK 20 CDROM 21

9 TCP/IP 10 NetBIOS 11 IPXSPX

24 SCS Mirportray interace

NDIS 26 SCSI Miniport Library interface
110

Hardware Abstraction Layer(HAL)

Ethemet Port(s) SCSI COntroller InterfaceS

FIG. 1B
Prior Art - Generalized SOftWare Architecture for the
I/O Subsystem of Windows 2000, XP, and Beyond

Patent Application Publication Feb. 26, 2009 Sheet 3 of 25

CompreSSed
CaChe

240

Memory
COntroller

210

COntroller
"RA ID g

310

US 2009/0055587 A1

Patent Application Publication Feb. 26, 2009 Sheet 4 of 25 US 2009/0055587 A1

Virtual
Memory
Manager

62O

Compressed
Cache Filter

720

Page Fault
Compressed Boundary
Cache Filter

y

ZCache
Device
Driver
500 Compressed

Compressed Cache
Disk Filter

800
240

Disk
Controller

310

Disk Drivers
660 Disk

Sub
System
300

Patent Application Publication Feb. 26, 2009 Sheet 5 of 25 US 2009/0055587 A1

S

100
.

1041 Legacy Sockets Application Storage ACCeSS AppS
ITIT
i-------r--------------------------------------- to...o.

USer MOde
Kennel Mode

: "E" cas
andswords acrose scs wroteine

H23 SCSA: Die
(2 scs anotubayreiece
25SCSMaDEMinovir
a SCS Motuhayne?e
L)

alos,
9 NDS

FAPPA Hardware Abstraction Layer (

Ethernet Port(s)
NetWOrk I/O Driver Storage I/O Driver

ZCache EmbOdiment ZCaChe EmbOdiment

FIG. 2C
A High-Level Logical View of an Adaptive Cache Architecture

1

Patent Application Publication Feb. 26, 2009 Sheet 6 of 25 US 2009/0055587 A1

Opened File Policy - GUI settings to an opened file policy

Tracking Spec (parent) of the Opened file/dir no flags nO buff Wt Wt &

25 ignored parent nOCaChe nOCaChe nOCaChe nocache
dynamic parent Wb nOCache Wi nOCache
dynamic parent + no Wb Wb Wb b
manual wb tracked parent Wb Wb Wb Wb

Default Flag 24 manual Wib tracked parent + no W b Wb Wb Wb

manual Wttracked parent
(not Supported in GUI) Wt Wt Wt Wt
manual wit tracked parent + no
(not Supported in GUI) Wt Wt Wt Wt

nOf WritebaCK
Tracking Spec (parent) of the opened file/dir no flags nO buff Wt Wil &

ignored parent nOCaChe nOCaChe nOCaChe nocache
dynamic parent - - - -
dynamic parent inc - - - -
manual wb tracked parent Wt Wt Wt Wt
manual wb tracked parent + no r
manual Wttracked parent
(not Supported in GUI) Wit Wt Wt Wt
manual Wttracked parent + no
(not Supported in GUI)

FTF = File Tracking Table
nC = Non-Conservative Caching
Wb = Writeback
Wt = Writethrough

FIG. 2D

Patent Application Publication Feb. 26, 2009 Sheet 7 of 25 US 2009/0055587 A1

Flags for tracking specifications in "Tracked Files' reg key

21 Writethrough 2
nO CaChe
directory

File tracking flags (4bits = 1 hex digit each)
WT NO BUFF default pagefile dynamic

28 1 1 1 1 1
Writethrough 2 2 2 2 2

4 4 4 4 4

GUI Settings to File Tracking Flags Table
M/b nC

Writeback (+ignore flush) not Writeback
O AA 20 0x24441

0x11444 OX11444 0x22444

Cache Untracked Files (metadata and files opened before compression cache is started)
Not Supported in GUI- change the "default" entry in the file tracking flags to 1

FIG. 2E

Patent Application Publication Feb. 26, 2009 Sheet 8 of 25 US 2009/0055587 A1

MOdified

Invalidate

In Valid d, Shared a, MOdified
e, Shared f, Modified e, Shared C, Invalid

MOdified h, Modified h, MOdified g, Shared b, Invalid

FIG. 3
State Diagram Showing the

Modified-Shared-Invalid (MSI) Cache Protocol

Patent Application Publication Feb. 26, 2009 Sheet 9 of 25 US 2009/0055587 A1

COrnmitted & Valid
(5)

Committed & Invalid
(2)

f e

MOdified
(4)

In Validate
invalid a, Moodified

f. MOdified e. Shared C, invalid
MOdified h, MOdified h, MOdified

In Validate
Invalid Shared, Invalid, if AOW & Invalid Invalid

if NC, invalid WB, MOdified if
AOW& WT, Shared

Committed Cl: Request is queued Modified, Subsequent C Invalid
& Invalid and Completed when I/O Completion is

I/O is Complete Cancelled/ignored
Shared Shared, if NC, WB: MOdified Shared Invalid

Shared & InCrement WT. Shared
Invalid State Cir

MOdified Modified, if NC, Modified Invalid
Modified & InCrement

Invalid State Cir
COmmitted Shared Invalid C&W if NC, C&W. Write update
& Walid C&W & inCrement iS reiSSued

In Valid State Cir

FIG. 4A
MOOdified MSI CaChe PrOtOCOI

Patent Application Publication Feb. 26, 2009 Sheet 10 of 25 US 2009/0055587 A1

Valid Update /
Invalidate Update

Persistent Store

Fig. 4B
State Transitions for Write Invalidation

Patent Application Publication

Data from Disk
Obtain Requested

CPU Request Data from
the Memory Controller

502

Data
Resides in

Main Memory
in a Uncompressed

Format?

Data
Resides in

Main Memory
in a Compressed

Format?

Determine LRU/LFU Data
in Main Memory

Compress LRUILFU Data
and Store in Main

Memory

Decompress Requested
Data and Store in Main

Memory

Provide Requested Data
to CPU

Fig. 5
Main Data Flow

Feb. 26, 2009 Sheet 11 of 25

Memory Controller
Transfers Requested

US 2009/0055587 A1

Data to CPU

Patent Application Publication

Examine file-Stream
context by decoding IRP

Eligible for file
tracking?

Determine read Context
Or Write COntext

Read ZCache policy and
File tracking settings

Apply ZCache Settings to
File-Stream COntext

Report file Context info to
ZCache File Tracking DB

222

Feb. 26, 2009 Sheet 12 of 25

PaSS-Thru
Operating System

FIG. 6
File Tracking Flow

Estimate Compression
ratio Offile-Stream COntext

Apply COmpreSSion
estimation to file Object
LFU/LRU or prefetch bias

Update file-stream Context
reference COunter

US 2009/0055587 A1

Patent Application Publication Feb. 26, 2009 Sheet 13 of 25 US 2009/0055587 A1

224
N
O NO ZCache Copy

block into I/O
request packet

Full I/O
bOCK fetch?

ZCache Completes
I/O request

Space
N for block in

Write Flush back to
N YeS WOOperation? perSistent Storage G)

\ YeS

ZCaChe YeS
deCOmpreSSeS 2 block iS Clean

NO

YeS IS DeCompreSS block Compressed
Storage?

NO

FIG. 7B
Dynamic Tracking Enabled Read I/O Operation

Patent Application Publication Feb. 26, 2009 Sheet 14 of 25 US 2009/0055587 A1

Write I/O
operation? Other I/O

metadata Of WritebaCK WriteThrough CaCheable
On? On? data?

FIG. 7C
Dynamic Tracking Enabled Write I/O Operation

Patent Application Publication Feb. 26, 2009 Sheet 15 of 25 US 2009/0055587 A1

prefetch block
clean?
260

Initiate IO
274

Compress and return

w

Flush calculated blocks

Mark as clean

Space available?

insert in ZCache

Terminate prefetch.
Cancel I/O.

Complete /O

Yes

Allocate

Fig. 7D
Dynamic Tracking Enabled

Read I/O Operation
Prefetch Enabled

Patent Application Publication Feb. 26, 2009 Sheet 16 of 25 US 2009/0055587 A1

Table Entries Explanation

Tag Cache data block tag itself

Field Best effort match to an open file

State Clean, dirty, inflight, invalid
Age Prefetch and Least Frequently Used (LFU) Counter,

incrementing by 2 Or will decrementing by 2, if decrements
by 2 (from a default value of 2) then no hits in X time) if
incrementing by 2 (max hits since last reference)

312 CompreSSOrType Compressor selected for this block; Currently can be one of
LZ type, zero-bit; zero-CompreSS (equivalent of a memory Copy)

314 CompreSSionRatio Compression ratio of this block
310 Entropy Entropy value of data block

TimeTag Least Recently Used (LRU) Counter (also miss Counter)
Compressed Block List Pointer to the list of Compressed blocks

FIG. 7E
Cache Data Block Tag Reference

COunterS and Informational COunterS

Patent Application Publication Feb. 26, 2009 Sheet 17 of 25 US 2009/0055587 A1

100
XXX
fox3 406b LZ Type 8xxxx

:XXXXXX: O XXXXXXXXXXXXXXXXXXXXXXXXXXXXX: &x 70

3 56
S 402b Zer0 COmpreSS
& 50 (Random)
S 402a Zero Compress

aNZee N
. 3X.
3. X O

O 8
Least Most Significant Significant
Bit Bit

FIG. 7F

242

EStinnate
Compression

is Entropy
(>0 || <31) II (>69 || < 101)?

234

ls Entropy
630 || <45) i? 56 Il-7). No

USe Zer0 Use LZ r
Compressor USe f Bit CompreSSOr

240 236

FIG. 7G
Entropy Bands and Compression Estimator Flow

Patent Application Publication Feb. 26, 2009 Sheet 18 of 25 US 2009/0055587 A1

Check data write
I/O request

Check for Collision
1372

Collision?
1374

Lock cache
1364

Update statistics
1366

Uniock cache
1368

Queue Data Write
/O request

1376

LOCK cache
1378

Update statistics
1380

Unlock Cache
1382

Return pending
1384

Fig. 8A
Basic Flow of a Data Write Request

Through the Dispatch Routine

Process no Collision
1386

Dispatch I/O request
1370

Patent Application Publication

Queue data write I/O
request
1390

Create duplicate data
write I/O request

1392

Allocate buffers for
compressed data

1394

Fig. 8B

Feb. 26, 2009 Sheet 19 of 25 US 2009/0055587 A1

Compress cache biocks
1404

Compressed?
1406

Copy to destination
1408 NO

End

Fig. 8C

Patent Application Publication Feb. 26, 2009 Sheet 20 of 25 US 2009/0055587 A1

Data
compressed?

1410

After duplicate data write Set completion routine for duplicate
I/O request data write I/O request

1412 1418

Set completion routine for compressed Dispatch duplicate
data write I/O request data write I/O request

1414 1420

Dispatch compressed
data write I/O request

1416

Deallocate buffers for compressed data
1422

Lock cache
1424

Lookup cache entry
1426

Check for Cache hit
1428

Process Cache hit Process Cache Miss
1432 1434

Fig. 8D

Patent Application Publication Feb. 26, 2009 Sheet 21 of 25 US 2009/0055587 A1

Set Writing Data flag
1440

Check compressed size
1442

Compressed
size changed? No

Yes

Update page in cache
entry
1446

Write-through
or Writeback? Write-through

Process Write-through
1450

Writeback

Update statistics
1452

Unlock cache
1454

Return pending
1456

Fig. 8E

Patent Application Publication Feb. 26, 2009 Sheet 22 of 25 US 2009/0055587 A1

Set Writing Through flag
1460

Update statistics
1462

Unlock Cache
1464

Create Write
I/O request

1466

Set completion routine for
write I/O request

1468

Dispatch write
I/O request

1470

Return pending
1472

Fig. 8F

Patent Application Publication Feb. 26, 2009 Sheet 23 of 25 US 2009/0055587 A1

Cache results?
148O

Process Allocate Process Replace Clean Process Replace Dirty
1482 1484 1486

Fig. 8G

Patent Application Publication

Allocate
cache entry

1490

Set Creating flag
1492

Set Writing Data flag
1494

Update statistics
1496

Unlock cache
1498

Create read
I/O request

1500

Set completion routine for
read I/O request

1502

Dispatch read
I/O request

1504

Return Pending
1506

Fig. 8H

Feb. 26, 2009 Sheet 24 of 25

Deallocate LRU cache
entry
1510

Allocate
cache entry

1512

Set Creating flag
1514

Set Writing Data flag
1516

Update statistics
1518

Unlock cache
1520

Create read
I/O request

1522

Set completion routine for
read I/O request

1524

Dispatch read I/O
request
1526

Return Pending
1528

Fig. 81

Set Replacing flag in
LRU cache entry

1530

Update statistics
1532

Unlock cache
1534

Create RU Writeback /
O request
1536

Set completion routine for
LRU Writeback

I/O request
1538

Dispatch LRU writeback
I/O request

1540

Return Pending
1542

Fig. 8J

US 2009/0055587 A1

Patent Application Publication Feb. 26, 2009 Sheet 25 of 25 US 2009/0055587 A1

Compress
Logic

Decompress
Logic

A WYW

Fig. 9

US 2009/0055587 A1

ADAPTIVE CACHING OF INPUT / OUTPUT
DATA

RELATED APPLICATION DATA

0001. This application is a continuation of U.S. patent
application Ser. No. 1 1/152,363, filed on Jun. 14, 2005,
entitled "Adaptive Input/Output Compressed System and
Data Cache and System Using Same', invented by John E.
Kellar, which claims benefit of priority of U.S. provisional
application Ser. No. 60/579.344 titled “Adaptive Input/Out
put Cache and System Using Same filed Jun. 14, 2004, and
which are all hereby incorporated by reference in their
entirety as though fully and completely set forth herein.

FIELD OF THE INVENTION

0002 The present invention relates, in general, to data
processing systems and more particularly to adaptive data
caching in data processing systems to reduce transfer latency
or increase transfer bandwidth of data movement within these
systems.

DESCRIPTION OF THE RELATED ART

0003. In modern data processing systems, the continual
increase in processor speeds has outpaced the rate of increase
of data transfer rates from peripheral persistent data storage
devices and Sub-systems. In systems such as enterprise scale
server systems in which substantial volumes of volatile, or
persistent data are manipulated, the speed at which data can
be transferred may be the limiting factor in system efficiency.
Commercial client/server database environments are
emblematic of Such systems. These environments are usually
constructed to accommodate a large number of users per
forming a large number of sophisticated database queries and
operations to a large distributed database. These compute,
memory and I/O intensive environments put great demands
on database servers. If a database client or server is not prop
erly balanced, then the number of database transactions per
second that it can process can drop dramatically. A system is
considered balanced for a particular application when the
CPU(s) tends to saturate about the same time as the I/O
Subsystem.
0004 Continual improvements in processor technology
have been able to keep pace with ever-increasing perfor
mance demands, but the physical limitations imposed on
retrieving data from disk has caused I/O transfer rates to
become an inevitable bottleneck. Bypassing these physical
limitations has been an obstacle to overcome in the quest for
better overall system performance.
0005. In the computer industry, this bottleneck, known as
a latency gap because of the speed differential, has been
addressed in several ways. Caching the data in memory is
known to be an effective way to diminish the time taken to
access the data from a rotating disk. Unfortunately, memory
resources are in high demand on many systems, and tradi
tional cache designs have not made the best use of memory
devoted to them. For instance, many conventional caches
simply cache data existing ahead of the last host request.
Implementations such as these, known as Read Ahead cach
ing, can work in unique situations, but for non-sequential read
requests, data is fruitlessly brought into the cache memory.
This blunt approach to caching however has become quite
common due to simplicity of the design. In fact, this approach

Feb. 26, 2009

has been put in use as read buffers within the persistent data
storage systems such as disks and disk controllers.
0006 Encoding or compressing cached data in operating
system, system caches increase the logical effective cache
size and cache hit rate, and thus improves system response
time. On the other hand, compressed data requires variable
length record management, free space search and garbage
collection. This overhead may negate performance improve
ments achieved by increasing effective cache size. Thus, there
is a need for a new operating system, system file, data and
buffer cache data managing method with low overhead, trans
parent to the operating systems in conventional data manag
ing methods. With such an improved method, it is expected
that the effective, logically accessible, memory available for
file and data buffer cache size will increase by 30% to 400%,
effectively improving system-cost performance.
0007 Ideally, a client should not notice any substantial
degradation in response time for a given transaction even as
the number of transactions requested per second by other
clients to the database server increases. The availability of
main memory plays a critical role in a database server's
ability to scale for this application. In general, a database
server will continue to scale up until the point that the appli
cation data no longer fits in main memory. Beyond this point,
the buffer manager resorts to Swapping pages between main
memory and storage sub-systems. The amount of this paging
increases exponentially as a function of the fraction of main
memory available, causing application performance and
response time to degrade exponentially as well. At this point,
the application is said to be I/O bound.
0008. When a user performs a sophisticated data query,
thousands of pages may be needed from the database, which
is typically distributed across many storage devices, and pos
sibly distributed across many systems. To minimize the over
all response time of the query, access times must be as Small
as possible to any database pages that are referenced more
than once. Access time is also negatively impacted by the
enormous amount of temporary data that is generated by the
database server, which normally cannot fit into main memory,
such as the temporary files generated for sorting. If the buffer
cache is not large enough, then many of those pages will have
to be repeatedly fetched to and from the storage sub-system.
0009 Independent studies have shown that when 70% to
90% of the working data fits in main memory, most applica
tions will run several times slower. When only 50% fits, most
run 5 to 20 times slower. Typical relational database opera
tions run 4 to 8 times slower when only 66% of the working
data fits in main memory. The need to reduce or eliminate
application page faults, data or file system I/O is compelling.
Unfortunately for system designers, the demand for more
main memory by database applications will continue to far
exceed the rate of advances in memory density. Coupled with
this demand from the application area comes competing
demands from the operating system, as well as associated I/O
controllers and peripheral devices. Cost-effective methods
are needed to increase the, apparent, effective size of system
memory.

0010. It is difficult for I/O bound applications to take
advantage of recent advances in CPU, processor cache, Front
Side Bus (FSB) speeds, >100 Mbit network controllers, and
system memory performance improvements (e.g., DDR2)
since they are constrained by the high latency and low band
width of volatile or persistent data storage subsystems. The
most common way to reduce data transfer latency is to add

US 2009/0055587 A1

memory. Adding memory to database servers may be expen
sive since these applications demand a lot of memory, or may
even be impossible, due to physical system constraints such
as slot limitations. Alternatively, adding more disks and disk
caches with associated controllers, or Network Attached Stor
age (NAS) and network controllers or even Storage Aware
Network (SAN) devices with Host Bus Adapters (HBA's) can
increase storage Sub-system request and data bandwidth. It
may be even necessary to move to a larger server with mul
tiple, higher performance I/O buses. Memory and disks are
added until the database server becomes balanced.

0011 First, the memory data encoding/compression
increases the effective size of system wide file and/or buffer
cache by encoding and storing a large block of data into a
smaller space. The effective available reach of these caches is
typically doubled, where reach is defined as the total imme
diately accessible data requested by the system, without
recourse to out-of-core (not in main memory) storage. This
allows client/server applications, which typically work on
data sets much larger than main memory, to execute more
efficiently due to the decreased number of volatile, or persis
tent, storage data requests. The numbers of data requests to
the storage Sub-systems are reduced because pages or disk
blocks that have been accessed before are statistically more
likely to still be in main memory when accessed again due to
the increased capacity of cache memory. A secondary effect
of Such compression or encoding is reduced latency in data
movement due to the reduced size of the data. Basically, the
average compression ratio tradeoff against the original data
block size as well as the internal cache hashbucket size must
be balanced in order to reap the greatest benefit from this
tradeoff. The Applicant of the present invention believes that
an original uncompressed block size of 4096 bytes with an
average compression ratio of 2:1 stored internally in the
cache, in a data structure known as an open hash, in blocks of
256 bytes results in the greatest benefit towards reducing data
transfer latency for data movement across the north and South
bridge devices as well as to and from the processors across the
Front-Side-Bus. The cache must be able to modify these
values in order to reap the greatest benefits from this second
order effect.

0012. There is a need to improve caching techniques, so as
to realize greater hit rates within the available memory of
modern Systems. Current hit rates, from methods such as
LRU (Least Recently Used), LFU (Least Frequently Used),
GCLOCK and others, have increased very slowly in the past
decade and many of these techniques do not scale well with
the availability of the large amounts of memory that modern
computer systems have available today. To help meet this
need, the present invention utilizes a entropy signature from
the compressed data blocks to Supply a bias to pre-fetching
operations. This signature is produced from the entropy esti
mation function described herein, and stored in the tag struc
ture of the cache. This signature provides a unique way to
group previously seen data; this grouping is then used to bias
or alter the pre-fetching gaps produced by the prefetching
function described below. Empirical evidence shows that this
entropy signature improve pre-fetching operations over large
data sets (greater than 4 GBytes of addressable space) by
approximately 11% over current techniques that do not have
this feature available.

0013 There is also a need for user applications to be able
to access the capabilities for reducing transfer latency or
increasing transfer bandwidth of data movement within these

Feb. 26, 2009

systems. There is a further need to supply these capabilities to
these applications in a transparent way, allowing an end-user
application to access these capabilities without requiring any
recoding or alteration of the application. The Applicant of the
present invention believes this may be accomplished through
an in-core file-tracking database maintained by the invention.
Such a core file-tracking data base would offer seamless
access to the capabilities of the invention by monitoring file
open and close requests from the user-application/operating
system interface, decoding the file access flags, while main
taining an internal list of the original file object name and
flags, and offering the capabilities of the invention to appro
priate file access. The in-core file-tracking database would
also allow the end-user to over-ride an application's caching
request and either allow or deny write-through or write-back
or non-conservative or no-caching to an application on a file
by file basis, through the use of manual file tracking or, on a
system wide basis, through the use of dynamic file tracking.
This capability could also be offered in a more global, system
wide way by allowing caching of file system metadata; this
caching technique (the caching of file system metadata spe
cifically) is referred to throughout this document as “non
conservative caching.”
0014. There is a further need to allow an end-user appli
cation to seamlessly access PAE (Physical Address Exten
sion) memory for use in file caching/data buffering, without
the need to re-code or modify the application in any way. The
PAE memory addressing mode is limited to the Intel, Inc. x86
architecture. There is a need for replacement of the underly
ing memory allocator to allow a PAE memory addressing
mode to function on other processor architectures. This
would allow end-user applications to utilize the modern
memory addressing capabilities without the need to re-code
or modify the end-user application in any way. This allows
transparent seamless access to PAE memory, for use by the
buffer and data cache, without user intervention or system
modification.
0015 Today, large numbers of storage sub-systems are
added to a server system to satisfy the high I/O request rates
generated by client/server applications. As a result, it is com
mon that only a fraction of the storage space on each storage
device is utilized. By effectively reducing the I/O request rate,
fewer storage Sub-system caches and disk spindles are needed
to queue the requests, and fewer disk drives are needed to
serve these requests. The reason that the storage Sub-system
space is not efficiently utilized is that, on today's hard-disk,
storage systems, access latency increases as the data written
to the storage sub-system moves further inward from the edge
of the magnetic platter, in order to keep access latency at a
minimum system designers over-design storage sub-systems
to take advantage of this phenomenon. This results in under
utilization of available storage. There is a need to reduce
average latency to the point that this trade-off is not needed,
resulting in storage space associated with each disk that can
be more fully utilized at an equivalent or reduced latency
penalty.
0016. In addition, by reducing the size of data to be trans
ferred between local and remote persistent storage and sys
tem memory, the I/O and Front Side Buses (FSB) are utilized
less. This reduced bandwidth requirement can be used to
scale system performance beyond its original capabilities, or
allow the I/O subsystem to be cost reduced due to reduced
component requirements based on the increased effective
bandwidth available.

US 2009/0055587 A1

0017 Thus, there is a need in the art for mechanisms to
balance the increases in clock cycles of the CPU and data
movement latency gap without the need for adding additional
Volatile or persistent storage and memory Sub-systems or
increasing the clock cycle frequency of internal system and
I/O buses. Furthermore, there is a need to supply this capa
bility transparently to end user applications so that they can
take advantage of this capability in both a dynamic and a
directed way.

SUMMARY OF THE INVENTION

0018. There is a need to improve caching techniques, so as
to realize greater hit rates within the available memory of
modern Systems. Current hit rates, from methods such as
LRU (Least Recently Used), LFU (Least Frequently Used),
GCLOCK and others, have increased very slowly in the past
decade and many of these techniques do not scale well with
the availability of the large amounts of memory that modern
computer systems have available today. To help meet this
need, the present invention utilizes a entropy signature from
the compressed data blocks to Supply a bias to pre-fetching
operations. This signature is produced from the entropy esti
mation function described herein, and stored in the tag struc
ture of the cache. This signature provides a unique way to
group previously seen data; this grouping is then used to bias
or alter the pre-fetching gaps produced by the prefetching
function described below. Empirical evidence shows that this
entropy signature improve pre-fetching operations over large
data sets (greater than 4 GBytes of addressable space) by
approximately 11% over current techniques that do not have
this feature available.

0019. The method for caching data in accordance with the
present invention involves detecting a data input/output
request, relative to a data object, and then selecting appropri
ate I/O to cache, wherein said selecting can occur with or
without user input, or with or without application or operating
system preknowledge. Such selecting may occur dynami
cally or manually. The method of the present invention further
involves estimating an entropy of a data block to be cached in
response to the data input/output request; selecting a com
pressor using a value of the entropy of the data block from the
estimating step, wherein each compressor corresponds to one
of a plurality of ranges of entropy values relative to an entropy
watermark; and storing the data block in a cache in com
pressed form from the selected compressor, or in uncom
pressed form if the value of the entropy of the data block from
the estimating step falls in a first range of entropy values
relative to the entropy watermark. The method for caching
data in accordance with the present invention can also include
the step of prefetching a data block using gap prediction with
an applied entropy bias, wherein the data block is the data
block to be cached, as referenced above, or is a separate
second data block. The method of the present invention can
also involve the following additional steps: adaptively adjust
ing the plurality of ranges of entropy values; scheduling a
flush of the data block from the cache; and Suppressing oper
ating system flushes in conjunction with the foregoing sched
uling step.
0020. The foregoing has outlined rather broadly the fea
tures and technical advantages of the present invention in
order that the detailed description of the invention that fol
lows may be better understood. Additional features and

Feb. 26, 2009

advantages of the invention will be described hereinafter,
which form the subject of the claims of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0021. The present invention may be better understood, and
its numerous objects, features, and advantages made apparent
to those skilled in the art by referencing the accompanying
drawings. The use of the same reference number throughout
the several figures designates a like or similar element.
0022 FIG. 1A (prior art) depicts a generalized system
architecture of a modern data processing system;
0023 FIG. 1B (prior art) depicts generalized software
architecture for the I/O subsystem of Windows 2000, XP, and
beyond;
0024 FIG. 2A illustrates a high-level logical view of an
adaptive compressed cache architecture in accordance with
the present inventive principles;
0025 FIG. 2B illustrates, in more detail, a high-level logi
cal view of an adaptive compressed cache;
0026 FIG. 2C illustrates a logical view of an adaptive
compressed caching architecture in accordance with the
present inventive principals;
0027 FIG. 2D is a table showing opened file policy for
cache in accordance with an embodiment of the present
invention;
0028 FIG. 2E illustrates the flags used for file tracking
specifications in accordance with an embodiment of the
present invention;
0029 FIG.3 illustrates a cache protocol in a state diagram
format view in accordance with the present state of the art
principals;
0030 FIG. 4A shows a modified MSI cache protocol,
wherein the MSI protocol is modified in accordance with the
present inventive design principals;
0031 FIG. 4B shows state transitions for write-invalida
tion in accord with the present inventive design principles;
0032 FIGS. 5 and 6 are flow diagrams illustrating imple
mentation details in accordance with an embodiment of the
present invention;
0033 FIG. 7A-7D are further flow diagrams illustrating
implementation details in accordance with an embodiment of
the present invention;
0034 FIG.7E is a schematic representation of a data struc
ture in accordance with an embodiment of the present inven
tion;
0035 FIG.7F schematically depicts a set of entropy bands
about the maximum-entropy watermark which have pre-se
lected relative widths about the maximum-entropy water
mark;
0036 FIG. 7G, 8A-8J are flow diagrams illustrating
implementation details in accordance with an embodiment of
the present invention; and
0037 FIG. 9 illustrates an exemplary hardware configu
ration of a data processing system in accordance with the
present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

0038. In the following description, numerous specific
details are set forth Such as specific word or byte lengths, etc.
to provide a thorough understanding of the present invention.
However, it will be obvious to those skilled in the art that the
present invention may be practiced without Such specific

US 2009/0055587 A1

details. In other instances, well-known circuits have been
shown in block diagram form in order not to obscure the
present invention in unnecessary detail. For the most part,
details concerning timing considerations and the like have
been omitted inasmuch as such details are not necessary to
obtain a complete understanding of the present invention and
are within the skills of persons of ordinary skill in the relevant
art.

0039 Refer now to the drawings wherein depicted ele
ments are not necessarily shown to scale and wherein like or
similar elements are designated by the same reference
numeral through the several views.
0040 FIG. 1A (prior art) depicts a generalized system
architecture of a modern data processing system.
0041 FIG. 1B (prior art) depicts generalized software
architecture for the I/O subsystem of Windows 2000, XP, and
beyond. This diagram is not intended to be literally accurate,
but a generalized view of the Software components, and how
they exist within the system from a hierarchical point of view.
This diagram utilizes the Windows operating system only for
illustrative purposes, as the present inventive embodiment
may be implemented in any modern operating system in
fundamentally the same way. Note that this figure illustrates
both a file and data cache, as well as a network controller
device cache. The present invention may be adapted to either
a network controller device or a disk controller device using
the same inventive design principles discussed below.
0042 FIG. 2A illustrates a high-level logical view of an
adaptive compressed cache architecture in accordance with
the present inventive principles.
0043 FIG. 2B illustrates, in more detail, a high-level logi
cal view of an adaptive compressed cache.
0044 FIG. 2C illustrates a logical view of an adaptive
compressed caching architecture 100 in accordance with the
present inventive principles. Modern data processing systems
may be viewed from a logical perspective as a layered struc
ture 102 in which a software application 104 occupies the top
level, with the operating system (OS) application program
interfaces (APIs) 106 between the application and the OS
108. OS APIs 106 expose system services to the application
104. These may include, for example, file input/output (I/O),
network I/O, etc. Hardware devices are abstracted at the low
est level 110. Hardware devices (see FIGS. 2A and 2B) may
include the central processing unit (CPU) 112, memory, per
sistent storage (e.g., disk controller 114), and other peripheral
devices 116. In the logical view represented in FIG. 2C, these
are handled on an equal footing. That is, each device "looks'
the same to the OS.
0045. In accordance with the present inventive principles,

filter driver 118 intercepts the operating system file access
and performs caching operations, described further herein
below, transparently. That is, the caching, file tracking and, in
particular, the compression associated therewith, is transpar
ent to the application 104. Data selected for caching is stored
in a (compressed) cache (denoted as ZCache 120). (The
“ZCache' notation is used as a mnemonic device to call
attention to the fact that the cache in accordance with the
present invention is distinct from the instruction/data caches
commonly employed in modern microprocessor Systems, and
typically denoted by the nomenclature “L1”, “L2 etc. cache.
Furthermore the Z is a common mnemonic used to indicate
compression or encoding activity.) In an embodiment of the
present invention, ZCache 120 may be physically imple
mented as a region in main memory. Filter 118 maintains a file

Feb. 26, 2009

tracking database (DB) 122 which contains information
regarding which files are to be cached or not cached, and other
information useful to the management of file I/O operations,
as described further herein below. Although logically part of
filter driver 118, physically, file tracking DB 122 may be
included in ZCache 120.
0046. A few notes on FIG. 2C:
0047 1) The preferred embodiment of the File system
driver layers itself between boxes #2 (I/O Manager Library)
and #18 (FS Driver).
0048 2) The disk filter layers itselfbetween boxes #18 (FS
Driver) and the boxes in the peer group depicted by #19 (Disk
Class), #20 (CD-ROM Class), and #21 (Class).
0049 3) The ZCache module exists as a stand-alone
device driver adjunct to the file system filter and disk filter
device drivers.
0050. 4) ATDI Filter Driveris inserted between box (TDI)
8, with connection tracking for network connections that
operates the same as the file tracking modules in the com
pressed data cache, and the peergroup of modules that consist
of (AFD) 3, (SRV)4, (RDR) 5, (NPFS) 6, and (MSFS) 7. A
complete reference on TDI is available on the Microsoft
MSDN website at
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/network/hh/network/303tdi.Sub.--519.asp, which is
incorporated herein by reference.
0051 5) A NDIS intermediate cache driver is inserted
between the bottom edge of the transport drivers and the
upper edge of the NDIS components.
0.052 FIG.3 illustrates a cache protocol, in a state diagram
format view and in accordance with the present state of the art
principles. This state diagram describes the Modified
Shared-Invalid (MSI) Cache protocol. This cache protocol is
one used on processor caches, and is closest to what is needed
for a block-based cache. Other possible cache protocols
which are not precluded by this preferred embodiment
include MESI, MOESI, Dragon and others.
0053. The definitions of the states shown in FIG. 2 are:
0054 1) Invalid: The cache line does not contain valid
data.
0055 2) Shared: The cache line contains data, which is
consistent with the backing store in the next level of the
memory hierarchy.
0056 3) Modified: The cache line contains the most recent
data, and is different than data contained in backing store.
0057 FIG. 4A shows the modified MSI cache protocol. In
accordance with present inventive design principles, the MSI
protocol must be modified, as in FIG. 4A, to accomplish the
present inventive design goals. Many factors are considered
in development of caching protocols, and most of the above
mentioned cache protocols are of a general purpose only, or
are designed for a specific target implementation, Such as a
processor (CPU) cache. In order to meet the design goals of
the present inventive principles other cache protocol factors,
rather than only those embodied by the MSI protocol, must be
considered.
0.058 Other caching protocols factors to consider are:
0059) 1) Read/Write ordering consistency
0060 2) Allocate on Write Policy
0061 3) Write-through, Write-Back, and Non-cacheable
attributes
0062 4) Blocking vs. a Non-Blocking design
0063 5) Support for hardware codec support
0064 6) Squashing support to save I/O Requests

US 2009/0055587 A1

0065. Another important item to consider when applying
this concept to the invention's cache protocol is the high
latencies associated with issuing and completing disk I/Os. It
is necessary to break apart the MSI Shared and Modified
states to take into consideration the following cases:
0066 1) A cache line is allocated, but the disk I/O may not
complete in hundreds if not thousands of microseconds. Dur
ing this time, additional I/O requests could be made against
the same allocated cache line.
0067. 2) Dynamically changing cache policies based on
file-stream attributes, in different process contexts.
0068 3) Take maximum advantage of the Asynchronous
I/O model.
0069. Application of these considerations is shown in the
state diagram FIG. 4B, which shows state transitions for
write-invalidation in accord with the present inventive design
principles.
0070. Many operating systems have features that can be
exploited for maximum performance benefit. As previously
mentioned, some of these feature are Asynchronous I/O mod
els, I/O Request Packets or IRPS that can be pended, managed
and queued by intermediate drivers, and internal list manipu
lation techniques, such as look-aside lists or buddy lists.
These features may vary slightly from operating system to
operating system; none of these features are precluded or
required by the present inventive design principles.
(0071 Refer now to FIG. 5 that illustrates in flow chart
form, an adaptive, transparent compression caching method
ology 200 in accordance with the present inventive principles.
In the logical view of FIG. 2C, methodology 200 may be
primarily performed by filter driver 118, or alternatively, may
be logically between filter driver 118 and ZCache driver 120.
0072 Methodology 200 watches for I/O operations
involving data block moves, in step 502. See FIG. 5. As
illustrated in FIG. 6, a data block move may be detected by
"peeking at, or disassembling, the I/O request packets that
control the handling of I/O operations. If an I/O operation
involving data block moves is detected, methodology 200
performs operations to determine if the subject data is to be
cached. This is described in conjunction with step 204 of FIG.
6 and steps 204-214 of FIG. 7A. In general, caching decisions
are based on user-selectable caching policies in combination
with caching “instructions” that may be set by the application
making the data transfer request. Step 204 instructs the oper
ating system how a I/O operation should be handled. In par
ticular, each I/O packet includes descriptive data that may
include information (i.e. “flags) for control the caching of
the data transported in the packet.
0073 Firstly, the user may specify a list of files to be
ignored. If, in step 204, the subject file of the data move is in
the “ignored” list, process 200 returns to step 208 to continue
to watch for data block moves. Otherwise, in step 206, it is
determined if caching is turned off in accordance with a
global caching policy. As discussed in conjunction with FIG.
2C, a file-tracking database 122 (equivalently, a file tracking
“registry’) may be maintained in accordance with caching
architecture 100. This registry may include a set of file track
ing flags 20, FIG. 2E. In an embodiment of file tracking flags
20, each entry may be a hexadecimal (hex) digit. Glo
balPolicy flag 21, which may be set by the user, may be set to
determine the global policy that determines the most aggres
sive policy for any file. In other words, as described further
below, other parameters may override the global policy to
reduce the aggressiveness for a particular file. The values

Feb. 26, 2009

GlobalPolicy flag 21 may take predetermined values (e.g., a
predetermined hex digit) representing respective ones of a
writeback policy, writethrough policy and no caching. Write
back caching means that a given I/O write request may be
inserted in the ZCache instead of immediately writing the
data to the persistent store. Writethrough caching means that
the data is also immediately written to the persistent store. If,
in step 206, caching is turned off, such as if GlobalPolicy flag
21 is set to a predetermined hex value representing "no
cache.” process 200 passes the I/O request to the operating
system (OS) for handling, step 208. Otherwise, process 200
proceeds to step 210.
0074. In decision block 210, it is determined if dynamic,
manual or alternatively, non-conservative tracking is set. This
may be responsive to a value of Dynamic flag 28, FIG. 2E. In
an embodiment of the present invention, if the value of the
flag is “writethrough the dynamic tracking is enabled, and if
the value of the flag is “no cache.” manual tracking is enabled.
(Manual tracking allows the user to explicitly list in the file
tracking database which files are to be cached.) In dynamic
mode, if, in step 212 the subject file is a tracked file, it is
cached in the ZCache in accordance with cache policy (either
as writethrough or writeback). File flags associated with the
Subject file are ignored in manual mode and honored in
dynamic mode. In particular, in a Windows NT environment,
a FO NO INTERMEDIATE BUFFERING flag is ignored
in manual mode (and honored in dynamic mode), and like
wise an analogous flag in other OS environments. If the
subject file is an untracked file, process 200 proceeds to step
214.

0075. Untracked files include metadata and files that may
have been opened before the caching process started. Meta
data files are files that contain descriptions of data Such as
information concerning the location of files and directories;
log files to recover corrupt Volumes and flags which indicate
bad clusters on a physical disk. Metadata can represent a
significant portion of the I/O to a physical persistent store
because the contents of small files (e.g., <4,096 bytes) may be
completely stored in metadata files. In step 214 it is deter
mined if non-conservative caching is enabled. In an embodi
ment of the present invention using file tracking flags 21, FIG.
2E, step 214 may be performed by examining Default flag 24.
FIG. 2D. If the value of Default flag 24 is the hex digit
representing “writeback, then non-conservative caching is
enabled, and decision block 214 proceeds by the “Y” branch.
Conversely, if the value of Default flag 24 is the hex digit
representing “no cache., then non-conservative caching is
disabled, and decision block 214 proceeds by the “N' branch,
and the respective file operation is passed to the OS for
handling (step 208).
0076. In step 214, it is determined if the subject file is a
pagefile. If so, in step 214 it is determined if caching of
pagefiles is enabled. The flag 28 (FIG. 2E) has the value
representing page file I/O. Pagefile I/O is passed to the OS for
handling.
(0077. Process 200 having determined that the subject data
is to be cached, in step 220 file object information is extracted
from the I/O request packet and stored in the file tracking DB,
step 222 (FIG. 6). Such data may include any policy flags set
by the application issuing the Subject I/O request. If, for
example, in a Windows NT environment, the FO WRITE
THROUGH flag is set in the packet descriptor the WRITE
THROUGH flag 28, FIG. 2E, may be set in step 222. Simi
larly, if the FO NO INTERMEDIATE BUFFERING is set

US 2009/0055587 A1

in the I/O request packet, then the NO BUFF flag 28 may be
set in step 222. Additionally, sequential file access flags, for
example, also may be stored.
0078. In FIG. 7B, if the I/O request is a write, process 200
proceeds by the “Y” branch in step 224, to step 226. If the
request is not a write request, decision block 224 proceeds by
the “No” branch to decision block 228, to determine if the
request is a read.
0079. In step 226 (FIG.7C), storage space in the ZCache

is reserved, and in step 230, a miss counter associated with the
subject data block to be cached is cleared. Each such block
may have a corresponding tag that represents a fixed-size
block of data. For example, a block size, which is normally
equivalent to the PAGE SIZE of a computer processor that
would execute the instructions for carrying out the method of
the present invention, of 4,096 bytes may be used in an
embodiment of the present invention, however other block
sizes may be used in accordance with the present inventive
principles, as shown in FIG. 7E, schematically illustrating a
block tag 300 which may be stored in the file tracking data
base Block tag 300 may be viewed as a data structure having
a plurality of members including counter member 302 includ
ing miss counter 304. Counter member 302 may, in an
embodiment of the present invention may be one-byte wide,
and miss counter 304 may be one bit wide (“true/false'). The
operation of the miss counter will be discussed further herein
below.

0080. In step 232 (FIG. 7C), a compression estimation is
made. The amount of compression that may be achieved on
any particular block is determined by the degree of redun
dancy in the data block, in accordance with the classic theory
information of Shannon. A block of data that is perfectly
random has a maximum entropy in this picture and does not
compress. An estimation of the entropy of the Subject block
may be used as a measure of the maximum compression that
may be achieved for that block. Different data compression
techniques are known in the art, and the “better the compres
sor, the closer the compression ratio achieved will be to the
entropy-theoretic value. However, the greater compression
comes at the price of computational complexity, or, equiva
lently, CPU cycles. Thus, although memory may be saved by
the higher compression ratios, the savings may come at the
price of reduced responsiveness because of the added CPU
burden. In other words, different compression schemes may
be employed to trade offspace and time. In an embodiment of
the present invention, an entropy estimate may be made using
a frequency table for the data representation used. Such fre
quency tables are used in the cryptographic arts and represent
the statistical properties of the data. For example, for ASCII
data, a 256-entry relative frequency table may be used. Fre
quency tables are often used in cryptography and compres
sion; they are pre-built tables used for predicting the prob
ability frequency of presumed alphabetic token occurrences
in a data stream. In this embodiment, the token stream is
presumed to be ASCII-encoded tokens, but is not restricted to
this. For computational convenience, the entropy may be
returned as a signed integer value in the range.+-.50. A maxi
mal entropy block would return the value 50. The entropy
estimate may also be stored in the block tag (tag member 310,
FIG. 3). The value of the entropy estimate may be used to
select a compressor, step 234 or the value of the entropy
estimate may also be used to provide a bias to pre-fetching for
previously seen read data blocks.

Feb. 26, 2009

I0081. In step 234, which may be viewed as a three-way
decision block if three levels of compression are provided, the
Subject data block is compressed using an entropy estimate
based compressor selection. This may be further understood
by referring to FIG.7F. FIG.7F schematically depicts a set of
entropy bands about the maximum-entropy watermark
(which may correspond to a value of Zero for a random block)
which have pre-selected relative widths about the maximum
entropy watermark. Thus, bands 402a and 402b are shown
with a width of 6%, and represent a block that deviates by a
relatively small amount from a random block and would be
expected to benefit little from compression. Therefore, in step
234, FIG. 7G, Zero compression, 236 may be selected. In
other words, such a block may be cached without compres
sion. If the entropy estimate returns a value in bands 404a,
404b, shown with a width of 19%, a zero-bit compressor 238,
FIG. 2C may be selected. A Zero-bit compressor, counts the
number of Zeros occurring before a one occurs in the word.
The Zeros are replaced by the value representing the number
of Zeros. If the entropy estimate returns a value in bands 406
a, 406b, having an illustrated width of 25%, a more sophisti
cated compression may be used, as the degree of compression
expected may warrant the additional CPU cycles that such a
compressor would consume. In step 234, a compressor of the
Lempel–Ziv (LZ) type 240 may be selected. LZ type com
pressors are based on the concept, described by A. Ziv and J.
Lempel in 1977, of parsing strings from a finite alphabet into
Substrings of different lengths (not greater than a predeter
mined maximum) and a coding scheme that maps the Sub
strings into code words of fixed length, also predetermined.
The Substrings are selected so they have about equal prob
ability of occurrence. Algorithms for implementing LZ type
compression are known in the art, for example, the lzw algo
rithm described in U.S. Pat. No. 4,558.302 issued Dec. 10,
1985 to Welch and the lzo compressors of Markus F. X. J.
Oberhumer, http://www.oberhumer.com/, which are incorpo
rated herein by reference. The type of compressor used and
the compression ratio attained may be stored in the block tag,
FIG.7E,312,314, respectively. Bands may be added for other
compressor types known to the art Such as Burroughs
Wheeler (BWT) or PPM (Prediction by Partial Match).
I0082 Moreover, the bands may be adaptively adjusted. If,
for example, the CPU is being underutilized, it may be advan
tageous to use a more aggressive compressor, even if the
additional compression might not otherwise be worth the
tradeoff. In this circumstance, the width of bands 404a, b and
406a, b may be expanded. Conversely, if CPU cycles are at a
premium relative to memory, it may be advantageous to
increase the width of bands 402a, b, and shrink the width of
bands 406a, b. A methodology for adapting the compressor
selection is described in conjunction with FIG. 7F.
I0083. In FIGS. 8A-8J, the data is cached, and any unused
space reserved is freed. It is determined if the cached data
block previously existed on the persistent store (e.g., disk). If
not, an I/O packet of equal size to the uncompressed data
block is issued to the persistent store. In this way, the persis
tent store reserves the space for a Subsequent flush, which
may also occur if the OS crashes. Additionally, if a read
comes in the block will be returned without waiting for the
I/O packet request to complete, in accordance with the write
back mechanism. If the block previously existed on the per
sistent store, or if the cache policy for the block is
writethrough (overriding the writeback default), the block is
written to the persistent store. Otherwise, the block is sched

US 2009/0055587 A1

uled for a flush. Additionally, a “write squashing may be
implemented whereby flushes coming through from the OS
are Suppressed. In this way, process 200 may lay down con
tiguous blocks at one time, to avoid fragmenting the persistent
store. Process 200 then returns to step 208.
I0084. Returning to step 288 in FIG. 7B, if the request is a
read request, in FIG. 7E, the prefetch and miss counters of the
subject block are reset, and reference counters for all blocks
updated. A methodology for updating the reference counter
for a block will be described in conjunction with FIG. 7D,
below. In step 258 (FIG. 7E), it is determined if the block has
been previously read. This may be determined by a non-zero
access count in number of accesses member 316, FIG. 7E.
I0085. If the block has been previously read, in step 260 it
is determined if a gap prediction is stored in the tag (e.g., gap
prediction member 318, FIG. 7E). Gap prediction is accom
plished by testing the distance in Logical Blocks (LBN's)
from one read requestina file to a Subsequent read request on
the same file, if the LBN's are not adjacent (e.g. each read
takes place at the next higher or lower LBN associated with
this file) but there is a regular skippattern (e.g., a read is done,
some, regular, number of LBN's is skipped, either positively
or negatively, a Subsequent read is issued at this skipped
distance) that has been detected from at least two previous
reads of this file. If gap prediction has been detected then
prefetching will continue as if normal sequential access had
been detected, to the length of the gap. If so, in step 260 it is
determined if a reference counter in the next block in the
sequence is smaller than two. If a block that has been
prefetched is not hit in the next two references, then it will not
be prefetched again, unless its entropy estimation is approxi
mately equal plus or minus 2% (this value is arrived at empiri
cally and may be different for different operating systems or
platforms) to the entropy of the previously fetched block, and
process 200 bypasses step 264.
I0086. Otherwise, in step 264 the next sequential block is
prefetched and a prefetch counter is set for the block. Refer
ring to FIG. 7E, counter member 302 may, in an embodiment
of the present invention, be one-byte wide, and may contain a
prefetch counter 306 which may be one bit wide (“true/
false').
I0087. Returning to step 258, if the block has not been
previously read, in FIG. 7F an entropy estimate is made for
the block (using the same technique as in step 232) that is
stored in the file tracking database (e.g., in compression esti
mate member 310, FIG.7E). A next block is then selected for
prefetching based on entropy and distance (FIG. 7E). That is,
of the blocks nearest in entropy (once again within 2%), the
closest block in distance to the subject block of the read
request is prefetched. (Recall that a block has a unique
entropy value, but a given entropy value may map into a
multiplicity of blocks.) If, however, in FIG. 7E the miss
counter for the selected block is set, prefetching of that block
is bypassed (“Y” branch of decision block). Otherwise, in
step 274, the block is prefetched, and the miss counter (e.g.,
miss counter 304, FIG. 7E) for the prefetched block is set (or
logically “True'). The prefetch counter is set in step 266, as
before.
0088 Similarly, if there is no gap prediction, a prefetch
based on solely on entropy is performed via the “No” branch
of decision block 260.
I0089. In step 204 the read is returned.
0090 FIG. 9 illustrates an exemplary hardware configu
ration of data processing system 700 in accordance with the

Feb. 26, 2009

Subject invention. The system in conjunction with the meth
odologies illustrated in FIG. 5 and architecture 100, FIG. 2C
may be used for data caching in accordance with the present
inventive principles. Data processing system 700 includes
central processing unit (CPU) 710, such as a conventional
microprocessor, and a number of other units interconnected
via system bus 712. Data processing system 700 may also
include random access memory (RAM) 714, read only
memory (ROM) (not shown) and input/output (I/O) adapter
722 for connecting peripheral devices such as disk units 720
to bus 712. System 700 may also include communication
adapter for connecting data processing system 700 to a data
processing network, enabling the system to communicate
with other systems. CPU 710 may include other circuitry not
shown herein, which will include circuitry commonly found
within a microprocessor, e.g., execution units, bus interface
units, arithmetic logic units, etc. CPU 710 may also reside on
a single integrated circuit.
0091 Preferred implementations of the invention include
implementations as a computer system programmed to
execute the method or methods described herein, and as a
computer program product. According to the computer sys
tem implementation, sets of instructions for executing the
method or methods are resident in the random access memory
714 of one or more computer systems configured generally as
described above. These sets of instructions, in conjunction
with system components that execute them may perform
operations in conjunction with data block caching as
described hereinabove. Until required by the computer sys
tem, the set of instructions may be stored as a computer
program product in another computer memory, for example,
in disk drive 720 (which may include a removable memory
Such as an optical disk or floppy disk for eventual use in the
disk drive 720). Further, the computer program product can
also be stored at another computer and transmitted to the
user's workstation by a network or by an external network
such as the Internet. One skilled in the art would appreciate
that the physical storage of the sets of instructions physically
changes the medium upon which is the stored so that the
medium carries computer-readable information. The change
may be electrical, magnetic, chemical, biological, or some
other physical change. While it is convenient to describe the
invention in terms of instructions, symbols, characters, or the
like, the reader should remember that all of these in similar
terms should be associated with the appropriate physical ele
mentS.

0092. Note that the invention may describe terms such as
comparing, validating, selecting, identifying, or other terms
that could be associated with a human operator. However, for
at least a number of the operations described herein which
form part of at least one of the embodiments, no action by a
human operator is desirable. The operations described are, in
large part, machine operations processing electrical signals to
generate other electrical signals.

1. A method for caching data comprising:
detecting a data input/output (I/O) request, relative to a data

object;
selecting appropriate I/O to cache, wherein said selecting

can occur with or without user input, or with or without
application or operating system preknowledge;

estimating an entropy of a data block to be cached in
response to the data input/output request;

selecting a compressor using a value of the entropy of the
data block from the estimating step, wherein each com

US 2009/0055587 A1

pressor corresponds to one of a plurality of ranges of
entropy values relative to an entropy watermark;

storing the data block in a cache in compressed form from
the selected compressor, or in uncompressed form if the
value of the entropy of the data block from the estimat
ing step falls in a first range of entropy values relative to
the entropy watermark; and

prefetching the data block using gap prediction with an
applied entropy bias.

2. The method of claim 1 further comprising adaptively
adjusting the plurality of ranges of entropy values.

3. The method of claim 1 further comprising scheduling a
flush of the data block from the cache.

4. The method of claim 3 further comprising Suppressing
operating system flushes in conjunction with the scheduling
step.

5. The method of claim 1, wherein said selecting occurs
dynamically.

6. The method of claim 1, wherein said selecting occurs
manually.

7. A method for caching data comprising:
detecting a data input/output (I/O) request, relative to a data

object;
Selecting appropriate I/O to cache, wherein said selecting

can occur with or without user input, or with or without
application or operating system preknowledge;

estimating an entropy of a first data block to be cached in
response to the data input/output request;

Feb. 26, 2009

selecting a compressor using a value of the entropy of the
first data block from the estimating step, wherein each
compressor corresponds to one of a plurality of ranges of
entropy values relative to an entropy watermark;

storing the first data block in a cache in compressed form
from the selected compressor, or in uncompressed form
if the value of the entropy of the first data block from the
estimating step falls in a first range of entropy values
relative to the entropy watermark; and

prefetching a second data block using gap prediction with
an applied entropy bias.

8. The method of claim 7 further comprising adaptively
adjusting the plurality of ranges of entropy values.

9. The method of claim 7 further comprising scheduling a
flush of the data block from the cache.

10. The method of claim 9 further comprising suppressing
operating system flushes in conjunction with the scheduling
step.

11. The method of claim 7, wherein said selecting occurs
dynamically.

12. The method of claim 7, wherein said selecting occurs
manually.

13. One or more computer program products readable by a
machine and containing instructions for performing the
method contained in claim 1.

14. One or more computer program products readable by a
machine and containing instructions for performing the
method contained in claim 7.

c c c c c

